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bLASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa

Abstract

Sequencing thousands of human genomes has enabled breakthroughs in many
areas, among them precision medicine, the study of rare diseases, and foren-
sics. However, mass collection of such sensitive data entails enormous risks if
not protected to the highest standards. In this article, we follow the position
and argue that post-alignment privacy is not enough and that data should
be automatically protected as early as possible in the genomics workflow,
ideally immediately after the data is produced. We show that a previous
approach for filtering short reads cannot extend to long reads and present a
novel filtering approach that classifies raw genomic data (i.e., whose location
and content is not yet determined) into privacy-sensitive (i.e., more affected
by a successful privacy attack) and non-privacy-sensitive information. Such
a classification allows the fine-grained and automated adjustment of protec-
tive measures to mitigate the possible consequences of exposure, in particular
when relying on public clouds. We present the first filter that can be indis-
tinctly applied to reads of any length, i.e., making it usable with any recent
or future sequencing technologies. The filter is accurate, in the sense that it
detects all known sensitive nucleotides except those located in highly vari-
able regions (less than 10 nucleotides remain undetected per genome instead
of 100,000 in previous works). It has far less false positives than previously
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known methods (10% instead of 60%) and can detect sensitive nucleotides
despite sequencing errors (86% detected instead of 56% with 2% of muta-
tions). Finally, practical experiments demonstrate high performance, both
in terms of throughput and memory consumption.

Keywords: Filtering, Raw Genomic Data, Privacy

1. Background

In recent years, next-generation sequencing technologies have evolved to
produce biological data faster and with improved quality. Those technologies
are now well developed for short reads (DNA sequences of less than 100
nucleotides), however, a new generation producing longer reads has already
entered the market [1]. In practice, those reads are often aligned to a reference
genome to obtain their location in that reference, and then infer genomic
insights (e.g., variant calling, disease development risk, etc.) [2, 3].

Human DNA sequences have a high value to biomedical research if stud-
ied at a large scale, as they increase the accuracy of studies and enable
discoveries of new variants. However, the number of human DNA sequences
available for research is still limited. Some outstanding initiatives, such as
the 1000 genomes project, provide open access to human genomes, but the
number of accessible genomes is quite limited when compared to the num-
ber of genomes being sequenced daily. In addition, researchers typically have
personalized access to specific biobanks, which is granted under the terms-of-
use defined by these banks. However, biobanks are often limited to a specific
population, hindering large-scale diversity studies. Widely sharing genomes
would also improve the reproducibility of results, since studies based on in-
formation from biobanks cannot be reproduced easily due to biobanks tightly
controlling access.

Risks to privacy are still an obstacle to sharing. Several attacks against
genomic privacy have been described in the literature. Using genomic in-
formation, such as single nucleotide polymorphisms (SNPs), short tandem
repeats, disease related genes, and possibly different kinds of publicly avail-
able personal details, these attacks fit into one of several categories: re-
identification attacks [4, 5, 6, 7, 8], recovery attacks [9], and membership at-
tacks [10, 11, 12]. These genomic privacy attacks alerted the research commu-
nity for the need to replace the conventional procedures by privacy-preserving
frameworks. In the last years, several protocols have been designed to protect
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the sensitive information contained in genomic data [13, 14, 15, 4, 16]. Con-
cerning the read alignment step, secure cryptographic algorithms have been
designed to align reads while protecting their content [17, 18]. However, their
slow performance fails to match the throughput of current sequencing ma-
chines at manageable cost, which leads biological research centers to continue
to rely on plaintext alignment.

Future genomics research would benefit from software solutions capable
of protecting sensitive information throughout its whole life-cycle. That is,
from its initial acquisition during the sequencing phase, to the day it is not
sensitive anymore, including its storage and use by researchers or physicians.
Secure alignment algorithms are promising tools that could be integrated in
such a secure environment, which would therefore protect all raw genomic
information preventively. Then, after the alignment step sensitive informa-
tion would be identified, since aligned reads reveal the role of sequences in
the DNA, and the protection level of non-sensitive data adapted. However,
applying such a paradigm implies a high performance overhead since secure
alignment algorithms are slower than the plaintext ones.

This manuscript proposes an alternate method, which detects genomic
variations in the early stages of the genomic pipelines. This approach is
based on the existing databases of genomic variations, which are getting
more and more stable [15], and makes use of Bloom filters for space effi-
ciency and fast membership testing. Indeed, as previously argued and as we
independently confirmed, the rate of new discoveries has been decreasing over
the years, which makes our approach very timely. For example, the number
of new SNPs discovered in the 1000 genomes project has been divided by 120
between 2010 (12 millions) and 2016 (100 thousands). We believe that such
decrease is bound to be confirmed in the future.

We believe our approach to be an important step towards enforcing pri-
vacy prior to the alignment of reads, which is routinely executed in a public
cloud for performance and cost reasons. Typically, clouds do not guaran-
tee that the data they host cannot be accessed by either the cloud service
provider, or an intruder [19], and several works highlighted the risks associ-
ated to the inconsiderate use of clouds for biomedical data [20, 21, 22, 23].
We therefore consider an adversary located in the cloud whose goal is to
perform a privacy attack using raw genomic sequences it is able to observe
either prior, or during, alignment.

We developed a filtering approach, which partitions raw genomic data
into privacy sensitive or non-sensitive genomic data, and that is envisioned
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to enable the accurate, lightweight, and fast obfuscation of reads so that they
can safely be manipulated in plaintext in clouds. The filter is lightweight,
and fast enough, that it does not have to be parallelized in massive resources.
The non-sensitive genomic data (i.e., obfuscated reads, which by definition
are identical between any two subjects) are allowed to leave the secure envi-
ronment (e.g., the sequencing machine) to be aligned in a public cloud, while
the sensitive genomic data stays protected, in a private environment. In addi-
tion, we believe that an alignment scheme that would manipulate obfuscated
versions of reads is feasible, even though, the precise design and evaluation
of this scheme is future work. Relying on the filter to implement such an
alignment scheme would result in a performance improvement compared to
current cryptographic alignment schemes, since plaintext alignment is much
faster. This manuscript focuses on the keystone of this envisioned scheme, a
filter which accurately detects sensitive information inside raw genomic data,
while future work will optimize the alignment of masked reads.

