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2. Abstract 
Background: Preterm birth is a major burden, affecting approximately 15 million infants each 
year. Recent advances in reproductive medicine increases that number even more. The 
population of preterm infants in particular suffers from autonomic dysregulation that 
manifests as temperature instability and poor control of heart rate and breathing. Thermal 
care, monitoring of vital signs in a neonatal intensive care unit, pharmacotherapy, and 
respiratory support over weeks to months is necessary. Improvements in neonatal care in the 
past years lead to a decrease in mortality, especially in very preterm infants. However, former 
preterm infants still are a high-risk population for acute and chronic sequelae as a result of 
the interruption of the physiological development.  
A better understanding of the pathophysiology of the autonomic dysregulation in that 
population would be very useful. Unfortunately, accurate diagnostic tools that objectively 
assess and quantify the immature autonomic control in neonates are lacking.  
 
Methods: In this PhD thesis we examined different effects of the immature autonomic control 
in very preterm infants under clinically relevant conditions. We conducted a prospective 
single center observational study, where we assessed fluctuations in body temperature, sleep 
behavior, and heart rate variability in very preterm infants. We described the different 
regulatory systems using distinct mathematical expressions, such as detrended fluctuation 
analysis and sample entropy. We assessed associations between these outcome parameters 
and relevant factors of the infant’s history, such as demographic parameters and co-
morbidities. 
Besides that, we analyzed lung function measurements of preterm infants and healthy term 
controls at a comparable postconceptional age, to describe respiratory control.  
 
Results: This study is systematically assessing different physiological signals of autonomic 
dysregulation in preterm infants during their first days of life. We found associations between 
parameters describing the complexity of time series analysis and maturity or relevant co-
morbidities of the infants. In the analysis of heart rate variability we even found that 
parameters derived from time series analysis, assessed during the infants first days of life, 
improve our ability to predict future evolution of the infants’ autonomic stability. Lastly, 
several weeks after the expected due date, tidal breathing pattern of preterm infants showed a 
different reaction in response to a sigh when compared to term born controls at equivalent 
postmenstrual age indicating that autonomic dysregulation in preterm infants is still present 
well beyond the expected due date.  
 
Conclusion: A better understanding about the resolution of autonomic dysregulation in this 
population is not only important for the infant and its family but has the potential to support 
resource allocation and identification of patients with elevated risk for future deterioration. 
We thus think that the insights about the immature autonomic control in preterm infants, 
gained through this PhD work, are of substantial scientific and clinical relevance.  
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2.2. Zusammenfassung 
Hintergrund: Jedes Jahr kommen ca. 15 Millionen Kinder zu früh auf die Welt. Die 
neuerlichen Fortschritte in der Reproduktionsmedizin lassen diese Zahlen noch mehr 
ansteigen. Frühgeborene Kinder leiden unter einem unreifen autonomen Nervensystem, 
welches sich als Temperaturinstabilität und verminderte Kontrolle der Herz- und 
Atmungsregulierung äussert. Diese Kinder brauchen über Wochen bis Monate eine 
Unterstützung dieser Funktionen mittels Pflege in einem Brutkasten, Überwachung auf einer 
Neugeborenen-Intensivstation, pharmakologische Therapie und Atemunterstützung. 
Fortschritte im Bereich der Neonatologie haben die Mortalität von frühgeborenen Kindern in 
den letzten Jahren zwar gesenkt, sie sind jedoch immer noch eine Hochrisiko-Population für 
akute und chronische Folgeerscheinungen der unterbrochenen, natürlichen Entwicklung. Ein 
besseres Verständnis der pathophysiologischen Mechanismen der unreifen autonomen 
Kontrolle in dieser Population wäre deshalb sehr wünschenswert. Leider mangelt es aktuell 
noch an objektiven Parametern, die diese unreifen Funktionen messen.  

Methodik: In dieser PhD Arbeit untersuchten wir unterschiedliche Auswirkungen der 
unreifen autonomen Regulation in Frühgeborenen. Wir führten eine prospektive 
Observationstudie auf der Neonatologie am Universitäts-Kinderspital beider Basel durch. In 
dieser Studie haben wir die Schwankungen der Körpertemperatur, das Schlafverhalten und 
die Variabilität der Herzfrequenz von Frühgeborenen Kindern gemessen. Wir haben diese 
Funktionen mit verschiedenen mathematischen Methoden, wie etwa der trendbereinigten 
Fluktuationsanalyse und der Entropie-Messung, beschrieben und Ihre Zusammenhänge mit 
Eigenschaften der Frühgeborenen analysiert. Wir schauten dabei auf die demographischen 
Faktoren der Studienteilnehmer, insbesondere den Grad der Unreife bei Geburt, sowie auch 
auf relevante Co-Morbiditäten. Ausserdem haben wir Lungenfunktionsanalysen von 
frühgeborenen und termingeborenen Kindern kurz nach dem errechneten Geburtstermin in 
Bezug auf die Atemmuster miteinander verglichen.  

Resultate: Diese Studie misst systematisch verschiedene physiologische Signale von 
frühgeborenen Kindern während Ihren ersten Lebenstagen und beschreibt diese mit 
mathematischen Modellen. Wir konnten Zusammenhänge zwischen den Zeitreihen Analysen 
von verschiedenen, unreifen autonomen Systemen und dem Ausmass der Unreife und 
assoziierten, relevanten Co-Morbiditäten der Kinder aufzeigen. Die Beschreibung der 
Variabilität der Herzfrequenz während der ersten Lebenstage hat einen prädiktiven Wert für 
die Entwicklung des Kindes in Bezug auf die Ausreifung der autonomen Kontrolle. Auch 
nach dem errechneten Termin zeigen frühgeborene Kinder eine andere Reaktion im 
Atemmuster auf einen Seufzer als gesunde termingeborene Kontrollkinder.  
 
Schlussfolgerung: Ein besseres Verständnis über die Ausreifung des autonomen 
Nervensystems bei Frühgeborenen ist nicht nur wichtig für das Kind und seine Familie. Es 
besteht durchaus Potential, daraus Erkenntnisse für eine Optimierung in der Ressourcen-
Nutzung oder für individuelle Risikoerhebung zu gewinnen. Wir sind deshalb davon 
überzeugt, dass der Erkenntnisgewinn über unreife autonome Kontrolle bei Frühgeborenen 
einen hohen wissenschaftlichen und klinischen Stellenwert hat.   

2.2. Zusammenfassung 
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3. Introduction 

3.1. Prematurity 
 
Preterm birth, defined as prior to 37 weeks of gestation, accounts for more than 10% of births 
worldwide. This reflects approximately 15 million births every year1. 
The degree of prematurity is by definition divided in the following categories2:  

1. Late preterm - those born between 32 and 37 weeks. 
2. Moderately preterm- those born between 32 and 35 weeks.  
3. Very preterm - those born between 28 and 32 weeks.  
4. Extremely preterm - those born before 28 weeks.  

In Switzerland, about 800 infants are born very preterm each year. Advances in reproductive 
medicine are leading to an increasing number of multiple pregnancies, a major risk factor for 
preterm birth, and to an increase in the number of medically indicated preterm births3. 
Survival rates of very preterm infants increased in the past years thanks to introduction of 
antenatal steroids, surfactant replacement therapy, and improvements in assisted ventilation 4. 
Nevertheless, preterm birth remains a high-risk condition during the first days of life and also 
for later deterioration. Former preterm infants often suffer from bronchopulmonary dysplasia 
(BPD), they have an elevated risk for sudden infant death syndrome (SIDS), 
neurodevelopmental sequelae, and cardiorespiratory and metabolic morbidity like high blood 
pressure and insulin resistance in adulthood4-6. “Foetal origins of adult disease” has first been 
described 20 years ago by Baker et al, showing that being born with a low birth weight was 
associated with a substantially increased risk of death due to ischemic heart disease in adult 
men7.  

 

3.2. Autonomic control 
 
The autonomic nervous system  

The autonomic nervous system (ANS) is, among other things, responsible for control of body 
temperature, cardiovascular function, and respiration. It is divided into two parts, the 
sympathetic branch and the parasympathetic branch. These two branches undergo different 
maturation during fetal life. The sympathetic branch, responsible for acceleration of heart rate 
and respiratory rate, is mostly developed during the first trimester and develops more slowly 
in later stages. The parasympathetic branch, also called the vagal branch, is mainly developed 
between 25 and 30 weeks of gestation8.  
 
Autonomic dysregulation in preterm infants 

In preterm infants, the physiological process of intrauterine maturation of the ANS is 
interrupted due to delivery and transition from intra-uterine to extra-uterine life weeks to 
months prior to the expected due date. As a result, this population in particular suffers from 
temperature instability, and poor control of heart rate and breathing9-11.  

3. Introduction 
3.1. Prematurity 
 



	

	
	

-	10	-	

Hypothermia after birth is a main predictor of mortality in infants12. Therefore, maintaining 
thermal balance is a fundamental objective of neonatal care and small preterm infants are 
typically nursed in incubators. Moreover, stable body temperature has a positive influence on 
other regulatory systems, such as heart rate and breathing13-15.  
Apnea and bradycardia of prematurity (AOP) is defined as cessation of breathing lasting for 
at least 20 seconds or one lasting for less than 20 seconds that is associated with bradycardia 
and/or cyanosis9. AOP affects at least 80% of very preterm infants and can lead to life-
threatening events9, 10. AOP represents immaturity of multiple interacting systems responsible 
for the control of rate and depth of breathing: involving the central brainstem generator16, 
peripheral chemoreceptors17, lungs and upper airways mechanics18, 19 and respiratory muscle 
activity20. Current treatment strategies of AOP include the use of methylxanthines- typically 
caffeine, and positive pressure respiratory support21, 22.  
Consequently, temperature instability and AOP of very preterm infants require thermal care 
and necessitate close monitoring of vital signs, pharmacotherapy, and respiratory support 
over weeks to months9, 10. This results in a significant impact not only for the individual 
family but also on resource allocation in neonatal intensive care units (NICUs)23. In a recent 
US study in infants born before 26 weeks gestational age (GA), each additional day of 
monitoring cost approximately US$ 40,000 to 130,000 per quality-adjusted life year saved23. 
Clinical decisions related to very preterm infants are largely focused on the level of 
maturation an individual patient has achieved (e.g., choice of level of intensive care, choice 
of thermal environment, duration of monitoring, necessity and type of respiratory support, 
requirement of pharmacological support). Finally, complete resolution of autonomic 
dysregulation is a crucial prerequisite for discharge of preterm infants from the hospital24.  
 

3.2.1. Temperature 
 
Optimized temperature control leads to a decrease in both morbidity and mortality in preterm 
infants12, 25. Consequently, there is a high interest in temperature control in preterm infants 
but also in infants at risk for sudden infant death syndrome (SIDS)26-29. A better 
understanding of thermoregulation is particularly important in the first months of life, where 
the autonomic control system of infants undergoes a critical maturational transition30. Stern et 
al showed that healthy term infants develop a less variable, smoother temperature regulation 
with increasing age30. They found fractality in nighttime rectal temperature time series of 
term born infants between 4 - 20 weeks of age and used detrended fluctuation analysis (DFA) 
to show increasing determinism30. Preterm infants are known to be a high-risk population for 
both poor temperature control during transition from intra-uterine to extra-uterine life and for 
SIDS beyond the due date but data assessing long-range correlations in time series of 
temperature measurements in this population are lacking. Studying the dynamics and 
complexity of time series of body temperature in preterm infants is a first step to better 
understand the mechanisms and interactions in the autonomic system. This could help to 
develop objective strategies for individualized thermal care, such as to identify patients who 
are ready for transfer from an incubator to an open cot based on the complexity of their body 
temperature fluctuations. Such an approach could be beneficial in terms of noise exposure31 
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and language development32, given the current uncertainties regarding readiness to leave the 
incubator and potentially helps to prevent hypothermia in infants who are transferred into an 
open cot before being ready for it.  
 

