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POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Jure Tuta
Metoda za določanje položaja v prostoru na osnovi signalov WiFi in modela zgradbe

Določanje lokacije znotraj prostorov na podlagi WiFi signalov je zaradi variabilnosti si-
gnala WiFi težka naloga. Posledično je bilo v preteklosti veliko poizkusov razvoja WiFi
metod, ki uporabljajo dodatne informacije za natančno lokalizacijo. Ocena prehoje-
ne poti in inercijski senzorji, uporaba množice ljudi in ujemanje vzorcev, tehnologija
Li-Fi in usmerjene antene itd. je le nekaj v preteklosti uporabljenih načinov za do-
polnitev WiFi signalov pri razvoju natančnih in stabilnih metod. Glavna slabost takih
metod se kaže v zahtevnem uvajanju zaradi uporabljenih tehnologij in zahtev: metode
ocene prehojene poti niso primerne za stacionarne predmete, metode, ki uporabljajo
množice ljudi, niso primerne za domače okolje, Li-Fi metode zahtevajo, da so mobilni
terminali opremljeni z ustreznimi sprejemniki in tako izključijo mobilne telefone kot
terminale.

V preteklosti so bile predlagane številne metode, ki bazirajo na prstnih odtisih si-
gnalov. Te metode zahtevajo kalibracijske meritve v prostoru v fazi implementacije
metode. Večina teh metod ne naslovi vprašanj dolgoročne stabilnosti WiFi signalov,
posledično se soočajo s težavami zaradi natančnosti nekaj dni po kalibraciji. Pogo-
ste, drage in časovno potratne ponovne kalibracije so potrebne za reševanje teh težav.
Metode, temelječe na matematičnih modelih, poskušajo eliminirati kalibracijske po-
stopke s simulacijo širjenja signala. Večina teh metod vseeno privzame vsaj nekatere
parametre propagacije kot fiksne in tako slabo naslovi variabilnost WiFi signalov in
dolgoročno stabilnost. Izključno WiFi modelna metoda, ki uspešno naslovi te težave
in zahteva, da mobilni terminal samo oddaja ali sprejema WiFi signale, je končni cilj
WiFi metod za določanje položaja v zaprtih prostorih.

Ta doktorska dizertacija predstavlja novo metodo za določanje pozicije znotraj pro-
storov, z glavnim ciljem, da naslovi težave pri realni uporabi. Zato smo se osredotočili
na razvoj metode z natančnostjo, ki je primerljiva z najsodobnejšimi metodami, hkrati
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pa je cilj zmanjšati kompleksnost implementacije in vzdrževanje za dolgoročno uporab-
nost. Predstavljena metoda je modelnega tipa in implementira prilagodljivo delovanje,
zato ne zahteva nobenega človeškega posredovanja. Dizertacija podrobno razpravlja o
temah dolgoročne stabilnosti WiFi signalov, o metodah, temelječih na sprejemanju
in oddajanju signalov, prihodnjih standardih WiFi, primerljivosti sorodnih metod in
arhitekturnih vplivih z ozirom na realno uporabnost.

Naša metoda predstavljena v tej nalogi oceni prametre propagacije signala iz po-
znavanja pozicije dostopnih točk, arhitekturnega načrta z informacijami o predelnih
stenah in s pomočjo opazovanja moči paketov, ki potujejo med dostopnimi točkami.
Iz teh podatkov se propagacijski parametri definirani v modelu določijo v realnem času.
Naprava, ki želi določiti pozicijo zajame informacijo o moči paketov, ki jih pošiljajo
dostopne točke. Te meritve so uporabljene v algoritmu za določanje pozicije naprave,
ki teče na strežniku.

Predstavljena metoda je bila primarno razvita in evalvirana v enosobni in večsobni
postavitvi pisarniškega okolja. Sposobnost metode, da se enostavno prilagodi vsakemu
okolju, je poudarjena z evalvacijo v dveh okoljih – pisarniškem in stanovanjskem. Med
obema evalvacijama nismo spremenili nobenega parametra metode, kar indicira njeno
univerzalnost. V nadaljevanju predstavimo tudi evalvacijo metode v dolgem hodni-
ku, ker je v raziskovalnem področju lokalizacije znotraj prostorov tako okolje pogosto
uporabljeno.

Evalvacija predlagane metode v pisarniškem okolju je rezultirala v povprečni na-
paki 2,63m in 3,22m za enosobno in večsobno postavitev. Druga evalvacija je bila
opravljena v stanovanjskem okolju, za katerega nismo spreminjali metode ali njenih
parametrov. Naša metoda je tekom evalvacije štirih neodvisnih setov meritev, od kate-
rih je vsak sestavljen iz  lokalizacijskih točk, dosegla povprečno napako lokalizacije
2,65m s standardno deviacijo 1,51m. Visoka natančnost lokalizacije ob upošteva-
nju zapletenega in realističnega večsobnega tlorisa, ki vsebuje več vrst sten, realistično
pohištvo in motnje signalov iz sosednjih stanovanj, dokazuje uporabnost metode v pra-
ksi. Natančnost je primerljiva z najsodobnejšimi metodami, medtem ko naša metoda
zahteva veliko manj zapletene postopke namestitve in/ali strojne zahteve.

V drugem delu teze posplošimo WiFi metodo, da lahko uporablja tudi druge fre-
kvence poleg 2,4GHzWiFi. Z definicijo fuzijskega algoritma, ki upošteva natančnost
posameznih frekvenc, smo definirali MFAM metodo – večfrekvenčno prilagodljivo
modelno metodo za določanje lokacije znotraj stavb (ang. multiple frequency adap-
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tive model-based indoor localization method). MFAM metoda predstavlja eno prvih
modelnih metod, ki lahko hkrati uporablja več frekvenc. MFAM metoda je bila eval-
virana v stanovanjskem okolju na dveh frekvenčnih pasovih: 868MHz in 2,4GHz.
Metoda je ohranila pozitivne lastnosti predlagane WiFi metode (tj. izključno modelni
pristop, prilagodljivo delovanje, možnost široke uporabe na dosegljivi strojni opremi),
hkrati pa rezultira v boljši natančnosti zaradi fuzije signalov več frekvenc. Uporaba
več frekvenc je izboljšala povprečno napako iz 2,65m pri uporabi WiFi na 2,16m, s
čimer se izboljša natančnost lokalizacije za 18%; podobne izboljšave smo opazili tudi
pri standardnemu odklonu.

Čeprav je natančnost predstavljenih WiFi in MFAM metod primerljiva, če ne bolj-
ša, kot trenutno najsodobnejše metode, je eden najpomembnejših dosežkov našega
dela uporabnost metode v realnih situacijah in njena dolgoročna stabilnost. Definicija
naše metode zagotavlja, da bo natančnost metode ob času postavitve enaka kot dneve
kasneje brez človeške interakcije.

Ključne besede: lokalizacija, lokalizacija zontraj prostorov, modeliranje, porpagacija si-
gnala, načrt zgradbe, več frekvenčna lokalizacija





ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Jure Tuta
Indoor Localization Method Based on WiFi Signals and Building Layout Model

WiFi indoor localization is a difficult task due to the variability of the WiFi signal.
Consequently, there have been many attempts to develop WiFi-based methods which
were aided by some other means to provide accurate indoor localization. Technologies
like dead reckoning and IMU sensors, crowd utilization and pattern matching, special-
ized Li-Fi hardware and directional antennas, etc. were used to aid the WiFi in order
to develop more accurate and stable methods. The main disadvantage of such methods
lies in difficult deployments due to technologies and requirements: Dead-reckoning-
aided methods are not suitable for stationary objects, methods leveraging groups of
people and many individuals are not best suited for home environment, Li-Fi assisted
methods require mobile terminals to provide Li-Fi connectivity and therefore rule out
mobile phones as the most common terminal.

In the past, many fingerprinting methods were proposed; these require a survey
in the area of localization during the setup phase. Unfortunately, the majority of
fingerprinting-based methods do not address issues of long-term stability of the WiFi
signals. Thus, they face accuracy issues a few days after the calibration; frequent, costly
and time-consuming recalibration procedures are used to address these issues. Model-
based methods try to eliminate calibration procedures by simulating signal propaga-
tion. Many of the methods assume at least some parameters of propagation as fixed
and therefore poorly address the issues of WiFi’s variability and long-term stability. A
pure WiFi model-based method that successfully addresses these issues and requires a
mobile terminal only for emitting or receiving the WiFi signals is the ultimate goal of
the WiFi indoor localization.

This thesis presents a novel indoor localization method, with the main intent of
addressing the issues of real-world applicability. Therefore, we focused on developing
a method with accuracy comparable to the state-of-the-art methods, while reducing
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the complexity of deployment and minimizing the required maintenance for long-
term deployments. The presented method is a model-based method, implementing
self-adaptive operability, i.e. it does not require any human intervention. The thesis
discusses in detail the topics of the long-term stability of the WiFi signal, receiving
vs. transmitting methods, the future WiFi standards, comparability of the methods
and architectural aspects with respect to real-world applicability of the localization
methods.

Our presented method estimates the parameters of signal propagation, by knowing
the positions of the access points, the architectural floor plan with the dividing walls
and by monitoring power of the packets travelling between the access points. From
this data propagation parameters defined in propagation model are inferred in an on-
line manner. A device trying to define its position captures power information of the
packets sent by the access points. Devices’ information on the observed power is used
to determine its position by an algorithm run on the localization server.

The presented WiFi method is primarily developed and evaluated in single- and
multi-room office environments. The method’s ability to be easily applicable in any
environment is emphasized by its evaluation in two different environments – office and
residential. Between the two, no parameters were modified, thus evaluations indicate
universality of the method. Furthermore, we provide evaluation also in narrow hallway
because in the field of indoor localization such evaluation environments are common
practice.

During the evaluation of our proposed method in the office environment, we ob-
tained an average error of 2.63m and 3.22m for the single- and multi-room envi-
ronments respectively. Second evaluation was performed in the residential environ-
ment, for which the method or any of the parameters were not modified. Our method
achieved an average evaluation error of 2.65mwith standard deviation of 1.51m, dur-
ing the four independent evaluations, each consisting of  localization points. High
accuracy of localization, with acknowledgement to the intricate and realistic multi-
room floor plan with different types of walls, realistic furniture and real-world signal
interference from the neighboring apartments, proves the method’s applicability to
the real-world environment. Evaluation accuracy can be compared to the state-of-the-
art methods, while our easily-applicable method requires far less complicated setup
procedures and/or hardware requirements.

In the second part of the thesis, we generalize the WiFi method to be applicable
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to the frequencies other than 2.4GHz WiFi. By defining a fusion algorithm which
considers accuracy of the individual frequencies, we have defined the MFAM method:
Multiple Frequency Adaptive Model-Based Indoor Localization Method. The MFAM
is one of the first purely model-based approaches capable of utilizing multiple frequen-
cies simultaneously. The MFAM method was evaluated in residential environment on
two frequency bands: 868MHz and 2.4GHz. The method retained positive prop-
erties of our WiFi approach (e.g. pure model-based, self-adaptive operability, wide
applicability on affordable hardware), while improving the accuracy due to multi-
frequency fusion. The usage of multiple frequencies improved the average error of
localization from 2.65m, while using only the WiFi, down to 2.16m, in the case of
multi-frequency fusion, thus improving localization accuracy for 18%. Similar im-
provements were observed also for the standard deviation.

Although the accuracy of the presented WiFi and MFAM methods is comparable if
not better than the state-of-the-art methods, one of the most important achievements
of our work is the applicability of the method to the real-world situations and its long-
term stability. The definition of our method ensures that the accuracy of the method
will be the same at the time it is initialized, as well as days later, without any human
interaction.

Key words: localization, indoor localization, modelling, signal propagation, building
layout, multi frequency localization
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  Introduction J. Tuta

Anyone who has had the experience of walking or driving without knowing where
they are knows the feeling of being lost. It is not a pleasant feeling and we humans
feel incomplete not knowing where we are. Therefore, we have always strived to define
our position relative to the known objects. Archeologists have discovered early maps
defining distances to the neighboring settlements that date to the Babylonian Era; in
Ancient Greece, early astronomers have started estimating the position of the planets
and the Sun relative to the Earth. In modern age, Global Navigation Satellite Systems
(GNSSs) provide the geolocation outdoors.

Never before in history was information about the precise location indoors so desir-
able. New technologies are developed every day that require the exact indoor location,
yet such a widely deployable system does not exist. Can you imagine how an indoor
localization and navigation system would ease the search of a specific product inside
a shopping center? Or how could we optimize our time if a mobile phone would cal-
culate the optimal route through a grocery store based on our shopping list? Can you
imagine the possibilities in our smart homes of the future?

In this thesis, we describe our take on the indoor localization by developing a novel
WiFi approach that has been proven in evaluation and that successfully addresses many
deficiencies of the current approaches. Its main features are adaptiveness to the indoor
changes, simple applicability by utilizing widely available hardware, and minimal im-
pact on the network, since the devices which are trying to define position do not need
to emit signals. In the second part of the thesis we generalize the WiFi approach to
multi-frequency usage, as the underlying method is not build specifically for WiFi. We
present evaluation on two signal sources: one is 2.4GHz .g WiFi and the other
is proprietary home automation communication protocol operating on 868MHz. We
introduce the fusion method that considers the accuracy of each individual frequency
and opens a possibility for adding more signal sources.

. Motivation

We are living in the era when technology is starting to be implemented in every object
of our lives. Devices that were purely mechanical in the past, such as door locks,
radiator thermostats, switches, etc. are becoming smart and connected to the network.
Concepts like Smart Homes, Industry ., Smart Transport, etc. have a common
denominator, which is the Internet of Things (IoT) paradigm. Ever since K. Ashton
coined the expression “Internet of Things” [], industry is pursuing the goal of creating





ubiquitous systems in which every device is connected to the network.
Connection to the network enables the devices to exchange information, upon

which algorithms can provide additional functionality to us - the end-users. The IoT
visionaries predict a world in which seamlessly shared information between the de-
vices in our homes, public spaces and factories ease people’s lives. The IoT visionaries
promise homes of the future will be aware of their inhabitants and adapt lighting,
heating, entertainment, and security systems accordingly []. The smart homes of the
future promise a fully adaptive living environment. Home heating systems which can
detect that owners are on their way from work are on the verge of a wide deployment;
future homes promise smart kitchens which will be able to detect and report the gro-
ceries we need. Even today the systems for controlling each light, air vent, heating
element and window separately are available for high-end buyers; such systems will
only evolve in the future decade and become more available.

Our homes are not the only environments which will benefit from the IoT; the
IoT is an essential part of the Industry . paradigm []. Industry . is the current
trend in manufacturing and production systems; it focuses on the communication
and exchange of information between different machines and humans involved in a
manufacturing process. Industry . is thought to be the fourth major step in the man-
ufacturing industry, the first one being the invention of steam power during the First
Industrial Revolution in the  t century, then the mass production and assembly
lines in the Second Industrial Revolution in the t century and the third the au-
tomatization of the manufacturing process in the seventies. The Industry . promises
decentralized management of the manufacturing process and communication between
smart products, manufacturing machines and resources. As every integral part of the
manufacturing process will be able to communicate, the manufacturing process will
be able to adapt to the changes in the supply chain and product demand.

One of the properties of every device which is often beneficial to other IoT devices
is its precise location indoors []. For example, we usually carry our mobile phones
everywhere we go; it would be useful if the computer in our car detected that we have
forgotten our mobile phone when leaving. Even further, if our homes were able to
locate us by determining the position of our mobile phones, centralized home control
system could adapt the heating and cooling of individual rooms accordingly. Local-
ization is also a very important and not yet resolved problem of the industry [, ],
e.g. implementation of a fully IoT-enabled transport system in the factories calls for
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accurate means of localization. Although there are several approaches to the indoor
localization [–], researchers agree that the method which could be universal has not
been developed yet [].

The main goal of our research work was to develop an indoor localization method
that would be suitable for the real-world usage; each design decision during the devel-
opment was subjected to this goal. Our goal was to address the difficult calibration
procedures, static usage of parameters in propagation models and hardware require-
ments of the existing methods. To accomplish this, we have set the following prereq-
uisites.

WiFi approach
Our goal is not to confine the method to the WiFi signals, but if possible develop
a universal method; because we have to begin the development and evaluations
with some signals, we will primarily utilize the WiFi signals, as they are most
commonly used in the field. WiFi is nowadays used everywhere to provide ac-
cess to the Internet and consequently hardware has often been already deployed
indoors; leveraging of the existing hardware simplifies new deployments, as it
does not require any indoor construction work and at the same time lowers the
investment costs. After the development of the new WiFi method, we would
like to, if possible, extend our method to utilize other types of signals and de-
velop a multi-frequency approach which would fuse information from signals
of different frequency to provide an accurate indoor location.

Model-based approach
There have been many attempts to build WiFi-based approaches, but many of
them are not usable in the real-world scenarios, due to the variations of the WiFi
signal strength. We wanted to address this issue by building a method based
on physical propagation of the WiFi signals, which will implement constantly-
running self-calibration operability in the background, since not every method
with static parameters is suited for highly variable WiFi spectrum []. WiFi
signal exhibits heavy variability of the signal not only in the short term but also
in the long term; this is often overlooked by other methods. If we observe the
strength of the signal between two fixed points indoors for multiple weeks and
heavily filter it in order to remove high-frequency variability, we will not observe
constant values as some methods predict. Real-world model-based approach





that can be used for longer periods (e.g. weeks, months) without interruptions
must address this issue. Any indoor localization method that requires initial
calibration usually does not adequately address this issue.

Awareness of the architectural aspects
By providing information about indoor wall placement, we can improve the ac-
curacy of the method especially indoors, where room sizes differ substantially.
This is important in the modern residential environments, where placement of
the walls indoors is not uniform. This fact is often overlooked by indoor lo-
calization researchers as the majority of the localization methods are developed
in the office environment of the research institutions, where offices are of ap-
proximately uniform size. Moreover, in the related work review we will see
that non-negligible portion of the methods are evaluated only in hallways of
the buildings and therefore do not provide any information on the localization
accuracy in the rooms.

Applicability on widely available hardware
The usage of special and costly equipment limits the universality and applica-
bility of the method. For that reason, we have decided, with the real-world
usability in mind, to develop a method on affordable and widely available hard-
ware. In the related work review, we will mention localization systems that use
ceiling lights which emit high frequency information by modulating the light
output; but such systems require considerable changes to the infrastructure of
the building and specialized mobile terminals capable of detecting such infor-
mation. We have therefore set strict hardware goals for mobile terminals; the
method should be possible to implement on the simplest device connected to
the wireless network. The most basic information about a wireless signal for a
device is the signal strength and therefore this is the only requirement for the
device during the development of our method. For the building’s infrastructure,
we have decided to use common access points available on the market.

These goals and prerequisites, combined with passion for research, led us on a re-
search journey described in the following dissertation.
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. Scientific Contributions

The main scope of this work is a novel indoor localization method that is based on
the physical propagation of the signal through space and includes information about
wall placement and its effects on signal propagation. The proposed method constantly
monitors the signal propagation through the indoor spaces and adapts the model ac-
cording to the changes. Contributions of our work to the scientific community can
be summarized as follows.

Novel calibration method for indoor WiFi-modeled approaches.
The method presented in this work exhibits self-calibration operability, meaning
that it always monitors the propagation of the WiFi signal through space and
adapts the localization model accordingly. Therefore, the method detects the
changes in the signal propagation in space and adapts to the changed space
dynamics while not requiring any additional hardware. This approach to the
online estimation of the propagation parameters can be adapted to a number of
other model-based approaches.

Novel self-adaptive model-based WiFi indoor localization method that accounts for
architectural aspects of the building layout.
Using the developed calibration method, we can build an indoor localization
method which can be used in real world. To our knowledge, this is the first
WiFi-only indoor localization method that utilizes information about the ar-
chitectural aspects, infers the parameters needed for the propagation simulation
from measurements, continuously adapts to the indoor situation without hu-
man intervention, does not need any additional hardware beside the APs, and
does not require mobile terminals to be in access-point mode []. The method
has been proven in evaluations in single- and multi-room office scenarios as well
as in a hallway and residential building.

MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
During the development of our WiFi method [], we have developed the
model without any assumptions about the underlying wireless protocols or its
frequencies. Therefore, in our further research, we have extended our WiFi
method and applied it to 868MHz frequency of the home automation sys-
tem. Fusion localization data from both the frequencies and the evaluation in





residential environment resulted in one of the first multi-frequency adaptive
model-based indoor localization methods. The method was developed without
any assumptions about the frequencies and opens the possibility of adding more
signal sources in the fusion process of indoor localization; it provides a method
which considers accuracy at each individual frequency when fusing information
to determine the accurate indoor location.

. Dissertation overview

The aim of the research work, upon which this dissertation is written, is to develop a
widely-applicable real-world indoor localization method. The research area of the indoor
localization has lately received a lot of attention, as the IoT devices, which are an
integral part of the smart homes and Industry ., could benefit from knowing the
position of themselves and the surrounding devices with which they communicate.
The presented dissertation describes the research journey we have made during the
development of a novel method; we are convinced that the method addresses many
deficiencies of the other approaches, while closely following our goal of the universal
indoor localization method.

Chapter  provides information on related work in the field of the indoor localiza-
tion and provides some background information on technologies used. Although we
utilize technologies used by our method daily, there are some key details needed for
the understanding of our method.

Chapter  elaborates on the limitations of current approaches and how those influ-
enced our design decisions during the development of the method. We will discuss in
detail the long-term stability of the WiFi signals and continue with a discussion about
methods that require a mobile terminal to transmit in contrast to the methods that
receive data needed for localization. The emerging and future WiFi standards and the
difficulties of the method comparison are also discussed. Chapter  concludes with
an elaboration on the positive side effects of the inclusion of architectural information
into the localization method.

Chapter  provides a detailed description of the developed method. Each stage
of the development is described in detail, while the mathematical and physical back-
grounds are discussed. Chapter  continues with the base evaluation in single-room
and multi-room office environments. A more challenging evaluation in the residential
environment follows; this is less common in the research area of the indoor localiza-
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tion. Finally, we present evaluation in hallway environment, which is less challenging,
but unfortunately used many times in the research area of indoor localization. Chapter
 concludes with the discussion and conclusions about the proposed WiFi method.

During the development of the method in Chapter , we have limited our method
to the WiFi signals; therefore, in Chapter , we generalize the presented method in
regard to other wireless signals. We present MFAM, Multiple Frequency Adaptive
Model-Based Indoor Localization Method, which is one of the first such methods
available. We describe in detail how we had to adapt the method to a wireless network
of home automation system, which is completely different in comparison to WiFi.
The evaluation of the home environment with results that hold a promising future for
the method are presented, followed by the discussion and conclusions.

Chapter  provides some discussion which is related to both previous chapters - 
and . It provides summarization of the results, comparison to the baseline methods
and some further analysis of the results (e.g. comparison of the standard deviation,
etc.).

Chapter  concludes the main part of the presented thesis, while emphasizing on
the scientific contribution of the presented work. In the end, we also provide some
directions that we consider as interesting starting points for future research.

In the appendix, the reader will find Chapter A with the source code of our imple-
mentation of the presented method written in Wolfram Mathematica language and
Chapter B with the Slovenian summary of the thesis.
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Our knowledge and understanding of the work conducted by other researchers is the
foundation for the development of a new method. The knowledge of the others’ work
enables us to build upon their discoveries and findings and at the same time the un-
derstanding of their work enables us to identify their shortcomings. With a profound
knowledge of both, we can identify the research challenges that lead us to the devel-
opment of new and original approaches.

The first section of this chapter contains a review of the related work on the indoor
localization; we will start with a wider description of the methods and later present the
WiFi-specific approaches. The second section presents WiFi and some details needed
for the correct understanding of our method and the design decisions. The last section
contains the description of a typical home automation system. We will need the un-
derstanding of such systems in the Chapter , where we generalize the WiFi method
for the multi-frequency usage and apply it to a home automation system.

. Indoor localization

Localization is “the process of making something local in character or restricting it to
a particular place” []. The indoor localization is therefore the process of restricting
objects to a particular place inside buildings; or, in other words, finding out the un-
known location for an object indoors. This has been an open research problem for
many years and many different approaches have already been proposed.

To present a wide range of the localization approaches, developed in the past years,
the first subsections present a recent classification of the localization methods. The
selected classification divides the methods based on the type of the primary algorithm
used for the localization. The classification further subdivides the methods based on
the measurement techniques. In order to present the diversity of the localization meth-
ods, we present the relevant examples for each classification in the Section ... After
the reader is intrigued by the diverse possibilities, we focus on the review of the WiFi-
based methods in the Section ... We discuss two different approaches one can take
while developing a WiFi-based indoor localization method. We provide the relevant
related work and discuss the advantages, the disadvantages and the accuracy of the
presented methods.





.. Classification of the indoor localization methods

One of the latest reviews of the advances on the indoor localization has been done by
Yassin et al. [], who classified the localization methods as shown in Fig. .. They
divided the methods into three groups, based on the positioning algorithms used:

Triangulation algorithms are based on the process of determining the location
of a mobile terminal (MT) by forming triangles to it from the known access
points (APs). They further divided these algorithms based on the measurement
techniques to the Lateration- and Angulation-based triangulation algorithms. In
the former sub-group of this classification, there are algorithms in which the
estimation of the distance between MT and APs is used; in the latter the angles
of the formed triangles are used for determining location.

Scene analysis algorithms are based on a survey of the indoor spaces. The mea-
surement technique for these methods is usually fingerprinting; this is an offline
step during which the recordings of values of a specific property in multiple loca-
tions indoors have to be made. The usual practice is to build a virtual mesh and
record values in all of the vertices. During localization, the stage measurements

Localization

Triangulation Scene Analysis Proximity Detection

Cell-ID RFIDFingerprinting-based

TOA
TDOA
RSS-based

AOA
AOD

Lateration Angulation

Figure .
Classification of the
localization methods [].
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from MT are compared to the recorded values and the location is estimated
using the similarity.

Proximity detection algorithms define the location by estimating the proximity to
the known locations. Yassin et al. further divided this group based on the mea-
surement techniques to Cell-ID- and RFID-based proximity detection algorithms.

Lateration-based triangulation algorithms usually work on the principles of Time of
Arrival (ToA), Time Difference of Arrival (TDoA), Received Signal Strength (RSS) and
Angle of Arrival/Departure (AoA/AoD). In outdoor scenarios, GNSSs usually leverage
ToA and TDoA principles, e.g. Global Positioning System (GPS) []. One of the
main challenges in such cases is time synchronization between the devices. In the GPS
case, the atomic clocks inside the satellites keep all the satellite clocks synchronized,
but the receivers still need to estimate this time with iterative estimations.

In the indoor localization research, attempts using ToA and TDoF have been made
[, ]. Youssef et al. [] evaluated their PinPoint system, running at 900MHz
FM radio waves, in the 130m indoor open area. They focus on ranging and not
on position determination; therefore, their evaluation is aimed at determining the
distance between one “log unit” (anchor point) and a test point. Their system achieved
an average error of 1.2m in the estimation of the distance with only  evaluation points
in a single-room scenario. They comment that their worst result of approximately 5m
is “due to severe multipath environment” at that specific location. In cases where
there was a more realistic distribution of walls in the setting, the effects of multipath
would, by our opinion, become greater and therefore we could expect a worse result.
Although a respectful average error in the distances between two specific points has
been obtained, it is difficult to comment on the accuracy of the localization system
implementing their distance estimation method. Priyantha et al. [] have worked
on the Cricket system, which provides the means for the infrastructure beacons to
announce their location; they do not provide a full system evaluation in which the
accuracy of the method could be inferred. The system utilizes ultrasound signals and
therefore requires specialized hardware in mobile terminals.

RSS-based lateration algorithms usually estimate the location by modeling the propa-
gation of the signal strength between APs and MT. The majority of the WiFi-modeled
approaches can be classified in this category (a detailed description of these methods
can be found in Section ..). We can find such approaches utilizing also other wire-





less technologies – e.g. the ultra-wideband (UWB) [] and IEEE .. [] based
technologies []. In the latter, the system consists of multiple wall-plugged sensor
nodes, nodes which bridge IEEE .., and Ethernet communications and active
wireless tags, which must be attached to each tracked item. The system combines RSS
based triangulation and round-trip time-of-flight measurements. Round-trip time-of-
flight information can improve the accuracy of localization, but also introduces the
need for the MT to emit data, which is not desirable, as is discussed later in the Sec-
tion .. Reported accuracy of 2.5m has been obtained in rather simplistic evaluation
environment, which is described as a “hallway”. We discuss further on the effects of
the evaluation environment in the Section .. Yoon et al. [] developed FM radio-
based indoor localization method which models propagation of the signals through
the indoor spaces. Leveraging FM infrastructure results in bigger distances between
APs and MT, but as it has a more stable signal that WiFi [], which in turn results in
bigger error in localization than using WiFi. In [], eight FM transistors were used
at a distance between 2.1 km and 59.6 km, resulting in the accuracy of approximately
15m. If the FM signals were aided by calibration and path matching algorithms, the
reported error in localization was 6m.

Angulation-based triangulation algorithms are less frequent in research publications
on indoor localization, probably because more specialized hardware is usually required,
which makes real-world deployments of such methods unrealistic. Such approaches
usually require multiple directional-antennas, so that the angle of arrival or departure
can be determined. Nevertheless, we can find some approaches, where multiple an-
tenna requirement is substituted with other means. Niculescu et al. [] mounted the
antenna on a revolving platform and developed IEEE . based indoor localization
system. It is easy to see that such approaches are not suitable for the modern smart
devices, although they report an acceptable performance (2.1m median error).

The measurement technique of the scene analysis algorithms is usually fingerprinting.
Fingerprinting procedure is usually costly and undesirable in real-world deployments,
as it takes a considerable amount of time and must be done repetitively. Many WiFi
fingerprinting-based solutions have been proposed; they are discussed in Section ...
Chen et al. combined WiFi and FM radio fingerprinting in []. Although the abso-
lute values of the average errors are not clearly shown, they report 83% better accuracy
when combining WiFi and FM in comparison to WiFi only. Their paper also touches
upon an important fact of the WiFi fingerprinting methods; i.e. the temporal varia-
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tions, which are discussed in .. Non-WiFi solutions have also been proposed; they
leverage television broadcast signals and cellular phone networks [].

Although it is unclear how Yassin et al. [] have meant to divide Proximity detection
algorithms by using the measurement techniques, we will assume a wider perspective,
meaning that Cell-ID stands for the techniques where MT defines its position by the
unique identifications of the detected APs, and RFID stands for the techniques where
APs scan and detect MTs in the vicinity. Another possibility is that Cell-ID stands for
localization techniques that detect proximity of a GSM Cell ID [–]; a uniquely
identifiable base transceiver station within GSM network, and RFID stands for the
indoor localization methods utilizing radio-frequency identification technology [–
]. Other solutions based on information transmitted by lights have been proposed
and they can also be categorized in this group [, ].

There are also some approaches that can be classified as hybrids between differ-
ent classifications. We have classified [] in the last group, because its main con-
tribution is light-based proximity detection, which calibrates attenuation-based RSS
model. It uses Light-fidelity (Li-Fi) wireless network communication system which
utilizes UV, infrared and near-ultraviolet light for communication. Researchers in
[] have mounted some Li-Fi lights in order to enable MT to detect proximity to a
specific light source. When proximity is detected, the absolute position is known with
relatively high accuracy, and propagation model can be recalibrated.

Lately there has been a lot of research into light- and vision-based indoor localization
systems. For example, Pandey et al. [] evaluated nine points in the space of 9m,
utilizing six additional devices and obtained 0.3m average error. RF based method
cannot achieve such accuracy in real world setting. Even greater accuracy is presented
by Ma et al. [], who developed system with average error of 1.7mmwhen localizing
 points in 1m. Their system cannot be efficiently scaled, as it requires a projector
projecting images above the evaluation space. These systems provide great accuracy,
although they are not viable candidate for wide deployments.

This concludes a wide overview of the indoor localization principles which we will
continue by examining the WiFi-specific approaches.

.. WiFi indoor localization methods

When developing a real-world solution with the intention of wide applicability, the
price of deployment is always an important factor. In the deployment scenarios we





are always trying to use affordable technologies. It is even better if the existing infras-
tructure can be leveraged to provide localization. While the building’s infrastructure
is usually in the domain of people deploying solution, we cannot say the same for the
other end of the system – the mobile terminal. Especially in public locations, where we
want to offer the visitors the means of the indoor localization (e.g. shopping centers,
museums, parking garages, etc.), we usually do not have control of the capabilities of
the MTs.

That is why it is not strange that many different approaches of indoor localization
that have been researched utilize the WiFi signals. The WiFi infrastructure is widely
available in the residential and business buildings and the majority of indoor locations
nowadays have WiFi coverage. From the user’s perspective, the majority of smart de-
vices nowadays have the WiFi connectivity options, making the WiFi-based localiza-
tion accessible to public without any significant investment in new technologies. There
have been plenty of survey papers written on the indoor positioning systems, some fo-
cus on WiFi, others are more general but include WiFi approaches [–, , ].

The WiFi localization approaches usually do not follow the naming in the classifi-
cation by [] discussed previously, which is meant for the general indoor localization
techniques. We have mentioned the approaches that use WiFi during the discussion
of Fingerprinting Scene Analysis and RSS Lateration Triangulation-based approaches.
These two sub-classifications are in the context of WiFi approaches usually named
Fingerprinting- and Model-based methods.

The following two subsections will discuss the methods and approaches to the in-
door WiFi localization with the emphasis on presenting many diverse approaches and
their recent successes.

