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Exhaustive search for epistatic 
effects on the human methylome
Tobias Egli1,2, Vanja Vukojevic1,2,4, Thierry Sengstag   6,7, Martin Jacquot6, Rubén Cabezón 6, 
David Coynel   2,5, Virginie Freytag1,2, Angela Heck1,2,3, Christian Vogler   1,2,3, Dominique J.-F. 
de Quervain2,3,5, Andreas Papassotiropoulos1,2,3,4 & Annette Milnik   1,2,3

Studies assessing the existence and magnitude of epistatic effects on complex human traits provide 
inconclusive results. The study of such effects is complicated by considerable increase in computational 
burden, model complexity, and model uncertainty, which in concert decrease model stability. An 
additional source introducing significant uncertainty with regard to the detection of robust epistasis 
is the biological distance between the genetic variation and the trait under study. Here we studied 
CpG methylation, a genetically complex molecular trait that is particularly close to genomic variation, 
and performed an exhaustive search for two-locus epistatic effects on the CpG-methylation signal 
in two cohorts of healthy young subjects. We detected robust epistatic effects for a small number of 
CpGs (N = 404). Our results indicate that epistatic effects explain only a minor part of variation in DNA-
CpG methylation. Interestingly, these CpGs were more likely to be associated with gene-expression 
of nearby genes, as also shown by their overrepresentation in DNase I hypersensitivity sites and 
underrepresentation in CpG islands. Finally, gene ontology analysis showed a significant enrichment of 
these CpGs in pathways related to HPV-infection and cancer.

Statistical epistasis describes a higher-order dependency in which the effect of a single-locus genotype depends on 
the genotype at another locus, a phenomenon also called statistical interaction1. There is hitherto little evidence 
for robust and replicable epistatic effects on complex human traits1, although epistasis is often used as a potential 
explanation for missing heritability or for the instability of main effects in genetic association studies2–4. It has 
been suggested that higher-order dependencies will explain only a minor part of complex phenotypic variation, 
in comparison to independent additive genetic effects5,6.

Genetic variation (e.g. single nucleotide polymorphisms, SNPs) and DNA-CpG methylation can be investi-
gated at high resolution and throughput, which allows a hypothesis-free and exhaustive screening for epistatic 
effects on a genome-wide scale. However, the study of such epistatic effects is complicated by considerable 
increase in computational burden7,8, model complexity, and model uncertainty, which in concert decrease model 
stability9–11. The success of these association analyses crucially relies on the expected effect size, a suitable sample 
size and the availability of a well-matched replication study4,7.

For the majority of complex human traits, such as neuropsychiatric diseases, only small effect sizes can be 
expected for single genomic loci12–15. Hence, such complex human traits and diseases16 are not well amenable to 
screening for epistatic effects. Gene expression also represents a genetically complex trait, however it is functionally 
closely related to the DNA sequence variation17. Two-locus epistatic effects have been reported for gene expres-
sion1,18,19, although part of these effects might be due to spurious associations mediated by main effects of SNPs20.

To further investigate the relevance of two-locus epistatic effects on complex human traits, we focused on 
the epigenome, a complex molecular phenotype under close genetic control21–24, and here more specifically on 
DNA-CpG methylation, measured with the Infinium HumanMethylation450 BeadChip Kit (Illumina 450 K), 
with DNA derived from blood in two independent samples. We performed an exhaustive search of epistatic 
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effects by applying several screening and replication steps and subsequent model-confirmation. Additionally, 
we performed a search for epistatic effects based on SNPs proximal to CpGs, which are exhibiting main effects.

Results
We used data from two independent samples of healthy young adults from the general population (discovery 
sample N = 533, replication sample N = 319; see Table 1; DNA was derived from blood, see Methods)25. With 
these sample-sizes we were adequately powered to detect and replicate medium to strong effect sizes in an 
exhaustive search (see Fig. 1). Both samples have a comparable genetic (see Supplementary Fig. S1) and phe-
notypic background (see Table 1). SNP-data (N = 517,504 SNPs) as well as CpG-data (N = 395,431 CpGs; see 
Supplementary Figs S2 and S3 for diagnostic plots of the data) was selected to reach high quality metrics in both 
samples (see Methods).