3.2.2. Sleep 
 
The sleep architecture of newborns is different when compared to adults. Healthy newborn 
infants sleep about 70% of the time, this amount is even higher in preterm infants33. The 
origin of circadian rhythms can be found at fetal age: the biological clock has been shown to 
be responsive to maternal entraining signals in the last trimester of pregnancy. Fetal heart rate 
is at that point synchronized with maternal activity, hormone levels, and body temperature34. 
At birth, this interaction fails and a free-run, ultradian rhythm, dependent only on the internal 
clock of the newborn, appears35. Preterm neonates in particular undergo this dramatic change 
with early loss of maternal fetal interactions. Ultradian sleep cycles were found in premature 
infants as young as 25 weeks postconceptional age (PCA)36, although clear discrimination of 
sleep stages is only visible via electroencephalogram (EEG) after 30 weeks of gestation33. In 
infants, behavioral states are divided into awake, active sleep and quiet sleep using the 
adapted criteria from Anders, Emde and Parmelee37, validated by Mirmiran et al33.  
Sleep, and especially the cycling of sleep states, is vital for neurosensory motor development, 
as several studies have shown38-42. To what extend the internal ultradian rhythm and the 
consecutive acquirement of a circadian rhythm is influenced by external factors is not fully 
understood. Hence, to allow sleep regulation to be as natural as possible, minimal handling of 
NICU patients is recommended and routinely performed at the University of Basel Children’s 
Hospital43. A recent study showed that entrainment of the circadian sleep wake rhythm of 
preterm infants appeared earlier than in term born infants44. Acquired knowledge about sleep 
promotion could possibly lead to better neonatal care. Additionally, we believe it is crucial to 
consider sleep behavior when analyzing physiological regulatory systems in human beings 
because such systems are highly sensitive to sleep stage45-47.  
 

3.2.3. Heart rate 
 
Heart rate variability (HRV), a quantitative marker of autonomic activity, is known to be 
associated with cardiovascular mortality, including sudden cardiac death48-52. Time series of 
electrocardiographic (ECG) records are analyzed to identify heartbeats (QRS-complexes) and 
to derive the distance between two consecutive beats, the interbeat interval (IBI), also called 
normal-to-normal (NN) interval when resulting from sinus node depolarization (see Figure 
1).  

3. Introduction 
3.2. Autonomic control 
 



	

	
	

-	12	-	

Some of the most popular, descriptive time domain variables that can be calculated from NN 
(IBI) are the mean, standard deviation (SDNN), and coefficient of variation (CV). In 1965 
Hon and Lee53, 54 showed that fetal distress was preceded by changes in IBI before any 
noticeable change in the heart rate itself. This was the beginning of the appraisal of HRV as 
clinically useful marker. Since then, characterization of dynamics and variability in 
physiological systems, such as HRV, is getting more attention in clinical studies in children 
and was recently shown to be a useful diagnostic tool for prediction of neonatal sepsis 55-59.   

 

 
Figure 1. Interbeat interval (IBI); adapted from Peltola 60:  
A: ECG trace with marked QRS complexes 
B: Interpolated time-series of distances between QRS complexes (IBI) 
C: QRS interval (IBI) time-series 

 
 
HRV analysis in infants has been pointed out to be important to gain additional knowledge 
about the physiological background and identify infants at risk48. Fluctuations in IBI of 
infants born preterm or with low birth weight have been described to possess different 
mathematical properties when compared with healthy term infants55, 61. Even within the 
group of preterm infants, several diseases such as sepsis and sepsis-like illnesses have been 
shown to result in altered behavior of HRV time series56, 57, 59. Whether HRV could be used 
as a predictive marker of an infant’s autonomic maturation during its stay on the NICU has 
not yet been assessed. 	  
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3.2.4. Breathing 
 
Lung development of a very preterm infant is between end of the canalicular and beginning 
of the saccular stage at the time-point when physiological, intrauterine maturation is 
disrupted (see Figure 2).  

 
Figure 2: Lung development intra- and extrauterine, by Stocks et al62 
 

Besides the difficulties, conditioned by the anatomical immaturity, preterm infants suffer 
from poor respiratory control16, 63. Apnea and consecutive decrease in oxygen levels and/ or 
bradycardia are one of the main problems preterm infants are facing within their first weeks 
of life9, 10. Improved neonatal intensive care, including prenatal glucocorticosteroids, use of 
surfactant, and gentle ventilation strategies, have led to improvements in respiratory outcome 
of former preterm infants64. Nevertheless, bronchopulmonary dysplasia (BPD) is still the 
most common morbidity among survivors of preterm birth65. The National Institutes of Child 
Health Consensus defines the categories none, mild, moderate, and severe BPD based on 
need of respiratory support and/ or oxygen at 28 days of life and 36 weeks PCA66. There are 
several other classifications for BPD, all having their own strengths and limitations65. The 
disruption of intra-uterine physiological development and the consecutive need for 
respiratory support during preterm extra-uterine life leads to measurable changes in breathing 
pattern in former preterm infants67-69. A more profound understanding of the pathophysiology 
of breathing regulation in preterm infants would be of great interest and could help to identify 
individual infants at risk for future deterioration.  
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Interaction between different regulatory systems  

Instability of different autonomic control systems is interdependent. Some of these 
interdependencies are well described, as for example the drop in temperature during sleep or 
the increase of heart rate during inspiration. Breathing pattern of adults is more random 
during sleep than during wakefulness when applying nonlinear time series analysis46. 
However, assessment of complexity of breathing pattern in infants did not show any 
significant changes between sleep stages47. Generally, little is known about the 
pathophysiological mechanisms of the interactions in the ANS of preterm infants, however, it 
is consensus that excessive imbalances should be avoided13, 63.  

 

3.3. Mathematical description of biological systems 

3.3.1. Current knowledge about complexity of vital signs 
Time series of physiological parameters might look random, however, there are weak internal 
correlation properties, as an expression of order and a result of the internal regulation of the 
autonomic system. Recent work on complex biological regulatory systems using system 
control theory has highlighted the nonlinear nature of feedback controls70, 71. The degree of 
how much a value is predictable can be described by assessing the complexity of a signal. In 
a totally random signal (also called “white noise”), the complexity is very low. This means 
that single values are not depending on another and to describe the whole signal we need to 
know every single value. In a system with a higher complexity, values are interdependent, 
and an underlying pattern or ‘memory’ is detectable. In many natural network systems, these 
variability and correlation properties can be characterized by distinct mathematical 
expressions. In the following paragraph, two commonly used methods to describe complexity 
of a physiological signal, detrended fluctuation analysis (DFA) and sample entropy 
(SampEn), are explained in more detail.  

 
Nonlinear systems 

Physiological signals behave rarely purely periodic but rather fluctuate irregularly over time. 
Therefore, nonlinear equations are needed to describe the behavior of physiological systems.  
Glass described nonlinear systems, referencing the following book chapters72-75, with three 
central concepts76: 

- Bifurcations (changes in qualitative properties of dynamics);  
- Stable limit-cycle oscillations (following a perturbation, a stable limit-cycle 

oscillation re-establish itself within the same amplitude and frequency as before the 
perturbation); 

-  Chaos (aperiodic dynamics in deterministic equations with a high sensitivity to initial 
conditions, the so called butterfly effect)   
 

Fluctuations are seen as a combination of the fluctuating environment, the ‘noise’ that is 
inherent in biological systems, and deterministic, possibly chaotic, mechanisms76. The 
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normal heart rate for example displays complex fluctuations in time in response to various 
environmental factors (respiration, food intake, exercise, emotions). It is difficult to 
discriminate, whether the fluctuations are essential to the physiological function, or whether 
the function is carried out despite the fluctuation. Several diseases lead to extremely regular 
dynamics of physiological signals, including periodic (Cheyne-Stokes) breathing, certain 
abnormally rapid heart rhythms (atrial flutter), and epilepsy. However, regular periodicity can 
also be an expression for healthy dynamics system, as for example sleep-wake cycles, or the 
menstrual rhythm. Finally, pronounced irregularity can also be an expression of disease, as 
for example in atrial fibrillation. Summarized, we can say that abnormal rhythms, that can 
either be more regular or more irregular than what is considered specific optimum 
rhythmicity, are an expression of modification in physiological control systems that lead to 
bifurcations in the dynamics77.  
 
Detrended fluctuation analysis (DFA) 

Temporal dynamics in biological systems with a hierarchy of feedback loops often reveal 
fractal-type statistical properties45, 78, 79. Fractality in the human body was first described by 
the French-American mathematician Benoît Mandelbrot80. He defined fractals as objects with 
self-similar organization, meaning that details of the structure are repeating itself in smaller 
scales. The fractal-like long-range correlation properties in the fluctuation of time series of 
physiological signals can be quantitatively described with a single scaling factor alpha, 
derived from detrended fluctuation analysis (DFA)81, 82. DFA measures how long a data point 
is influencing upcoming data points in the signal and therefore is a measure of memory 
within the time series.  
The mean square deviations of fluctuations of a signal around a trend line are computed as 
the time scale of the trend line varies over wide intervals. The dependency between the size 
of these intervals and the averaged deviation is quantified by the scaling exponent alpha, 
which corresponds to the slope of a regression line, fitted to a scatter plot of two quantities. A 
higher value of the scaling factor alpha describes a more deterministic signal, hence the 
upcoming values are more dependent on the previous one than in signals with a lower scaling 
factor alpha. A minimal memory as in a totally random signals as white noise has an alpha of 
0.5. A scaling exponent alpha <0.5 indicates anticorrelation of the signal.  
This method was introduced by Peng et al81, 82 for the analysis of HRV data. Besides 
medicine, it has been used to describe fluctuations in various fields, such as meteorology, 
epidemiology, and stock exchange.  
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Sample entropy (SampEn) 

SampEn quantifies the conditional probability that, with the knowledge of a consecutive 
number of m data points, within a given tolerance r (usually=0.2*standard deviation), the 
next data point can be predicted. The fact that the tolerance r is expressed as a fraction of the 
standard deviation (SD) of the data makes the measure scale-invariant. A higher SampEn 
value arises from a more irregular (more complex) signal, hence the chance of encountering 
repeated template sequences in the signal is smaller.  
This method was introduced by Richman and Moorman83 and first used for the analysis of 
neonatal HRV by Lake et al58. They designed the SampEn to reduce the bias of other entropy 
measures (e.g. approximate entropy) and to achieve closer consensus with theory for datasets 
with known probabilistic content58.  

 

3.3.2. Clinical implications of mathematical descriptions of physiological systems 
Estimates of long-range correlations provide insight on the effect of disease on feedback 
control84, 85. They have shown to be useful in distinguishing developmental stages in 
temperature control in young infants30 and are important indicators for control of breathing in 
preterm and term infants11, 86. Besides that, characterization of fluctuations using DFA has 
been shown to provide a quantitative basis for objective risk prediction87, 88, even in the 
individual patient89. That has led to a series of clinical applications of this technique87, 89-91.  
SampEn has been tested as useful marker for early detection of sepsis and sepsis like illnesses 
in newborn infants56-59. Moorman et al could show that diagnosis of sepsis in a NICU setting 
was faster when HRV analysis including SampEn was taken into account57. Lake et al 
concluded that during a sepsis, repetitive spikes in HRV analysis result in a lower SampEn, 
thus a more regular signal58. 
Temperature control, minimal handling care, respiratory support and monitoring of vital signs 
are the key treatments of the immature regulatory systems. Besides that, caffeine treatment is 
known to decrease AOP in preterm infants and has been shown to have long-lasting benefits, 
such as reduced rates of cerebral palsy at 18-21 months of age22, 92, 93. This beneficial long-
term effect, seen with 18-21 months, was not detectable anymore in very low birth weight 
infants assessed with 5 years94. Conclusively, despite the significant improvements in 
neonatal care in the past years, preterm infants still represent a high-risk population. They are 
prone to short- and long-term morbidity and mortality like SIDS, neurodevelopmental, 
cardiorespiratory, and metabolic disorders4, 6. Autonomic control in terms of HRV has been 
shown to be altered for years in former preterm infants, possibly due to changes in the 
hormonal stress axis (hypothalamic-pituitary-adrenal axis) after stress and painful procedures 
over the first few months of life, i.e., in a vulnerable phase61, 95. Thus, a better understanding 
of the changes in the regulatory systems and of their interactions would be of great interest.  
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4. Aim of the PhD 
 
********************************************************************* 
The aim of science is to seek the simplest explanations of complex facts. We are apt 

to fall into the error of thinking that the facts are simple because simplicity is the goal 
of our quest. The guiding motto in the life of every natural philosopher should be,  

"Seek simplicity and distrust it." 
A.N. Whitehead 

********************************************************************* 
 

Predicting resolution of autonomic dysregulation in very preterm infants still is tainted with a 
lot of uncertainty. Consequently, there is large variation in PCA at discontinuation of 
incubator care or withdrawal of continuous positive airway pressure (CPAP) among 
individual preterm infants both within and between NICUs96, 97. Similarly, PCA at cessation 
of AOP and associated termination of continuous vital sign monitoring varies between 35 to 
43 weeks PCA 98. In the absence of reliable indicators of autonomic stability to guide daily 
clinical practice, preferred strategies are, not surprisingly, still based on tradition within 
NICU and personal experience96. 
The aim of this PhD therefor was to investigate whether the immature autonomic system can 
be characterized using mathematical expressions under clinically relevant conditions in the 
NICU.  