Fingerprinting-based WiFi methods

The fingerprinting localization methods consist of an offline stage in which the survey
of the RSS in the area of interest has to be performed. In the localization stage, the
algorithms would search for the best match in the database or interpolate data from the
database and estimate the location. The researchers analyzing different wireless signals
for indoor localization agree that due to the temporal changes in the WiFi signal []
emitted by the APs, no parameter calculated from the measurements can be assumed
as fixed [, ].

One of the first attempts at RF indoor localization was by Microsoft Research team
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as described in [, ]. They explored a simple fingerprinting method while at the
same time also tried to build a modeled approach. Their fingerprinting method has
achieved “room level accuracy” [], with median errors of approximately 3m. Their
attempt at a model-based method had worse results and was heavily influenced by the
fingerprinting method, as propagation model is built upon it.

There have been many attempts at simplifying or easing the requirement of the fin-
gerprinting procedure. The research done by Chan, Chiang et al. [] shows a simple
fingerprinting algorithm which was improved by utilizing clusters of mobile terminals.
Nodes inside the cluster are located with the fingerprinting algorithm; the knowledge
about the clusters of mobile terminals, by coincidence discovered by ZigBee, is then
used to collaboratively correct the error of the algorithm in the location estimation.
Authors report the best-case accuracy of 2.6m, when peers collaborate, and 3.5m,
when there is no collaboration. Results show a great benefit of using additional sig-
nals, although ad-hoc collaboration, as described in the research, requires MT to be
able to communicate via ZigBee, which is nowadays not regularly available in mobile
phones and other connected devices.

A similar approach is the one done by Kim et al. []. They used anonymous mo-
bile users to automatically collect fingerprinting data, while tracking their location via
inertial sensors, and to progressively build a radio map on the server. The questions
about time frame of the collected fingerprints arise in such approaches. The WiFi
signal exaggerates variability in the time domain, as is further discussed in Section
.. Therefore, only fingerprints collected in the short time period, before the local-
ization occurs, can be considered for providing long-term accurate results. We must
consider these approaches as not best-fitted for real-world application, because they
utilize many subjects (i.e. the crowd) to build a RSS map. This is also not simple to
achieve in many situations, where there are not many subjects in the area of interest –
e.g. home/residential environment and industry applications. The reported accuracy
of approximately 6m is worse in comparison to the previously discussed methods.
Our method uses online calibration approach to eliminate the need for the user’s in-
tervention when re-calibrating.

Such collaborative approaches assume that mobile terminals are willing to collab-
orate in the localization process. In real-world battery-powered devices at least the
energy-related concern arises, as such collaborative work will have an impact on the
battery. In the recent years when privacy is a great concern, collaboration-based local-





ization methods also raise questions about the privacy of specific nodes. Lately, there
has been also a lot of research effort put into optimizing the fingerprinting process as
can be seen in [, ].

Recently, the solutions that fuse data from inertial measurement units (IMU) and
the WiFi localization systems became a popular topic in the research of indoor localiza-
tion. IMUs have become affordable and therefore the manufacturers of mobile devices
(e.g. phones, tablets, etc.) have started to implement them, which in term increased
the interest of the research community into exploring their potential. A typical IMU
consists of a multi-axis accelerometer, a gyroscope and a magnetometer. For example,
the work, done by Alvarez, Alonso and Trivino [], proposes the activity recognition
system that uses WiFi-based location system, combined with accelerometers for the
body posture recognition. Their WiFi localization system is using a fuzzy-rule-based
classifier that was generated on a training set obtained by fingerprinting the environ-
ment. Deng [] exploits the fusion of IMU data and the WiFi location service that
is based on fingerprinting, by using the extended Kalman filter in the data fusion pro-
cess. As we would like to define the localization approach that would suite the future
of IoT, this is not the best solution. The majority of proposed IoT devices are not
handheld and therefore we cannot acquire useful information from the IMU sensors.

The works done by Wu, et al. [, ] show that the channel state information
(CSI) can be more accurate and stable than RSS. Their work emphasizes the problem
of defining the path loss (fading) exponent and other environmental parameters. Their
research defines the path loss exponent in a per-AP manner. It can be seen that the
definition of variables in the propagation model is one of the greatest difficulties of the
modeled approaches. We are convinced that the model used in the real environment
should adapt these variables to the changes in the setting, as people and other present
WiFi devices all have an influence on the wireless signal propagation, due to inter-
ferences, scattering, reflections, etc. Thus, our research is devoted to defining these
values in an online manner and without human intervention. Regarding the utiliza-
tion of information about WiFi, other than RSS (e.g. CSI, SNR), we are devoted to
developing the methods which can be used on every simple WiFi-connected device;
in some devices, information other than indication of RSS is difficult to obtain – e.g.
Android, which is one of the biggest mobile platforms, gives only information about
RSS through the provided API [].

There are some approaches that exhibit the properties of fingerprinting and model-
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based approaches; the authors of [, ] present an approach where advanced model-
ing is used to simplify the requirement of fingerprinting in comparison to the classical
methods. Fingerprinting in corridors of a building is used to obtain the training data,
which is later used in complex Support Vector Regression based algorithm that pre-
dicts RSS in non-surveyed positions indoors. The impressive accuracy of 1.66m is
reported in []. The method does not address the problems of the variable WiFi sig-
nal in the real-world environment (as will be discussed in Section .). Because the
method does not implement the procedures to adapt to such changes, we can assume
that for a long-term period the accurate positioning fingerprinting has to be redone;
this is also the reason for classifying this method in this category. Similar approach
by SVM usage can be found in [], although only used for classification of locations
and not exact indoor localization.

Model-based WiFi methods

The model-based approaches try to mathematically define the propagation of the wire-
less signal; therefore, these methods are usually mathematically more complex. On the
other hand, the model-based methods try to eliminate the biggest deficiency of the fin-
gerprinting methods – i.e. the required and frequent fingerprinting procedure in order
to maintain the long-term accuracy. Sometimes it is difficult to draw the line between
the fingerprinting methods and model-based methods, as some methods utilize both
approaches (e.g. []). Usually such methods utilize the fingerprinting in the offline
phase and then utilize a more advanced model approach in the localization phase in-
stead of a simple interpolation for the localization.

We could say that the model-based approaches that use only WiFi RSS to determine
the location had to be developed for the cases where we do not have access to any other
sensors and the training sets cannot be obtained. Thus, it is not surprising that there
was a significant research effort put into the localization of specific APs in a non-
surveyed environment. These methods can be used for discovering the attacks on the
wireless networks and for discovering the WiFi jammers. The works done by Cai et
al. [] and Chen et al. [] try to provide the methods for efficient localization
and detection of the malicious APs. The authors in [] have performed an evaluation
only in the virtual environment and do not report on the median or average accuracies,
while the authors of [] report on a 3m median error in determining the position
of the malicious AP. A similar approach is taken by Koo and Cha [] in effort to





develop the WiFi localization scheme. The results from these publications show that
it is possible to build a model-based localization technique even when the access point
we want to localize does not cooperate with the localization procedure. The case that
is addressed during our research work is different, as both the mobile terminal and
the infrastructure share a common goal in determining the location of the mobile
terminal. We are convinced that the results obtained from our joint effort can surpass
these approaches.

Bisio et al. [] proposed a method in which the propagation map is not defined by
the means of a space sampling, but instead on the pure physical models of the finite-
difference time-domain simulations. In this approach, the effects of the other devices
and movable objects were not properly addressed, meaning that this method can be
problematic in real-world situations. Olivera et al. [] used a probabilistic-based
method to determine the position of the robot on a WiFi map. Former authors chose
the modeled approach, based on the radio propagation model. They emphasize the
selection of correct values for the parameters of the model; we cannot stress enough the
importance of determining the correct path loss exponent and other constants inside
the models. Many different approaches are taken to obtain the correct values. As is
the case with the fingerprinting methods, also in the modeled approaches there was
research done to utilize the anonymous crowd for getting the samples. In the work
done by Zhuang et al. [], these values are used to calculate the parameters of the
WiFi propagation model. Our proposed method has one similarity with [] - our
method also builds a map of the model-predicted RSS on the server, but in contrast to
[] and [], we have proposed an online calibration procedure that is able to cover
the real-world dynamics of the indoor space, as the parameters can be determined on
the fly.

As we have seen in the previous section, some research is devoted to identifying
the improved metric over RSS. Francisco and Martin [] propose their own metric
for the characterizing radio signal space for the wireless device localization. As said
before, information about RSS is available on all devices, which cannot be said for
other properties of the wireless signals. The choice of other-than-RSS information
therefore limits the applicability of the method on the available hardware.

In the research area of the modeled approaches, we can find the use of other sensors
to augment the WiFi localization data in an effort to provide even better results. The
work done by Zampella et al. [] provides the fusion-based approach, where the
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model-based WiFi location extracted from RSS and time-of-flight (ToF) data is fused
with the data from the IMU sensors. Their algorithms were modeled separately for
different walking styles as it was calibrated on per-user basis. The authors are aware
that the use of their system in real-world deployments is problematic, since a time-
consuming calibration was done for each user, mobile terminal and AP separately. On
the other hand, Chiou et al. [] used the Kalman filter to fuse data from the WiFi
propagation model and the measurements of SNR data to obtain location information.
This approach also uses additional hardware – reference points (WiFi tags) to build
infrastructure for the localization system. The indoor localization approach taken by
Stubing [] requires additional hardware – WiFi transponders. This is ideal for his use
case; he was developing a trauma-center WiFi real-time patient and personal tracking.
These solutions are not ideal for the generic solution we want to propose. Fusion
systems also enable us to fuse multiple types of signal indicators as was done in [].
Their fusion model is based on the adaptive Kalman filtering, which uses RSS, power
ratio, SNR and velocity data from mobile terminal as input. They are aware that
the constant velocity model is not the best choice, as it could be improved with the
usage of the accelerometer. Fusion systems demand some other source of data rather
than the WiFi signal. We are trying to avoid additional hardware, demanded by other
data sources, to build a reliable WiFi-only system for the IoT. This system can be later
improved and built-upon with the help of other sensors and data fusion for the specific
localization case.

The approaches that usually leverage the knowledge about architectural aspects of
the indoor spaces are the ray-tracing methods. The ray-tracing methods can be consid-
ered a sub-group of the model-based approaches, because they focus on the directions,
reflections and power propagation of the signals emitted from the WiFi-enabled de-
vices. These approaches are usually computationally complex, because they calculate
the signal strengths at specific points due to the direct and reflected paths. Examples of
such approaches can be found in [, ]. Some other research works also present the
approaches aware of the indoor setting. An example of such a work can be found in
[], where the possible transitions between the rooms are included into the location
determination, although this work addresses only the determination of the room and
not the exact location.

The first of the four works that are closely related to our work was submitted by
Tarrio et al. []. Their view on the localization is heavily influenced by the consid-





eration of real-world deployment limitations; their goal is to minimize the calibration
procedures while improving the accuracy of localization. They propose the positioning
algorithm to calculate the position of a mobile node in an ad hoc network from a set of
the distance estimations to the anchor nodes. They model the propagation of the signal
via free-space path loss antenna attenuation; the localization method is based on find-
ing the location with the least square error of the calculated (modeled) and measured
RSSI. Their work does not provide clear answer about how the described calibration
procedure can be used in multiple environments, without a time-consuming setup
phase. They only provide a recommendation for the parameters to be experimentally
determined. Our approach has an online real-time calibration procedure defined, as
we are calculating the model parameters from the readings of the signal properties be-
tween APs and the architectural map of the building, translated into the network data
structure.

A paper by Xiao et al. [] presents the deployment of the machine learning tech-
niques to a non-line-of-sight WiFi modeling. They propose multiple algorithms to
the problems of a non-line-of-sight identification and localization which use the WiFi
RSS measurements only. They claim that their solution is robust and can be trained in
one environment and then utilized in another, which makes the solution generic. Xiao
et al. used the machine-learning techniques, including the classifiers and support vec-
tor machines, to determine the model based on a collection of measured RSS signals.
One could argue that this is a fingerprint-based approach, but the training samples are
used to build sophisticated mathematical models for localization. They agree that the
proposed method has limitations, due to the costly training phase in which data must
be acquired for the machine learning process to consume.

The third core paper that corresponds to our research is written by Durmont and
Corff []. They emphasize the environmental dynamic and the problems of models
which often overlook these. The algorithm is run online and does not require any of-
fline calibration procedure. The propagation maps are estimated online, using the data
sent by the mobile device. We are also trying to capture the environmental dynamic,
by having an online algorithm that would not require an offline calibration procedure.
Our work does not estimate the parameters only by analyzing the data sent by the
mobile device, but also by analyzing the signals emitted by APs and captured by other
APs. This is the only approach so far that enables the technique to easily adapt to the
changes indoors and can be therefore easily transferred into real-world situations.
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Last but not least is a paper written by Du, Yang and Xiu []. Their approach
is to modify the AP firmware to provide a scanning feature to the APs. Therefore, a
specific AP does not only provide wireless connectivity to other mobile devices, but
also scans the neighborhood for the beacons sent by other APs. Our method is based
on similar firmware changes, although the details of the changed firmware differ. They
use the WiFi anchors with a known position to build the propagation models which
are then used to build fingerprint maps. The parameters of the model are based on
the analysis of the uplink traffic from the WiFi anchors to APs. If our approach is
translated into context of Xiu et al., in our setting, every access point becomes an
anchor and a receiver of the signal at the same time. If the infrastructure has  APs
and one anchor, their approach has ideally  measurements to infer the parameters
of propagation; our approach would have in the same setting ( devices) up to 
measurements from which the parameters could be determined.

The last four papers (i.e. [], [], [] and []) are closely related to our work, as
they use only the WiFi signals for building models which are then used for the location
estimation. The majority of these papers and many other papers in this section do not
have calibration- and maintenance-free methods for keeping up with the dynamic of
the space in which the localization method is deployed. Our approach modifies the
firmware of the APs to expose the advanced features (already provided and used by
APs); levering these features, we can detect signals from other APs on a selected AP.
Therefore, we can acquire multiple measurements of the signal propagation and by
knowing the position of each AP, we can calculate the propagation parameters for a
specific environment. These data can then be averaged over some period of time if our
future experiments will show the usefulness of such approach.

In order to provide a valid comparison between the methods, they must be evaluated
in similar conditions. Therefore, we present Table . in which we review the selected
WiFi methods, with the emphasis on the evaluation environment and reported ac-
curacy. In the table in column “Evaluation environment description”, the keyword
“hallway” means that the majority or even all evaluation points were positioned in the
hallways. If the evaluation environment is denoted as “hallway”, we do not provide
the size of the indoor area, but rather combine the length of the hallways. The major-
ity of the methods marked “hallway” were not evaluated in one straight hallway, but
rather in a mesh of hallways in the building. From the table, we can see that many
authors evaluate their methods in a rather simplistic environment, sometimes consist-





Table .
The review of the selected WiFi-based related methods. A line in the table denotes a split between modeled and fingerprinting
approaches by our criteria.

Evaluation Number of Approximate
Method environment infrastructural average

description devices a accuracy [m]
Padmanabhan [] 125m, hallway  2.94

Chan [] 300m  2-3 b
Kim [] 3600m c 6.9
Deng [] 40m, hallway  2.8 d
Wu [] 30m, hallway  1
Bisio [] 72m, single-room  2.3

Olivera []e 100m, hallway  2
Zhuang [] 250m, hallway  4 f
Zampella [] 90m, hallway  5.5 g
Chiou []  80m, hallway  1
Eleryan [] 65m, single room i  3

Ji [] 140m, hallway  3 j
Lim [] 600m  2.9

Tarrio [] 100m  3.1 k
Xiao [] 60m, hallway  2.41l

Dumont [] 400m  4
Du [] 120m, hallway  2.4 m

a These devices include all the devices needed for the system to operate: APs, anchors, sniffers, etc.
b Heavily depends of the number of clusters, discovered by coincidence via ZigBee.
c Estimated by  needed paths and - detected APs indoors, could be much more.
d Reported value is for the WiFi method, below m, in case we use IMU sensors.
e Fusion approach; method utilizes also odometry data from the robot they are trying to localize.
f Accuracy heavily depends on the crowd-based survey;  is needed for the accuracy of .
g Reported value is for the WiFi method if assisted with IMU; values below  are reported.
 Time-consuming setup stage, based on which, one could argue this is a fingerprinting method.
i Evaluated in a residential environment.
j Reported for a stationary case which is similar as ours.
k Reported value is for the WiFi method, . in the case of Bluetooth,  in the case of WSN.
l When evaluating in independent environment (section “Validation”); based only on  evaluation points.
mAccuracy depends on a number of anchors; the value in the table is the best reported value using  anchors.
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ing of only hallways in the buildings. Sometimes, it is also difficult to understand the
evaluation procedure and the map of the indoor spaces, as authors tend to give little
information on the evaluation environment.

. WiFi

WiFi (also written as Wi-Fi) is a wireless local area technology for the devices based
on IEEE . [] standard. The trademark Wi-Fi is owned by the Wi-Fi alliance,
meaning that they test and approve the devices to be labeled as “Wi-Fi Certified”. In
terms of OSI model IEEE ., the standard defines Layer  (Physical layer – PHY)
and media access control (MAC), which is part of Layer .

The most known and used protocols of IEEE . are .b, .g, .n
and .ac. The first two utilize 2.4GHz frequency, the last one utilizes 5GHz,
while .n primarily utilizes 2.4GHz, but can optionally be used also in the
5GHz mode.

Although WiFi is a widely used technology, there are some details that are not widely
known. This chapter provides information which improves the understanding of the
work presented in this dissertation.

.. RSS vs. RSSI

Received Signal Strength (RSS) is the measurement of the physical property of power in
the received radio signal, while RSSI stands for RSS Indicator and is defined by IEEE
. standard []. Mobile devices and radio frequency (RF) front ends in them
usually do not implement the precise measuring of RSS information in milliwatts.
. standard defines RSSI as a value between 0 and 255 (Table -, page  in
[]). The exact definition can be found in section ..., p. : “This parameter
is a measure by the PHY of the energy observed at the antenna used to receive the
current PPDU. RSSI shall be measured during the reception of the PHY preamble.
RSSI is intended to be used in a relative manner, and it shall be a monotonically
increasing function of the received power.” []. PHY stands for a physical layer and
PPDU stands for “physical layer protocol data unit”. In simpler terms, PPDU is the
currently received Layer  frame and RSSI, defined by standard, is an unsigned -bit
value, indicating its RSS. PPDU datagram is divided into:

PHY Preamble which is used for the synchronization of the receivers and is usu-





ally  bits long (shorter preambles exist in different extensions of the physical
layer, described in sections . to . of the []);

PHYHeader which contains different fields needed for a successful Layer  tran-
sition (e.g. modulation specification, time needed to transmit MPDU, CRC
fields) and is usually 48 bits;

MPDU (MAC protocol data unit) which is Layer  . frame that contains
MAC addresses, higher level datagrams, etc. and can be up to 2304 bytes long
(without encryption). More often it is around 1500 bytes, as most of the traf-
fic in the WiFi network is downstream, and usually Ethernet  connects the
upstream networks with the selected WiFi network.

As we can see, the RSSI value is estimated from less than approximately 1% of the
received data which is at the start of every fragment. Another problem in practice is
also that manufactures can define their own “maximum RSSI value”, as can be seen in
[]. For example, Cisco System WiFi chips define  as maximum value, Atheros-
based cards use , while some higher values may even mark error states []. As can
be seen, the chip-manufacturers define their own range of values and the relationship
between RSS and RSSI.

Usually we cannot access information of per-packet-RSSI on the scale 0 to 255. Ev-
eryone who has observed RSSI information on a device in practice knows that the usual
data reported to the end user is presented as the integer values, usually between −100
and −40, which would suggest the dB scale. . standard defines the abstraction of
link to the higher layer entities through the management entities. The abstraction of
MAC Layer is called MLME and provides two separate values, called DataFrameRSSI
and BeaconFrameRSSI, which, by standard “hold RSS value in dBm” of the Beacon
and Data frames respectively. The standard also warns (Table - p. ): “This may
be time averaged over recent history by a vendor-specific smoothing function” []. In
the standard there is no definition about how 0 to 255 values are averaged and scaled
into these values.

Everyone who has observed RSSI information on a device in practice knows that
RSSI information usually changes rather slowly. Knowing that information from the
previous paragraph, we could assume that something like a sliding window average is
used. We also must not forget the next layer in the stack – the operating system (OS) of
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a modern device which provides interface between the programs running on a device
and the WiFi module. In close-sourced OSs it is unlikely we will get to know its im-
pact, but in open-sourced OSs we can check the source. For example, checking the An-
droid’s source code reveals in wifi/java/android/net/wifi/WifiStateMachine.

java that the polling interval for RSSI is 3000ms []; therefore, it is not possible to
get finer-grained information about RSSI on a standard Android device.

To sum up - RSSI information from two different devices are hardly comparable,
because the absolute values depend on the hardware of the RF front end, firmware
and OS. It is reasonable to expect that the values from two devices that have the same
hardware, firmware and operating system can be compared. Methods that use RSSI
information at MT and do not address this issue cannot be considered for real-world
deployments, because two different devices can sample completely different values in
the same position just due to their hardware and firmware.

The problems we pointed at in this section are rarely properly addressed in the field
of the indoor WiFi localization. We have developed our system with these facts in
mind; in Section . we present the development of the method and how we have
addressed these issues.

.. Beacon frame

The beacon frame is one of the management frames, emitted by APs or devices in the
ad-hoc WiFi network that announces the presence of a device, provides information
on capabilities of a device and instructs any receiving device on how to connect to it if
desired. The beacon frames are by default emitted approximately every 100ms. The
packets are sent to the broadcast Layer  address. We will be utilizing RSSI information
of the beacon packets to build our self-calibration procedure.

. Home Automation Systems

More and more people, while yearning for the smart homes of the IoT, install different
automation systems in their homes. These systems usually rely on a wireless commu-
nication protocol other that the WiFi, due to its high-power demands. The frequency
spectrum is regulated by the International Telecommunication Union (ITU) and lo-
cal governments, therefore frequencies used in the home automation systems differ by
the region. Many lighting solutions utilize the ZigBee Light Link standard [] (e.g.
Philips Hue, Osram Lightify, etc.), which uses a 2.4 to 2.5GHz band. This band, by





ITU specification [], should be available worldwide without any additional restric-
tions imposed by the local governments. Many heating and security solutions usually
utilize protocols on lower frequencies to avoid interference with the frequency-crowded
2.4 to 2.5GHz spectrum. The Danfoss Living system utilizes z-wave protocol which
in North and South America operates on the 902 to 928MHz “Industrial, Scientific
and Medical” (ISM) radio bands, while in Europe it utilizes the short range device band
- SRD (863 to 870MHz) specified by ECC Recommendation - []. Hon-
eywell’s Evohome and eQ-’s HomeMatic are two separate automations systems sold
only in Europe, which communicate via their custom protocols on SRD bands.

S. Laufer and C. Mallas [] reverse engineered parts of the HomeMatic wireless
protocol, while trying to execute an attack on it. Their work is significant for our
research because they showed detailed information of the protocol used by HomeMatic
devices and later developed the open source solution Homegear [] which enables
the interaction with HomeMatic devices via the appropriate receiver, connected to the
computer.

WiFi networks and networks of home automation systems differ – WiFi networks
are usually part of a bigger network that consists of multiple devices – computers,
servers, mobile devices, APs, etc. All devices are usually connected by the IPv/IPv
protocol; therefore, each device is available from the server on which the localization
algorithms are running. Home automation systems usually consist of multiple devices,
which communicate over some proprietary protocol; only one device is usually con-
nected to the IP network and acts as a gateway or a base station. Usually, only this
device is addressable from the localization server over the IP protocol. The described
properties of the home automation system influenced the implementation of our pro-
posed localization method to a home automation network described in Chapter .
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In order to successfully develop a novel indoor localization approach that would chal-
lenge the existing approaches, one must firstly carefully study the field and know the
technology used thoroughly. Then one can contribute to the scientific field, by ad-
dressing the weaknesses of the existing approaches. This chapter will present our re-
search and findings on the variability of the WiFi signal and discuss the decisions that
have later influenced our work.

. Long term stability of the WiFi signal

RSSI of the WiFi signal is known to have high variability [, , ], which in terms
means that we have difficulties achieving higher accuracy localization. In order to
further inspect the stability of the WiFi signal in real-world environment, we have
designed a long-term experiment. In our offices, which are described in Section ..,
we have set up multiple access points. For  weeks we have periodically (i.e. every
minute) connected to each AP and recorded the reported RSSI of the neighboring
APs. The APs were running DD-WRT operating system with default configuration
settings. The only changed settings were settings of the network configuration (ip,
mask, gateway) and the wireless SSID and password. The DD-WRT does not support
dynamic transmitting (TX) power adaption; the power was left at default value of
71mW. APs were operating in a mixed .b/g mode and have had default value

Figure .
Histogram of the sensed
RSSI values with the
corresponding normal
distribution function.

RSSI emitted from AP4 sensed at AP2
Weeks 1 to 8
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for the interval of beacon packets - 100ms.
Selecting a pair of APs and analyzing the distribution of the measured RSSIs be-

tween the two could lead to wrong results of the propagation model if the propagation
parameters were inferred from these measurements, because one had to assume that
propagation parameters are static, which is not true, as can be seen in []. Figure .
shows a histogram of our captured RSSI between AP and AP as defined in Section
... We have fitted the data to a normal distribution function and obtained an av-
erage value 𝜇 = −45dB and a standard deviation 𝜎 = 4.71. The access points were
9.06m apart. This in terms means that we can expect 68% of the measured values
between −49.7 dB and −40.3 dB.

Many model-based approaches define the propagation parameters as static inputs
to the methods. These values are usually defined based on other’s research or by the
measurements in the environment. The usual starting point, when developing a path-
loss based indoor localization method, is the free-space path loss propagation model,
expressed by the equation (.) – e.g. [, , , , ].

𝑃𝐿 = 𝑃𝐿 + 10𝛾 log
𝑑
𝑑

+ Δ (.)

In the equation above 𝑃𝐿 stands for the total path loss at the distance 𝑑, 𝑃𝐿 is the
total path loss at the distance 𝑑, 𝛾 is the path loss exponent and Δ is the Gaussian
random variable with zero mean accounting for variations of the mean and is often
referred to as shadow fading []. The path loss exponent 𝛾 equals 2 for the free-
space (line-of-sight, no nearby obstacles) propagation. The path loss exponent could
be smaller than 2 in environments where there is a line-of-sight between the emitter
and the receiver and the shape of the room acts as a waveguide (e.g. tunnels, long
narrow hallways, etc.). In the environments, where signal is heavily obstructed, the
indoors values are typically in range of 4 to 6 ([], Tbl. ..).

Using (.) we can see a great variability of the RSSI results in the big differences
in estimated distances. If we select the value of 𝛾 = 2, we can see that RSSI values
between −49.7 dB and −40.3 dB could result in distances 9±4.5m. If we use higher
real-world indoor values, the range of the interval becomes smaller – down to ±1m.
We must not forget that also in the real-world indoor situations the rooms where 𝛾 < 2
could occur, the interval becomes even greater [].

As we can see, RSSI information exhibits high variation which becomes even more
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important if we set the values in the context of the distances and average room sizes
(mind that these values are only for ±1𝜎 range).

Returning back to our -week experiment, plotting the RSSI values with the median
filter of 2 hours in relationship to time, results in Fig. .. We can see that even with
the heavy filtering of the signal, it stills shows great variance in the course of eight
weeks.

There are two plots with seemingly much more stable values (weeks  and ). The
explanation for these two “abnormalities” can be found in the fact that these two weeks,
the majority of the employees in our laboratory had time off and was not present. More
interestingly, we can observe the lower values for these  weeks, which in the end means
a worse received signal strength.

Two plots with the most variable data during these weeks were identified as data
plots of week  and week . A plot similar to Fig. ., but with isolated data for these
two weeks, can be found in Fig. .. A wide range of the values from week  can be
quickly identified (mind that the y-range of the Figs. . and . is the same). The
filtered values range from −56dB to −38dB, while the unfiltered values are in the
range of −90dB to −29dB. From Fig. . we can also identify that although the
variability of the whole week’s data is high, we can identify 3 to 6 regions when the
signal was approximately stable; similarly can be said for the data in week .

To analyze the measurements on the week-by-week basis, we have made a similar





Monday Tuesday Wednesday Thursday Friday Saturday Sunday
time

-55

-50

-45

-40

-35
RSSI[dB]

RSSI analyiss of week 3 and week 8

3rd week

8th week

Figure .
Analysis of week  and
week .

histogram as in Fig. ., but on weekly basis, which can be seen in Fig. .. We
can see that although we are using the unfiltered data and we are still on the weekly
time scale, RSSI is more stable if compared to Fig. . (i.e. standard deviation of the
distribution of variable is smaller).

These findings affect the fingerprinting methods, because we can see that the changes
in the average RSSI between the two fixed points change on hourly basis. These
changes are difficult to measure manually and the fingerprinting database often cannot
be updated in such short time periods. This means that the fingerprinting approaches
can be deployed and evaluated immediately after with respective accuracy, but in the
long term the evaluation results will often worsen.

This section clearly shows that the parameters of propagation change over time. The
awareness that RSSI between two fixed values changes due to a natural distribution of
the RSSI with 𝜎 ≠ 0 can be found in most of modeled approaches. On the contrary,
there are only a few authors who properly address the issue of changing 𝜇 in time, as
is emphasized in [] and proven by our observations.

While developing a modeled approach, we will implement a self-adaptive proce-
dure that will constantly monitor RSSIs between AP and adapt the model to changes,
therefore addressing the issue of this section. Furthermore, only the measurements
of RSSI between APs in a fixed amount of time, before the localization occurs, will
affect the model. All older measurements will be disregarded and will not affect the
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Figure .
Histograms and the cor-
responding normal distri-
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model; therefore, the localization approach will not include any predetermined/fixed
propagation parameters.

. Rx vs. Tx methods

In telecommunications abbreviations Rx and Tx stand for reception and transmission
respectively. When designing an indoor localization approach based on RSSI, regard-
less of it being fingerprinting- or model-based, we must decide if MT will be localized
via its received or transmitted signals. Both approaches have their strengths and weak-
nesses which are briefly described in this section.

Rx-based systems usually consist of:

APs which are at known positions and emit signals,

MT at an unknown location and analyze incoming information from the APs
(determining RSSI).

We have already mentioned one huge disadvantage of the Rx-based methods – the
receivers and the software API implementations in different MT differ (section .).
The fingerprinting methods are usually Rx-based and this disadvantage is often left un-
addressed by the authors. If the device used to calibrate the fingerprinting method and
the device we want to localize differ, the values are not comparable in absolute terms.
Therefore, the implementation of the search in the database of fingerprints cannot be
trivial. The advantage of the Rx-based methods is that bigger deployments can be
achieved, as the devices are not transmitting data and therefore not using the band-
width. Similarly, GPS and other GNSS do not transmit any data, but only receive
information from the satellites. We can imagine the technical challenge we would face
today if the designers of the GPS would develop a Tx-based solution – billions of de-
vices would try to use the narrow bandwidth in the device-to–satellite communication
protocol in order to obtain the localization, not to mention the power requirements
for the transmission of the signal.

Tx-based systems usually consist of:

MT at an unknown location, emitting signals,

APs at known positions, analyzing the traffic from the MT.
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Tx-based methods have several real-world-deployment disadvantages; firstly, they
take up the bandwidth as described. Secondly, nowadays, when the battery capacity
is still limited for portable devices, the transmission process takes considerably more
power than the reception. Their advantage is that simpler algorithms can be made -
when we transmit a signal to localize a device, we have one common source of the
signal which has fixed, yet unknown power. This is interesting for solving a system of
propagation equations, where the originating point has constant power across propa-
gation formulas to different APs where signal has been sensed. To address the issues of
non-comparability of RSSI data raised in Section ., in the case of Tx-based meth-
ods, one should be aware that APs are part of the infrastructure and therefore under the
control of the building’s owner, who is usually the one implementing the localization.
Therefore, the owner can deploy the same type of APs to get comparable values even
in absolute terms.

If one would like to overcome the requirement for the same hardware for all the APs,
we see two options. Option one is that manufacturers unify and standardize the RSSI
values and how they correlate to the physical measure of signal power. This is probably
not likely to happen, as it would require considerable work and collaboration between
manufacturers; it is not likely that any researcher has the influence needed to achieve
this. Even if manufacturers would agree on RSSI measurements today we probably
would not see the results quickly as usually design of a new RF frontend, testing,
certification and mass production and availability can take years. Second option is to
include the effect of different hardware into the model of a model-based approach.
Research-wise, this is much more plausible solution. Further discussion on this topic
is provided in Chapter .

Our proposed localization method is an Rx-based solution which is more suitable
for real-world deployments. By carefully utilizing the difference of signals to each
of the APs, we will make our system independent of MT. If one analyses closely the
proposed method in Section ., one would see that our method requires the difference
of two reported RSSI values, proportional to the difference in RSS. Therefore, a linear
function mapping RSS to RSSI satisfies our condition. From our evaluation, we have
concluded that this condition is satisfied on our evaluation equipment.





. IEEE .ah

The WiFi technology and its underlying protocols are constantly evolving. In the
May of  an Amendment  [] was published to the IEEE . standard [],
which introduced a new protocol .ah. The new protocol is also called HaLow
and introduces a new 900MHz frequency band to the conventional 2.4 and 5GHz.