To the best of our knowledge, the only previous early filtering method [15]
is limited to short reads (30 nucleotides) and to classifying them as privacy
sensitive, or non-sensitive, depending on whether or not they are susceptible
to carry a relevant genomic variation. As we explain in Appendix B, the
mechanisms described in this previous work cannot be successfully used with
long reads as they would produce too many false positives, since the propor-
tion of reads that contain at least one sensitive nucleotide grows very quickly
with their length. For example, 88% of the 100-nucleotide reads and 94%
of the 200-nucleotide reads would be considered sensitive by this filtering
method, which neutralizes its effectiveness.

This work is the result of an analysis of possible Bloom filter-based ap-
proaches to identify sensitive nucleotides from reads. Our analysis lead to
the design of novel algorithms to filter privacy sensitive information from raw
genomic data. We show through comprehensive experiments that the overall
process improves upon the state of the art as follows:

1. it can be applied on reads of any size, output by past, and current
sequencing technologies, which produce longer and for now, more error-
prone reads;

2. it is designed to detect all kinds of sensitive genomic variations (i.e., in-
cluding insertions/deletions) and miss less than 10 sensitive nucleotides
per genome (instead of several thousands), yielding high privacy pro-
tection;
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3. it considerably improves on previous filtering false positive rate at the
nucleotide level (from 60% in previous works to 10%);

4. multiple filters can be used in parallel to tolerate more sequencing errors
(86% of the sensitive nucleotides are still detected with 2% sequencing
errors; previous works detect 56% in this situation). Error tolerance
eases an early adoption while sequencing technologies continue to im-
prove their detection accuracy.

1.1. Related work

1.1.1. Privacy attacks

Recently, numerous privacy attacks have demonstrated the sensitivity of
genomic, and more generally, biological data. Homer et al. showed that even
a very small proportion in aggregate allele frequencies dataset is sufficient to
identify contributing individuals using their DNA profile [10]. This attack
was later refined by Wang et al. in [4]. In particular, they showed that only
100 SNPs can be enough to reidentify a subject. It has also been shown
that 92 well-chosen SNPs are enough to identify anyone in the world with
high probability [5]. Kidd et al. [6] built a panel of 19 SNPs that, with
high probability, can be used to accurately determine the ethnic origin of
subjects. Goodrich showed that successive queries over encrypted data may
allow an attacker to gain access to private data [24]. In [11], Shringarpure
and Bustamante showed that in a beacon made of 65 subjects from the
1000 genomes project, querying 250 SNPs is enough to re-identify a subject.
Gymreck et al. re-identified the individuals behind 131 genomes contributing
their DNA to the 1000 genome project [7]. More recent attacks studied the
sensitivity of other types of biological data. For example, it has been shown
that miRNA data can be used in membership attacks [12].

1.1.2. Genomic privacy preserving mechanisms

Genomic privacy is considered one of the major challenges of the biomed-
ical community [25, 26, 27, 28].There are three different ways to protect the
privacy of genomic data: (i) data deidentification [29, 30]; (ii) data augmen-
tation [31, 32]; and (iii) methods based on cryptographic methods [24, 33].

The data deidentification methods tend to remove or encrypt personal
identifiers, such as social security numbers, zip codes, or names, which are
initially associated with genomic data. Nevertheless, these methods cannot
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guarantee sufficient privacy protection and are not able to deal with reiden-
tification problems [10, 34, 7, 11].

Data augmentation methods achieve the goal of privacy protection by
generalizing, each record so that it cannot be distinguished from some other
shared records [31, 35, 32]. With this kind of methods, the privacy of genomic
data can be enforced, at the expense of controlled loss of utility.

Cryptology-based methods do not access the original data. They maintain
data utility by using privacy-preserving data querying methods that can be
applied to genomic sequences [24, 33]. Protection methods based solely on
cryptographic algorithms are not sufficient, since encryption mechanisms can
be broken in a comparably shorter time than the personal genomic privacy
protection requires [36].

The work we describe in this manuscript can be classified into the data
augmentation methods, since our filter aims at detecting and (temporar-
ily) obfuscating sensitive nucleotides from DNA sequences prior to the read
alignment step.

1.1.3. Early read filtering

The work we present is this manuscript focus on read filtering, i.e., the
early detection of sensitive nucleotides in reads at the mouth of, and possibly
inside, the sequencing machines. Requirements for an early read filtering
method include i) to be accurate (i.e., correctly detect sensitive nucleotides);
ii) not to be a throughput bottleneck (i.e., it must filter reads faster than
the sequencing machine produces them); and iii) to be practical (i.e., it can
be implemented in, or close to, a sequencing machine, with limited hardware
resources).

To the best of our knowledge, the only previous early read filtering ap-
proach, the short read filtering (SRF) approach, has been presented in [15].
The SRF describes the filtering of privacy sensitive information contained in
short sequences (30 nucleotides) of raw genomic data. SRF uses a Bloom fil-
ter [37], which is a data structure that is used to test whether a given element
is part of a predefined set, to determine if a short read is part of a previously
built dictionary of known sensitive reads. Therefore, SRF first creates a dic-
tionary of all sensitive sequences made of either 30 nucleotides. In practice, a
Bloom filter is implemented using a bit table and a set of hash functions. To
initialize the bit table, each sequence in the dictionary is hashed, using the
hash functions, to produces bit indexes, and set the corresponding bits to 1.
Testing whether a read is part of the bit table then consists in checking that
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all bits that the hash functions map it to are set to 1. Thanks to its Bloom
filter, SRF produces few false positives, always reidentifies known sensitive
sequences, and maintains a high throughput.

However, as we explain in Appendix B, until now, the filtering of long
reads was an open challenge, as SRF extended in the most efficient way to
long reads would consider 88% of the 100-nucleotides reads and 94% of the
200-nucleotides sensitive, rendering it useless for any possible application.

1.1.4. Secure read alignment

Aligning reads in an unsecure environment, such as a public cloud, has
clearly been identified as a threat [38]. More precisely if the adversary is
able to align those observed reads and identify the genomic variations, a
trail attack becomes a possibility [30]. In a trail attack, DNA samples are
matched to their identified subject through the use of unique distinguishing
features in different institutions where the subject leaves traces of his genome.
For example, if a subject, whose reads have been aligned in an attacked
cloud, later participates in a public biomedical study, the adversary may
be able to identify the subject in the results based on the subjects’ known
genomic variations, and infer private information (e.g., a disease associated
with the study, or the subject’s identity). Read alignment is therefore the
first stage in the genomic pipeline where privacy-sensitive genomic features
can be observed by an adversary, if they are not protected.