 
We aimed to characterize dynamics and complexity of body temperature in very preterm 
and/or very low birth weight infants nursed in incubators using descriptive statistics and 
nonlinear time series analyses. We hypothesized that dynamics and complexity of body 
temperature are dependent on demographic factors (maturity at birth, birth weight, and 
gender), comorbidities of preterm birth, as well as behavioral state and external perturbation 
during the measurement. 

 
Light exposure is a strong factor influencing the synchronization of sleep-wake processes. 
However, little is known about the effects of phototherapy on the sleep rhythm of premature 
infants. We aimed to analyze sleep behavior and the dependency on light deprivation in very 
preterm infants undergoing phototherapy due to jaundice of the newborn. We hypothesized 
that sleep in preterm infants would not differ during phototherapy, but that we would see a 
maturational effect. 

 
We aimed to analyze HRV derived from diaphragmatic surface electromyography (EMG) 
measurements of very preterm infants during their first days of life. To obtain reliable data 
we aimed to establish a systematic data cleaning tool for EMG signals acquired under 
clinically relevant conditions in the NICU. We hypothesized that implementation of 
systematic data cleaning could significantly influence HRV outcome parameters.  
After establishing a reliable data cleaning algorithm for EMG measurements in very preterm 
infants, we aimed to characterize characteristics and fluctuations in IBI. Our hypothesis was 
that certain parameters could be reliable means of predicting resolution of autonomic 
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dysregulation in terms of PCA (i.e., the corrected age) at cessation of AOP, discontinuation 
of monitoring of vital signs, or pharmacological and respiratory support.  

 
Changes in breathing pattern upon an internal perturbation, as a spontaneous deep inspiration, 
could give some information about the respiratory systems equilibrium. We aimed to assess 
whether premature birth per se or its consequences, such as presence and severity of chronic 
lung disease, are affecting an infant’s reaction upon a sigh when compared to healthy 
controls. We hypothesized that frequency and morphology of sighs, as well as the reaction in 
breathing pattern upon them differ between preterm infants and healthy controls when 
measured at a comparable age several weeks after the due date.  

 
Characteristics of temperature regulation; interference of light-deprivation and sleep; 
fluctuations of heart rate; changes in breathing pattern upon an internal stimulus – all these 
are expressions of regulatory systems. The aim of this PhD was to study them in preterm 
infants under clinically relevant conditions and potentially gain insight into the 
pathophysiology of autonomic dysregulation.  
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5. Results and Research Papers 

5.1. Thermoregulation in very preterm infants 
 
 
*************************************************************************** 

Heat can never pass from a colder to a warmer body without some other change, 
connected therewith, occurring at the same time. 

 
- Rudolf Clausius, 1856 - 

*************************************************************************** 
 

 
 
State of the paper 

 
Published April 2017: PLoS ONE 12(4): e0176670 
 

 
Contribution of KJ 

 
The work of KJ on this project included performing, 
processing and analysis of temperature measurements in 
collaboration with other team members. The outcomes were 
statistically analyzed and the final manuscript was written by 
KJ.  
 

 
Synopsis 

 
Instability of body temperature is a major problem in preterm 
infants. Early quantification of the dynamics and complexity 
in body temperature may improve our understanding of 
autonomic temperature control in this population. We aimed 
to test the feasibility of characterizing body temperature in 
preterm/very low birth weight infants during their first days 
of life. 
We recorded 3h-time series of body temperature 
measurements in incubator-nursed preterm infants during 
their first 5 days of life. Characterizing dynamics and 
complexity of body temperature in very preterm and/ or very 
low birth weight infants is safe and feasible under clinically 
relevant conditions. Anthropometrics and respiratory 
morbidity explain a substantial amount of inter-individual 
differences in these outcomes. A simple, observer-
independent, and robust index of temperature control, such as 
the scaling factor alpha, derived by detrended fluctuation 
analysis, is a promising tool for future longitudinal studies 
and might help identifying preterm infants who are ready for 
transfer from incubators to open cots.   
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5.2. Sleep and phototherapy in premature neonates 
 
 

*************************************************************************** 
"A well-spent day brings happy sleep." 

 
        - Leonardo da Vinci -  

*************************************************************************** 
 

 
 
State of the paper 

 
Published 2016: Sleep Research. doi: 10.1111/jsr.12408. 
 

 
Contribution of KJ 
 

 
KJ performed the measurements and assisted in teaching of 
sleep stage analysis. The analysis and statistical interpretation 
of the resulting data was performed by KJ and co-workers. 
The final manuscript was revised by KJ.  
 

 
Synopsis 

 
Sleep in infants is important for neurological development, 
thus, interference with sleep-state regulation might influence 
this maturation process. It is well known in adults, that light 
is an important factor in sleep-regulation. Since there is very 
little data concerning the effect of light-deprivation on sleep 
in very preterm infants this study was performed. 
Video recordings of very preterm and/ or very low birth 
weight infants were performed during their first days of life. 
Based on breathing patterns, eye- and body movements, 
behavioral states were defined as being awake, in active sleep 
or in quiet sleep. Measurements performed during 
phototherapy, due to neonatal jaundice, where the infants had 
to wear blindfolds and thus were exposed to light-
deprivation, were compared to measurements without 
phototherapy within the same infants.  
Our data suggest that the ultradian rhythm of preterm infants 
seems to be independent of phototherapy (or light-
deprivation), supporting the notion that sleep rhythm in this 
population is mainly driven by their internal clock.  
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5.3. Data cleaning for study purpose 
 
 

*************************************************************************** 
 “Quality means doing it right when no one is looking.”  

 
- Henry Ford -  

*************************************************************************** 
 

 
 
State of the paper 

 
Published 2017: Physiological Measurements  
39 (2018) 015004 (13pp) 

 
Contribution of KJ 

 
KJ performed the measurements, and collaborated in the 
development of the data cleaning algorithm. The visual 
control of the cleaning process, as well as the statistical 
interpretation of the results was performed by KJ. The final 
manuscript was written by KJ in collaboration with other 
team members.  
 

 
Synopsis 

 
Variability in physiological systems, such as heart rate 
variability (HRV) is getting more attention in clinical studies. 
Collection and analysis of data to derive HRV is prone to 
factors that could influence the outcome. We hypothesized 
that depending on the cleaning, HRV outcomes in preterm 
infants would differ significantly. 
We developed a four step cleaning algorithm for systematic 
pre-processing of electromyography (EMG) measurements, 
to obtain HRV outcomes. The algorithm included 
synchronized video recordings for motion detection and 
assessment of sleep stages, a threshold based cleaning, 
comparison of different event (QRS complex) detection 
algorithm, and visual inspection. Finally, we compared the 
dependency of the outcomes on the performed signal 
cleaning steps. 
EMG measurements, performed in very preterm/ very low 
birth weight infants under clinically relevant conditions, 
contain noisy parts that have to be identified and excluded 
before assessment of HRV. Resulting HRV outcomes could 
else be biased and lead to false assumptions. 
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 5.4. Autonomic dysregulation in preterm infants 
 

*************************************************************************** 
“It is in man's heart that the life of nature's spectacle exists; to see it, one must feel it.” 

 
- Jean-Jacques Rousseau -  

*************************************************************************** 
 

 
 

 
State of the paper 

 
Approved by all co-authors; submitted December 2017 

 
Contribution of KJ 

 
The measurements were performed by KJ and other team 
members. The development of codes (Matlab, Mathworks) to 
assess heart rate variability was done by KJ in collaboration 
with the co-authors. Quality control and statistical analysis 
was performed by KJ and other team members. The final 
manuscript will be written by KJ.  

 
Synopsis 

 
A better understanding of immature regulation processes in 
preterm infants, such as control of heart rate, would be very 
desirable. In this population, repeated episodes of apnea and 
bradycardia require a long-term intensive care monitoring, 
weeks to months of pharmacological therapy and respiratory 
support.  
We aimed to test if heart rate variability (HRV) within the 
first few days of life in preterm infants exhibit nonlinear 
dynamics that can be characterized using tools as detrended 
fluctuation analysis or sample entropy. Further we aimed to 
test if such measures could help to predict an infant’s 
autonomic development in terms of postconceptional age 
(PCA) at cessation of pharmacological treatment (caffeine), 
and PCA at successful termination of respiratory support. 
We assessed HRV from electromyography (EMG) 
measurements in very preterm/ very low birth weight infants 
during their first days of life under clinically relevant 
conditions. Sample entropy of HRV significantly improved 
the predictive value of regression models aiming to predict 
PCA at termination of caffeine treatment and duration of 
respiratory support after adjusting for gestational age and 
intra-uterine growth.  
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Abstract 

Background Preterm infants show cardiorespiratory instability in the form of apnea and 

bradycardia. This requires cardiorespiratory monitoring, caffeine therapy, and respiratory 

support over months as prolonged hypoxemic episodes are associated with 

neurodevelopmental impairment. Cardiorespiratory stability is a prerequisite for discharge 

from the neonatal intensive care unit (NICU) but very difficult to predict. We aimed to assess 

whether characterizing heart rate variability (HRV) within the first five days of life has 

prognostic utility for subsequent cardiorespiratory stability of preterm infants required for 

discharge from the NICU. 

Methods We conducted a prospective cohort study using a previously validated surface 

diaphragmatic electromyography (sEMG) method to calculate interbeat interval (IBI) time 

series. We characterized HRV by time series parameters including sample entropy (SampEn) 

and scaling exponent alpha (ScalExp) obtained from daily 3-h measurements. Data were 

analysed by multivariable, multilevel linear regression.  

Results We obtained acceptable raw data from 309/330 (94%) sEMG measurements in 76/90 

(85%) infants born at a mean (range) of 30.2 (24.7-34.0) weeks gestation. We found a 

significant negative association of SampEn with duration of respiratory support in the NICU 

(R2 = 0.53, p <0.001) and corrected age at discontinuation of caffeine therapy (R2 = 0.35, p 

<0.001) after adjusting for sex, gestational age, birth weight z-score and sepsis. 

Conclusion Baseline SampEn calculated over the first five days of life carries prognostic 

utility for an estimation of subsequent respiratory support and pre-discharge cardiorespiratory 

stability in preterm infants, both important for planning of treatment and utilisation of health 

care resources.   
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Introduction 

Preterm birth affects about 10% of all infants born worldwide and is associated with a range 

of adverse cardiovascular, respiratory, and central nervous system outcomes which may be 

attributed to altered development of these systems1. During the first few months of life, the 

autonomic nervous system of preterm infants is characterized by autonomic dysregulation and 

undergoes a critical maturational transition2. Typically, autonomic dysregulation manifests as 

apnea and bradycardia of prematurity (AOP). AOP, defined as a cessation of breathing lasting 

for at least 20 seconds or one of less than 20 seconds that is associated with bradycardia 

and/or cyanosis, affects at least 80% of very preterm infants3 (i.e., those born before 32 weeks 

of gestational age, (GA)). AOP may lead to bradycardia and hypoxemia requiring immediate 

resuscitation4, necessitates continuous long-term monitoring of vital signs, caffeine therapy, 

and respiratory support over weeks to months. Moreover, prolonged hypoxemic episodes 

during the first two to three months of life of preterm infants are associated with late death 

and a considerably increased risk of neurodevelopmental impairment at 18 months of age5. 

