Centre for Data Analytics

Next Generation of Artificial Intelligence: From Pattern Recognition Towards Conceptual Model Building

Sean Quinn PhD Student Insight Centre for Data Analytics @ DCU

What is Artificial Intelligence (AI)?

- A. Strong AI: Systems that think exactly like humans do
- B. Weak AI: Systems work without figuring out how human reasoning works
- C. Human reasoning as a model but not necessarily the end goal [1]

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Where are we now?

Yes

- ✓ Object recognition in images
- ✓ Translation between languages
- ✓ Play some games (Atari, Chess, Go)
- ✓ Autonomous driving

No

- X Learn a task with only a few examples
- Carry background knowledge across domains and tasks
- × Learn complex relationships (Causal, transitive)

Al in all it's glory

Programmers incentivised it TECH to go from point A to point B

AI in action

of judges believing

Eugene is human

AiBO (Al robot) with skills and personality that develop over time

vacuum cleaner from assistant with a voice iRobot learns to navigate interface, into the and clean homes iPhone 4S

answering computer Watson wins first place on popular \$1M prize television guiz show Jeopardy

an intelligent virtual Turing Test with a third assistant with a voice interface that completes inflammatory and shopping tasks

goes rogue on social media making offensive racist comments

Ke Jie in the complex board game of Go, notable for its vast number (2¹⁷⁰) of

possible positions

[2]

Centre for Data Analytics

Image Recognition

[3]

Image Recognition

[3]

Image Recognition

Image Recognition

Learning a New Task

AI	Humans	
Crunching numbers	Background knowledge	
Needs thousands of examples	One shot learning	
Only inputs & outputs	Complex relations	

Why Pattern Recognition Is Not Enough

[4]

Conceptual Model Building

Bridging The Gap: A Neural-Symbolic Architenture

[6]

Conceptual Model Building In AI: A Neural-Symbolic Experiment

Fixed

Neural Network: 95%

Neural-Symbolic System: 70%

Random

Neural Network: **55%** Neural-Symbolic System: **70%**

Neural combinations may hold the key

The next generation of AI may result from the combination of neural networks with better reasoning models such as symbolic logic.

Ask me in 3 years!

References

[1] B. Marr, "The Key Definitions Of Artificial Intelligence (AI) That Explain Its Importance", *Forbes*, 2018. [Online]. Available: https://www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-importance/2/#6f2115655284. [Accessed: 22-May- 2018].

[2] P. Marsden, "Artificial Intelligence Timeline Infographic – From Eliza to Tay and beyond", *digitalintelligencetoday*, 2017. [Online]. Available: https://digitalintelligencetoday.com/artificial-intelligence-timeline-infographic-from-eliza-to-tay-and-beyond/. [Accessed: 22- May- 2018].

[3] J. Yosinski, "How transferable are features in deep neural networks?", NIPS 2014, Palais des Congrès de Montréal, Montréal, Canada, 2014.

[4] J. Yosinski, J. Clune, A. Nguyen, J. Yosinski, and J. Clune, "Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images" 2014.

[5] J. Genovese and S. Genovese, "The Health Mind Map", 2011. [Online]. Available: http://www.mindmapart.com/health-mind-map-jane-genovese/. [Accessed: 22- May- 2018].

[6] M. Garnelo, K. Arulkumaran, and M. Shanahan, "Towards Deep Symbolic Reinforcement Learning" 2016.

Thank you!

Questions?