The transfer speeds of the new band will be considerably lower, but the range of
the signal will be greatly extended. This new band is specially designed for a variety of
power-efficient use cases in IoT, smart homes, connected cars, agriculture, healthcare
and industry. The range of the new band is nearly twice as much as today’s WiFi and
is less susceptible to the penetration loss when waves travel through the walls or other
similar barriers. Therefore, it is even more important for the future to develop a model-
based indoor WiFi localization system that will not need fingerprinting processes, as
they are time consuming and therefore costly to deploy in the real world.

The hardware supporting .ah is not yet commercially available; nevertheless,
it is in our best interest that the developed methods support also the future WiFi stan-
dards. Therefore, it is wise to develop methods without any assumptions about the
underlying wireless protocol. Because of the unavailability of hardware, we have fo-
cused the evaluation on 2.4GHz WiFi. Another possibility would be the usage of
5GHz (.n/ac), but it is significantly worse at penetrating obstacles and conse-
quently has a smaller reach indoors.

Another future WiFi standard is currently coming to the market – the .ad. It
introduces another frequency of 60GHz and promises theoretical maximal speeds of
7Gbps. Higher frequency enables faster speed, but at the same time limits the signal
propagation. The signal of .ad typically cannot penetrate walls, therefore it is
not usable for a wide area of multi-room localization; but at the same time, it can give
accurate information about the room if the signal from such AP is detected.

With future usage in mind, we defined the method without the assumptions about
the frequencies of the signals or the underlying protocol, as can be seen in Section ..
Furthermore, in Chapter , we present the implementation of the method on signals
and protocols not associated with the . standard, showing that the presented
method is not limited to the IEEE . signals only.
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. Comparability of the methods

The RF localization methods are heavily influenced by the environment; the propa-
gation of the signal through walls is difficult to define, as effects like reflections, re-
fraction, diffraction, absorption, scattering of the signal, interference, etc. influence
the propagation of the signal. These effects result in the signal strength, which is not
only dependent on the obstacles and the distance in the direct path between AP and a
specific point but is also influenced by the rooms and the spaces surrounding both.

Because the evaluation environment has such a big influence on the signal propaga-
tion, the indoor localization methods are difficult to compare. The standard practice
in the research area of the indoor localization is that the authors evaluate the proposed
method in the available environment and then compare the localization errors with the
competing methods. The localization errors are usually defined as distances between
the method’s location prediction and the ground truth which is the known position
of the mobile terminal during the localization procedure. We can find review papers
utilizing such approach in [–, , , ]. A survey with the focus on the compa-
rability of the indoor localization methods and their evaluation can be found in [].
The author emphasizes the lack of detailed information on the evaluation and the lack
of real-world evaluations.

The researchers from other fields would argue that such benchmarking cannot be
considered as a valid comparison. In the research fields of the digital signal processing,
benchmarking can be done with common datasets upon which the algorithms are run
and the results are then compared. Standard benchmarks can be found in the fields
of image recognition, video object tracking, analysis of bio-medical signals, etc. These
are usually research areas where the input signal is digital and well-defined, while the
ground truth can be defined manually by the experts – e.g. digital images and corre-
sponding labels which represent an object in frame, ECG signal and the corresponding
QRS complex definitions, etc. This is not the case with the indoor localization where
there is a variety of the input signals for the researchers to utilize. In Section . we have
presented a variety of related works where the input signal and the values include, but
are not limited to: offline fingerprinting map, RSSI values at specific anchors, Li-Fi,
IMU sensors, architectural maps, etc.

An expert from another field could also propose a simulator which would be used
for benchmarking. If we neglect the problems of simulating a wide range of the input





signals and focus only on the RSS simulation, the answer is clear: the majority of the
model-based approaches are trying to simulate the RSS propagation. If a simulator of
the real-world RSS propagation existed, then it would also be trivial to convert it to a
model approach with the 100% accuracy.

We have already discussed some problems about the common benchmarking in
Section .. In terms of long-term temporal stability of the RF signal, a potential
architect of a common indoor localization benchmark should know how to address
the issue of temporal instability, influences of other devices in the rooms, issues of
different hardware and RSSI values (as discussed in Section ..), etc.

There have been proposals of a common testbed solution in []. Although such
proposals are still young, they are welcome, as they provide opportunities for the
growth of the research field. The method described in this dissertation already shows
the deficiency of the common testbed proposed in [], as our method could not be
tested because of its specific requirements which are described in Section .. Some
researchers in the field of the indoor localization agree that competitions would pro-
vide a means of common benchmarking. Organizers, which would have a difficult job
of setting the evaluation environment and the possible input parameters, could invite
the researchers to deploy their solutions and then we could get results comparable in
real world.

As we can see, the benchmarking of the indoor localization approaches is difficult.
For the time being, it is the authors’ job to describe the evaluations in enough detail
for a valid comparison; in the majority of papers there are not many more details
than a map and a simple description of the hardware. We are convinced that for a
valid comparison the authors should provide a lot more details. For example, due
to different common architectural practices, the walls in different parts of the world
differ; it is also known that the vertical position of the APs can influence the results,
which should be described in detail; the papers also rarely provide the details on other
devices in the area of interest (e.g. were the devices which were part of the evaluation
the only devices using RF spectrum), etc. We will address the presented matter with a
detailed description of both evaluation environments in Sections .. and ...

. Architectural aspect

The comparison of the outdoor and indoor environments results in one main dif-
ference – the presence of walls and other architectural elements. These aspects have
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a significant influence on the signal propagation. Firstly, the power loss during the
propagation through them is significantly bigger than when propagating through air
or vacuum []. The influence is mainly dependent on the material, thickness and
the frequency of RF signal. For instance, 5GHz WiFi offers higher transfer speeds
than 2.4GHz, but on the other hand it is much more susceptible for the distance-
and obstacle-based power losses. Therefore, a reliable signal with the promised trans-
fer speeds is hard to obtain one or two concrete walls away and we cannot expect a
reliable propagation through the floors.

We can say that the fingerprinting approaches include the effects of the architectural
aspects, because the offline fingerprinting procedure and the localization procedure
both take place in a real-world environment, where RSS is affected by the propagation
through them. On the other hand, the model-based approaches rarely take the ar-
chitecture of the building into consideration, but more often include some simplified
factor which accounts for this effect; e.g. neglecting this effect in [], a constant fac-
tor for power loss, regardless of the distance in []. Some methods are not focused on
the multi-room scenario; therefore, the dividing wall modeling is not in their interest,
e.g. in []. Some authors (e.g. []) are aware of the deficiencies of the constant or
proportional modeling of the walls in cases of a non-uniform wall coverage and the
different types of dividing walls.

Non-constant models of the effect can be found in [], where the authors include
the wall effect by an empirically derived factor which is used proportionally with a
number of penetrated walls up to a certain number, after which the wall effect is con-
sidered to be constant. The ray-tracing method usually focuses on the reflection of
the signals on walls and not on the propagation, e.g. in [], but we can also find the
opposite, e.g. in []. The authors in [] model the effect of the walls in proportion
to the distance. Therefore, their method does not need specific information about the
placement of the walls, but approximates that the number of the walls between two
points is proportional to the distance. We can argue that, considering the real-world
propagation (scattering of the signal and multipath), this can be said for their primary
evaluation, as it was done in the hallway, where they placed the majority of the APs
and evaluation points.

As discussed in Section ., hallways are theoretically easier for the modeling of
propagation, as propagation has fewer losses than in other indoor environments. Out
of the reviewed works, many (e.g. [, , , , –]) evaluate the methods only





in the hallways, as can be seen in the Table .. It can be argued that using favorable
evaluation environments improves the results of the methods and hides bigger errors
that would appear in real-world scenarios.

Considering the above, we have decided that since the modern buildings all have
digital floor maps, including them into the method is not too difficult and does not
represent too big of a burden. This inclusion is beneficial, especially for real-world en-
vironments, where there is no uniform wall placement. Furthermore, we have decided
to address the issues of different wall types found in modern buildings.

The last thing worth-mentioning is the fact that the indoor localization methods
are usually evaluated in one environment only. Rarely do the research papers present
the methods that are challenged in multiple environments. The usual choice for the
evaluation environment is the faculty or the research laboratory building which usually
consist of long hallways and small to mid-size offices. Out of the reviewed approaches,
we could find only [] evaluated in a residential apartment. The floor plan and the
objects inside the offices (e.g. desks, cabinets) usually differ significantly from the
residential buildings. Because we have a goal of developing a universal method for the
localization in the IoT, we have performed both the evaluation of the WiFi method in
the office and the residential environment.
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The previous chapter presented the limitations and challenges we have identified prior
to the development of the method presented in this chapter. Therefore, the devel-
opment of the WiFi method presented in this section and its evaluation are heavily
influenced by the discussed topics. The first section of the following chapter presents
the intuition upon which we have developed the method which is then described in de-
tail. Sections . and . present the evaluation results in two very different evaluation
environments; an office environment at the university and a residential environment
in a modern apartment. Last but not least evaluation in long hallway is presented in
section .. The discussion follows the evaluations and at the end of the chapter we
also provide brief conclusions.

. Intuition behind the method and high-level overview

Our goal was to develop a model that would be suitable for the real-world usage; each
design decision was subjected to this goal. The motivation for the development of
a new method was to address the difficult calibration procedures, the static usage of
the parameters in propagation models and the hardware requirements of the existing
methods. To accomplish this, we have set the following prerequisites:

Pure model-based WiFi-only approach
As shown in Section ., only the pure model-based methods are suitable for
big scale deployments. The methods that do not require fingerprinting or any
other static parameters of RF signal propagation are suitable for real-world de-
ployments, as it is also emphasized in [].

Self-calibrating operability
A frequent recalibration method must be autonomous and should not require
human intervention. Frequent recalibration ensures the method to be self-
adapting to the indoor changes. The results from the experiments presented
in Section . show a long-term temporal instability of the WiFi signal, which
confirms the claims in []. Only a method which constantly adapts to the
changes in the environment can be used in real-world deployments.

Awareness of architectural aspects
The input data of our algorithm consists of information about the access points
and the wall placements, in order for the method to provide localization with





respect to the architectural structure of the building. As discussed in Section .,
we anticipate this data to be beneficial, especially in the real-world evaluation
environments.

Applicability on widely available hardware
We could maximize our chances of success by using advanced and costly equip-
ment, which would provide more stable signals and reliable data readings, but
we rather decided to develop the methods on affordable and widely available
hardware. More advanced mobile terminal equipment could also provide other
information than RSSI (e.g. CSI), but this would limit the method usage to
only such devices.

As we have seen in Section ., it is difficult to deterministically model signal prop-
agation, due to temporal variations. Therefore, we have decided that we need to im-
plement real-time feedback loop between the current state of the indoor propagation
and the propagation model. This feedback should be implemented by some devices
that would measure the current state of the RSS at known positions and provide in-
formation to our method. Some approaches exist that place additional devices indoors
(e.g. []). Because there are already multiple APs in the area of interest, it is in our
opinion unnecessary to introduce additional devices, as we can use the available APs.
Because the majority of the commercially available APs do not implement a feature
that would report RSSIs of the received beacons from other APs, we will have to ad-
dress this challenge.

We can minimize the influence of different hardware by ensuring the same type
of APs across the area of interest, which is the usual procedure in the field of the
WiFi localization. The same APs are used to address part of the issues discussed in
Section ... This design decision does not diminish our real-world applicability as
the deployment of the WiFi localization system to a selected area is usually done by
the owner of a building, who can control the installed hardware and ensure unified
APs. Even further, usually, when a specific indoor location is equipped with multiple
WiFi APs, the same type of APs are used throughout the building.

Having the same hardware for the APs assures us that the readings of the RSSI from
two different APs are comparable also in the absolute terms. From the readings of the
RSSI of the beacon packets, emitted by a specific AP at other APs, we can estimate the
propagation model. By knowing the propagation model for each AP, we can model the
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propagation of the RSSI for all APs in the localization process. During the estimation
of propagation and the propagation modeling, we will have to address the challenges of
wall inclusion and the real-world propagation (e.g. the effects of multipath, scattering,
etc.).

During the localization stage, we will use a mobile terminal, for which we do not
know how its RF frontend is related to the ones found in the used APs. Therefore,
we will derive the characteristics of the RSSI, which can be compared (in the absolute
terms) to our propagation model, while considering the challenges described in Section
...

High-level overview and the main steps in the proposed localization method are
presented in Fig. .. Our localization method can be divided into the data acquisition
stage, the path loss modeling stage, the propagation simulation stage and the localization
stage, which are presented in Fig. .. During the data acquisition stage, the server
periodically queries (Position  in Fig. .) each router for the survey (Position  in
Fig. .) of the RSSI of the signals emitted from other access points (Position  in
Fig. .). This information is used to infer the parameters of the space in the path loss

Figure .
High-level overview and
the main steps in the
proposed localization
method.
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modeling stage. After the attenuation parameters are determined, the propagation for
each AP can be simulated via the selected propagation model (Position  in Fig. .).
In the localization stage, the mobile terminal surveys the WiFi spectrum for the APs in
reach and determines RSSI for each of them (Position  in Fig. .). This information
is then sent (Position  in Fig. .) to the localization server, which determines a point
in the simulated propagation map that fits the measured RSSIs (Position  in Fig.
.).

. Method description

The following subsections provide a detailed description of the four stages of the pro-
posed localization method. The section presents our proposed Self-Adaptive Model-
Based Wi-Fi Indoor Localization Method published in [].

.. Data acquisition stage

The first stage of our method is the data acquisition stage, during which the data needed
for building our propagation model is captured. In the data acquisition stage, the
localization server queries each AP for the results of the site survey. The site survey is a
process in which AP scans the WiFi channels and captures the RSSI information of the
beacon packets sent by the APs in reach. The results that list APs and their respective
RSSI are then stored in the database on the localization server. Every time the RSSI
data from AP is acquired, the updated propagation parameters are calculated for the
current setting.

When calculating the attenuation parameters for a specific AP, we query the database
for the measurements of the signal originating at this specific AP and detected by other
APs. The obtained data is then filtered by the median filter in order to eliminate the
signal outliers that can occur in the signal, due to the instability of RSSI. Figure .
shows an example of the filtered RSSI data, from which the parameters are inferred.
The figure presents a nearly ideal case, where RSSI captures do not overlap due to the
effects of the indoor spaces. In the real-world setting, it can happen that RSSI from
the most powerful AP (e.g. AP in Fig. .) drops below the values of other APs or
vice-versa.

There is no standard definition of how the RSSI value is measured, thus the values,
the scale and any correlation with the measured values of APs depend of the manufac-
turer’s implementation, as discussed in Section ... Therefore, the usage of different
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Figure .
Example of the signals
emitted from AP, de-
tected at AP, AP and
AP. 𝑡 is the time at
which we initialized the
sampling method.
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APs at this stage would make the RSSI values incomparable. That is why all the re-
searches, building model-based approaches with the help of parameters sensed at dif-
ferent APs, use the same hardware for the APs, as can be seen in [, , ]. This fact
is also acknowledged during the development of our method. For this or any other
similar method to be adopted by the public, hardware manufacturers or IEEE should
standardize the RSSI values. When deploying WiFi infrastructure in a building (e.g.
airport), APs are often of the same type, which solves the problem of non-standardized
RSSI values.

In the Table ., we can see an example of the data stored on the localization server.
For example, the first row of the table shows the detected RSSI of - from AP with
specified MAC address, while performing a survey at the AP with IP ....

The database of measurements at the localization server is the result of the data
acquisition stage of the proposed localization method. From this data our method
infers the parameters of the signal propagation through indoor spaces, as discussed in
the following sections.





Table .
Example of the data in the database on the localization server.

id sourcea destinationb power timestamp
 C::::: ... - 
 C::::E: ... - 
 C::::C:DC ... - 
... ... ... ... ...

a MAC address of the AP emitting the signal.
b IP address of the AP where signal was detected and RSSI recorded.

.. Path loss modeling stage

The second step in our localization method is the path loss modeling stage in which we
utilize the known physical properties of the RF signal propagation and the measure-
ments obtained in the previous step, to infer the parameters of the signal propagation.
This section presents all the steps in the development of the method to give a compre-
hensive understanding of the method to the reader.

We have started the development of the path loss modeling stage with the log-
distance path loss model for the propagation-parameter estimation, as it is often used
as a baseline for the model-based method development, e.g. [, ]. The path loss
model can be expressed as previously showed in Section . by Eq. (.).

Let us begin with the formal definitions of the entries in the database, presented in
Section .. (Table .). We will mark the RSSI values, captured by the data acqui-
sition stage of our method, with 𝑅𝑆𝑆𝐼𝑗,𝑖, where 𝑗 labels 𝐴𝑃𝑗 at which the signal was
measured and 𝑖 stands for 𝐴𝑃𝑖 from which the measured signal was emitted. There-
fore the value 𝑅𝑆𝑆𝐼𝑗,𝑖 represents the “power” column in Table ., while 𝑗 represent AP
with the IP specified in the “source” column and 𝑖 denotes AP with the MAC address
in the “destination” column of the database.

When identifying the parameter 𝛾𝑖 at the time 𝑡 for the propagation of the signal
originating from the 𝐴𝑃𝑖, we query the database for the last ℎ 𝑅𝑆𝑆𝐼𝑚,𝑖 and 𝑅𝑆𝑆𝐼𝑛,𝑖
collected in the interval 𝛿, where 𝑚, 𝑛 represent a pair of APs, which are not 𝐴𝑃𝑖.
Knowing the spatial positions of the access points, we can obtain the distances 𝑑𝑖,𝑚
and 𝑑𝑖,𝑛, which are the distances between 𝐴𝑃𝑖 and 𝐴𝑃𝑚 or 𝐴𝑃𝑛. Rewriting Eq. (.)



  Novel model-based WiFi method J. Tuta

with the introduced indexes provides us with an equation that we can use to determine
𝛾𝑖.

𝑅𝑆𝑆𝐼𝑚,𝑖 − 𝑅𝑆𝑆𝐼𝑛,𝑖 = 10𝛾𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

(.)

The path loss exponent𝛾𝑖 for the access point𝐴𝑃𝑖 can then be calculated by utilizing
a least squares regression of Eq. (.). Our preliminary evaluation showed that this
propagation method oversimplifies the propagation and does not give us satisfying
results.

The experimental evaluation, as presented in Section ., showed that omitting
measurements from AP, which is positioned on the same wall as 𝐴𝑃𝑖, would result
in better accuracy of the method. For example, the parameters for AP in Fig. .,
calculated based on the measurements gathered at AP and AP, would give a better
performance than if the measurements from AP and AP were used. In our pre-
liminary research, we have tested multiple arrangements of the APs and observed this
phenomenon.

The difference in the parameter estimation was appointed to the primary reflection
of the signal which occurs on the wall near which the transmitting AP is mounted.
The wall acts as a reflector of the signal and our hypothesis is that the receivers which
are positioned perpendicularly to the wall have an overall better signal strength than
the similarly positioned AP that are parallel to the wall. The position of the external
antennas which we positioned parallel to the wall could also be a factor. We have po-
sitioned them parallel, as this is the usual practice of placing the APs - either mounted
directly on the wall, or placed on a shelf near the wall, with the back of the device,
where the antennas are connected, facing the wall.

To account for this phenomenon, we have extended the log-distance path loss model
with the parameter 𝛽𝑖, which accounts for the effects in the angle difference between
the direction of the direct-signal-path and the normal vector to the wall on which AP
is mounted. Our extended log-distance path model can be written as:

𝑅𝑆𝑆𝐼𝑚,𝑖 − 𝑅𝑆𝑆𝐼𝑛,𝑖 = 10𝛾𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

+ 10𝛽𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

× 𝛼𝑖,𝑚 − 𝛼𝑖,𝑛 (.)

where the additional symbol introduced 𝛼𝑖,𝑗 is defined as:





𝛼𝑖,𝑗 =
∢ 𝑛𝑖, 𝑠𝑖,𝑗

𝜋/2 (.)

In Eq. (.), 𝑛𝑖 represents a normal vector to a plane, defined by the wall on which
𝐴𝑃𝑖 is positioned; 𝑠𝑖,𝑗 represents a vector with the direction of the direct signal path
between 𝐴𝑃𝑖 and 𝐴𝑃𝑗; and ∢ 𝑛𝑖, 𝑠𝑖,𝑗 denotes the sharp angle between vectors 𝑛𝑖 and
𝑠𝑖,𝑗 in radians. The normal vector can be calculated from the data inputted to the
method—information about APs and wall placement.

With Eq. (.), we can use the data from all measuring APs as input into least
squares, fitting to determine the values 𝛾𝑖 and 𝛽𝑖. This means we have𝑁×(𝑁 − 1) /2×
ℎ measured data points to infer the parameters of the signal propagation, where 𝑁 is
the number of AP in the reach of 𝐴𝑃𝑖. This results in an overdetermined system of
equations in which the usage of the least squares regression finds the parameters with
the best overall fit.

The final form of the formula for inferring the parameters of propagation includes
the effect of the walls. The method’s input includes the information about the place-
ment of the APs and the walls; therefore, it is trivial to calculate the number of walls
between APs. The list of the walls is the initial input into the method. The list of
walls contains a parameter which describes the wall type. Table . gives an example
on how the wall information for the indoor spaces, displayed in Fig. ., is inputted
to the method. Wall-type  represents thick concrete walls and wall-type  represents
thin plaster walls. As we can see, the map of the indoor spaces is inputted into the

Table .
Example data representing the indoor walls in Figure .. Information about the architectural aspects of the indoor spaces
is passed as an array of weighted line segments, representing the map of the indoor spaces. The weights of the line segments
represent the wall type.

𝑥 𝑦 𝑥 𝑦 type
0 0 10.2 0 
0 0 0 5 
0 5 10.2 5 

10.2 0 10.2 5 
5.1 0 5.1 5 
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algorithm as an array of the line sections, with one extra parameter representing the
wall type. With this method, we ensure that although the algorithm requires infor-
mation about the indoor spaces, this information is not difficult to obtain during the
deployment of the method.

The actual values of the impact of the walls on the signal propagation are difficult to
obtain and generalize. We use the values recommended by the European COST action
 [] for the effects of specific wall types on the propagation. These are only the
starting values and due to the adaptive nature of our method, the errors in these values
are partially corrected through the calculation of the propagation exponent. Equation
(.) represents the final formula for inferring the parameters of the propagation:

𝑅𝑆𝑆𝐼𝑚,𝑖 −𝑊𝑚,𝑖 − 𝑅𝑆𝑆𝐼𝑛,𝑖 −𝑊𝑛,𝑖 =

= 10𝛾𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

+ 10𝛽𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

× 𝛼𝑖,𝑚 − 𝛼𝑖,𝑛 (.)

where 𝑊𝑘,𝑖 represents the effects of the walls between 𝐴𝑃𝑖 and 𝐴𝑃𝑘. To compute
the value 𝑊𝑘,𝑖, the method searches through the list of walls, which we have defined
as the input parameter into the method. The method counts the number of walls
between 𝐴𝑃𝑖 and 𝐴𝑃𝑘, grouped by their type. In the final stage, we apply the effect
of each wall-type and then calculate the cumulative effect. An effect of a single wall-
type is an integer value representing the decrease of the RSSI value while the RF signal
transverses the wall of specific type. If information about the wall types cannot be
obtained, the default values for a plaster or concrete wall can be used. In this case, we
can expect a bigger average localization error in the buildings with mixed wall types.

When calculating the parameter 𝛾𝑖 from Eqs. (.), (.) or (.), it is important
that the distance ratio

𝑑𝑖,𝑚
𝑑𝑖,𝑛

is not close to 1. If 𝑑𝑖,𝑚 ≈ 𝑑𝑖,𝑛, then due to the variations in
the WiFi signal, we can get the values 𝛾𝑖 < 0, which would mean that the signal gets
stronger, while traveling away from the antenna. Such situations occurred often in our
office multi-room evaluation, where AP was positioned approximately equidistant
from all other APs. To provide a failback for such cases, we checked if the inferred
𝛾𝑖 is lower than half of the power-loss factor in a theoretical free space propagation
(𝛾𝑖 < 1). In such case, we will set 𝛾𝑖 to the value proposed by the ITU standard for
the commercial buildings (𝛾𝑖 = 20). We have chosen the failback parameter for the
commercial building instead of the one for the office, as the office building power-loss





exponent is bigger, because there are usually more walls in the office buildings that the
signal has to penetrate. Our method explicitly calculates the number of walls and their
effect; therefore, we have chosen commercial buildings, which are similar but tend to
have fewer dividing walls.

.. Propagation simulation stage

After having collected the data in the data acquisition stage and having identified the
parameters in the path loss modeling stage, we can use the obtained parameters to
simulate the propagation of the signal through the building. The main purpose of the
third step in the method is to calculate a simulated propagation map on the server.

As we have the calculated parameters of the signal propagation, we can choose a
model to simulate the propagation of the signal through the building. We chose a
model which was specifically built to estimate the path loss inside a closed area for
the propagation simulation. Therefore, we have decided to use the ITU indoor prop-
agation model []. The model is developed and regularly updated by the Interna-
tional Telecommunication Union which is an agency of the United Nations. The ITU
model tries to account for the reflections and diffractions caused by the objects, the
channeling of energy, motions inside the room, multipath effects, etc. The ITU model
provides guidance on the indoor propagation over a frequency range from 300MHz
to 100GHz. The basic model can be expressed as []:

𝑃𝐿𝑖,𝑗 = 20 log 𝑓 + 𝛾 log 𝑑𝑖,𝑗 + 𝐿𝑓 (𝑛) − 28 (.)

where 𝑃𝐿𝑖,𝑗 is the total path loss of a signal originating in the access point 𝐴𝑃𝑖 at
point 𝑗 in dB, 𝑓 is frequency in MHz, 𝛾 is the distance power loss exponent, 𝑑𝑖,𝑗 denotes
the distance in meters between 𝐴𝑃𝑖 and the point 𝑗. 𝐿𝑓 (𝑛) factor accounts for the loss
between the floors, which is currently not in the focus of our research, so we will omit
its effect. The ITU whitepaper gives predictions for the power loss coefficients and
other parameters for specific frequencies and building types. As we have measured the
power loss exponent in the data acquisition stage of our method, we have adapted the
ITU model by using our own measured values.

The inclusion of the proposed parameter 𝛽 and the effect of the walls into the ITU
model results in Eq. (.) which calculates the power loss at a specific point 𝑗, in which
𝛼𝑖,𝑗 is defined by Eq. (.). This time 𝑠𝑖,𝑗 represents the direction of a signal from 𝐴𝑃𝑖
towards point 𝑗:
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𝑃𝐿𝑖,𝑗 = 20 log 𝑓 + 𝛾𝑖 log 𝑑𝑖,𝑗 + 𝛽𝑖 × 𝛼𝑖,𝑗 × log 𝑑𝑖,𝑗 + 𝑊𝑖,𝑗 − 28 (.)

The values of frequency 𝑓 are easily determined by the readings of the APs or by
parsing the status report of the AP. The values that describe the location properties
between point 𝑖 and point 𝑗 (e.g. distance 𝑑𝑖,𝑗, the effect of the walls on propagation
𝑊𝑖,𝑗 and angle 𝛼𝑖,𝑗) can be easily determined by using the map of the indoor spaces,
which is the input parameter to our method. By knowing the values of 𝛾𝑖 and 𝛽𝑖 for
each of the APs from the previous stage, we can simulate the path loss between 𝐴𝑃𝑖
and any other point on the map.

In the final stage of the propagation simulation stage, the localization server com-
putes the expected power losses in the indoor spaces in the mesh pattern and constructs
the radio propagation map - 𝑃𝐿𝑖 - for each𝐴𝑃𝑖. The parameters (division) of the mesh
must be set in conjugation with the size of the area of interest, the computing resources
and the acceptable error, as the size of the mesh determines the minimal average error.

.. Localization stage

The previously described three stages (Sections .., .., ..) of the method run
constantly and independently of the localization stage. The first stage periodically
queries the APs, while the second and third stages compute the propagation maps
when data is updated. The localization stage presented in this subsection is initialized
by the user, when trying to obtain the location.

Initially a mobile terminal surveys the available APs. On the mobile terminal, we
do not have a similar problem as in the data acquisition stage, where this information
was unavailable to the end-user. Mobile terminals usually present RSSI information
to the end-user to give the user the information about the signal strength. Even if
this information is not available in a numeric form, any applications that will leverage
the presented method usually have access to this information through the operating-
system libraries. The list of available APs is then sent to the localization server for
further processing.

To account for variations in RSSI, our method samples the RSSI  times. Conse-
quently, we get a vector of  measurements of RSSI, labeled as 𝑅𝑆𝑆𝐼𝑀𝑇,𝑖, for each
access point 𝐴𝑃𝑖. The mean value for each AP is then used for localization. The
localization point is thus defined as:





𝑅𝑆𝑆𝑇𝑀𝑇 = 𝑀𝑒𝑎𝑛 𝑅𝑆𝑆𝐼𝑀𝑇, ,𝑀𝑒𝑎𝑛 𝑅𝑆𝑆𝐼𝑀𝑇, , ... (.)

When determining the position of a mobile terminal, we cannot directly compare
the absolute values of the estimated path loss values and the readings from the mobile
terminal, because they were collected on a different hardware. Additional losses in the
mobile terminal can also be due to the obstructions by people holding mobile devices,
different materials from which the mobile terminal (e.g. mobile phone) is made, dif-
ferent additional cases that are added to mobile terminals, etc. The assumption for
the method development is that these effects are equal on all sampled signals during a
specific measurement. If we assume that the difference in the RSSI readings between
APs is a consequence of the path loss model (Eq. (.), (.) or (.)), we can assume
that the difference between the received powers in dB scale is the same in the output
of our proposed propagation simulation stage and in the measurements.

The model assumes that the most powerful measured reading is the most stable one,
therefore we subtract 𝑚𝑎𝑥 (𝑅𝑆𝑆𝑇𝑀𝑇 ) reading from each 𝑅𝑆𝑆𝐼𝑀𝑇,𝑖. Because we know
from which 𝐴𝑃𝑘 𝑚𝑎𝑥 (𝑅𝑆𝑆𝑇𝑀𝑇 ) originated, we subtract the value of the simulated
propagation map from the propagation simulation stage 𝑃𝐿𝑘 from all 𝑃𝐿𝑖. Then we
can get the position of the mobile terminal by finding the point on the map which has
the smallest error, when comparing the measured differences𝑅𝑆𝑆𝐼𝑀𝑇,𝑖−𝑅𝑆𝑆𝐼𝑀𝑇,𝑘 and
the simulated values 𝑃𝐿𝑖 − 𝑃𝐿𝑘. The point with the minimum difference is outputted
at an estimated location for the mobile terminal by our method.

. Experimental evaluation in the office environment

The following section presents the experimental evaluation in the office environment.
We have first chosen the office environment, because the evaluation in the laboratories
of research institutions is a usual practice and most commonly found in the related
work.

The first subsection will define the base ground and some prerequisites for the eval-
uation, followed by a detailed description of the single- and multi-room evaluation
environments. We have decided to first evaluate the method and its underlying model
in a single-room environment, because it is without any additional variables (e.g. wall
effects). In single-room environments, we also observed higher influences of the pa-
rameter 𝛽, as described in Section .., because in multi-room environments the ef-
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fects of the multipath and scattering usually become stronger and diminish the effect
of 𝛽. This does not mean that single-room environments are not important, as many
industrial applications display such properties – many production halls in factories are
without the dividing walls and commercial buildings are usually open-spaced.

After having obtained the model’s base performance in a single room, we continued
the evaluation in a multi-room environment. In the last two subsections, the results
obtained during our evaluation are presented. In the following Sections . and .,
we will present the evaluation in the residential environment as well as in a hallway.

.. Experimental Prerequisites

To eliminate the need for fingerprinting, our method requires the capability of the APs
to survey the WiFi channels and report RSSI of the neighboring APs. The majority
of the APs in the market nowadays have this functionality built in as it is an integral
part of the automatic determination of the most suitable channel for the WiFi com-
munication. Usually, information about the readings is not available to the end user.
This is one of the reasons why, besides its popularity, we chose one of the most widely
used wireless routers — Linksys WRTGL. It has multiple open-source third-party
firmwares available (e.g. DD-WRT [], OpenWRT []) that expose surveying in-
formation to the end-user. This is the biggest deviation from our development goal of
the real-world usability, but because this functionality is already built into the routers,
it could be easily exposed by the manufacturers. For the research purposes, DD-WRT-
and OpenWRT-based firmware is available on the market for many APs.

Surveying is a periodically re-occurring event. If its frequency is too high, this re-
sults in an additional load on the WiFi network which is unwanted, as it impacts the
data-transfer performance on the wireless network. A too low frequency means that
the changes in the WiFi network we want to adopt will took too much time to be-
come meaningful and effective. A closely related parameter is the number of historical
surveys ℎ our method will use. Choosing too many will have similar consequences as
a too long period. Too little would result in a higher influence of the RSSI variance
than desired. After an elaborate testing, we have chosen 1min as a scanning period
and ℎ = 15 history points. This ensures that the changes that are due to long-term
temporal instability of WiFi and the changes in the indoor space will have a significant
effect in less than 10min, as they will be present in more than 50% of the data-points
used for the calculation. The third important parameter for the data acquisition is
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the median filter window size. We chose the windows of size  to eliminate the high
frequency noise from the data.

During the propagation simulation, another important parameter is the density of
the mesh for the propagation simulation. We have chosen a value of 0.2m, as it
provides a mesh five times denser than the density of the evaluation. We have, as
presented in Chapter .., chosen to evaluate our method in a mesh pattern, where
the evaluation points are spaced 1m apart.

