
Resilient N-Body Tree Computations
with Algorithm-Based Focused Recovery:

Model and Performance Analysis

Aurélien Cavelan1,2, Aiman Fang3, Andrew A. Chien3,4, and Yves Robert2,5
aurelien.cavelan@unibas.ch, yves.robert@inria.fr, {aimanf, achien}@cs.uchicago.edu

1 University of Basel, Switzerland
2 Laboratoire LIP, ENS Lyon & Inria, France

3 University of Chicago, USA
4 Argonne National Laboratory, USA

5 University of Tennessee Knoxville, USA

Abstract This paper presents a model and performance study for Algo-
rithm-Based Focused Recovery (ABFR) applied to N-body computa-
tions, subject to latent errors. We make a detailed comparison with the
classical Checkpoint/Restart (CR) approach. While the model applies
to general frameworks, the performance study is limited to perfect bi-
nary trees, due to the inherent difficulty of the analysis. With ABFR,
the crucial parameter is the detection interval, which bounds the error
latency. We show that the detection interval has a dramatic impact on
the overhead, and that optimally choosing its value leads to significant
gains over the CR approach.

1 Introduction

Future large-scale systems are projected to have higher error rates, with MTBFs
(Mean Time Between Failures) as low as 20 minutes [1]. We focus on latent
errors, that are not detected immediately after their occurrence. Such errors
escape simple system level detection and can only be exposed by sophisticated
application checks [2,3]. We use the term “detection latency” to denote the time
from error occurrence to detection. Such latency may be thousands (103) to
billions (109) cycles, corrupting a range of computational data. Without sup-
port to detect and recover from latent errors, applications will suffer silent data
corruption, producing invalid scientific results.

In previous work [4], we proposed a new approach, Application-Based Fo-
cused Recovery (ABFR), that exploits application data flow and intermediate
states to focus recovery on an accurate estimate of potentially corrupted data.
Our study on stencil computations demonstrated ABFR reduces recovery cost by
up to 400x. This paper investigates the use of ABFR for N-body computations in
the presence of latent errors. N-body computations are much more challenging,
as information is exchanged along time-varying patterns that progress up and
down the computation tree.

The first contribution of this paper is to propose a detailed model to enable
the comparison of ABFR with the classical Checkpoint/Restart (CR) approach.



2 Authors Suppressed Due to Excessive Length

The model is valid for arbitrary N-body trees, which can be either binary trees, or
quad-trees-, or oct-trees, and which are locally imbalanced to account for specific
simulation requirements. The second and major contribution is to provide a
comprehensive performance study for perfect binary trees. While the scenario
of perfect binary trees is not the most general, it encompasses the intrinsic
complexity of the whole model while being amenable to an exact analytical
evaluation. In particular, setting the value of the detection interval, which bounds
the error latency, is crucial to minimize the overhead incurred by ABFR to
detect, and recover from, a latent error. We show how to compute the optimal
value of this key parameter, and that the optimal value leads to significant
savings over the CR approach. This result is an important step towards a full
understanding of the potential impact of ABFR to N-body computations.

The rest of the paper is organized as follows. We start with background
material in Section 2: in Section 2.1, we introduce Global View Resilience (GVR),
the execution framework for resilient computing which is used as the support
to deploy ABFR, and in Section 2.2, we briefly review N-body computations.
Next, we outline the general principles of the ABFR approach in Section 3, and
describe how to apply ABFR for N-body tree simulations. Then we provide a
detailed formulation of the performance model in Section 4. Sections 5 and 6 are
devoted to the performance study, and show how to compute the expected cost
(Section 5) and expected overhead (Section 6) of the CR and ABFR approaches.
Section 7 shows how to compute the optimal detection interval for ABFR. We
report simulation results corresponding to a broad range of scenarios in Section 8.
Section 9 presents related work. Finally, we give concluding remarks and hints
for future directions in Section 10.

2 Background

2.1 Global View Resilience (GVR)

We use the GVR library to preserve application data and enable flexible recov-
ery. GVR provides a global view of array data, enabling an application to easily
create, version and restore (partial or entire) arrays. In addition, GVR’s conve-
nient naming enables applications to flexibly compute across versions of single or
multiple arrays. GVR users can control where (data structure) and when (tim-
ing and rate) array versioning is done, and tune the parameters according to
the needs of the application. The ability to create multi-version array and par-
tially materialize them, enables flexible recovery across versions. GVR has been
used to demonstrate flexible multi-version rollback, forward error correction, and
other creative recovery schemes [5,6]. Demonstrations include high-error rates,
and results show modest runtime cost (< 1%) and programming effort in full-
scale molecular dynamics, Monte Carlo, adaptive mesh, and indirect linear solver
applications [7,8].

GVR exploits both DRAM and high bandwidth and capacity burst buffers or
other forms of non-volatile memory to enable low-cost, frequent versioning and



Title Suppressed Due to Excessive Length 3

retention of large numbers of versions. As needed, local disks and parallel file sys-
tem can also be exploited for additional capacity. For example, NERSC Cori [9]
supercomputer provides 1.8 PB SSDs in the burst buffer, with 1.7 TB/s aggre-
gate bandwidth (6 GB/s per node). The JUQUEEN supercomputer at Jülich
Supercomputing Center [10] is equipped with 2 TB flash memory, providing 2
GB/s bandwidth per node. Multi-versioning performance studies on JUQUEEN
[10] showed GVR is able to create versions at full bandwidth, demonstrating low
cost versioning is a reality [11]. In this paper, GVR’s low-cost versioning enables
flexible recovery for ABFR.

