
A gentle introduction to the
Blockchain and Smart contracts

Giovanni Ciatto { giovanni.ciatto@unibo.it }

Talk @ Autonomous Systems Course, A.Y. 17/18
Dipartimento di Informatica, Scienza e Ingegneria—Università di Bologna

May 30, 2018

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 1 / 79

Acknowledgements

I wish to thank my supervisor Prof. Andrea Omicini, and my colleagues
Prof. Enrico Denti, Dr. Stefano Mariani, and Dr. Roberta Calegari for the
many fruitful discussions which I tried to synthesise in these slides.

— G. Ciatto

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 2 / 79

Talk Outline

1 State Machine Replication

2 The blockchain’s main elements

3 Smart contracts

4 Research perspectives

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 3 / 79

State Machine Replication Overview

State Machine Replication (SMR) [24, 10]

Main idea

Executing the same (not necessarily finite) state machinea over multiple
independent (possibly distributed) processors, in parallel, in order to
achieve:

fault tolerance (to stops, crashes, lies, bugs, etc)

availability and reactivity

data / software replication & untamperability

aState machine ≈ program

A network of replicas

When distributed, we say the processors constitute a peer-to-peer (P2P)
network of replicas, all exposing the same observable behaviour

! no assumption about the topology

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 5 / 79

State Machine Replication Overview

State Machine Replication (SMR)

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 6 / 79

State Machine Replication Deterministic computations

Deterministic stateless computations

Input −→ Computation −→ Output

The computation is deterministic if it always produces the same output
when it is performed on the same input.

Can be arbitrarily replicated

Replicas can be run in parallel

Deterministic

class Calculator {

int sum(int x, int y) {

return x + y;

}

}

Non-deterministic

class Lottery {

int extract(int max) {

Random fate = new Random ();

return fate.nextInt(max);

}

}

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 7 / 79

State Machine Replication Deterministic computations

Deterministic stateful computations I

(Input, State) −→ Computation −→ (Output, State ′)

The computation is deterministic if it always produces the same output
when it is performed on the same input and state.

Can be arbitrarily replicated & replicas run in parallel

All replicas must be initialised within the same initial state

All inputs must be submitted to all replicas in the same order1

They all move through the same sequence of states
Maintaining the consistency of the state among on inputs

1input ≈ method call
Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 8 / 79

State Machine Replication Deterministic computations

Deterministic stateful computations II

Deterministic

class Ledger {

Map <String , Integer > balances = // all accounts to 0

void deposit(String userID , int money) {

balances[userID] += money;

}

boolean transfer(String sender , String receiver , int money) {

if (balances[sender] >= money) {

balances[sender] -= money;

balances[receiver] += money;

return true;

}

return false;

}

}

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 9 / 79

State Machine Replication Deterministic computations

Deterministic stateful computations III

Non-deterministic

class RaceCondition {

int shared = 0;

Thread t1 = new Thread(() -> shared ++);

Thread t2 = new Thread(() -> shared --);

int guess() {

t1.start (); t2.start(); t1.join(); t2.join();

return shared;

}

}

The Blockchain is essentially a means for replicating deterministic stateful
computations

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 10 / 79

State Machine Replication Universal SMR

“Universal” State Machine Replication

UTM : TM = Interpreter : Program = SMR : ?

! UTM
def
= Universal Turing Machine — TM

def
= Turing Machine

We can replicate a stateful deterministic program implementing a
particular business logic

! e.g. a bank ledger

In the exact same way, we could replicate a deterministic program
implementing an interpreter

! interpreter ≈ a program which executes other programs

The API of such an interpreter would enable programs to be
deployed, undeployed, invoked, etc.

Smart-contracts-enabled Blockchains essentially act as replicated
“universal” state machines on which smart contracts (SC) can be deployed

! Smart contract ≈ a program deployed on such a machine

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 11 / 79

State Machine Replication Universal SMR

“Universal” State Machine Replication – Example

class VirtualMachine {

Map <String , Program > processes = // empty

Compiler cc = // ...

void deploy(String pid , String code) {

Program newProgram = cc.compile(code);

processes[pid] += newProgram;

}

Object invoke(String pid , Object [] args) {

Object result = null;

if (processes.containsKey(pid)) {

result = processes[pid].call(args);

}

return result;

}

}

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 12 / 79

State Machine Replication SMR and Open Distributed Systems

SMR and Distributed Systems

Messages may be lost, reordered, or duplicated by the network2

each node may perceive a different view about the system events

Lack of global time
=⇒ lack of total ordering of events

=⇒ lack of trivial consistency

Consistency, Availability, Partition-resistance (CAP) theorem [7]

=⇒ you cannot have more than two of them

Authentication is required if the replicated service is user-specific

2messages ≈ inputs to replicated processes
Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 13 / 79

State Machine Replication SMR and Open Distributed Systems

SMR, Middleware, and Consensus I

Each replica is executed on top of a middleware taking care of validating
& ordering inputs for the replicated program

It is then invoked on all nodes with the same sequence of inputs

The middleware makes nodes participate to a consensus protocol

i.e. a distributed algorithm aimed at selecting the next input
... producing the so-called atomic broadcast

! Fischer, Lynch and Patterson (FLP) theorem [15]

=⇒ impossibility of consensus without timing assuptions

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 14 / 79

State Machine Replication SMR and Open Distributed Systems

SMR, Middleware, and Consensus II

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 15 / 79

State Machine Replication SMR and Open Distributed Systems

SMR and Open Distributed Systems

How can we prevent a protocol participant from

lying w.r.t. the protocol rules or exchanged data?
being buggy, therefore breaking the rules or producing wrong data?
crashing?
. . . in general: being byzantine?