Discovery phase of the exhaustive search.  In the discovery sample, we applied a two-step approach 
to first identify and then confirm interaction effects. First, based on a pruned set of SNPs (N = 192,955 SNPs) 
with sufficient minor allele frequency (see Methods), we performed an exhaustive screening (N = 7.36 × 1015 
interaction analyses) with EpiGPU26. EpiGPU is optimized for high-speed genome-wide interaction analyses, but 

Discovery sample Replication sample

All subjects data 
freeze 2013-08

Selected 
subjects

All subjects data 
freeze 2014-04

Selected 
subjects

Sample size N 1174 533 1935 319

Sex female 59.8% 58.3% 66.1% 69.6%

Blood sampled 63.7% 100% 36.1% 100%

Affymetrix 6.0 data 84.3% 100% 89.9% 100%

Genetic outlier 6.5% 0% 7.8% 0%

Age at main investigation 22 (18–35) 22 (18–35) 23 (18–35) 23 (18–35)

Age at blood sampling 23 (18–36) 23 (18–36) 24 (18–39) 24 (18–36)

Days between main investigation and blood drawing 336 (1–1392) 350 (2–1385) 642 (1–1992) 380 (1–954)

Smoking behavior at main investigation 1.6 (1–5) 1.6 (1–5) 1.8 (1–5) 1.7 (1–5)

Table 1.  Sample description. Phenotypic information was collected at the time-point of the main investigation 
(see Methods). Subjects were later re-invited for an additional blood sampling to investigate e.g. blood-related 
methylation and expression values. Reported are the numbers from the data freezes used to select subjects 
for the blood-DNA-methylation study (discovery sample 2013-08; replication sample 2014-04). Quantitative 
variables are reported as mean (min - max). Smoking behavior was measured on a 5-point Likert-scale ranging 
from 1 (never) up to 5 (20 cigarettes per day).

Figure 1.  Power analysis exhaustive search for epistatic effects. In (a) we adjusted alpha to reach genome-wide 
and methylome-wide Bonferroni correction (discovery phase, p = 6.8 × 10−18). In (b) we adjusted alpha to reach 
a per-CpG Bonferroni correction threshold (replication phase, p = 3.8 × 10−6). The legends depict the variance 
that can be explained (in percentage) for different effect sizes (rmin = 0.03, 0.1%; rmax = 0.55, 30%). The vertical 
gray bars correspond to a sample size of N = 533 (discovery sample) and N = 319 (replication sample).
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uses a simplified parameterization of the interaction term (see Methods). We filtered SNP-pairs that fulfill basic 
criteria with respect to the number of groups (all 3 × 3 genotype combinations existing) and estimated F-statistic 
of their interaction term (Fint > 22, which was close to Bonferroni correction). Analyses that survived this filter-
ing step (N = 9.54 × 109) entered a recalculation phase, in which we reproduced the interaction F-statistic with 
a linear model approach featuring an increased accuracy at the cost of a higher computational burden. Only 
analyses that survived genome-wide Bonferroni-correction (pint < 6.8 × 10−18, correcting for all 7.36 × 1015 initial 
interaction analyses) after recalculation and in which the minimal group size was above 3 in both the discov-
ery and replication sample entered the replication phase (N = 8,608,567 analyses; N = 13,112 unique CpGs; see 
Table 2). To rule out that the above described two-step procedure is overly conservative, we additionally applied 
the Bonferroni-correction directly to the p-value derived from the original EpiGPU analysis, which resulted in a 
nearly identical outcome: N = 8,658,122 analyses survived based on N = 13,214 unique CpGs.

Replication phase of the exhaustive search.  Replication was also done in two steps. Firstly, we selected 
interaction effects that survived a per-CpG Bonferroni-correction in the replication sample (i.e. correcting for at 
least 13,112 tests; see Methods; pint < 3.8 × 10−6; N = 4,816 analyses survived). Because of the unequal distribution 
of subjects in the 9 combined genotype-groups, assignment of few subjects with phenotypes from an extreme end 
of the distribution to one cell may lead to false-positive findings. Hence, we additionally applied a per-CpG per-
mutation approach to confirm the significance of these findings with an empirical p-value (same per-CpG p-value 
threshold with empirical pint < 3.8 × 10−6; 51% of analyses discarded), as well as a sign-test to filter out results that 
show inconsistent directions of effect between samples (22% of analyses discarded; see Supplementary Figure S4). 
2,262 analyses (47%), based on 802 unique CpGs survived both steps (see Table 2; see Methods for a comparison 
between the above described procedure with a Bonferroni correction for all tests performed).

Per-CpG modeling.  Importantly, two SNPs in linkage disequilibrium (LD) with a third SNP that shows 
a main effect on the trait of interest might, under certain circumstances, mimic an interaction effect that is in 
fact fully attributable to the main effect20,27 (see Fig. 2 for one example). Therefore, in the next validation step of 
epistatic effects, we aimed at simultaneously taking into account main effects as well as interaction effects by gen-
erating one comprehensive model of SNP-effects for each single CpG. For this analysis we used the entire SNP-set 
yielding a higher resolution compared to the smaller SNP-set (N = 517,504 SNPs instead of N = 192,955 SNPs). 
We applied a stepwise-forward regression approach, starting with main effects before adding interaction effects. 
For N = 174 CpGs at least one significant interaction effect was detectable (239 SNP-pairs in total; see Table 2) in 
both samples, when also taking into account significant main effects of SNPs (see Supplementary Table S1 and 
Supplementary Fig. S6 for the full models).