L	

D	

(a) 2D N-Body Spatial Domain

internal	node	

leaf	node	

(b) Quad-Tree Representation

Figure 1: Barnes-Hut Quad-Tree Computation for 2D N-Body Simulation

2.2 N-body Computations

The N-body problem is the problem of predicting the motions of a dynamical
system of objects, under the influence of physical forces, e.g. gravity. N-body
simulations are a fundamental tool in the study of physical systems, from in-
vestigating three-body systems like the Earth-Moon-Sun to understanding the
evolution of star clusters [12].

Over the past years, a number of methods have been introduced to solve
N-body problem. The direct-summation method computes and integrates the
pairwise forces on each particle with all others, in which the computation in-
creases as O(N2). Much effort [13,14,15,16] has been expended to reduce the
complexity by approximating the contribution of many particles with a single
interaction, resulting in complexity of O(N logN). Among them, “tree codes”
[15,17,18] are widely deployed, which use a tree structure to organize particles
and group distant particles into one larger cell, allowing their gravity to be ac-
counted for a single force. Barnes-Hut [17] is a commonly used tree algorithm,
consisting of two major steps: first construct the tree and then compute the force
of each particle by walking the tree.

Tree construction: A root node is used to encompass the full mass distri-
bution. In 2D simulation, the space is repeatedly subdivided into four daughter
nodes of half the side length each, until one ends up with single particles (see



4 Authors Suppressed Due to Excessive Length

Figure 1). After the topology of the tree has been constructed, the contents
(mass, position) of each node are initialized by a post-order tree traversal.

Force computation: For each particle, forces are obtained by traversing
the tree, i.e. starting at the root node, a decision is made whether or not to
open a node (i.e. continue the tree walk) to provide an accurate enough partial
force. Thus the error is controlled conveniently by the opening criterion, because
higher accuracy is obtained by walking the tree to lower levels. The Barnes-Hut
opening criterion determines if a node is sufficiently far away by computing l/D,
where l is the length of the region represented by the node, and D the distance
between the node’s center-of-mass and the particle. If l/D < θ (i.e. opening
criterion), then approximate the particles in the node by their center of mass.
Otherwise, continue the tree walk. The typical value of θ ranges from 0.3 to 0.8.

The reconstruction of full tree at each step can lead to significant overhead.
As a result, the dominant time of simulation is spent on tree construction rather
than force computation. McMillan and Aarseth [19] first discussed that the ge-
ometric structure of tree evolves slowly in time, therefore it is sufficient to re-
construct the tree once in a while to take into account the slow changes in the
tree hierarchy. Gadget [20] proposed a dynamic tree update scheme, in which
the tree node is updated without reconstructing the full tree. The tree recon-
struction frequency can be controlled to improve computation efficiency. In our
study, we adopt the dynamic tree update scheme and allow tree nodes to be
updated with tunable frequency.

3 Algorithm-Based Focused Recovery (ABFR)

We propose to use the Algorithm-Based Focused Recovery (ABFR) approach [4]
for N-body computations. ABFR exploits application semantics and versioned
states to bound error impact and further localize recovery. ABFR exploits ap-
plication algorithmics and data flow to identify potential root causes of a latent
error and focus recovery effort on a small subset (see Figure 2b). ABFR allows
recovery to be overlapped with computation, reducing recovery overhead and
enabling tolerance of high error rates. In contrast, checkpoint-restart (CR) (Fig-
ure 2a) blindly rolls back the entire computation to the last verified checkpoint
and recomputes everything.

We assume that a latent error detector (or “error check”) is available. Such
detectors are application-specific and computationally expensive. In order to
keep the model general, we make the following assumptions:
– The error detector has 100%6 coverage, finding some manifestation whenever

there is an error, but not precisely identifying all manifestations.
– The error check detects error manifestations in the data, namely, corrupted

values and their locations.

6 Errors that cannot be detected are beyond the ability of any error recovery system
to consider.



Title Suppressed Due to Excessive Length 5

t	
Error	Detected	

Rollback	 Recompute	

state	i	

state	j	

(a) Blind CR system recovery

Recompute	

t	

Use	data	flow	to	find	
poten2al	root	causes	

state	i	

state	j	
Error	Detected	

Actual	root	cause	

(b) ABFR recovery based on application
knowledge

Figure 2: Checkpoint Restart (CR) vs. Algorithm-based Focused Recovery
(ABFR).

– Because latent (“silent”) errors are complex to identify, the detector is com-
putationally expensive.7
The interval between two consecutive error detections bounds the error la-

tency. Given the error location and timing, three steps are performed to correct
the state of corrupted data.

1. Inverse propagation: application logic and dataflow is used to inverse error
propagation, identifying all data points in past that could have contributed
to this error manifestation. These data points are called potential root causes
(PRC). For N-Body tree computations, the errors may reside in leave nodes
(i.e. no propagation) or propagate to some up-level nodes depending on the
latency. Nodes that have interacted with the detected erroneous node in the
latency bound are considered as PRCs. Therefore the tree structure and the
error latency bound are used to invert error propagation and identify PRCs.

2. Diagnosis: to bound error impact more precisely, PRCs can be tested (diag-
nosis), eliminating many of the initial PRCs. For N-Body tree computations,
this can be accomplished by recomputing intermediate states from versions
(courtesy of GVR) and comparing to previously saved results. If the values
match, the PRC can be pruned.

3. Recovery: recovery is applied to the reduced set of PRCs and their down-
stream error propagation paths. For instance, recovery can be recomputing
PRCs and particles that have interacted with PRCs in the latency bound.