Secure read alignment is related to read filtering, but is a different prob-
lem. Secure alignment algorithms aim at aligning reads to a reference genome
while preventing an adversary to observe the sensitive nucleotides contained
in reads. Read filtering would reinforce the reads security during their stor-
age prior to their alignment. In addition, novel read alignment schemes may
potentially be designed by building on read filtering methods, however, this
is future work.

Among the existing solutions presented, Zhang et al. [39] described a hy-
brid cloud-based solution, which requires a private/non-private data classifier
to benefit from the advantages of a public and a private clouds, while limit-
ing their respective drawbacks. The long read filter could be that classifier.
Closely related, Chen et al. [40] described a distributed approach that is based
on hashing short substrings of reads (seeds), and mapping them with the ref-
erence, relying on both a public and a private cloud. This approach keeps the
sensitive data processing in the private cloud, and the most exhaustive com-
putations in the public cloud. At the time this manuscript was written, Popic
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et al. argued that this approach does not prevent some Kmers repeats to
be observed, and proposed Balaur [41], a privacy-preserving alignment pro-
tocol based on locality-sensitive hashing. Balaur relies on encryptions and
on a large amount of memory. Finally, secure alignment algorithms proven
to be secure are either based on garbled-circuit [18], or on homomorphic en-
cryption [16, 42]. However, their wide use is currently limited by their low
throughput and their high communication cost.

1.1.5. Read obfuscation

The early detection and protection of privacy sensitive information is a
goal that the research community is actively trying to address [43, 44]. Pre-
vious works have argued for the partitioning of genomic data into a sensitive
and a non-sensitive part, but assume it is either done manually [13] or using
a hypothetical external tool [14]. The approach we describe in this paper is
fully automatic, and works on the earliest form of genomic data.

In [13], Ayday et al. present a distributed architecture that allows medical
units to query the DNA data of a patient from aligned reads, while avoiding
to reveal sensitive SNPs. However, the process described in this paper is
not automatic, since sensitive portions of the DNA have to be declared by
scientists. This mechanism also concerns a later stage of the DNA workflow,
where genomic reads have been aligned, and sensitive information exactly
identified.

Several other works proposed computational methods for anonymizing
databases of DNA sequences by obfuscating sensitive nucleotides. Malin
et al. [32] presented a DNA sequence anonymity method called DNA lattice
anonymization (DNALA), which enforces the k-anonymity [45] privacy prop-
erty. Li et al. [46] further improved performance by replacing CLUSTALW [47],
the multiple sequence alignment software used in DNALA, with MegaBLAST [48],
a global pair-wise alignment software. Wan et al. [49] further iterates the ob-
fuscation process with MegaBLAST until all sequences in the dataset are
clustered and obfuscated, and claim that it improves the utility accuracy
and performance.

Compared to the filter we describe in this manuscript, those approaches
do not satisfy all the criteria we listed for early read filtering. First, they
require consequent computational resources to identify differences between
reads. In contrast, our filter is lightweight, and fast enough, as we show,
that it does not have to be parallelized in massive resources, and can thus be
used, for example, in a secluded data center integrated with the sequencing
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machine. In addition, these works aim at anonymizing a database of reads,
which is a different goal than filtering a subject’s reads. Using these ap-
proaches to detect all sensitive nucleotides in a subject’s reads would require
the alignment of those reads to all possible sensitive reads, which is clearly
much more costly than our approach.

1.1.6. Bloom filters

We refer to [50] for a survey on Bloom filters [37], and their various
possible uses. Bloom filters are implemented using a bit table and hash
functions that map an element to bit indices. The initialization of a Bloom
filter with a set consists in computing the bit indexes for all elements in the
set, and setting all corresponding bits to 1. Later, testing whether an element
is part of the initialization set consists in checking that all bits that the hash
functions map it to are set to 1.

A key characteristic of Bloom filters is their absence of false negatives.
However, they may produce false positives (i.e., they may answer that an
element is part of the initialization set when in reality it is not). The false
positive rate p is usually fixed by the user, at Bloom filter parametric initial-
ization time, along with the number of elements n that are to be inserted.
The other implicit parameters of a Bloom filter, namely its size m (in bits)
and the number of hash functions k it uses, can then be derived from those
initialization values, and more specifically, using the two following asymp-

totic equations: p =
(

1− e−
kn
m

)k
and k = m

n
ln(2). From these equations,

one could derive that reducing a Bloom filter’s false positive rate, given an
unmodified initialization set, implies to increase its size.

Bloom filters can be used either for space efficiency, or for privacy-preserving
matching. For example, in the genomic privacy literature, they have been
used for privacy preserving record linkage, which consist in linking a research
subject’s information across different institutions. Existing works in that area
include [51, 52, 53]. However, it may be unsecure to rely on Bloom filters for
privacy, as some works highlighted [54] or addressed [55, 56].

In this manuscript, we rely on Bloom filters for space efficiency and high
throughput reasons. More particularly, Bloom filters compactly represent
data sets of sensitive sequences, and quickly answer membership queries (i.e.,
is a read known as being sensitive?). There are no privacy risks associated to
our use of Bloom filters, since they are initialized with publicly known data.

9



2. Methods

In the following, we call sensitive either a nucleotide that is involved
in a genomic variation or in a Short Tandem Repeat (STR), or a genomic
sequence which contains at least one sensitive nucleotide. We call (K, i)-
sensitive a sequence of K nucleotides where the ith nucleotide is sensitive.

This section introduces the long read filtering approach (LRF). Section 2.2
explains how, given K and i values, we create a dictionary of every (K, i)-
sensitive sequence that can be encountered in a human genome. Section 2.3
presents the Long Read Filtering (LRF) approach, which consists in studying
all subsequences of a read using Bloom filters, initialized with dictionaries of
(K, i)-sensitive sequences, to identify genomic variations. Finally, Section 2.4
extends this approach to tolerate sequencing errors (insertions, deletions or
mutations) in reads.

2.1. Data

We use the genomic variations and the individual genomes from the 1000
Genomes project [57], along with the short tandem repeats (STRs) from
the Tandem Repeats Database [58] to create the dictionaries of sensitive
sequences, and filter individual genomes. We use the Phase 3 20130502
release of the 1000 genomes project, and the associated GRCh38 reference
project.