In real-world situations, one must predict a situation in which a specific AP performs
a survey and does not detect one of the APs. We have analyzed eight weeks of surveying
the data between two APs. In Fig. ., we can see a number of occurrences, when the
difference between the two consecutive𝑅𝑆𝑆𝐼𝑗,𝑖, between𝐴𝑃𝑖 and𝐴𝑃𝑗 in the database,
was more than 1min, thus indicating that while 𝐴𝑃𝑗 was reforming a survey, it did
not detect 𝐴𝑃𝑖. The experiment lasted for 80.640min; note the logarithmic scale on
the y-axis.

The results of this analysis show that the probability that 𝐴𝑃𝑖 did not properly
detect 𝐴𝑃𝑗 while performing the survey was 1.7%. To account for such situations,
we advise to select  data points in the last 16min. The experimental data show
that the probability of such an event occurring, if choosing  history data points in
the interval of 16min, is 0.34% per AP pair. During the evaluation presented in
Sections .. and .., the situation where two measurements would be missing in
the window of 16min did not occur. The implementation of the method predicted to
continue without the missing points, which would result in the calculation with only
 history points in the case of the two missing measurements. Because our system is
heavily overdetermined, the method would still result in the location determination.
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.. Description of evaluation environment and protocol

The main goal of our method development was to develop a method that is usable for
real deployments and applicable to the real-world scenarios; therefore, we had to set
our evaluation procedure carefully. The first evaluation environment are our offices at
the university, as it is common for the indoor localization methods to be evaluated in
the offices of research institutions.

The office evaluation area is displayed in Fig. .. From the architectural point of
view, the left wall is a thick concrete wall, the right wall is made of plaster, the wall
at the top is filled with office storage closets from floor to ceiling, and at the bottom,
there is a huge window spanning the wall. This means that we have four different
types of materials from which the WiFi signal can be reflected. The access points are
positioned as represented in Fig. . at approximately 2.1m. The thin dashed gray
lines represent the virtual mesh. At the crossings of the vertical and horizontal lines,
except at the points in which the APs are positioned, we have evaluated our proposed
method. All figures with the results presented in this section have a coordinate system
matching the one in Fig. ., with the axis origin in the point marked with the “(0, 0)”
annotation. In the case of AP, we could not position the AP at the crossing of the
virtual mesh (position at (7.25, 6)), due to spatial constraints, so we had to position
it at (7.25, 5.75). The cross hatched blocks beside the desks represent a 1.6m-high
divisors between the workspaces.

Our office is usually full during workdays from . a.m. to . p.m.; during this
time, more than  different WiFi-enabled devices enter or exit the WiFi range. The
devices include laptops, tablets, mobile phones and smart watches. During the night
or during the weekend, at least  devices use the WiFi spectrum. To put a heavier
load on the system, we have decided not to connect APs to the Internet via the Eth-
ernet cable. APs were set in the repeater mode and connected to the Internet via th
AP. We have checked that  different APs are in the range of our room (including
the  we used for the evaluation). The evaluation environment also contained other
than 2.4GHz wireless signals, including 5GHz WiFi (.ac) and Bluetooth. A
Bluetooth speaker, which uses a similar 2.4GHz band, was present in the evalua-
tion environment. To saturate the channels even further, we configured all APs to use
the same channel and maximized interference between them. For the mobile termi-
nal, we chose Raspberry Pi  with a simple USB dongle (commercial name WIPI)
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that provided the WiFi connectivity. We chose this wireless connectivity option, be-
cause it is one of the simplest available: it has a single WiFi PCB antenna and low
power (FCC testing reports a maximal power below 11dBm []). We have captured
RSSI values of the WiFi APs, with a “iwlist [interface] scan” command build into the
Linux distribution. During the evaluation, the mobile terminal was held at approx-
imately head-height position. More advanced equipment used for the evaluation of
our method could produce even better results. At the mid-bottom of the room in
Fig. ., we can see a commodity area which exhibits some properties of a non-office
environment. This is also the area where the Bluetooth speaker is positioned.

For our multi-room office evaluation, we have extended our evaluation into the
office next to ours. This time, we purposely positioned APs in a non-symmetric man-
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Figure .
The evaluation environ-
ment in a multi-room
scenario.
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ner. As the accuracy of the methods that infer the parameters from the space depends
greatly on the number of devices used (e.g. APs, anchors, WiFi transponders, etc.), we
have decided that we will double the area, but keep the same number of devices. The
evaluation environment for a multi-room setup is presented in Fig. .. The room ex-
hibits fewer divisors between the worktables, smaller desks from which signal bounces
and no community area. Because the dividing wall between the two offices is made
of plaster, we used −4dB as the value of the wall’s effect, as proposed by COST 
[].

The evaluation in this environment consisted of  evaluation points, marked in the
Fig. . as the crossings of the dashed light-gray lines. The coordinates of the evalua-
tion points can be expressed as {(𝑥, 𝑦); 𝑥 ∈ {2.25, 4.25, 6.25, 9.25, 11.25, 15.25}, 𝑦 ∈
{1, 3, 5, 7}}.

This concludes the description of the single-room and multi-room office evaluation
environment. We have put an emphasis on the detailed description, as such informa-
tion gives the true context when comparing two methods. Such detailed information
about the indoor spaces is often exempted from the published research papers, there-
fore it is difficult to compare the results in the context of the evaluation environment.
Since the evaluation environment can have a great impact on the final results and the
accuracy of the method, future authors should provide similar descriptions.

.. Single room evaluation

In this section, the results of the office evaluation of our proposed method are pre-
sented. We present the results of the progressive steps, during the development of our
method, to provide the reader the full insight into the development of the method.
We have evaluated our method by localizing  reference locations, as described in
Section ...

As the reader can recall from Chapters .. and .., the method utilizes the last
 measurements, captured by the system, in the last  minutes before the localization
process. As the determination of the parameters of the propagation for a specific AP
utilizes the measurements from other  APs, we generally have  measurements from
which the propagation parameters are inferred. In the case of using all  measured
points with the 𝛾-only localization method, which implements the propagation model
given in Eq. (.), more than / of the data points are heavily influenced by the effects
of reflections under big angles. Figure .a shows an overview of the directions of the
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Figure .
.a The direction of
the errors in the case of
using all available data for
the calculation of 𝛾, the
vertices of the gray polygon
mark the position of the
APs; and .b the value
of the localization error
for each reference point
if all RSSIs are used for
calculation.
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errors made by such a method. In every point of the evaluation, we can see a point
representing a direction of the error. The size of the arrows is proportional to the
error they are representing. We can see that only the reference points close to APs
were located accurately. Figure .b shows the value of the localization error for each
reference point.

As described in section .., 𝛾 inferred from APs that are positioned on the oppo-
site walls gives better results. The mean and median errors are compared in Tab. ..
We can observe more than a 25% improvement of average error if specific APs are
omitted. In Tab. . and following tables with the results, label “omitted APs” refer
to the results for which 𝛾 was calculated by omitting the RSSI readings from the APs
positioned at the same wall. Therefore, 𝛾 for specific 𝐴𝑃𝑖 was calculated by the RSSIs

Table .
Comparison of the mean and median errors made by 𝛾-only method.

Used RSSIs for Mean Error Median Error Standard Deviation
𝛾 calculation [m] [m] [m]

all APs 3.64 3.45 2.06
omitted APs 2.64 2.51 1.43
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Figure .
.a The direction of errors
in the case of omitting
APs on the same wall for
the calculation of 𝛾, the
vertices of gray polygon
mark the position of the
APs; and .b the value
of the localization error
for each reference point,
when omitting the selected
RSSIs.

captured at the APs positioned on the opposite wall.
Figure . presents the measured error value and displays the direction of the errors,

when determining the location in the evaluated environment, in the case we only use
RSSI reported by APs on the opposite wall.

The sampling sequence started at the point (1.25, 1) and continued along the x-axis
of the room towards (6.25, 1). Next, we collected data from (7.25, 2) towards (1.25, 2)
and so on in left-to-right and right-to-left pattern. The arrow lengths in Figs .a and
.a cannot be directly compared. Table . presents the absolute difference in values
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CDF of the error of the 
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Figure .
Histogram representing all
 calculated 𝛾 for each
AP during the evaluation:
.a AP; .b AP; .c
AP; and .d AP.
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between these two approaches. In Fig. ., we can see a more even distribution of
the errors through space. We can see one significant error made at the evaluation
position (5.25, 7). The error in this case is nearly 2m bigger than in 95% of other
measurements. This is also clearly shown in Cumulative Distribution Function (CDF)
in Fig. ..

The path loss exponent is sometimes thought of as a constant for all APs. This could
be under the influence of misinterpreting different models, which propose specific
values (e.g. COST line-of-sight model, ITU models, etc.). Figure . shows the
distribution of the calculated 𝛾 parameters for each AP. In Fig. .a, we can see that
AP was most stable when 88% of the calculated 𝛾 span the values between 8 and 12.
𝛾 for AP and AP have the expected symmetrical distributions. Interestingly, AP
has a clearly visible non-symmetrical distribution, as its values reside in two groups.
The first major group spans values from 8 to 12, the second from 14 to 20.

We wanted to investigate the cause of non-symmetrical distribution of 𝛾 for the
AP, therefore we performed the temporal and spatial analysis. Figure . shows
that the first few measurements had extremely low 𝛾 value (below 10), which then
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𝛾 value calculated for every
evaluation point.

suddenly rose to higher values and, during the length of the experiment, slowly started
to fall. A sudden change in the WiFi spectrum during the evaluation resulted in the
non-symmetrical distribution of 𝛾 values in Fig. .b.

Introduction of the parameter 𝛽 (as defined by Eqs. (.) and (.) of our method)
improved the simulation of the signal propagation, which resulted in better accuracy of

Figure .
The output from the
propagation simulation
stage of the method —
simulation of the path loss
in the evaluating space,
emitted by four APs.
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the overall results, although we can find one measurement whose location prediction
significantly worsen. We can see the improvements of prediction in Fig. . in which
the output from the propagation simulation stage is shown. Figure . presents the
results from the propagation simulation stage of our proposed method. It shows the
estimated path losses (z-axis) in space (x- and y-axes) for each of the four APs (four
meshes). Therefore, by selecting a specific (𝑥, 𝑦) in space, we can obtain information
about the estimated path losses from all  APs in the selected point. If we concentrate
on the propagation emitting from AP (right in the figure), we can see that its propa-
gation prediction at the AP (front middle in the figure) is lower than the nearer AP
(left in the figure), although AP is 50% further away from AP than AP.

In Tab. ., we can see how the introduction of the parameter 𝛽 improved the
accuracy in comparison to the 𝛾-only model in which all APs were used. For easier
comparison, the accuracy of the 𝛾-only model, with the AP on the same wall being
omitted, is kept. Table . shows we have achieved an even better improvement in
comparison with the 𝛾-only model which uses all APs. We can see a 9% improvement
in the median error of the proposed method if we compare it to the 𝛾-only method.
The worsening of one of the localizations can be seen in Fig. . at the position
(1.25, 6), which is also one of the reasons for a smaller improvement in the average
error. The vertices of the gray polygon in Fig. .a mark the position of the APs
during the evaluation. We can observe a big difference in errors between the evaluation
points inside and outside of the polygon.

For easier comparison of the discussed models, Figure . presents CDFs of all
three models. From the figure, we can see the influence of omitting the APs which are
positioned at big angles in relation to the normal vector of the wall. A second impor-

Table .
Comparison of the mean and median errors made by all three discussed methods.

Used RSSIs for Mean Error Median Error Standard Deviation
𝛾 calculation [m] [m] [m]

all APs 3.64 3.45 2.06
omitted APs 2.64 2.51 1.43

Proposed method 2.63 2.29 1.45
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tant observation is that we were successful at including all the APs into the localization
process, while retaining the accuracy of the “ideally placed APs” in the case of “𝛾-only
– omitted APs”.
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.. Multi room evaluation

After a successful evaluation in a single room office environment, we have extended
our evaluation space to the neighboring office. The details of the evaluation space are
presented in Fig. .. Table . presents the results of the evaluation in a multi-room
environment; for easier comparison with the single-room environment, the results
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Table .
Comparison of the single- and multi-room evaluations in the office environment.

Evaluation of Mean Error Median Error Standard Deviation
Proposed method [m] [m] [m]
Office single room 2.63 2.29 1.45
Office multi room 3.22 3.48 1.58

from the proposed method in Tab. . are shown.
In this evaluation, the sampling sequence started in the left room at the point

(2.25, 1) — i.e. lower left corner – and continued through the left room in a left-to-
right, right-to-left pattern. After the last measurement in the left room at the position
(2.25, 7), there was a significant pause when we had to transfer our equipment into
the second room, where the sampling started at (13.25, 7), continuing in a top-to-
bottom, bottom-to-top pattern, finishing at the point (9.25, 1). Figure . presents
the direction and the value of the errors during the multi-room evaluation.

Figure .
.a The direction of
errors in the multi-room
evaluation, the vertices
of the gray polygon mark
the position of the APs;
and .b the value of the
localization error for each
point.
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. Experimental evaluation in residential environment

As discussed in Section ., the usual practice in the research field of the indoor local-
ization is the evaluation in a single environment, which is usually the office space of the
research institution. Even further, many methods are evaluated only in the hallways
and therefore the representativeness of their reported accuracy could be argued.





For the residential evaluation, we have chosen an environment that would differ
as much as possible from our office environment. The evaluation of the indoor area
with similarly sized rooms, similar types of walls and the only difference being in the
furniture would not be adequate for the goal of the real-world applicability for our
method. Therefore, we have chosen a small modern apartment with multiple rooms,
divided by different types of walls, which are described in detail in Subsection ...
The results from the evaluations are presented in Subsection ...

.. Description of evaluation environment and protocol

We have selected a real-world evaluation environment – a modern two-bedroom apart-
ment, constructed in . It has six rooms and a mixture of brick and plaster walls.
Room sizes range from 5 to 30m. The apartment has been equipped with real-world
furniture and fixtures used by a young family. We have set up a 2.4GHz WiFi net-
work consisting of four APs. Research done by Shimosaka et al. [] shows that in
RF based localization optimization of the positioning of the APs can result in accuracy
improvements. For our evaluations we have not tried to optimize the position of the
APs in any way, as it is our intent to evaluate the method in realistic environments.
We have set one WiFi AP in the middle of the apartment and the others in the corners
of the area of interest, as shown in Fig. .. All APs were connected to the router via
wired Ethernet network. Because the evaluation is in a real-world setting, the WiFi
network was not isolated. At any given moment, we could detect between  and 
different WiFi networks in range. The positions of the APs differ due to the constrains
posed by the real-world furniture setting. They ranged from the position on the table
0.5m above ground to the position above the closet at 2.3m.

The mobile terminal used in the evaluation was the same as in the office environ-
ment, as described in Section ... During the evaluation, the mobile terminal was
held at approximately head-height position. During the evaluation design, we have de-
termined  evaluation points in the apartment. The points were arranged in a mesh
as depicted in Fig. . – the crossings of dashed gray lines represent the evaluation
points. The mesh size and position were delegated by the real-world setting; we could
not position the evaluation points in some areas where, due to furniture, we could not
perform valid measurements. The spacing between the evaluation points is 2m and
2.5m for the width and length of the apartment respectively. The sampling sequence
in all four evaluations was the same; we started at the lower left position (0.5, 0.5) and
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Figure .
The map of the evaluation
in residential environment.
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measured the positions in the left-to-right and right-to-left pattern, finishing in the
top evaluation point.

The properties of the evaluation mesh also dictate the mesh in the propagation sim-
ulation stage of our method. Having the evaluation points in the positions where the
propagation simulation stage does not simulate the propagation would, by definition,
result in the best possible accuracy bigger than 0m. Therefore, we had to choose a
mesh with a uniform size that would fit the evaluation points. The biggest (coarsest)
possible mesh has the size of 0.5m. Another possible reasonable value is 0.25m, while
a value of 0.1m is too fine, considering the expected accuracy and the standard devi-
ation of the method. We have chosen a mesh with a uniform size of 0.5m, as such
an error is more than acceptable in the real-world localizations of people and objects
indoors.





Because we have developed our method in the office environment, we were even
more interested in the accuracy and stability of the method in a completely different
evaluation environment. Therefore, we have performed four independent measure-
ments in every evaluation point on different days and times and obtained  datasets
(DS). For the WiFi devices, we made sure that between the evaluations the devices
were powered off for at least one hour (in order to cool the chipset to room temper-
ature) and that they were powered and operational for at least one hour before the
evaluation, to eliminate possible thermal variations due to the initial heating that can
influence the results [].

.. Experimental evaluation

During the four evaluations in the residential environment, we have obtained the pre-
sented results. Table . presents the mean and median errors with a standard deviation
of all datasets and their average. We can observe the average error of 2.65m, which is
significantly better than in the office multi-room environment; the average median er-
ror has also decreased from 3.48m to 2.59m, while the standard deviation has stayed
approximately equally small. The average values of the experiment show us that, as-
suming the normal distribution of the errors, approximately 84.1% of the values have
an error smaller than 4.16m. This result, considering that the evaluation in the res-
idential environment is completely different than the environment in which method
was developed, further points toward universality of our method and its real-world
applicability to any indoor space.

Table .
Comparison of the mean and median errors made by the WiFi method in the residential environment

Dataset Mean Error Median Error Standard Deviation
[m] [m] [m]

DS 2.50 2.55 1.31
DS 2.43 2.55 1.21
DS 2.89 2.55 1.62
DS 2.77 2.69 1.91

Average 2.65 2.59 1.51
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To analyze the consistency of errors through the four datasets, we can focus on Fig.
.. It shows the directions and proportional sizes of the error in all  datasets for
each of the evaluation points. In Fig. ., the vertices of the gray polygon depict
the positions of WiFi APs. The error arrows in the vicinity of the evaluation point are
always shown, so that in the top-left corner is the error from DS, in top-right corner
from DS, in bottom-left corner from DS and in bottom-right corner from DS.
We can see that the sizes of the arrows in a specific point are similar, regardless of the
evaluation, meaning that our method is stable and gives repeatable results. From the
figure, we can also see that the errors in localization in the bottom-right corner of the

Figure .
The directions and the
proportional size of errors
for the localization of all
four datasets. Vertices of
the gray polygon show the
positions of the WiFi APs.
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CDF of errors in individ-
ual DSs and CDF of all
evaluation points.

map are considerably bigger than elsewhere. The correlation with the position of the
APs can be observed - the points with high average localization errors are positioned
far away from the polygon, marking the positions of the APs.

If, due to the position of the WiFi APs, we would exempt the three lower right
evaluation points (i.e. positioned at (4.5, 0.5), (6.5, 0.5) and (6.5, 3.0)), the average
error would be 2.19m with the standard deviation of 1.11m, meaning that 84.1%
of the values have an error smaller than 3.30m.

Figure . shows CDF of each of the four datasets individually with dashed lines,
and overall CDF across all datasets with a thick solid line. From Figs. . and ., we
can see that, although the four evaluations were performed at different times and days,
the error distributions are similar and therefore our method produces stable results.

Similarly, as in the previous sections, a D map of errors is presented in Fig. ..
We can see the value of errors in each point of the evaluation for all datasets; for each
dataset, we can see a mesh showing the size of errors during the evaluation. In the right
corner of the Fig. ., we can clearly see bigger errors from the bottom-right part of
the Fig. .. In the left part of the figure, we can see, similarly as in Fig. ., the
evaluation point (0.5, 8.0), where the evaluations DS, DS and DS gave an accurate
result, while the evaluation DS had a non-negligible error. This is something we can
expect in a highly-variable WiFi spectrum, and at the same time, we can see that other
measurements done at approximately the same time do not exhibit extreme errors (the
previous measurement was DS at (1.5, 8.0) and immediately after we have done the
measurement DS at (6.5, 10.5)). We can therefore hypothesize that this probably was
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Figure .
The error values of local-
izations in each evaluation
point of all four DSs.
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not an error during the estimation of the signal propagation, but rather a deviation,
when sampling the three RSSI surveys at the mobile terminal.

. Experimental evaluation in a hallway

As emphasized in Tbl. . and Section . a lot of authors tend to use hallways as the
evaluation environments. This section provides evaluation of the proposed method
in such environment in order to further show the usability and applicability of our
method. At the same time this evaluation eases the comparison with such related
methods. Subsection .. describes the evaluation environment and Subsection ..
presents the results.

.. Description of evaluation environment and protocol

To perform evaluation in a long hallway we had to borrow the hallways of neighboring
building - Faculty of Chemistry and Chemical Technology. Their floorplan consists
of three wings, in which we can find long hallways connecting the offices and the
laboratories. The map of one of the hallways can be seen in Fig. .. Hallway is
approximately 36m long, on one side (the left in Fig. .) the hallway expands
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The map of the hallway
evaluation environment.

into mid-sized room, on the far right side of the hallway there are doors, which were
partially closed during the experiment. Four APs were positioned alongside one of the
walls; they were all connected to a router via wired Ethernet network. The original APs
that provide WiFi connectivity to the students at the faculty were operational during
the experiments.

The mobile terminal used in the evaluation was the same as in the previous eval-
uations. During the evaluation we have moved the MT alongside the centerline of
the hallway, which is approximately 0.5m away from the APs. We have evaluated
the method at every meter, therefore in  evaluation points. We have begun at the
far-right in the Fig. . and finished where hallway expands into the room. We have
chosen a mesh with a uniform size of 0.5m, as such an error is more than acceptable
in the real-world localizations of people and objects indoors and such mesh fits the
grid of our evaluation points.

.. Experimental evaluation

During the evaluation, we have obtained results presented in Tbl. .. We can observe
average error of 3.72m, median error of 2.55m and standard deviation of 3.85m.
Small value for median error and bigger values of mean and standard deviation hints

Table .
Comparison of the mean and median errors made by the WiFi method in the hallway environment

Evaluation Mean Error Median Error Standard Deviation
[m] [m] [m]

hallway 3.72 2.55 3.85
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Figure .
The CDF of the errors
in the hallway evaluation
environment. 5 10 15
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at few outliers having significantly bigger errors than majority of the evaluation points.
This can be confirmed by CDF in Fig. ..

From the Fig. . we can see that there are some outliers in term of error of the
localization. The two points with the biggest errors (i.e. 19.0 and 11.5m) are two
consecutive evaluation points  and . If we exempt these two points from the
calculation, the median error falls to 3.0m and standard deviation decreases to 2.4m.
We get similar values also if we exempt RSSI detections of wrongly detected most
powerful AP from these two evaluations and therefore MT is positioned only by RSSI
measurements to the other  APs.

A more detailed analysis of the captured data shows that for approximately two
minutes two APs have started to emit stronger-than-expected signals. For the model
calculation this is not a problem, because the rest of -minute timeframe ensures that
such outliers do not have great effect on the model. We see bigger errors at positions 21
and 22m from the right wall in the Fig. .. If model calculated correct values, why
do we see the two big errors? The problem is with detection of the signals at MP. We
have checked the captured data and we have seen strong deviation from the expected
values of the RSSI at the MP. The raw data captured at the MP when evaluating in
evaluation point  can be seen in Fig. .. The mean values of RSSIs (used for
location determination as discussed in ..) are written in bold. We can see that AP
furthest away (at the far right in Fig. .) has the biggest RSSI and therefore is much
bigger than expected and therefore MT is localized with big errors. As we can see the
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biggest problem is not with the proposed method itself but due to the RSSI detection
at the MT.

Nevertheless, it is also true that we can expect bigger average error in hallway sce-
nario as average error in case of random positioning is bigger. In case we randomly set
the position of the AP we can expect average error of 11.92m in case of hallway and
4.86m in our residential environment. This means that for the localizations in which
MT detected unexpected RSSI values, average error can be up to  times bigger and
similarly also maximal error (12.35 vs. 36.0m). In such cases when we measure small
positive values (error cannot be negative, their average value is up to a few meters), a
few outliers having big values (big errors) greatly influence the outcome of the mean.
Therefore, in such cases it is more sensible to compare values by the median value.
Comparison of the median value shows that our hallway evaluation has better median
error than multi room office evaluation and (multi-room) residential evaluation, while
has slightly worse performance than single-room office evaluation.

The proposed method was designed for real-world indoor localization, meaning that
such scenario is completely opposite to the method’s intent. Our proposed method
is one of the few model-based that addresses the number and type of the walls be-
tween AP and MT, which are not present in such evaluation environment. Moreover,
method includes parameters which include the specific position of the APs in rela-
tion to the closest reflective surface (the wall beside which AP is positioned), which in
such evaluation case is constant and the same for all APs. We can see that even if the
method was not designed for such scenarios it still gives similar results than in other
(more difficult) evaluation procedures.

If it would be in one’s intent to show the best results, one could filter out the scenario
in which MT detected RSSI values in unexpected manner or repeat the evaluation in
those two evaluation points to get better RSSI detections. As we want to be fully
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disclosed about the evaluations we have included those two evaluation points in the
original form.

. Discussion

In the previous sections, we have presented the proposed method and the four evalua-
tions we have designed to also test the usability and versatility, apart from the accuracy
of the method. This chapter provides some further discussion about the presented re-
sults.

All the analysis and manipulation of the data presented in evaluations has been
described in the published papers and presented thesis, no additional steps were taken
during the evaluation or analysis to achieve better results (e.g. pruning the data for
outliers). Every data manipulation (e.g. filtering with median filter) has been explicitly
stated in the thesis: During the data acquisition stage raw data obtained from the APs
is stored (no filtering or any other data manipulation is applied). When calculating
the attenuation parameters in the path loss modeling stage the data is filter by median
filter as discussed in Section .., paragraph . Filter’s window size  is specified
in Section .. - “Experimental prerequisites”, paragraph . During the localization
stage we use mean of three samplings of the RSSI at the MT, as specified .. in order
to partially address the problem of outliers and variability of the RSSI data.

We have published results on all the evaluations in office and residential environ-
ment. We have not performed other evaluations, of which data would not be presented
in this thesis in order to, for example, hide worse-performing evaluations. We have
not repeated evaluations in any point even if we were confident that an evaluation
point is an outlier and therefore has significant impact on average performance of the
evaluation – e.g. section .., evaluation point . As can be seen from evaluation
maps (i.e. Figs. ., ., ., .) all our evaluation points were determined via
geometry-based patterns, and all the evaluation points were included in the analysis
– we have not exempt any evaluation point in order to improve the accuracy of the
evaluations.

Presented deduction of the model is mostly based on physical (theoretical) proper-
ties of signal propagation. We have included one parameter to include the effect we
have observed empirically – the parameter 𝛽. In our preliminary testing and evalua-
tions, we have tried to use linear and trigonometric relationships between the angle
and the parameter 𝛽 and consequently the effect on the RSSI. From the experience
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Setup of the experiment
intended for confirmation
of inclusion of the 𝛽
parameter.

of dealing with formulas in which angles have the effect on the result one would as-
sume that trigonometric function should be the correct approach. In the end we have
chosen linear dependence, as it simplifies the model and in some preliminary testing
resulted in better localization accuracy.

In order to further confirm the linear approach to the included angle we have de-
signed an experiment, which is presented in Fig. .. We have set one emitting AP
(in Fig. . marked as AP). Second AP was moved in semicircle around the AP at
a distance of 5m. At each selected angle we have recorded  RSSIs (one per minute)
of the signals emitted by the AP. A third AP was placed statically to monitor the
RSSI of the signals coming from AP in order to confirm that no major change in the
emitting powers occurred and that measurements at each angle can be compared.

Figure . present the result of statistical analysis. Light orange dots in the chart
present measured RSSI values at a specific angle. These values at individual angle
were used to calculate the statistics of normally distributed value at each angle – the
mean and standard deviation. Dashed blue lines denote the mean, and ±𝜎, ±2𝜎 and
±3𝜎 intervals. Solid red and green line present the linear- and sine-dependent model
trained on the data obtained in the experiment.
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As the distance between AP and receiving AP is constant (5m) we should see a
constant value of the mean (darkest blue dashed line) – i.e. horizontal line in the
figure. The trend of higher RSSI values at bigger angles can be seen from the figure,
meaning that effect observed during preliminary evaluation is confirmed. At the same
time, we can see that distribution of the RSSI around mean is order of magnitude
bigger than difference between linear and sine model. The average difference between
the two models is approximately 13% of the averaged standard deviation therefore it
is very difficult to determine which model better reflects the measurements with any
statistical significance.

Let’s examine the worst-case scenario – when RSSI was most stable and the differ-
ence between the models are the biggest. We have measured most stable RSSI at angle
40∘, where standard deviation was 0.9 and mean was −37.67. The biggest difference
in the output of the two model is 0.9, which is equal to 1𝜎. If we want stable method,
where we can expect real-world distribution of the RSSI and achieve confidence inter-
val of e.g. ±2𝜎, then an average difference of 0.13𝜎 in the model should not influence
the results dramatically.

Moreover, if we acknowledge the fact that obtained RSSI is integer value, then only
in the  out of  angles we can observe difference of the (rounded) outputs of the two
models – angles 0∘, 60∘ and 90∘. From the results we can see that other effects have far

Figure .
Statistical analysis of the
experiment intended for
confirmation of inclusion
of the 𝛽 parameter.
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bigger influence on the measured RSSI values than change from linear- to sine-based
model. Such effects include: multipath, interference, shadowing, etc.

To further show that deviations of the values from linear and sine values in Fig.
. are due to the multipath, interference, etc. we have performed another set of
measurements in range 0∘ to 90∘ in the same room (i.e. to have the same effect of the
indoor setting on the signal) but with different positions of the APs. The receiving AP
was at the same distance from the transmitting AP as in the first set of the measure-
ments. Due to the different spatial position of the APs in the room (although at the
same relative position to the wall), locations in the indoors of the receiving AP were
changed and therefore the influence of interference etc. was changed for each of the
evaluation points. Fig. . presents similar results as Fig. ., only that we have
included measurements from both experiments.

The inclusion of multiple measurements in one figure, although captured at dif-
ferently positioned APs, is not problematic as in our methods the values for 𝛽𝑖 are
calculated based on detections of the RSSI at different positions (angles and distances)
in space. We can see that value of the mean in this figure more closely follows the linear
and sine approximation, but we can still see that difference in the two approximation
is negligible in comparison to the deviation of the data.

One of the concerns, when designing the evaluation procedure, was how to define
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the sampling procedure. The first option would be to assure that the evaluation of each
of the evaluation points is most independent from all the other points. This would bear
consequence in experiments taking a lot of time – for  evaluation points we would
need approximately  hours to take the measurements if we approximate  minutes
per each evaluation point. Out of these  minutes,  minutes are used for gathering
the required independent measurements of the data acquisition stage and the rest to
sample RSSI at the mobile terminal and move the equipment. To achieve an even
greater independence of the measurements one could turn the APs off in between the
measurements, while also cooling them to the room temperature and ensuring that
they are at a stable thermal state before proceeding to the next point. This evaluation
procedure is even more difficult to realize, as we could get only a few measurements
per day. The second option is to try to get the measurements in the evaluation points
in the shortest time possible. Such procedure enables us to get a lot of the datasets
in a relatively short amount of time. The second big advantage is that by minimizing
the timeframe of the dataset, we also minimize the changes in the environment and
therefore obtain comparable results. For example, if a timeframe for a single dataset
in the office environment would span  hours, we would include the measurements
when the office was full and the measurements in the night, when the office was empty.

We have chosen the second option, therefore we tried to keep the sampling proce-
dure quick. This consequently means that some evaluation points share some of the
data from the data acquisition stage. The evaluation of the  evaluation points in the
single-room evaluation took approximately one hour, as we needed between  and 
minutes for each evaluation point. This means that if there would be an unexpected
occurrence in the WiFi signal (e.g. one of the APs would start to emit the signals at
much higher power) and if it would last for about  minutes, we could observe its effect
in three to five evaluation points. Considering the specified sampling sequence in the
description of each evaluation environment, while observing the results in .a and
.a, we cannot detect any sequences with relatively high or low errors. We can there-
fore conclude that no such events occurred during the presented evaluations. Due to
the reasons discussed in the Chapter , the timing of the evaluation in the residential
environment differs. The evaluation of the WiFi RSSI in each of the evaluation points
in the residential environment is approximately  to  minutes apart.

The evaluation of the single-room and multi-room office environments took place
more than a week apart, with no changes to the system, except for the changing of the





position of the two APs. Because our method, by its definition, utilizes only the mea-
surements gathered in the last  minutes for the location estimation, it can be used
for long-time deployments. The results in the accuracy of the two evaluations more
than a week apart confirm these claims empirically. An even stronger evidence of the
universality of the method are the results obtained in the evaluation environment of
a modern home. The method was developed and initially tested in the office envi-
ronment, but after it has been moved to the residential environment it showed even
better results. Between the evaluation of the system in the multi-room office scenario
and the evaluation in the residential environment, we did not change any part of the
WiFi localization algorithm. We have only connected the APs and the server to the
network and inputted a new map of the indoors (positions of the APs and the apart-
ment’s walls), yet the proposed method resulted in an even more accurate evaluation
that the one in the office environment.

The robustness and adaptiveness of our method is also confirmed by the comparison
of Figs. . and .a. Although we can see a significant change in the parameter 𝛾
in the second row of evaluation, we cannot detect a big change in the accuracy of the
results in the bottom two rows of Fig. .a. This means that some non-identified
factor changed the transmission or the propagation properties of the AP. From the
Fig. . and the resulting accuracy, we can see that the system successfully adapted
to the 4 to 5dB change in the environmental parameter 𝛾. If the method used static
parameters for the signal propagation, we can speculate that the accuracy of the results
could not be the same before and after the change. Regarding the possible factors that
influenced the change, we cannot scientifically prove any. As discussed, we tried to
keep the environmental data as stable as possible during the evaluation, but of course
there are parameters we could not control – e.g. a number of WiFi devices and people
outside the two rooms, etc. The AP in question, i.e. AP, is positioned near the
window and one of the possibilities we cannot exempt is also the effect of the heating
of the unit due to the direct sunlight. Regardless the cause, the method successfully
adapted to the change and gave good results, as can be seen from Fig. .a.