Thus, AOP represents a considerable burden of disease and has a significant impact on 

resource allocation in neonatal intensive care units (NICUs) across the globe6-8. Indeed, in 

infants born before 26 weeks GA, each additional day of monitoring cost approximately US$ 

40,000 to 130,000 per quality-adjusted life year saved8. Notably, cardiorespiratory stability is 

a crucial prerequisite for discharge of preterm infants from the NICU9.  

Predicting cardiorespiratory stability in preterm infants is notoriously difficult. 

Postconceptional age (PCA) at cessation of AOP varies considerably with a range of about 35 

to 43 weeks PCA10. Thus, there is great uncertainty and substantial variability in deciding if 

and when infants are considered stable enough to withdraw from respiratory support, caffeine 

therapy, and cardiorespiratory monitoring. However, those decisions have critical influence 

on safety considerations, allocation of health care resources, and discharge planning11, 12. 

5. Results and Research Papers 
5.4. Autonomic dysregulation in preterm infants 
 



	

	
	

61	

Assessing heart rate variability (HRV) in neonates by time series analysis of data from 

cardiorespiratory monitoring is useful to quantify maturational changes in neonates and to 

predict critical events such as neonatal sepsis13, 14._We hypothesized that HRV assessed over 

the first few days of life can be used to predict medium-term cardiorespiratory stability and 

hence guide decisions related to discharge from the NICU.  

To this end, we performed a prospective cohort study using thoracic surface 

electromyography (sEMG) measurements for analysis of HRV in very preterm infants during 

their first five days of life. After application of a systematic data quality control algorithm15, 

we calculated interbeat interval (IBI) values, their distribution, and several indexes derived 

from nonlinear time series analysis including sample entropy (SampEn)16 and scaling 

exponent alpha (ScalExp) from detrended fluctuation analysis (DFA)17, 18. Given that sleep 

stage potentially influences HRV19, we additionally performed sleep stage analysis using 

synchronized video recordings as described previously20.  

We aimed to investigate whether HRV characteristics of very preterm infants measured 

during their first five days of life (exposure) predict cardiorespiratory stability in terms of (i) 

total duration of respiratory support in the NICU (primary outcome), (ii) PCA at cessation of 

AOP, discontinuation of caffeine therapy, and stopping of continuous electrocardiography 

(ECG) monitoring in the NICU (secondary outcomes) after adjusting for known demographic 

and clinical determinants of cardiorespiratory stability.   
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Methods  

Study design 

We conducted a prospective, single-center, observational cohort study in the tertiary level 

NICU of the University of Basel Children’s Hospital (UKBB), Basel, Switzerland. The study 

was approved by the Ethics Committee of Northwestern and Central Switzerland, conducted 

according to the principles of The Declaration of Helsinki, and written informed consent of 

the parents was obtained prior to inclusion of study participants. Study participants were not 

given or withheld any special care related to the conduct of this study. Inclusion criteria were 

as follows: Preterm infants less than 24 h of chronological age; GA < 32 completed weeks 

and/or birth weight <1500 g. Exclusion criteria included major congenital malformation, 

asphyxia, or infants in whom treatment was directed towards palliative care. Withdrawal 

criteria included loss of parental consent or surgical intervention during the first five days of 

life. 

 

Measurements 

sEMG measurements for acquisition of HRV data and synchronized video recordings for 

sleep staging were performed as reported in recent validation studies15, 20, 21, 22. Briefly, daily 

sEMG measurements were conducted during the infant’s first five days of life, starting at 8.30 

am and lasting for three hours. Two sEMG electrodes (standard silver/silver chloride sEMG 

electrode patches; MultiBioSensors Inc., El Paso, Texas, USA) were placed bilaterally on the 

caudal, medioclavicular end of the rib cage. A reference electrode was placed higher up on the 

thoracic wall. sEMG raw signal was captured at a sampling frequency of 500 Hz using 

commercially available software (Polybench, Inbiolab BV, Roden, NL). Time-synchronized 

video recordings of the infant’s face and body were obtained at 15 Hz (LifeCam, Microsoft 

Corporation, Redmond, Washington, USA). Video based sleep stages (awake, active sleep, 
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quiet sleep) were scored at 10s intervals as described previously20 and based on 

recommendations22 and validation studies on sleep staging in preterm infants without the use 

of electroencephalography23.  

 

Quality control and data processing 

Extensive, systematic quality control of raw sEMG data was performed as described 

previously15. Briefly, synchronized video recordings were analyzed using custom software to 

detect and label sequences with large body movements and periods in which the infant was 

touched by parents or staff. Secondly, we used a threshold- based root mean square (RMS) 

envelope curve of the raw sEMG signal to mark periods containing less obvious movement 

artifacts or periods with tonic thoracic muscle activity. Thirdly, we assessed agreement of 

three QRS-detection algorithms to reliably detect QRS complexes. Both the built-in default 

QRS detection algorithm of the sEMG device and the well-established QRS detection 

algorithm by Friesen et al.24 did not perform adequately in these small infants. Thus, we 

additionally developed a custom algorithm for reliable peak detection as reported 

previously15. This algorithm was applied to all datasets and results were then compared with 

the two QRS detection algorithms mentioned above24, 25. Sequences with disagreement 

between the different QRS-detection algorithms were software-labelled for subsequent 

targeted visual quality control. Disagreement between the three QRS detection algorithms was 

assumed if the interval of detected QRS-complexes deviated by > 100 Hz (> 0.2 x sampling 

frequency of 500 Hz). In case of such disagreement, a minimal window of 8 seconds (4 

seconds before and 4 seconds after start of disagreement) was labelled for visual inspection. 

Finally, software-labelled periods of potentially noisy data were visually checked and 

manually assigned by trained study personnel to be included or excluded in the analysis based 

on results of motion detection analysis, RMS envelope curve assessment, and QRS detection 
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agreement as outlined above. Raw data passing these quality control steps were extracted for 

calculation of IBI using Matlab (The MathWorks, Inc., Natick, Massachusetts, United States). 

Based on recommendations for IBI outlier identification in infants26, outliers included all IBIs 

> 2 s and those that varied by more than 1 s from the two neighbouring IBIs. Identified 

outliers were interpolated with the two neighbouring IBI values.  

 

HRV characteristics considered to influence outcomes 

We calculated the following HRV characteristics on normal to normal IBIs (NN) taking into 

consideration all intervals between two consecutive heart beats resulting from sinus node 

depolarization27: Mean (IBIMean), SD (IBISDNN), coefficient of variation (IBICV), square root of 

the mean of squared successive differences (IBIRMSS), and skewness (IBISkewness)27, 28. SampEn 

was calculated according to the algorithm described by Richman and Moorman and in the 

citations therein29. SampEn is a measure of randomness of a time series. It quantifies the 

conditional probability that, with the knowledge of a consecutive number of m data points 

within a given tolerance r (usually r = 0.2*standard deviation), the next data point can be 

predicted. To estimate long-range correlations of IBIs, we calculated ScalExp derived from 

DFA as reported previously17, 18, 30, 31. ScalExp describes the self-similarity (scaling) of the 

fluctuations of a biological signal in a time series across a range of sizes of time windows and 

thus reflects the long-range correlations (memory) of the signal. 

 

Demographic and clinical factors considered to influence outcomes 

Factors potentially influencing clinical outcomes included demographic characteristics of 

study participants (GA, birth weight (BW), BW z-score, sex), prenatal corticosteroid 
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treatment, relevant comorbidities associated with preterm birth including early onset sepsis 

(EOS) and late onset sepsis (LOS) (no; suspected EOS: defined as histologically approved 

chorioamnionitis or C-reactive protein (CRP) > 20 mg/L and antibiotic treatment > 5 days 

initiated within first 72 h after birth; suspected LOS: CRP > 20 mg/L and antibiotic treatment 

> 5 days initiated beyond 72 h after birth, proven sepsis (criteria for suspected sepsis plus 

positive blood cultures)), necrotizing enterocolitis (≥ grade II according to Bell32), maximum 

grade of germinal matrix-intraventricular hemorrhage (IVH, grade I to IV, documented 

according to Papile33), cystic periventricular leukomalacia, phototherapy due to 

hyperbilirubinemia, level of respiratory support at study (none, nasal continuous airway 

pressure with and without intermittent increase in flow, endotracheal ventilation), presence of 

bronchopulmonary dysplasia (defined as supplemental oxygen requirement at 36 weeks PCA 

to achieve preductal oxygen saturation of 90%), mean body temperature (Tmean) during a 

measurement, weight loss over the first five days of life (%), time to last caffeine dose (hours) 

at start of measurement, and the infant’s behavioural characteristics (positioning (prone, 

supine); sleep stage (see above; for regression analysis, an awake-score was calculated as 

follows: Time spent awake (%) * 3 + time spent in active sleep (%) * 2 + time spent in quiet 

sleep (%)); extent of handling (product of number and time (%) of open incubator doors 

(doors perturbance-score))). 

 

Clinical Outcomes 

Primary outcome was the total duration of respiratory support in the NICU. Respiratory 

support was defined as a composite of endotracheal ventilation, nasal continuous positive 

airway pressure and high-flow nasal cannula therapy with and without supplemental oxygen. 

Respiratory support was managed at the discretion of the attending neonatologist and 
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withdrawal was based on a set of criteria summarized in standard operating procedures 

(acceptable work of breathing (no grunting and no deep recessions to achieve stable blood 

gases), supplemental oxygen < 30% to achieve preductal oxygen saturation of 87-95%, no 

manual stimulation for apnea > 20 s or bradycardia < 100/min for at least 24 h in non-

intubated infants). Secondary outcomes included PCA at cessation of apnea (defined as 

cessation of breathing lasting for at least 20 seconds or one lasting for less than 20 seconds 

that is associated with bradycardia and/or cyanosis3), PCA at discontinuation of caffeine 

therapy (all infants received caffeine citrate therapy from day one of life based on clinical 

standard operating procedure; caffeine therapy was routinely stopped 72 h after last manual 

stimulation for AOP), and PCA at stopping of routine ECG monitoring in the NICU (72 h 

after last bradycardia and ≥ 5 days after stopping of caffeine therapy).  

 

Statistical analysis 

Aiming at a statistical power of 80% on the 5% significance level, we anticipated to recruit a 

total of n = 90 infants in order to analyze a minimum of n = 76 preterm infants (expected loss 

to follow-up 15% due to technical reasons, inherent mortality of extremely preterm infants, 

and potential withdrawal of parental consent), allowing for linear regression analysis of at 

least three continuous independent predictor variables of medium effect size (f2 = 0.15)34, 35.  

We extracted demographics, clinical factors, and clinical outcomes from medical records. 

