

DEFLECTION OF BEAM

FADZLI BIN MOHAMMAD NGIMRITI 2000415287

HURUL AIN BINTI ABDUL NASHER 2000625534

HARYANA BINTI ADAM 2000603959

A thesis submitted in partial fulfillment of the requirements for the award of Diploma Engineering (Mechanical)

Faculty Of Mechanical Engineering

Universiti Teknologi MARA (UiTM)

MAY 2003

TABLE OF CONTENT

CONTENT	PAGE		
PAGE TITLE	i		
ACKNOLEDGEMENT	ii		
AUTHOR DECLARATION	iii		
SUPER VISOR CERTIFICATION	iv		

CHAPTER 1 INTRODUCTION

	1.1	Definiti	on	1
	1.2	The Ty	pe Of Specimen Beam	2
	1.3	Theory		4
		1.3.1	Pure Bending	
			1.3.1.1 Planar Moment Of Inertia	
		1.3.2	Oblique Bending	
		1.3.3	Shear Center	
CHAPTER 2	EXPE	RIMEN	T	
	2.1	Proced	ure	14
	2.2	Result		15
	2.3.	Laser F	Pen Method	16
	2.4	Theory		20

2.4.1 Macaulay's Method

	2.4.2	Calculation		
		2.4.2.1 Macaulay's Method		23
2.5	Graph			
	2.5.1	Load (N) verses Deflection		26
		(Laser Pen)		
	2.5.2	Load (N) verses Deflection		27
		(Macaulay's Method)		
	2.5.3	Load (N) verses Deflection		28
		(Dial Gauge)		
	2.5.4	Load (N) verses Deflection (mm)	29
2.6	Conclu	ision		30
2.7	Discus	sion		31

CHAPTER 3 APPENDICES

3.1	Figure	32
3.2	Used Symbol and Unit	38
3.3	References	39

AUTHOR DECLARATION

"We declared that this thesis is the result of my/our work except the ideas and summaries which we have clarified their sources. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any degree."

Signed : -2003 Date :

Fadzli Bin Mohammad Ngimriti

UiTM No. : 2000415287 Signed : 444.444.45Date : 6-5-2003

Hurul Ain Binti Abdul Nasher

UiTM No. : 2000625534

Haryana Binti Adam

UiTM No. : 2000603959

1.0 INTRODUCTION

1.1 DEFINATION

The FL160 is designed to examine the bending of cantilevers. It enables experiments to be performed in relation to pure bending, cross bending, oblique bending and shear center.

The relatively complex theory of beam bending can thus be appropriately supplemented by way of experimental results.

The horizontal arrangement of the specimen beam produces a clear-out, readily understandable test set-up.

The deflection of the beam can be observed from the end face, thus clearly illustrating the relationship between load plane, principle axes and deflection/torsion.

The system is suitable both for lecture-theatre demonstration and for practical experimentation in small group.