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Abstract
In this paper, we demonstrate that the BitTorrent proto-
col family is vulnerable to distributed reflective denial-
of-service (DRDoS) attacks. Specifically, we show
that an attacker can exploit BitTorrent protocols (Mi-
cro Transport Protocol (uTP) [32], Distributed Hash Ta-
ble (DHT) [30], Message Stream Encryption (MSE) [8])
and BitTorrent Sync (BTSync) [6] to reflect and amplify
traffic from peers. We validate the efficiency, robustness
and evadability of the exposed BitTorrent vulnerabilities
in a P2P lab testbed. We further substantiate the lab
results by crawling more than 2.1 million IP addresses
over Mainline DHT (MLDHT) and analyzing more than
10,000 BitTorrent handshakes. Our experiments reveal
that an attacker is able to exploit BitTorrent peers to am-
plify the traffic up to a factor of 50 times and in case of
BTSync up to 120 times. Additionally, we observe that
the most popular BitTorrent clients are the most vulnera-
ble ones.

1 Introduction

DDoS attacks continue to become increasingly devastat-
ing, despite widespread adoption of mechanisms to cir-
cumvent IP spoofing1. In 2013, CloudFlare registered
a DDoS bandwidth record by an attack which gener-
ated nearly 300 Gbps traffic [36]. A year later, a new
record was established by a DDoS attack that generated
400 Gbps [37]. Both these record-setting attacks be-
longed to a category of DoS attacks where the attacker
does not send traffic directly to the victim; traffic is in-
stead sent to reflectors (with spoofed source IP of the vic-
tim) which in turn flood the victim with responses. Such
a DRDoS attack becomes particularly potent if the re-
flectors send higher volumes of traffic to the victim than

1According to the Spoofer project [9], more than 70 % of the pub-
lic networks implement BCP 38 [18] to circumvent IP source address
spoofing.

what they received from the attacker—i.e. the reflectors
act as amplifiers.

The impact of a DRDoS attack is proportional to the
adoption of the protocol that it is exploiting, as wide
adoption makes it easier to find and scale-out the ampli-
fier population. The two attacks mentioned above were
particularly devastating because they exploited DNS and
NTP, both of which are widely-used protocols in the In-
ternet today.

In this paper, we show that BitTorrent, one of the most
popular P2P file sharing protocols2, can also be exploited
to launch DRDoS attacks. BitTorrent and BTSync make
use of UDP protocols. Since these protocols do not in-
clude mechanisms to prevent IP source address spoofing,
an attacker can use peer-discovery techniques like track-
ers, DHT or Peer Exchange (PEX) [7] to collect millions
of possible amplifiers.

We use the following three criteria to understand the
impact of the vulnerabilities exposed in this work:

1. Efficiency: defined in terms of Bandwidth Amplifi-
cation Factor (BAF) [39] and ease of amplifier iden-
tification;

2. Robustness: defined in terms of attack resilience un-
der amplifier churn; and

3. Evadability: in terms of difficulty of attack circum-
vention (at amplifiers and victims) and ease of eva-
sion.

We evaluate the detected vulnerabilities on the above
criteria. Experiments are first performed on a custom
testbed with 33 peers. We further substantiate our find-
ings by crawling 2.1 million IP addresses over MLDHT
and analyzing more than 10,000 BitTorrent handshakes.

Our experiments demonstrate that BitTorrent has a
bandwidth amplification factor (BAF) of 50 times and

2According to some recent measurements, BitTorrent comprises
3.35 % of the worldwide bandwidth [35].
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Figure 1: Schematic diagram of the threat model of a
DRDoS attack.

in case of BTSync up to 120 times. Moreover, we ob-
serve that the most widely-used BitTorrent clients like
uTorrent, Mainline and Vuze are also the most vulner-
able ones. We also show that a possible attack is quite
robust under amplifier churn as the BitTorrent protocol
is widely-adopted and new amplifiers can be discovered
quite quickly using standard peer discovery mechanisms.
Finally, we show that due to its use of dynamic port
ranges and encryption during handshake (in terms of
MSE), a DRDoS attack that exploits BitTorrent cannot
be detected using a standard firewall, and would instead
require Deep Packet Inspection (DPI) to be detected.

2 Background

In this section, we provide a brief overview of DRDoS
attacks and the BitTorrent protocol family. While dis-
cussing BitTorrent, we highlight the vulnerabilities that
can be exploited.

2.1 Distributed Reflective Denial-of-
Service (DRDoS) Attacks

An attacker which initiates a DRDoS does not send the
traffic directly to the victim; instead he/she sends it to
amplifiers which reflect the traffic to the victim. The at-
tacker does this by exploiting network protocols which
are vulnerable to IP spoofing. A DRDoS attack results in
a distributed attack which can be initiated by one or mul-
tiple attacker nodes. Figure 1 outlines the threat model
of a DRDoS attack.

The attacker PA in Figure 1 needs to identify am-
plifiers before initiating the attack. This step is depen-
dent on the protocol which the attacker wants to exploit.

