
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier.com/locate/yjsbi

Technical Note

MRCZ – A file format for cryo-TEM data with fast compression

Robert A. McLeoda,⁎, Ricardo Diogo Righettoa, Andy Stewartb, Henning Stahlberga

a Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
bDepartment of Physics, University of Limerick, Limerick, Ireland

A R T I C L E I N F O

Keywords:
Lossless compression
Data management
File archiving

A B S T R A C T

The introduction of fast CMOS detectors is moving the field of transmission electron microscopy into the
computer science field of big data. Automated data pipelines control the instrument and initial processing steps
which imposes more onerous data transfer and archiving requirements. Here we conduct a technical demon-
stration whereby storage and read/write times are improved 10× at a dose rate of 1 e−/pix/frame for data from
a Gatan K2 direct-detection device by combination of integer decimation and lossless compression. The example
project is hosted at github.com/em-MRCZ and released under the BSD license.

1. Introduction

The introduction of CMOS-based direct electron detectors for
transmission electron microscopy greatly improved the duty cycle to
nearly 100% compared to traditional slow-scan CCD detectors. The
high duty-cycle allows for nearly continuous read-out, such that dose
fractionation has become ubiquitous as a means to record many-frame
micrograph stacks in-place of traditional 2D images. The addition of a
time-dimension, plus the large pixel counts of CMOS detectors, greatly
increases both archival and data transfer requirements and associated
costs to a laboratory. Many laboratories have a 1 Gbit/s Ethernet con-
nection from their microscope to their computing center, which implies
a data transfer rate of around 60–90MB/s under typical conditions. If
the microscope is run with automated data collection, such as SerialEM
(Mastronarde, 2005), then the so-called ‘movie’ may be 5–20 GB and
may be saved every few minutes, or even faster. In such a case, it may
not be possible to transfer the data fast enough to keep up with col-
lection. Costs for storing data on spinning (hard disk) storage, for ex-
ample through the use of Google Cloud (Google Cloud Storage Pricing,
accessed 2017), is typically US$100–200/TB/year. A cryo-TEM la-
boratory producing 200 TB of data per year is potentially faced with an
annual data storage cost on the same order of magnitude as a post-
doctoral fellow salary.

One approach whereby considerable archival savings may be rea-
lized is by decimation of the data from floating-point format to integer-
format. Nominally, the analog-to-digital converted signal from the de-
tector is typically output as an integer. Due to data processing re-
quirements, it is often necessary to convert the integer data to 32-bit

floating point format. The most common initial step that results in
decimal data is the application of a gain reference, where the bias of the
detector white values is removed. In-addition, conversion to floating-
point is often inevitable due to operations such as sub-pixel shifting in
drift correction (Li et al., 2013a,b; Grant and Grigorieff, 2015; McLeod
et al., 2016; Zheng et al. 2017), or image filtration. If instead the mi-
crographs are stored as 8-bit integers, with the gain reference (and
potentially other operations) stored in meta-data, then a 4× reduction
in storage and transfer requirements is realized. In this case, the gain
reference and other bias corrections must be performed at the com-
puting center, rather than using the software provided by the direct
electron detector vendor. Since vendor gain normalization techniques
are often proprietary and secret, there is a need for open-source
equivalent solutions (Afanasyev et al., 2015).

Further improvements in data reduction can be realized by modern
high-speed lossless compression codes. Lossless compression methods
operate on the basis of repeated patterns in the data. Nominally, purely-
random numbers are incompressible. However counting electron data is
Poisson distributed, such that its range of pixel histogram covers on
only a limited range of values. In such a regime substantial compression
ratios may be achieved. Therefore due to the repetition of intensity
values, integer-format data can be compressed much more efficiently
than gain-normalized floating-point data. Generally when comparing
compression algorithms one is interested in the compression rate (in
units of megabytes/s) and the compression ratio (in percent). Modern
compression codecs such as Z-standard (github.com/facebook/zstd,
accessed 03/2017) or LZ4 (github.com/lz4/lz4, accessed 03/2017) are
designed for efficient multi-threaded operation on modern, parallel

https://doi.org/10.1016/j.jsb.2017.11.012
Received 24 March 2017; Received in revised form 20 November 2017; Accepted 22 November 2017

⁎ Corresponding author at: C-CINA, Biozentrum, University of Basel, Switzerland.
E-mail address: robbmcleod@gmail.com (R.A. McLeod).

