

Seminar Autonomous Systems 17/18 Cesena, 30/5/2018

Decision Support Systems for Integrated Care of Complex Chronic Patients

Stefano Mariani DISMI - UNIMORE

What is CONNECARE?

- European project
 - Call: <u>https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/phc-25-2015.html</u>
 - type: Research and Innovation Action (RIA)
 - topic: Advanced ICT systems and services for integrated care
 - funding framework: H2020

"Personalised Connected Care for Complex Chronic Patients"

- web page: <u>http://www.connecare.eu/</u>
- consortium: 2 universities, 3 research institutions, 2 hospitals, 2 companies, spread across 6 countries
- funding amount: ~ 5 billions (\in)

• Goals:

- novel smart and adaptive organisational integrated care model for complex chronic care management
- decision support for the adaptive management of personalised clinical pathways
- recommendations to let patients *self-manage* their condition
- *clinical trials* to assess the approach and favour adoption
- advance state of art in *4P medicine* (predictive, preventive, personalised, and participatory)

Integrated care:

- *defragmentation* of health and social care systems
- promotion of *collaboration* and continuity among care settings
- from institutional, reactive care to a home-based, *patientcentred*, *preventive* model
- 3 dimensions:
 - organisational
 - social
 - technological

- Complex Chronic Patient:
 - > 1 chronic diseases
 - comorbidities
 - frail (due to social, economic and/or clinical factors)
 - usually elderly
 - who consumes a very high level of health resources
- EU numbers (<u>http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=hlth_silc_05&lang=en</u>):
 - CCP's health status is suffered by about 5% of the general population
 - 20-40% of all hospital admissions are CCPs
 - \bullet > 40% of health resources consumed

- Smart and adaptive care:
 - risk stratification based on state of art stratification algorithms (e.g., GMA, CRG)
 - *mapping* to correlate the patients' geographical location with the health care resources available
 - clinical pathways planned based on risk stratification and mapping
- Self-management:
 - monitoring
 - recommendations

- **SACM** (= Smart Adaptive Case Management)
 - implementation of the CONNECARE approach to Adaptive Case Management (= flexible handling of patient-centred care processes)
 - "flexible" = programmable (the process) by non-programmers

- **SMS** (= Self-Management System)
 - implementation of the CONNECARE approach to personalised medicine and patient empowerment
 - towards patient-centred care

The Clinical Decision Support System

The Clinical Decision Support System

Risk assessment

Motivations:

- paradigm shift towards *predictive* and *personalised* medicine —> new computational requirements for predictive modelling
- rule-based systems for clinical management accepted in clinical practice
- exploitation of *predictive modelling* still far from reaching maturity
- European Union study on Big Data in Public Health, Telemedicine, and Healthcare identifies opportunities for improvement
 - standards and protocols
 - technological development
 - data analytics
 - <u>https://ec.europa.eu/digital-single-market/en/news/study-big-data-public-health-telemedicine-and-healthcare</u>

• Goals:

- *accessibility* from clinicians' workstations
- flexibility of *licensing* policy and software (re)configuration
- openness to iterative software improvement

separation of concerns

- data scientists build prediction models offline
- when model ready (= evaluated) upload to CDSS
- clinicians apply model to patients' data from web app

Benefits:

- independent development vs. deployment of predictive models
- easily integrate novel models in production environment
- development of models in *different programming languages* and toolkits regardless of production environment
 - i.e. caret for R, scikit-learn for Python vs. Java

$\bullet \bullet \bullet \bullet \bullet \bullet$

data scientist

- upload / download / modify / delete risk prediction models
- upload datasets meant for training / testing / application
- download prediction results
- clinician
 - get predictions of selected events (i.e. re-admission, mortality) by selected available models
- SACM
 - trigger the CDSS to make a prediction using a selected model
 - lend to the CDSS the data it needs
 - get from the CDSS the prediction to be written back to the patient data
- · CDSS
 - train / test / apply models

$\bullet \bullet \bullet \bullet \bullet \bullet$

• Web API

• *RESTful endpoint* the other CONNECARE sub-systems

Translation Service

 translation between *representation formats* of prediction models, i.e. automatic translation to **PMML** and **PFA** of models in R or Python

Prediction Service

• predictions based on models fed with supplied input data

Learning Service

- enabling the CDSS to *build* its own risk prediction models based on patient data available in the SACM
- may get feedback from prediction service (i.e. predictions for training)

Shared Storage

- data and meta-data for CDSS execution
- excluded the patient data into the SACM