The examination of Fig. . reveals a big difference in the accuracy of the model,
when we omitted the APs located on the same wall. In real-world situations it is nearly
impossible to provide two ideally placed APs for each of the APs to obtain the same
results we have in the “𝛾-only – omitted APs” case. Therefore, we have searched for
ways to include all APs, while still taking into account the observed phenomena. This
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is why we have extended the model with the parameter 𝛽 in Eq. (.). The similarity
between the CDF of the method with the omitted APs and the CDF of the proposed
method shows how we successfully included the phenomena of the wall, acting as an
antenna reflector, into the method.

A careful examination of Fig. . reveals that the evaluation points with the lowest
localization error are better localized with the omitted 𝛾-only method, defined by Eq.
(.). The most accurate 30% of the points can be up to 40 cmmore accurately local-
ized than with the proposed method, but on the other hand, we see that in the range of
the bottom 30-70% usage of the proposed is beneficiary, as the proposed method pro-
vides better results. To answer the question about why the error in the lower part of the
CDF is less important for the method evaluation, we must put the accuracy numbers
in context. When localizing a subject who is holding a mobile terminal in his hands
it is less important if the method in the 30% of the best measurements gives an error
of 1m instead of 0.6m, as these locations are in the reach of the subject; it is more
important that the measurements which have an error of 2.5m do not result in bigger
errors. The small difference in errors can also be due to the setting of the experiment.
From the data observed between the 𝛾-only experiments (the one with all APs and the
one with the omitted APs), we know that in single-room scenarios the position of the
APs has a non-negligible influence. In real-world deployments we cannot assume that
each AP will have two other APs at a desired position for the acceptable parameter
estimation. The accuracy in the real-world evaluation in the residential environment,
where we could not influence the positions of the APs, as we were constrained by the
locations of the sockets for wired Ethernet network, confirms that our method can
adapt to the real-world environment.

The accuracy of the evaluations in different evaluation scenarios can also be com-
pared with respect to the area and number of the dividing walls. In the single-room
experiment, the evaluation environment measured approximately 60m. While re-
taining the same number of the devices, we have effectively doubled the area in the
multi-room office environment, while introducing a thin dividing wall made of plas-
ter. In the residential evaluation environment, we have kept approximately the same
area and the same number of APs, but introduced multiple dividing walls. Five walls
were made of brick and concrete and two were thin-plaster walls, similar as in the
multi-room office environment. We have not optimized the placements of the APs,
as we wanted real-world limitations of placement and infrastructure to influence our





results. The effect of the evaluation point versus the position of the APs can be seen
in all four evaluations. In the single-room office environment we can see the biggest
errors at the top of Fig. .a – these points are also the points outside of the polygon,
marking the positions of WiFi APs. Similarly, we can see the biggest errors at the top
row of the evaluation in .a. Interestingly, the points of evaluation in the bottom
and bottom-right parts of the map do not exaggerate big errors, although they are out-
side the gray polygon. This could be due to the bottom wall which is made of glass,
but further evaluation would be needed to confirm the effect of the windows on the
signal reflection.

Every RSSI model- and fingerprint-based WiFi localization method is prone to er-
rors when unexpected situation occurs and one or more devices start to emit more
powerful signals than usual. It can also be the case that one of the devices starts to
report much higher values than expected, therefore the error can also occur at the re-
ceiver. The researchers of the modeled and fingerprint approaches try to avoid such
situations during the evaluation. One such occurrence can be seen in Fig. ., on
Thursday night of the th week. We can see a period of a few hours, when the sig-
nals received by AP and emitted from AP have reached its maximum. Such events
are usually handled by our method, but in this case a similar thing occurred also on
the connection between AP at AP, as displayed in Figure .a. Because we were
present in the office at the time, we decided to investigate the situation and perform a
sampling at each point of the evaluation.

Figure .a presents how the signal emitted from AP was detected at the other
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Figure .
.a Error directions
without the implemented
failback at the unusual
event on Thursday of
week ; and .b Error
directions with the im-
plemented failback at the
unusual event on Thursday
of week .
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three APs. The expected value for the AP is to be the least powerful, because it is
positioned at the furthest position. Similarly, in Fig. .b, we would expect AP to
have the highest RSSI, as it is the AP closest to the ideal place on the opposite wall.
Such measurements of the signals resulted in negative values for the exponent path
loss parameter. Figure .a shows the directions of the errors for the full evaluation,
which we were able to perform during this event without the implementation of the
failback procedure discussed in Sec. ... Our method can detect similar events as
it calculates the unexpected (i.e. negative) values for 𝛾. This is another advantage of
our method in comparison to the fingerprinting methods which cannot detect such
situations.

Implementing the failback procedure on this dataset gave us great results. We ob-
tained an average error of 2.43m, and a mean error of 2.00m, which is number-wise
better than our evaluation experiment. Because nearly 50% of the 𝛾-values were re-
placed, no other significance should be given to these values, other than our method
giving usable results even in such circumstances. Figure .b presents the evaluation
errors in the case of the used failback. The comparison of the two sub-figures in Fig.
. shows the big difference that the implementation of the failback makes.

It is always difficult to compare the accuracy of the indoor localization methods.
As methods are diverse, it is impossible to design a test set on which all the methods





would be evaluated. Implementing multiple methods and evaluating them in com-
mon environment is the only possibility, but usually impossible to do due to hardware
and software constrains. This usually originates from the authors of the papers, who
often describe the evaluation environment vaguely. Information about the evaluation
environment, other than the basic geometry, is often exempt from the published pa-
pers. We have tried to give as much detail as possible about the evaluation space to give
the possibility of repeating the evaluation and create awareness that such information
is necessary for even the simplest comparison.

While we were gathering information for the comparison table, presented in Sec-
tion .., we had a lot of problems defining the evaluation environment properties.
At the end, the only property upon which were able to do the comparison is the ap-
proximate size of the evaluation environment and the number of devices. Even while
comparing the size of the evaluation area, we have found many methods which present
the indoor localization approaches and have done the evaluation only in hallways and
did not properly evaluate the method in complex indoor areas. We are convinced that
the indoor localization methods should be evaluated in the real-world indoor environ-
ments; these usually include multiple rooms, whose effect should be included in the
evaluation. Another interesting observation that arose while comparing the methods is
that all methods, except one, were evaluated in the office environment, usually in the
indoor spaces of faculties and other research institutions. It is safe to assume that these
evaluation environments are the same as the environments in which the methods were
developed and therefore do not represent an independent evaluation environment. In
our case, we have developed the method at the evaluation environment presented as
“the single-room office evaluation environment”, but we have also provided the eval-
uation in an independent evaluation environment – “the residential environment”,
presented in Section .. We have not done any changes to the WiFi localization
method, when moving the experiment from the office to the residential environment.
An outsider from the field could argue that the evaluation of the method in the same
environment as its development is, as one would utilize, the same dataset for learning
and evaluation of some algorithm.

Another problem of the evaluation of the indoor localization method is that the
accuracy of similar methods often depends greatly on the number of deployed APs,
anchor points, beacons, etc. RSSI values, as the name suggests, indicate the received
signal strength (RSS) values. The RSS value of the wireless communication signals
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of any type in a real-world indoor setting exaggerates heavy variability due to wall
reflections, a multi-path effect, etc. Therefore, having four stations – which in turn
means four fixed origins in the triangulation problem - results in localization variability.
The number of the WiFi points in relation to the size of the indoor area has a key
influence on the accuracy. The only thing stopping us from changing the odds of
this ratio is the real-world implementation and practicality. The development of a
WiFi localization method with one AP in every room and the evaluation in a floor
plan consisting of many small rooms would result in small mean and median errors
if we would only set the location of a mobile terminal to the center of a room, from
which we sense the AP with the highest RSSI. Utilizing 5GHzWiFi which is worse at
penetrating the walls than the 2.4GHzwould further improve our results; the usage of
a future .ad which has a carrier frequency of 60GHz would even further isolate
the room during the localization. Real-world usability of the localization method is
the most important limiting factor to the number of WiFi APs. Therefore, we have
limited ourselves to four APs for this evaluation, which is only one more than the
minimum number required for any triangulation-based localization method. Having
that one extra AP enables us to correct the errors due to the variability of the RSSI.

We evaluated our method in a realistic scenario and got an average error between 2
and 3m in the static measuring conditions in the single-room evaluation, and 3 to 4m
in the multi-room evaluation in the office environment. In the residential environment
in which the method was neither previously developed nor evaluated, we achieved the
average error of 2.65m, with a standard deviation 1.51m, while having the average
median error of just 2.59m. The comparison of our results to the papers surveyed in
Section .. is, as can be seen, heavily influenced by the information provided by the
authors. Du et al. [] report a similar 2 to 3m accuracy, but the results are difficult
to compare, regarding different method requirements. Their main evaluation (and
therefore the majority of the evaluation points) is in a long narrow hallway, which
is one of the places where the path loss factor is the lowest []. From their RSSI
error it can be seen that the RSSI error at points which are not in the corridor (points
numbered  to ) have the most variance and contain the evaluation points with
10% of the biggest errors. Dumont et al. [] report a mean error of 3 to 4m in an
area approximately  to  times bigger than ours, and with . times more APs. Lim
et al. [] give great emphasis on the number of APs involved into the localization
procedure. From their final results it can be seen that, when using  APs, the median





error of their approach is about 3.5m in an experiment, where the mobile terminal
was in AP mode and emitted signals towards APS for 2min. Tarrio et al. [] report
similar errors in experiments with the similar surface of interest.

During the survey it was sometimes even difficult to understand if the localization
method requires for the mobile terminal to be in AP mode, or if the authors have
managed to develop the method in which the mobile terminal is a passive device in the
network, while localizing. Presented results confirm that our method achieves similar
accuracy as other existing methods, therefore confirming that the indoor WiFi-only
localization method that does not require the mobile terminal in an access-point mode
or any additional hardware, can be implemented. Main scientific contribution of this
thesis is a pure model-based WiFi-only approach that implements the self-calibrating
and self-adapting operability for the real-world deployment. Our method considers
the effects of the architectural aspects (e.g. propagation loss through walls) and is
applicable on widely available hardware. Presented method requires multiple APs and
a single localization server to run, thus making it ideal for the applications in a variety
of indoor situations.

Synthesizing the information obtained in all three evaluation procedures results in
two important facts. Firstly, our method is highly applicable to the multi-room indoor
localization scenarios, as it is maintenance-free and results in a low localization error.
Secondly, we can see that higher localization errors often occur in the areas which are
outside the polygon connecting the APs. This can be observed in the top rows of Figs.
.a and .a, and also in the bottom-right part of Fig. .. Similarly, we can ob-
serve some of the biggest errors in the bottom row of Fig. .b, although not much
emphasis can be put on this particular result due to a number of 𝛾-values replaced, as
discussed previously. The results therefore show us that the positions of the APs have
a great effect on the accuracy of the method. In the residential evaluation, we were
also constrained by the infrastructure – the positions of the furniture, Ethernet- and
electrical-sockets. As placement of the APs influence the accuracy, this opens a possi-
bility for further research in defining the optimal spacing of the APs and consequently
resulting in the improved accuracy of the proposed method.

A careful reader of this thesis has learned that the comparison of different methods
for the indoor localization is extremely difficult. The main reason for this is that in
the research field of the indoor localization, the methods are not commonly evaluated
in the same evaluation environment and at the same time the evaluation environment
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greatly influences the outcome of the evaluations. There are many reasons why the
methods are not compared in the same environment; just to name a few that we have
faced, when we have thought about the implementation of such a common evaluation
environment:

The hardware constrains – Due to the variety of the methods, it is difficult to
build an evaluation environment in which multiple methods can be evaluated
– e.g. some methods utilize Bluetooth, some Li-Fi, other WiFi signals, some
require specially build anchors, etc.

The working principle of the method – The methods have a different core work-
ing principle; some utilize a fingerprinting procedure, some crowds of people,
others calibration procedures and some do not have such requirements.

Therefore, the usual comparison of the indoor localization methods in research papers
usually consists of the data, such as we have presented in Table .. Usually, the av-
erage error of the method is compared to some additional properties of the method.
Examples of such reviews can be found in [–, ]. We have focused our comparison
on the size of the evaluation area and the number of devices needed by the evaluated
method. The reader of this thesis should not be focused only on the accuracy column,
as the size of the evaluation space and the number of the devices used should also be
considered. With the intent to help the reader who is not involved in the research field
of the indoor localization to better understand the accuracy of the localization, we have
defined a simple value, by which we can compare the methods. For the comparison we
have selected the methods that are presented in Table . and have not been evaluated
in simplistic hallway. We have compared those methods to our proposed method. As
we are interested into the real-world applicability of the method, we were focused on
the accuracy of the method, the number of devices needed for the method and the
area in which the accuracy was obtained.

The area and the number of devices are not independent values. Having a much
bigger evaluation environment usually calls for a greater number of access points and
other hardware; therefore, we have first defined the values defined as the ratio between
the area of the evaluation and the number of devices. This way we have obtained a
measure of the evaluation environment and we can quickly identify that the evaluation
of the method proposed by Bisio et al. [] needs one device for each 14m, while
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.a Comparison of the
ratios between the area
of the evaluation and the
number of the devices;
.b Comparison of
ratios between the average
error size and the index in
.a.

the evaluation by Lim needed only one device per 75m. This is the statistical value
which can be misleading, as any triangulation-based approach usually needs at least
- devices. The results obtained are presented in the Fig. .a.

Nevertheless, if we compare the ratios between the average error during localization
and the previous value, representing the size of the evaluation space, we can get some
value to compare the methods. In Fig. .b, we have normalized this value to our
method in order to make a better comparison of the related work methods.

In Fig. .b, we can see  methods performing better than ours. Firstly, Chan’s []
method heavily depends on the number of clusters discovered opportunistically via
ZigBee. The usage of the crowd makes it rather unsuitable for the home environment,
industry or less crowed spaces. On the other hand, it can be implemented in a museum
or other heavily populated spaces. The method proposed by Lim has two real-world
drawbacks: firstly, during the localization, the mobile terminal emits signal from the
location for  minutes, therefore it is rather slow, as the object has to be positioned
in one place for  minutes. Secondly, the mobile terminal must send information out
constantly during these two minutes in order to be localized, which limits the method’s
applicability in heavy crowded areas. Dumont’s method [] is marginally better in
comparison to ours, but also requires the terminal to send information, in contrast to
our method which works only on the received signals.

Directly comparing results of our hallway evaluation to the methods presented in
Tbl. ., which are model based and were evaluated in a hallway environment results
in:

Olivera et al. [] present fusion approach, they fuse WiFi localization with
odometry data provided by the robot they are trying to localize. It is expected
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that method that gets direct feedback from the wheels of the robot (data pro-
vided by the encoder) can achieve better results than WiFi-only method.

Zhuang et al. [] present method which utilizes crowdsensing in order to
address variability of the RSSI. Background services track movements of the
users through IMU sensors constantly and monitor the RSSI. Combination of
the data together with data about users’ daily routines presents base data upon
which localization models are built. The evaluation results in worse accuracy
than our method, not to mention drawbacks for real-world implementations,
e.g. constantly running services in the background that drain mobile phones’
battery and the need to constantly track users in order to update the database
are not best fitted for present needs.

Zampella et al. [] present another fusion approach that fuse WiFi informa-
tion (RSSI and ToF) with dead reckoning data. Their RSS WiFi method has
worse results than results obtained in our case, as it results in median value of
approximately 5.5m, in comparison to our 2.55m. Their fused approach is
theoretically oriented as it requires IMU sensors in the foot of the person walk-
ing indoor. Due to accurate IMU readings they claim their fusion approach
results in average errors in the order 1 to 2m.

Chiou et al. [] present an indoor localization system which has one signif-
icant drawback, i.e. it has two calibration procedures, one can be performed
in advance, second “must be performed at the beginning of the on-line stage”,
therefore this method is not suitable for real-world evaluations. Method’s evalu-
ation includes sampling the SNR of the WiFi immediately before the evaluation
at approximately every 5m. Also, the sampling procedure for the calibration is
difficult as wireless receiver has to be set on a turntable and values have to be cap-
tured towards multiple directions. Such difficult and non-realistic deployment
procedure results in accuracy much better than ours.

Ji et al. [] propose a method which has similar error as our evaluations. One
of the biggest drawbacks for the real-world deployment is that mobile terminal
emits the signal for approximately 1min and the sniffers placed in the indoors
determine position based on their measurements during this time. As discussed
in . such approach is not best suited for crowded spaces. Also, as can be





understood from the paper, they calibrated the method using calibration mea-
surements at the same  points as they have later used for evaluation, such
condition is unrealistic for real-world deployments.

Xiao et al. [] proposed indoor localization method presents method which
requires “an extensive indoor measurement campaign in order to collect training
data for the model”, although the results from this training are applied into
different scenario for validation. Validation consist of only  evaluation points.
Results of the method by Xiao are a slightly better than our method, although
no information is provided about how often and in which cases new training
data should be obtained. Our method does not require any training data and
achieves slightly worse results.

Du et al. [] present method which has slightly better performance in hallway
scenario but requires device to emit the signals in order for the APs to record the
RSSI, as discussed in . such approach is not best suited for crowded spaces.

The proposed method has been developed with the main aim of providing the local-
ization for the IoT devices. Many of them will be deployed in our homes, where there
are no crowds of people that would provide the fingerprinting samples. Many devices
are also stationary, with no usable data from IMU sensors. Although our method
has been built with the localization of the IoT devices of the future in mind, it is also
applicable to different scenarios. Our method, which does not saturate the WiFi chan-
nels by requiring the terminals to be in the AP mode, has great potential in heavily
crowded places. Providing means of the localization is in the best interest of the air-
ports, commercial buildings, museums, etc. These buildings usually already have a
WiFi infrastructure and offer mobile applications for visitors, which provide informa-
tion, means of payments, ticketing, etc. The applications would benefit if the indoor
location could be determined and better information could be given to the users. The
localization of tools and equipment in production halls is a common problem in the
industry. Our method’s ability to adapt makes it a candidate for such deployments,
because of the frequent movements of large metal objects, with non-negligible impact
on the WiFi propagation. When developing our method, we have tried to keep the
hardware and software requirements simple for the method to be easily applicable and
extendable. Although outside the scope of our research of the pure WiFi model-based
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approaches, the simplicity of the application of our proposed method gives researchers
the opportunity to utilize our method and our propagation models in their own work.

. Conclusions

We have presented a novel localization method that was developed with the main aim
of the real-world applicability. Our proposed method is purely model-based, with
no static input parameters. As it implements a continuous self-calibrating and self-
adapting procedure, it adapts to the changes in the WiFi spectrum. The only location-
depended input parameter to the method is the map of the indoor spaces with the
specified positions of the walls and the APs. All other parameters that influence the
signal propagation (e.g. the exponential path loss parameter) are measured and calcu-
lated by the method from the signals captured by the APs.

Our method utilizes well-known FSPL and ITU propagation models which we have
extended with additional parameters. The first parameter describes the effect of the
direction of the direct-signal path in reference to the wall on which the emitting AP
is mounted. We have confirmed that, especially in the single-room situations, these
factors are important for the accurate RSS predictions; in multi-room situations, the
effects of the walls that cause multipath and scattering diminish the effect. The second
parameter describes the effect of the walls on the signal propagation. Contrary to the
office buildings, in the modern residential buildings, where the distribution of the
walls and the sizes of the rooms are not uniform, information about the position of
the walls presents an important factor for the improved accuracy.

During the development of the method, we made sure to properly address the defi-
ciencies and limitations of the related methods, as presented in the Chapters  and .
Primarily we have designed a real-world evaluation procedure, in which we have eval-
uated the method in an environment which is completely independent of the develop-
ment environment. Thus, the method has not been altered between the development,
the initial evaluation in the office environment and the evaluation in the residential
environment. The development and the evaluation environment also exhibit different
properties of the floor plan, structural elements and interiors. We have also provided
the evaluation with uniformly distributed evaluation points between the hallways and
rooms to address the deficiencies, which we have emphasized in Tbl. .. Secondly,
we have addressed the problems of the long-term temporal variations of the method
which assume static input parameters of the signal propagation, as discussed in ..





The method fully addresses the problems of long-term stability of the WiFi signals, by
utilizing the measurements of the RSSIs between APs in a timeframe of  minutes,
before the localization occurs. Therefore, the presented WiFi localization method is
one of the few methods that have the same accuracy the moment they are deployed and
days, months or years later, without any human intervention. Thirdly, our method
does not require mobile terminals to be in the AP mode and thus do not saturate the
WiFi channels, which is especially important for the real-world deployments in the
crowded public spaces. Although the method has been evaluated on the WiFi signals,
it was designed with the future networks in mind and is theoretically independent in
regard to the protocol and frequency. An important property we wanted to achieve
is the applicability on widely available and affordable hardware. The APs we used
are popular open-sourced Linux-based WiFi access points; although we have changed
the firmware, this is not deal breaker in terms of applicability. As discussed, we have
changed the firmware to collect RSSI information, we could have got otherwise, but
exposing this information should not be difficult for the manufacturers if desired. At
the same time, the only requirement for the MT is the possibility of recording RSSI
of the APs in reach, thus any WiFi connected device should be able to act as the MT.
Finally, we have provided a detailed descriptions and maps of the evaluations in order
to enable other researchers to make valid comparisons.

To our knowledge, this is the first WiFi-only indoor localization method that uti-
lizes information about the architectural aspects, infers the parameters needed for the
propagation simulation from the measurements, continuously adapts to the indoor
situation without human intervention, does not need any additional hardware beside
the APs, and does not require the mobile terminals to be in the access-point mode.

We have evaluated our method with a great emphasis on the real-world conditions
and have chosen a realistic environment for the evaluation (e.g. non-ideal position of
the APs, intricate floor plan of the residential evaluation, evaluation in an environment
independent of the development, etc.). The evaluation has proven that our method
achieves useful accuracy for the indoor localization with the average and median ac-
curacies 2 to 3.5m. This makes the results of our method comparable with the best
other methods, of which the majority requires either more complex initial configura-
tion, the devices that are more sophisticated, or both. For a justified interpretation of
the evaluation results, it should also be noted that, in contrast to many other methods,
we have chosen a realistic environment and not an optimized environment in which
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our method would have performed even better.
An important goal, we have set at the beginning of the research and focused the de-

velopment of the presented localization method on, is to develop a universal method
for the indoor localization. Therefore, we wanted to develop the method that would
work in different types of networks and would be frequency independent. The mathe-
matical derivation and the physical background are in theory frequency-independent,
so in the following chapter, we will present our take on the localization method that
utilizes multiple frequencies simultaneously to give the end-user more accurate re-
sults.





Generalization of the method
to multiple frequencies
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The prediction of the IoT future foresees ubiquitous systems, where every device will
be connected to the network to communicate with the surrounding devices. Predic-
tions similar as the one stated do not define the communication technologies or the
protocols. While developing the indoor localization technologies, it would be wise
not to limit ourselves to WiFi. We acknowledged this fact early in the development of
the proposed WiFi localization method in the Chapter  and, as stated in Motivation
(Section .), we wanted, if possible, to develop a method that would not be limited
to the WiFi technologies and could be extended to other communication protocols
and frequencies. Multiple frequency localization method presented in this chapter has
been published in [].

This chapter presents the generalization of the WiFi-only indoor localization meth-
ods to the multiple frequency usage and is structured as follows: Section . presents
the motivation and intuition behind the multiple frequency usage, Section . presents
the difficulties and changes we had to make to generalize the presented WiFi method,
while Section . presents the evaluation environment. Section . provides analysis
of the stability of the signal at selected non-WiFi frequency and Section . presents
the results of the evaluation, while Section . provides the discussion and comments
to the evaluation. The final remarks and conclusions are presented in Section ..

. Introduction to the multiple frequency method

If we were to summarize the workings of the WiFi method presented in Section  in as
few lines as possible, these would be: “The method estimates the parameters of signal
propagation, by knowing the positions of the APs, the architectural floor plan with the
dividing walls and by monitoring RSSI of the packets travelling between the APs. A
device trying to define its position (the MT) captures RSSIs of the packets sent by the
APs. MT’s information on the observed RSSIs is used to determine its position by a
complex algorithm run on the localization server.” As we can see, the vital information
needed for the method can be obtained in different wireless networks and is not limited
to WiFi.

In every RF-based wireless network we have devices communicating by emitting and
receiving signals. Structural devices with well-known positions (e.g. devices mounted
to unmovable objects) can be used as APs. If a device can send and/or receive the
signal and we can obtain information about some characteristics of the received signal
which is influenced by the traveled path in a predictable manner, we can utilize this





characteristic for the localization method, similar to the one presented in Section .
A careful reader of Chapter  has noticed that, during the design of the method, we
have not limited ourselves to the WiFi technologies. The physical formulation of the
signal propagation and consequently the presented model can theoretically apply to
any frequency.

To utilize the increasing number of frequency bands typically used indoors to sim-
plify and improve the accuracy of the indoor localization, we have extended our indoor
WiFi localization method and designed the MFAM indoor localization: a localization
method based on Multiple Frequency Adaptive Model, an indoor localization method,
which uses multiple frequency bands simultaneously. It is based on the physical model
of the signal propagation and can detect and adapt to the changes in the environment
that influence the signal propagation. This way we have achieved for our method to
be much less sensitive to the changes that can happen indoors.

Furthermore, with our method we have successfully reduced the number of required
access points (AP). Typically, indoor localization requires many devices emitting or re-
ceiving wireless signals. For example, for wireless Internet we need one WiFi AP to
cover a room. For indoor localization, we must typically provide the coverage of at
least three APs in the same area, just due to the triangulation principle. Localization
methods typically require even more APs for better accuracy. On the other hand, if
an indoor location (e.g. apartment) heavily relies on the wireless home automation
system, as is the case in our evaluation environment, we can utilize the already present
signals to improve the accuracy of localization. The devices used in our real-world
evaluation were part of a heating system, so for the purpose of localization no extra
home automation device had to be installed in the evaluation environment. Our in-
door localization method utilizes multiple signal frequencies and therefore requires
considerably fewer APs of a specific type for the same localization accuracy.

. Generalization of the method

We have designed the MFAM with the specific objective to use the multiple frequency
signals to improve the accuracy and simplify the requirements regarding the equip-
ment. There are some fundamental differences between the WiFi networks and home
automation networks, that dictated some changes in the data acquisition stage, as pre-
sented in this section.

During the development of the data acquisition stage, we were mainly focused on
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OSI Layers  and  of the communication protocols. These layers ensure a physical
transmission of the signals and provide means of control. We leverage them to get the
RSS/RSSI information. There are specifics in each individual network, but the steps
to the RSS-based indoor localization system are similar.

First obstacle for any researcher trying to implement RSS based localization to a
home automation system would be gathering the RSS information. More specifically,
it is much more difficult to obtain the RSS data in the home automation system than
in the WiFi network. The WiFi networks and equipment are widely used and con-
sequently there is a lot of third-party development of the software and firmware for
the APs. As the reader can recall, we therefore used the third-party firmware on the
APs to obtain the needed RSS information in the WiFi network. On the other hand,
the home automation system user communities are smaller and consequently there is
no third-party support for the firmware of the devices. Not surprisingly, we could not
find a similar third-party firmware for the devices used in the home automation system
that would expose the needed information.

The second biggest difference in the two networks utilized for the localization is the
difference in the topologies of the networks. The WiFi networks could be labeled as
peer-to-peer networks in the context of our method discussed in Chapter . Every
AP in the network can directly communicate with any other reachable AP. We, there-
fore, were able to gather information about RSS between any two pairs of the APs in
the case of the WiFi network. On the contrary, the topology of a typical home au-
tomation system is usually star-shaped. These networks usually have one device, often
named “gateway” or “base station”, which is the center point of the star-shaped net-
work topology. This means that every communication between two devices is routed
through the gateway device. Therefore, even after overcoming a challenge of gather-
ing the RSS values, we will have to adapt to the specifics of the star-shaped network
topology.

The topology of the network is an important factor also when it comes to the com-
munication with the server on which the localization algorithms are running. Nowa-
days, when algorithms are run on servers (cloud-based infrastructure), it is trivial to
communicate with the devices connected to the IPv/IPv in the WiFi network. The
WiFi devices are usually always connected to the IP network and therefore, we can
connect to each device from the server on which the localization algorithms are run-
ning. On the other hand, using the networks with the devices not directly connected





to the IP network, results in a much more challenging design of the data acquisition
layer. In such networks, only one device is usually connected to the IP network and
acts as a bridge between the two networks. This device is usually the gateway device
of the star-typed network, but not necessarily (e.g. KNX-based networks, Honeywell
Evohome system). Only this device is addressable from the localization server over the
IP protocol and a direct communication with other devices is usually not possible.

To infer the parameters of the propagation model of the WiFi network, we can
connect to each AP and gather information about RSSI of the signals, emitted from
the devices in range. While using the gateway-based networks, we have no means
to connect to a specific device. Consequently, we cannot get information about the
received packets in a similar manner.

It is a usual practice in the home automation system for the devices to periodically
send status packets to the base station. Such packets are important for the base sta-
tion, as it must know which devices are in its range, their state (e.g. open/closed switch,
high/low digital sensor value, etc.) and their properties, such as the battery status. The
base station usually receives these packets and stores their information in order to pro-
vide information about a particular device to the end-user. One of the properties often
communicated between the devices is also information about the signal strength, in
order for the base station to warn the user about poor reception during the commu-
nication with a specific device. Therefore, in a typical home automation network, we
can usually get some information about RSS between a device in the network and the
base station. Some home automation networks have separate information about RSS
for two different communication directions – one RSS information for the downlink
(i.e. from the base station to the device, measured and reported by the device) and
one RSS value for the uplink (i.e. from the device to the base station, measured by the
base station).

Figure . helps us to understand the differences more clearly. If we use the WiFi
signals (as discussed in Chapter ), we can calculate the propagation parameters for
each 𝐴𝑃𝑖 (Fig. . 𝑖 ∈ {1, 2, 3}), by monitoring the RSS/RSSI values at the APs
receiving signal from the 𝐴𝑃𝑖. The packets emitted by 𝐴𝑃𝑖 and detected by other
APs have a common origin, therefore the value 𝑃𝐿 in Eq. (.) is constant across
detections. In the home automation network, we have only one common source of
the signal for which we can get the RSS readings at multiple places. As indicated in
the right part of Fig. ., the signals emitted by the base station (in the image labeled
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Figure .
The differences in the WiFi
network (left) and the
home automation network
(right) that influence the
data acquisition layer.
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as “BS”) are measured by the receiving devices in the network (e.g. room thermostats
labeled as “TR” and “TR”). As we have inputted the positions of these devices in
the indoor spaces to the method, we can still calculate the number of the dividing
walls and account for their effect. The figure also clearly presents the consequence
of the differences presented above, i.e. we can only have one set of the propagation
parameters in the indoor spaces and not a set for each AP as in the WiFi network.
The inferred parameter, set in the WiFi network for a single AP, therefore exaggerates
the effects of a specific AP placement, the room shape and the obstacles near the AP,
which all have an influence on the signal propagation []. In the case of the home
automation system and a single set of parameters, these exaggerate much less specific
properties of a single AP, but represent the averaged propagation model for the signals
of a specific frequency.

The rate of the possible RSS measurements also differs in the two different network
types. In the WiFi network, the only thing bounding the rate of this information is
the time needed for a single scan and the setting of the beacon-packet interval for the
network. This results in a possibility of having RSSI information recorded at a specific
AP multiple times per minute. Many devices of a typical home automation system are
battery-powered, because these systems are designed to be implemented in the existing
houses with a limited possibility of the changes of the electrical wiring, thus the home
automation devices usually save on energy. One of the most common ways of reducing
the power consumption is to have longer periods between two status packets, which
can be up to a few minutes apart.





We have described the differences of a typical home automation network that in-
fluence the data acquisition stage. Of course, they are also reflected in later stages, as
already indicated - due to longer time periods between the packets, the timeframe of
the measurements included in the path loss modeling stage has to be longer. Simi-
larly, when a mobile terminal tries to define its position, it must measure the RSS to
the APs that are in reach. In the WiFi network, a mobile terminal scans for the beacon
packets which are periodically emitted in the network. In the home automation sys-
tem network, there are usually no beacon packets that would announce the presence
of a network. Therefore, the only measurements a mobile terminal can obtain are the
measurements of the RSS of the status packets, emitted by the devices towards the base
station.

The discussed reasons result in the fact that in most of the home automation systems,
the mobile terminal must be kept in the evaluation point for a longer period, compared
to the WiFi network. This is induced by the networks, the rate of the status packets
sent by them and the number of the status packets needed by our method. Manufac-
turers usually define the communication protocol and the rate of the status packets,
with the aim of preserving the battery power in devices, as discussed in []. In the de-
vices constantly connected to the mains power (lighting solutions, relay devices, etc.),
this deficiency could be easily overcome by the manufacturers, which would further
improve the accuracy of our localization method and simplify the usage.

Finally, due to the lack of research on the propagation of the signals through the
walls at the frequencies used by different networks, we could not define the impact
of the walls on the signal propagation, based on the past research. Rather, we had
to define them experimentally ourselves, as described in the following sections. The
resulting values are the initial values for our system. Due to the adaptive nature of our
method, the method adapts automatically and overcomes the potential errors induced
by these parameters.