Abbreviations: Blosc, blocked, shuffle, compress library; CMOS, complementary metal-oxide semiconductor; float32, floating-point 32-bit computer data, ∼6 significant figures; FPGA,
Field-Gate Programmable Arrays; GB, Gigabyte (230 bytes); Gb, Gigabit, network (109 bits); MB, Megabyte (220 bytes); uint8, unsigned 8-bit integer computer data, range 0255

Journal of Structural Biology 201 (2018) 252–257

Available online 23 November 2017
1047-8477/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/158569536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/10478477
https://www.elsevier.com/locate/yjsbi
https://doi.org/10.1016/j.jsb.2017.11.012
https://doi.org/10.1016/j.jsb.2017.11.012
mailto:robbmcleod@gmail.com
https://doi.org/10.1016/j.jsb.2017.11.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsb.2017.11.012&domain=pdf

CPUs and can compress on the order of 1–2 GB/s/core, such that the
time for read/write/transfer plus compression operations is greatly
faster than when operating on uncompressed data.

We demonstrate here combining decimation to 8-bit integer with
lossless compression. We utilize an extension of the venerable MRC
format (Cheng et al. 2015; CCP-EM), where meta-compression is im-
plemented which implies the combination of lossless compression and
lossless filtering to improve compressibility as well as execution with
efficient blocked and multi-threaded processing. We propose using
common serialization tools to embed metadata in the MRC2014 ex-
tended header, and compare JSON (ECMA-404, 2013) and Message
Pack (msgpack.org, accessed 03/2017).

2. The MRCZ format

The MRC format was introduced by Crowther et al. (1996) as an
extension of the CCP4 format. It features a 1024-byte metadata header,
followed by binary image data with provisions for 3-dimensions. The
supported data types are byte (int8), short (int16), or single-precision
floating-point (float32). The simplicity of the MRC format, and its ease
of implementation, is a likely reason contributing to its popularity.
However, the MRC format suffers from some drawbacks. There is no
one standard format for MRC, in-spite of many efforts to define one
(Cheng et al., 2015). Furthermore, it cannot compress the data, so it is
inefficient from an archival and transmission/distributed computing
perspective.

An alternative public domain archival format for electron micro-
scopy is HDF5. However, HDF5 is a “heavyweight” library consisting
of∼350′000 of lines of code and 150-pages of specification (HDF
Group, accessed 2017), which makes integration in existing projects
difficult. HDF5 has previously demonstrated compression filters in-
cluding blosc and an additional LZ4-based filter funded by Dectris
(Baden, CH) (Nexus format, accessed 09/2017).

Here we introduce an evolution of the MRC format, MRCZ, with
additional functionalities that have become needed in the era of ‘Big
Data’ in electron microscopy. We provide sample libraries for MRCZ in
C/99 and also Python 2.7/3.5, as well as a command-line utility that
may be used to compress/decompress MRC files so that legacy software
can read the output. To facilitate the introduction of MRCZ into other
software packages, we have kept the implementations as small as pos-
sible (currently c-mrcz is < 1000 lines of code).

The MRCZ library package leverages an open-source, meta-com-
pression library, blosc (blocking, shuffle, compression), principally
written by Francesc Alted and Valentin Haenel (Haenel, 2014, and
Alted, accessed 03/2017). Blosc combines multi-threaded compression
(currently six different codecs are available) with blocking, such that
each operation fits in CPU cache (typically optimized to level 2 cache),
and filter operations (namely shuffle and bitshuffle). In testing on cryo-
TEM data blosc achieved > GB s10 / compression rates on a modern CPU,
and furthermore achieves superior compression ratios to codecs such as
LZW (Welch, 1984) implemented in TIFF. The performance gain is
sufficient such that loading a compressed image stack from disk and
applying post-processing gain normalization and outlier pixel filtering
to it is faster than loading an uncompressed but pre-processed floating-
point result. The Python version of the library also supports asynchro-
nous file writing and reading, where the file is read or written in a
background thread, freeing the interpreter for other tasks.

Here results for three compressors are compared for operation on
cryo-EM data. Other codecs were tested, including the new Lizard codec
(released in March 2017), but not found to have performance ad-
vantages for the test data:

1. lz4 is the fastest compressor, with the worst compression ratio,
making it ideal for live situations where distributing the data from a
master computer is the priority.