Estimation of epistatic effects can be biased for non-independent genomic loci27,28. Therefore, we calculated 
the LD for the SNP-pairs showing interaction effects. We empirically determined the threshold of LD that was 
unlikely to occur by chance in the discovery sample (r2 > 0.021, p < 0.001, see Supplementary Fig. S5). 184 out of 
the 239 SNP-pairs (77%) showed an r2 > 0.021 in the discovery sample; these pairs were all located in close prox-
imity (mean = 53 KB, min = 0.5 KB, max = 444 KB) to each other on the same chromosome. Hence, we classified 
these effects as LD-block associated effects1,29. After exclusion of LD-block associated effects 47 CpGs (based on 
55 SNP-pairs) still showed at least one significant epistatic effect (see Table 2). For the remaining 127 CpGs we 
identified only LD-block associated effects.

When considering all 174 CpGs, significant main effects explained on average 57% of variance from the CpG 
signals whereas interaction effects additionally explained on average 8% of variance (see Table 3).

Search for epistatic effects based on SNPs exhibiting main effects.  We performed an additional 
search for interaction effects, based on SNPs in proximity to the CpG (defined as 3.5 MB window, number of 
SNPs per CpG ranging from 1 to 3,290, mean = 1,223) that show a significant main effect. The 3.5 MB window 
comprises >95% of all main effects from SNPs on CpGs25. By focusing on SNPs being located in proximity to 
CpGs and exhibiting main effects, this approach was computationally less expensive (N = 4.84 × 108 main effects 
and N = 7,173,795 interaction effects tested) in comparison to the exhaustive search (N = 7.36 × 1015 interaction 
analyses).

We first applied Bonferroni-correction per CpG in the discovery sample (p-value ranging from 0.05 to 
1.5 × 10−5) to identify significant main effects and then tested all significant findings in the replication sample. 
After replication, N = 59,134 CpGs showed at least one significant main effect of a SNP in the 3.5 MB window 

N unique 
CpGs

Average N 
hits per CpG

Max N hits 
per CpG

N hits in 
total

Both SNPs 
in cis

One SNP in cis 
and in trans

Both SNPs 
in trans

Before replication 13,112 657 46,314 8,608,567 0.03% 0.20% 99.78%

After replication 1,477 3 131 4,816 43.60% 10.36% 46.03%

+Permutation and sign-test 802 3 49 2,262 90.45% 3.98% 5.57%

Per-CpG model approach 174 1 5 239 88.28% 4.18% 7.53%

+Exclusion of LD-block 
associated effects 47 1 3 55 63.64% 18.18% 18.18%

Table 2.  Main results exhaustive search for epistatic effects. The results shown refer to significant interaction 
effects, depending on the different analytical steps. cis is defined as 500 KB around the CpG.
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(mean = 9, max = 508). The observation that ~15% of CpGs were associated with a genetic marker is in agreement 
with previous results24,30, considering differences in sample-sizes between studies and hence differences in power 
to detect such effects.

Out of these 59,134 CpGs, N = 48,293 CpGs showed more than one significant main effect of a SNP. For 
these CpGs, we identified all significant interaction effects between SNPs that show a significant main effect (see 
Methods). N = 24,892 interaction effects based on N = 3,564 CpGs survived this step (number of interaction 
effects per CpG: mean = 7, max = 327). Based on these results, we again performed a forward regression approach 
for each CpG. We included all identified main effects and interaction effects in this analysis, testing main effects 
first. In the forward regression approach N = 364 interaction effects remained significant, based on N = 281 
unique CpGs (number of interaction effects per CpG: mean = 1, max = 6; see Supplementary Table S2 for the full 
models). N = 255 SNP-pairs (70%) revealed an r2 > 0.021, and were classified as LD-block associated effects. After 
exclusion of LD-block associated effects, N = 91 CpGs showed at least one epistatic effect. The remaining N = 190 
CpGs showed LD-block associated effects only. We determined the amount of variance that can be explained by 

Figure 2.  Example of a main effect of a SNP causing a spurious significant interaction effect between two other 
SNPs. Data is shown for cg00022866 from the discovery sample. (a) rs11231741 shows a strong main effect 
(p = 4.5 × 10−112). This causes a spurious significant interaction (b p = 3.3 × 10−18) because rs11231741 is in LD 
with both interacting SNPs (rs11231740: r2 = 0.55; rs2236648: r2 = 0.25). Of note, the two interacting SNPs show 
low LD only (r2 = 0.024). Panel (c) depicts the dependencies between the 9 SNP-groups build from rs11231740 
and rs2236648 and the 3 SNP-groups from rs11231741 (color-coded in black, red and green; a jitter has been 
added to the data): the 9 SNP-groups of the interacting SNPs mimic the three SNP-groups of the main effect, 
with 5 of the 9 groups mainly corresponding to the homozygous common allele carrier (black), 3 of the 9 groups 
mainly corresponding to the heterozygous group (red) and 1 group mainly corresponding to the homozygous 
rare allele carrier (green). Panel (d) shows the same data as in (b), but now with color-coding of the three SNP-
groups from rs11231741.
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single-SNPs, by all significant main effects of SNPs and by full models that include also interaction effects when 
applying the forward regression approach (see Table 4). The overall variance explained and the variance explained 
by single-SNP hits systematically increased with increased model complexity.