.. Multiple frequency fusion

One can imagine that fusing the output from multiple single-frequency localization
is not an easy task; a simple averaging function at this stage could even worsen the
results. Let us imagine a frequency 𝑓𝑖 at which our method produces perfect results
(0m mean average error of the localization and a very low standard deviation). If we
were then to use this frequency 𝑓𝑖 and another 𝑓𝑗 in our proposed MFAM method,
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and average the outputs, the MFAM method would worsen the results of the proposed
single-frequency method presented in Chapter .

A better way of fusion would therefore be to use the weighted average, where the
weights would represent the overall estimated accuracy at this specific frequency. When
combining multiple frequencies for the localization, we must therefore consider the ac-
curacy at each individual frequency. We can deduce our proposed fusion method in
terms of the statistical measures of accuracy and precision. The precise method will
always output approximately the same value for the same input parameters, which is
not necessarily close to the real-location (in this case it is inaccurate). The accurate
method will output the location close to the real-location, although locations can be
scattered (in this case we call it imprecise). In our case, due to different signal frequen-
cies and the difference in the signal propagation at these frequencies, the precision of
the localization at single frequency varies. In the distribution of values, the precision
is measured by a standard deviation; the higher the precision, the smaller the standard
deviation, and vice-versa. Therefore, we have weighted the outputs from the single-
frequency localizations by reciprocal value of the standard derivation, as indicated by
the following formula, where symbol 𝑥, 𝑦

𝑀𝐹𝐴𝑀
represents the localization of the

MFAM method, 𝑆𝐷𝑓 is the standard deviation at a specific frequency 𝑓, and 𝑥, 𝑦
𝑓

is the location as predicted by the utilizing frequency 𝑓.

𝑥, 𝑦
𝑀𝐹𝐴𝑀

= 1
∑𝑓


𝑆𝐷𝑓

⎛
⎜⎜⎜⎜⎜⎜⎝𝑓

1
𝑆𝐷𝑓

𝑥, 𝑦
𝑓

⎞
⎟⎟⎟⎟⎟⎟⎠ (.)

Because it is impossible to estimate in advance the value of the standard deviation
for a specific frequency at a specific location, it should be determined empirically.

This section described the steps needed to generalize our proposed WiFi method to
the networks defined by typical home automation systems. In the next sections, we
will discuss the evaluation environment, the stability of the signal at selected home
automation frequency and the details of the implementation of the MFAM method.

. Evaluation environment and protocol

The evaluation environment was the same apartment as described in the residential
evaluation of the WiFi method (Subsection ..). We evaluated our MFAM method
on a mixture of the WiFi signals and the home automation system. The position and
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the setting of the WiFi system is the same as already discussed. Regarding the second
network, we could have chosen a wireless network which works on a similar 2.4GHz
band (e.g. Bluetooth network, 2.4GHz ZigBee-based system like Philips Hue, etc.),
but we wanted to evaluate our MFAM method in a much more challenging evaluation.
We have therefore chosen HomeMatic home automation system, which operates at
868MHz.

HomeMatic system is popular in Europe, as it includes devices for thermal con-
trol (heating and cooling), lighting (dimmers, relays, switches, etc.), security (alarms,
sensors, door locks), and other devices, such as smoke detectors, etc. The home au-
tomation system in our evaluation consists of a base station (in Fig. . marked by



  Generalization of the method to multiple frequencies J. Tuta

“HM BS”), connected to the wired Ethernet network, a wireless relay and  digital
thermostatic valves. We could not influence the position of these devices in our evalu-
ation environment (e.g. thermostatic valves were attached to the radiators, etc.). Our
system is not the only one using the SRD frequency spectrum in the evaluation
environment, as we could sense the HomeMatic packets originating from the neigh-
boring apartments. To ensure an approximately constant transmitting power of the
HomeMatic devices, we have used only the readings from the thermostatic valves,
which are in Fig. . marked as “HM TRV”. We have eliminated the signals from the
wireless relay, because it is powered from the mains power (as opposed to the battery-
powered digital thermostats) and therefore has a different operational mode, especially
regarding the frequency of the sent status messages and the transmitting power [].

Laufer et al. [] reverse engineered parts of the HomeMatic protocol to explore
the possibility of an attack on the system. They showed that the systems emit status
packets approximately every  minutes. They also discuss the details of the battery
saving strategy of the devices and consequently the modes of the operation and com-
munication between the device and the base station.

The four used thermostatic valves were all positioned between 0.3 and 0.6m above
ground; two of them were positioned without direct obstacles, and two of them were
behind furniture and therefore heavily obstructed.

To enable our Raspberry Pi  based mobile terminal to communicate with the
HomeMatic devices, we have equipped it with the HomeMatic communication mod-
ule (HM-MOD-RPI-PCB), which is an 868MHz wirelesses communication mod-
ule, connected to the Raspberry Pi via the UART interface. RSSI of the HomeMatic
devices were captured using the Homegear software (version ..), which we have
installed and configured on the Raspberry Pi. The Homegear software utilizes HM-
MOD-RPI-PCB to capture all wireless HomeMatic packets and their respectful RSSIs.
The evaluation protocol was similar as discussed in .. with differences in timing as
discussed in Section ..

. Analysis of long term stability of the  MHz signals

Similarly as in Section . analysis of the stability of the 868MHz signals would pro-
vide insight into data entering the proposed method and result in better understating
of the evaluation results. Due to time constrains and some problems with initial setup
of the experiment we were not able to perform -week experiment as in WiFi case, but
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rather a -week experiment, during which we have captured data of the HomeMatic
system. We were interested into RSSI data at two different points. One was the data
from which we infer the parameters of signal propagation in path loss modeling stage
of the MFAM, and secondly was stability of the reading at the MT which we use in
the single-frequency localization stage to obtain the location in the indoors.

Figure . present data captured in the  weeks at the gateway or base-station device.
The data was captured and filtered similarly as the data in Fig. . – we have queried
the gateway for the information every minute and then applied median filter with
window of two hours. The original (unfiltered) data has mean of −57.62 dB and
standard deviation of 5.93 dB. This data represents the RSSI detected at the lower-left
HM TRV in Fig. . of the signals emitted by the HM BS. As we can see data from
which the propagation parameters of the models are inferred is noisier than WiFi data,
which had standard deviation 4.71 dB through the  weeks, as discussed in ..

At the same time, we captured data at the MT through the  weeks. The MT
was stationary positioned at the same spot as the central (hallway-positioned) Wi-Fi
AP in the Fig. .. The captured data is presented in the Fig. .. Data in the
figure is similarly filtered with median filter with window size of two hours, but as
discussed in . we were only able to obtain the RSSI data approximately once every
three minutes. The captured (unfiltered) data exaggerates much less variability as the
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Figure .
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standard deviation is only 2.50 dB, with the mean of −51.96 dB. These readings are
much more stable and have smaller distribution as Wi-Fi readings.

Our results indicate that there is major influence of the transmitter and receiver
when analyzing 868MHz signals and their stability. As we cannot get information
on the specifics of the HM TRV devices or the communication module on the Rasp-
berry PI, we can only speculate. Because HM TRV are mass produced devices with
great emphasis on low final-cost of the product, without any intent of the usage of the
RSSI information, the RF frontend and the RSSI measuring circuits did not get much
attention during the development. On the other hand, the communication module
from which we get RSSIs at MT is device build with the sole purpose of providing
868MHz connectivity to Raspberry PI, therefore we speculate that much more em-
phasis was put into design of the communication module.

The presented observations of smaller distribution when observing signals at Rasp-
berry Pi hold true even for the cases when there is not such big difference between
the traveled distances of the signal. We have observed similar values of the variation
regardless of the chosen HM TRV. The only analysis that stood out is the analysis of
the signals emitted by the middle left HomeMatic device in Fig. . and captured by
the MT. We would assume that this would be most stable signal, as this HM TRV is
the closest to the MT, positioned approximately 4m away and there is only one thin
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RSSI values of 
signal reported by a MT
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plaster wall between the two devices. Figure . presents the readings, filtered the same
as data in Fig. .. Standard deviation of the readings is substantially bigger and has
value of 4.77 dB, therefore the distribution of the RSSIs in this case is much bigger.

. Results

This section presents the results of the evaluation of the MFAM method on the net-
works based on 2.4GHz and 868MHz signals. To prove that our method achieves
better results when utilizing two or more frequency bands, we will first present the
localization results using a home automation system, and then present the fused re-
sults of the home automation system and the WiFi localization, presented in ... In
the last subsection, we will show the results for the combined signals and present the
accuracy improvement.

.. HomeMatic home automation system based localization

In the HomeMatic scenario, we had to define the values of the parameters, which
describe the influence of the walls on the signal propagation. We have numerically
calculated the impact of the walls on the SRD signals, for both wall types, on each
of the datasets, and cross validated the results on other datasets.

An example of the results of the coarse wall parameter definition is shown in Fig.
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Table .
The comparison of the mean and median errors made at .

Dataset Mean Error Median Error Standard Deviation
[m] [m] [m]

DS 2.89 2.50 2.00
DS 3.39 3.04 1.91
DS 3.39 3.16 1.47
DS 3.16 3.35 2.14

Average 3.21 3.01 1.88

.. The darker the color at a specific point in the graph, the higher the average ac-
curacy while using those parameters. In a finer analysis, we have further narrowed the
parameter values: in the case of thick walls in the range of 16 to 30dB, and in the case
of thin walls to the values in range between 0 to 21dB; in both cases with 3dB steps.
With another set of numerical modeling of the wall effects and cross-checking with
the other datasets, we have set the wall parameters to be 6dB in the case of thin walls
and 27dB in the case of thick walls. We will further discuss these findings in Section
..

Figure .
Wall parameters definition
for the HomeMatic signals.
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Table . presents the mean error, the median error and the standard deviation of
all four datasets. We can see larger average and mean errors than in the WiFi case (Tbl.
.). These values alone are borderline acceptable, but we are more interested in the
possibility of improving the results of the WiFi method, by utilizing both frequencies
in the MFAM method. The average mean error is 3.21m, which is 21% larger than
in the WiFi evaluation. The averaged median error is 16% larger, while the standard
deviation is 25% worse.

.. Multi-frequency localization

We have utilized the fusion method, as discussed in Section .., to combine the
single-frequency localizations of the WiFi signals (Tbl. .) and the home automation
system signals (Tbl. .). For the standard deviations required by the fusing function,
we have used the averaged standard deviations, provided in both tables, as they are
based on better and worse performing datasets DS to DS.

Table . presents the mean error, the median error, and the standard deviation,
when we combined both frequency bands. We can observe better mean and median
errors than in any of the previous cases. We can observe 18% and 33% better accu-
racies in comparison to the WiFi and HomeMatic average errors respectively. We can
also observe similar 17% and 31% improvements of the standard deviation.

Figure . shows the proportional error sizes and the directions of the errors in all
four datasets. The light-gray polygon (the one that is the same as in Fig. .) has
the vertices in the positions of the WiFi APs, while the dark-gray polygon has the

Table .
The comparison of the mean and median errors, made by MFAM method, combining the signal at  and ..

Dataset Mean Error Median Error Standard Deviation
[m] [m] [m]

DS 2.04 2.11 1.25
DS 2.27 2.18 1.21
DS 2.02 2.16 1.20
DS 2.32 2.09 1.55

Average 2.16 2.14 1.30
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Figure .
The directions and the
proportional size of errors
for the localization of
all four datasets. The
lighter gray polygon’s
vertices show the positions
of the WiFi APs, the
darker polygon marks the
HomeMatic devices.
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vertices in the positions of the HomeMatic radiator thermostatic valves (as marked in
Fig. .).

. Discussion

Figure . presents the results of the coarse optimization of the wall effects in the
HomeMatic evaluation. The darker the square at a specific combination of the thick
and thin wall parameters, the higher the average accuracy of the method while using
those parameters. Firstly, we can see that the results are much more sensitive to the
changes of the thick wall parameters than to the thin wall parameters. This can be
appointed to the evaluation environment. As can be seen from the map in Fig. .,





there are only two thin plaster dividing walls in the apartment (i.e. one dividing the
two small rooms in the left part of the apartment and one dividing these two rooms
from the hallway). All the other walls are thick, made of brick and concrete. Only
one of the HomeMatic APs (marked as “HM TRV” in Fig. .) is positioned in one
of these two rooms, and at the same time most of the evaluation points are outside of
them. This results in a small overall effect of the parameter of the thin walls on the
signal propagation.

In the bottom-left corner of the figure, we can see that we get less accurate results
(i.e. lighter color) when plaster walls are defined as having a bigger impact than brick-
and-concrete walls. We get similarly bad accuracy if we appoint a high effect to the
thick walls while neglecting the thin walls, which can be seen by a light color in the
top-right corner of the figure. This shows that although there are only two plaster walls
in the apartment, we cannot neglect their effect. We get much better results if we treat
both wall types as having approximately the same effect (i.e. diagonal from top-left
to bottom-right). The resulting values in the bottom-right corner show good overall
results, while exaggerating the impact of both wall types. In such cases, the method
is confined to the room, but such values result in lower accuracy in the bigger rooms.
An interesting observation is also that we get the worst average accuracy if we neglect
both types of walls, as can be seen by the white square in the top-left corner of the
figure. This further proves that information about wall placement is important for the
indoor localization methods, especially in the floor plans that do not have rooms of a
uniform size.

The values we have obtained with a detailed parameter modeling - 6 and 27dB
for the two thin and thick wall types respectively – should not be considered as the
de-facto values of the influence on the signal power at the frequency 868MHz. The
values we have obtained are influenced by our model (e.g. neglection of the doors),
our equipment (i.e. we did not utilize any validated RF power spectrum analyzer)
and our evaluation environment (e.g. some walls are covered by the furniture). To
get the standardized values for the influence of specific wall types on RSS at a specific
frequency, much more elaborate experiments should be performed, for which we do
not have the knowledge nor the equipment.

Table . presents the evaluation accuracy of the method when only the HomeMatic
devices were used. Bigger maximal errors than in the WiFi signal case (Tbl. .) are
expected, as we have much less data to infer the propagation parameters. In the case of
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the WiFi signals, we infer the path loss exponent for each access point separately and
therefore capture the influence of the AP position, scattering much more precisely due
to the room size and the shape. In our setting, we have calculated four different path
loss exponents, each from 3 × 15 measurements. In the case of HomeMatic, we had
to use only one (average) path loss exponent from 3 × 15 measurements, as discussed
previously.

Another important factor is the rate of the status packets sent by the HomeMatic
devices in comparison to the rate of the beacon packets sent by the WiFi APs. The fre-
quency of the status packets is approximately 6-times lower than the frequency of the
WiFi beacon packets. This results in 2 to 3 times longer period of the measurements,
taken into the account during the path loss modeling stage; thus the MFAM method
is much less adaptive at the HomeMatic frequency than at the WiFi. This being said,
we can still see great benefits of utilizing multiple signals in comparison to utilizing
only one. At the same time both deficiencies, we have observed in the selected home
automation system, could be overcome. If a manufacturer would collaborate, the de-
vices could record and report the RSS information of the packets originating from the
non-base-station devices. At the same time, the frequency of the status packets could
be higher. We speculate that the impact on the battery life would be negligible, be-
cause the devices we used operate on the same set of batteries for over two years, and
we predict that the electromotor that turns the valve on and off is the main consumer
of the stored energy.

The comparison of the WiFi-only signals in Tbl. . and the HomeMatic signals in
Tbl. . shows that the average error is worse when using the signals of 868MHz. We
can see that in both cases DS had the worse median errors and the largest standard
deviation. The median error of DS is the only evaluation result where the HomeMatic
evaluation was better than WiFi. We haven’t utilized the 868MHz signals, not because
we have expected better results in comparison to WiFi, but because we have speculated
that a fusion of both frequencies will result in an improved accuracy. That is why the
accuracy at this specific frequency is not the main goal of our research.

When comparing the 868MHz home automation results to other non-WiFi meth-
ods, we can see that our method has much higher localization accuracy than the re-
cently published FM-based method [] which has an error in the ranges of 15m,
10m and 6m for the cases of no calibration, runtime calibration and runtime cali-
bration aided by the path matching algorithms respectively. If we compare the single-





frequency HomeMatic system to the one proposed in [], we can see that their system
got an approximately 30% better accuracy, while utilizing 25 to 100% more APs in
a similar floor plan. Their method shows how optimization of the AP placement can
greatly influence the localization accuracy. Their system has an intricate setup phase
in which they begin with  APs and then interactively remove and reposition APs to
reduce their number to 5 to 8 APs.

One of the signals often used by the authors of the non-WiFi indoor localization
methods is the Bluetooth, especially with the introduction of the power-efficient Blue-
tooth Low Energy (BLE) specification. We can find such examples in [] and [].
Zhuang et al. in [] combined the fingerprinting- and model-based approach to the
BLE-based indoor localization. Their proposed method has slightly better accuracy
than ours, although a fairer comparison could be made if their evaluation included
rooms and not only the hallways of the building. The methods which combine the
WiFi and Bluetooth signals have been researched, such as [], although we must
note that Bluetooth and . GHz WiFi work on similar carrier frequencies. Hossain
et al. [] showed that their Bluetooth-only localization has approximately the same
accuracy as the combination of Bluetooth and WiFi. The reported accuracy is approx-
imately 50% worse than MFAM. The evaluation was done in a lecture room, where
the mobile terminal and APs are in line-of-sight. We could not find any model-based
method which would be using multiple signal with different signal bands, thus our
method is one of the first model-based indoor localization methods utilizing multiple
frequencies for the localization.

We have defined the fusion algorithm with Eq. (.) in which we have defined the
standard deviations of the method as empirically determined. This is a deviation from
our first goal of developing a method that would not need a site survey to work, but
at this point, there is no method to estimate in advance the accuracy of the single-
frequency method for a specific floor plan and frequency; thus we have to experimen-
tally determine the 𝑆𝐷𝑓 for each frequency 𝑓. As the method still adapts to the indoor
spaces, as discussed in Chapter , this does not mean that the method is based on the
static parameters and will not work in the long term, as discussed in Section ..

The results of the main topic of this chapter, the MFAM method, are presented in
Tbl. .. The resulting mean and median errors are outperforming both single-band
methods. Since the WiFi-only evaluation is comparable to the current state-of-the-
art methods, our multiple frequency evaluation of MFAM shows it can rival the best



  Generalization of the method to multiple frequencies J. Tuta

existing methods. In each DS, the multiple frequency evaluation results in higher
accuracy than both single-band methods; the accuracy improvement ranges from the
minimum 6.6% (in the case of WiFi, DS) to 40% (in the case of HomeMatic, DS).
With multi-frequency approach, our method has achieved 18% higher average mean
accuracy, compared to the WiFi-only approach, while having 14% lower standard
deviation. It improved the HomeMatic-only approach by 33%, while having 31%
lower average standard deviation.

The RSSI values, as the name suggests, indicate the RSS values. The RSS value of the
wireless communication signals of any type in the real-world indoor setting exaggerates
heavy variability due to wall reflections, multi-path effect, etc. Therefore, having four
stations, which in turn means four fixed origins in the triangulation problem, results
in the localization variability. The number of the WiFi points in relation to the size
of the indoor area has a key influence on the accuracy. The only thing stopping us
from changing the odds of this ratio is the real-world implementation and practical-
ity. The development of the WiFi localization method with one AP in every room and
the evaluation in a floor plan with many small rooms would result in small mean and
median errors if we would only set the location of a mobile terminal to the center of
the room from which we sense the AP with the highest RSSI. Utilizing 5GHz WiFi
which is worse at penetrating the walls than the 2.4GHz would further improve our
results. Real-world usability of the localization method is the most important limiting
factor to the number of WiFi APs. Therefore, we have limited ourselves to four APs
for this evaluation, which is only one more than the minimum number required for
any triangulation-based localization method. Having that one extra AP enables us to
correct the errors, due to the variability of the RSSI. Therefore, it is of the utmost im-
portance to further develop the localization methods that can utilize multiple available
frequencies in the “ad-hoc” manner (i.e. utilize signals that are available in the current
indoor setting).

Figure . shows the direction of the errors for the MFAM method evaluation. The
sizes of the arrows are proportional to the errors. The arrows are near the evalua-
tion point and point towards the method’s location estimation. Near every evaluation
point, there are four arrows, which correspond to the four datasets. The comparison
of Figs. . and ., while acknowledging Tables . and ., shows us that although
the absolute values of the errors (as shown by the means and medians in the tables) have
become smaller, the distribution of the sizes and the directions of the errors in space





have stayed similar. Fig. . shows that we can expect smaller localization errors with
our method in the center of the map. This confirms that the position of the devices
transmitting or receiving the signal in the RSSI-based localization have an influence
on the accuracy. A worse estimation in the vicinity of the devices has its roots in the
logarithmic nature of the RSS propagation; therefore it is harder to estimate and/or
sample RSS in the close proximity of the transceiver than further away.

We have shown how the usage of the multiple signal sources (in our case WiFi and
HomeMatic home automation system) improved the indoor location accuracy com-
pared to single signal methods. RSSI can be considered a normally distributed value
[]. The statistics of a normally distributed process teach us that having more sam-
ples to infer the normally distributed value lowers the variance of the result. There-
fore, in our context, having more APs from which we could infer the propagation
would theoretically give us better results (i.e. smaller variance). Disregarding the real-
world limitation, one could increase the number of APs to, for example,  APs per
room. This would result in more packet collisions and interferences between the signal
and consequently in a worse WiFi performance. We have therefore implemented our
method to the use of multiple signal frequencies, instead of increasing the number of
APs, and shown that this way we have achieved considerably better accuracy. Adding
a rd, th, etc. signal type would further increase the accuracy, assuming the parame-
ters of the RSSI distribution (and consequently the single-frequency accuracy) are not
significantly worse.

The fusion of multiple signals has multiple advantages; most importantly, it reduces
the number of needed APs for each system, for achieving a low standard deviation of
the localization errors. The beneficial side effect is less interference and collisions while
using these systems. This requires a smaller investment in the deployment, particularly
if other signals are already present in the buildings. This further improves the real-
world applicability of our method. Furthermore, having different signals reduces the
possibility of the single-point failures and thus improves the reliability of the indoor
localization, which can be very important for the industrial usage.

. Conclusions

We have presented MFAM, a novel indoor localization method, which utilizes differ-
ent wireless frequencies to improve the localization accuracy. It reduces the number of
required access points to simplify the deployment and improve the real-world appli-
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cability. It generalizes the previously presented WiFi localization method by making
the method frequency- and topology-independent and by providing the method for
fusing the localizations of individual frequencies.

We have first presented the evaluation of the generalized WiFi method, presented
in Chapter , on the signals with the base frequency of 868MHz. This frequency is
completely different from the 2.4GHz WiFi frequency, for which method was pri-
marily designed. We have shown that our results can be comparable in the accuracy
to other RF non-WiFi based localization methods.

The main goal of the MFAM was to show that the fusion of multiple frequencies for
better-accuracy indoor localization is possible and beneficial. We have evaluated our
method using two profoundly different networks, which differ in topology and fre-
quency. One is the 2.4GHz WiFi network with a peer-to-peer topology (i.e. each AP
can directly communicate with other reachable APs) and the 868MHz-based Home-
Matic home automation network, with a star-based topology (i.e. APs can commu-
nicate through the gateway/base-station device). We have presented  independent
evaluations with the average mean and median errors of approximately 2.15m, with
the standard deviation of 1.3m. Assuming a normal distribution of the localization
errors, we can expect 84% of the localizations to have an error smaller than 3.4m.

We have successfully retained the properties we have set for the localization method
in Chapters  to  and achieved during the development of the WiFi method pre-
sented in Chapter . The method is therefore purely model-based and is based on the
physical properties of the RF signal propagation. It does not need any fingerprinting
and it does not require the devices to emit signals, which is important in the real-world
deployments. MFAM features a self-calibrating operability, meaning that it can de-
tect and adapt to the changes in the environment that have an influence on the signal
propagation, which improves the accuracy and makes our method less sensitive to the
changes in the indoor settings. Furthermore, our method is architecturally aware and
foresees the inclusion of the floor plan into the method. This enables the localization
with respect to the walls and other obstacles. Our method is widely applicable and can
be implemented using simple and accessible hardware.

We had to utilize the measurements to determine the influence of the walls on the
signal propagation at 868MHz. This could be avoided if we could get credible infor-
mation, as in the case of the WiFi evaluation. Similarly, in order to fuse the localiza-
tions at the two distinct frequencies, we had to take the measurements to determine





the standard deviation of the results at these frequencies. Further research should be
performed in the future to eliminate this step and replace the standard deviation with
some other parameter. In that moment, the MFAM method will become truly model-
based without the need of an advanced site-survey, similarly as our WiFi method.






Discussion
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This section provides some additional discussion and analysis that is related to both
chapters describing the method – Chapter  in which we focus on the WiFi and Chap-
ter  of the MFAM method.

As discussed in Section . model-based approaches usually require the same hard-
ware for the APs if the readings from those are used to build the model. We have also
indicated that one could try to extend the model in order to provide needed difference
in modeled signal propagation due to different RF frontends. One option would be
to add another variable to the equation . which would describe the influence of the
RF frontend. This would then result in new variables in the equation . and all the
following equations of Section ... Equations of Section .. do not have to be
changed, as the result of this stage is used on a single device (the MT), therefore the
influence of its RF frontend is equal across all captured signals. Theoretically extending
the model is not difficult event if the difference between multiple hardware cannot be
described only by a constant value for each device separately. The challenging part is
how to define the values for the introduced parameters. The most naive way would be
by empirical method, but this confronts with one of our main goals – to build model-
based method that does not require manual setup phase. Another option would be
that these values would be defined in an independent testing environment by manu-
facturer and we would consider them constant, but again this would be difficult and
not likely to happen. Last option is that we consider these values as another unknown
(similar as 𝛾 or 𝛽). Due to the variability of the RSSI we would need denser place-
ment of the APs (we speculate detection of a signal at  other APs would not suffice
any more). Such calculation would be theoretically possible if we would have a few
different WiFi APs, but not if every device would be different from all other APs.

As already mentioned in the related work section, other model-based methods ex-
ist. In contrast to our method, many of them require a mobile terminal to emit the
signals, which are picked by the APs. In our method, the mobile terminal does not
need to transmit the signal and take valuable bandwidth as it determines its location
by measuring the RSSI values of the signals. This is particularly important in the areas
where many devices are trying to obtain the indoor location – e.g. factories, public
spaces, commercial buildings, etc. To reduce the number of APs needed for the imple-
mentation of the localization in a specific location, our method uses multiple signals,
which are already present in the buildings - this is the key differentiator of our work
in comparison to others.





Table .
Summarization of method’s performance under different conditions using different signal types.

Evaluation Mean Error Median Error Std. Deviation
[m] [m] [m]

Office single room WiFi 2.63 2.29 1.45
Office multi room WiFi 3.22 3.48 1.58
Hallway WiFi 3.72 2.55 3.85
Residential WiFi 2.65 2.59 1.51
Residential 868MHz 3.21 3.01 1.88
Residential 868MHz & WiFi 2.16 2.14 1.30

For the summary of the performance of the method on multiple signal types and
multiple environments, the reader can be referred to Table .. The most important
results are in the lower part of the table, where the results from the residential evalu-
ations are presented. The method was developed in the office environment and then
only transferred to a much more intricate floor plan of the residential building, with-
out any changes to the system - we can see the performance is easily comparable to
the best WiFi-based methods as discussed in the previous chapter. Another important
observation is that the MFAM method which combines multiple signal sources has
better statistical properties than any other evaluation; the mean and median errors are
better than in other cases and the standard deviation is 10 to 30% lower.

Although not common in the field of indoor localization, we have made comparison
between our evaluation results and baseline values. In Tbl. . we can see columns
“Baseline ” and “Baseline ”.

To get the value of “Baseline ” we have calculated statistical average error if in the
evaluation space locations of the MT would be determined purely randomly. “Base-
line ” value was obtained by firstly determining the fore each point in the mesh of
the “propagation simulation stage” the closest AP, which would theoretically have the
highest RSSI value. In second step centroids of these group of points were determined.
Thirdly, for each evaluation we have checked the maximal RSSI captured by the MT,
then we have calculated average error of the “Baseline ” method, as if it would output
location as centroid of the AP of which MT measured maximal RSSI. For the MFAM
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Table .
Comparison of method’s performance in different evaluation environments compared to the baseline.

Evaluation Average evaluation Baseline  Baseline 
error [m] [m] [m]

Office single room WiFi 2.63 3.93 2.94
Office multi room WiFi 3.22 5.86 3.79
Hallway 3.72 11.94 6.37
Residential WiFi 2.65 4.86 3.04
Residential 868MHz 3.21 4.86 3.43
Residential 868MHz & WiFi 2.16 4.86 -

method we could determine the value of “Baseline ” method as absolute values of the
WiFi and  MHz signals captured by two different wireless communication adapters
cannot be compared in absolute value, therefore we could not determine the maximal
value captured by the MT.

As can be seen average errors in all evaluations are better than “Baseline ” and
“Baseline ” approach. Our method improves the most naïve baseline method (“Base-
line ”) from 33% to 69%, while it results in 6% to 42% improvement compared to
more sophisticated baseline approach – “Baseline ”.

It is also interesting to observe the stability of the RSSI. Therefore, in Tbl. . we
present average standard deviation of all RSSI signals in a single evaluation. Values
were obtained by calculating standard deviation of each AP-to-AP RSSI measurement
and then averaging over each pair of measurements and also over all the evaluation
points. We can see that standard deviation of a hallway environment is the small-
est therefore average AP-to-AP RSSI measurement is expected to be the most stable
in such environment. This is another supporting fact to the question why hallway
environment is not challenging enough environment for the method to be tested in.

The parameter of the length of measurement averaging interval is difficult to deter-
mine as a set value. If RSSI at a specific distance would be constant (RSSI value at
specific point would be stable and the measurements would have a very low standard
deviation) this value would be simple to determine. As RSSI values between two fixed
points exhibit heavy variability it would be difficult to design experiment in which we





Table .
Comparison of average standard deviation of the WiFi RSSI per evaluation.

Evaluation Average standard deviation of RSSI
[dB]

Office single room 2.74
Office multi room 3.33
Hallway 2.50
Residential DB 3.34
Residential DB 3.43
Residential DB 3.76
Residential DB 3.87

would a priori define the window size.
Theoretically, due to the heavy variability, having little measurements would mean

that estimation of the propagation parameters can be inaccurate. Therefore, we want
to have as much measurements as possible to accurately determine the true value of
propagation parameters, but in this case RSSI should be temporally stable (i.e. have
a constant mean). In Section . we have observed that the variable RSSI does not
have stable and constant mean. Therefore, in order for the method to adapt quickly
to the changes of the mean of the RSSI, we would ideally want to have as little averag-
ing window as possible, but as discussed previously having small group of samples to
estimate the highly variable data results in bad estimation of the distribution of values.

In our work we have selected  measurements based on some preliminary testing
during the development phase of our method. We have selected  measurements in
the timeframe of  minutes, as explained and backed by the measurements in Section
.. (i.e. because while testing in realistic environment it can happen that sometimes
some RSSI detections between two APs are missing – as shown in thesis this happens
in less than 0.4% of the surveys).

To evaluate if we have selected appropriate value of the window length one option
is to check and see what results we would get if we had chosen other values. Table
. presents results of such calculation. We can see all  WiFi evaluations we have
performed (columns), rows present result of localization if we would take only last one,
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Table .
Average accuracy of WiFi evaluations using different window of measurements.
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two, three, etc. measurements for the determination of the parameters. Values in the
body of the table presents average localization error during the calculation. Coloring
of the cells in each column aids visually in determining the worse (red) and the best
results (blue) and range of the values in-between.

Firstly, we can see that hallway environment has the most stable values. Average
error is always 3.7m, apart from one outlier. This further proves that hallways are not
appropriate and realistic evaluation environments, as the signals in such environments
are most stable. We can see confirmation of this fact also in Tbl. ., where it is
shown that hallway environment has the smallest standard deviation and therefore





distribution of the data (𝜎ℎ𝑎𝑙𝑙𝑤𝑎𝑦 = 2.49).
We can see that in single- and multi-room office environments the signal probably

exhibited some variability but not much changes due to the changes of the mean of
the RSSI. This can be concluded, because accuracy of the experiments with little mea-
surements have biggest errors, which slowly get smaller while taking more and more
measurements into account.

Last, but also most important, we can see most scattered data of the minimum and
maximum errors in case of residential evaluations. This hints that residential evalua-
tion was the most difficult, as there were many rooms, dividing walls and furniture,

Table .
Amount of improvement or decline in accuracy using different window of measurements relative to selected value – WiFi
signals.
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therefore a lot of opportunity for multipath, interference, etc. As the apartment is
in heavily populated residential neighborhood the experiments were subjected to the
most disturbances.

In order to better view the difference that the number of the measurement makes,
we have calculated for each evaluation environment and number of historical points
improvement (negative values) and decline (positive values) in accuracy in reference
to the selected -minute timeframe. Data is presented in Tbl. .. Median column
presents median value of the evaluations without the hallway. We have exempt it as
we have shown that its values are most stable. As we can see there are some parameters
that would in average produce better results than our selected -minute timeframe
(e.g.  minute), but they are all in a range of a few percent, which is at the average
errors in range 2 to 3m in our evaluations in range of a decimeter. A decimeter change
in accuracy of real-world multiroom experiments is accuracy at a level of the accuracy
of the ground-truth, due to the obstacles and inaccurate vertical positioning of the
mobile terminal.

Therefore, we conclude that selecting -minute timeframe, was correct decision
which ensures that we address issues of outliers and at the same time method keeps its
adaptive properties.