4 Analytical Performance Model

In this section, we introduce the model. We start with the application frame-
work before detailing all error-related and fault-tolerance parameters. Table 1
summarizes main notations.
7 Assuming expensive checks means that any improvements in checking can be incor-
porated – cost is not a disqualifier.



6 Authors Suppressed Due to Excessive Length

Definitions
n Height of tree
K Number of iterations performed at level n (tree leaves)

Error Rate
λ Errors per second per leaf

Time
c Time to compute one leaf
d Time to detect errors on one leaf
v Time to version one leaf
r Time to recover one leaf

Tree-wise
Tc Time to compute the tree without errors
Td Time for detection the tree without errors
Tv Time for versioning the tree without errors

Frequency
D Detection interval of the form 2x ·K

Table 1: Summary of main notations.

Level Iterations
1 2 3 4 5 6 7 8

0 20

1 21 21

2 22 22 22 22

3 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23 K · 23

Table 2: Iterations and number of nodes updated each level for T3, with n = 3.

Application model. We consider a perfect binary tree Tn of depth n. Leaves
at the bottom of the tree hold the original data and perform computations,
while internal nodes operate by aggregating the data of their two children and
keeping a summary. The root is at level 0, and leaves are at level n. Nodes at
different levels are updated with different rates: these rates are decreasing from
bottom to top, so that leaves are updated the most frequently, while the root
is updated the least frequently. The execution proceeds through iterations with
global period 2n. Each iteration consists ofK computing steps at leaf level n, plus
some information propagation, first bottom-up and then top-down, to exchange
summary data. The scope of the propagation across the tree varies as follows.
Every odd iteration is limited to level n nodes (leaves), without any propagation.
Iteration number 2j with j odd is a depth-1 propagation that goes up to level
n − 1 nodes and then back to the leaves. Iteration number 4j with j odd is a
depth-2 propagation that goes up to level n − 2 nodes and then back to the
leaves. More generally, iteration number 2ij with j odd is a depth-i propagation
that goes up to level n− i nodes and then back to the leaves. Hence the root is
first updated at iteration 2n. Note that the root is updated only once per global
period of 2n iterations, which represent 2nK computing steps at leaf level. The
value of parameter K is application-dependent. See an illustration with n = 3
on Table 2, which also shows how many nodes per iteration are updated at the
different levels.



Title Suppressed Due to Excessive Length 7

Corrupted node

(a) Tree at iteration iter = 3 (b) Tree at iteration iter = 5

1

2

3

4

5

6

7

8

9

DETECTION

t

(c) Leaves at each iteration

Figure 3: Computation of a tree with x = n = 3. An error strikes a node at t = 3
(a). The error propagates to neighboring nodes following the communication
pattern and four leaves are corrupted at t = 5 (b). Detection is done on the
leaves at t = 8 after computation but before propagation (c).

During a global period of 2n iterations, the 2n leaves execute K computation
steps every iteration, hence the total computing cost is Tc = 4n ·K · c, where c
denote the time of a computing step at the bottom level.

Error model. An error can strike at any time during the computations of
the leaves. When an error occurs, it produces a localized error on a leaf, as
shown in Figure 3a. This error then spreads to other nodes every time data is
exchanged, i.e., during iterations 1, 4, 6, 8 in Table 2 and in Figure 3c). This
results in several leaves being corrupted after a few iterations (as shown by
Figure 3b). In particular, the whole tree will be corrupted after the root has
been updated and the data has been sent back to all nodes, which happens
every 2n iterations (this corresponds to iteration 8 in Table 2). We assume that
errors strike following an Exponential probability distribution. Let λ denote the
error rate per leaf node, so that 1 − e−λc is the probability of having an error
during the computation of one leaf, and 1− e−λTc the probability of having an
error during the computation of the whole global period. We also assume that
at most one error strikes during the execution of one period.

Versioning. Versioning a leaf consists in saving its current state. We assume
that the cost of versioning is low in front of the detection cost. For simplicity,
we version the state of the leaves every K steps. Therefore the total time needed
for versioning 2n leaves, for a period of 2n iterations, is Tv = 2n · 2n · v, where v
is the time to version a leaf.

Detection. Let D denote the detection interval, i.e. the number of steps be-
tween two consecutive error checks. D will be chosen as D has a multiple of K.
Detection is performed at level x every D time-steps. Finding the optimal value
of x is part of the optimization problem to be solved.



8 Authors Suppressed Due to Excessive Length

The detector is applied after computations at leaf nodes and before prop-
agation to upper level nodes. D is of the form D = 2x · K, where x is an
arbitrary integer between 0 and n. Therefore the detection is performed 2n−x

times during a global period. If x = n, detection occurs only once while if x = 0,
detection occurs every K steps, just as versioning. The total time for detection
is Td = 2n−x · 2n · d, where d is the time to apply the detector at a leaf.

We assume that the detector is perfect: it always detects the manifestation
of the error if one has struck. Finding how many leaves have been affected by
the error (after its striking and until detection), and how many nodes must be
recomputed, is performed through diagnosis and recomputation, respectively.

5 Performance Study: Expected Cost

In this section, we derive exact formulas for the expected total cost of the
Checkpoint-Restart (CR) and Application-Based Focused Recovery (ABFR) ap-
proaches.