2.2. Generating dictionaries of sensitive sequences

Generating all possible sensitive sequences, from either genomic variations
or STRs, is a very important step for the accuracy of the filter. As previously
said, the filter relies on dictionaries built from sequences that have a sensitive
nucleotide (which can be part of genomic variation that involve more than one
nucleotide) in a common position. We denote by dicti the dictionary of (K, i)-
sensitive sequences, i.e., sequences of K nucleotides whose ith nucleotide is
sensitive. In this section, we explain how we create these sequences from the
1000 Genomes project and the Tandem Repeats database.

2.2.1. Genomic variations

Dictionaries of sensitive sequences are built depending on two parame-
ters: the length K of the sequences, and a position 0 ≤ i < K at which
all sequences will have a sensitive nucleotide (they may have other sensitive
nucleotides). The generation of a dictionary can be summarized as follows.

10



For every genomic variation in the 1000 Genomes Project, we first collect
other genomic variations that are at a close distance from it, either located
before or after in the human genome. Since individuals present combina-
tions of several genomic variations, located at different locations, we then
enumerate all theoretically possible combinations of the collected genomic
variations. Finally, we create sequences from these combinations by relying
on the reference genome to populate the gaps between the genomic varia-
tions. Finally, depending on the positions of the sensitive nucleotides in the
sequences of the desired dictionary, i.e., depending on i, we then extract all
adequate subsequences of length K.

When generating a sensitive sequence around a studied genomic variation,
one has first to be careful to go far enough to collect genomic variations, since
insertions/deletions may change the distances between sensitive nucleotides.

If it is possible, we then generate all combinations of the versions of the
genomic variations. However, we observed that some sets of selected genomic
variations contained up to 50 different locations, and since there are theoret-
ically 2N combinations of N genomic variations, it is not possible to generate
all of them. In such cases, we selected the major allele for the genomic vari-
ations whose least frequent allele is the rarest among all remaining genomic
variations until there remained 8 variations. We present results in Appendix
A that justify why combining up to 8 variations from a genomic database
allow us to detect all variations of a subject in practice.

Figure 1 illustrates the combination process for one genomic variation
located at position P2 in the human genome, and for sequences of K = 8
nucleotides. In this example, two genomic variations are located less than K
nucleotides away from position P2 when combined, namely at positions P1

and P3. Each of those genomic variations has two alleles: the reference one
(represented in blue), and the alternative one (represented in red or green).
From the reference genome, and the VCF file that contains the information
about the genomic variations, our code generates all possible combinations of
all three alleles, and then selects the adequate sensitive sequences depending
on the dictionaries that need to be created. In this example, two dictionaries,
Dict0 and Dict29, respectively contain the sensitive sequences whose first,
respectively 30-th nucleotide, is involved in a genomic variation.

2.2.2. Short Tandem Repeats

Generating the sensitive sequences from STRs follow a similar pattern.
Given the position of a STR, genomic variations located before and after it
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ATGTCTCGTACGTCC

ATATCTCGTACGTCC

ATGTCTCTTACGTCC

ATGTCTCGTACGTAC

ATATCTCTTACGTCC

ATATCTCGTACGTAC
ATGTCTCTTACGTAC

ATATCTCTTACGTAC

ATGTCTCGTACGTCC

Alt

Reference genome
Alt

Dict0

All combinations

VCF file

P1 P2

Alt

P3

{{
K K

DictK-1

A T A

P1 P2

P2 P3

Figure 1: Illustration of the generation of dictionaries of sensitive sequences, of length K,
from a genomic region that carries multiple SNPs

are collected, and combined. In the normal case, for all possible permutations
of an STR pattern, the permutated pattern is concatenated until the concate-
nated sequence’s length is larger than K Then, the left and right flankings
are generated from the reference genome, and from combining the genomic
variations they contain. Finally, some sensitive sequences of K nucleotides
are selected to be inserted in the adequate dictionaries.

However, it also happens that some STRs are never repeated sufficiently
often for the repeated pattern to account for at least K nucleotides, which
would prevent the previous method from generating the right subsequences.
Consequently, for these short STR patterns with few repeats we start gen-
erating sensitive sequences with the minimal amount of repeats, and then
increase the number of repeats progressively until either we reach the max-
imal number of repeats or the length of the repeated section accounts for
more than K nucleotides. After each concatenation of a repeat pattern, we
generate all possible (K, i)-sensitive sequences.

2.3. Long read filter

The long read filter creates one or several Bloom filters, from the pre-
viously generated dictionaries of (K, i)-sensitive sequences. Then, passing
over the reads and filtering all sequences in a sliding window of size K, it
checks whether each K-mer has been inserted in a Bloom filter, and there-
fore contains a sensitive character at the sensitive position of sequences of the
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corresponding dictionary (i.e., the i values of the (K, i)-sensitive sequences).
This way, upon detection of a sequence in a Bloom filter only one nucleotide is
detected sensitive. As we explain in Appendix B, previous and other Bloom
filter based approaches would lead to much higher false positive rates than
this one.

Figure 2 illustrates the LRF approach, where one thread, Thread0, de-
tects sensitive nucleotides in a read, which has been given in input. This
thread first initializes a Bloom filter BF0 with a dictionary, Dict0, of all
possible 30-bases long sequences (i.e., here K = 30) whose first nucleotide is
sensitive. The Bloom filter uses three hash functions, h0, h1 and h2. Thread0
is shown progressing in the read as it studies all 30-bases long subsequences
of the read. The thread uses the same hash functions h0, h1 and h2, that were
used to initialize BF0 to efficiently check if they are part of the dictionary
Dict0. If that is the case, i.e., if all bits the hash functions lead to are set
to 1, it tags the first nucleotide of the current subsequence as sensitive. In
Figure 2, nucleotides detected sensitive are colored in red, and the output of
the filter consists of the input read along with a set of the nucleotides flagged
as sensitive. Revealing the non-sensitive nucleotides of a subject does not
reveal any distinctive information, since by definition they are common to
all subjects.

Thread0

Input:

Output:

Dict0

BF0

h0 h1 h2

Figure 2: Overview of the long read filter

Depending on the sensitive position that the filter is able to detect in
subsequences, some nucleotides at the end, or at the beginning, of a read
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may not be studied. These non-studied parts of a read can preventively be
treated as sensitive. This is a small price to pay compared to the decreased
number of false positives that this technique brings compared to other filter-
ing approaches. Moreover, this effect tends to disappear once we start using
several Bloom filters, initialized with different sensitive positions.