2. zStandard (zstd): achieves the highest compression ratio and has the

fastest decompression, making it the best choice for archiving. On
the lowest compression level it maintains good compression rates.

3. Zlib is a very common library that has been accelerated by blosc.
Zlib provides a valuable baseline for comparison, although blosc
compression rate with zlib exceeds that of tools such as pigz.

2.1. Blocked compression

Roughly around 2005, further increases in CPU clock-frequencies
were slowed due to heat generation limitations. Further performance
improvements where then realized by packing parallel arithmetic and
logic cores per chip. Most common compression algorithms were de-
signed before the era of parallel processing.

Operations in image processing are often relatively simple and
executed on the full-frame consisting of many million elements. With
the larger number of cores available on modern CPU, often program
execution rate is limited not by processing power but the amount of
memory bandwidth available to feed data to the cores. Typically
fetching data from random-access memory (RAM) is an order of mag-
nitude slower than the cache found on the CPU die. Therefore if the
data can be cut into blocks that fit into the lower-level caches large
speed improvements are often observed. Parallel algorithms can be
made to work efficiently in the case where a computational task can be
cut into blocks, and each block can be dispatched to an individual core,
and run through an algorithm to completion, as illustrated in Fig. 1a.
Parallel algorithms should also avoid branching instructions (e.g. con-
ditional if statements), as modern processors request instructions from
memory in-advance, and a wrong guess can leave the process idle
waiting for memory. For example, zStandard also makes use an of a
faster and more effective method for evaluating entropy, known as
Asymmetric Numeral System (ANS), than classic compression algo-
rithms. ANS significantly improves compression ratio in data with large
degrees of randomness (Duda, 2013; Duda et al., 2015).

In blocking strategies, data is conceptually separated into chunks
and blocks, with chunks being senior to blocks. In the MRCZ format,
each chunk is a single image frame (∼16 million pixels for 4 k detec-
tors, or∼64 million for 8 k), and each chunk is broken into numerous
blocks, with a default block size of 1MB. Such a block size provides a
balanced trade-off between compression rate and the ratio between
compressed and uncompressed data. For image stacks, the highest
compression ratio would likely be in the time-axis, but this is the least
convenient axis for chunking, as it would make retrieving individual
frames or slices of frames impossible.

2.2. Bit-decimation by shuffling

Direct electron detectors may be operated in counting mode
whereby the ratio of dose rate to detector cycle rate is low enough that
two electrons landing in the same pixel on a rapidly cycling detector is
statistically rare. The order of magnitude of the usable dose rate before
mis-counting is on the order of magnitude of −e pix frame1 / / per Hz100
cycle rate of the detector. Typically drift correction is performed on the
time scale of a second, so for the K2 Summit (Gatan, Pleasanton, CA)
operating at 400 Hz the expected dose per pixel in an integrated frame
is −̃1 8. This implies that even a single byte (uint8) to store each pixel is
too large of a data container, as it can hold data values up to 255. David
Mastronarde implemented in SerialEM and IMOD (Mastronarde, 2005) a
new data type for MRC that incorporates a decimation step where each
pixel is packed into 4-bits, leading to maximum per-pixel values of 16
before clipping occurs, thereby providing an effective compression ratio
of 2.0 compared to uint8. The disadvantage of 4-bit packed data is that
it is not a hardware data type, such that two pixels are actually packed
into an 8-bit integer. Whenever the data is loaded into memory for
processing, it must be unpacked with bit-shifting operations, which is
computationally not free. There is also the risk of intensity-value clip-
ping.

R.A. McLeod et al. Journal of Structural Biology 201 (2018) 252–257

253

Blosc optionally makes use of a filter step, of which there are two
currently implemented, shuffle and bitshuffle. Shuffle re-arranges each
pixel by its most significant byte to least, whereas bitshuffle performs
the same task on a bit-level, illustrated in Fig. 1b. The shuffle-style
filters are highly efficient when the underlying data has a narrow his-
togram, such that the most-significant digit in a pixel has more com-
monality with other pixels’ most significant digit than its own least-
significant digit. For example, if an image saved as uint8 type contains
mostly zeros in its most significant digits, they will be bit-shuffled into a
long-series of zeros, which is trivially compressible. As such, bitshuffle
effectively performs optimized data decimation without any risk of
clipping values. Shuffling is also effective for floating-point compres-
sion, as the sign bit and the exponent are compressible whereas the
mantissa usually does not contain repeated values and therefore it is not
especially compressible. The mantissa can be made more compressible
by rounding to some significant bits, for example the nearest 0.001 of
an electron, but this generates round-off error.