5.1 CR

Theorem 1. The expected total cost for executing a global period with a binary
tree of depth n using the CR approach is given by:

E(TCR) = (2− e−λ4
nKc) · 4n ·K · c+ 2n · (d+ v) . (1)

Proof. Let E(TCR) denote the expected cost for executing the entire period
before checkpointing, using the standard CR approach. We first need to account
for the cost of computation Tc. Detection and checkpointing are done at the end
of the period, with cost 2nd and 2ns respectively, where s denotes the time to
save the state of az leaf onto global storage. If an error occurs, with probability
(1− e−λ2Tc), all nodes need to be recomputed, with cost Tc again, from the last
correct version. We can write:

E(TCR) = Tc + 2n · (d+ v) + (1− e−λTc)Tc .

Then, setting Tc = 4n ·K · c and simplifying, we retrieve Equation 1.

5.2 ABFR

Theorem 2. The expected total cost for executing a global period with a binary
tree of depth n using the ABFR approach is given by:

E(TABFR) = 4n ·K · c+ 2n−x · 2n · d+ 4n · v

+ (1− e−λ4
nKc)

(
1

4
(4x + 2x)(Kc+ r) +

1

6
(4x − 1)(Kc+ v)

)
. (2)



Title Suppressed Due to Excessive Length 9

Proof. Let E(TABFR) denote the expected cost for executing the entire period
using the ABFR approach. We first need to account for the cost of computation
Tc, the cost of detection Td and the cost of versioning at every step Tv. Then, we
need to account for the cost of diagnosis and recomputation in case of error. Let
Tdiag and Trecomp denote the time for diagnosis and recomputation, respectively.
By definition, the probability that an error strikes during the period is given by
(1− e−λTc), therefore we can write:

E(TABFR) = Tc + Td + Tv + (1− e−λTc)(Tdiag + Trecomp) .

Note that diagnosis and recomputation are random variables, because they de-
pend upon when the error strikes. We take expectations and write:

E(TABFR) = Tc + Td + Tv + (1− e−λTc) (E(Tdiag) + E(Trecomp)) (3)

1

2

3

4

5

6

7

8

9

DETECTION

Potential root causes
Root cause

t

(a) Inverse propagation

1

2

3

4

5

6

7

8

9

DETECTION

Diagnosis (recomputation)

t

(b) Diagnosis

1

2

3

4

5

6

7

8

9

DETECTION

t

Recomputation

(c) Recomputation

Figure 4: Computation of the leaves with x = n = 3. (a) After an error has been
detected, we use inverse propagation to identify the set of potential root causes;
(b) Then we use diagnosis, i.e. we recompute potential root causes from the last
correct version and check again old versions, to locate the root cause; (c) Finally,
we recompute all corrupted nodes.

Inverse Propagation. When an error is detected, we can use inverse error-
propagation to identify the set of potential root causes. The number of potential
root causes depends on the detection interval D = 2xK. Indeed, the error can
only be located in the 2x−1 nodes connected to the manifestation of the error,
as shown in Figure 4a.

With x = n = 3, this means that there is exactly one detection during the
execution of the entire tree. Remember that detection is done after computations,
but before propagation. Therefore in this example the number of potential root



10 Authors Suppressed Due to Excessive Length

causes can be restricted to the 4 leaves (out of 8 leaves) that are directly linked
to the manifestation of the error. Similarly, setting x = 2 and n = 3 means two
detections during the execution of the tree and at most 2 potential root causes
(out of 8 leaves).

Diagnosis. There are 2x versions in one detection interval. Knowing that an
error has occurred, the probability of having an error in each version is uniformly
distributed. Thus the probability of having an error in version i (resp. iteration i)
is 1

2x . Diagnosis is done by recomputing all potential root causes and comparing
the result with previous versions (as shown in Figure 4b. We need to recompute
(and reload) 2x−1 nodes i times in order to locate the root cause of the error.
Thus the expected time for diagnosis is given by:

E(Tdiag) =
2x∑
i=1

1

2x
· i · 2x−1(Kc+ r)

= 2x−2(2x + 1)(Kc+ r) =
1

4
(4x + 2x)(Kc+ r) . (4)

Recomputation. Recomputation follows diagnosis. The root cause of the error
has been localized and we know which node must be recomputed, as shown in
Figure 4c. As seen in diagnosis, when an error is detected, we only need to
consider the 2x−1 nodes that are directly linked to the manifestation of the
error. Now, depending on the actual location of the root cause.

The probability that an error strikes a node is uniformly distributed in space
and time. Therefore, we start with two cases:
1. With probability 1

2 , the error has struck during the first 2x−1 iterations. This
means that the error has propagated to all of the 2x−1 nodes in the last 2x−1

iterations, and that we must recompute at least 2x−1 nodes 2x−1 times.
2. With probability 1

2 the error has struck in the other 2x−1 nodes and we don’t
need to recompute any of the first 2x−1 nodes.

We can write

E(Trecomp) =
1

2
2x−1 · 2x−1 · (Kc+ v) + . . .

Then, we have four cases:
1. With probability 1

4 , the error has struck in the first 2x−2 nodes of the first
2x−1 iterations.

2. With probability 1
4 , the error has struck in the last 2x−2 nodes of the first

2x−1 iterations.
3. With probability 1

4 , the error has struck in the first 2x−2 nodes of the last
2x−1 iterations.

4. With probability 1
4 , the error has struck in the last 2x−2 nodes of the last

2x−1 iterations.



Title Suppressed Due to Excessive Length 11

In cases 1 and 3, we need to recompute at least 2x−2 nodes 2x−2 times. However,
in cases 3 and 4, we do not need to recompute these nodes. We can write:

E(Trecomp) =
1

2
2x−1 · 2x−1 · (Kc+ v) +

2

4
(2x−2 · 2x−2 · (Kc+ v) + . . .

