MELT REACTION OF POLYMER BLENDS COMPRISING POLY(ε-CAPROLACTONE) AND EPOXIDIZED NATURAL RUBBER WITH ADDITION OF TOLUENE-4-SULFONIC ACID AS CATALYST

NURUL ZAYANA BT YAHYA

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

APRIL 2009

This Final Year Project Report entitled "Melt Reaction of Polymer Blends Comprising Poly(*e*-caprolactone) and Epoxidized Natural Rubber with Addition of Toluene-4-Sulfonic Acid as Catalyst" was submitted by Nurul Zayana Binti Yahya, in partial fulfillment of the requirements for the Degree of Bachelor of Sciences (Hons.) Chemistry in the Faculty of Applied Sciences, and was approved by

Dr. Chan Chin Han Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Malaysia 40450 Shah Alam Selangor

 Assoc. Prof. Sim Lai Har Co-Supervisor
 B. Sc. (Hons.) Chemistry Faculty of Applied Sciences
 Universiti Teknologi MARA Malaysia 40450 Shah Alam Selangor

Dr. Fapaiza binti Abdul Latif Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Assod, Prof. Dr. Faizah Md Salleh Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Tcknologi MARA 40450 Shah Alam Selangor

Date: APR/L 3009

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	Х
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER 1 INTRODUCTION

1.1	General	1
1.2	Polymer Blends	3
1.3	Miscibility	4
1.4	Problem Statement	5
1.5	Research Objectives	7

CHAPTER 2 LITERATURE REVIEW

2.1	Miscible Blends	10
2.2	Immiscible Blends	11
2.3	Immiscible Blends with Compatibilizers	12
2.4	Reactive Blends	13
2.5	Reactive Blends Doped with Catalyst	17

CHAPTER 3 METHODOLOGY

3.1	Materials		
	3.1.1	Poly(<i>ɛ</i> -caprolactone) (PCL-diol), epoxidized	19
		natural rubber (ENR-50) and toluene-4-sulfonic acid (pTSA)	
	3.1.2	Purification of ENR-50	21
	3.1.3	Preparation of blends	22

3.2	Techniques		
	3.2.1	Differential Scanning Calorimetry (DSC)	24
	3.2.2	Thermogravimetric Analyzer (TGA)	25
	3.2.3	Polarizing Optical Microscopic (POM)	25
	3.2.4	Fourier Transform Infra Red (FTIR)	26
	3.2.5	Gel Permeation Chromatography (GPC)	26

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Visual Inspection of the samples	28
4.2	Molecular weight (M_w) of samples	30
4.3	FTIR spectroscopy	35
4.4	Decomposition Temperature (T_d)	44
4.5	Morphology	48
4.6	Glass Transition Temperature (T_g)	52
4.7	Melt Reaction	
	4.7.1 Isothermal melt reaction	54
	4.7.2 Non-isothermal melt reaction	55

CHAPTER 5 CONCLUSIONS

CITED REFERENCES	64
APPENDIX A	68
CURRICULUM VITAE	69

ABSTRACT

MELT REACTION OF POLYMER BLENDS COMPRISING POLY(*ε*-CAPROLACTONE) AND EPOXIDIZED NATURAL RUBBER WITH ADDITION OF TOLUENE-4-SULFONIC ACID AS CATALYST

Reactive blends of poly(*\varepsilon*-caprolactone) (PCL-diol) (semicrytalline polymer), epoxidized natural rubber with 50 mole % epoxidation level (ENR-50) (amorphous polymer) and toluene-4-sulfonic (pTSA) (as the catalyst) were studied. Neat PCL-diol, neat ENR-50 and PCL-diol/ENR-50 50/50 blends doped with different concentrations of pTSA were prepared using solvent casting method. Homogenous distribution of pTSA in the samples is confirmed by the visual inspection. Chemical structures for neat polymers and the blends doped with pTSA do not change as compared to that of the undoped samples after fourier transform infra red (FTIR) analysis at room temperature. Weight average molecular weight (M_w) of doped-PCL-diol remains around 3500 g mol⁻¹ while M_w of doped-ENR-50 decreases slightly at higher concentrations of pTSA after gel permeation chromatoghraphy (GPC) analysis. Co-continuous structure of undoped-PCL-diol/ENR-50 50/50 blend and the dispersion of PCL-diol in the matrix of ENR-50 for the doped-blend suggest the immiscibility of the two neat polymers by using polarizing optical microscopic (POM). Glass transition temperature (T_g) analysis confirmes the immiscibility of the neat constituents where two T_{gs} that corresponds to the neat polymers for the doped and undoped-50/50 blends are observed by differential scanning calorimetry (DSC) analysis. Under non-isothermal heating up to 200 °C, the melt reaction takes place and the reaction temperature (T_{rxn}) for PCL-diol/ENR-50 50/50 blends doped with pTSA decreases at higher concentration of pTSA.