2.4. Tolerating sequencing errors

The filtering approach we described earlier in this paper detects all ge-
nomic variations embedded in error-free reads. Although sequencing tech-
nologies are under constant improvement, it is nowadays still important to
tolerate the sequencing errors they may introduce in reads (i.e., insertions,
deletions or mutations). Consequently, we now extend the Long Read Fil-
tering (LRF) approach with mechanisms to tolerate sequencing errors.

More precisely we study how we can iterate the error-free detection mech-
anism to tolerate some sequencing errors. We therefore use several Bloom
filters, initialized with different sets of (K, i)-sensitive sequences. Intuitively,
iterating the detection process increases the probability for a sensitive nu-
cleotide to be detected in presence of errors.

In our implementation, all Bloom filters are queried in parallel by several
threads to maximize the overall throughput, as they can all fit into the main
memory of the machine used for experiments. Each thread tags a subset
of a read’s nucleotides as sensitive, and after all Bloom filters finishes, the
union of tagged nucleotides is computed to obtain the final set of nucleotides
detected sensitive. Depending on the computing resources one has, it is
possible to apply the various filters differently. The spectrum ranges from
several machines applying the filters in parallel, for maximal throughput,
to one machine applying the filters sequentially, for the lowest hardware
requirements.

At initialization time, to explain which sequences should be inserted in the
Bloom filters, and which positions in these sequences are considered sensitive,
let us consider a sequence of 2K − 1 nucleotides, which represents a general
situation where one sensitive nucleotide is surrounded by two flankings of
K − 1 nucleotides. We aim at defining evenly distributed sensitive positions
in the interval J0, 2K − 2K.

Let us consider the situation where we define B Bloom filters over this
set of positions, initialized with sequences of K nucleotides. The sensitive
position in each of these Bloom filters is the position of the sensitive nu-
cleotide in the subsequence they are built on. If B equals 1, any sequence
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TAGCCCAGACT

Thread10

Thread0X

X
Dict10

Dict0

Thread5✓
Dict5

TAGCCCAGACTTCCCGTGTCCRead:

TTCCCGTGTCC

CAGACTTCCCG

Input:

Input:

Input:

Figure 3: Example of sequences of 11 bases studied by 3 Bloom filters where respectively
the last, the first, and the middle position are sensitive. Here, two bases are modified, and
only the third sequence would match in the associated dictionary made of 11-bases long
sequences whose middle base is sensitive.

containing the sensitive nucleotide will bring similar results. In this case,
we create all sequences where the last nucleotide is sensitive. If B is greater
than 1, we define L = b K

B−1c to simplify notations. We define the B intervals
of nucleotides to be inserted in these Bloom filters as follows:

JL.i, L.i + K − 1K, for i ∈ J0, bB
2
c − 1K

J2.K − L.i−K − 1, 2.K − L.i− 2K, for i ∈ J0, bB
2
c − 1K

JL.bB
2
c, L.bB

2
c+ K − 1K, if B mod 2 6= 0

Figure 3 shows an example where, at some point of the filtering process,
to detect one sensitive nucleotide, three subsequences of 11 nucleotides (i.e.,
K=11) are selected and given as input to different Bloom filters. These
Bloom filters detect sequences where respectively the last, the first, or the
6th nucleotide is sensitive. In this example, two nucleotides have been altered
by errors, a G on the left and another C on the right. The first and second

15



Bloom filters do not detect the corresponding subsequences as sensitive due
to the errors. However, the third one does detect it, because there are no
errors modifying the nucleotides in the subsequence that this filter studies.

3. Results

In this section, we first describe the system configuration we used for
our experiments, using the data sources we presented in Section 2.1. Then,
we compare the long read filter (LRF), configured with one Bloom filter for
fairness, to the short read filter (SRF), which is the only previous filtering
approach. We evaluated their performance based on the following criteria:
Proportion of a genome, or a read, detected sensitive: The lower
this proportion the more information will remain in the reads after filtering
of sensitive information;
False positive rate: proportion of nucleotides that are detected sensitive
and that, in reality, are not sensitive;
Tolerance to errors: proportion of sensitive nucleotides detected sensitive
in presence of sequencing errors;
Memory usage: memory space required to store the files containing the
sensitive database, and the size of the corresponding Bloom Filter;
Throughput: number of nucleotides that are classified per time unit.

3.1. System Configuration

Code. We wrote the code that generates the dictionaries of sensitive
sequences from the 1000 Genomes database of genomic variations in Python.
The LRF and our SRF implementation have been written in C++ for perfor-
mance. This code executes the following phases: (i) reading of the input file,
which contains the raw reads; (ii) initialization of the Bloom filter(s) with
the dictionaries of sensitive sequences; and (iii) filtering of the reads.

Dictionaries and Bloom filters. We parameterize each Bloom filter
with a false positive rate of 10−3. This parameter has an impact on the LRF’s
false positive rate. However, the LRF’s false positive rate is mainly due to
the dictionaries being exhaustive: a sequence may be detected sensitive in
an non-sensitive location, because it is sensitive in another genome, or in
another location of the genome. The number of elements to be inserted in
the Bloom filters is directly given by the dictionaries of sensitive sequences
we build. Given these two parameters, the number of bits and the number of
hash functions in the Bloom filters are derived using the usual Bloom filter
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formulas. We choose a value of 10−3 because using a lower false positive for
Bloom filters does not significantly improve the LRF’s accuracy, and increases
its memory consumption. We use MurmurHash [59] to hash sequences for
the Bloom filters.

All experiments described in this paper are performed on a quad socket
Intel Xeon E5-4650 v3 processor with 12 cores machine running at 2.10 GHz.
This machine is equipped with 190 GB RAM, and 15 TB disk storage, which
allowed parallel experiments and the generation of all sensitive databases
corresponding to different parameters of the filters. One should however
note that even with such a powerful machine it was not possible to generate
the intermediary files containing the sequences generated with more than 8
combinations of genomic variations.

