
 

 

RESEARCH REPOSITORY 
 

This is the author’s final version of the work, as accepted for publication  
following peer review but without the publisher’s layout or pagination.  

The definitive version is available at: 
 
 

https://doi.org/10.1016/j.mad.2018.06.002  
 
 
 

Revelas, M., Thalamuthu, A., Oldmeadow, C., Evans, T-J, Armstrong, N.J., Kwok, J.B., 
Brodaty, H., Schofield, P.R., Scott, R.J., Sachdev, P.S., Attia, J.R. and Mather, K.A. (2018) 

Review and meta-analysis of genetic polymorphisms associated with exceptional human 
longevity. Mechanisms of Ageing and Development 

 
 

http://researchrepository.murdoch.edu.au/id/eprint/41139/ 
 

 
 

 
Copyright: © 2018 by Elsevier B.V. 

It is posted here for your personal use. No further distribution is permitted. 
 

 

https://doi.org/10.1016/j.mad.2018.06.002
http://researchrepository.murdoch.edu.au/id/eprint/41139/


Accepted Manuscript

Title: Review and meta-analysis of genetic polymorphisms
associated with exceptional human longevity

Authors: Mary Revelas, Anbupalam Thalamuthu, Christopher
Oldmeadow, Tiffany-Jane Evans, Nicola J. Armstrong, John
B. Kwok, Henry Brodaty, Peter R. Schofield, Rodney J. Scott,
Perminder S. Sachdev, John R. Attia, Karen A. Mather

PII: S0047-6374(18)30078-2
DOI: https://doi.org/10.1016/j.mad.2018.06.002
Reference: MAD 11063

To appear in: Mechanisms of Ageing and Development

Received date: 26-3-2018
Revised date: 1-6-2018
Accepted date: 7-6-2018

Please cite this article as: Revelas M, Thalamuthu A, Oldmeadow C, Evans T-Jane,
Armstrong NJ, Kwok JB, Brodaty H, Schofield PR, Scott RJ, Sachdev PS, Attia
JR, Mather KA, Review and meta-analysis of genetic polymorphisms associated
with exceptional human longevity, Mechanisms of Ageing and Development (2018),
https://doi.org/10.1016/j.mad.2018.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.mad.2018.06.002
https://doi.org/10.1016/j.mad.2018.06.002


Revelas et al., 2018  
 

1 
 

Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity 

Short title: Review of genetic studies on human exceptional longevity 

 

Authors: 

Mary Revelasa 

Anbupalam Thalamuthua   

Christopher Oldmeadowb 

Tiffany-Jane Evansb 

Nicola J. Armstronga, c 

John B. Kwok d, e 

Henry Brodatya, f 

Peter R. Schofieldd, e  

Rodney J. Scott g, h  

Perminder S. Sachdeva, i 

John R. Attiab, h 

Karen A. Mathera 

 

Affiliations: 

a Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South 

Wales, Sydney, Australia 

b Hunter Medical Research Institute, Newcastle, Australia 

c Mathematics and Statistics, Murdoch University, Perth, Australia 

d Neuroscience Research Australia, Randwick, Australia 

e School of Medical Sciences, University of New South Wales, Sydney, Australia 

f Dementia Centre for Research Collaboration, University of New South Wales, Sydney, Australia 

g Faculty of Health, University of Newcastle, Newcastle NSW Australia 

h Hunter Area Pathology Service, John Hunter Hospital, Newcastle, New South Wales, Australia 

i Neuropsychiatric Institute, Prince of Wales Hospital, Barker Street, Randwick, NSW, Australia 

 

Corresponding author: 

Karen Mather 

Centre for Healthy Brain Ageing 

School of Psychiatry  

University of New South Wales  

Sydney NSW 2052 Australia 

ACCEPTED M
ANUSCRIP

T



Revelas et al., 2018  
 

2 
 

Email: Karen.mather@unsw.edu.au  

 

No. of words in abstract: 181 
No. of words in article body: 10583 
No. of figures: 6 
No. of tables: 1 
Supplemental information: Yes 
 

Highlights 

 This comprehensive review seeks to determine the genetic variants associated with 

exceptional longevity. 

 Meta-analyses of genetic polymorphisms previously associated with exceptional longevity 

(aged 85+) were undertaken. 

 Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 

rs1800795 were significantly associated with exceptional longevity, with the pooled effect 

sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males).   

 The observed modest effect sizes of the significant variants suggest many genes of small 

influence play a role in exceptional longevity, which is consistent with many other polygenic 

traits.  