This approach can be used recursively to compute the probability and cost
of all possible scenarios (i.e. for all possible error locations). See Figure 5 for an
example with x = n = 3. .We derive that:

E(Trecomp) =
x∑
i=1

2i−1

2i
2x−i · 2x−i · (Kc+ v)

=

x∑
i=1

1

2
4x−i · (Kc+ v) =

1

6
(4x − 1)(Kc+ v) . (5)

E(Trecomp) =
1

2



2n−12n−1(K · c+ v) + 1
2


2n−22n−2(K · c+ v) + 1

2

{
(K · c+ v)

0

1
2

{
(K · c+ v)

0

1
2


2n−22n−2(K · c+ v) + 1

2

{
(K · c+ v)

0

1
2

{
(K · c+ v)

0

Figure 5: Computation of the expected recomputation cost for x = n = 3 con-
sidering all 8 possible scenarios. The error can hit any one of the 8 iterations
with uniform probability.

Expected cost. Altogether, putting expressions for diagnosis (see Equation 4)
and recomputation (see Equation 5) back into Equation 3, we retrieve Equa-
tion 2.

6 Performance Analysis: Expected Overhead

In this section, we derive exact formulas for the overhead incurred by using the
CR or ABFR approach. For either method, the expected overhead is defined as
E(HX) = E(TX)

Tc
− 1, where TX denotes the cost for method X. Recall that Tc is

the baseline cost, so that the overhead measures extra the fraction of work spent
to mitigate the impact of errors.



12 Authors Suppressed Due to Excessive Length

6.1 CR

Let E(HCR) denote the expected overhead for CR. We can write:

E(HCR) =
E(TCR)
Tc

− 1 .

Taking Equation 1 for E(TCR) and setting Tc to 4n ·K · c, we obtain:

E(HCR) = 1− e−λ4
nKc +

d+ v

2n ·K · c
. (6)

6.2 ABFR

Let E(HABFR) denote the expected overhead for ABFR. We can write:

E(HABFR) =
E(TABFR)

Tc
− 1 .

Taking Equation 2 for E(TABFR) and setting Tc = 4n ·K · c, we obtain:

E(HABFR) =
4n ·K · c+ 2n−x · 2n · d+ 4n · v

4nKc

+
(1− e−λ4nKc)

4nKc

(
1

4
(4x + 2x)Kc+

1

6
(4x − 1)Kc)

)
=

2−xd+ v

Kc
+

(1− e−λ4nKc)
4nKc

(
1

4
(4x + 2x)(Kc+ r) +

1

6
(4x − 1)(Kc+ v))

)
.

(7)

7 Optimal Detection Interval for ABFR

We now show how to derive the optimal detection interval for ABFR. Recall
that the detection interval is of the form D = 2x · K. Our goal is to find the
optimal value for x, denoted by x∗.

First, we use Taylor series to approximate 1 − e−λ4nKc to λ4nKc + O(λ2),
and derive that:

E(HABFR) =
2−xd+ v

Kc
+ λ
(4x + 2x

4
(Kc+ r) +

4x − 1

6
(Kc+ v)

)
.

Then, in order to get the optimal value for x, denoted by x∗, we need to solve
the following equation:

∂E(HABFR)

∂x
= 0 , (8)

Note that letting y = 2x in Equation (8) leads to solving a third-degree equation
in y, so it is possible to obtain a closed-form expression for the optimal value
y∗, and hence for x∗. In the following, we simply solve Equation (8) numerically,
obtain the optimal solution as a real variable, and using nearest rounding to
retrieve the optimal integer value. Finally, plugging x∗ back into Equation 7, we
obtain E(Hopt

ABFR).



Title Suppressed Due to Excessive Length 13

7.1 Limits of the Analysis

For the sake of simplicity, we have made the assumption that only one error can
strike during the computation of a tree, meaning that (1) re-execution after an
error always succeeds, and (2) diagnosis only needs to find one root cause. While
this makes for a good approximation with large MTBE, the error rate can only
get so small in the analysis. In particular, we must ensure that MTBE >> Tc in
order to keep the probability of having more than one error as low as possible.

Note that this is a common assumption when dealing with CR models. How-
ever there are several possible ways the model could be extended to handle
multiple errors. First, multiple errors within a detection interval could trigger
multiple ABFR responses. Alternatively, diagnosis and recovery could be ex-
tended to deal with multiple errors concurrently. These are promising directions
for future work.

8 Simulations

In this section, we run a set of simulations whose goal is twofold: (1) show
the accuracy of the theoretical analysis; and (2) assess the performance of the
proposed ABFR approach against the standard CR approach. We describe the
settings of the simulations in Section 8.1 and we present the results in Section 8.2.

8.1 Settings

We target large platforms subject to silent errors. Such platforms can handle
large simulations with millions of nodes, and we set n = dlog2(106)e = 20. The
time needed to compute one node in N-Body computation is typically measured
at around c = 10−5s and we set the the number of iterations at the bottom level
to K = 100. In addition, we assume that ABFR can take advantage of high
bandwidth, high capacity burst buffers or other form of non-volatile memory to
perform low-cost, frequent versioning, and we set cost to version and recover a
node to r = v = c

100 . Detection, on the opposite, is assumed to be expensive and
we set the detection cost for one node to d = 100 · c. Finally, we set the error
rate to λ = 1.15 · 10−10, which corresponds to a MTBE of 275 years for a single
processor (or one day on a platform with 100000 of such processors).

Simulations are based on the model and we instantiate the model using the
above values by default. Errors are injected into the computation following the
error rate λ. Note that at most one error is injected into the computation of a
tree and that errors can strike any node with uniform probability. When an error
strikes a node, diagnosis and recomputation are computed according to the exact
number of nodes that need to be recomputed for diagnosis and recomputation,
with respect to the error location. The overhead of the simulation is obtained
by averaging the results of 1000 runs.