Internet-wide scanning tools like ZMap [17] can help to
identify possible amplifiers. The speed and ease of iden-
tifying new amplifier is fundamentally important to all
the criteria (attack efficiency, robustness under amplifier
churn, and evadability at amplifiers and victims) that we
used as a efficacy benchmark throughout this paper.

After the attacker has identified amplifiers, PA initi-
ates the attack by sending small packets BA to the am-
plifiers PA. Instead of using its own socket address, the
attacker spoofs the address in the packet BA from the vic-
tim PV . The amplifiers respond to the victim PV with a
larger packet BV . This type of attack has several advan-
tages:

• the attacker hides his own identity, since the attacks
uses IP spoofing (evadability advantage);

• it can be initiated by a single computer, but results
in a distributed attack (efficiency advantage); and

• the amplifiers send a larger packet to the victim
and therefore increase the impact of the attack (effi-
ciency advantage).

The ratio of the smaller and larger packet is known as
BAF [39]:

BAF =
|Bv|
|Ba|

, (1)

where the payload to the victim is denoted as |Bv| and the
amplified payload from the victim as |Ba|. For instance,
a BAF of 5 times means, that an attacker with 1 Gbps
upload capacity can send 5 Gbps of traffic to the victim.
Similar to BAF, a Packet Amplification Factor (PAF) is
defined as the ratio of the number of packets sent from
the amplifier to the victim and the number of packets sent
from the attacker to the amplifier.

2.2 BitTorrent Protocol Family
In this section, we first introduce the BitTorrent termi-
nology which we used throughout this paper. We then
briefly discuss the different protocols.

Node: A physical or virtual machine with an IP stack.

Peer: A node that runs a BitTorrent client.

Swarm: All the peers sharing a torrent.

Torrent: A file that contains metadata about the BitTor-
rent swarm and the distributed files.

Info-hash: SHA-1 hash (160 bit) from the .torrent file
which identifies a swarm.
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Peer-id: Unique ID which identifies a single peer which
is chosen at random.

Seeder: A peer that has downloaded the complete con-
tent and shares it with other peers.

Leecher: A peer which is downloading content of the
torrent.

BitTorrent is the most commonly-used P2P protocol
of the world today3. The novelty of this protocol is, that
it provides solutions for the free riding problem [11] and
the last piece problem [23]. To overcome the first prob-
lem, BitTorrent uses an incentive mechanism called the
choking algorithm [13] which results in a tit-for-tat-ish
way of sharing. BitTorrent solves the second problem by
introducing the rarest piece first algorithm [28].

Similar to all P2P systems, BitTorrent also has to over-
come the bootstrapping problem: how can a new peer
join the network when there is no central contact point?
The original BitTorrent specification introduces the con-
cept of a tracker, which is a server that registers all par-
ticipating peers. Before a newly-joined peer can partic-
ipate, it requests the tracker for contact information of
other peers.

Over time, a number of extensions to the BitTorrent
protocol have been proposed to avoid a central (tracker)
contract point; see, for instance, DHT [30], PEX [7] and
Local Peer Discovery (LPD) [33]. If the new peer has a
number of peers, it starts to connect to them and sends a
special BitTorrent handshake.

Originally, TCP was the default protocol for hand-
shake and all subsequent communications with peers.
TCP, however, has some disadvantages when used in a
P2P environment, as it distributes the available band-
width evenly across all connections. Since a P2P applica-
tion uses multiple connections, it always gets more band-
width than other applications. As a consequence, BitTor-
rent, which is usually meant to run in the background,
ends up interfering with the foreground traffic (like web
surfing or emails). This is why BitTorrent invented a new
transport protocol called uTP.

2.3 Micro Transport Protocol (uTP)

BitTorrent Inc. announced in December 2008 that uTor-
rent will switch its default transport protocol from TCP
to uTP [21]. This protocol sits on top of UDP and imple-
ments a novel congestion control called Low Extra Delay
Background Transport (LEDBAT) [24]. This congestion
control detects foreground traffic by using one way delay

3BitTorrent’s bandwidth usage is geographically disparate [35]; e.g.
in Europe, it comprises 31.8 % of all upstream traffic and 12.1 % of
downstream traffic during peak hours [42].

connection established

Initiator Receiver
SYN_SENT

CONNECTED

ST_SYN

CONNECTED

ST_
STA

TE

Figure 2: Two-way handshake to initiate a connection
between two uTP nodes. The text on the outer edge re-
flects the state of the protocol.

measurements. If the difference between the measure-
ments increases, the sender automatically throttles back.

uTP [32] adopts a few ideas from TCP. It controls the
flow with a sliding window, verifies data integrity with
sequence numbers and initiates a connection with a hand-
shake. Unlike TCP, uTP uses a two-way handshake in-
stead of a three-way handshake. Figure 2 depicts the
message flow to establish a connection between two uTP
nodes.

It can be seen that the initiator sends a ST_SYN packet
to the receiver to initiate a connection. This is similar to
the SYN packet in TCP. The receiver acknowledges the
ST_SYN packet with a ST_STATE packet. After receiving
that packet, the bidirectional connection is successfully
established.