HRV characteristics were calculated several months after extraction of this data, i.e., assessors 

of clinical outcomes were unaware of HRV characteristics. We performed linear regression 

analysis to assess associations between HRV characteristics, demographical, and clinical 

factors with outcomes (see lists of considered predictors and outcomes above). We first used 

univariable, multilevel modelling to allow for clustering on the individual level given that 
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repeated measurements over the first five days of life were analysed. This step included 

exploring associations of all considered predictors with outcomes. A p-value < 0.1 was 

considered to indicate potential relevance of a predictor. We then built multivariable, 

multilevel linear regression models for each outcome followed by stepwise backward 

elimination of predictors that were not significantly associated with the outcome (p<0.05 

considered statistically significant). We defined a best model depending on the coefficient of 

determination of the model (R2) and compared models using likelihood ratio tests. Models 

were explored for interaction of predictors and model diagnostics included plotting of 

residuals against fitted values. We log-transformed outcomes that were not normally 

distributed (duration of respiratory support). Statistical analysis was performed using Stata 

software (StataCorp. 2009. Stata Statistical Software: Release 11. College Station, TX: 

StataCorp LP).  
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Results  

Between January 2013 and September 2015, 330 sEMG measurements were performed in 90 

infants. Acceptable raw data were obtained from 309/330 (94%) measurements in 76/90 

(85%) preterm infants. Twenty-one measurements were not suitable for analysis due to truly 

irregular beat (repeated supraventricular extrasystole, n=9), displacement of sEMG electrodes 

(n = 10), and 50 Hz interference (n = 2). Mean (range) GA was 30.2 (24.7 to 34.0) weeks and 

mean (range) birth weight was 1274 (420 to 1900) g. Fig 1 shows the flow of the study. Table 

1 lists the HRV characteristics, demographic and clinical factors, and clinical outcomes of 

study participants. Results of univariable, multilevel linear regression analyses of all 

outcomes are summarized in Table 1 of the Online Data Supplement. Detailed results of 

multivariable, multilevel linear regression analyses are shown in Table 2 and are summarized 

below. Fig 2 shows the values of SampEn and ScalExp calculated over the first five days of 

life. 

 

Primary outcome 

Multivariable, multilevel modelling established a significant negative association of duration 

of respiratory support in the NICU with SampEn after adjusting for sex, GA, and birth weight 

z-score (R2 = 0.53, p <0.001; see Table 2 and Figure 3). Adding SampEn to a model including 

sex, GA, and birth weight z-score improved the predictive value of the model from 49% to 

53% (p = 0.04, likelihood ratio test). ScalExp however did not add predictive value to this 

model.  

 

Secondary outcomes 

PCA at discontinuation of caffeine therapy was negatively associated with SampEn after 

adjusting for sex, GA, birth weight z-score, and EOS (R2 = 0.35, p <0.001; see Table 2 and 
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Figure 4). Adding SampEn to a model with these demographic and clinical factors resulted in 

a 6% increase in the predictive value of the model from 29% to 35% (p = 0.01, likelihood 

ratio test). ScalExp did not add predictive value to this model.  

 

After adjusting for relevant demographic and clinical factors, PCA at last apnea and PCA at 

cessation of ECG monitoring were not associated with HRV characteristics after birth. The 

best multivariable models showed that PCAs at last apnea and at cessation of ECG monitoring 

were positively associated with male sex, EOS, and IVH, and negatively associated with GA 

and birth weight z-score (PCA at last apnea, R2 = 0.42, p<0.001; PCA at cessation of ECG 

monitoring, R2 = 0.35, p <0.001; see Table 2).  
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Discussion 

We found that SampEn calculated over the first few days of life significantly improves 

prediction of subsequent cardiorespiratory stability in preterm infants after adjusting for sex, 

the degree of prematurity, intrauterine growth, and comorbidities such as sepsis or IVH. 

Results were robust towards the influence of contextual factors including sleep stage, infant 

positioning, and extent of external handling. Distributive indices of IBI in the time domain 

(IBIMean, IBISDNN, IBICV, IBIRMSSD, IBISkewness) and ScalExp derived from DFA did not 

contribute to the predictive value of regression models after adjusting for relevant 

demographic and clinical factors.  

To our best knowledge, this is the first study to show that low baseline SampEn of IBI 

calculated within the first five days of life is useful for predicting cardiorespiratory stability of 

preterm infants over a time course of weeks to months. Since this prediction was made very 

early in life, it may significantly contribute to planning of treatment and allocation of health 

care resources.  

 

Comparison with previous literature 

Low HRV has long been established as an indicator of poor prognosis in adults after acute 

events such as myocardial infarction36, 37. Also, low SampEn repeatedly has been shown to be 

an early marker of incipient sepsis in preterm neonates hospitalized in the NICU16, 38, 39. In a 

landmark study, Moorman et al. reported in their large, multi-center, randomized trial 

(n=3003) that real-time display of HRV characteristics to clinicians in the NICU resulted in 

reduced sepsis-related mortality in preterm infants40. In addition to such studies aiming at 

detecting serious, subacute events through changes in SampEn prior to clinical deterioration 

of patients, our findings indicate that baseline SampEn calculated daily within the first five 

5. Results and Research Papers 
5.4. Autonomic dysregulation in preterm infants 
 



	

	
	

71	

days of life improves medium-term prediction of cardiorespiratory stability over weeks to 

months, e.g., duration of respiratory support or PCA at discontinuation of caffeine therapy. 

This suggests that SampEn confers prognostic value towards autonomic control in the absence 

of incipient events and after adjusting for known predictors of outcome such as degree of 

prematurity at birth, birth weight z-score, and significant comorbidities (IVH, sepsis) 

occurring between early measurement of HRV and outcome assessment several months after 

birth. Fairchild et al. demonstrated that altered heart rate characteristics within 28 days after 

birth were associated with abnormal brain imaging in the NICU and neurodevelopmental 

impairment at 1 year of age in extremely low birth weight infants41. These results were 

adjusted for the degree of prematurity at birth and sepsis during NICU stay. The authors 

hypothesized that abnormal HRV in the first few weeks of life might reflect inflammatory 

processes such as sepsis or other systemic inflammatory conditions causing secondary brain 

injury (and abnormal brain imaging) but could also directly indicate brain injury or 

neurological dysfunction in preterm infants. They concluded that it remains unclear whether 

HRV during early life independently influences neurodevelopmental outcomes. Similarly, 

although we had adjusted our analysis for known and statistically significant predictors of 

cardiorespiratory outcomes, we cannot rule out the possibility that SampEn at least partially is 

associated with clinical outcomes as a surrogate measure of other, unmeasured factors. 

 

Strengths and limitations of the study 

A strength of this study is the prospective assessment of HRV with systematic data quality 

control in a population of infants at high risk of autonomic dysregulation in whom 

cardiorespiratory stability is difficult to predict and of clinical importance. We reached a very 

high success rate of sEMG measurements (94%) and further considered various factors, such 

as adjustment for sleep stages and comorbidities potentially influencing both HRV within the 
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first days of life and study outcomes during prolonged NICU stay of the infants. We 

performed extensive quality control of sEMG raw data in order to detect and exclude motion 

artifacts. A limitation of our study is the lack of real-time analysis of HRV at the bedside. We 

analysed data offline, i.e., the current setup would not yet allow clinicians to incorporate 

SampEn into their decision making in the NICU. However, as shown previously15, the data 

quality control procedure could potentially be fully automated and thus bring this setup an 

important step closer to real-time analysis. We assessed HRV using sEMG instead of the 

typically used ECG traces. As an advantage, this allows simultaneous detection of motion 

artifacts, on the other hand, our results might not be directly comparable to findings from 

HRV analysis by ECG. Lastly, given that filtering of sEMG raw data predominantly affects 

periods of active sleep and awake periods15, we may have missed true changes in HRV 

occurring predominantly during those periods and we do not know whether this affects the 

results of our study. 

 

Interpretation and significance 

Low SampEn represents a composite of regularity of heart rate and presence of spikes, e.g., 

transient decelerations, in a time series of IBIs16. The pathophysiological mechanism causing 

changes in SampEn is unknown. In the context of incipient events, changes in SampEn have 

been attributed to the effect of inflammatory cytokines39. Our observation that daily baseline 

measurements of SampEn early after birth predict medium-term cardiorespiratory stability is 

novel and suggests that SampEn represents an integrative marker of individual stability of the 

autonomic nervous system in preterm infants. In other words and as contemplated by Lake et 

al., high SampEn, representing some level of natural variability, might be a general indicator 

of health in this population16. We reject the interpretation that the predictive value of SampEn 

on PCA at discontinuation of caffeine therapy is predominantly due to an interaction of 
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SampEn with EOS given that model estimates for SampEn were very similar in infants with 

and without EOS and an interaction term was not significant.  

The fact that ScalExp from the first five days of life did not add any predictive value to 

models with known risk factors for cardiorespiratory stability could be due to methodological 

or physiological factors. From a methodological point of view, time series analysis can be 

very sensitive to loss of data26, 42. We have previously shown that distributive indices of IBI 

(IBIMean, IBISDNN, IBICV, IBISkewness) and ScalExp are more sensitive to loss of raw data and 

gaps in the data record than SampEn15. This might explain why only SampEn conferred 

prognostic utility among considered HRV indices in the current study. SampEn has been 

shown to be remarkably unaffected both analytically and experimentally by loss of up to 40% 

of raw data16. As reported previously, we performed extensive data quality control in order to 

reduce the effect of motion artifacts and handling of infants on IBI data records15, periods 

which are clearly detectable by sEMG measurements in contrast to conventional ECG 

measurements. The quality control procedure resulted in an overall loss of 34% of raw IBI 

data and had only minimal effect on SampEn which is consistent with the literature16. Further, 

HRV has been shown to vary with transitions from being awake to being asleep and between 

different sleep stages19. Therefore, we considered adjusting for changes in sleep stage to be of 

particular importance as neonates do not have a circadian sleeping rhythm but follow a much 

shorter, internal clock driven, ultradian sleep/wake rhythm, potentially leading to changes in 

HRV during measurements of several hours. Results from a methodological study on sleep 

staging in a subgroup of our cohort indicated that the duration of a sleep cycle (reappearance 

of active sleep) on average was about 22 minutes20. In the current study, sleep stage and 

extent of infant handling during data acquisition did not significantly influence outcomes after 

adjusting for demographic and clinical factors. Lastly, we had employed an unconventional 

method of acquiring HRV data using thoracic sEMG. This approach has the disadvantage of 
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requiring additional chest electrodes compared to deriving IBI from ECG electrodes used in 

clinical routine. On the other hand, sEMG allowed us to quantify and exclude motion artifacts 

which are inevitable when studying preterm infants in the NICU15. 

 

Clinical relevance 

We demonstrated feasibility of sEMG measurements for calculating HRV in a clinical NICU 

setting and found that the method could potentially be fully automated15. Our findings suggest 

that SampEn is a promising physiological marker to monitor health and development of 

preterm infants over relatively long time periods. In terms of prognostic power, the effect size 

of SampEn in the overall models was moderate; e.g., SampEn increased the coefficient of 

determination from 0.49 to 0.53 in the model assessing duration of respiratory support. This 

suggests that GA at birth, intrauterine growth (birth weight z-score) and sex are still the major 

determinants of outcome. Further, these values show that the overall model only explains 

slightly more than half of the amount of variation in the outcome. While this is substantial, 

there are obviously other factors influencing the outcome that are not included in the model. 

Prognostically, the first week of life clearly represents a critical period of time and it is 

encouraging to note that baseline SampEn obtained at such an early stage of life is predictive 

of medium-term outcomes. This is of particular importance as planning of resource allocation 

(staffing, equipment) and of discharge home require considerable time. Arguably, repeated 

measurements of SampEn over weeks to months may add further information to adapt the 

initial prediction of cardiorespiratory stability derived from early measurements after birth.  

Our cohort included infants from 24 weeks GA who were at high baseline risk of 

complications and prolonged NICU stay due to cardiorespiratory instability. However, most 

infants were relatively healthy: none had bronchopulmonary dysplasia at 36 weeks PCA 

which is an important factor influencing duration of respiratory support; also, there was only 
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one infant with necrotizing enterocolitis and one case of periventricular leukomalacia. Thus, 

we do not know whether our findings can be extrapolated to infants with such complications. 

In general, it is conceivable that in the future, real-time display of SampEn (or more complex 

HRV indices) might assist clinicians not only in prognosis but also resource allocation and 

decision-making as both respiratory support and caffeine therapy are critical determinants of 

discharge from NICU.  

 

Conclusion 

Baseline SampEn calculated over the first five days of life improves prediction of subsequent 

cardiorespiratory stability over weeks to months in preterm infants. Characterizing HRV in 

these infants confers promising prognostic utility independently of subacute events at an 

extremely early stage of hospitalization. Further studies on the predictive value of SampEn 

with repeated measurements over prolonged periods of time are warranted. 
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Figure Legends 

Legend Figure 1: Abbreviations: CV, coefficient of variation; ECG, electrocardiography; 
HRV, heart rate variability; IBI, interbeat interval; PCA, postconceptual age; RMSSD, route 
mean square analysis; SDNN, standard deviation of normal to normal (NN) IBIs; sEMG, 
surface electromyography; SampEn, sample entropy; ScalExp, scaling exponent alpha derived 
by detrended fluctuation analysis. 