- JSON / XML for patient data and metadata
- PMML / PFA to represent prediction models
 - XML / JSON based representation formats for predictions models
 - PFA supersedes PMML but still in development
 - interoperability between language / toolkits
 - 3rd party libraries for conversion
 - i.e. jpmml-r from R to PMML, Titus from Pyhton to PFA
- Smile Java library for training models
- Redis DB for storing models and metadata
 - in-memory
 - key-value pairs (modelUUID-model)
 - replication
 - configurable persistency

sion,

CONNECARE

- "Machine Learning as a Service" (MLaaS) paradigm ("MLaaS: Machine Learning as a Service", doi: 10.1109/ICMLA.2015.152)
- Share not data but "black-box" models (already trained)

models are built once, and then "run" everywhere (http://dmg.org/pfa/docs/motivation/)

The Clinical Decision Support System

Mapping

- lack of "global view" on patients' status for clinicians
- identifying *relevant* medical facilities is hard without automation

• Goals:

- facilitate patients' monitoring by clinicians
- support *planning* of home visits by nurses

• Must-have:

- locate patients on a map
- render patients differently depending on selected clinical metric
- render patients differently depending on whether they have active alerts
- locate medical facilities on a map

Nice-to-have:

- locate also patients' relatives / caretakers
- highlight medical facilities relevant to selected patient
- automatic planning of home visits

μ.

$\bullet \bullet \bullet \bullet \bullet \bullet$

- The map is provided by Open Street Map API
 - map rendering (i.e. <u>http://leafletjs.com/</u>)
 - geocoding (i.e. <u>https://nominatim.openstreetmap.org/</u>)
 - navigation (i.e. <u>https://www.graphhopper.com/</u>)
 - also *on-premise* (which overcomes usage limits)
- Google Maps API is another option
 - Free usage
 - 2,500 free requests per day
 - 50 requests per second
 - Subscriptions available (<u>https://developers.google.com/maps/premium/usage-limits</u>)
- Simple front-end based on *Leaflet* + *Bootstrap*
- Back-end fetches data from SACM

The Clinical Decision Support System

Clinical pathways

Motivations:

- paradigm shift towards *predictive* and *personalised* medicine
- *rule-based* systems for clinical management accepted in clinical practice
- exploitation of data analytics still far from reaching maturity
 - mostly due to ethical and legal issues

• Goals:

- suggest treatments, medications, etc. to clinicians based on patient status
 - clinical, cognitive, social, ...
- namely, define the clinical pathway
- *accessibility* from clinicians' workstations
- *flexibility* of licensing policy and software (re)configuration
- openness to iterative software improvement

- Clinical pathway = process composed of well-standardised tasks to be carried out on a patient based on health and social condition
 - vs. *industry*: treatment process *varies* for each patient and depends on the *evolving* health state of the patient
 - therefore, needs to be adapted dynamically
 - "do W, then if X do Y, unless Z holds" etc. at runtime

- Possible approaches:
 - Case-based reasoning
 - "if in the past X worked for Y, and Z is similar to Y, do X for Z too"
 - strict constraints on software architecture
 - more feasible as a *methodology* to follow

Association rules mining

- needs lots of data
 - patient clinical status details (each individual symptom, exam, etc.)
 - correspondant therapy (medication, activities, etc.)
 - outcome (impact of a therapy on a status)
- outputs rules *associating* each therapy to each status, with metadata:
 - likelihood of success
 - confidence/coverage of the rule
- Rule-based system

Rule-based system

- no need for data
- but strong collaboration with clinical partners to define rules
 - literature, best practices, etc.
- Rules associating disease / clinical status / symptom to therapy / medication / prescription
 - + rules constraining composition of therapies / medications / prescriptions
 - conflicting medications, therapies, etc.
 - ordering of actions
 -
 - + definition of *admissible* therapies / medications / prescriptions
 - + definition of *metrics* to measure success / failure of the above

RULE = what? generally, "when EVENT if CONDITION then ACTION" in healthcare, = when TASK if DISEASE then PRESCRIPTION ? = when STAGE if CONDITION then THERAPY ? -Post-hospitalization Work Plan Definition (Hospital / (figurse) Patient Clinician) (Clinician) (Physio) (Clinician) Primary Care) Social Prescription Prescription Education and Prescription the Prescription the Interventions Agreement Auto-check Training to the Vital Signs physical activity rehabilitation Work Plan proposal Health Status Caregiver Monitoring !Þ Definition <u>I</u>D !⊳

Because of what a physical prescription is due? Which health condition triggers vital signs monitoring? Which factors motivate the need for proposing social interventions?