Similar analysis can be done for the signals of  MHz – results are presented in
Tbl. .. From the table it can be easily seen, that majority of strong colors in each
column (i.e. values far from the median) are in the rows representing  to  taken
measurements. Including more measurements results in more averaged propagation
simulation and therefore less extreme values into positive or negative. Median values
of the percentage of the improvement or decline of accuracy are all in range of a few
percent, therefore in the range of accuracy of the ground truth.

Similar results can also be seen when performing similar analysis on the combination
of WiFi and  MHz signal – the MFAM method. It can be seen that taking  or
more measurements sufficiently stabilizes the propagation for it to become stable in
the ±3% range. Results can be seen in Tbl. ..

Results of the analysis show that in average the accuracy improves by taking more
than  measurements. Although the accuracy of the method then stabilizes and small
influence of the number of the measurements is observed beyond this value. Analysis
show that if selecting the ideal number of measurements, we would have the opportu-
nity to improve the mean accuracy of the localizations for approximately 2%, which





is negligible at average errors of 2.16m.
Second time-related interval is interval of the measurement performed by the MT.

To have quick and dynamic method we wanted to minimize the time needed by the
MT to scan the RSSI. Lim et al. [] presented Wi-Fi approach and as shown in Sec-
tion . it performs very well also with the respect to the evaluation space. The major
downside of the method in real-world evaluation is that device has to be kept station-
ary for  minutes while the MT scans the RSSIs. Our goal was to have this value as
small as possible in order for the method to be usable in the real-world environment.
Even more importantly, if we were able to keep this value low, this opens possibilities
for future development of indoor navigation system which requires quick measure-
ments. Due to variability of the RSSI data reported by the MT we knew that we need
at least some averaging and/or filtering. After some preliminary analysis we decided
that  samplings of which each takes approximately  seconds is enough. Our method

Table .
Amount of improvement or decline in accuracy using different window of measurements relative to selected value –  MHz
signals.
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Table .
Amount of improvement or decline in accuracy using different window of measurements relative to selected value – WiFi &
 MHz.

DS DS DS DS Median
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is therefore capable of similar accuracy as method by Lim et al. while device requires
only approximately  seconds to scan the RSSI in comparison to their method, which
requires  minutes.
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We have started this research with nothing but knowledge, ingenuity and the idea
of creating the universal indoor localization method for the future IoT technologies.
From the start we knew we do not want to develop a fingerprinting method, as those
are not suitable for the real-world deployments. The one and only goal was to develop
a method that is usable in the real-world conditions. Thus, every design step, every
decision and the evaluation procedure were subjected to this goal.

On the Gartner’s Hype Cycle for Emerging Technologies the IoT platform is still
before the “Peak of Inflated Expectations”. Therefore it is not surprising, that there
is still no common IoT platform, no common set of protocols and interfaces. As the
technologies for the future must be developed today, we have set on a journey of the
development of an indoor localization system. We started by analyzing the limitations
and deficiencies of the past research. As most of the indoor localization solutions utilize
WiFi, we have chosen it as our first protocol for evaluation. In the back of our minds
we have always tried to keep the method signal- and frequency-agnostic.

Our endeavor for the real-world applicability resulted in a detailed analysis of the
long-term stability of the WiFi signal in real-world environments. We have explored
and researched the stability of the WiFi signals in the course of  weeks in the real-
world setting of an office building. We have also come across interesting observations
which can be cues for the future research – e.g. why did we observe worse signal
strength in weeks where there were less people in the offices; how does the number
of the people in the room influence the stability of the signal and consequently the
accuracy of localization? Pursuing the goal of the universal indoor localization, we
have also presented our view on Tx methods and the reasons why we are convinced
one should select a more difficult task of developing the methods that are based on the
receiving of the signal at the mobile terminal. The knowledge on the emerging and
future WiFi protocols further convinces us why the frequency-independent methods
should be developed for the future. The fact that the majority of the methods are in
our opinion not evaluated in the floor plans that represent real-world indoor locations,
which are furthermore vaguely defined and described, results in an unfair comparison
between the published methods.

Equipped with the described facts, we have started the development of the WiFi
localization method, as presented in Chapter . We have thoroughly presented the
development of the method with the evaluations in the office, residential and hallway
environments. The presented method is self-calibrating and self-adaptive, and thus





maintenance-free. It can operate for years and have the same accuracy as immedi-
ately after deployment, because no static parameters are used to define the propaga-
tion model. The model is built by using the observations of RSSIs at the APs in the
short time before the localization process. The only input requirements of the method
are the WiFi access point positions, and the positions and properties of the walls. We
have developed and evaluated the method in the office spaces of our laboratories. The
main factor which proves that the method is deployable in the real-world situations
is the fact that we have transferred the equipment to the residential apartment and
obtained the localization accuracy without any changes and easily comparable to the
state-of-the-art methods. Evaluation in a hallway environment was performed to sim-
plify comparison with the related methods which are often evaluated in such simplistic
environments.

Afterwards we have continued the development of our method by generalizing it,
in order to evaluate it on the frequencies and protocols different than WiFi. We were
able to generalize the method and apply it to the 868MHz-based home automation
system already present in the evaluation apartment. Due to the reasons discussed in
Chapter , the method expectedly performed worse in comparison to the evaluation
utilizing the WiFi signals. We have also shown that its accuracy is comparable to
some of the non-WiFi RF-based localization methods published recently. Utilizing
the home automation signals alone was never the goal, as we wanted to use them in
conjunction with the WiFi signals.

The MFAM method fused both signals and gave better results than any of the in-
dividual signals. We wanted to show that one does not have to add an impractical
number of WiFi APs to achieve the needed accuracy, but instead with the MFAM
method it can utilize the already present signals. The home automation devices we
have used in the evaluation are part of the functioning heating system of the apartment
and therefore we have not added any additional structural device (AP) to improve the
average accuracy of the localization for 6 to 30%. The only hardware-related change
was enabling the mobile terminal to capture the RSS information of the packets at the
selected frequency.

The scientific contribution of this work can be summarized as follows:

a novel calibration method for the indoor WiFi-modeled approaches which con-
tinuously monitors the WiFi signal spectrum and adjusts the propagation pa-
rameters without human intervention;
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a novel self-adaptive model-based WiFi indoor localization method that ac-
counts for the architectural aspects of the building layout;

Multiple Frequency Adaptive Model-Based Indoor Localization Method which
generalizes our WiFi method to utilize multiple signal types and then provides
a fusion method that considers the accuracy of the method at each individual
frequency.

. Future research

It is said that every ending is the beginning of something new. Defining a new method
always results in an infinite number of questions: “What if you would include...?
Could that be improved by...?” In this short section, we provide some research di-
rections one could take in the future.

Our view on the method development has always been from the viewpoint of a
future IoT device. The majority of the devices in our homes are stationary, therefore it
is not difficult for the device to capture RSS information needed for the localization for
one minute. How would the method perform in the cases where the object is moved
around? There are fusion attempts of fusing the WiFi-based localization methods with
dead reckoning algorithms - would our method be suitable for that?

There are methods for the indoor localization that fuse information of the WiFi-
based method with some other means of localization. What accuracy can MFAM
achieve, when fused with the RFID-proximity or IMU-based indoor localizations?

MFAM is built to fuse multiple frequencies; how could a mobile terminal that in-
cludes a software-defined radio (SDR) utilize the method? What accuracy could it
achieve if we used SDR-equipped APs?

Finally, can we anyhow estimate a factor representing the accuracy of the single-
frequency method in order to change the fusion method, which currently utilizes the
standard deviation of a pre-surveyed empirical evaluation? This would make MFAM
model based, without the need of pre-surveying the environment; such methods are
in our opinion the ultimate goal of the indoor localization for the future technologies
of the IoT.
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In order to fully disclose the presented method, the source code of our implementation
is presented in the following appendix. In the first part, the configuration object is
presented, which holds information about APs, HomeMatic devices, position of the
walls, etc. The source code is written in the Wolfram Mathematica language.

In[1]:= Config = <|
"AP"->{<|

"ip"->"10.1.23.250",
"nickname"->"AP1",
"name"->"AP1",
"mac"->"C0:56:27:29:0E:17",
"x"->4.0, (* x position of the AP in the map *)
"y"->4.5, (* y position of the AP in the map *)
"ch"->11, (* WiFi channel *)
(* parameters used for calculation in case of omitting APs *)
"calibrateBy"->{"C0:56:27:34:92:89","C0:56:27:29:0E:65"},
(*direction of the normal vector of this APs wall *)
"direction"->{1,0}

|>,
(* other APs *)
},
"HM" -> {<|

"nickname"->"HM-kitchen",
"mac"->"3A3F3B",
"x"->6.65,
"y"->0.0,
"serial"-> "MEQ0545541",
"ch"->99,
"direction"->{0,1}

|>,
(* other HM devices *)
},
"HM-base"-> <|

"nickname"->"HM-base",
"mac"->"central",
"x"->0.6,
"y"->8.8,
"serial"-> "MEQ0549946",
"direction"->{0,-1}

|>,
"wall"->{

<|"x1"->0,"y1"->3.95,"x2"->7.6,"y2"->3.95,"d"->0.2|>,
(*other walls *)

},
(* other paramters *)

|>;

This implementation was used to obtain the results presented in this thesis.





In[2]:= AngleFunction[alpha_] := Module[{tmp},Return[Abs[Mod[
If[Mod[alpha, Pi] < Pi/2,

Mod[alpha, Pi],
-Mod[alpha, Pi]

], Pi]/(Pi/2)]];
];

In[3]:= (*query can be ip, mac or name
and it will return whole AP Association*)

GetAp[Config_, query_] := Module[{ret = False, i},
For[i = 1, i <= Length[Config[["AP"]]], i++,

If[Config[["AP"]][[i]][["ip"]] == query ||
Config[["AP"]][[i]][["name"]] == query ||
Config[["AP"]][[i]][["mac"]] == query,
ret = Config[["AP"]][[i]];
Break[];

];
];
If[ret == False, Throw["Unknown AP: '" <> query <> "'"]];
Return[ret];

];

In[4]:= AssociationToPosition[assoc_, specification_: ""] := {
assoc["x" <> specification], assoc["y" <> specification]

};

In[5]:= DataFileName[Config_, position_] := FileNameJoin[{
Config[["BasePath"]],
Config[["ExperimentDataPath"]],
position,
"out.json"

}];

In[6]:= GetExperimentPosition[Config_, position_] :=
Module[{tmp, accessPoints, ret, i},
Needs["GeneralUtilities`"];
If[StringMatchQ[position, RegularExpression["^[A-D][a-e]\$"]] == False,

Throw["Unknown position : '" <> position <> "'"];];
tmp = Import[DataFileName[Config, position]];
tmp = ToAssociations[tmp];
tmp["position"] = position;
Return[tmp];

];

In[7]:= (*possibility to change median filter*)
CustomMedianFilter = MedianFilter;
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In[8]:= (* input is one of the properties by which
AP can be found with GetAp function *)

CalculatePowerLossExponenetForAp[Config_, input_, data_] := Module[
{

ap = GetAp[Config, input], src1, src2, src3,
ret = <||>, i, dataX = {}, dataY = {}, tmp, timer

},
src1 = <|"source" -> GetAp[Config, ap["calibrateBy"][[1]]]|>;
src2 = <|"source" -> GetAp[Config, ap["calibrateBy"][[2]]]|>;

For[i = 1, i <= Length[Config["AP"]], i++,
If[Config["AP"][[i]]["mac"] == ap["mac"],
Continue[];];

If[Config["AP"][[i]]["mac"] == src1["source", "mac"],
Continue[];];

If[Config["AP"][[i]]["mac"] == src2["source", "mac"],
Continue[];];

src3 = <|"source" -> GetAp[Config, Config["AP"][[i]]["mac"]]|>;
];

For[i = 1, i <= Length[data["accessPoints"]], i++,
If[Length[data["accessPoints"][[i]]]["val"] <
Config["Model", "numberOfHistoryPoints"],
Throw[

"Exptected to get '" <>
ToString[Config["Model", "numberOfHistoryPoints"]] <>
"' but got only '" <>
ToString[Length[data["accessPoints"][[i]]]]["val"] <> "'"];

];

If[data[["accessPoints"]][[i]]["mac"] == ap["mac"],
If[data["accessPoints"][[i]]["ip"] == src1["source", "ip"],

src1["measurements"] = <|
"raw" -> Take[data["accessPoints"][[i]]["val"],
Config["Model", "numberOfHistoryPoints"]]

|>;
];

If[data["accessPoints"][[i]]["ip"] == src2["source", "ip"],
src2["measurements"] = <|

"raw" ->
Take[data["accessPoints"][[i]]["val"],

Config["Model", "numberOfHistoryPoints"]]
|>;

];

If[data["accessPoints"][[i]]["ip"] == src3["source", "ip"],
src3["measurements"] = <|





"raw" ->
Take[data["accessPoints"][[i]]["val"],

Config["Model", "numberOfHistoryPoints"]]
|>;

];
];

];

src1["measurements", "filtered"] = CustomMedianFilter[
src1["measurements", "raw"],
Config["Model", "medainFilterValue"]

];

src2["measurements", "filtered"] = CustomMedianFilter[
src2["measurements", "raw"],
Config["Model", "medainFilterValue"]

];

src3["measurements", "filtered"] = CustomMedianFilter[
src3["measurements", "raw"],
Config["Model", "medainFilterValue"]

];

ret["d1"] = EuclideanDistance[
AssociationToPosition[ap],
AssociationToPosition[src1["source"]]

];

ret["d2"] = EuclideanDistance[
AssociationToPosition[ap],
AssociationToPosition[src2["source"]]

];

ret["d3"] = EuclideanDistance[
AssociationToPosition[ap],
AssociationToPosition[src3["source"]]

];

ret["alpha1"] = VectorAngle[{
src1["source", "x"] - ap["x"],
src1["source", "y"] - ap["y"]

}, ap["direction"]];

ret["alpha2"] = VectorAngle[{
src2["source", "x"] - ap["x"],
src2["source", "y"] - ap["y"]

}, ap["direction"]];

ret["alpha3"] = VectorAngle[{
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src3["source", "x"] - ap["x"],
src3["source", "y"] - ap["y"]

}, ap["direction"]];

If[(
ret["d1"] > ret["d2"] &&
Median[src1["measurements", "filtered"]] <
Median[src2["measurements", "filtered"]]
||
ret["d1"] < ret["d2"] &&
Median[src1["measurements", "filtered"]] >
Median[src2["measurements", "filtered"]]
) != True,
Print[{"WARNING!", ret["d1"],
N[Median[src1["measurements", "filtered"]]], ret["d2"],
N[Median[src2["measurements", "filtered"]]],
data["position"]}];

];

For[i = 1, i <= Length[src2["measurements", "filtered"]], i++,
AppendTo[dataY, src2["measurements", "filtered"][[i]] +
WallCrossingsToDb[Config,

WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src2["source"]]]

] -
src1["measurements", "filtered"][[i]] -
WallCrossingsToDb[Config,

WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src1["source"]]]

]
];
AppendTo[dataX, {
10*Log10[ret["d1"]/ret["d2"]],
(AngleFunction[ret["alpha1"]] - AngleFunction[ret["alpha2"]])
*10*Log10[ret["d1"]/ret["d2"]]

}];
];

For[i = 1, i <= Length[src3["measurements", "filtered"]], i++,
AppendTo[dataY,src3["measurements", "filtered"][[i]] +
WallCrossingsToDb[Config,

WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src3["source"]]]

] -
src1["measurements", "filtered"][[i]] -
WallCrossingsToDb[Config,

WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src1["source"]]]

]





];
AppendTo[dataX, {

10*Log10[ret["d1"]/ret["d3"]],
(AngleFunction[ret["alpha1"]] - AngleFunction[ret["alpha3"]])
*10*Log10[ret["d1"]/ret["d3"]]

}];
];

For[i = 1, i <= Length[src2["measurements", "filtered"]], i++,
AppendTo[dataY,src3["measurements", "filtered"][[i]] +

WallCrossingsToDb[Config,
WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src3["source"]]]

] -
src2["measurements", "filtered"][[i]] -
WallCrossingsToDb[Config,
WallCrossings[Config, AssociationToPosition[ap],
AssociationToPosition[src2["source"]]]

]
];
AppendTo[dataX, {

10*Log10[ret["d2"]/ret["d3"]],
(AngleFunction[ret["alpha2"]] - AngleFunction[ret["alpha3"]])
*10*Log10[ret["d2"]/ret["d3"]]

}];
];

tmp = LeastSquares[dataX, dataY];

If[tmp[[1]] < Config["Model", "defaultParams" , "gamma", "minValue"],
ret["gamma"] =

Config["Model", "defaultParams" , "gamma", "newValue"];,
ret["gamma"] = tmp[[1]];

];

If[ret["gamma"] >
Config["Model", "defaultParams" , "gamma", "maxValue"],
ret["gamma"] =

Config["Model", "defaultParams" , "gamma", "newValue"];
];

If[tmp[[2]] < Config["Model", "defaultParams" , "beta", "minValue"],
ret["beta"] =

Config["Model", "defaultParams" , "beta", "newValue"];,
ret["beta"] = tmp[[2]];

];

ret["ap"] = ap;
ret["src1"] = src1;
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ret["src2"] = src2;
ret["r"] = Min[{ret["d1"], ret["d2"]}]/Max[{ret["d1"], ret["d2"]}];

Return[ret];
];

In[9]:= (*
returun Asociation of mac->gamma for all
senced mobile Terminals in postion string

*)
CalculateCurrentState[Config_, positionString_] := Module[{ret = <||>, i,

position = GetExperimentPosition[Config, positionString], tmp},

For[i = 1, i <= Length[position["mobileTerminal"]], i++,
tmp = CalculatePowerLossExponenetForAp[Config,
position["mobileTerminal"][[i]]["mac"], position

];
ret[position["mobileTerminal"][[i]]["mac"]] = tmp;

];

Return[ret];
];

In[10]:= CalculatePowerAt[Config_, point_, ap_, properties_] := Module[
{distance, gamma, beta, alpha},

gamma = If[KeyExistsQ[properties, "gamma"],
properties["gamma"],
Throw["No 'gamma' defined"]

];

beta = If[KeyExistsQ[properties, "beta"],
properties["beta"],
0

];

distance = EuclideanDistance[
AssociationToPosition[point],
AssociationToPosition[ap]

];

alpha = VectorAngle[
{point["x"] - ap["x"], point["y"] - ap["y"]},
ap["direction"]

];

Return[-(
gamma*Log10[distance] +
20*Log10[Config["Freq", ap["ch"]]*1000] -





27.55 +
beta*Log10[distance]*AngleFunction[alpha] +
WallCrossingsToDb[Config,

WallCrossings[Config,
AssociationToPosition[point],
AssociationToPosition[ap]

]
]

)];
];

In[11]:= GenerateModel[Config_, positionString_] := Module[{ret = <||>, i, j, k,
tmp, position = GetExperimentPosition[Config, positionString]},

ret["state"] = CalculateCurrentState[Config, positionString];

(*create mesh*)
ret["mesh"] = <||>;
ret["mesh", "def"] = <||>;(*definition of the mesh*)

ret["mesh", "def", "x"] = Range[
Config["Model", "mesh", "x", "from"],
Config["Model", "mesh", "x", "to"],
Config["Model", "mesh", "x", "mesh"]

];

ret["mesh", "def", "y"] = Range[
Config["Model", "mesh", "y", "from"],
Config["Model", "mesh", "y", "to"],
Config["Model", "mesh", "y", "mesh"]

];

ret["mesh", "inst"] = <||>;(*instance of the mesh*)

tmp = Keys[ret["state"]];
For[i = 1, i <= Length[ret["mesh", "def", "x"]], i++,

ret["mesh", "inst", ret["mesh", "def", "x"][[i]]] = <||>;
For[j = 1, j <= Length[ret["mesh", "def", "y"]], j++,

ret["mesh", "inst",
ret["mesh", "def", "x"][[i]],
ret["mesh", "def", "y"][[j]]

] = <||>;
For[k = 1, k <= Length[tmp], k++,
ret["mesh", "inst",
ret["mesh", "def", "x"][[i]],
ret["mesh", "def", "y"][[j]],
tmp[[k]]

] = CalculatePowerAt[Config,
<|
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"x" -> ret["mesh", "def", "x"][[i]],
"y" -> ret["mesh", "def", "y"][[j]]
|>,
GetAp[Config, tmp[[k]]],
ret["state", tmp[[k]]]

];
];

];
];

Return[ret];
];

In[12]:= PlotModel[Config_, model_] := Module[
{data, i, j, k, tmp, tmp2, ret = <||>, roundX, roundY},

tmp = Keys[model["state"]];
tmp2 = {};

For[k = 1, k <= Length[tmp], k++,
data = {};
For[i = 1, i <= Length[model["mesh", "def", "x"]], i++,
For[j = 1, j <= Length[model["mesh", "def", "y"]], j++,

AppendTo[data, {
model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]],
model["mesh", "inst",
model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]],
tmp[[k]]

]
}];

];
];

AppendTo[tmp2,
ListPlot3D[data, PlotStyle -> Opacity[0.6],
AxesLabel -> {"x[m]", "y[m]", "Estimated PL[dB]"},
PlotLabel -> "Simulation of PL in space",
BoxRatios -> Config["plotRatio"]]

];
];

ret["allPowersSeperate"] = Row[tmp2];
ret["allPowers"] = Show[tmp2];

(*plot error graph*)
If[KeyExistsQ[model, "error"],





data = {};
For[i = 1, i <= Length[model["mesh", "def", "x"]], i++,

For[j = 1, j <= Length[model["mesh", "def", "y"]], j++,
AppendTo[data, {
model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]],
model["error", "mesh",
model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]]

]
}];

];
];

roundX = model["mesh", "def", "x"][[Position[
Abs[model["mesh", "def", "x"] - model["realPoint", "x"]],
Min[Abs[model["mesh", "def", "x"] - model["realPoint", "x"]]]

][[1, 1]]]] + 0.0;

roundY = model["mesh", "def", "y"][[Position[
Abs[model["mesh", "def", "y"] - model["realPoint", "y"]],
Min[Abs[model["mesh", "def", "y"] - model["realPoint", "y"]]]

][[1, 1]]]] + 0.0;

ret["error"] = Show[
ListPlot3D[data, BoxRatios -> Config["plotRatio"]],
Graphics3D[{Red, PointSize[0.1], Point[{

model["error", "minErrorPosition", "x"],
model["error", "minErrorPosition", "y"],
model["error", "minError"]

}]}],

Graphics3D[{Blue, PointSize[0.1], Point[{
model["realPoint", "x"],
model["realPoint", "y"],
model["error", "mesh", roundX, roundY]

}]}],

AxesLabel -> {"x[m]", "y[m]", "Error"},
PlotLabel -> "Result from error anlysis"]

];
Return[ret];

];

In[13]:= (*
point is array of <|mac->XXX,
values-> {}|> senced at some point,
model is the return of GenerateModel

*)
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FindPointInModel[Config_, point_, model_] := Module[{
pointForCalculation, i, j, k, ret = <||>, tmp, error,
maximalPoint, ipOrMac, valOrValues},

pointForCalculation = <||>;

If[point[[1]]["mac"] == "homegear",
ipOrMac = "ip"; valOrValues = "val";,
ipOrMac = "mac"; valOrValues = "values";

];

For[i = 1, i <= Length[point], i++,
pointForCalculation[point[[i]][ipOrMac]] =
Mean[point[[i]][valOrValues]];

];

ret["mesh"] = <||>;(*instance of the mesh*)
ret["minError"] = False;
ret["minErrorPosition"] = <||>;

ret["maximalPoint"] = <|"mac" -> False, "value" -> False|>;

tmp = Keys[pointForCalculation];

For[k = 1, k <= Length[tmp], k++,
If[ret["maximalPoint", "value"] == False ||
ret["maximalPoint", "value"] < pointForCalculation[tmp[[k]]],
ret["maximalPoint"] = <|

"mac" -> tmp[[k]],
"value" -> pointForCalculation[tmp[[k]]]

|>;
];

];

For[i = 1, i <= Length[model["mesh", "def", "x"]], i++,
ret["mesh", model["mesh", "def", "x"][[i]]] = <||>;
For[j = 1, j <= Length[model["mesh", "def", "y"]], j++,
error = 0;
For[k = 1, k <= Length[tmp], k++,

error = error + (
(
model["mesh", "inst",

model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]],
tmp[[k]]

] -
model["mesh", "inst",

model["mesh", "def", "x"][[i]],





model["mesh", "def", "y"][[j]],
ret["maximalPoint", "mac"]]

) (*relative value to maximum*)
-
(

pointForCalculation[tmp[[k]]] -
pointForCalculation[

ret["maximalPoint",
"mac"]

]
)(*relative value to maximum*)

)^2
];
error = Sqrt[error];
ret["mesh",
model["mesh", "def", "x"][[i]],
model["mesh", "def", "y"][[j]]

] = error;
If[ret["minError"] == False || ret["minError"] > error,
ret["minError"] = error;
ret["minErrorPosition", "x"] = model["mesh", "def", "x"][[i]];
ret["minErrorPosition", "y"] = model["mesh", "def", "y"][[j]];

];
];

];

Return[ret];
];

In[14]:= DetermineRealPosition[Config_, point_] := Module[{ret = <||>},

If[StringMatchQ[point, RegularExpression["^[A-D][a-e]\$"]] == False,
Throw["I dont undertand point definition."]

];

Return[
ret = <|

"x" -> Config["DataX", StringTake[point, 1]] + 0.0,
"y" -> Config["DataY", StringTake[point, -1]] + 0.0|>

];
];

In[15]:= (*Full error calculation*)
FullErorCalc[
Config_,
WifiNotHomematic_: True,
TestOnlyInnerPoints_: False

] := Module[{
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errorAnalysis = {}, dataX, dataY, i, j, tmp, tmpPoint, model, error,
ret = <||>, vectorPlot = {}, progressBarValue = 0, timer

},

dataX = Keys[Config["DataX"]];
dataY = Keys[Config["DataY"]];

Print[ProgressIndicator[
Dynamic[progressBarValue], {1, Length[dataX]*Length[dataY]}

]];

ret["allStates"] = <||>;
ret["allModels"] = <||>;

For[i = 1, i <= Length[dataX], i++,
For[j = 1, j <= Length[dataY], j++,
progressBarValue = progressBarValue + 1;
tmpPoint = dataX[[i]] <> dataY[[j]];

If[
TestOnlyInnerPoints &&
Not[MemberQ[

Config["InnerPoints", If[WifiNotHomematic, "WiFi", "HM"]],
tmpPoint

]],
Continue[];

];

If[FileExistsQ[DataFileName[Config, tmpPoint]],
If[WifiNotHomematic,

model = GenerateModel[Config, tmpPoint];,
model = GenerateModelHomematic[Config, tmpPoint];

];
model["realPoint"] = DetermineRealPosition[Config, tmpPoint];

If[WifiNotHomematic,
model["error"] = FindPointInModel[Config,
GetExperimentPosition[Config, tmpPoint]["mobileTerminal"],
model

];,

model["error"] = FindPointInModel[Config,
GetExperimentPosition[Config, tmpPoint]["homeGear"], model];

];

ret["allModels", tmpPoint] = model;
ret["allStates", tmpPoint] = model["state"];

error = EuclideanDistance[





AssociationToPosition[model["error", "minErrorPosition"]],
AssociationToPosition[model["realPoint"]]

];

AppendTo[errorAnalysis, {
Config["DataX", dataX[[i]]],
Config["DataY", dataY[[j]]],
error

}];

AppendTo[vectorPlot, {
AssociationToPosition[model["realPoint"]],
AssociationToPosition[model["error", "minErrorPosition"]] -

AssociationToPosition[model["realPoint"]]
}];

];
];

];

ret["data"] = errorAnalysis;

tmp = Sort[ret["data"][[All, 3]]];
ret["cfd"] = Transpose[{tmp, Range[Length[tmp]]/Length[tmp]}];

ret["plot"] = ListPlot3D[errorAnalysis,
AxesLabel -> {"x[m]", "y[m]", "Error [m]"},
PlotLabel -> "Error in m for each point of evaluation",
BoxRatios -> Config["plotRatio"]

];

ret["errorCFD"] = ListPlot[ret["cfd"],
AxesLabel -> {"Error [m]", "CDF"}

];

If[\$MachineName == "desktop-caqngev",
ret["vectorErrorPlotList"] = vectorPlot;
ret["vectorErrorPlot"] = ListVectorPlot[vectorPlot,

PlotLabel ->
"Direction of error, size of arrows proportional to error",

FrameLabel -> {"x[m]", "y[m]"},
VectorPoints -> All

];,
ret["vectorErrorPlot"] = vectorPlot;

];

Return[ret];
];

In[16]:= HistogramOfParamter[Config_, model_, paramteter_, round_] := Module[
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{out, legend, ii, tmp, A, tmp2, dataX, dataY, i, j, a = {}},

out = {};
legend = {};
For[ii = 1, ii <= 4, ii++,

tmp = {};
tmp2 = {};

A[x_] := AppendTo[tmp,
Round[x[Config["AP"][[ii]]["mac"], paramteter], round]

];

Map[A, model["allStates"]];
AppendTo[out, tmp];
Print[Histogram[tmp]];
Print[ListPlot[tmp,

FrameLabel -> {"measurement number", "gamma"}
]];

dataX = Keys[Config["DataX"]];
dataY = Keys[Config["DataY"]];

For[i = 1, i <= Length[dataX], i++,
For[j = 1, j <= Length[dataY], j++,

AppendTo[a, {
Config["DataX", dataX[[i]]],
Config["DataY", dataY[[j]]],
model["allStates",
dataX[[i]] <> dataY[[j]],
Config["AP"][[ii]]["mac"],
paramteter

]
}];

];
];

Print[ListPlot3D[a, AxesLabel -> {"x[m]", "y[m]", "gamma"}]];
AppendTo[legend, Config["AP"][[ii]]["nickname"]];

];

Histogram[out,
ChartLegends -> legend,
AxesLabel -> {"gamma value", "Number of occuraces"}

]
];

In[17]:= WallCrossings[Config_, pointA_, pointB_] := Module[
{i, ret = <||>, w1, w2},
For[i = 1, i <= Length[Config["wall"]], i++,





w1 = {Config["wall"][[i]]["x1"], Config["wall"][[i]]["y1"]};
w2 = {Config["wall"][[i]]["x2"], Config["wall"][[i]]["y2"]};

If[Length[Solve[
Element[{x, y}, RegionIntersection[
Line[{w1, w2}],
Line[{pointA, pointB}]

], {x, y}]] > 0,
ret[Config["wall"][[i]]["d"]] = If[
KeyExistsQ[ret, Config["wall"][[i]]["d"]],
Config["wall"][[i]]["d"] + 1,
1

];
];

];
Return[ret];

];

In[18]:= WallCrossingsToDb[Config_, wallCrossings_] := Module[
{i, sum = 0, keys},
keys = Keys[wallCrossings];
For[i = 1, i <= Length[keys], i++,

sum = sum +
wallCrossings[keys[[i]]]*Config["wallEffects", keys[[i]]];

];
Return[sum];

];

In[19]:= CalculateCurrentStateHomematic[Config_, positionString_] := Module[
{ret = <||>, position = GetExperimentPosition[Config, positionString],

data = <||>, dataX = {}, dataY = {}, i, j, k, tmp},

For[i = 1, i <= Length[position["accessPoints"]], i++,
For[j = 1, j <= Length[Config["HM"]], j++,

If[position[["accessPoints"]][[i]]["mac"] == "central",

(*check points*)

If[Length[position["accessPoints"][[i]]]["val"] <
Config["Model", "numberOfHistoryPoints"],
Throw["Exptected to get '" <>

ToString[Config["Model", "numberOfHistoryPoints"]] <>
"' but got only '" <>
ToString[Length[position["accessPoints"][[i]]]]["val"] <>
"'"

];
];

If[position["accessPoints"][[i]]["ip"] ==
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Config["HM"][[j]]["mac"],

data[position["accessPoints"][[i]]["ip"]] = <|
"raw" -> Take[

position["accessPoints"][[i]]["val"],
Config["Model", "numberOfHistoryPoints"]

]
|>;

data[position["accessPoints"][[i]]["ip"]]["filtered"] =
CustomMedianFilter[

data[position["accessPoints"][[i]]["ip"]]["raw"],
Config["Model", "medainFilterValue"]

];

data[position["accessPoints"][[i]]["ip"]]["position"] =
AssociationToPosition[Config["HM"][[j]]];

data[position["accessPoints"][[i]]["ip"]]["d"] =
EuclideanDistance[

AssociationToPosition[Config["HM"][[j]]],
AssociationToPosition[Config["HM-base"]]

];

data[position["accessPoints"][[i]]["ip"]]["alpha"] =
VectorAngle[

Config["HM"][[j]]["direction"],
Config["HM-base", "direction"]

];
];

];
];

];

For[i = 1, i <= Length[data], i++,
For[j = 1, j <= Length[data], j++,

(*do not calcluate for two exactly the same iot devices*)
If[i == j, Continue[];];

For[k = 1, k <= Config["Model", "numberOfHistoryPoints"], k++,

AppendTo[dataY,
data[[i]]["filtered"][[k]] +
WallCrossingsToDb[Config, WallCrossings[Config,
AssociationToPosition[Config["HM-base"]],
data[[i]]["position"]

]]
- data[[j]]["filtered"][[k]] -





WallCrossingsToDb[Config, WallCrossings[Config,
AssociationToPosition[Config["HM-base"]],
data[[j]]["position"]]

]];

AppendTo[dataX, {
10*Log10[data[[j]]["d"]/data[[i]]["d"]],(

AngleFunction[data[[j]]["alpha"]] -
AngleFunction[data[[i]]["alpha"]]

)*10*Log10[data[[j]]["d"]/data[[i]]["d"]]
}];

];
];

];

tmp = LeastSquares[dataX, dataY];

ret["gamma"] = tmp[[1]];
ret["beta"] = tmp[[2]];
Return[ret];

];

In[20]:= GenerateModelHomematic[Config_, positionString_] := Module[
{ret = <||>, i, j, k, tmp,

position = GetExperimentPosition[Config, positionString]},

ret["state"] = CalculateCurrentStateHomematic[Config, positionString];

(*create mesh*)
ret["mesh"] = <||>;
ret["mesh", "def"] = <||>;(*definition of the mesh*)

ret["mesh", "def", "x"] = Range[
Config["Model", "mesh", "x", "from"],
Config["Model", "mesh", "x", "to"],
Config["Model", "mesh", "x", "mesh"]

];

ret["mesh", "def", "y"] = Range[
Config["Model", "mesh", "y", "from"],
Config["Model", "mesh", "y", "to"],
Config["Model", "mesh", "y", "mesh"]

];

ret["mesh", "inst"] = <||>;(*instance of the mesh*)

tmp = Config["HM"];
For[i = 1, i <= Length[ret["mesh", "def", "x"]], i++,

ret["mesh", "inst", ret["mesh", "def", "x"][[i]]] = <||>;
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For[j = 1, j <= Length[ret["mesh", "def", "y"]], j++,
ret["mesh", "inst",

ret["mesh", "def", "x"][[i]],
ret["mesh", "def", "y"][[j]]

] = <||>;
For[k = 1, k <= Length[tmp], k++,

ret["mesh", "inst",
ret["mesh", "def", "x"][[i]],
ret["mesh", "def", "y"][[j]],
tmp[[k]]["mac"]

] = CalculatePowerAt[Config,
<|
"x" -> ret["mesh", "def", "x"][[i]],
"y" -> ret["mesh", "def", "y"][[j]]

|>,
tmp[[k]],
ret["state"]

];
];

];
];
Return[ret];

];

In[21]:= JoinModels[wifiFullErrrorCalc_,hmFullErrrorCalc_]:=Module[
{out=<||>,points,i,joinedPoint,tmp,stdWifi,stdHm,wWifi,wHm},

wWifi=1/stdWifi;
wHm=1/stdHm;

points=Intersection[
Keys[wifiFullErrrorCalc["allModels"]],
Keys[hmFullErrrorCalc["allModels"]]
];

out["joinedPoints"] = <||>;
out["errors"] = <||>;
out["errorsVector"] = {};
For[i=1,i<= Length[points],i++,
joinedPoint = (

wWifi*AssociationToPosition[
wifiFullErrrorCalc["allModels",points[[i]], "error","minErrorPosition"]
]

+
wHm*AssociationToPosition[

hmFullErrrorCalc["allModels",points[[i]], "error","minErrorPosition"]
]

)/(wWifi+wHm)
;





out["joinedPoints", points[[i]]] = joinedPoint;
tmp= EuclideanDistance[

joinedPoint,
AssociationToPosition[

wifiFullErrrorCalc["allModels",points[[i]], "realPoint"]
]

];
out["errors", points[[i]]] = tmp;
AppendTo[out["errorsVector"],tmp];
];

Return[out];
];
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B. Uvod

V modernem svetu se srečujemo s tehnologijo na vsakem koraku. S koncepti, kot so
pametne hiše, internet stvari (ang. Internet of things, IoT) in Industrija ., vpelju-
jemo digitalne senzorje in aktuatorje v naša življenja. Že danes so na trgu na voljo
sistemi za pametne hiše, kjer lahko preko centralnega nadzornega sistema krmilimo
vsak električni porabnik našega doma. V prihodnjem desetletju se bodo ti sistemi še
bolj razvili in postali cenovno bolj dosegljivi končnim uporabnikom. Domovi in sta-
novanjske zgradbe pa niso edina okolja, ki bodo pridobila z vpeljavo IoT. Paradigma
Industrije . je trenutni trend v industrijski proizvodnji, ki se fokusira na komunika-
cijo in izmenjavo podatkov tako med napravami kot tudi med napravami in ljudmi, ki
so udeleženi v proizvodnem procesu. Za najboljše krmiljenje moramo tem sistemom
preko senzorjev zagotoviti ustrezne informacije, na podlagi katerih lahko sistem krmili
porabnike.