2.3. Benchmarks

Benchmarks for synthetic random Poisson data were conducted for
images covering a range of electron dose levels consisting of [0.1, 0.25,
0.5, 1.0, 1.5, 2.0, 4.0] electron counts/pixel. The free parameters ex-
amined consist of: compression codec, block size, threads, and com-
pression level were all evaluated. Here the term ‘compression level’
refers to the degree of computing effort the algorithm will use to
achieve higher compression ratios. The machine specification for
benchmark results is as follows:

Two Intel® Xeon® E5-2680 v3 CPUs operating with Hyperthreading®
and Turboboost®:

• No. of physical cores: ×2 12
• Average clock rate: 2.9 GHz (spec: 2.4 GHz)

• L1 cache size: 32 KB per core

• L2 cache size: 256 KB per core

• L3 cache size: 30,720 KB per processor

The size of the L2 cache generally has a large impact on the com-
pression rate as a function of the blocksize used by blosc. For file I/O the
RAID0 hard drive used was benchmarked to have a read/write rate
of∼300MB/s, which is comparable to parallel-file systems in general
use in cluster environments.

Example benchmarks on cryo-TEM image stacks are shown in
Table 1 for a variety of blosc libraries as well as external compression
tools. Uint4 refers to the SerialEM practice of interlaced packing of two
pixels into a single-byte. JPEG2000 and uint4 were not multi-threaded;
all other operations used 48 threads. Pigz, lbzip2 and pxz are command-
line utilities and hence include a read and write. Indicated times are
averages over 20 read/writes. To achieve repeatable result, the disk was
flushed between each operation, with the Linux command:

echo3|sudotee/proc/sys/vm/dropcaches

The gains in compression ratio by using more expensive algorithm
such as Burrows-Wheeler (bzip2) or LZMA2 (xz) are quite minimal with
cryo-TEM data, likely due to the high degree of underlying randomness
(or entropy). Lbzip2 is the clear winner among command-line com-
pression tools, as it still is faster than reading or writing uncompressed
data and achieves the second-best compression ratio. Blosc accelerates
the read/write by a factor of 3–6x over that of the uncompressed data.

Figures for benchmark results are shown in Fig. 2. Best compression
ratio as a function of dose rate is shown in Fig. 2a. An important con-
sequence of compressing Poisson-like data is that compression ratios

Fig. 1. (a) Each MRC volume is chunked, such that each z-axis slice is compressed separately. Then in blosc each chunk is further sliced into blocks, which are then dispatched to
individual CPU cores for compression. Decompression works in reverse. (b) Normally pixel values are stored in memory contiguously (top row). With bit-shuffling (on little endian
systems) the most significant bits (7 index) are stored adjacently, and similarly for the least-significant bits (0 index). This improves compressibility and as a result both compression ratio
and compression rate are improved.

R.A. McLeod et al. Journal of Structural Biology 201 (2018) 252–257

254

increase substantially with sparseness. I.e. compressed size scales sub-
linearly with decreasing dose fractions. For example, a cryo-tomo-
graphy projection of 10 frames of 4 k×4 k data recorded at a dose rate
of −e pix frame0.1 / / would have a compressed size of 13MB, compared to

670MB for its uncompressed, gain-normalized image stack. Such
compression therefore enables finer-dose fractionation for advanced
drift correction algorithms without imposing onerous storage require-
ments. (See Fig. 3)

With regards to compression level, shown in Fig. 2b, which is a
reflection on the effort level of the compressor, generally zlib saturates
at 4–5, whereas zstd saturates at 2–3, and lz4 sees little disadvantage to
running at its highest compression level. Good compromises for pro-
cessing are compression level 1 for zstd and zlib and for archiving 3 for
zstd and 5 for zlib. Lz4 can operate with compression levels of 9 for real-
time applications but it is not as suitable for archiving due to the lower
compression ratios. The bitshuffle filter is important in this situation and
contributes heavily to the quickest compression level of 1 being the best
compromise between rate and ratio for zstd, in that it uses a priori
knowledge about the structure of the pixel values to pre-align the data
into its most compressible order.