Long story short: we can’t.

BUT we can tolerate some byzantine nodes

! Less than 1/3 of the total amount of nodes, according to
Lamport’s Byzantine Generals Problem solution [19]

We can also ease the recognition of prohibited or unauthorised
behaviours by employing cryptography

e.g. Pub/Priv key pairs for user authentications
e.g. 1-Way Hash functions and MAC for data integrity

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 16 / 79

State Machine Replication SMR and Open Distributed Systems

SMR and Open Distributed Systems

Takeaway

The blockchain is a smart way to achieve (U)SMR, dealing with – i.e.,
mitigating – well known issues of open distributed systems.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 17 / 79

The blockchain’s main elements

Disclaimer

Most of Blockchain-related works describe a specific blockchain technology
(BCT henceforth) using a bottom-up approach. I believe this approach

hinders generality and limits the discussion about what we can do on top
of BCTs. In this section, I try to present the blockchain in a top-down

way, synthesising informations from a number of sources, being [23], [28], [3]

the most prominent ones. Errors and misunderstanding are possible, and in
any case they are my sole responsibility.

The following description of the blockchain architecture and functioning is
strongly inspired to Ethereum3, being the most mature, studied, and

documented smart-contracts-enabled BCT.

— G. Ciatto

3
https://github.com/ethereum/wiki/wiki/White-Paper

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 19 / 79

https://github.com/ethereum/wiki/wiki/White-Paper

The blockchain’s main elements Overview

Overview

Blockchain Technology (BCT)

A clever implementation of a SMR system keeping track of which users
own some assets (representations), by means of a replicated ledger

e.g. The Ledger snippet

Smart-contracts-enabled BCT

A clever implementation of a USMR system keeping track of assets
(representations) owned by entities – there including smart-contracts (SC),
i.e. processes, owning code and state –, by means of a replicated ledger

e.g. The VirtualMachine snippet

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 20 / 79

The blockchain’s main elements Entity identifiers

Entity identifiers

Users

Users are supposed to own (at least) one (Kpub, Kpr) key pair

They are identified by some function f (Kpub) of their public key

e.g. 1-way-hash functions
e.g. digital certificates issued by some trusted CA

! Identifiers are also known as addresses in this context

Permissioned vs Permissionless

Either each user owns multiple non-intelligible identifiers. . .

X Pseudonymity X Decentralised × Sybil-attack [12]

. . . or he/she owns a single certified identifier

× Single point of failure/trust

! Smart-contracts-enabled BCTs identify both smart contracts’
instances and users by means of the same sort of addresses

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 21 / 79

The blockchain’s main elements The world state

The world state I

The system state

〈SystemState〉 ::= entityID 7→ 〈Account〉
| 〈SystemState〉 〈SystemState〉

The system state conceptually consists of a mapping between entity
identifiers and arbitrary account data related to that account

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 22 / 79

The blockchain’s main elements The world state

The world state II

The account state

e.g. 〈Account〉 ::= (balance, 〈Storage〉 , 〈Code〉 , 〈Metadata〉)

The account state conceptually consists of several fields keeping track of
what a particular entity currently owns. The fields may vary depending on

The blockchain nature

Whether the entity is a smart contract or a user

e.g. BCTs coming with native cryptocurrencies, usually keep track of
accounts balances (at least)

e.g. Smart-contracts-enabled BCTs, may keep track of their source code
and internal 〈Storage〉

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 23 / 79

The blockchain’s main elements The world state

The world state III

class Ledger {

Map <String , Integer > balances = ...

// ^^^^^^^^

// system state

void deposit(String userID , int money) {

// ^^^^^^

// entity identifier

balances[userID] += ...