8.2 Results

In this section, we present the results of the simulations for different scenarios.



14 Authors Suppressed Due to Excessive Length

0 5 10 15 20
x

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rh
ea

d

HCR

HABFR

E(Hopt
ABFR)

(a)

0 5 10 15 20
x

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rh
ea

d

HCR

HABFR

E(Hopt
ABFR)

(b)

Figure 6: Overhead of CR and ABFR approaches for different values of x and
with detection cost d = 100 · c (a) and d = 10000 · c (b).

Impact of Detection Interval. Figure 6 shows the expected overhead ob-
tained using the CR and ABFR approach, denoted by HCR and HABFR, re-
spectively, for all possible values of x between 0 and n. We show the results for
the default detection cost d = 100 · c (a) and for a much larger detection cost
d = 10000 · c (b). In addition, we plot the theoretical optimal expected overhead
for ABFR, denoted by E(Hopt

ABFR), which is obtained with Equation 7 for the
optimal value of x. By solving Equation 8 numerically, we find that x∗ = 14 for
d = 100 · c and x∗ = 17 for d = 10000 · c.

First, we observe that, in both cases, the optimal overhead obtained with the
simulations closely matches the optimal theoretical overhead, which confirms the
accuracy of the analysis. Then, we can see that both figures show a dramatic
increase of the overhead for small values of x. This is because the detection
interval D is of the form 2x ·K. This means that decreasing x (and therefore the
detection interval D) causes an exponential increase in the number of detections,
which in turns increases the overhead. In addition, we note a slight increase of
the overhead for large values of x. Indeed, when the detection interval is too
large, (e.g. only one detection at the end of the computation when x = n = 20),
errors have more time to propagate and more nodes need to be recomputed as
a result, which increases the recovery cost, and therefore the overhead.

While the optimal overhead is very sensitive to the detection interval, we
observe (by comparing both scenarios) that it does not vary much as a function
of the detection cost. This is because the detection cost only represents a small
part of the total computation. Overall, we show that ABFR is able to improve the
overhead by several orders of magnitude compared to the standard CR approach,
and is up to 120 times more efficient with this setting.

Impact of Detection and Version Cost The detection cost d has almost
no effect on the optimal overhead (as shown in the previous scenario). It does



Title Suppressed Due to Excessive Length 15

0 1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7
Detection cost d (multiple of c)

0

2

4

6

8

10

12

14

16

18

20

x
∗

x∗

(a)

0 2 4 6 8 10
Version cost v (multiple of c)

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rh
ea

d

HCR

Hopt
ABFR

(b)

Figure 7: Impact of the detection cost on the optimal x (a) and impact of the
versioning cost on the optimal overhead (b).

however have an impact on the optimal value of x. Figure 7 (a) shows the optimal
x∗ obtained for different detection costs. We can see that unless the detection
cost is extremely small, the optimal x∗ must be a trade-off between the detection
cost and the recovery cost in case of error.

As opposed to the detection cost, the versioning cost v has no effect on the
optimal x∗, but its value can have a significant impact on the overhead. Because
all nodes are versioned, the overhead increases linearly with the version cost v,
as shown in Figure 7 (b), and we must ensure that this cost remains cheap for
ABFR to perform better than CR.

Impact of MTBE. Figure 8 (a) shows the overhead obtained with CR and
ABFR for different MTBE ranging from 100 years to 1000. Figure 8 (b) shows
the corresponding optimal detection interval for ABFR. We can see that ABFR
scales much better than CR with high error rates (MTBE < 400 years). Where
CR needs to recompute the entire tree in case of error, ABFR has the ability to
detect the error earlier in the computation, and to recompute only a fraction of
all the nodes. Indeed, the number of nodes to recompute in case of error depends
on the size of the detection interval D and is at most O(4x) for ABFR, while it
is exactly Θ(4n) for CR. Note that for the same reason, ABFR remains better
than CR even with low error rates (MTBE > 1000 years).

Impact of Error Latency. Figure 9 (a) shows the recovery cost of ABFR
normalized with respect to the recovery cost of CR, while Figure 9 (b) shows
the cost of diagnosis and recomputation normalized with respect to the recovery
cost of ABFR. For the sake of simplicity, we simulated the execution of small
trees with x = n = 10. Here there are 210 ·K = 1024 ·K iterations in total. The
x-axis denotes the number of iterations already done before the error occurred



16 Authors Suppressed Due to Excessive Length

200 400 600 800 1000
MTBE (years)

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rh
ea

d

HCR

Hopt
ABFR

(a)

200 400 600 800 1000
MTBE (years)

10

11

12

13

14

15

16

17

18

19

20

x
∗

x∗

(b)

Figure 8: Overhead of CR and ABFR for different MTBE (a) and corresponding
optimal detection interval x∗ (b).

from 1 (first iteration) to 1024 ·K (last iteration). Because the detection interval
x is set to x = n = 10, both CR and ABFR detect faults only at the end of the
computation.

First, we note that the cost of diagnosis is linear, while the cost of recompu-
tation is not. Indeed, diagnosis is done by recomputing all iterations from the
last correct version until we find the error, while recomputation will skip part of
the nodes depending on the location of the error. In particular, the spike that
we can observe at iteration 512 corresponds to the biggest propagation step. If
the error strikes right before this step, then exactly half of the remaining nodes
must be recomputed. On the contrary, if the error strikes right after this step,
it is not possible for the error to propagate further, and only one fourth of the
remaining nodes needs to be recomputed. Note that, as shown in Section 5.2,
we never need to recompute more than half of all the nodes, hence the recovery
cost of ABFR is at worst 48% better than CR, and at best it is 65% better than
CR.