In blosc the scaling with threads is roughly N1/0.7 threads for
⩾N 2threads , up to the number of physical cores. When hyper-threading

is enabled an oversubscription of approximately ≈N N1.5threads cores gives
the highest absolute compression rate.

Cache sizes are important in that they impose thresholds on data
sizes, shown in Fig. 1d. blosc chops the data into blocks, and MRCZ cuts
a volume into single z-axis slices called chunks. For example a 4 k×4 k

Table 1
Comparison of read/write times for 60×3838×3710 cryo-TEM image stacks.

Codec/data
type/
compression
level

Compressed
Size (MB)

Compression
Ratio

Compression-
Write Time
(s)

Decompression-
Read Time (s)

None/int8 854 1.00 3.40 3.21
uint4 427 0.50 2.14 6.05
blosc-lz4/

int8/9
340 0.40 0.50 0.96

blosc-zstd/
int8/1

320 0.37 0.76 1.10

blosc-zstd//
int8/5

319 0.37 0.86 1.09

JPEG2000/
uint8

317 0.37 106.8 N/A

pigz/int8/1 367 0.43 0.86 4.74
lbzip2/int8/9 314 0.37 3.17 2.23
pxz/int8/6 305 0.36 47.5 31.8

Fig. 2. Performance for various compression codecs found in blosc. (a) The dependence of compression ratio varies strongly with the dose. Here zstd has the best compression ratio. (b)
The dependence of the compression level on the compression ratio is mild, such that for zstd and zlib typically 1 is used. (c) Scaling on the compression rate with the number of parallel
computing threads employed. The machine used has ×2 12 physical cores, indicated with the dashed line. The area to the right of the dashed line indicates the region in which Intel
Hyperthreading® is active. (d) Dependence of the compression ratio and rate on the blocksize used, which is the most critical parameter examined. Typically a blocksize scaled to fit into
L2 cache (kB256) is optimal for speed, but the compression ratio benefits from a larger blocksize (⩾ kB512).

R.A. McLeod et al. Journal of Structural Biology 201 (2018) 252–257

255

image chunk may be cut into 64 separate 256 kB blocks. If the block
size fits into the L2 cache (⩽ kB256) then compression rate advantage is
expected, and this is evident. However, testing on simulated Poisson
data shows that larger blocks (which result in larger dictionaries in the
compression algorithm) achieve a higher compression ratio. Similarly
for chunking, if the chunk size is less than the L3 cache (⩽ MB30) then
only one memory call is sufficient for the entire chunk.

The optimal block size for compression ratio is expected to be when
each block holds one significant bit each. So for 4 k× 4 k×8-bit
images the ideal block size would be = MB16/8 2 , whereas the satura-
tion in compression ratio actually appears at 1MB.

2.4. Enabling electron counting in remote computers with image
compression

Direct electron detectors can generate data at very high rates that
are difficult to continuously write to storage. Some versions of the K2,
such as the In-Situ (IS) model, permit access to the full data rate of at
3838×3710×400Hz×uint8, or 5.3 GB/s. Such systems require a
large quantity of random-access memory to record the data in bursts.
The K2 Summit commonly used in cryo-TEM counts at 400 Hz through

the use of Field-Gate Programmable Arrays (FPGA) but the maximum
rate available to the user is 40 Hz, in large part due to the data rate. This
is unfortunate as it does not permit experimentation with alternative
subpixel detection algorithms that might better localize the impact of
the primary electron in the detector layer.

However the multi-threaded meta-compression discussed above
may be able to alleviate the data flow problem. A master node could,
using zstd (or failing that, lz4) as a compression codec, compress the
raw data from a K2 IS on-the-fly and dispatch it to worker computers for
counting, thus enabling counting without a FPGA or similar hardware
counting solution. The compression ratio achievable would depend
heavily on thresholding of low intensity values but could be in the
range of 50:1.