Most of the present BitTorrent clients now implement
uTP as the default transport option. In the next section
we will show how an attacker can exploit uTP to start an
amplification attack.

3 Amplification Vulnerabilities in uTP

In this section, we reveal amplification vulnerabilities in-
troduced by three popular BitTorrent protocols: BitTor-
rent [14], BTSync [6], and uTP [21].

3.1 Two-way handshake of uTP
As described briefly in Section 2.3, uTP establishes a
connection with a two-way handshake. This allows an
attacker to establish a connection with an amplifier us-
ing a spoofed IP address, as the receiver does not check
whether the initiator has received the acknowledgment.
We first tested this idea with the uTP test program ucat

which is attached to libutp4. This program is the coun-
terpart of netcat but uses uTP instead.

We setup a receiver that provides an arbitrary binary
file when responding to ST_DATA. The attacker sends

4https://github.com/bittorrent/libutp
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Figure 3: In uTP the initiator sends a ST_SYN packet
to the receiver. The receiver acknowledgs this with a
ST_STATE packet. After that, the connection is estab-
lished (two-way handshake).

a forged ST_DATA to this receiver with the spoofed IP
address of the victim. The receiver believes that the
source IP address in that packet is valid and sends the first
ST_DATA packet to the spoofed address. Since the forged
address has not expected that packet, it does not send
an acknowledgment back. The receiver runs into timeout
and retransmits the lost ST_DATA packet. If 4 consecutive
transmissions have timed out, uTP kills the connection.
In this experiment, the receiver has sent 5 packets with
a payload size of 1402 bytes, which results in 7030 sent
bytes. According to Equation (1), this results in a BAF
of 351.5 times, since the initiator only sends a ST_SYN

packet with a size of 20 bytes.
uTP does not send more packets because it implements

a slow-start mechanism. The max_window starts with
1382 bytes and increases for every acknowledgment it
receives. When it is not receiving acknowledgments, it
remains at that value. To the best of our knowledge, uTP
is only used by BitTorrent so far. TOR project, however,
thought about replacing TCP with uTP [29], but came to
the conclusion that it is not trivial to replace it.

Let us now highlight how an attacker can exploit the
two-way handshake of uTP with BitTorrent.

3.2 Exploiting BitTorrent Handshake via
uTP

After the connection is established BitTorrent requires a
handshake as its first message. It contains reserved bytes
for extensions, info-hash and the peer-id. If a client re-
ceives a handshake with an info-hash that it does not par-
ticipate, the client drops the connection immediately. An
attacker can use the BitTorrent handshake to initiate an
amplification attack based on the two-way handshake of
uTP. Figure 3 outlines such an attack scenario.

The attacker initiates a connection with a spoofed

ST_SYN packet to the amplifier in a). The amplifier re-
sponds in b) with an acknowledgment via a ST_STATE

packet to the victim. This packet does not contain use-
ful information, because uTP only supports the two-way
handshake. In step c), the attacker sends an ST_DATA

packet with a BitTorrent handshake in the payload.
This handshake needs an info-hash (20 bytes) of an

active torrent of the amplifier. The handshake has a min-
imum size of 88 bytes. If the amplifier participates in that
torrent, it will respond in d) with its own handshake. The
handshake in d) is bigger than the packet which the at-
tacker has sent, since the clients put additional messages
in the uTP packet.

In our tests, nearly all clients either sent either a
BITFIELD or multiple HAVE messages within the first
uTP data packet. If and how many HAVE messages are
sent with the handshake, depends on the client imple-
mentation. The size of the BITFIELD message depends
on the size of the shared files. Since the handshake from
d) does not get acknowledged, the amplifier thinks the
packet is lost and retransmits the handshake again. In
our tests, all clients retransmitted the handshake from 3–
4 times until the connection gets terminated.

BitTorrent provides Libtorrent Extension Proto-
col (LTEP) to add new extensions without interfering
with the default protocol. If an attacker signals that it
supports the LTEP, that is specified in BEP 10 [34], it
can further amplify the attack without increasing the
size of the handshake in c); i.e. efficiency of the attack is
only enhanced as LTEP it is a simple bit that is set in the
extension byte. With that extension, the peers exchange
peer information with each other. All tested clients send
these messages together with the handshake. This is
because one uTP packet can contain multiple BitTorrent
messages. We refer to this vulnerability as BitTorrent
Handshake (BTH).

The BAF of BTH is as follows:

BAFBT H(p,n) =
20+20+ p× (n+1)

20+88
, (2)

where p denotes the payload size, n denotes the num-
ber of retransmissions, and all numbers are in bytes. The
number of retransmissions n gets incremented by one,
since the first regular packet does not belong to the re-
transmissions. The 20 bytes on the denominator belongs
to the ST_SYN packet and the 88 bytes belongs to the
ST_DATA packet that contains the BitTorrent handshake.
The 40 bytes on the numerator are the acknowledge-
ments of two sent packets.