// ^^^^^^^^^^^^^

// account state

}

}

Several possible
implementations

Unspent Transaction
Output (UTXO)

e.g. Bitcoin [23]

Account-based

e.g. Ethereum [28]

Key-value store

e.g. Hyperledger
Fabric [3]

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 24 / 79

The blockchain’s main elements Transactions

Transactions (a.k.a. inputs or messages) I

(Informal) Definition

〈Transaction〉 ::= (txID, issuerID, 〈Signature〉 , recipientID, value, 〈Data〉)

Transactions encode (world) state variations yet to be performed.

txID — the transaction progressive number

issuerID — the address of the transaction issuer entity

〈Signature〉 — the cryptographic signature of the transaction

recipientID — the address of the transaction recipient entity

value — some non negative amount of cryptocurrency

〈Data〉 — some arbitrary data

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 25 / 79

The blockchain’s main elements Transactions

Transactions (a.k.a. inputs or messages) II

Transaction use cases (for smart-contracts-enabled BCTs)

Deployment TX — if recipientID = ∅ ∧ 〈Data〉 = code

Invocation TX — if recipientID = address ∧ 〈Data〉 = whatever

Money transfer TX — if recipientID 6= ∅ ∧ value > 0 ∧ 〈Data〉 = ε

Transactions life-cycle — part 1

1 A issuer user compiles a transaction

2 He/she signs it with his/her private key Kpr

3 His/her node spreads the transaction over the P2P network

4 Peers only take into account valid transactions

5 . . .

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 26 / 79

The blockchain’s main elements Transactions

Transactions (a.k.a. inputs or messages) III

Transactions validity

In order for a transaction to avoid being dropped by peers:

it must be well formed

the signature must match the issuer address

the signature must certify the transaction integrity

the issuer’s balance must be ≥ value

! Even once a valid transaction has been spreaded over the network,
there is no guarantee on when it will be executed

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 27 / 79

The blockchain’s main elements Blocks and block chains

Blocks and block chains I

(Informal) Definition

〈Block〉 ::= (prevHash, index, time, 〈TxList〉 , 〈FinalState〉)
〈TxList〉 ::= (〈Transaction〉 , 〈IntermediateState〉)

| 〈TxList〉 〈TxList〉

Blocks are timestamped, hash-linked lists of transactions.

prevHash — the hash of the previous block

index — the index of the current block

time — the timestamp of the current block

〈TxList〉 — the list of transactions included into the current block
and the intermediate system states they produces

〈FinalState〉 — the system state resulting from applying all transactions
in 〈TxList〉, respecting their order

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 28 / 79

The blockchain’s main elements Blocks and block chains

Blocks and block chains II

TXs

hash()

Index i-1

Timestamp

TXs

hash()

Index i

Timestamp

TXs

hash()

Index i+1

Timestamp

Statei-1 Statei Statei+1

Int. States Int. States Int. States

Figure: Graphical representation of the Block-chain from the global p.o.v.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 29 / 79

The blockchain’s main elements Blocks and block chains

Blocks features

Replication + Hash-chaining Untamperability of the past

Hash-chain + Time + Ordering Timestamping/notary service [16]

Hash-chain + Crypt. signatures

{
Accountability

Non-repudiation

They are supposed to be published (almost) periodically

! In the general case limn→∞ P[inconsistent(Bi)] = 0, where

Bi is the i th block
n is the amount of successor blocks of Bi

inconsistent(Bi) is true if not all nodes agree on the content of Bi

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 30 / 79

The blockchain’s main elements Blocks and block chains

A block’s life I

The genesis block

The very first block is assumed to be shared between the initial nodes

Blocks life-cycle — part 1

Each node, periodically:

1 listens for transactions published by other nodes

2 validates, consistency-checks & executes them

3 compiles the new local candidate block
4 participates to the consensus algorithm

i.e. negotiates the next block to be appended to the blockchain
! this phase include a spreading of the block to peers

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 31 / 79

The blockchain’s main elements Blocks and block chains

A block’s life II

Transactions life-cycle — part 2

4 the transaction is validated by peers upon reception

and dropped if invalid

5 each transaction is eventually executed

producing an intermediary state

6 they are both included into some block
7 the block is eventually appended to the blockchain

i.e. a consensus protocol confirms the block
(there including its transactions)

! These life-cycles may vary a lot depending on the specific
consensus algorithm employed

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 32 / 79

The blockchain’s main elements Blocks and block chains

The network point of view

Transactions
Blocks
Blockchain
Miners
Clients

Figure: Graphical representation of the Block-chain from the network p.o.v.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 33 / 79

The blockchain’s main elements Consensus & Mining

Consensus & Mining I

Permission-ed BCTs

Constrain users’ IDs through CAs

⇓

“Classical” quorum/leader-based
consensus algorithms

BFT algorithms

e.g. PBFT [9]

e.g. BFT-SMaRt [26]

e.g. HoneyBadger BFT [22]

Non-BFT algorithms

e.g. Paxos [17]

e.g. Raft [18]

e.g. ZooKeeper, Google Chubby

Permission-less BCTs

Open access to any (Kpub,Kpr)

⇓

“Novel” competition-based
approaches

e.g. Proof-of-Work [6]

e.g. Proof-of-Stake [1]

e.g. Proof-of-Elapsed-Time [11]

e.g. IOTA Tangle [2]

Comparisons & surveys in [5, 8]