3.2. Proportion of a genome detected sensitive

Figures 4 and 5 show the proportion of nucleotides that are detected sen-
sitive (either true positives or false positives) using one of the two databases
built from either genomic variations only or STRs only. For each database,
we tested the extended SRF and our approach with one (LRF-1), two (LRF-
2) or three (LRF-3) Bloom filters. We explain in the next section which
positions these filters study. These two figures also represent the minimum
theoretical percentage that can be reached, which is the proportion of nu-
cleotides involved in genomic variations (around 3%) or STRs (around 0.5%).
Our approach has the most significant impact on genomic variations where
extended SRF cannot classify less than 50% of the nucleotides as sensitive,
whereas our approach always converges towards the minimum value. Among
the LRF approaches, LRF-1 presents the nearest percentage of nucleotides
detected sensitive, which means a small number of false positives. However,
LRF-2 and LRF-3 combine both the smaller false positive (i.e., around 10%
of a genome is detected sensitive using K=34) and the smaller false nega-
tive rates (i.e., less than 10 sensitive nucleotides are not detected per human
genome).

3.3. Proportion of reads detected sensitive, or preventively obfuscated

As said in Section 2.3, depending on the sensitive position that the filter
is able to detect in subsequences, some nucleotides at the end, or at the
beginning, of a read may not be studied. These non-studied parts of a read
are preventively treated as sensitive. Figure 7 presents the average proportion
of reads that is considered sensitive depending on their length. We considered
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reads of 150, 350, 1000 and 10000 nucleotides, and present the results for the
LRF-3 approach. The proportion of reads that is wrongly detected sensitive
using LRF is always smaller than the proportion obtained with SRF, which
does not have to preventively consider sensitive the extremities of reads.
Figure 7 indicate that with short reads (i.e., less than 150 bases), one should
initialize its dictionaries with shorter sequences. With reads of 150 bases,
the best length for dictionary entries is 20 bases, and the LRF detects 47%
of these reads as sensitive. With longer reads, the proportion of reads that
is filtered always decreases with the length of the dictionary entries, and we
therefore recommend using a length of 34 bases, as justified previously. The
longer the reads the smaller the proportion of reads that is detected sensitive,
until it reaches the value we obtained with full genomes, which indicates that
the LRF approach is more practical with longer reads.

3.4. False positive rate

Figure 6 illustrates the percentage of false positive (FP) sensitive nu-
cleotides depending on the size of the subsequences studied. To minimize
the number of sensitive nucleotides not detected by the filters, we increased
the size of the dictionaries of sensitive sequences (by generating all com-
binations of genomic variations). Using these larger dictionaries increased
the number of false positives, as more sequences in a human genome can be
detected sensitive. Experimentally, studying short sequences leads to high
FP percentages, between 90% and 100%, for all four approaches. Study-
ing larger sequences still produces a very high FP rate for the SRF, while
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the FP rates of LRF-1, LRF-2, and LRF-3, respectively, go down to 30%,
40% and 43%. These results show that selecting the largest K value is the
best choice to minimize the FP rate. However, with larger sequences the
probability to miss a sensitive nucleotide increases, as shown in Appendix, in
Figure A.12. Decreasing the false positive rate is important because it means
that more genomic data can be used to successfully align reads. However,
later in the genomic workflow, after reads have been aligned to a reference
genome, these false positives would be identified, and removed from the set
of sensitive nucleotides.

3.5. Tolerating sequencing errors

Let us consider again a probability of mutation per nucleotide pm. The
overall probability Pdetect that a sensitive nucleotide is identified by at least
one of the B Bloom filters can be expressed in function of the probabil-
ity that the sequence contains M mutations Pmut and the probability that
the sensitive nucleotide is detected given M mutations Pdetect|mut as follows:

Pdetect =
∑F

mut=0 Pmut × Pdetect|mut

The probability that exactly M mutations happen among 2F nucleotides
follows a binomial distribution, and is equal to CM

2F . p
M
m . (1 − pm)2F−M . As

both Pmut and Pdetect|mut quickly decrease when M increases, it is convenient
to evaluate Pdetect through simulations. We perform several experiments to
determine the probability that a sensitive nucleotide will be correctly de-
tected by a given number of Bloom filters depending on a mutation rate per
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nucleotide.
Figure 8 presents this detection probability with a 2% error rate, depend-

ing on the sizes of the subsequences and the number of Bloom filters used.
The rationale behind studying a 2% error rate is that second generation se-
quencing machines have lower error rates. We believe that the error rate in
longer reads will reach or be lower than 2% in the near future. Generally, the
shorter the subsequences are the higher is the probability that the sensitive
letter will be detected. With sequences of 20, 24, 30 and 34 nucleotides, the
probability of detection tends to 0.94, 0.92, 0.88 and 0.84, respectively. How-
ever, short subsequences would also increase the proportion of false positives,
as we discussed previously. One can also see that when using more than three
Bloom filters, the probability of detection increases slowly, which indicates
that using three Bloom filters would be the best choice from a sensitivity
versus overhead point of view.

Next, Figure 9 presents the proportion of sensitive nucleotides that are
detected depending on several mutation rates, and on the number of Bloom
filters used, when considering 30-mers. For this experiment, we used 30-mers,
instead of the optimal set of 34-mers, to have a fair comparison against SRF.
The higher the error rate, the smaller the proportion of sensitive nucleotides
that are detected. The probability for a sensitive nucleotide to be detected
when it presents an error rate of 0.1%, 1%, 2% or 4% is 99.97%, 96%, 86%
and 62%, respectively. These numbers have to be compared to those of SRF
(Section Appendix B). For example, with 2% of errors, the LRF approaches
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ues with sequences of 34 nucleotides, using
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detect up to 86% of the sensitive nucleotides while SRF detects 56%. For
comparison, with 2% of errors, the LRF approaches detect up to 86% of the
sensitive nucleotides while SRF detects 56%.

3.6. Memory Usage

Figure 10 illustrates the size of a Bloom filter in the LRF and the SRF ap-
proaches depending on the length of the sensitive sequences that are inserted
in the dictionaries.

One can observe that the sizes of the Bloom filters increase with the length
of the sensitive sequences they are initialized with, which means that more
sensitive sequences are generated. It first comes from the fact that a larger
proportion of longer sequences contain at least one sensitive base. Second, for
the LRF approaches, since longer sequences are more susceptible to contain
more genomic variations than shorter ones, there are more combinations of
genomic variations. The size of one Bloom filter goes up to 3GB in the LRF-
1 approach with 50-mers, while it measures less than 1.5GB with the SRF
approach. This difference is due to the combinations of variations that we
generate with the LRF approach.