 

Legend Figure 2: Abbreviations: SampEn, sample entropy; ScalExp, scaling exponent alpha 
derived by detrended fluctuation analysis. SampEn (a) and ScalExp (b) did not significantly 
change over the first five days of life. 

 

Legend Figure 3: Duration of respiratory support (h) (log- transformed) over sample entropy 
of interbeat interval. There was a significant negative association of sample entropy with 
duration of respiratory support. Each data point reflects average values over the first five days 
of life (one data point per infant). 

 

Legend Figure 4: Postconceptual age at cessation of caffeine therapy (w) over sample entropy 
of interbeat interval. There was a significant negative association of sample entropy with 
postconceptual age at cessation of caffeine therapy. Each data point reflects average values 
over the first five days of life (one data point per infant).  
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Tables 

Table 1. HRV characteristics, demographic and clinical factors, and clinical outcomes of 

study participants (n=76) 

HRV characteristics 

IBIMean, s 0.41 (0.03) 

IBISDNN, s 0.03 (0.01) 

IBICV, % 6.3 (2.1) 

IBIRMSSD 0.02 (0.01) 

IBISkewness 4.76 (4.39) 

SampEn 0.37 (0.22) 

ScalExp 1.11 (0.19) 

Demographic factors 
Male sex 44 (57.9) 

Gestational age, w 30.2 (2.2) 

Birth weight, g 1274 (344) 

Birth weight z-score -0.90 (1.12) 

Clinical factors 

Early onset sepsis 

 none 

 suspected 

 proven 

 

50 (65.8) 

22 (28.9) 

4 (5.3) 
Late onset sepsis 

 none 

 proven 

 

70 (92.1) 

6 (7.9) 

Necrotizing enterocolitis 

 none 

 stage III 

 

75 (98.7) 

1 (1.3) 

Intraventricular hemorrhage 7 (9.2) 
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Cystic periventricular leukomalacia 1 (1.3) 

Bronchopulmonary dysplasia 0 (0) 

Prenatal corticosteroids 

 none 

 incomplete 

 complete 

 

8 (10.5) 

5 (6.6) 

63 (82.9) 

Clinical outcomes 

Duration of respiratory support, h 422.2 (31.1–883.1) # 

Postconceptional age at last apnea, w 36.4 (2.1) 

Postconceptional age at discontinuation of caffeine therapy, w 35.0 (1.5) 

Postconceptional age at cessation of ECG monitoring, w 36.1 (2.2) 

 

Legend Table 1: Continuous variables are displayed as mean (standard deviation) unless 
specified otherwise; categorical variables are displayed as count (%); #median (interquartile 
range). Abbreviations: ECG, electrocardiography; IBIMean, mean of interbeat interval (IBI); 
IBISDNN, standard deviation of IBI; IBICV, coefficient of variation of IBI; IBISkewness, skewness 
of IBI; SampEn, sample entropy, ScalExp, scaling exponent alpha.  
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Table 2. Multivariable, multilevel linear regression models for all outcomes 

Variable Coefficient 
ß 

95% CI 
P-value 

R2 

Outcome: Duration of respiratory support* 0.53 
Sample entropy -0.808 -1.589 to -0.028 0.042  
Male sex 0.681 0.400 to 0.962 <0.001  
Gestational age, w -0.497 -0.567 to -0.427 <0.001  
Birth weight z-score -1.315 -0.261 to -0.010 0.035  
Outcome: Postconceptional age at last apnea 0.42 
Male sex 0.476 0.066 to 0.889 0.024  

Gestational age, w -0.411 -0.525 to 0.298 <0.001  
Birth weight z-score -0.815 -1.021 to -0.608 <0.001  
Early onset sepsis 
  suspected  
 proven 

 
1.002 
2.431 

 
0.031 to 1.008 
1.363 to 3.499 

 
0.042 
<0.001 

 

Intraventricular hemorrhage 0.352 0.016 to 0.688 0.040  

Postconceptional age at discontinuation of caffeine therapy 0.35 
Sample entropy -0.805 -1.524 to -0.086 0.028  
Male sex 0.809 0.497 to 1.114 <0.001  
Gestational age, w -0.240 -0.340 to -0.149 <0.001  
Birth weight z-score -0.003 -0.037 to 0.849 0.974  
Early onset sepsis 
 suspected 

 proven 

 
0.443 
1.327 

 
0.037 to 0.849 
0.621 to 2.033 

 
0.033 
<0.001 

 

Postconceptional age at cessation of ECG monitoring 0.35 
Male sex 0.818 0.380 to 1.255 <0.001  
Gestational age, w -0.229 -0.350 to -1.075 <0.001  
Birth weight z-score -0.799 -1.018 to -0.586 <0.001  
Early onset sepsis 

 suspected 

 proven 

 
0.131 
2.937 

 
-0.444 to 0.706 
1.768 to 4.105 

 
0.655 
<0.001 

 

Intraventricular hemorrhage# 0.752 0.423 to 1.028 0.045  
 

Legend Table 2: Final models of multivariable, multilevel linear regression analyses. 
Abbreviations: ECG, electrocardiography; R2, coefficient of determination of multivariable, 
multilevel model; *data log-transformed to achieve normal distribution; #binary coded (grades 
0 to 1 vs. grades 2 to 4; based on Papile classification, see text).  

5. Results and Research Papers 
5.4. Autonomic dysregulation in preterm infants 
 



	

	
	

83	

Figures  

Figure 1: Study flow sheet 
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Figure 2: Sample entropy and scaling exponent over the first five days of life 

a 

 

b 
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Figure 3: Predictive effect of sample entropy on duration of respiratory support 

 

 

Figure 4: Predictive effect of sample entropy on cessation of caffeine therapy 
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 SUPPLEMENTAL MATERIAL 

Online Data Supplement (ODS) 

Heart rate variability after birth predicts subsequent cardiorespiratory stability in preterm 

infants 

Table 1. ODS: Results of univariable, multilevel regression analyses 

 

Variable Coefficient ß 95% CI 
P-value 

R2  

Outcome: Duration of respiratory support* 
IBIMean, s -14.127 -20.377 to -7.877 <0.001 0.08 
IBISkewness, s 0.121 0.079 to 0.163 <0.001 0.12 
SampEn -2.850 -3.832 to -1.869 <0.001 0.12 
ScalExp 1.359 0.199 to 2.519 0.022 0.02 
Male sex 0.564 0.167 to 0.961 0.006 0.03 
Gestational age, w -0.490 -0.553 to -0.426 <0.001 0.34 
Birth weight, g -0.002 -0.003 to -0.002 <0.001 0.34 
Birth weight z-score -0.094 -0.273 to 0.085 <0.001 0.07 
Early onset sepsis (proven) 3.370 1.866 to 4.873 <0.001 0.10 

Late onset sepsis (proven) 3.253 1.812 to 4.694 <0.001 0.06 

Outcome: Postconceptional age at last apnea 
IBIMean, s -8.738 -17.121 to -0.354  0.041 0.02 
IBISkewness, s 0.097 0.040 to 0.154 0.001 0.04 
SampEn -1.612 -2.966 to -0.284  0.020 0.02 
Male sex .0796 0.282 to 1.310  0.003 0.04 
Gestational age, w -0.318 -0.431 to -0.204  <0.001 0.11 
Birth weight, g -0.003 -0.004 to -0.002  <0.001 0.21 
Birth weight z-score -0.554 -0.783 to -0.326  <0.001 0.08 
Early onset sepsis (proven) 2.331 1.245 to 3.416 <0.001 0.10 
Intraventricular hemorrhage 1.651 0.494 to 2.809 0.005 0.03 
Outcome: Postconceptional age at discontinuation of caffeine therapy 

IBIMean, s 
-7.051 -13.180 to -0.922 0.024 0.02 

IBISkewness, s 
0.067 0.026 to ‚.108 0.002 0.04 

SampEn -2.367 -3.334 to -1.398 <0.001 0.09 

ScalExp 
1.111 0.042 to 2.179 0.042 0.02 

Male sex 0.835 0.47 to 1.200  <0.001 0.08 
Gestational age, w -0.275 -0.359 to -0.191 <0.001 0.14 
Birth weight, g -0.001 -0.002 to -0.001 <0.001 0.11 
Birth weight z-score -0.080 -0.258 to 0.099 0.380 <0.001 
Early onset sepsis (proven) 1.773 1.095 to 2.452 <0.001 0.14 
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Outcome: Postconceptional age at cessation of ECG monitoring 

IBICV, % 
10.401 -0.669 to 21.483 0.065 0.02 

IBISkewness, s 
0.055 -0.002 to 0.113 0.061 0.01 

SampEn -1.577 -2.915 to -0.240 0.021 0.02 
Male sex 1.055 0.548 to 1.562 <0.001 0.06 
Gestational age, w -0.136 -0.254 to 0.018 0.024 0.02 
Birth weight, g -0.002 -0.003 to -0.001  <0.001 0.10 
Birth weight z-score -0.619 -0.843 to -0.396  <0.001 0.10 
Early onset sepsis (proven) 1.946 0.853 to 3.039 0.001 0.07 
Intraventricular hemorrhage# 1.568 0.379 to 2.757 0.010 0.02 

 

Legend Table 2. ODS: The table shows predictors significantly associated with outcomes in 

univariable regression analysis. Abbreviations: ECG, electrocardiography; IBI, interbeat 

interval; IBIMean, mean of IBI; IBISkewness, skewness of IBI; IBICV, coefficient of variation of 

IBI; R2, coefficient of determination of univariable, multilevel model; SampEn, sample 

entropy; ScalExp, scaling exponent alpha derived from detrended fluctuation analysis; *data 

log-transformed to achieve normal distribution; #binary coded (grades 0 to 1 vs. grades 2 to 4; 

based on Papile classification, see text of main manuscript). 
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5.5. Sighs in preterm infants 
 
 

*************************************************************************** 
"The unprepared mind cannot see the outstretched hand of opportunity."  

 
- Alexander Fleming -  

*************************************************************************** 
 

 
 
State of the paper 

 
Published in Physiological Reports (new online journal of 
The Physiological Society and The American Physiological 
Society), November 2015 
The Editor’s Choice feature of the month (December 2015). 
 

 
Contribution of KJ 

 
The work of KJ on this project included quality control of 
existing lung function measurements, selection of suitable 
measurements for sigh analysis, and sigh analysis per se with 
a custom-made code using the statistical software R. The code 
was written by KJ in collaboration with other team members. 
The outcomes were statistically analyzed and the final 
manuscript was written by KJ.  
 

 
Synopsis 

 
Large tidal breaths at least double the average tidal volumes, 
also known as sighs, have been associated with various 
physiological and pathophysiological mechanisms. The effect 
of sighs depends on subject characteristics such as age: Sighs 
can lead to hypoventilation and apnea in infants but might 
induce higher minute ventilation in adults. As sighs are 
associated with apneas in infancy, we were interested whether 
there is a difference in the reaction upon a sigh between 
infants born premature and term-born healthy controls. A 
better understanding of the differences in both control of 
breathing and lung function could be useful as potential 
marker for respiratory sequelae in preterm infants. 
We could show that sigh-induced changes in breathing pattern 
differ between stable preterm infants with and without 
bronchopulmonary dysplasia and term healthy controls when 
measured during quiet sleep at equivalent postconceptional 
age shortly after term. Whether or not sigh characteristics are 
useful as predictive marker of later respiratory morbidity 
should ideally be investigated in future longitudinal studies. 
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6. Discussion, Conclusion, and Outlook 
 
***************************************************************************	

“Until we know what we are looking for,  
the secrets of complex networks will remain elusive.”  