In the next subsections, we evaluate the BAFBT H for
the five most commonly-used BitTorrent clients [41],
namely uTorrent (48 % market share), Vuze (22 %), Bit-
Torrent mainline client (13 %), Transmission (7 %) and
LibTorrent (1 %).
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3.2.1 Mainline and uTorrent clients

We have tested uTorrent 3.4.2 (built 35702) and main-
line BitTorrent 7.9.2 (built 35144) on Windows 7. Since
mainline BitTorrent version 6.0 is uTorrent with a re-
branded GUI, we handle both clients together. In our
tests, both clients sent not only the BitTorrent handshake,
but also one BITFIELD, multiple HAVE messages and one
PORT message. The number of HAVE messages that the
client sends depends on the protocol state of the client. If
the client is in leech state, it sends the number of pieces
that it has already downloaded, but not more than 24.
In seed state, the client always sends 24 HAVE messages,
thus resulting in a BAF of 27.5 times.

If the attacker sets the LTEP bit in the handshake
and the amplifier also supports it, the amplifier sends
an additional extension message handshake in the first
packet. This handshake is a bencoded dictionary that
contains meta information about the peer (e.g. version of
client) and also a list of extensions that the peer supports.
We observed that in both clients the LTEP handshake is
larger compared to other clients. This is because they
put more meta information in that packet. Both clients
also support more extensions which are not public, like
ut_holepunch and ut_comment. This additional hand-
shake increases the BAF up to 39.6 times.

3.2.2 Vuze

Vuze is the most commonly-used BitTorrent client. We
have tested Vuze 5.4.0.0/4 (formerly Azureus) on Win-
dows 7. Without signaling any extensions, Vuze re-
sponds only with the BitTorrent handshake and a com-
plete BITFIELD message. Vuze sends the uTP packet
four times. This results in a BAF of 13.9 times. Vuze
does not only support LTEP, but it has also designed its
own extension protocol called Azureus Message Proto-
col (AMP) [3].

If an attacker signals that it supports LTEP and the
amplifier also supports it, the amplifier adds the addi-
tional extension handshake. Compared with uTorrent,
the handshake is smaller, because Vuze does not support
the proprietary extensions from uTorrent. The BAF in-
creases through LTEP up to 18.7 times. An attacker can
increase the BAF if it signals that it supports the AMP.

Vuze uses AMP to transmit BitTorrent messages,
Azureus messages and other communications like chat
messages. If the AMP bit is set in the client hand-
shake, a Vuze amplifier adds the following messages
to the packet: AZ_HANDSHAKE, AZ_PEER_EXCHANGE,
AZ_REQUEST_HINT, AZ_STAT_REQ and AZ_HAVE. This
increases the handshake up to 1165 bytes, which in-
creases the BAF to 54.3 times. This value can be even
higher, since the BITFIELD message depends on the

size of the shared files. In our analysis we used the
Ubuntu 14.10 image that has a size of 1.2 GByte.

3.2.3 Transmission and LibTorrent

We tested with Transmission 2.84 (built 14307) on
Ubuntu 14.04.1. Transmission supports both LTEP
and AMP. However, Transmission does not add any
other BitTorrent message in the first uTP data packet
than the handshake. It does not matter which extension
is activated, Transmission only sends 88 bytes in a
BitTorrent handshake and resends a lost packet three
times. According to this, an attacker can only achieve a
BAF of 4.0 if the amplifier uses the Transmission client.

Libtorrent is a BitTorrent library written in C++ which
is used by over 25 different BitTorrent clients. We have
tested libtorrent 1.0.2 on Ubuntu 12.04. Like Transmis-
sion, libtorrent does not add any other BitTorrent mes-
sage to the first uTP data packet, except the handshake.
Where libtorrent is different, compared to Transmission
is the number of retransmissions. Libtorrent resends a
lost packet six times, which increases the BAF up to 5.2
times. If a peer wants to obfuscate its BitTorrent traf-
fic, it starts with MSE handshake instead of a BitTorrent
handshake.

3.3 Exploiting Message Stream Encryp-
tion (MSE) Handshake

The aim of MSE [8] is to obfuscate BitTorrent traffic to
avoid shaping, rather than to encrypt the traffic securely.
In addition to that MSE encrypts the traffic and provides
confidentiality. The first objective of MSE, however, was
to obfuscate the traffic to avoid traffic shaping by ISPs.
Brumley and Valkonen showed in their paper [12] that
MSE has a number of serious weaknesses. It is imple-
mented by most of the BitTorrent clients like uTorrent,
BitTorrent mainline, Vuze, Transmission, libtorrent, Bit-
Comet, etc.

The protocol starts with a Diffie-Hellman key ex-
change (DH), where each peer generates a 768 bit pub-
lic key. To avoid having fixed length packets, each peer
generates random data r with a length of 0–512 bytes
and adds it to the public key. After the key exchange,
the packets are RC4 encrypted. The transport protocol of
these messages are based on uTP. One advantage of this
method is that an attacker does not have to know a valid
info-hash from the amplifier.