The detection rate for CpGs exhibiting significant interaction effects was comparable for the exhaustive search 
(N = 174, 0.044% of all CpGs analyzed) and the search based on SNPs that show a main effect (N = 281, 0.071% of 
all CpGs analyzed). Taking both approaches together, we identified a total of N = 404 CpGs showing interaction 
effects (0.1% of all CpGs analyzed), with 51 CpGs being identified in both analyses (see Supplementary Table S3).

Enrichment analyses.  The N = 404 CpGs showing interaction effects could be assigned to N = 350 clus-
ters, when assigning CpGs with an r > 0.8 to one cluster (CpGs per cluster: mean = 1.15, max = 5; the maximal 
base-pair distance per cluster was 4,820). For the following enrichment-analyses (see Table 5), we randomly chose 
one CpG per cluster. These N = 350 CpGs were significantly underrepresented in CpG islands (p = 1.1 × 10−6) 
and significantly overrepresented in DNase I hypersensitivity sites (p = 0.025). Furthermore, these CpGs showed 
a strong enrichment in significant associations with gene expression (p = 1.2 × 10−127), with the top-hit of 
the transcripts being located in cis of the CpG in all cases except two (see Supplementary Table S3). Gene-set 
enrichment analysis (see Table 6) on those 350 CpGs showed significant association signals (pFDR < 0.05) for 7 
KEGG-pathways, with the top-hits being associated with Human papillomavirus (HPV) infection (hsa05165, 
pfdr = 0.0014) and cancer (hsa05200, pfdr = 0.0036).

Discussion
Our results demonstrate the existence of higher-order genetic effects on DNA CpG methylation. However, it is 
important to stress that the absolute number of CpGs that showed replicable higher-order genetic effects was low 
(N = 404 CpG in total, 0.1% of all CpGs). The major fraction of SNP-pairs showing significant interactions were 
located in cis of the CpG, with both SNPs being in LD, which might lead to biased estimates27,28. Interestingly, for 
CpGs exhibiting interaction effects we detected significant enrichment for DNase I hypersensitivity sites paral-
leled with strong enrichment of significant associations with gene expression. The underrepresentation of these 
CpG-sites in CpG islands further support their association with transcriptionally active regions. Finally, these 
CpGs were enriched in pathways related to HPV-infection and cancer.

We stress that the success of the analysis performed herein strongly relies on effect-sizes. With our data we 
were adequately powered to detect and replicate medium to strong effect sizes in the exhaustive search. However, 
especially for effects in trans we can expect a more complex picture with an accumulation of small effect sizes31. 
Under this scenario, the sample size needed to detect these effects is considerably larger.

Despite the fact that we focused an a complex trait that is biologically very close to the genetic variation21–23, 
we did not find strong evidence for the existence of epistatic effects. This result adds to the ongoing debate of the 
existence and relevance of epistasis5,6. We note that the computational effort to approach questions related to 
epistatic effects is considerably larger in comparison to investigating independent additive models, especially in 
the context of an exhaustive search. This speaks more in favor of refining the simple additive model before adding 
another level of complexity by including epistatic effects. Focusing on SNPs that show a significant main effect 
on the CpG resulted in a similar detection rate in comparison to performing an exhaustive search. This strategy 
optimizes the ratio between computational burden and the overall detection rate of interaction effects.

Taken together, our results demonstrate the existence of higher-order influences of structural genetic variation 
on the CpG signal. However, they also show that the impact of these higher-order dependencies is much weaker 
in comparison to main effects. Interestingly, filtering for CpGs that were under strong and more complex genetic 

Discovery sample average 
variance explained

Replication sample average 
variance explained

All significant main effects 57.1% 57.8%

- Most-significant main effect 44.9% 45.4%

All significant interaction effects 8.2% 8.3%

- Most-significant LD-block 
associated effect 4.4% 4.5%

- Most-significant epistatic effects 7.8% 7.4%

All significant main effects and 
interaction effects 65.2% 66%

Table 3.  Exhaustive search average variance explained by main effects and interaction effects. The results are 
based on the N = 174 CpGs that showed at least one significant interaction effect when taking into account also 
main effects. For only 7 out of 174 CpGs (4%) no significant main effect of a SNP was detectable. 12 out of 174 
CpGs (6.9%) showed both, a LD-block based effect as well as an epistatic effect. All significant main effects: 
average variance explained by all main effects that were kept in the final model. Most-significant main effect: 
average variance explained by the main effect that exhibited the smallest p-value. All significant interaction 
effects: average variance explained by all interaction effects that were kept in the final model; these were further 
separated in LD-block associated effects with SNP-pairs showing an r2 > 0.021, or epistatic effects (r2 ≤ 0.021), 
most-significant corresponds to the effect with the smallest p-value, if more than one of these effects were kept 
in the final model. All significant main effects and interaction effects: average variance explained by all main 
effects and interaction effects that were kept in the final model.
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control increased the power to detect CpGs that are associated with gene expression and biological pathways 
associated to HPV-infection and cancer.