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 34 / 79

The blockchain’s main elements Consensus & Mining

Consensus & Mining II

Permission-ed BCTs

“Classical” quorum/leader-based
consensus algorithms

Assumptions on the amount
N of nodes

UB up to ∼ 100 / 1000

High throughput in terms of
TXs/second

OoM ∼ 1000 TXs/s

“Exact” consistency

Ideal for closed multi-
administrative organizations

Permission-less BCTs

“Novel” competition-based
approaches

No assumption on N

UB virtually ∞
Low throughput

OoM ∼ 10 TXs/s

Probabilistic consistency

Ideal for open systems

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 35 / 79

The blockchain’s main elements Consensus & Mining

Proof-of-Work (PoW)

PoW (a.k.a. mining) — the typical approach in cryptocurrencies

Nodes (a.k.a. miners) compete to be the first one to solve a
computational puzzle, once every ∆T seconds

B finding a block hash having a given amount of leading zeros
Ξ hashing (pseudo)random pieced of data attained form the block content

The proof of the effort is easy to verify and included into the block

The block is spreaded on the P2P network

Other miners confirm the novel block by mining on top of it

Forks (i.e. inconsistency) are eventually aborted

B Longest comulative difficulty
Ξ Greedy Heaviest Observed SubTree (GHOST [25])

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 36 / 79

The blockchain’s main elements Consensus & Mining

PoW interesting features

Competition-based, local, eventually-consistent, stochastic approach

Self-adaptive mining difficulty, s.t. E[∆T] = const

! the system update frequency is 1/E[∆T]

Only computing power (CP) matters here

Sybil-attack resistant
CP distribution & Majority rule (51% attack) [14]

! Endows the cryptocurrency with its economical value

! Miners require economical compensation for their effort

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 37 / 79

The blockchain’s main elements Consensus & Mining

PoW security

r = adversaryCP
honestsCP

P[n | r] = 1−
∑n

k=0
(nr)ke−nr

k! (1− rn−k)
(see [23])

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10

P
(n

)
-

P
ro

b
ab

ili
tà

 s
u

cc
es

so
 D

SA

n - Numero di blocchi

10%

15%

20%

25%

30%

35%

40%

In Bitcoin:

nthreshold = 6

≈ 1h since
E[∆T] =
10m

99.999%
secure if
adversaryCP <
13% totalCP

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 38 / 79

Smart contracts Definition

Smart contracts [27]

(Informal) Definition

Stateful, reactive, user-defined, immutable, and deterministic processes
executing some arbitrary computation on the blockchain, i.e., while being
replicated over the blockchain network

Stateful — they encapsulate their own state, like OOP’s objects

Reactive — they can only be triggered by issuing some invocation TX

User-defined — users can deploy their smart contracts implementing an
arbitrary logic by issuing a deployment TX

Immutable — their source/byte-code cannot be altered after deployment

Arbitrary — they are expressed with a Turing-complete language

Replicated — the blockchain is essentially a replicated interpreter,
employing a consensus protocol to synchronise the many
smart contracts replica

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 40 / 79

Smart contracts Interesting properties & expectations

Smart contracts interesting features and expectations

Immutability + Untamperable + Accountability + Decentralisation

=⇒ can be trusted in handling financial operations between organizations
(even easier with native cryptocurrency)

The code is always right, the true history is on the blokchain

reducing disputes
removing the need for arbitration

Lack of situatedness: totally disembodied [21] data & computation

Like the cloud, but with no single point of control

Killer applications: cryptocurrencies, asset-tracking (e.g. property,
notary, medical-records, etc.), naming systems, ID management,
access control, voting systems, reputation systems, blackboard
systems, Distributed Autonomous Organizations (DAOs), etc.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 41 / 79

Smart contracts Functioning

Smart contracts deployment

1 Initially there exists no smart contract

i.e., the system state comprehend no smart contract entity

2 A user can instantiate a smart contract by publishing its
source/byte-code within a deployment TX

the TX also initialises the SC state
the protocol assigns an univocal address to the novel SC

3 Once the transaction is confirmed, you can assume the SC instance is
running on all nodes

no such a big effort: it is just listening for invocations

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 42 / 79

Smart contracts Functioning

Smart contracts invocation

1 A user can trigger an already deployed SC by publishing an invocation
TX

specifying the SC address as recipient
providing some input data specifying the requested computation

2 Eventually, each node will receive the TX and execute it

the SC code usually decides what to do given the provided input data

3 If the computation terminates without exceptions, any produced side
effects (on the SC state) become part of the new intermediate system
state

Otherwise, they are simply dropped, this the new intermediate state
coincides with the previous one

4 The wrapping block is eventually confirmed by the consensus protocol,
and the invoked computation can be actually considered executed

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 43 / 79

Smart contracts Quasi-Turing-completeness

Issues arising from Turing-completeness

What would be the effect of invoking such a smart-contract?

class Bomb {

int i = 0;

void doSomething () {

while (true) {

i = (i + 1) % 10;

}

}

}

BTCs cannot filter out non-terminating computation since
termination is non-decidable

In open systems, users cannot be assumed to simply well-behave

=⇒ Need to prevent/discourage users from deploying/invoking infinite or
long computations

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 44 / 79

Smart contracts Quasi-Turing-completeness

Ethereum and Gas

Ethereum proposes gas, i.e., making users pay for computation executions:

TXs are endowed with two more fields: gasLimit & gasPrice

Miners could delay TXs having a low gasPrice

Users can increase their priority by increasing gasPrice

Upon execution, each bytecode instruction increases the g counter

according to a price list defined in [28]

Whenever g > gasLimit an exception is raised, reverting side effects

In any case, upon termination, the issuer balance is decreased of
∆ETH = gasPrice · g

The winning miner can redeem ∆ETH as a compensation for its
computational effort

The economical dimension of computation has to be taken into
account when designing Ethereum smart contracts

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 45 / 79

Smart contracts Solidity example

Ethereum smart contract example with Solidity4

contract Counter {

event Increased(uint oldValue , address cause);

address owner; uint value;

function Counter () public { owner = msg.sender; } // <-- constructor

function inc(uint times) public { // <-- API

for (uint i = 0; i < times; i++) {

emit Increased(value++, msg.sender);

}

}

function kill() public { // <-- API

require(msg.sender == owner);

suicide(owner);

}

function () { // <-- fallback

throw;

}

}

4https://solidity.readthedocs.io
Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 46 / 79

Smart contracts Solidity example

Ethereum smart contract example with Solidity

Dan--- 5.24

hash()

CounterEve

Alice--- 40

hash()

BobAlice 20

State 0

Alice
balance = 20

Bob
balance = 20

Carl--- 5

hash()

DanBob 3

"Counter.sol"Alice

State 1

Alicebalance = 20
Bobbalance = 17
Carlbalance = 5

Countervalue = 0
Danbalance = 3

Counterowner = Alice

7

inc(5)

CounterCarl 50

inc(2)

Increased(3, Carl)

Increased(4, Carl)

Eve--- 5.28

hash()

CounterBob 11

inc(1)

CounterDan 17

inc(2)

Increased(0, Bob)

Increased(1, Dan)

Increased(2, Dan)

State 2

Alicebalance = 20
Bobbalance = 16.89

Carlbalance = 5
Countervalue = 3
Danbalance = 2.83
Evebalance = 5.28

State 3

Alicebalance = 20
Bobbalance = 16.89
Carlbalance = 4.83
Countervalue = 5
Danbalance = 8.07
Evebalance = 4.93

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 47 / 79

Smart contracts Smart contracts issues

Smart contracts issues I

No privacy or secrets

Every information ever published on the blockchain stays on the
blockchain

The private state of a smart contract is not secret

Pseudo-anonymity can be broken with statistics & data-fusion

Illegal/anti-ethic behaviour can be revealed years later

! No secret voting?!

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 48 / 79

Smart contracts Smart contracts issues

Smart contracts issues II

Poor randomness

It is difficult to achieve (pseudo-)randomness because of the lack of
trustable sources

Real randomness cannot be employed (replicas would diverge)

Most of the blocks observable information are under the control of
the miner

e.g. timestamp, height, hash, etc.

The block hash seems a good choice

but this is an egg-and-chicken problem

! No lottery?!

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 49 / 79

Smart contracts Smart contracts issues

Smart contracts issues III

Smart contract inter-communication

Can a SC interact with another one? Which is the exact semantics of
doing so? Is OOP the best programming paradigm?

In Ethereum, SC are essentially objects communicating by means of
synchronous method calls. The callee SC are referenced by callers by
means of their address:

the control flow originating from a user may traverse more than a SC

the caller waits for the callee

unattended re-entrancy if difficult to avoid [4, 20]

and it may lead to undesired behavioural subtleties and frauds [13]

https://medium.com/gus tavo guim/reentrancy-attack-on-smart-contracts

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 50 / 79

https://medium.com/@gus_tavo_guim/reentrancy-attack-on-smart-contracts-how-to-identify-the-exploitable-and-an-example-of-an-attack-4470a2d8dfe4

Smart contracts Smart contracts issues

Smart contracts issues IV

Impossibility to fix bugs

SC code is immutable. Immutability is both a blessing and a curse. Buggy
contracts cannot be fixed, updated, replaced, or un-deployed

Buggy, misbehaving, fraudolent SCs will remain so, wasting miners
resources

Paramount importance of correct-design and formal validation

a problem per se in Turing-complete languages

Behavioural OOP design patterns are possible, but critical because of
the previous issue

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 51 / 79

Smart contracts Smart contracts issues

Smart contracts issues V

Lack of proactiveness

SCs are purely reactive computational entities

They always need to borrow some user’s control flow

They are time-aware but not reactive to time

They cannot schedule or postpone computations

no periodic computation (e.g. payment)

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 52 / 79

Smart contracts Smart contracts issues

Smart contracts issues VI

Disembodiement [21] & lack of concurrency

Computation is logically located everywhere and transactions are strictly
sequential. This may be a wasteful approach in some cases:

Independent computation cannot be executed concurrently

Computations only making sense locally need to be replicated globally

Heavy computations cannot be splitted into parts to be run
concurrently

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 53 / 79

Smart contracts Smart contracts issues

Smart contracts issues VII

Granularity of computation-related costs

Ethereum is not the first platform applying a price to computation:

e.g. Common practice on the Cloud, and the X-as-a-Service paradigm

BTW, is the instruction-level cost granularity the better one?

e.g. In the most trivial implementation of a publish-subscribe mechanism,
it is the publisher paying the variable price

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 54 / 79

Research perspectives Programming paradigms

Programming paradigms for smart contracts

Problem ! HLL = High Level Language

SCs research care a lot about HLLs but some issues are related to their
underlying operational semantics:

Synchronous calls are usually hard coded by construction

Poor care for what concerns inter-SC interaction

Lack of control flow encapsulation

Lack of proactiveness

Goals

Investigating the adoption of interaction-friendly paradigms such as actors
or agents

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 56 / 79

Research perspectives Programming paradigms

Smart contracts as Actors I

Possible modification to SCs operational semantics:

Asynchronous message passing as the unique means of inter-SC
communication + control flow encapsulation

The total ordering of events perfectly matches the event-loop
semantics of Actors

Sending a message implies issuing an invocation TX

Analogously to what users do
Messages are sent only after the current TX terminates correctly

Selective/guarded receive for enabling or delaying some computation

Private, synchronous call are still possible

Can be used to implement pure computations

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 57 / 79

Research perspectives Programming paradigms

Smart contracts as Actors II

Interesting questions arising from this vision:

? Who is paying for SC-initiated control flows?

? How to compensate miners for delayed computations?

Possible activities

Re-thinking or editing some BCT formal semantics in terms of actors

Forking some existing BCT project to inject the actors semantics

Designing (and developing?) a novel BCT project exposing an
actor-based SC abstraction

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 58 / 79

Research perspectives Programming paradigms

Smart contracts and Multi-Agent Systems (MAS) I

There seems to be more degrees of freedom here:

Different, possibly overlapping, declination of the Agent notion:

e.g. Believes-Desires-Intentions (BDI), Agents & Artifacts (A&A)

Different possible mappings are for:


Agent

Environment

Artifact?

Which choices are the best ones and why?

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 59 / 79

Research perspectives Programming paradigms

Smart contracts and Multi-Agent Systems (MAS) II

For instance, let’s image SCs as BDI agents:

Then, what’s the environment? What can an agent perceive?

Is goal-oriented reasoning useful in this context?

Should a SC reason about how to execute its business logic?

What about epistemic actions?

Should a SC ask for unknown informations to other (human?) agents?

Do multiple intentions (i.e., multiple control flows) make sense?

Who is paying for them?
Who is in charge for executing them? Using which concurrency model?

Possible activities

Re-thinking or editing some BCT formal semantics in terms of agents,
environment, artifacts, etc.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 60 / 79

Research perspectives Logic programming

Logic-based smart contracts I

Problem ! HLL = High Level Language

SCs currently lack:

high level understandability in their HLLs

observability of the deployed source code

some degree of evolvability enabling them to be modified (or fixed)

Goals

Investigating how the adoption of a logic interpreted language (e.g.
Prolog) may improve SC for what concerns such aspects

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 61 / 79

Research perspectives Logic programming

Logic-based smart contracts II

Employing a logic language, such as Prolog, introduces some benefits:

naturally declarative and goal-oriented, improving understandability

static KB for the immutable code, dynamic KB for the mutable part

asserts & retracts only affect the dynamic KB

thus enabling some sort of controlled evolvability

being an interpreted language it always possible to inspect the KB

without disassemblers

guarded/selective receive to enforce a boundary for SCs API

context-aware predicates for inspecting the current context

similarly to Solidity’s Globally Available Variables

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 62 / 79

http://solidity.readthedocs.io/en/latest/units-and-global-variables.html

Research perspectives Logic programming

Logic-based smart contracts III

. . . And some more questions:

should the computational economic cost model be re-designed to
embrace LP basic mechanisms? ! LP = Logic Programming

how should logic SCs interact?

Possible activities

Re-thinking or editing some BCT formal semantics to embrace such a
vision

Designing (and develop) such a novel vision from scratch

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 63 / 79

Research perspectives Blackboard-based approaches

Blackboard-based approaches and smart contracts

Opportunity

Shared blackboards systems may take real advantage of the replication and
fault-tolerance features they would inherit if deployed on top of a BCT
layer. For instance:

e.g. tuple-based coordination

e.g. distributed logic programming

Goals

Investigating whether BCTs are useful in such contexts or not.

Considering such contexts as applications, looking for improvements
to the BCTs

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 64 / 79

Research perspectives Blackboard-based approaches

Tuple-based coordination on the Blockchain I

Can we build the archetypal Linda model on top of BCTs?

If yes, tuple spaces would inherit
a lot of desirable properties

e.g. Decentralisation & replication,
fault-tolerance, consistency, etc.

? Which computational economical
cost model for Linda primitives?

? How to handle control
flow-related aspects?

e.g. suspensive semantics

? Can we inject programmability
too?