As expected, iterating the LRF approach increases the memory overhead
linearly with the number of Bloom filters used. Using the LRF-3 approaches,
which uses 3 Bloom filters, require less than 10GB of memory, which is
reasonable given modern hardware.
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3.7. Throughput

To evaluate the throughput of the filtering approaches, we evaluated the
filtering methods (LRF and SRF) with sensitive sequences of 34 nucleotides
(i.e., K = 34). 34 is the smallest value for which the LRF-3 filter produces
less than 10% of false positives. Choosing the smallest possible size for the
sequences minimizes the size of the Bloom filters, and therefore maximizes
the throughput, mainly because less hash functions are needed with smaller
Bloom filters. For fairness, we measure the throughput of each approach us-
ing only one thread. In practice, one could rely on parallelization to increase
the filtering throughput of each approach.

Figure 11 shows the throughput according to different FP rates. As ex-
pected, the throughput is higher when the tolerated rate of false positives
increases, as the number of hash functions used and the bit table size in
Bloom filters decrease. Our approach, LRF-1, has a lower throughput than
SRF, which is due to the ways subsequences are studied. Indeed, SRF uses
non-overlapping windows in reads, while LRF adopts a sliding window ap-
proach. The tradeoff is that the SRF approach is faster, with a throughput
ranging from 9.1 to 12 millions of nucleotides per second, while LRF is sig-
nificantly better with relation to false positives and false negatives. Consid-
ering that current sequencing machines have a throughput of 0.3 millions of
bp/sec [60], LRF is still ten times faster, with a throughput ranging from
3.3 to 4.9 millions of nucleotides per second, depending on the false positive
rates.

4. Discussion

In this section, we review the limitations of our filtering approach, present
the choices we made concerning our methods and experiments, and detail
potential impacts of this work on the associated research area.

4.1. Limitations of the filtering approach

Completeness of genomic variations databases: With high proba-
bility, genomic variations that have not yet been identified by the scientific
community will not be detected by the filter. However, updating the filter to
include new sensitive genomic variations as they are discovered is straightfor-
ward: one would have to generate the possible genomic sequences that carry
the new genomic variation, and insert them in the existing Bloom filter,
which merely consists of hashing the sequences and setting adequate bits to
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1. If the number of new sequences to insert becomes too large, it may become
necessary to create and initialize a larger filter, since the false positive rate
of a Bloom filter increases with the number of elements it contains (we refer
to Section 1.1.6 for more details on Bloom filters). In addition, new genomic
variations are now more rarely discovered [15], which limits the residual risk
of not detecting a large number of yet unknown sensitive sequences. In case
a genomic variation is no longer considered valid removing it from the Bloom
filters is more complicated. One would have to reinitialize a new Bloom filter
without it, or could rely on counting Bloom filters.

Bloom filter detection limit: Per human genome, the filter did not
detect less than 10 sensitive nucleotides out of nearly 90 millions. These
nucleotides could however be detected using a higher threshold of combined
variations locally. Consequently, these few highly variable regions could be
treated as special cases to allow for the detection of the genomic variations
they contain.

Sequencing errors: Tolerating sequencing errors when relying on Bloom
filters, which are based on exact matching through hashing, is challenging.
In this manuscript, we detail how to use several Bloom filters in parallel to
increase the detection accuracy. Currently, the number of Bloom filters used
for detection is static. This number of Bloom filter could be dynamically
decided depending on the read quality that fastq files contain. Other meth-
ods may exist that would improve the sensitivity of the filter in presence of
errors. Making use of the whole information contained in reads, through the
use of Locality-Sensitive Hashing, and using spaced-Kmers are a possibility
we plan to explore in future works.

4.2. Decisions made on the methods and experiments

Optimal length of K-mers for filtering: We limit the number of ge-
nomic variations combined in dictionary entries to 8. We justify in Appendix
A that it enables both accurate detections and a lower dictionary size. We
then found out that the length of the Kmers studied by the Bloom filters
has to be lower than 40, otherwise too many sensitive nucleotides are not
detected, as supported by Figure A.12. However, we also found out that
the longer the studied K-mers are the lower the proportion of false positives
created by the filter. Therefore, selecting K-mers of 34 nucleotides is an
adequate choice to create and detect sensitive nucleotides.

Reducing the size of Bloom filters: In theory, it would be possible
to reduce the number of sequences produced if we avoid creating sequences
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that contain a configuration of alleles that is very unlikely. Using linkage
disequilibrium (LD) to discard improbable sequences reduces the number of
generated sequences per dictionary from 2 to 5% depending on the length of
the sequences (the longer the sequences the more are discarded). Relying on
generalized linkage disequilibrium metrics would probably further optimize
this result.

4.3. Potential impacts of this work on the area

We foresee that previous works related to privacy-preserving read align-
ment will benefit from the use of a long read filter, such as the one we
presented in this manuscript.

Currently, due to the rapid advances of sequencing technologies, biocen-
ters tend to use Clouds to store and align reads [61]. Plaintext approaches,
like BLAST [62] have been parallelized (e.g., CloudBLAST [63]) to improve
their performance, when numerous CPUs or machines are available. How-
ever, a user relying on these algorithms to align sensitive genomic data needs
to trust the cloud provider, which does not provide security guarantees [19].
Given the long duration for which genomic data remains sensitive, this so-
lution is not satisfactory from a privacy point of view. In contrast to the
plaintext alignment procedures, our filter is lightweight, fast, and can be run
directly on a sequencing machine without being a bottleneck in the genomic
pipeline.

Our filter would limit the use of such algorithms to data that is detected
sensitive, and would improve the overall performance of a privacy-preserving
alignment. Currently, we envision that our filter approach could be used
to obfuscate sensitive data from reads, releasing only the reads that can be
safely aligned in public clouds in plaintext, while the reads that could not be
aligned in public clouds would have to be aligned a second time, using their
non-obfuscated versions, either on a private cloud, or using secure alignment
algorithms. The precise design and performance evaluation of this envisioned
alignment scheme, which our filter would enable, is future work.