 

Abstract 

 

Background  Many factors contribute to exceptional longevity, with genetics playing a significant 

role.  However, to date, genetic studies examining exceptional longevity have been inconclusive. This 

comprehensive review seeks to determine the genetic variants associated with exceptional longevity 

by undertaking meta-analyses. 
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Methods  Meta-analyses of genetic polymorphisms previously associated with exceptional 

longevity (85+) were undertaken.  For each variant, meta-analyses were performed if there were data 

from at least three independent studies available, including two unpublished additional cohorts. 

Results   Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS 

and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect 

sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males).   

Conclusion  In general, the observed modest effect sizes of the significant variants suggest many 

genes of small influence play a role in exceptional longevity, which is consistent with results for other 

polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated 

in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully 

consider study design, including the selection of appropriate controls.  

 

Keywords centenarians, longevity, meta-analysis, ACE, APOE, FOXO3A,  

 

1. Abstract 

 

Background  Many factors contribute to longevity, with genetics playing a significant role.  

However, to date, genetic studies examining longevity have been inconclusive. By undertaking meta-

analyses this comprehensive review seeks to identify the genetic variants that are associated with 

longevity. 

Methods  Meta-analyses on polymorphisms previously associated with longevity in at least 

three independent studies were undertaken. Eight genes with a total of nine polymorphisms were 

investigated. 
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Results   Four polymorphisms, ACE rs4340, APOE ε2/3/4, CETP rs5882 and FOXO3A rs2802292 

were significantly associated with longevity, although the pooled effect sizes were modest. The 

remaining five polymorphisms (CETP rs708272, IL6 rs1800795, KLOTHO rs9536314, SIRT1 rs3758391, 

TNFa rs1800629) did not reach statistical significance.    

Conclusion  The effect sizes suggest many genes of small influence play a role, which is consistent 

with results for other polygenic traits. Our results also suggest that genes related to cardiovascular 

health may be implicated in exceptional longevity. Few studies have stratified their analyses by 

gender. Future studies should also examine different ethnicities, given the few non-Caucasian studies 

undertaken to date. Additionally, methodological issues may contribute to inconsistencies observed 

in the literature, such as the selection of appropriate controls.  

 

Keywords  centenarians, longevity, meta-analyses, ACE, APOE, FOXO3A 

 

1. Introduction 

 

Life expectancy in most societies has increased steadily in the last century due to improvements in 

medical care, nutrition and other factors, with many individuals living to an advanced old age in 

developed countries (e.g.Oeppen & Vaupel, 2002). However, during ageing there is a loss of 

homeostasis, which leads to diminished capacity to respond to stressors and increased vulnerability 

to age-related decline, disease and multimorbidity (Fabbri et al., 2015). Thus, there is concern about 

an ageing population posing an increasing medical and economic burden on society. However, many 

exceptionally long-lived individuals have delayed morbidity or have escaped age-related diseases 

(Andersen et al., 2012). They represent a unique human paradigm for identifying the determinants of 

longevity and healthy ageing. Studying these rare individuals may reveal novel pathways that lead to 
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exceptional ageing, which ultimately may suggest strategies to mitigate or prevent age-related decline 

and disease and to promote healthy ageing.   

1.1 The heritability of longevity 

Family and twin studies suggest that genetics plays a role in life expectancy with heritability estimated 

at ~20-30% (Murabito & Lunetta, 2012).  Interestingly, the genetic contribution is modest early in life 

but increases at a greater age (> 60) (Hjelmborg et al., 2006). Two studies of very long-lived individuals, 

the New England Centenarian Study and the Okinawa Centenarian Study have shown that siblings of 

centenarians have an increased probability of reaching 100 years of age when compared to individuals 

without such family histories of longevity (Perls et al., 2002; Willcox et al., 2006).  Interestingly, there 

are gender differences in the roles genes play, with the heritability of becoming a centenarian higher 

for men (~0.48) than women (~0.33) (Sebastiani & Perls, 2012). Murabito et al., (2012) also found that 

heritability appears to increase with each 10-year increment in survival age for men but not women, 

suggesting that genetic effects on aging may be more substantial for men than women.  