Networked hosts

The Blockchain

Communication 
& Coordination 

services

Application 
specific 
services

Workflow 
management

Service 
orchestration

Dependencies 
resolution

Data 
pipelines

Internet of Things
Business Intelligence Web Services

Figure: Our vision: BCTs as the
backbone on top of which
communication and coordination
services are built

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 65 / 79

Research perspectives Blackboard-based approaches

Tuple-based coordination on the Blockchain II

Possible activities

Compare several BCTs from the coordination-capabilities point of
view, modelling and implementing Linda on top of them

Compare several BCTs from the coordination-capabilities point of
view, modelling and implementing ReSpecT on top of them

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 66 / 79

Research perspectives Blackboard-based approaches

Distributed LP on the Blockchain

Can we employ the blockchain as a blackboard enabling distributed agents
to cooperatively participate to some SLD reasoning process?

Again, desirable properties would be “automatically” inherited

LP-friendly economical incentives/disincentives could be conceived
stimulating miners to adopt a particular strategy when
building/exploring some proof-tree

Concurrent LP has some well-known critic aspects
e.g. AND-parallelism, OR-parallelism, termination, non-termination, shared

variables

? How to handle KB mutability while reasoning?

Possible activities

Develop (at least) a proof of concept or sketched implementation
showing the feasibility of concurrent, blockchain-based, SLD
resolution process

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 67 / 79

Research perspectives Formal (meta-)model

Formal (meta-)model for BCTs and smart contracts

Problem

A part from Ethereum, other mainstream BCTs lack a formal semantics
specification. Furthermore, a general meta-model comprehending them all
is still missing.

Goals

Defining a meta-model explaining all (or most) existing BCTs

or proving it to be impossible

Defining an operational semantics for all (or most) existing BCTs

Showing why the operational semantics of each BCT is an instance of
the general meta-model

Possible activities

SLR about the formal semantics of one or more BCTs

Define your own formal semantics/meta-model
Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 68 / 79

Research perspectives Simulating the blockchain

Simulating the blockchain

Problem

Some local consensus approaches lack formal theorems proving their
properties or their sensibility to the parameters variation

e.g. ∆T , CP distribution, economical cost model, etc.

Goals

Designing & developing an agent-based simulation framework where such
interrelated aspects can be studied in silico

Possible activities

Develop the simulation framework and show its effectiveness by
simulating a simple consensus model

Design a complex consensus model to be simulated on the
aforementioned framework to reveal critical parameters regions

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 69 / 79

Research perspectives Local consensus mechanisms

Local consensus mechanisms

Problem

Classical BFT consensus algorithms are very powerful but their
performance essentially degrades with the amount of nodes

Goals

Conceive, design, implement, and assess other local (stochastic?)
consensus mechanisms ensuring some (possibly provable) security
properties.

Possible activities

SLR on classical/novel consensus mechanisms: compare & classify

Implement some classical/novel consensus protocol

Design your own (non-trivial) consensus mechanism

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 70 / 79

Research perspectives Concurrency, sharding and DAGs

Concurrency, sharding & DAGs

Problem

BCTs lack real concurrency or situatedness (of both data and
computations) and these lacks are inherited by SCs This is essentially a
waste of storage/computational resources

Goals

Conceive a non-trivial solution enabling some of the following features:

concurrent execution of independent SCs

data and computation partitioning on different nodes

branching/merging of the blockchain (making it a DAG)

Possible activities

SLR on such aspects

Design your own (non-trivial) concurrent BCT

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 71 / 79

Research perspectives Privacy & confidentiality

Privacy & confidentiality for smart contracts

Problem

SCs lack confidentiality when interacting with users, and some means to
hide their private internal state

Goals

Developing a cryptographic schema aimed at injecting some degree of
confidentiality/privacy into smart contracts

Possible activities

SLR on privacy/confidentiality-related aspects

Design your own (non-trivial) cryptographic schema

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 72 / 79

References

References I

[1] Proof of stake.
https://en.bitcoin.it/wiki/Proof_of_Stake.

[2] The tangle.
https://iotatoken.com/IOTA_Whitepaper.pdf.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed
Cocco, and Jason Yellick.
Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains.
Proceedings of the Thirteenth EuroSys Conference on - EuroSys ’18, pages 1–15, jan 2018.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A survey of attacks on Ethereum smart contracts (SoK).
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 10204 LNCS(July):164–186, 2017.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 73 / 79

https://en.bitcoin.it/wiki/Proof_of_Stake
https://iotatoken.com/IOTA_Whitepaper.pdf

References

References II

[5] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić.
The Next 700 BFT Protocols.
ACM Transactions on Computer Systems, 32(4):1–45, jan 2015.

[6] Adam Back.
Hashcash - A Denial of Service Counter-Measure.
Http://Www.Hashcash.Org/Papers/Hashcash.Pdf, (August):1–10, 2002.

[7] Eric A. Brewer.
Towards robust distributed systems (abstract).
In Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.