9 Related Work

Latent errors, also known as silent errors or silent data corruption, represent a
major threat to scientific applications executing on large scale platforms [21,22,23].
There are several causes of silent errors, such as cosmic radiation, packaging pol-
lution, among others. Silent errors can strike the cache and memory (bit flips)
as well as CPU operations; in the latter case they resemble floating-point errors
due to improper rounding, but have a dramatically larger impact because any
bit of the result, not only low-order mantissa bits, can be corrupted. In contrast
to a fail-stop error whose detection is immediate, a latent error is identified only
when the corrupted data leads to an unusual application behavior. This detec-
tion latency renders periodic checkpointing insufficient: if the error struck before



Title Suppressed Due to Excessive Length 17

0 200 400 600 800 1000
Error occurrence (iteration number)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

re
co

ve
ry

co
st

w
.r.

t.
C

R

CR

ABFR

diagnosis

recomputation

(a)

0 200 400 600 800 1000
Error occurrence (iteration number)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

re
co

ve
ry

co
st

w
.r.

t.
A

B
FR

ABFR

diagnosis

recomputation

(b)

Figure 9: Recovery cost normalized w.r.t. CR (a) and w.r.t. ABFR (b) with
detection interval set to x = n = 10.

the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted and cannot be used for rollback. This is why checkpointing must be
coupled with some verification mechanism, in order to detect any latent error
before taking a new checkpoint.

Replication remains the most transparent and least intrusive technique and
can be used at different levels (duplication, triplication or even more) . Combined
with checkpointing, replication comes with two flavors: process replication [24,25]
and group replication [26]. Process replication applies to message-passing ap-
plications with communicating processes. Each process is replicated, and the
platform is composed of process pairs, or triplets. Group replication applies to
black-box applications, whose parallel execution is replicated several times. The
platform is partitioned into two halves (or three thirds). In both scenarios, re-
sults are compared before each checkpoint, which is taken only when both results
(duplication) or two out of three results (triplication) coincide. If not, one or
more silent errors have been detected, and the application rolls back to the last
checkpoint. Note that duplication enables to detect but not to correct a latent
error, while triplication enables both. Replication is not a new technique. Triple
Modular Redundancy, or TMR [27], is the standard fault-tolerance approach for
critical systems, such as embedded or aeronautical devices [28]. However, tripli-
cation has a high cost, since two-thirds of the processors are executing redundant
work, and HPC scientists are not ready to pay such a price.

To address the problem of latent errors in HPC, many application-specific de-
tectors have been proposed. Indeed, application-specific information enables ad-
hoc solutions, which dramatically decrease the cost of error detection. Algorithm-
based fault tolerance (ABFT) [29,30,31] is a well-known technique, which uses
checksums to detect up to a certain number of errors in linear algebra kernels.
Unfortunately, ABFT can only protect datasets in linear algebra kernels, and it
must be implemented for each different kernel, which incurs a large amount of



18 Authors Suppressed Due to Excessive Length

work for large HPC applications. Other techniques have also been advocated.
Benson, Schmit and Schreiber [32] compare the result of a higher-order scheme
with that of a lower-order one to detect errors in the numerical analysis of ODEs
and PDEs. Sao and Vuduc [33] investigate self-stabilizing corrections after error
detection in the conjugate gradient method. Bridges et al. [34] propose linear
solvers to tolerant soft faults using selective reliability. Elliot et al. [35] design a
fault-tolerant GMRES capable of converging despite latent errors. Bronevetsky
and de Supinski [36] provide a comparative study of detection costs for iterative
methods. Recently, several silent error detectors based on data analytics have
been proposed, showing promising results. These detectors use several interpo-
lation techniques such as time series prediction [37] and spatial multivariate
interpolation [38,39,40]. Such techniques offer large detection coverage for a neg-
ligible overhead. However, these detectors do not guarantee full coverage; they
can detect only a certain percentage of corruptions (i.e., partial verification with
an imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detectors
are high, which makes them interesting alternatives at large scale. Similar de-
tectors have also been designed to detect silent errors in the temperature data
of the Orbital Thermal Imaging Spectrometer (OTIS) [41].

The ABFR approach presented in this paper is similar to ABFT approaches,
exploiting application knowledge for error detection, but adding the use of appli-
cation knowledge to diagnose what state is potentially corrupted, and using that
knowledge to limit recomputation, and thereby achieve efficient recovery from
latent errors. Recently, we have successfully applied ABFR to stencil computa-
tions [4], which are perfectly suited to ABFR due to their regular and neighbor-
based communication pattern. The tree-based propagation pattern of N-Body
computations is much more challenging for ABFR.

10 Conclusion

We have applied ABFR for N-Body tree computations to efficiently recover from
latent errors. By exploiting application data flow and intermediate states, ABFR
focuses recovery on an accurate estimate of potentially corrupted data, reducing
recovery cost significantly. To explore the performance of ABFR, we build an
analytical model parameterized by error rate and detection interval for a per-
fect binary tree. Simulation results show that ABFR reduces 50% of recovery
overhead compared to checkpoint-restart approach. While the model is built
for binary trees, it can be generalized to higher dimensions of simulations. Fu-
ture directions include applying ABFR to production N-Body tree codes and
demonstrating an application-agnostic ABFR runtime that supports portable
and scalable performance.