Methods
Subjects and study design.  The subjects included in this blood-DNA-methylation study (see Table 1) rep-
resent subsets of two ongoing studies, which were described previously32,33. The purpose of the ongoing studies is 
to identify biological correlates of cognitive performance by using genetics, electroencephalography and imaging 
techniques in healthy young adults from the general population. Saliva samples and phenotypic information 
were collected at the time-point of the main investigation. Subjects were later re-invited for additional saliva 
and blood sampling (see Table 1). Aim of this re-invitation was to additionally collect high-quality DNA from 
blood e.g. for the study of DNA-methylation and DNA-expression, without assessing further phenotypes. Blood 
and saliva samples were collected between midday and evening (mean time = 2:30 p.m., range 1:00 p.m.–8.00 
p.m.). Hematological analysis, including blood cell counts, was performed with Sysmex pocH-100i™ Automated 
Hematology Analyzer (Sysmex Co, Kobe, Japan).

Subjects were of good general health, did not self-report any neurological or psychiatric illness and did not 
take any medication (apart from oral contraception) at both time points. The phenotypic data reported here is 
based on the data freezes that have been used to select the subjects for the blood-DNA-methylation study (discov-
ery sample data freeze 2013-08, N = 1,174 subjects; replication sample data freeze 2014-04, N = 1,935 subjects). 
Subjects were only included in the DNA-methylation study if they had been genotyped previously (Affymetrix 

Per-CpG model in 3.5 MB 
window

N unique 
CpGs

Discovery sample Average variance explained by 
SNPs

Replication sample Average variance explained by 
SNPs

Most-signif. 
main effect

All signif. 
main effects

All signif. main effects 
and interaction effects

Most-signif. 
main effect

All signif. 
main effects

All signif. main effects 
and interaction effects

- CpGs showing at least 
one significant main effect 59,134 16% 17.7% 17.7% 16% 18.1% 18.1%

- CpGs showing at least 
two significant main effect 17,938 22.6% 28.2% 28.3% 22.3% 29% 29.1%

- CpGs showing significant 
interaction effects 281 31.2% 41.9% 46.8% 31.2% 43.3% 49.1%

Table 4.  Search for epistatic effects based on SNPs exhibiting main-effects. Average variance explained by 
main effects of SNPs or interaction effects of SNP-pairs. Results are shown for three different filtering steps, 
which were based on the number of significant main effects or interaction effects per CpG, identified with a 
forward-linear regression approach. Most-signif. main effect: average variance explained by the main effect that 
exhibited the smallest p-value. All signif. main effects: average variance explained by all main effects that were 
kept in the final model. All signif. main effects and interaction effects: average variance explained by all main 
effects and interaction effects that were kept in the final model. Signif.: significant.

Expected Observed p

CpG Island 32.9% 20.6% 1.1 × 10−6

TFBS 63.3% 66.9% 0.19

DNase I 70.4% 76% 0.025

Gene expression 10.8% 50.9% 1.2 × 10−127

Table 5.  Enrichment analyses. For N = 404 CpGs we identified a significant interaction between SNPs. 
These 404 CpGs could be assigned to N = 350 clusters. For each cluster we randomly assigned one CpG as 
representative. For these 350 CpGs we compared the observed percentage of being located in CpG-dense 
regions (CpG Island), transcription factor binding sites (TFBS), DNase I hypersensitivity sites (DNase I) or 
being associated with gene expression against the expected numbers that are based on all remaining CpGs 
(N = 395,027), by using Chi2-tests.

Term Pathway N genes N hits pnominal pFDR

hsa05165 Human papillomavirus 
infection 303 10 1.7 × 10−7 0.0014

hsa05200 Pathways in cancer 384 10 1.1 × 10−6 0.0036

hsa05224 Breast cancer 141 7 1.5 × 10−6 0.0036

hsa01100 Metabolic pathways 1190 14 1.7 × 10−6 0.0036

hsa04014 Ras signaling pathway 217 7 9.9 × 10−6 0.017

hsa04151 PI3K-Akt signaling pathway 317 8 1.2 × 10−5 0.018

hsa05203 Viral carcinogenesis 191 6 2.9 × 10−5 0.036

Table 6.  Results for the gene-set enrichment analysis. Significant gene-sets (pFDR < 0.05) are reported.
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6.0, after QC, see below) and blood had been sampled. For the replication sample, additional requirements were a 
European genetic background (see below) and a time-distance of less than four years between the main investiga-
tion and the blood sampling. About 55% of the subjects from the discovery sample and 28% of the subjects from 
the replication sample fulfilled these requirements when planning the DNA-methylation study. Individuals were 
selected randomly from these pools of subjects.