[8] Christian Cachin and Marko Vukolić.
Blockchain Consensus Protocols in the Wild.
jul 2017.

[9] Miguel Castro and Barbara Liskov.
Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398–461, 2002.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 74 / 79

References

References III

[10] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors.
Replication: Theory and Practice.
Springer-Verlag, Berlin, Heidelberg, 2010.

[11] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi.
On security analysis of proof-of-elapsed-time (poet).
In Paul Spirakis and Philippas Tsigas, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 282–297, Cham, 2017. Springer International Publishing.

[12] John R. Douceur.
The Sybil Attack.
pages 251–260, 2002.

[13] Quinn Dupont.
Experiments in Algorithmic Governance : A history and ethnography of “ The DAO ,” a
failed Decentralized Autonomous Organization.
Bitcoin and Beyond, pages 1–18, 2017.

[14] Ittay Eyal and Emin Gün Sirer.
Majority is not enough: Bitcoin mining is vulnerable.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8437:436–454, 2014.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 75 / 79

References

References IV

[15] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, 1985.

[16] Stuart Haber and W.Scott Stornetta.
How to time-stamp a digital document.
Journal of Cryptology, 3(2):99–111, 1991.

[17] Leslie Lamport.
The Part-Time Parliament.
ACM Transactions on Computer Sys-tems, 16(2):133–169, 1998.

[18] Leslie Lamport, Benjamin C. Reed, Flavio P. Junqueira, Diego Ongaro, John Ousterhout,
Michael a Olson, Keith Bostic, Margo Seltzer, Cynthia Dwork, Nancy Lynch, Larry
Stockmeyer, Jim Shore, Fred B Schneider, Leslie Lamport, Miguel Castro, Barbara H
Liskov, H.Zou, F.Jahanian, Leslie Lamport, Dahlia Malkhi, Lidong Zhou, X Zhang,
D. Zagorodnov, M Hiltunen, Keith Marzullo, R.D. Schlichting, Navin Budhiraja, Keith
Marzullo, Fred B Schneider, Sam Toueg, R. Al-Omari, Arun K. Somani, G. Manimaran,
Flavio P. Junqueira, Benjamin C. Reed, Marco Serafini, Navin Budhiraja, Rachid
Guerraoui, André Schiper, M. Pease, R. Shostak, Leslie Lamport, Dahlia Malkhi, Lidong
Zhou, Lamport July, Barbara H Liskov, and James Cowling.
In Search of an Understandable Consensus Algorithm.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 76 / 79

References

References V

Atc ’14, 22(2):305–320, 2014.

[19] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making Smart Contracts Smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security - CCS’16, pages 254–269, New York, New York, USA, 2016. ACM Press.

[21] Stefano Mariani and Andrea Omicini.
TuCSoN on Cloud: An event-driven architecture for embodied/disembodied coordination.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8286 LNCS(PART 2):285–294, 2013.

[22] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The Honey Badger of BFT Protocols.

[23] Satoshi Nakamoto.
Bitcoin: A Peer-to-Peer Electronic Cash System.
Www.Bitcoin.Org, page 9, 2008.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 77 / 79

References

References VI

[24] Fred B. Schneider.
Implementing Fault-tolerant Services Using the State Machine Approach: A Tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[25] Yonatan Sompolinsky and A Zohar.
Accelerating Bitcoin’s Transaction Processing. Fast Money Grows on Trees, Not Chains.
IACR Cryptology ePrint Archive, 881:1–31, 2013.

[26] João Sousa and Alysson Bessani.
From Byzantine consensus to BFT state machine replication: A latency-optimal
transformation.
Proceedings - 9th European Dependable Computing Conference, EDCC 2012, pages
37–48, 2012.

[27] Nick Szabo.
Smart Contracts: Building Blocks for Digital Markets.
Alamut.Com, (c):16, 1996.

[28] Gavin Wood.
Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, pages 1–32, 2014.

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 78 / 79

A gentle introduction to the
Blockchain and Smart contracts

Giovanni Ciatto { giovanni.ciatto@unibo.it }

Talk @ Autonomous Systems Course, A.Y. 17/18
Dipartimento di Informatica, Scienza e Ingegneria—Università di Bologna

May 30, 2018

Ciatto G. (Autonomous Systems) Introduction to BC and Smart contracts May 30, 2018 79 / 79

	State Machine Replication
	Overview
	Deterministic computations
	Universal SMR
	SMR and Open Distributed Systems

	The blockchain's main elements
	Overview
	Entity identifiers
	The world state
	Transactions
	Blocks and block chains
	Consensus & Mining

	Smart contracts
	Definition
	Interesting properties & expectations
	Functioning
	Quasi-Turing-completeness
	Solidity example
	Smart contracts issues

	Research perspectives
	Programming paradigms for smart contracts
	Logic-based smart contracts
	Blackboard-based approaches and smart contracts
	Formal (meta-)model for BCTs and smart contracts
	Simulating the blockchain
	Local consensus mechanisms
	Concurrency, sharding and DAGs
	Privacy & confidentiality for smart contracts