The Recommender System

Motivations:

- paradigm shift toward *personalised medicine*
- paradigm shift toward patient empowerment
- patients need constant engagement for fullfilling prescriptions
- clinicians need regular *feedback* on prescriptions

• Goals:

- *motivate* patients to fullfill prescriptions
- keep clinicians updated on *adherence* of patients to prescriptions
- promote disease management and relationship with healthcare providers

$\bullet \bullet \bullet \bullet \bullet \bullet$

- **Prescription**: *tasks* assigned to patient by clinician (i.e. physical activity, medications, questionnaires, ...)
- Fulfillment: (partial) accomplishment of a prescription by the patient
- Adherence: compliance to prescriptions
 - i.e. not compliant, almost compliant, compliant, outstanding

- Strategy / Policy: criteria guiding *decision making* about
 - *how* to compute the adherence (strategy)
 - i.e. % of activity done w.r.t. prescription goal
 - which recommendation / feedback to send (policy)
 - 1.compute *ideal average* activity (= to get to 100%) per time unit (i.e. daily basis)
 - 2. compare with activity done
 - 3.<25%, <50%, <75% *thresholds* to generate alert, warning, motivational (award if >=100%) recommendations
 - when (policy)
 - i.e. adherence too low or approaching prescription deadline

- **Recommendation**: message for the patient as engagement, reward, or warning, depending on adherence
- Feedback: message for the clinician as follow-up, depending on adherence Several examples of recommendations:

	Based on event	For patient	For clinician
lata	The average number of steps improves (last week, month, etc.)	Awards for patient ("Very good!", "Keep it up!")	Feedback: e.g. update prescription
Based on historical o	The average number of steps decreases (last week, month, etc.)	Alert/Motivational message for patient ("Try to do it better!", "Yes you can!")	Alert: compliance gets worse, detect the problem and adjust prescription or motivate the patient.
Based on real-time data	Today's number of steps fulfilled	Awards for patient ("Very good! What a wonderful day!", "Better than yesterday!")	Feedback: punctual compliance
	Today's number of steps not fulfilled	Alert/Motivational message for patient ("You can do it better and you know it!", "Last week you did it better"," It's 18:00 and you've only done 50% of the steps.")	

$\bullet \bullet \bullet \bullet \bullet \bullet$

Personalisation:

- reasonably well agreed upon *structure* of a generic recommendation message
- i.e., "Tailored motivational message generation: A model and practical framework for real-time physical activity coaching" (doi: 10.1016/j.jbi.2015.03.005)

- Not so well understood mechanisms for *automatically* generating the messages
- Many different approaches, mostly either rule-based or exploiting machine learning
- 5 languages in CONNECARE
 - spanish, catalan, dutch, hebrew, russian

Sentence template:

- ALERT
 - "Hi *\${rec.target}*, is everything alright? Your *\${rec.level}* of *\${rec.metric}* goal is still far away...time to move! *\${rec.expiration}* is approaching :)"
- WARNING
 - "Hi \${rec.target}, how is it going? You're almost done with \${rec.metric}, only \${rec.remaining} remaining :) Make sure to make it for \$
 {rec.expiration}!"

•

- Things within \${ } are the templates to be substituted at runtime for personalization
- Things outside are to be translated, some *manually*, some *automatically*
 - depending on whether they embed some grammar rule or not
 - depending on availability of *Natural Language Generation* libraries
 - i.e. SimpleNLG (<u>https://github.com/simplenlg/simplenlg</u>)

Contextualisation:

- weather conditions
- time of the day and day of the week (plus holidays, etc.)
- patient's mood, habits, preferences, etc.
- unexpected events (hospitalisations, acute episodes, etc.)

• ...

- What context to consider?
 - weather? —> need GPS consent of patient
 - holydays or calendar events? —> need access to patient calendar
 - personal preference? —> need user profilig consent

Opportunities

43

risk assessment

- play with health data using machine learning
- play with *distributed systems* using micro-services

• mapping

- play with data using *text mining*
- play with web apps using micro-services
- play with graph data using visualisationa and navigation algorithms
- pathways
 - play with health data using *rule engines*
 - play with health data using case-based reasoning
 - play with distributed systems using micro-services

Recommender

- play with text content using natural language generation
- play with non-health data using *context recognition algorithms*
- play with *distributed systems* using micro-services

Thanks Bedankt תודה Gràcies Grazie Danke

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689802