Boronic Acids for the Generation of Responsive Hydrogels

Colm Delaney, Larisa Florea, Dermot Diamond

Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Dublin, Ireland.

colm.delaney@dcu.ie

Several approaches currently exist for continuous monitoring of saccharides, however, to this point most sensors have involved the use of electrochemical approaches based on enzymes, such as glucose oxidase.[1] It is widely accepted that a method of continuous monitoring of glucose would prove highly beneficial for diabetes sufferers. The use of boronic acids to bind saccharides has been investigated for many years as a facile means to monitor the concentration of sacharrides in solution [2]. Successful means of translating such optimised responses to complex polymeric matrices have proved significantly more difficult. Such a feat would prove invaluable for diagnostic and self-regulating systems.

Herein we present a family of novel boronic acid derivatives, using an easily-adaptable synthesis. We demonstrate a suite of applications, encompassing self-assembling gels and cross-linked hydrogels, which can bind saccharides and modulate a range of chosen responses. This binding has been probed using a series of different techniques, including optical and impedance spectroscopy. This effect can be exploited within a miniaturised device and monitored using a low-cost photodetector.

1. Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. *Sensors* **2017**, *17*.

2. Nishiyabu, R.; Kubo, Y.; James, T.D.; Fossey, J.S. Boronic acid building blocks: Tools for sensing and separation. *Chemical Communications* **2011**, *47*, 1106-1123.

The authors acknowledge support from Science Foundation Ireland under a Technology Innovation Development Award no. 16/TIDA/4183.