The ethics committee of the Cantons of Basel-Stadt and Basel-Landschaft approved the studies. All partici-
pants received general information about the study and gave written informed consent. All methods were per-
formed in accordance with the relevant guidelines and regulations of the participating institutions.

Affymetrix SNP 6.0 based genotyping and imputation.  Saliva samples were collected using 
the Oragene DNA Kit (DNA Genotek, Kanata, Canada). Saliva DNA was extracted from the Oragene DNA 
Kit using the standard precipitation protocol recommended by the producer. DNA isolated from saliva was 
investigated with Affymetrix SNP 6.0 array as described in the Genome-Wide Human SNP Nsp/Sty 6.0 User 
Guide (Affymetrix, Santa Clara, CA USA; see Supplementary text). The mean call-rate per subject was 98.5% 
(90.1–99.7%).

The genotypic data was projected on the two first PCA components inferred from HapMap reference popula-
tions (YRI, CEU and CHB-JPT populations). Outliers were identified using a Bayesian Clustering Algorithm34. 
N = 35 subjects out of the discovery sample for which DNA-methylation data was available were identified as 
outliers and excluded from the statistical analyses.

To reduce the computational burden for the interaction analyses, we used stringent QC-criterion for the 
exhaustive search for SNP-SNP-interactions: in both samples MAF > 2%, pHWE > 0.001, missing rate per 
SNP < 1%, size of smallest SNP-group ≥ 15. To further eliminate highly redundant information, we addition-
ally applied LD-based-pruning in the discovery sample with the following settings: window-size 50 KB, number 
of SNPs to shift 5, SNP-SNP r2 = 0.95, resulting in N = 192,955 SNPs. For the in-depth modeling of additional 
main effects of SNPs we used a more-comprehensive SNP-set based on the following settings: in both samples 
MAF > 2%, pHWE > 0.001, missing rate per SNP < 1% (N = 517,504 SNPs).

To determine a sample-specific threshold for Linkage Disequilibrium, we estimated for 10,000 randomly 
drawn SNPs from the larger SNP-set the association (r2) with 10,000 random SNPs located on a different chro-
mosome, based on the data from the discovery sample. We set the LD-threshold to r2 > 0.021, which was very 
unlikely (p < 0.001) to happen by chance between independent SNPs in discovery sample (see Supplementary 
Fig. S5).

HumanMethylation Infinium 450 K BeadChip based methylation analyses.  DNA isolated from 
peripheral blood was investigated with the Illumina 450 K array (Illumina, Inc., San Diego, CA, U.S.A; see 
Supplementary text). Postprocessing was done for each sample separately, combining the β-values of the preproc-
essed data of all batches per sample (see Supplementary text). The β-values were processed step-by-step in order 
to correct for further influential and putative confounding factors: (1) using logit-transformation (M-value35, 
done with the R-package car36); (2) z-transformation per plate (correcting for plate and batch effects); (3) regress-
ing out the first 8 (discovery sample) or 7 (replication sample) axes of a principal component analysis (PCA, done 
with the R-package pcaMethods37). The PCA was based on CpGs with no missing values ( >95% of the included 
CpGs). The PCA-based approach corrected for technical biases as well as for part of the variability induced by 
blood cell composition25 (4) regressing out the effects of sex and age; (5) regressing out the effects of variants 
in the 50mer probe sequence, if the total variance explained by these variants exceeded 0.1% (see below). The 
accepted missing rate per CpG was set to <1% in both samples. We further excluded cross-hybridizing probes 
and polymorphic CpGs sites38,39 (Nmax = 63,974). Only CpGs surviving all filtering steps in both samples were 
used for the downstream analyses (N = 395,431).

Correction for genetic variants in the 50mer probe sequence.  We performed imputation of 
the genetic data: Prior to autosome-wide genotype imputation, haplotype estimation was performed using 
SHAPEITv240, allowing a per individual and a per SNP missing rate for observed markers of max. 5%. After 
pre-phasing, genotype imputation was performed using IMPUTE v2.3.0, which imputes missing genotypes using 
a multi-population reference panel41,42. The integrated variant callset of 1,092 individuals from the 1000 Genomes 
Project (release v3 in NCBI build 37/hg19 coordinates, March 2012) served as panel data (http://mathgen.stats.
ox.ac.uk/impute/ALL_1000G_phase1integrated_v3_impute_macGT1.tgz).