An attacker can send a spoofed MSE handshake that
includes 768 bit public key without random data. A
client which supports MSE responds with its public key
and random data. Hence, the BAF for a client with MSE
is.
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BAFMSE(r,n) =
(116+ r)× (n+1)

116
, (3)

where r is the length of the random data with interval
0 bytes ≤ r ≤ 512 bytes and n the number of retransmis-
sions n = {4,5,6}. According to Equation (3), BAFMSE
ranges from 4–32.5 times.

The results of this section demonstrates that an at-
tacker who exploits MSE can significantly enhance the
efficiency of the BTH attack. Furthermore, note that the
encrypted payload of BA and BV packets generated using
MSE have a high entropy and are therefore hard to detect
and to block with Stateful Packet Inspection (SPI) or DPI
firewalls. Statistical measurements, however, show good
results to detect MSE [22, 25], but are not widespread
used. Hence, use of MSE also helps in making the attack
difficult to detect and circumvent, hence contributing to
the evadability of the attack. To avoid a central tracker,
BitTorrent included the DHT protocol to the BitTorrent
protocol family.

3.4 Exploiting DHT Messages
The DHT implementation in BitTorrent clients is di-
vided into two protocols: MLDHT [30] and Vuze DHT
(VDHT) [5]. The MLDHT is by far the biggest overlay
network with users of around 15–27 million [43] per day.
Both protocols are not compatible with each other. DHT
is used to find peers that share the same torrent. The
MLDHT implementation is discussed in the next subsec-
tion.

3.4.1 Mainline DHT

The MLDHT supports the following queries: ping,
find_node, get_peers and announce_peer. The
ping query is the most basic one and tries to find out
if a peer is available via DHT. The request contains the
command ping and peer-id which consists of a 20 byte
string. Together with the RPC protocol, a ping request
has a size of 56 bytes. The response only contains the
peer-id of the responding peer, therefore the response
packet has a size of 47 bytes. The ping query does not
amplify the bandwidth.

The find_node query tries to find the k closest peers
for a specific peer-id. The request contains both the
peer-id of the requesting and sought peer. Together
with the RPC overhead, the payload of a request packet
has a size of 95 bytes. A peer responds with a list
of k peers, whereby BitTorrent Enhancement Proposal
(BEP) 05 [30] sets k = 8. According to this, the response
varies from 283–332 bytes, depending on the implemen-
tation. In our tests we found two DHT peers5 which set

5router.utorrent.com and router.bittorrent.com

Table 1: Amplification factors of the different MLDHT
queries.

Description BAF
ping 0.8
find_node with K = 8 3.1
get_peers with 100 peers (IPv4) 11.9
get_peers with 100 peers (IPv6) 24.5
get_peers with scrapes 13.4

k = 16. These peers are the bootstrapping peers for most
BitTorrent clients. This results in a BAF of 5.2 times.
get_peer query is much more interesting, as it re-

turns a list of peers for a given info-hash. If the peer does
not have peers for that info-hash, it will return a list of k
peers, similar to the find_node query. This means, only
peers which are involved in a swarm are able to send a
list of participating peers back. BEP 05 does not say any-
thing about a limit for the peers. In our tests, we found
peers which send a list of 100 peers back which results
in a BAF of 11.9 times. If a peer would only return IPv6
addresses, this would increase the BAF up to 24.5 times.
With an additional extension, we can increase the pay-
load of the response even further.

BEP 33 [4] describes an extension to DHT called DHT
scrapes. Scrapes are statistics of a swarm like the num-
ber of seeders, leechers and complete downloads. It
is a method to assess the state of a swarm which is
based on bloom filters. To request scrapes a peer has
to send a get_peer request that contains the dictionary
entry scrape. If the responding peer has database en-
tries for a particular info-hash, it returns the statistics in
the get_peer response. With that request, we were able
to increase this value up to 13.4 times. The BAF of all
queries from the MLDHT is summarized in Table 1.

3.4.2 Vuze DHT

The Vuze ping query without any special flags is similar
to the results from the mainline DHT. The value of BAF
is 0.8 times. Vuze, however, supports the Internet co-
ordinate system Vivaldi [15, 40] which aims to estimate
the round trip time of other peers without testing it. If
the protocol version is >= 10, then the amplifier adds
Vivaldi network coordinates to the ping packet. This
increases the ping reply packet up to an BAF of 14.9
times.

3.5 Exploiting BitTorrent Sync
BTSync is a proprietary protocol that makes use of uTP
to synchronize files in a P2P way. This protocol cur-
rently has 1 million users [38] which makes it an in-
teresting target for amplification attacks. We investi-
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gated three BTSync messages which can be exploited:
tracker request, BTSync handshake and a ping message.
For all messages, an attacker needs a valid BTSync se-
cret. There are, however, a number of public websites
like [1, 2] where BTSync users publish their secrets. An
attacker can use these secrets to run an amplification at-
tack. The first message is the tracker request.