Tako v viziji IoT kot tudi v viziji Industrije . je informacija o lokaciji ljudi, naprav
in senzorjev znotraj prostorov zelo zaželena. Glede na to, da v sodobnem svetu nosimo
mobilni telefon vedno s seboj, bi sposobnost lociranja mobilnega telefona omogočala
pametnim hišam lociranje uporabnikov znotraj stavbe in posledično npr. samodejno
prilagajanje osvetlitve in avdiovizualnih sistemov željam specifičnega uporabnika. V
industrijski proizvodnji je že leta odprt problem lociranja; implementacija sodobnih
transportnih sistemov v proizvodnji je pogojena z možnostjo lociranja, prav tako bi
lociranje omogočalo boljšo spremljanje učinkovitosti delavcev in sledenje produktom
tekom proizvodnega procesa.

Pričujoče besedilo povzema doktorsko nalogo, v kateri smo razvili metodo za dolo-
čanje položaja v prostoru na osnovi signalov in modela zgradbe. Primarno smo razvili
metodo z uporabo WiFi signalov, v drugem delu pa smo metodo razširili za večfre-
kvenčno lokalizacijo. Naš glavni cilj je bil razvoj metode, ki bi bila primerna za upo-
rabo v realnem okolju hkrati pa bi se po natančnosti merila z najboljšimi trenutnimi
metodami. Želeli smo ustrezno nasloviti težavne kalibracijske procedure, uporabo sta-
tičnih parametrov propagacijskih modelov in strojne zahteve obstoječih metod. Naš
razvoj je temeljil na naslednjih predpogojih.

WiFi signali - WiFi je dandanes ena najbolj pogosto uporabljenih tehnologij
brezžične komunikacije, zato ne čudi dejstvo, da je na raziskovalnem področju
lokalizacije na podlagi brezžičnih signalov najpogosteje uporabljena tehnologija.





Kljub temu je bil razvoj celoten čas podrejen želji, da bi metoda delovala tudi
na drugih frekvencah.

Modelni pristop - V grobem delimo WiFi metode na tiste, ki bazirajo na pod-
lagi prstnega odtisa (tj. statičnih meritev) in tiste, ki bazirajo na podlagi mo-
deliranja širjenja signala po prostoru. Prve navadno niso sposobne prilagajanja
realnim variacijam signala, zato za dolgoročno natančnost potrebujejo pogoste
kalibracije. Modeliranje širjenja signala ponuja izgradnjo sistema, neodvisnega
od statičnih meritev, in s tem dolgoročno stabilne sisteme.

Upoštevanje notranjih sten - Le ena izmed  metod, ki smo jih primerjali v di-
zertaciji, je bila evalvirana v stanovanjskem okolju. Metode so praviloma evalvi-
rane v okoljih raziskovalnih inštitutov in fakultet, kjer navadno najdemo velike
prostore z malo predelnimi stenami. Vpliv sten na natančnost je veliko večji v
stanovanjskem okolju, kjer so navadno prostori manjši, kar pa moramo upošte-
vati pri razvoju univerzalne metode.

Nizke strojne zahteve - Uporaba namenske in drage strojne opreme zmanjšuje
univerzalnost in uporabnost metode; npr. z laserskimi sistemi lahko določimo
relativne pozicije na milimetre natančno, vendar je cena takšnega sistema visoka.
Zadali smo si cilj, da želimo razviti metodo, ki bo sposobna določiti lokacijo
vsake WiFi povezane naprave.

B.. Znanstveni doprinosi

Glavni obseg tega dela je nova metoda za določanje položaja v prostoru. Metoda je
bila primarno razvita za uporabo WiFi signalov, kasneje pa razširjena za večfrekvenčno
delovanje. Znanstvene doprinose lahko povzamemo kot:

Nova metoda kalibracije za modelne pristope, temelječe na signalih WiFi. Pred-
stavljena metoda implementira metodo za neprekinjeno spremljanje širjenje si-
gnala po prostoru in prilagajanje propagacijskega modela. Ta pristop k sprotni
ocenitvi parametrov propagacije se lahko uporabi pri številnih drugih metodah,
ki vsebujejo statično določene izhodiščne parametre.

Nova prilagodljiva metoda za določanje položaja v prostoru na osnovi signalovWiFi
in modela zgradbe. Z uporabo razvite kalibracijske metode smo razvili metodo
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za določanje pozicije znotraj stavb, ki upošteva postavitev sten med prostori,
določa propagacijski model na podlagi sprotnih meritev, za dolgoročno stabilno
delovanje ne potrebuje ročnih posegov, ne potrebuje nobene dodatne strojne
opreme poleg dostopnih točk (ang. access point, AP) in ne zahteva, da terminal
(naprava, ki jo želimo locirati) oddaja signale. Metoda je bila uspešno evalvirana
tako v stanovanjskem in v pisarniškem okolju kot tudi v dolgem hodniku, ki je
velikokrat uporabljeno evalvacijsko okolje pri sorodnih metodah.

MFAM metoda: metoda za določanje položaja v prostoru na podlagi signalov več
frekvenc. Tekom razvoja metode za določanje lokacije se nismo z ničemer ome-
jili na signale WiFi. Zato smo v nadaljnjem delu razširili metodo za uporabo
na več frekvencah. Metodo za določanje položaja smo uspešno aplicirali na fre-
kvenco 868MHz, ki jo uporablja sistem za avtomatizacijo doma v izbranem
elevacijskem okolju. Definirali smo metodo za fuzijo obeh frekvenc in pokazali,
da kombinacija signalov WiFi in 868MHz daje boljšo natančnost kot uporaba
posameznih frekvenc.

B. Določanje položaja v prostoru

Določanje lokacije naprav znotraj prostorov je že dolgo raziskovan problem, ki zadnje
čase postaja tudi industrijsko in komercialno zanimiv, kar rezultira v veliko preglednih
člankih [–, , ]. Večina del se osredotoča na WiFi signale, gledano širše pa Yassin
et al. [] razdelijo algoritme za določanje lokacije na triangulacijske algoritme, algo-
ritme, ki delujejo na podlagi analize prostora, in tiste, ki delujejo na podlagi zaznave
bližine. Kot že omenjeno v uvodu, WiFi metode v grobem ločimo v dve skupini. Med
triangulacijske lahko umestimo večino modelnih pristopov za določanje lokacije, med-
tem ko metode, delujoče na principu prstnega odtisa, umeščamo med metode analize
prostora.

V literaturi se pojavlja veliko pristopov, ki poskušajo vpeljati dodatne informacije
v proces določanja lokacije, da na ta način zmanjšajo vpliv variacije WiFi signalov.
Taki primeri so metode, ki uporabljajo inercijske senzorje poleg signalov WiFi. Take
pristope najdemo tako v skupini metod, temelječih na prstnih odtisih [, ], kot
tudi v skupini modelnih pristopov []. Velika pomanjkljivost teh metod je, da se
zanašajo na gibanje človeka, ki napravo nosi v žepu. Zato niso primerne za industrijsko
proizvodnjo in razmeroma statične naprave v prostoru. Nekateri raziskovalci iščejo





bolj stabilne značilke propagacije signala [, , , ], vendar za uporabo le-teh
potrebujemo naprednejšo in posledično dražjo opremo, kar pa zmanjša univerzalnost
razvite metode.

Pri razvoju metode, ki deluje na podlagi moči signala, je njuno razumevanje defi-
nicije moči signala. RSS je kratica, ki označuje moč prejetega signala (ang. received
signal strength). V klasičnih napravah WiFi dostopa do tega podatka nimamo, niti ga
naprave ne merijo. Specifikacija WiFi standarda [] določa količino RSSI kot indi-
kator količine RSS (ang. received signal strength indicator). Standard eksplicitno ne
določa, kako je definiran RSSI, zato je implementacija prepuščena izdelovalcu strojne
opreme. To je glavni razlog, zakaj moramo biti pri razvoju metod za določanje loka-
cije na podlagi RSS/RSSI pozorni na različnost meritve pri uporabi različne opreme.
Definicija standarda le določa, da je to -bitna vrednost, ki je rezultat monotono nara-
ščajoče funkcije prejete moči. Problem RSSI pa je, da navadno ni direktno dostopen.
Operacijski sistem navadno implementira nivoje abstrakcije nad to informacijo, ki jo
nato preslika z neko funkcijo v logaritemsko (decibelno) skalo. Že standard opozarja,
da je ta vrednost navadno povprečena preko daljše časovne periode.

Glavna slabost sodobnih pristopov za določanje lokacije je predpostavka, da se ne-
katere statistične vrednosti signala na dolgi rok ne spreminjajo. V nalogi pokažemo
rezultate eksperimenta, pri katerem smo  tednov vsako minuto merili moč signala
med parom dostopnih točk v istem prostoru. Analiza vseh meritev je dala pričakovano
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naravno porazdelitev s povprečno vrednostjo 𝜇 = −45dB in standardnim odklonom
𝜎 = 4,7. Podrobnejša analiza podatkov je pokazala, da lahko najdemo časovna ob-
dobja, ko je moč signala −50dB in na drugi strani časovna obdobja, ko je bila moč
signala −36dB. Rezultate analize lahko vidimo na sliki B., kjer smo signale filtrira-
li z mediano z oknom  uri. Iz tega je razvidno, da metode, ki bazirajo na statičnih
odčitkih vrednosti (npr.: metode na podlagi prstnih odtisov), ne morejo dobro delo-
vati v daljšem časovnem obdobju brez ponavljajočih kalibraciji. S stališča dolgoročne
stabilnosti so problematične tudi modelne metode, ki gradijo svoj model propagaci-
je na podlagi nekih statičnih odčitkov – npr. eksperimentalno določena vrednost za
pričakovan upad moči na določeni razdalji od oddajnika.

Modelne pristope, ki ustrezno naslovijo probleme različnih implementacij RSSI vre-
dnosti in ustrezno naslovijo težave dolgoročne stabilnosti signala, je relativno trivialno
zgraditi, v kolikor uporabimo za določanje lokacije signale, ki jih oddaja terminal. Te
metode bazirajo na oddanih signalih s strani naprave, na drugi strani pa so metode, kjer
te naprave analizirajo signale, prejete s strani dostopnih točk. Pri razvoju smo se odlo-
čili za drugi način, saj prvi ni primeren za prostore, kjer želi veliko ljudi določiti svojo
pozicijo hkrati (npr. javne prireditve, stadioni, nakupovalni centri). V tem primeru
naprave zapolnijo komunikacijske frekvence in tako onemogočijo osnovno nalogo Wi-
Fi, to je zagotavljanje povezljivosti, prav tako pa konstantno oddajanje signala poveča
zahteve po energiji.

Utemeljitev odločitve, da razvijemo metodo, ki bo neodvisna od frekvence signa-
la in ne bo omejena samo na signale WiFi, najdemo v predvidenem razvoju WiFi.
V začetku leta  je bil objavljen dodatek k WiFi standardu, ki definira protokol
.ah. Ta bo deloval na frekvencah 900MHz in bo namenjen napravam IoT.
Dolgovalovni signali so manj občutljivi na pregrade, njihova slabost pa je nižja možna
hitrost. V kolikor bo standard .ah doživel široko uporabo, želimo, da bo naša
metoda sposobna uporabiti nove signale.

Področje metod za določanje lokacije znotraj prostorov je specifično, ker je rezultat
močno odvisen od testnega okolja. Poleg tega je zaradi narave metod (npr. strojne
zahteve) navadno zelo oteženo testiranje različnih metod v istem okolju. Posledično je
standardni način primerjave metod analiza statistike napak, ki so jih dosegle metode v
različnih testnih okoljih. Zaradi velike razlike med zgradbami so take primerjave zelo
težavne in dopuščajo, da raziskovalci izvajajo evalvacije v okolju, ki najbolj ustreza nji-
hovi metodi. Z evalvacijo predlagane metode v treh zelo različnih okoljih – pisarniško,





stanovanjsko in hodnik – smo nakazali univerzalnost metode in njeno neodvisnost od
okolja.

B. Nova metoda za določanje položaja v prostoru na osnovi si-
gnalov WiFi in modela zgradbe

Osnovno predlagano WiFi metodo razdelimo na štiri faze: faza pridobivanja podatkov,
faza modeliranja upada moči, faza simulacije propagacije in faza določanja lokacije.

V fazi pridobivanja podatkov metoda spremlja propagacijo signala z beleženjem RS-
S/RSSI informacij na posameznih APjih. Ko beležimo moč signala, prejetega v do-
stopni točki 𝐴𝑃𝑗, ki izhaja iz dostopne točke 𝐴𝑃𝑖, dobimo informacijo o trenutni
propagaciji signala, v katerega so zajeti dejavniki prostora. Faza pridobivanja podat-
kov neprenehoma teče v ozadju in pridobiva podatke, iz katerih v naslednjih fazah
matematično definiramo trenutno stanje signala v prostoru.

V fazi modeliranja upada moči uporabimo razširjen model logaritemskega upada
moči širjenja signala. Osnovni model propagacije smo razširili s faktorji, ki popisujejo
število sten med dvema dostopnima točkama in količino, ki vključuje odvisnost smeri
odboja signala od stene z nameščenim oddajnikom. Z meritvami smo pokazali [],
da je širjenje signala vzporedno s steno z nameščenim oddajnikom slabše kot širjenje
signala pravokotno na steno; predvidevamo, da je zaznani efekt posledica delovanja
stene, ki deluje kot antenski reflektor.

𝑅𝑆𝑆𝐼𝑚,𝑖 −𝑊𝑚,𝑖 − 𝑅𝑆𝑆𝐼𝑛,𝑖 −𝑊𝑛,𝑖 =

= 10𝛾𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

+ 10𝛽𝑖 log
𝑑𝑖,𝑚
𝑑𝑖,𝑛

× 𝛼𝑖,𝑚 − 𝛼𝑖,𝑛 (B.)

Enačba (B.) opisuje model širjenja signala, ki ga implementira naša metoda. V enač-
bi 𝑅𝑆𝑆𝐼𝑚,𝑖 označuje RSSI signala, ki izvira iz točke 𝐴𝑃𝑖 in je bil sprejet v točki 𝐴𝑃𝑚.
𝑊𝑚,𝑖 označuje vpliv sten med 𝐴𝑃𝑖 in točko 𝑚, 𝑑𝑚,𝑖 označuje razdaljo med točkama,
𝛾𝑖 označuje eksponentni upad moči za dostopno točko𝐴𝑃𝑖, vrednosti 𝛽𝑖 in 𝛼𝑖,𝑚 ozna-
čujeta vpliv kota širjenja signala skladno s formulo (B.). 𝛼𝑖,𝑚 je kot, ki ga tvorita
normala 𝑛𝑖 na steno, ob kateri je postavljena dostopna točka 𝐴𝑃𝑖, in vektor direktne
poti 𝑠𝑖,𝑚 med točkama 𝐴𝑃𝑖 in 𝑚, v radianih deljen s 𝜋/2. Vrednost 𝑊𝑚,𝑖 izračunamo
kot vsoto števila posameznih tipov sten, pomnoženih z njihovim vplivom na širjenje
signala.
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𝛼𝑖,𝑚 =
∢ 𝑛𝑖, 𝑠𝑖,𝑚

𝜋/2 (B.)

V tej fazi uporabimo odčitke iz faze pridobivanja podatkov v zadnjih  minutah
pred procesom določanja lokacije. Znane (npr. razdalje med dostopnimi točkami, šte-
vilo sten, 𝛼 vrednosti) in izmerjene količine (𝑅𝑆𝑆𝐼) rezultirajo v predeterminiranemu
sistemu enačb, iz katerega določimo vrednosti 𝛾𝑖 in 𝛽𝑖 za vsako izmed dostopnih točk
𝐴𝑃𝑖.

V fazi simulacije propagacije uporabimo ITU model [], ki smo ga podobno raz-
širili s količinami za popis vpliva sten in parametrom 𝛽, da simuliramo propagacijo
signala v prostoru in tako dobimo virtualni zemljevid propagacije. Parametri razdeli-
tve prostora morajo biti določeni skladno z velikostjo prostora, računsko zmogljivostjo
in sprejemljivo napako.

V fazi določanja lokacije naprava, ki želi določiti svojo pozicijo, opravi tri iskanja
WiFi dostopnih točk v okolici. Uporaba srednje vrednost treh meritev za vsako do-
stopno točko zagotovi filtriranje meritve. Zajete vrednosti in vrednosti v virtualnem
zemljevidu normaliziramo glede na najmočnejši signal, ki ga je zajela naprava, da delno
naslovimo problem različnosti strojne opreme. Točka, katere vektor tako izračunanih
vrednosti je najbolj podoben vektorju, ki smo ga dobili iz zajetih signalov na napravi,
določa rezultat metode.

Metodo smo evalvirali v dveh zelo različnih okoljih. V pisarniškem okolju smo me-
todo preizkusili v scenarijih enega prostora in dveh prostorov z vmesno steno. Nato
pa smo metodo preizkusili še v modernem stanovanju s šestimi različnimi prostori in
dvema različnima tipoma sten – predelne stene iz mavčnih plošč in stene iz opeke.
Tabela B. povzema statistiko napak, ki smo jih dobili pri -ih oziroma -ih po-
izkusih, opravljenih v pisarni v primeru enega oziroma dveh prostorov. Rezultat za
stanovanjsko evalvacijo bazira na -ih neodvisnih setih meritev, opravljenih v -ih
različnih točkah stanovanja.

Glede na to, da smo metodo razvijali v pisarniškem okolju fakultete in jo nato ne-
spremenjeno prenesli v stanovanjsko okolje, je najpomembnejši rezultat pridobljen
v stanovanjskem okolju. Povprečna napaka med 2 in 3m je primerljiva z najboljši-
mi poznanimi metodami. Hkrati naša metoda zagotavlja prilagajanje spremembam v
prostoru in dolgoročno stabilnost, saj po definiciji metode vplivajo na rezultat le me-
ritve, pridobljene v časovnem oknu 15min pred določanjem lokacije. Poleg tega ima





Tabela B.
Povzetek statistike napak metode WiFi.

Evalvacija Povprečna napaka Mediana napake Odklon
[m] [m] [m]

Pisarna en prostor 2, 63 2, 29 1, 45
Pisarna dva prostora 3, 22 3, 48 1, 58

Stanovanje 2, 65 2, 59 1, 51
Hodnik 3, 72 2, 55 3, 85

naša metoda najmanjše možne strojne zahteve za metodo, ki temelji na signalih WiFi
– poleg dostopnih točk potrebujemo le napravo, ki je sposobna poročati RSS/RSSI
vrednosti dostopnih točk v okolici. Skladno s predhodno diskusijo metoda deluje na
podlagi prejetih signalov na terminalu, zato ni potrebno, da bi naprava delovala v na-
činu dostopne točke.

V eksperimentalnem delu smo zaznali tudi anomalije, ko so dostopne točke, ki so
bile oddaljene dlje od izvora signala, poročale o močnejšem signalu kot dostopne točke
bližje izvora. Matematično to pomeni, da se signal s potovanjem od izvora krepi, kar
pa je fizikalno nemogoče. Takšne anomalije so posledice variacije RSSI vrednosti,
poročanih s strani dostopnih točk. V nalogi pokažemo, kako implementacija posebne
procedure za primere, ko je 𝛾𝑖 negativen, poskrbi, da tudi v takšnih primerih metoda
vrača pričakovane rezultate. Poleg tega tudi pokažemo, kakšni so rezultati, v kolikor
takih primerov ne predvidimo.

Tekom eksperimentov smo prišli do potrditve teze, da postavitev dostopnih točk
močno vpliva na natančnost WiFi metod. V obeh primerih večsobnih preizkusov smo
uporabili neoptimalno postavitev dostopnih točk in na ta način postavili težji izziv svoji
metodi. Glede na to, da si na tem raziskovalnem področju vsak raziskovalec določi
svoje evalvacijsko okolje, to ponovno potrdi tezo, da bi za resnično realno primerjavo
metod morali različne metode evalvirati v istem okolju.

B. MFAM: Večfrekvenčna razširitev metode

Radi bi poudarili, da smo si zadali cilj razviti metodo, ki bi bila neodvisna od frekvenc
in ne bi bila primerna izključno za WiFi signale. Zato smo razvili metodo MFAM, ki
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osnovno WiFi metodo nadgradi za večfrekvenčno uporabo. Eden izmed razlogov so že
predhodno omenjeni prihajajoči WiFi standardi, ki vpeljujejo nove frekvence in lahko
pokrivajo veliko večja področja. Ker strojne opreme, ki bi podpirala te frekvence in
standard, še ni na tržišču, smo morali v eksperimentih uporabiti druge tipe signalov.
V stanovanjskem okolju, v katerem smo ocenjevali WiFi metodo, smo imeli na voljo
brezžično omrežje za avtomatizacijo doma.

Različni sistemi za avtomatizacijo doma (ang. home automation systems) postaja-
jo vse popularnejši, saj prinašajo možnost krmiljenja luči, ogrevanja, ventilacije ipd.
preko telefona in drugih naprav. Večina teh sistemov deluje brezžično in s pomočjo
baterijskega napajanja, kar olajša implementacijo teh sistemov v obstoječe objekte. V
stanovanju, kjer smo izvajali testiranje WiFi metode, je implementiran sistem za av-
tomatizacijo doma, ki krmili posamezne radiatorje po sobah in skladno s potrebo po
toploti vklaplja in izklaplja etažno peč. Sistem komunicira preko zaprtega protoko-
la na frekvenci 868MHz, kar je relativno zelo blizu frekvenc, na katerih bo deloval
protokol .ah.

Glavna razlika med WiFi in različnimi protokoli za avtomatizacijo doma je v topo-
logiji omrežij. V slednjih je največkrat dosegljiva samo  naprava iz TCP/IP omrežja,
komunikacija s preostalimi napravami pa je onemogočena. Skladno s tem je bilo treba
prilagoditi nekaj podrobnosti v fazah pridobivanja podatkov, modeliranja upada mo-
či in simulacije propagacije. Ker se omrežji razlikujeta v topologiji in v teh omrežjih
naprave direktno med seboj ne komunicirajo, je glavna razlika v tem, da imamo v tem
primeru na voljo manj meritev, iz katerih lahko ocenjujemo parametre 𝛾𝑖 in 𝛽𝑖. Zato
v primeru omrežja za avtomatizacijo doma ne določamo parametrov 𝛾𝑖 in 𝛽𝑖 za vsako
izmed dostopnih točk posebej, ampak le en skupen set parametrov 𝛾 in 𝛽. Glede na
manjšo količino podatkov, iz katerih lahko izračunamo parametre, ne pričakujemo, da
bo natančnost ob uporabi izključno omrežja za avtomatizacijo doma boljša od uporabe
WiFi. Nadejamo pa se boljšega rezultata ob upoštevanju obeh tipov signalov.

V dodatni . fazi MFAM metode delamo fuzijo lokacije posameznih frekvenc. Do-
ločili smo način fuzije, ki ga definira enačba (B.). V enačbi 𝑥, 𝑦

𝑀𝐹𝐴𝑀
predstavlja

rezultat MFAM metode, 𝑓 frekvenco, pri kateri poteka evalvacija, 𝑆𝐷𝑓 standardni od-
klon napake, ki jo metoda naredi pri frekvenci 𝑓. 𝑥, 𝑦

𝑓
predstavlja lokacijo, ki jo





Tabela B.
Primerjava natančnost metod ob uporabi različnih signalov.

Uporabljeni signali Povprečna napaka Mediana napake Odklon
[m] [m] [m]

WiFi 2, 65 2, 59 1, 51
868MHz 3, 21 3, 01 1, 88

868MHz & WiFi 2, 16 2, 14 1, 30

določi metoda pri frekvenci 𝑓.

𝑥, 𝑦
𝑀𝐹𝐴𝑀

= 1
∑𝑓


𝑆𝐷𝑓

⎛
⎜⎜⎜⎜⎜⎜⎝𝑓

1
𝑆𝐷𝑓

𝑥, 𝑦
𝑓

⎞
⎟⎟⎟⎟⎟⎟⎠ (B.)

Tabela B. primerja statistiko napak ob uporabi različnih tipov signalov pri evalvaciji
v stanovanjskem okolju. Evalvacija je bila razdeljena na  neodvisne sete meritev, ki
smo jih opravili na -ih različnih lokacijah. Iz tabele je razvidno, da je kombinacija
omrežja za avtomatizacijo doma in WiFi signalov s stališča natančnosti najboljša, saj
rezultate WiFi metode izboljša za 18%.

B. Zaključki

Na Gartnerjevem ciklu prihajajočih tehnologij je IoT platforma še vedno pred vrhun-
cem napihnjenih pričakovanj. Kljub temu da trg še vedno ni realno definiral področja
IoT, pa se raziskovalci trudimo razvijati potrebne tehnologije. Naš cilj doseči uporab-
nost metode v realnih razmerah nas je vodil preko analize obstoječih metod, identifi-
kacije slabosti, dolgoročne analize RSSI in nam določil robne pogoje za razvoj.

Skladno z željami in cilji smo razvili metodo, ki implementira algoritme za nepre-
nehno prilagajanje parametrov modela spremembam v okolici brez človeškega posre-
dovanja. Metoda je zasnovana brez uporabe statičnih parametrov, zato je po definiciji
enako natančna tik po zagonu in mesece ter leta kasneje. Pomembna lastnost metode
je neuporaba statičnih parametrov, vezanih na prostor, kar obljublja uporabnost ne
glede na prostor. To smo dokazali z evalvacijo v dveh različnih okoljih, edina vhodna
parametra metode so pozicije dostopnih točk in pozicije in materiali pregradnih sten.
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V evalvaciji v pisarniškem in stanovanjskem okolju je metoda dosegla povprečno napa-
ko 2 do 3m, kar metodo dela primerljivo s trenutno najboljšimi sorodnimi metodami.
Dokaz, da prostor ne vpliva na našo metodo, je viden v tem, da je velikost napake v
obeh evalvacijskih okoljih podobna. V nalogi pokažemo, kako so evalvacije metod
velikokrat pomanjkljive in prostori nereprezentativni, hkrati so metode navadno eval-
virane le v okolju, v katerem so bile razvite. V nalogi podajamo tudi primerjavo metod
z ozirom na površino evalvacijskega okolja in številom naprav, saj oba parametra moč-
no vplivata na povprečno napako.

Uspešna evalvacija WiFi metode nam je dala zagon za nadaljnje raziskovalno delo, v
katerem smo razvili metodo MFAM, ki omogoča določanje lokacije na podlagi različ-
nih frekvenc. Metodo smo aplicirali na 2,4GHz signale WiFi in na 868MHz signale
sistema za avtomatizacijo doma. MFAM metoda je v eksperimentih dosegla boljše re-
zultate kot WiFi metoda. Povprečna vrednost napak se je gibala med 2 in 2,3m in
hkrati izkazala povprečni standardni odklon 1,3m. MFAM metoda je v posameznih
evalvacijah izboljšala povprečno napako za 6 do 30% v primerjavi z evalvacijami ene
frekvence.

Tekom raziskovalnega dela smo razvili metodo za lokalizacijo znotraj prostorov, ka-
tere glavno vodilo je bila uporabnost v realnem okolju. Razvili smo WiFi metodo in
posplošeno MFAM metodo za večfrekvenčno uporabo, ki dosegata natančnosti, pri-
merljive z najboljšimi metodami, hkrati pa poenostavljata implementacijo ter vzdrže-
vanje dolgoročne natančnosti. Znanstvene doprinose našega dela lahko strnemo kot:

metoda za neprekinjeno spremljanje propagacije signala in kalibracijo modela
propagacije, primerna za številne modelne pristope, ki delujejo na podlagi RS-
S/RSSI;

nova prilagodljiva metoda za določanje položaja v prostoru na osnovi signalov
WiFi in modela zgradbe, ki močno poenostavlja implementacijo in vzdrževanje
pri realni uporabi, medtem ko zagotavlja natančnost, primerljivo s trenutno
najboljšimi metodami;

MFAM metoda, ki generalizira WiFi metodo in omogoča določanje položaja v
prostoru na podlagi več frekvenc.

Vsak zaključek nekega poglavja odpira nova vprašanja za prihodnost. Tako se ob
zaključku tega dela ponuja nekaj iztočnic za delo v prihodnosti. Večina naprav v naših





domovih je pretežno stacionarna, zanimivo bi bilo raziskati, kako se metoda obnaša
v primerih, ko se naprava premika. Veliko metod, ki temeljijo na brezžičnih signa-
lih, so raziskovalci združili z metodami, baziranimi na inercijskih senzorjih, in raznimi
metodami za zaznavo bližine. Kako dobre rezultate lahko predlagani WiFi in MFAM
metodi dosežeta v povezavi s podobnimi sistemi? Najzanimivejše področje dela v pri-
hodnosti se kaže v povezavi MFAM metode s programsko določenimi radijskimi spre-
jemniki (ang. software defined radio, SDR). Kakšno natančnost lahko dosežemo s
SDR moduli, ki bi delovali kot dostopne točke in mobilni terminali? Bi znali določiti
frekvence, ki bi dale optimalne rezultate? In nenazadnje vprašanje kako določiti uteži v
zadnjem koraku MFAM metode brez empiričnega poizkusa. V kolikor bi našli odgo-
vor na ta problem, bi tudi MFAM metoda postala metoda, ki ne potrebuje kalibracijske
evalvacije za svoje delovanje. Razvoj takšnih metod je po našem mnenju končni cilj
raziskovalcev metod za določanje lokacije znotraj stavb za prihodnje tehnologije IoT.
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