3. Extended metadata in MRCZ

File formats require complex, nested metadata to be encoded into a
stream of bytes. The conversion of metadata to bytes is called serial-
ization. In order to achieve a high level of portability in the future for
the metadata, we advise use of a well-established serialization standard.
Here two serialization standards are compared, JSON (JavaScript
Object Notation), which is the most ubiquitous serialization method in
the world, and Message Pack (msgpack.org and pypi.python.org/pypi/
msgpack-python), a binary serialization tool with a similar language
structure to JSON. Libraries are available for both for many different
programming languages, with the exception of Matlab and Fortran for
Message Pack. Here two high-speed JSON encoders available for C and
Python are profiled, RapidJSON (rapidjson.org and pypi.python.org/
pypi/pyrapidjson) and UltraJSON (github.com/esnme/ujson4c and
pypi.python.org/pypi/ujson).

The three serialization methods were tested on a sample of 25MB of
complicated JSON data. All three methods produce more-or-less similar
results in terms of read/write times to disk, as shown in Fig. 2a.
Compression does not speed nor slow read/write times, except for
Message Pack read rates. Lz4 reduces the data size on disk to roughly
one-half, and zstd to roughly one-third, of the uncompressed size.
Message Pack was tested with Unicode-encoding enabled to make it
equivalent to the JSON encoders, which slows its read/write time
by∼20%.

4. Conclusion

The introduction of fast, large-pixel count direct electron detectors
has moved the field of electron microscopy inside the domain of “Big
Data” in terms of data processing and storage requirements. Here an
extension of the MRC file format is demonstrated that permits on-the-fly
data compression to lessen both transmission and storage requirements,
using the meta-compression library blosc. Blosc is well suited as a library
for Big Data purposes because it does not explicitly endorse any parti-
cular algorithm and intends to support new compression methods as
they are developed. Development of a blosc2 standard, with additional
features, is currently underway. Major new expected features include
principally: first, a super-chunk header, that records the position of
individual image chunks in the file, and second, buffered output so the
file can be written to disk as it is compressed, lessening memory con-
sumption. Also blosc is especially targeted towards high-speed com-
pression codecs. With high-speed compression using the zStandard
codec, file input-output rates are accelerated and archival storage re-
quirements are reduced.

With the use of compression, sparse data can be compressed to very
high ratios. Hence, data can be recorded in smaller dose fractions with a
less-than-linear increase in data size. For very small dose fraction ap-
plications, such as cryo-electron tomography, electron crystallography,
or software electron counting schemes, compression can reduce data
transmission and storage requirements by 10–50x.

Fig. 3. Performance evaluation of different serialization methods for meta-data paired
with compression. (a) Read and write times for the profiled serialization methods on a
sample of 25MB of JSON-like text metadata data, when used with and without blosc
compression. (b) Size on disk of the metadata.

R.A. McLeod et al. Journal of Structural Biology 201 (2018) 252–257

256

Acknowledgements

The authors would like to thank the authors of the blosc library,
Francesc Alted and Valentin Haenel, for their work on the library and
feedback during our testing of MRCZ. This work was supported by the
Swiss National Science Foundation (grant 205320_166164), and the
NCCR TransCure program.

References

Afanasyev, P., Ravelli, R.B.G., Matadeen, R., De Carlo, S., van Duinen, G., Alewijnse, B.,
Peters, P.J., Abrahams, J.-P., Portugal, R.V., Schatz, M., van Heel, M., 2015. A pos-
teriori correction of camera characteristics from large image data sets. Sci. Rep. 5.

Alted, K. 2014. Blosc, an extremely fast, multi-threaded, meta-compressor library [WWW
Document]. Blosc Main Page. URL http://www.blosc.org/index.html (accessed 3.
13.17).

MRC/CCP4 file format for images and volume [WWW Document]. n.d. CCP-EM, URL
http://www.ccpem.ac.uk/mrc_format/mrc_format.php (accessed 7.27.17).

Cheng, A., Henderson, R., Mastronarde, D., Ludtke, S.J., Schoenmakers, R.H.M., Short, J.,
Marabini, R., Dallakyan, S., Agard, D., Winn, M., 2015. MRC2014: extensions to the
MRC format header for electron cryo-microscopy and tomography. J. Struct. Biol.
Rec. Adv. Detector Technol. Appl. Mol. TEM 192, 146–150. http://dx.doi.org/10.
1016/j.jsb.2015.04.002.

Crowther, R.A., Henderson, R., Smith, J.M., 1996. MRC image processing programs. J.
Struct. Biol. 116, 9–16. http://dx.doi.org/10.1006/jsbi.1996.0003.

Duda, J., 2013. Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding. arXiv:1311.2540 [cs,
math].