Based on the genomic location we filtered for all 50mer probe-sequences that comprises imputed variants. As 
a very basic QC, we excluded imputed variants with a minor allele frequency (MAF) <0.03% in our population 
(based on information of N = 3,166 subjects). For each 50mer probe sequence containing at least one variant, 
we build a linear model with the probability information of all imputed genotypes of this probe sequence as 
independent variables, and the CpG signal as dependent variable. If the overall explained variance of this model 
exceeded 0.1%, we used the residuals of this model as 50mer-corrected CpG signal. This procedure was done 
independently for the discovery sample (N = 533 subjects after outlier exclusion) and the replication sample 
(N = 319 subjects). Out of the 395,431 CpGs, N = 121,868 were corrected for 50mer variants in at least one of the 
two studies (discovery sample N = 98,532; replication sample N = 103,462; overlap N = 80,126).

Exhaustive search for epistatic effects – Discovery phase.  In the discovery sample we performed 
an exhaustive genome-wide search for two-locus (SNP-SNP) epistatic effects (N = 192,955 SNPs; N = 1.85 × 1010 
SNP-pairs) on single CpG methylation levels (N = 395,431 CpGs), resulting in 7.36 × 1015 tests (NCpGs * Nsnps * 
(Nsnps - 1)/2) to calculate. Accordingly, the Bonferroni-corrected threshold (alpha 5%) was set to p < 6.8 × 10−18. 

http://S5
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The statistical analysis in the discovery phase was based on a simplified interaction analysis strategy that corre-
sponds to an analysis of variance based on 9 genotype groups as fixed effects26. The 8 degrees of freedom (df) test 
determines the joint genetic effects at two loci (combination of main and interaction effects). For the interaction 
analyses only, the additive and dominance effects at each locus were subtracted from the mean effects of each 
pairwise genotype. This 4 df parameterization is an approximation to a true interaction test1,26. Independence 
between the SNPs is a prerequisite for an accurate 4 df test, which is often not fulfilled, especially for SNPs in 
proximity to each other. Additionally, the accuracy of the interaction approximation decreases if there is a large 
(additive or dominant) main effect of a SNP. To minimize the bias of the simplified interaction analysis on the 
results, we recalculated all results with an F-value > 22 (4 df; papprox < 8.0 × 10−17) of the simplified EpiGPU inter-
action analysis strategy with a linear regression in combination with an ANOVA-approach. Only analyses that 
remained significant after Bonferroni-correction entered the next analytical step. In most of these cases (99.89%) 
the simplified F-value was larger than the F-value based on recalculation, indicating an over-estimation of the 
true effects when using the simplified F-value only.

Exhaustive search for epistatic effects – Replication phase.  In the replication sample we applied a 
per-CpG Bonferroni-corrected p-value threshold. As baseline value for the multiple testing correction we used the 
number of N = 13′112 unique CpGs (p < 3.8 × 10−6). In case a CpG showed multiple interaction signals, we applied 
a more stringent correction by additionally accounting for the number of interaction hits per CpG (pint < [0.05/
(13′112 + number of interaction hits per CpG]). This procedure resulted in a per-CpG p-value threshold ranging 
from 3.8 × 10−6 (one SNP-pair only) up to 8.4 × 10−7 (46′314 SNP-pairs). To additionally derive an empirical p-value 
we performed on average 1.70 × 107 permutations of the CpG-signal and recalculated the interaction analysis with 
the permuted signals to derive an empirical F-distribution, for each CpG separately. We performed a sign-test by 
comparing the average methylation level of the 9 SNP-groups between the two samples with Pearson correlations r 
(see Supplementary Fig. S4). Analyses had to pass all three filters (per-CpG Bonferroni correction based on p-value 
derived from F-distribution and from empirical F-distribution and sign-test r > 0.85).

We tested the stringency of the per-CpG empirical p-value (pemp < 3.8 × 10−6) in comparison to a global 
Bonferroni-correction for all tests (alpha 5%, pbonf < 5.8 × 10−9, correcting for 8′608′567 tests, with p-values 
derived from the F-distribution). The empirical p-value was as at least as stringent (49% of analysis results sur-
vived) as Bonferroni-correction for all tests (52% of all analysis results survived) and had a higher concordance 
rate with the sign-test: only 4% of analysis surviving the empirical p-value failed the sign-test, in comparison to 
10% when applying Bonferroni-correction for all tests.

Per CpG modeling.  For this analysis we used the entire SNP-set (N = 517′504 SNPs instead of N = 192′955 
SNPs), allowing for a better resolution. We applied a stepwise-forward regression approach, starting with 
main-effects. For each CpG, we first tested main effects of SNPs in a 500 KB window around the CpG and around 
the SNPs showing an interaction effect, as well as all SNPs that showed a significant main effect on a genome-wide 
scale (Bonferroni correction pmain-effect < 9.7 × 10−8). We then also included interaction effects by testing all already 
identified interacting SNP-pairs as well as all possible SNP-pairs for SNPs that were in LD (r2 > 0.021 in the 
discovery sample) with at least one of the identified interacting SNPs. SNPs and SNP-pairs entering the forward 
regression model were sorted by their main effect p-value and interaction effect p-value of the discovery sam-
ple. We kept SNPs in the model based on their main effect and SNP-pairs based on their interaction effect, if 
their p-value in the forward-regression analysis was smaller than p = [0.05/(number of main-effects + number of 
interaction-effects tested per CpG)] in both the discovery and the replication sample.