By default, BTSync will contact a tracker to request
peers for a specific secret. The tracker is run by Bit-
Torrent Inc. and uses the domain t.usyncapp.com. A
DNS request resolves this domain to four IP addresses
which are hosted by Amazon’s EC2 cloud. The tracker
request starts with a uTP ST_SYN packet followed by a
ST_DATA packet that contains a bencoded payload which
includes the peer-id, secret, local address and local port.
The tracker responses with a list of peers. The response
is bigger than the request. It depends, however, highly on
the number of peers the trackers sends. The next message
is the BTSync handshake.

The BTSync handshake is similar compared to BitTor-
rent. The ST_DATA packet contains a bencoded packet
with the secret and a 16 bytes nonce value which can be
random. The peer responses with a 160 bytes public key
and a 16 bytes salt value. This yields to a BAF of 10.8
times.

The ping is a normal UDP packet that starts with the
string BSYNC followed by a zero byte and a bencoded
dictionary. The dictionary contains the command ping,
20 bytes long secret and 20 bytes long peer-id. The
UDP payload of this packet is altogether with the over-
head of the dictionary 76 bytes. The other side also re-
sponds with a ping message. But not just one — it sends
117 ping messages and 12 uTP ST_SYN packets to the re-
quester. This yields to a BAF of 120.2 and a PAF of 129.
This happens with BTSync versions 1.4 and 2.0.105.

3.6 Discussion

As a summary, we have listed all the BAF values in Ta-
ble 2. Our protocol analysis shows that BitTorrent is
highly vulnerable to DRDoS attacks. An attacker is able
to amplify the traffic beginning from 4–54.3 times. If
an attacker knows the peer-id from the amplifier, he/she
is able to predict the BitTorrent client and start a target-
oriented attack. This is possible through the peer-id con-
vention which is defined in BEP 20 [20]. Even if a client
does not support uTP, an attacker can still exploit DHT
or MSE with a lower BAF value. This means that nearly
every client can be exploited, which makes such an at-
tack very efficient and robust against peer churn. The
next section will focus on the experimental evaluation of
these exploits.

Table 2: Amplification Factors of the different BitTorrent
clients with a BitTorrent handshake with uTP.

Description BAF PAF
ucat 351.5 6
uTorrent w/o extensions 27.6 3.5
Mainline w/o extensions 27.8 3.5
uTorrent with LTEP 39.6 3
Mainline with LTEP 39.6 3
Vuze w/o extensions 13.9 2
Vuze with LTEP 18.7 2
Vuze with AMP 54.3 3.5
Transmission w/o extensions 4.0 3.5
Transmission with LTEP 4.0 3.5
Transmission with AMP 4.0 3.5
Libtorrent w/o extensions 5.2 4
Libtorrent with LTEP 5.2 4

4 Experimental Evaluation

In this section, we show that the attacks presented in this
paper are efficient, robust and difficult to circumvent.

4.1 Efficiency

We perform experiments in our testbed system consist-
ing of 33 nodes: 1 attacker, 1 victim and 31 ampli-
fiers. All nodes are desktop machines which are running
Ubuntu 12.04.02 LTS. We installed uTorrent server V3.3
on all amplifiers with a private torrent of 1 GByte in seed
mode.

The attacker in our experiment runs a scapy6 script
that sends forged uTP packets to the amplifier. It first
sends 31 uTP ST_SYN packets then it waits for 1 second
and sends 31 uTP ST_DATA packets which contain a Bit-
Torrent handshake. The script waits then for 120 sec-
onds, since otherwise the amplifiers would just termi-
nate the connection with a ST_FIN packet. The attacker
script does not need to save the state for each peer, which
makes it quite efficient. An I/O graph can be seen in Fig-
ure 4.

It can be seen that after the attacker sends the forged
packet, the amplifiers sends the traffic to the victim. The
first peak is the highest, since both, the acknowledge-
ment for the first SYN and the handshake arrive together
at the victim. The following peaks are the retransmis-
sions of the handshake and acknowledgement. During
our experiments we noticed that uTorrent for Linux be-
haves differently compared to the Windows client. The
attack had an amplification factor of 14.6 times.

6http://www.secdev.org/projects/scapy/1
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Figure 4: Amplification attack with 1 attacker, 31 am-
plifiers and 1 victim. The blue line shows the payload
size that the attacker sends to the amplifier. The red line
shows the payload size that the amplifier sends to the vic-
tim.

4.2 Robustness
To evaluate the robustness of our detected vulnerabili-
ties against amplifier churn in a real-world attack, we
wrote two BitTorrent crawlers. The first one searched
the MLDHT network and the second one used the results
from the MLDHT network to start a BitTorrent hand-
shake via uTP. We tracked 9.6 million possible am-
plifiers where 2.1 million peers were responding to our
DHT requests. First we describe our crawler architecture
and then we present our results for the DHT network and
the handshake requests.

4.2.1 Architecture

We programmed our crawler in the programming lan-
guage Elixir, which is a functional and concurrent lan-
guage built on top of the Erlang Virtual Machine (EVM).
Our crawler is open source and can be found on GitHub7.