 
- Steven Strogatz – 

*************************************************************************** 
 
 
Immaturity, as other illnesses, can impair autonomic control. A preterm infant would naturally 
have weeks to months more time in utero to “learn” how to regulate body temperature, 
heartbeat and breathing, and how to coordinate those elements. Thus, it is not surprising that 
intensive care treatment and monitoring is needed to support them and keep them under 
surveillance during their first weeks of life.  Even though treatment of preterm infants made 
large progress in the last years, the understanding of the immature regulatory processes still is 
limited. Complexity and dynamic properties of these immature regulatory systems can 
objectively be described using nonlinear analysis. The results from this PhD work add more 
information about autonomic dysregulation of vital signs in preterm infants. 
 

6.1. Complexity in physiology 
When we look at the human body as a conglomerate of physiological systems, we might get a 
fraction of the impression of its complexity when recalling the changes in scale from 
subcellular molecules, to the cell itself, to the organ, and finally to the organism. Thus, it is 
not surprising that the regulatory systems and their interactions in living organisms are not 
linear processes. On the other side they are not random in behavior. Nonlinear mathematical 
tools have been useful in the description of complex organizations of cells (pacemaker cells in 
the sinus node99), symptoms (cardiac arrhythmias100; tremor in patients with Parkinson’s 
disease101), and the behavior of small organisms (fireflies102, 103). To truly understand, how 
billions of unconscious neurons lead to both, conscious and unconscious regulations and 
decisions in the human body, presents an even bigger challenge and until now seems 
impossible.  
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6.2. Comparison with the literature 
 

Signal processing 

To describe regulatory systems, small changes in amplitude or frequency of the signals, such 
as milliseconds of variation between consecutive heartbeats, have to be detected reliably. This 
illustrates the need of accurate measuring systems for the detection of alterations in 
fluctuations of those signals. We could show that inappropriate data cleaning influences 
outcomes of time series analysis (5.3. Diaphragmatic surface electromyography in preterm 
infants -A systematic way to clean data for analysis of heart rate variability-). The use of time 
series data that includes noisy signal parts might have a large effect in the description of 
nonlinear systems. This becomes evident when recalling the strong dependency of nonlinear 
systems on the initial conditions76, 104, also known as the butterfly effect. On the other side, 
extensive cleaning is leading to fragmentation of the signal, which itself could influence 
results from time series analysis105. Once reliable analysis from cleaned study data is 
provided, complexity and dynamics of vital signs can lead to deeper understanding of (patho-) 
physiological mechanisms. 
 

Temperature 

Our study is the first to show that complexity of body temperature in incubator-nursed 
preterm infants can be described using DFA and SampEn. Stern et al found an increasing 
scaling factor alpha in temperature time series of healthy term born children, when they 
observed them over several weeks30. They interpreted this to be a sign of maturational effect 
towards a more deterministic system with increasing age post term. In contrast, our data 
showed a decrease in mean (SD) alpha from 1.67 (0.18) on the first day of life to 1.46 (0.22) 
on the fifths day of life. The differences in study setting (incubator vs home setting without 
active external heat input; difference in frequency, time range, duration and sampling 
frequency of temperature date) and cohort characteristics (very preterm infants vs healthy 
term infants) might explain the discrepancy in the direction of the association between scaling 
factor alpha and postnatal age. 
We found lower complexity (higher alpha and lower SampEn) to be associated with the 
degree of prematurity and growth restriction at birth, and with several comorbidities of 
preterm infants. In fact, an increase in alpha was associated with a stepwise increase in the 
level of respiratory support required during the first days of life after adjusting for prematurity 
and intrauterine growth restriction. Varela at el found significantly higher DFA and lower 
SampEn values in hourly temperature data in adult patients who did not survive their 
intensive care unit stay after adjustment for age84. Hence, and similar to our findings, the 
authors interpreted the loss of complexity in temperature curves as a marker of severity of 
disease and, additionally, as indicator for poor prognosis.  
 

 

6. Discussion, Conclusion, and Outlook 
6.2. Comparison with the literature 
 



 

	
101	

	

Sleep 

The amount of quiet sleep and of active states including active sleep and wakefulness, as well 
as sleep cycle duration of preterm infants did not change under light-deprivation. The 
ultradian rhythm of sleep in immature newborns seems more independent than the one in 
adults, as a lack of light changes (light-deprivation during phototherapy) was not affecting 
this rhythm. These results are in line with other sleep studies33, 106.  Nevertheless, the earlier 
birth of premature infants is affecting sleep behavior, as the entrainment of circadian sleep-
wake rhythm was shown to be earlier in former premature infants compared to term born 
controls44, 107.  
 

Heart rate 

The association of altered fluctuations in heart rate and increased mortality in post-myocardial 
infarct patients has first been described by Wolf et al108. Later, mathematical description of 
IBI of patients with life-threatening cardiac pathologies, showed significant differences in 
short- and long-range correlation properties when compared with healthy controls49, 82, 109.  
In newborns, variability in heart rate is useful as an additional, early marker of a sepsis or 
sepsis like illnesses during their stay on a NICU55-58. It has been shown that stress and painful 
procedures during the vulnerable phase of infancy and potentially fetal life have long lasting 
effects. Rakow et al61 showed that infants with intra-uterine growth restriction have altered 
HRV at the age of 9 years when compared to healthy controls. Morin et al95 studied HRV of 
former preterm children and children that underwent surgery in the newborn period. At the 
age ranging from 7-25 years they were exposed to a painful procedure (they had to place their 
hand in ice water). Frequency domain analysis of study participant’s heart rate showed 
changes reflecting a higher sympathetic activity. These findings were interpreted as persisting 
changes in cardiac autonomic control with potential impairment in responding to stress or 
pain. In summary, mathematical properties of HRV have been shown to be associated with 
acute and chronic morbidity and mortality. Our data, to our knowledge the first to measure 
HRV in very preterm infants during their first days of life, adds the fact that HRV also has a 
predictive value to determine resolution of autonomic dysregulation in terms of termination of 
pharmacological and respiratory support: SampEn of IBI during the first days of life 
significantly adds predictive value on top of well-known risk factors such as degree of 
prematurity, intra-uterine growth and relevant co-morbidities.  
 

Breathing 

As shown by Latzin et al, the functional residual capacity of former preterm infants is only 
marginally different from healthy term controls when measured at a comparable PCA110. It 
seems as if the capacity of former preterm infants to maintain their lung volume is very high, 
as long as there is no perturbation. Sigh morphology was astonishingly uniform and 
independent of degree of prematurity, body weight or gender. Breathing pattern, however, is 
persistently different in former preterm infants when compared to healthy controls shortly 
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after due date. This is even more evident after a sigh. The breathing pattern upon a sigh in 
healthy term born infants has been previously described by Baldwin et al11. They observed an 
increase in variability of tidal volume after a sigh. When we compared the effect of a sigh 
between healthy term born and preterm infants at a comparable PCA, we found that the 
reaction in breathing pattern upon a sigh is associated with degree of prematurity and residual 
lung disease. Hence, the event of a sigh seems to unmask the underlying limits of the 
respiratory system in preterm infants.  
 
 

6.3. Physiological mechanisms 
 

Alterations in physiological systems 

The goal of a living organism is to find a balance between stability to maintain its functions 
and sensitivity to be able to respond to unpredictable stimuli or stress. This state is maintained 
by various feedback loops and interactions between several regulatory systems and thus is not 
static. The resulting fluctuations exhibit complex nonlinear properties, suggesting that under 
healthy stable conditions, the regulatory systems are operating far from equilibrium, which 
enables plasticity111.  This complexity of physiological systems has been shown to be altered 
with increasing age and in case of disease45, 112, 113. 
In summary, there are the following two ways how alterations in human regulatory systems 
can be described:  

Ø Increase in order: The transition to a strongly periodic behavior as for example in 
Cheyne Stokes breathing111, tremor in Parkinson’s disease101, or heart rate variability 
in infants with sepsis55 or in elderly people45. The emergence of a dominant mode 
results in loss of functional responsiveness and reduced plasticity of the system. This 
possibly leads to less adaptability in stressful situations.  
 

Ø Decrease in order: A breakdown of the memory in a physiological system is leading to 
uncorrelated randomness111. The physiological organization following deterministic 
chaos is turned into outputs similar to “white noise”. A well-described example of this 
deterioration is the ventricular response to atrial fibrillation111.  
 

Both, the undue increase or decrease in a regulatory system’s order, are expressions of 
degradation of the correlated, multiscale dynamics of the system. This results in reduced 
ability to react upon external or internal changes, on one side as pathologic periodicity, on the 
other as possible loss of function due to uncorrelated randomness.  
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Temperature 

The higher complexity in time series of body temperature in extremely preterm and/or very ill 
infants shown in our study could be explained as pathological alteration with an increased 
order. Or, taking into account our study setting of an external controlling system, trying to 
keep the infant’s body temperature at a certain value, it could be a sign of a more passive 
temperature control of the infant. In this case, the incubator algorithm would thus be less 
influenced by temperature regulation from the infant’s side and hence, the predictability of the 
signal would be rising. 
 

Sleep 

Light-deprivation usually results in significant melatonin increase and consequently one is 
falling asleep. Studies of melatonin production in term and preterm newborns have shown that 
in preterm infants, the necessary mechanisms for melatonin production are developed at 33-36 
weeks GA114, but that melatonin levels do not increase in response to light-deprivation115. The 
absence of melatonin production shown by Mantagos et al115 could be one of the reasons for 
the resistance of the ultradian rhythm of preterm infants against external stimuli such as light-
deprivation during phototherapy, shown in our study. 
 

Heart rate 

Variability of the heart rate shows increase of irregularity (SampEn) and decrease of memory 
(DFA) with increasing maturity in our study population of very preterm infants. The 
underlying mechanisms, making HRV, assessed during the first days of life, a predictive 
value for cessation of pharmacological and respiratory support, are not yet understood. Infants 
with a lower SampEn of IBI are longer treated with caffeine and respiratory support, even 
after correction for GA. Speculative, one could interpret the negative association of SampEn 
and postconceptional age at termination of those therapies as consequence of the increase in 
order of cardiac autonomic control. The observed increase in complexity of heart rate 
fluctuations in infants needing longer support could be a sign of pathological periodicity. This 
would lead to a decrease in the functional responsiveness to unpredictable stimuli.  
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Breathing 

The principal triggers of sighs are still unknown. We can thus only speculate about the 
mechanisms that result in differences of breathing pattern upon a sigh in preterm infants when 
compared to healthy term infants. The novel finding of our study, that sigh frequency is a 
function of respiratory rate shortly after due date, makes it likely to be a results of the 
maturity of the respiratory system. We showed that degree of prematurity and residual lung 
disease is associated with magnitude and duration of changes in breathing pattern upon a sigh. 
This diminished reaction of the respiratory system upon an internal perturbation in preterm 
infants could be seen as a result of the higher periodicity in general (lower variability of tidal 
volume (CVVT) also in the baseline breathing pattern). In other words, it could be described as 
an alteration in stable-limit cycle oscillations, resulting in a faster return to the restricted 
baseline breathing pattern in preterm infants. This behavior might indicate an immature 
respiratory pattern generator, which potentially could be important for cardio–respiratory 
coupling and survival of infants under stress116. 
 
 

6.4. Possible clinical implications in the future  
 

Temperature 

Temperature regulation in incubator-nursed very preterm infants during their first days of life 
is dependent on degree of prematurity and relevant comorbidities. The description of 
complexity and dynamics in temperature control in that population could be useful in the 
development of more individualized thermal care. It could be used to objectively determine 
the best timing for an infant to transit from the incubator to an open cot. Until now this 
transition is not based on scientific evidence but rather on an arbitrary body weight 
threshold117 and not routinely adjusted for an individual patient’s readiness from a systems 
control perspective. Hence, such transfers are typically a matter of trial and error despite the 
fact that thermo-neutrality is important for adequate weight gain and has beneficial effects on 
other autonomic control systems such as breathing and heart rate14, 15, 26.   
Timely transfer of infants from the incubator to an open cot might also have additional 
benefits in terms of environmental noise exposure, as in incubators noise levels have been 
shown to be approximately 10 times louder than recommended31. Furthermore, a recent study 
suggests that exposure of preterm infants to coherent language might have positive effects on 
language and motor development32.   
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Sleep 

Although sleep behavior has been shown not to be influenced by phototherapy, one of the 
routine therapies during a preterm infant’s stay in the NICU, we consider it essential to limit 
potentially disturbing procedures and respecting the concept of minimal handling. This is of 
particular importance as sleep is known to play a key role in neuronal development and to 
influence other regulatory systems.  
 