5. Conclusion

In this paper, we presented a novel filtering approach to detect sensitive
nucleotides in long reads, which are now produced by the newest sequencing
technologies. Our methods improve on the state of the art both in terms
of false negatives (from 100,000 to less than 10 missed sensitive nucleotides)
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and false positives (10% of a genome is filtered instead of 60%). We also
studied how well this method performs in presence of sequencing errors, and
showed that iterating the detection process helps tolerating such errors (86%
of the sensitive nucleotides are detected instead of 56%, with 2% of errors).
In addition, despite its non-negligible memory and CPU overhead, the fil-
tering process is still faster than current sequencing machines, and can be
parallelized in several ways, suggesting that our method will easily scale-up
with the throughput evolution of the former. This privacy filter produces
reads where sensitive information has been masked, therefore protecting the
privacy of subjects in the standard genomic workflows, where reads are often
aligned to a reference genome. Our filter can be applied to reads of any size
and is designed to detect all kinds of genomic variations, missing less than
10 sensitive nucleotides per genome.

Common to all automated early filtering approaches, our method allows:
(i) the incorporation or merging of filtering in a straightforward way to NGS
machines architectures with local (protected) storage; (ii) the storage of sen-
sitive information per subject in a separate and more secure location, to be
added back to reads only when desired or needed, e.g., after the alignment
step. Future work includes the in-depth study of masked reads alignment to
further improve this result.
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Appendix A. On the necessity to combine genomic variations to
create dictionaries

As Figure A.13 shows, the flanking sequences of variations often contain
variations themselves. To generate this figure, we studied all genomic varia-
tions of the 1000 genomes project and counted their neighboring variations
located less than 30 nucleotides away. We then plotted the cumulative dis-
tribution of this number of close-by variations. From those results, 60% of
the genomic variations are surrounded by at least one other genomic varia-
tion and 99.96% of the sequences contain less than 8 genomic variations (on
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in sensitive sequences of 30 nucleotides

both sides). Therefore, a sensitive genomic variation or an STR of a specific
subject may not be detected by the SRF, if its flankings contain at least one
genomic variation that is not shared with the reference genome.

Figure A.12 justifies our choice of combining up to 8 genomic variations.
This figure presents the average number of sensitive nucleotides that are not
detected in a non-reference genome (using a logarithmic scale) depending on
the number of variations combined during the generation of the dictionary.
We studied three different lengths of subsequences to present to our filter
(20, 30 and 40). For lengths of 20 or 30 nucleotides and with 8 genomic vari-
ations involved in combinations, less than 10 sensitive nucleotides are missed
per genome, while a filter that would not consider combinations would miss
around 100,000 nucleotides. Using longer, 40-nucleotide sequences deterio-
rates detection performance, making the filter miss around 600 variations, as
longer sequences are more susceptible to contain more variations.

Appendix B. On the infeasibility of using the short read filter with
long reads

In this appendix, we explain why the short read filter [15], which we call
SRF for short, cannot be applied to long reads. Such infeasibility demon-
strates the novelty of our contribution, the long read filter, which enables the
filtering of long reads, and therefore opens new research directions.
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Infeasibility of combining genomic variations with SRF

Bloom filters are based on exact matching, and therefore their output is
very sensitive to incorrect or incomplete initialization. To solve this issue,
we combine the alleles of several genomic variations when computing the
sensitive sequences. It is important to note that we would not have been able
to generate such combinations of variations with the SRF approach, because
it would consume too much disk space (more than 20TB) and/or would
probably be very slow. The reason behind this is that the SRF dictionary
basically contains all the possible dictionaries that our long read filter could
build.
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Figure B.14: Proportion of reads containing at least one sensitive nucleotide depending
on their length (logarithmic scale)

Infeasibility of obtaining an acceptable false positive rate with SRF and long
reads

SRF classifies sequences of 30 nucleotides as sensitive or non-sensitive and
cannot be directly extended to longer reads, which are becoming more and
more common. Indeed, as Figure B.14 shows, the proportion of sequences
that contain at least one sensitive nucleotide grows very quickly with their
size. For example, 88% of the 100-nucleotides reads and 94% of the 200-
nucleotides reads would be considered sensitive. As it is clearly not practical
for research purposes to classify nearly all reads as sensitive, or to create a
dictionary of all possible sensitive long reads, it is now necessary to filter
reads at the level of their nucleotides.

The first idea to extend SRF to long reads consists in studying each
non-overlapping subsequence of a long read. In such a scheme, a sensitive
nucleotide (in bold in the top line) would be included in exactly one studied
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subsequence, which therefore would be considered sensitive, along with all
the other nucleotides in the subsequence. This approach would detect sen-
sitive nucleotides since sensitive sequences built from the genomic variations
or STRs include the nucleotides that precede and follow sensitive portions
of the genome. This idea is the one Cogo et al. [15] implicitly used to evalu-
ate the proportion of sensitive nucleotides in several human genotypes. We
therefore consider this as the baseline approach, and will refer to it as SRF,
when discussing and evaluating the extension to longer reads. However, the
granularity of this approach is not perfect: if a window is declared sensitive
by the filter then all its nucleotides also have to be considered sensitive, be-
cause the position of the sensitive nucleotide in the subsequence is unknown.
In practice, this method generates many false positives, as the flankings of a
genomic variation or of an STR, which are needed to detect the variations,
are declared sensitive.

The short read filter could also be applied in various sliding window fash-
ions (i.e., studying overlapping subsequences), but that would, however, cre-
ate even more false positives or produce random results in case of sequencing
errors.

Sequencing errors and sensitivity

Even though sequencing technologies are under constant improvement,
sequencing machines can introduce mutations and insertion/deletions in the
reads they produce. Due to the exact matching property of Bloom filters,
the short read filtering approach is not able to detect sensitive nucleotides
that are located near a sequencing error. However, these nucleotides are still
sensitive, so aligning a read, by e.g., using one of the alignment algorithms
tolerating such sequencing errors, such as BWA [2] or Bowtie [64], would
allow an attacker to obtain the genomic variations.

Applying SRF, a sensitive character is detected only if the 30-nucleotides
subsequence it belongs to is detected sensitive. If any nucleotide of this win-
dow is modified, or deleted, then there are high chances that the sequence
and thus the sensitive nucleotide will no longer be detected sensitive. Indeed,
let pm be the probability that a nucleotide is modified by a sequencing ma-
chine. Then, the probability that all 29 nucleotides inside a SRF window are
not modified is equal to (1− pm)29. With 0.1%, 1%, 2%, or 4% of mutation
errors, the SRF would then detect respectively, 97%, 75%, 56%, and 31% of
the sensitive nucleotides, possibly making thousands of genomic variations
available for an attack.
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