Duda, J., Tahboub, K., Gadgil, N.J., Delp, E.J., 2015. The use of asymmetric numeral
systems as an accurate replacement for Huffman coding. In: 2015 Picture Coding
Symposium (PCS). Presented at the 2015 Picture Coding Symposium (PCS), pp.
65–69. doi:10.1109/PCS.2015.7170048.

Standard ECMA-404 [WWW Document], n.d. URL http://www.ecma-international.org/
publications/standards/Ecma-404.htm (accessed 3.11.17).

Grant, T., Grigorieff, N., 2015. Measuring the optimal exposure for single particle cryo-
EM using a 2.6 Å reconstruction of rotavirus VP6. eLife Sciences e06980. doi:10.
7554/eLife.06980.

Google Cloud Storage Pricing | Cloud Storage Documentation [WWW Document], n.d.
Google Cloud Platform. URL https://cloud.google.com/storage/pricing (accessed 3.
11.17).

Haenel, V., 2014. Bloscpack: a compressed lightweight serialization format for numerical
data. arXiv:1404.6383 [cs].

HDF5 File Format Specification Version 3.0 [WWW Document], n.d. URL https://support.
hdfgroup.org/HDF5/doc/H5.format.html (accessed 1.3.17).

Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A.,
Cheng, Y., 2013a. Electron counting and beam-induced motion correction enable
near-atomic-resolution single-particle cryo-EM. Nat. Meth. 10, 584–590. http://dx.
doi.org/10.1038/nmeth.2472.

Li, X., Zheng, S.Q., Egami, K., Agard, D.A., Cheng, Y., 2013b. Influence of electron dose
rate on electron counting images recorded with the K2 camera. J. Struct. Biol. 184,
251–260. http://dx.doi.org/10.1016/j.jsb.2013.08.005.

lz4/lz4 [WWW Document], n.d. GitHub. URL https://github.com/lz4/lz4 (accessed 3.
13.17).

Mastronarde, D.N., 2005. Automated electron microscope tomography using robust
prediction of specimen movements. J. Struct. Biol. 152, 36–51. http://dx.doi.org/10.
1016/j.jsb.2005.07.007.

McLeod, R.A., Kowal, J., Ringler, P., Stahlberg, H., 2016. Robust image alignment for
cryogenic transmission electron microscopy. J. Struct. Biol. http://dx.doi.org/10.
1016/j.jsb.2016.12.006.

MessagePack: It’s like JSON. but fast and small. [WWW Document], n.d. URL http://
msgpack.org/index.html (accessed 3.11.17).

Nexus Format/HDF5-External-Filter-Plugins [WWW Document], n.d. URL https://github.
com/nexusformat/HDF5-External-Filter-Plugins (accessed 13.9.17).

Welch, T.A., 1984. A Technique for high-performance data compression. Computer 17,
8–19. http://dx.doi.org/10.1109/MC.1984.1659158.

Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., Agard, D.A., 2017.
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-
electron microscopy. Nat. Meth. Adv. Online Publ. http://dx.doi.org/10.1038/
nmeth.4193.

facebook/zstd [WWW Document], n.d. GitHub. URL https://github.com/facebook/zstd
(accessed 3.13.17).

R.A. McLeod et al. Journal of Structural Biology 201 (2018) 252–257

257

http://refhub.elsevier.com/S1047-8477(17)30208-3/h0005
http://refhub.elsevier.com/S1047-8477(17)30208-3/h0005
http://refhub.elsevier.com/S1047-8477(17)30208-3/h0005
http://dx.doi.org/10.1016/j.jsb.2015.04.002
http://dx.doi.org/10.1016/j.jsb.2015.04.002
http://dx.doi.org/10.1006/jsbi.1996.0003
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2005.07.007
http://dx.doi.org/10.1016/j.jsb.2005.07.007
http://dx.doi.org/10.1016/j.jsb.2016.12.006
http://dx.doi.org/10.1016/j.jsb.2016.12.006
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1038/nmeth.4193
http://dx.doi.org/10.1038/nmeth.4193

	MRCZ – A file format for cryo-TEM data with fast compression
	Introduction
	The MRCZ format
	Blocked compression
	Bit-decimation by shuffling
	Benchmarks
	Enabling electron counting in remote computers with image compression

	Extended metadata in MRCZ
	Conclusion
	Acknowledgements
	References