Heart rate 

The gained knowledge about HRV during a preterm infants’ first days of life showed to add 
predictive value to estimations aiming at prediction of the time of cessation of 
pharmacological treatment of autonomic dysregulation with caffeine and of termination of 
respiratory support. This information is not only interesting in terms of how early postnatal 
monitoring of HRV can have predictive value over weeks. It is also a major factor in resource 
allocation, as both, stop of caffeine treatment and respiratory support, are key features to 
transfer infants from a NICU or an intermediate care unit to a more general ward. Improved 
prediction of that time point would improve planning in daily clinical routine and optimize 
use of health care costs.  
If the best time point for successful extubation could be estimated with analysis of HRV in 
preterm infants needs to be tested. In adult patients, suffering from respiratory failure, a 
successful extubation was associated with increased values in frequency domain analysis of 
HRV118. Al Ghonaimi et al found an association between preterm infants that failed to be 
extubated and reduction in frequency domain heart rate analysis, performed one hour prior to 
extubation119. In our study only a limited number of preterm infants were measured during 
mechanical ventilation. There was a negative association between scaling factor alpha of IBI 
and hours of respiratory support until successful extubation. Other well-known factors, such 
as degree of prematurity, intra-uterine growth, and sepsis were significantly associated with 
duration of ventilation. Thus, a higher number of ventilated infants with HRV analysis would 
be needed to estimate the usefulness of the scaling exponent alpha, derived by DFA, for 
prediction of extubation- readiness in that study population.  
 

Breathing 

Breathing pattern following a sigh is influenced by the degree of prematurity and residual 
lung disease in preterm and term infants measured at equivalent corrected age shortly after 
due date. Whether or not sigh characteristics are useful as predictive marker of later 
respiratory morbidity should ideally be investigated in future longitudinal studies. In case 
these markers could be used to measure resolution of autonomic respiratory control in former 
preterm infants, this would be an elegant, non-invasive way for risk-stratification on an 
individual level.  
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In general, deeper knowledge about changes in breathing pattern according to disease could 
be a helpful input in various fields. Polysomnographic records of different patient groups 
could be used to assess changes in breathing pattern upon internal and external stimuli. This 
knowledge could ultimately be used in clinical management of patients with need for 
respiratory support, e.g. for individualized ventilation strategies. Mechanical ventilation using 
variable tidal volumes is already discussed to be more physiological and thus more 
effective120, 121. Once this modified ventilation strategy has been proven to be safe and more 
effective in humans, variability of ventilation could be adapted to an individuals need based 
on the underlying pathology. 
 
	

6.5. Conclusion 
	

Autonomic dysregulation in preterm infants is a relevant burden of disease, affecting several 
organ systems, and leading to possible risk situations in the short- and long-term. Our data 
supports the importance of mathematical description of alterations in these physiological 
regulatory systems in terms of associations of indices derived from time series analyses with 
the degree maturity at birth, presence and severity of disease, and prediction of resolution of 
autonomic dysregulation. In this context, we conclude that our results about different aspects 
of autonomic control in preterm infants provide a good basis for further investigations in this 
interesting research field. This could lead to better support of preterm infants during their stay 
on the NICU and identification of patients at high risk for future deterioration.  
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6.6. Outlook 
 

Interactions 

A human being is never isolated from the environment and all sorts of external stimuli and 
internal interactions are influencing the behavior of our regulatory systems122. There are not 
only well described immediate effects, such as acceleration of heart rate and respiratory rate 
as a response to pain or excitement, but also more complex situations were vital signs are 
influencing each other over longer time periods. It has been known since 1980 that sleep 
duration is dependent on body temperature at the time point of falling asleep123. The group 
around Czeisler built an impressive setting, were adult study participants lived over weeks in 
absence of any knowledge about daytime. This way they aimed to exclude all external stimuli 
potentially influencing their circadian rhythm. The study participants sometimes had very 
long sleeping periods (averaging 15 hours). This was always the case whenever their body 
temperature was high at the time point of falling asleep. In contrast, they were sleeping on 
average 8 hours whenever their body temperature was at a minimum level at the time they 
went to bed.  
Another amazing fact of different systems, in this case even different subjects, influencing 
each other, is the synchronization of ovulation among women within one peer group. 
McClintock, at that time an undergraduate student in psychology, was the first to show that 
fellow students synchronize their menstrual cycle over the time of a semester. A randomly 
selected control group did not show this effect124. The chemical communication between 
women, leading to this phenomenon, is believed to be driven by pheromones125, 126. 
After describing output signals of single systems, a more complicated task, the interactions of 
systems between each other should regain more attention in the future. Stéphan-Blanchard et 
al recently showed that changes in ambient air temperature lead to reduction in short- and 
long-term variability of heart rate in sleeping preterm infants, measured near term14. 
Persistence of impaired temperature regulation has been discussed as a risk factor for SIDS 
for a long time127. The observed changes in HRV as reaction to different ambient air 
temperature in the high-risk population of preterm infants provides new insights in potential 
mechanisms behind SIDS14. Pikkujämsä et al showed that HRV, assessed with 24 hours ECG 
measurements in children and adults, changed systematically during the night among all age 
groups45. During sleep, heart rate showed increased variance and complexity, thus a lower 
regularity and predictability. When we assessed associations between HRV and sleep stage in 
186 measurements of our study population of very preterm infants, we found significant 
differences between awake and quiet sleep. Some of these outcomes, as for example SampEn 
of IBI, showed a degree of change between behavioral states that dependent on GA. If the 
degree of variation of HRV parameters could be a measure of maturity in cardiac autonomic 
control would have to be tested in a more systematic way. 
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The interdependency of the different regulatory systems, as outlined in Figure 3, is not only a 
challenge but also a chance. If we are able to describe how stabilization in one system is 
improving the other immature processes as well, we could target our care more efficiently. 
We therefor think that a better understanding of immaturity in the physiological systems and 
of their interactions could improve clinical care and risk stratification in the population of 
preterm infants 
 

 
 
Figure 3 Schematic overview of interactions between the immature regulatory systems in 
preterm infants 
  

6. Discussion, Conclusion, and Outlook 
6.6. Outlook 
 



 

	
109	

	

Coordination 

Besides the described parts of the immature regulatory system in preterm infants, the inability 
to coordinate swallowing and breathing is a further expression of autonomic dysregulation. 
Most commonly, preterm infants are fed using gastric tubes for weeks to months until they are 
deemed mature enough to introduce suck feeds. Thus, similar to the other components of 
autonomic dysregulation, the resolution of this type of immaturity in NICU patients is a key 
factor to be fulfilled before they can be discharged home. Whether coordination abilities 
depend only on gestational age and how they can be diagnosed objectively remains 
controversial128-131. In addition, the ideal time point to introduce suck feeds and to challenge 
coordination of swallowing and breathing is unknown and largely remains a matter of trial 
and error with the risk of causing iatrogenic aspirations of milk (potentially causing life-
threatening pneumonia or sepsis) if the infants are not ready for suck feeds. Successful 
swallow-breath coordination is generally considered a higher neurological function and, 
consequently, represents a milestone in overall child development. Therefore, measurement of 
its level of function might serve as predictor for the neurological development and future 
outcome of preterm infants. However, the utility and predictive power of such indicators 
remains unkown97, 132, 133. One of the main reasons for the questions above lies in the lack of 
diagnostic tools that objectively measure suck-swallow-breath coordination with sufficient 
accuracy134-136. 
Therefore, we established a research-collaboration between the Department of Neonatology at 
the University of Basel Children’s Hospital (UKBB), the Institute for Human Centred 
Engineering (HuCE), Bern University of Applied Science, and the ARTORG Center- 
Cardiovascular Engineering, University of Bern. This collaboration, combining clinical 
expertise in neonatology and clinical research with electrophysiology and technical expertise 
in (esophageal) signal recording and processing, aims to investigate the swallow-breath 
coordination in preterm infants and to develop tools to quantify such coordination.  
In a recently started observational study, we aim to assess the swallow-breath coordination in 
preterm infants as possible early markers of autonomic development. Since July 2015 we 
successfully measured 9 preterm infants during their stay in the NICU. All of them were in 
need of a gastric feeding tube, which we replaced by the CE-labeled Edi tube (Maquet, Solna, 
Sweden), which is normally used to derive signals for neuronally adjusted ventilation assist 
(NAVA). Currently, we are processing the signals to identify periods with swallowing events 
to then determine the coordination of swallowing, breathing, and heart rate. A preliminary 
look at the data is very promising as can be seen in Figure 4. An advantage of this new 
method is not only the possibility to measure one additional, immature function. The 
esophageal location, close to the organs of interest (heart, diaphragm) could result in a better 
signal to noise ratio of examining HRV and/or diaphragmatic EMG signals. To determine 
whether the use of this esophageal technique is associated with less motion artifacts, 
synchronized surface EMG measurements and heart rate traces from the standard monitoring 
are captured.  
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Figure 4 
A) High-pass filtered, bipolar esophageal lead 7-5 (detail 5) shows diaphragm EMG during 
the inspiration phase that triggers the mechanical answer seen as baseline wander 
(approximation 10).  
B) Peristaltic activity is recorded from the most proximal (8) to the most distal esophageal 
lead (1) during oral feeding. 
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Tracking 

Even after discharge from the NICU, former preterm infants remain a high-risk population. 
They are, among others, known to be at risk for re-hospitalization and SIDS. Poor respiratory 
control16, 63 and simplified lung structure due to interrupted maturation of the lung periphery62 
are two of the discussed possible reasons for persistence of the elevated risk of respiratory 
complications in former preterm infants. Risk stratification on an individual level, based on 
objective parameters, would be very desirable.  
Although the description of vital signs, using distinct mathematical tools, has become more 
prominent in the last years, there is not enough knowledge about biological maturation and 
development of an individual patient. Tracking is well known for variables as growth, and 
weight gain in children, but has also been described in physiological parameters such as 
individual breathing pattern137.  In this review of Benchetrit the persistence of a respiratory 
personality, the way each subject has its own, specific way of breathing, is described under 
diverse conditions137. 
When a child leaves its percentile range in a standardized growth chart, this is an immediate 
indication for pediatricians to systematically assess variables that could influence growth. If 
changes in mathematically described vital functions, comparable to crossing of percentiles in 
a growth chart, could be a marker of improvement or deterioration of a physiological system 
in an individual patient, is unknown.  Therefore, a better understanding of tracking in 
physiological systems is very important to improve our understanding and support patients 
with impaired autonomic control. In a first step, one would have to build a set of values 
representing a target population. This could be done by using the open databases, as for 
example Physionet, containing large datasets70. With this normative data one could assess if 
single markers of physiological systems can be tracked over time. In a seconds step, one could 
describe alterations from physiological tracking in case of resolution of autonomic 
dysregulation or newly acquired problems in autonomic control for example upon an acute 
disease.  
If characteristics of temperature regulation, HRV or swallow-breath coordination during their 
first days of life or maybe sigh-induced changes in breathing pattern shortly after due date 
could be useful for the identification of high-risk patients within the group of very preterm 
infants, is unknown. This would have to be tested in a large prospective, longitudinal study 
including long-term follow-up of patients, ideally with a normative dataset as comparison. A 
possible study design could include repetitive measurements of physiological parameters 
during the infants first days of life and in the context of later hospital visits due to routine 
assessments (e.g. immunization or neurodevelopmental follow up).  
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*************************************************************************** 

 
“The important thing is not to stop questioning.  

Curiosity has its own reason for existing.“ 
 

- Albert Einstein – 
 

*************************************************************************** 
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