At first we filled a database table “torrents” with the
complete magnet database from Piratebay from 13th
February 2012. This database comprised 1.6 million
info-hashes. Each DHT harvester process takes an info-
hash and sends a find_node request to a bootstrapping
node. This node returns 20 peers, which the harvester
saves in our database. At that time, the requester takes
peers from our databases and sends find_node requests
to it. Additionally, we save meta informations from the
responses e.g. payload size, version of the BitTorrent
client, number of nodes and so on. The harvester stops
when it has requested 1000 peers.

7https://github.com/cit/bt_crawler
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Figure 5: Histogram of the payload size from the DHT
responses which are caused by get_peers requests. The
numbers on top of the bars are the average BAF values.

The peer requester uses the results from the DHT har-
vester and sends a ST_SYN packet to that peer. If the peer
sends us a ST_STATE packet, we respond with a BitTor-
rent handshake that has all extensions enabled. Then this
process waits for a reply and saves all responses to our
database.

4.2.2 Mainline DHT Network

We collected overall 9.6 million peers via MLDHT
beginning from 1st January 2015 until 1st February
2015. From those peers, 2.1 million responded to our
get_peers request, which corresponds to 21.9 %. From
these responding peers 67.8 thousand peers included par-
ticipating peers, which corresponds to 3.2 %. The rest
were only returning k neighbors. Figure 5 shows a distri-
bution of the payload size of all responses.g

The mean of all received packets is 665.6 bytes which
results in a BAF of 7 times. The max value is 3344 bytes
with a BAF of 35.2 times and the min value is 82 bytes
results in a BAF of 0.9 times. From the above data it
is clear that MLDHT can be exploited, but most of the
responses do not produce a high BAF value. Therefore,
we used the gathered peer information from the MLDHT
network to request a BitTorrent handshake to test the ef-
ficacy.

4.2.3 uTP distribution

In this section we analyze the responses from the uTP
requests. For every peer that participates in a torrent,
we send a uTP ST_SYN packet. If we get a ST_STATE

between 10 seconds we send a BitTorrent handshake to
that peer. Overall, we collected 10,417 handshakes via
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Figure 6: Histogram of the BitTorrent handshake size
from the uTP responses.

uTP. The first question that we answer is the following:
What is the distribution of the payload size of the first
data packet? Since this is crucial for the impact an ampli-
fication attack which can be seen in Equation 2. Figure 6
shows a histogram of the payload size of all received Bit-
Torrent handshakes.

The histogram shows clearly that there are three peaks
in the distribution of the payload size. The first peak
is the highest value of 665 bytes. This peak comprises
15.7 % of all handshakes and would result with a 5 times
retransmission of BAF of 31.2 times. The next peak is at
around 1000 bytes with a frequency of 2.2 %. This would
result a BAF of 46.7 times. The last peak is the highest
payload size of 1438 bytes. It comprises 3.9 % of all
handshakes and result in a BAF of 66.9 times. The mean
of all received packets is 810.8 bytes, the max value is
1438 bytes and the min value is 313 bytes. We calculated
BAF values above with a number of retransmissions of
4 packets (total of 5 packets), since this is the protocol
default.

We analyzed all LTEP message that were in the first
uTP data packet. A LTEP message contains a dictionary
entry with the exact client version. Table 3 shows the
evaluation of these messages.

It can be seen that the latest uTorrent and BitTorrent
version tops the list in Table 3. Only 0.1 % were un-
known, since they were not transmitting an LTEP mes-
sage. Since we only crawled the MLDHT network, Vuze
is not in our list. In the next subsection, we will discuss
how difficult it would be to circumvent an DRDoS attack
that exploits BitTorrent.

4.3 Evadability
DNS and NTP use well-known ports for their service. As
a consequence, the reflected traffic can easily be blocked

Table 3: Client software and version number of the in-
spected LTEP messages.

Version Count Percentage
uTorrent 3.4.2 8616 82.7
BitTorrent 7.9.2 1641 15.8
uTorrent 3.4.1 107 1.0
uTorrent 3.4 27 0.3
BitTorrent 7.9.1 14 0.1
Unknown 9 0.1
BitTorrent 7.9 2 0.0

Table 4: Comparison of amplification vulnerabilities and
with which firewall technology it can be defended

D
N

S’
13

N
TP

’1
4

BT
H

M
LD

H
T

V
D

H
T

BT
Sy

nc
M

SE

SPI firwall X X
DPI firewall X X X X

by a SPI firewall. This is not possible with BitTorrent,
since it uses dynamic ports. The payload of the Bit-
Torrent handshake contains the character 19 followed by
the string “BitTorrent protocol”. In case of BTSync the
handshake contains the string “BTSYNC”. In both cases,
the victim needs DPI hardware to block an attack from
these protocols.

The situation looks different when an attacker exploits
MSE. The payload of a MSE handshake is completely
random. Table 4 shows comparison of the different pro-
tocols and with which firewall technology it can be de-
fended. In the next section, we will discuss the counter-
measures of the proposed attacks.