Search for epistatic effects based on SNPs exhibiting main effects.  For each CpG we restricted 
the analysis to SNPs located within a ± 3.5 MB window around the CpG, using the larger SNP-set (N = 517,504 
SNPs). For these SNPs we evaluated linear models with ANOVAs by using a 2-df parameterization of the SNP’s 
main effect on the CpG signal. We searched for main effects of SNPs that survived a per-CpG Bonferroni cor-
rection accepting an alpha error of 5% per CpG, by correcting for the number of main effects tested per CpG in 
the discovery sample. SNP-effects surviving this analysis were tested in the replication sample, again by using a 
per-CpG Bonferroni correction accepting an alpha error of 5%, correcting for the number of main effects tested in 
the replication sample. For CpGs showing at least two significant main effects, we tested for significant interaction 
effects in the discovery and replication sample, restricting the analyses to interaction effects in which the minimal 
group size was larger than 3 in both, the discovery and replication sample. We applied a per-CpG Bonferroni 
correction (alpha error 5%, correcting for the number of interaction effects tested) in both samples to identify 
significant interactions. Next, for each CpG we run a stepwise forward regression approach that included all 
significant main effects and interaction effects. We sorted all SNPs by their main effect and all SNP-pairs by their 
interaction effect p-value of the discovery sample. Main effects entered the forward regression analysis first. In the 
model we kept SNPs based on their main effect and SNP-pairs based on their interaction effect, if their p-value 
in the forward-regression analysis was smaller than p = [0.05/(number of main effects + number of interaction 
effects tested per CpG)] in both the discovery and the replication sample.

Affymetrix HTA 2.0 array transcriptome analysis.  Blood samples were collected using PAXgene Blood 
RNA Tubes (PreAnalytix Qiagen/BD, Switzerland). Expression profiles were measured with the Affymetrix 
GeneChip Human Transcriptome Array 2.0 (see Supplementary text). Individual expression values of each tran-
script were adjusted for age, sex and 23 components of a PCA by using linear regression models, based on data 
from N = 416 unrelated subjects. The PCA was derived from the expression data, 23 components of the PCA were 
chosen to optimize the signal-to-noise ratio for association analyses with genetic marker.

http://S4
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Enrichment analyses.  We used the genomic hg19 database (genome-mysql.cse.ucsc.edu; accessed 2016-
08) to retrieve data about the location of CpG Islands (table cpgIslandExt), DNase I hypersensitivity sites (table 
wgEncodeR- egDnaseClusteredV3) and transcription factor binding sites (table wgEncodeRegTfbsClusteredV3). 
For N = 408 of our subjects, phenotypic data (data freeze 2015-09), transcriptomic data (N = 63,280 transcripts; 
see above) as well as DNA-methylation data (N = 395,431 CpGs) was available. For each CpG we calculated a 
genome-wide association analysis (Pearson’s correlation coefficient) with the transcriptomic data (N = 2.50 × 1010 
analyses). We identified significant CpG-transcriptome associations on a genome-wide scale (alpha = 5%, 
Bonferroni correction, pbonf < 2.0 × 10−12) and in cis (alpha = 5%, pcis = 0.05/Nlocal_transcripts; Nlocal_transcripts is the 
number of transcripts per CpG within a 500 KB-window, mean = 40, min = 0, max = 186).

For CpGs showing significant interactions, we estimated the similarity between CpGs with Pearson’s corre-
lations. CpGs with an r > 0.8 were assigned to one cluster. For each cluster we randomly chose one CpG before 
performing the enrichment analyses. Each CpG was classified as being located within a CpG Island, a DNase I 
hypersensitivity site or a transcription factor binding site and whether it was significantly associated with a tran-
script. We compared the observed frequencies from CpGs that show an interaction effect against the expected 
frequency from all other CpGs by using Chi2-tests.

We performed a gene ontology (GO) enrichment analysis using the ‘gometh’-function from the R-package 
missMethyl43. The algorithm corrects for the varying numbers of CpGs that can be mapped to single genes. We 
used both, the GO-database as well as the KEGG-database provided in the package missMethyl, restricting the 
analysis to pathways with at least 10 members (N = 8,596 in total, GO-database N = 8,288 out of 21,671 path-
ways; KEGG-database N = 308 out of 320 pathways). We applied FDR-correction based on the total number of 
N = 8,596 pathways included in the analysis.

Software.  If not mentioned differently, analyses were conducted in R (version: 2.15.1 and higher, R 
Development Core Team, 2012).

Data availability.  The data that support the findings of this study are available from the corresponding 
author upon request.
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