References

1. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P.,
Belak, J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale



Title Suppressed Due to Excessive Length 19

computing. The International Journal of High Performance Computing Applica-
tions 28(2) (2014) 129–173

2. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Computers (1984)

3. Chen, Z.: Online-ABFT: An online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In: PPoPP. (2013) 167–176

4. Fang, A., Cavelan, A., Robert, Y., Chien, A.A.: Resilience for stencil computations
with latent errors. In: ICPP’2017, the 46th Int. Conf. on Parallel Processing, IEEE
Computer Society Press (2017)

5. Dun, N., et al.: Data decomposition in monte carlo neutron transport simulations
using global view arrays. Int. J. High Performance Computing Applications (2015)

6. Fang, A., Chien, A.A.: Applying GVR to Molecular Dynamics: Enabling Resilience
for Scientific Computations. Technical Report TR-2014-04, University of Chicago
(2014)

7. Chien, A., , et al.: Versioned distributed arrays for resilience in scientific applica-
tions: Global view resilience. Procedia Computer Science (2015)

8. Chien, A., et al.: Exploring versioned distributed arrays for resilience in scientific
applications: global view resilience. Int. J. High Performance Computing Applica-
tions (2016)

9. Platform: NERSC CORI. https://www.nersc.gov/users/computational-
systems/cori/

10. Platform: JUQUEEN. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUQUEEN/JUQUEEN_node.html

11. Dun, N., et al.: Multi-versioning performance opportunities in bgas system for
resilience. In: Int. Conf. High Performance Computing, Springer (2016)

12. Blelloch, G., Narlikar, G.: A practical comparison of n-body algorithms. In: Parallel
Algorithms. Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society (1997)

13. Eastwood, J., Hockney, R.: Computer simulation using particles. New York: Mc
GrawHill (1981)

14. Van Albada, G., Van Leer, B., Roberts Jr, W.: A comparative study of computa-
tional methods in cosmic gas dynamics. Astronomy and Astrophysics 108 (1982)
76–84

15. Appel, A.W.: An efficient program for many-body simulation. SIAM Journal on
Scientific and Statistical Computing 6(1) (1985) 85–103

16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of
computational physics 73(2) (1987) 325–348

17. Barnes, J., Hut, P.: A hierarchical o (n log n) force-calculation algorithm. nature
324(6096) (1986) 446–449

18. Hernquist, L.: Performance characteristics of tree codes. The Astrophysical Journal
Supplement Series 64 (1987) 715–734

19. McMillan, S.L., Aarseth, S.J.: An o (n log n) integration scheme for collisional
stellar systems. The Astrophysical Journal 414 (1993) 200–212

20. Springel, V., Yoshida, N., White, S.D.: Gadget: a code for collisionless and gasdy-
namical cosmological simulations. New Astronomy 6(2) (2001) 79–117

21. O’Gorman, T.: The effect of cosmic rays on the soft error rate of a DRAM at
ground level. IEEE Trans. Electron Devices 41(4) (1994) 553–557

22. Ziegler, J.F., Curtis, H.W., Muhlfeld, H.P., Montrose, C.J., Chin, B.: IBM ex-
periments in soft fails in computer electronics. IBM J. Res. Dev. 40(1) (1996)
3–18



20 Authors Suppressed Due to Excessive Length

23. Moody, A., Bronevetsky, G., Mohror, K., Supinski, B.R.d.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: SC, ACM (2010)

24. Ferreira, K., Stearley, J., Laros, J.H.I., Oldfield, R., Pedretti, K., Brightwell, R.,
Riesen, R., Bridges, P.G., Arnold, D.: Evaluating the Viability of Process Repli-
cation Reliability for Exascale Systems. In: SC’11, ACM (2011)

25. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: SC, ACM (2012)

26. Casanova, H., Bougeret, M., Robert, Y., Vivien, F., Zaidouni, D.: Using group
replication for resilience on exascale systems. Int. Journal of High Performance
Computing Applications 28(2) (2014) 210–224

27. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev. 6(2) (1962) 200–209

28. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1) (2004) 11–33

29. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 33(6) (1984) 518–528

30. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput. 69(4) (2009)
410–416

31. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned
conjugate gradient for sparse linear system solution. In: ICS, ACM (2012)

32. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. Int. J. High Performance Computing Applications (2014)

33. Sao, P., Vuduc, R.: Self-stabilizing iterative solvers. In: ScalA ’13. (2013)
34. Heroux, M., Hoemmen, M.: Fault-tolerant iterative methods via selective reliabil-

ity. Research report SAND2011-3915 C, Sandia Nat. Lab. (2011)
35. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the

GMRES iterative solver. In: IPDPS, IEEE (2014)
36. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra

methods. In: ICS, ACM (2008)
37. Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., Cappello, F.: Lightweight silent

data corruption detection based on runtime data analysis for HPC applications.
In: HPDC, ACM (2015)

38. Bautista Gomez, L., Cappello, F.: Detecting silent data corruption through data
dynamic monitoring for scientific applications. In: PPoPP, ACM (2014)

39. Bautista Gomez, L., Cappello, F.: Detecting and correcting data corruption in
stencil applications through multivariate interpolation. In: FTS, IEEE (2015)

40. Bautista Gomez, L., Cappello, F.: Exploiting Spatial Smoothness in HPC Appli-
cations to Detect Silent Data Corruption. In: HPCC, IEEE (2015)

41. Ciocca, E., Koren, I., Koren, Z., Krishna, C.M., Katz, D.S.: Application-level fault
tolerance in the orbital thermal imaging spectrometer. In: PRDC, IEEE (2004)