5 Countermeasures

In this section we will discuss countermeasures against
the presented vulnerabilities. The root cause of these at-
tacks is the IP source address spoofing. It has been seen
that the anti-spoofing filtering techniques like Ingress
address filtering and unicast reverse path are effective
against IP spoofing. In practice these techniques have
limits, especially in an ISP infrastructure. The Spoofer
project measures the susceptibility of IP spoofing around
the world since 2005 until now [9]. According to
their latest measurements from 2015, 26.1 % of all au-
tonomous systems allow spoofing and 15.5 % allowed
partial spoofing. We think a working countermeasure
must follow two parallel ways: global ISP coordination
to prevent IP spoofing and protocol defense mechanism
to avoid protocol exploitation.
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5.1 Handshakes over uTP
The presented attacks are only possible, since uTP makes
use of the two-way handshake. Therefor it is possible for
an attacker to send a spoofed BitTorrent or MSE hand-
shake via uTP to an amplifier. We highly recommend
that uTP switches to the three-way handshake, like TCP.
It would prevent the presented attacks, since both nodes
do not send data until the last acknowledgment arrives,
like some TCP devices do [27]. The disadvantage of this
approach is that it is a significant change in the protocol.
An alternative that does not prevent the attack, but reduce
the impact, is to limit the messages in the first uTP packet
to one, like the clients in Section 3.2.3. This results in a
maximum BAF of 4–5 times.

5.2 DHT
UDP tracker, MLDHT an VDHT already have a counter-
measure against index poisoning attacks [31]. It prevents
an attacker to add other peers except from themself to the
DHT network with the announce_peer or STORE call. It
does this, by requiring a token that a peer has to request
from a previous get_peers or FIND_NODE query. This
token is valid for 10 minutes and prevents spoofing at-
tacks but only for the announce_peer or STORE query.
To prevent amplification attacks it would be necessary to
request the token in the ping query, since it is the one
with the smallest BAF value. All other queries need to
require this token. This would prevent any spoofing at-
tacks against DHT. The disadvantage of this mechanism
is that it always requires two DHT queries to request new
peers which slows down the bootstrapping time.

6 Related Work

In this Section we will discuss related work that has in-
fluenced and inspired our research.

6.1 Amplification Attacks
Rossow [39] did the first broad investigation of UDP
based protocols. They found 14 protocols that are vul-
nerable, including MLDHT, for which we reproduced
the same results. We, however, did a more thorough in-
vestigation of the BitTorrent family, which includes uTP,
MSE, BTSync, MLDHT and Vuze DHT with different
queries and different clients.

Kührer et al. [26] analyzed the amplifier magnitude
for DNS, SNMP, Simple Service Discovery Proto-
col (SSDP), Character Generator Protocol (CharGen),
Quote of the Day (QOTD), NTP and NetBIOS with
an Internet-wide scan. Additionally, they developed
a remote spoofer test to check if a network allows

IP spoofing. They found more than 2,000 networks
which were lacking of egress filtering. In a follow-up
work, Kührer et al. [27] investigated how vulnerable
TCP is. Despite its three-way handshake, there are
TCP/IP implementations that do not strictly follow the
standard. This means, the implementation sends data
before the three-way handshake is complete.

6.2 P2P DDoS attacks
A number of papers focused on BitTorrent tracker as
their target to run DDoS attacks. Harrington [19] ex-
ploited the fact that peers trust the tracker. They modified
a tracker which instead of distributing a list of participat-
ing peers, it distributes a list of victims. Every peer that
requests that tracker tries to connect to the victims. An
attacker, however, can inject the victim as a tracker it-
self, like presented by Defrawy [16]. Hereby, the victims
get all the tracker requests from peers which results in
a DDoS. We focused instead how vulnerable the BitTor-
rent protocol family is to IP source address spoofing.

In a previous research work [10], we did a security
analysis on uTP. LEDBAT, the congestion control in
uTP, only works with correct feedback from the receiver.
A misbehaving receiver which is not interested in data
integrity can increase the bandwidth consumption up to
five times. This can cause congestion collapse which re-
sults in a DOS attack.

7 Conclusion

BitTorrent and BTSync are vulnerable to DRDoS at-
tacks. We demonstrated that these attacks are efficient.
With peer-discovery techniques like trackers, DHT or
PEX, an attacker can collect millions of amplifiers. An
attacker only needs a valid info-hash or secret to exploit
the vulnerabilities. In that case, we have shown that
the most used BitTorrent clients, uTorrent, Mainline and
Vuze, are highly vulnerable and can be amplified up to a
factor of 50 times. With a single BTSync ping message,
an attacker can amplify the traffic up to 120 times. An
easier amplifier target is a MSE handshake, since an at-
tacker does not need an info-hash. The amplification fac-
tor of this attack ranges from 4–32.5 times. We showed
that a possible attack is robust against amplifier churn.
To validate the robustness of the attack, we wrote a Bit-
Torrent crawler which ran for one month and collected
more than 2.1 million IP addresses and analyzed more
than 10,000 BitTorrent handshakes. We showed that an
attack is quite difficult to circumvent, as the found vul-
nerabilities can only be defended with a DPI firewall. In
case of a MSE handshake, it is even harder to detect the
attack, since the packet contains a high entropy payload
with a public key and random data.
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