 

1.2 Genes associated with exceptional longevity   

Genetic studies to date have focussed on linkage analysis, candidate gene approaches or genome-

wide association studies (GWAS) to identify exceptional longevity genes. In general, these have 

produced inconsistent results apart from the apolipoprotein E (APOE) (e.g.Beekman et al., 2013)  and 

the forkhead box O3 (FOXO3A) genes (e.g.Willcox et al., 2008). The aim of this review is to summarize 

our present understanding of the genetic factors affecting human exceptional longevity by 

undertaking a comprehensive meta-analysis reviewing all the major polymorphisms that were 

investigated in three or more independent human studies of individuals aged 85+ and above, who 

have exceeded the average life expectancy for individuals born in the early 20th century (Newman & 

Murabito, 2013). 
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2. Methods 

2.1 Literature Search 

A comprehensive search of electronic databases (MEDLINE, NCBI and EMBASE) was conducted to 

identify all publications on genes associated with exceptional human longevity up to December 30th, 

2017. The search strategy was based on combinations of the following keywords “longevity”, 

“centenarian”, “ageing”, “aging”, “gene”, “genetic”, “polymorphism” and “SNP”. The search was 

extended to include the bibliographies of all eligible studies. Reviews on longevity were also hand-

searched to identify additional potentially relevant studies. Where necessary, authors were contacted 

directly for any additional data required. In addition, unpublished data from our own studies were 

included in this review (see below, section 2.4). 

 

2.2 Study Selection: Inclusion and exclusion criteria  

The following inclusion criteria were used to select articles for the meta-analysis: (i) information was 

provided on the association between one or more genetic polymorphism(s) and human “longevity”; 

(ii) used a case-control design whereby centenarians or aged participants (85+ years) were the cases 

versus younger adult controls; and (iii) provided sufficient genotype data for calculating the odds ratio 

(OR) and 95% confidence interval (CI). Studies were excluded if (i) the distribution of genotypes in the 

control group were not in Hardy-Weinberg equilibrium (HWE); (ii) they lacked a control group; (iii) 

they had overlapping study populations; (iv) they had fewer than 100 cases; (v) the article was 

unavailable in English; or (vi) results were only described in conference abstracts.  

 

2.3 Data extraction 

The recommendations for Meta-analyses of Observational Studies in Epidemiology (MOOSE) were 

followed. All relevant studies were obtained and independently inspected by two authors (MR and 

KM) to determine whether they met the inclusion criteria. When available, the appropriate data were 

also extracted from published GWAS. Careful attention was taken to avoid overlapping studies. The 
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following information was extracted: author, publication year, ethnicity of the population studied, 

sample sizes (cases and controls), baseline characteristics of the study population (e.g. gender) and 

the genotype/allele frequencies. Information on HWE was also extracted or calculated manually if not 

explicitly reported. Finally, any discrepancies were adjudicated with another author (AT) until a 

consensus was reached. 

 

2.4 Additional unpublished data used in Meta-Analysis 

Australian unpublished data were also used in the meta-analyses. Specifically, two studies were 

utilized that both recruited individuals using the compulsory electoral roll and Medicare lists in order 

to obtain a representative sample.  Cases were obtained from the Sydney Centenarian Study (SCS) 

(Sachdev et al., 2013) and controls from the Hunter Community Study (HCS) (McEvoy et al., 2010); 

both of these studies recruited participants from the state of New South Wales, Australia. The SCS is 

comprised of individuals aged 95 years and over who were recruited into a study of successful ageing 

in Sydney.  More details of the study are found in Sachdev et al. (2013).  A subsample with available 

genetic data provided 256 long-lived cases with a European background (age range 95-106, mean age 

97.5 years, 31% men). The HCS is a cohort of 3253 individuals (age range 55-85, mean age 66.3 years, 

46% male) recruited from Newcastle.  For more details of the HCS see McEvoy et al. (2010). For the 

purpose of this study a sub-sample of 1002 individuals aged 55-64 (mean age 59.8 years, 47% male) 

was used as controls.  

 

Both of these cohorts have genome-wide genotyping data available. HCS samples were genotyped 

using the Affymetrix Axiom Kaiser array (California, USA) whereas SCS cases were genotyped using the 

Illumina OmniExpress array (California, USA), according to the manufacturer’s instructions. Both 

studies excluded genotyped SNPs if the call rate was <95%, p-value for HWE was <10-6 and minor allele 

frequency was <0.01%. Relatedness checks were undertaken and only one family member was 

retained for the analysis if first or second-degree relatives were identified. Ethnic outliers were 
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detected and omitted via EIGENSTRAT analysis (Price et al., 2006). After QC checks, for SCS there was 

genotyping data on 640,355 SNPs whilst for HCS there was data on 739,276 SNPs. For both cohorts, 

imputation was completed using the HapMap2 reference data (release 22, build 36) using the same 

method as described in Mather et al. (2016). APOE genotyping in both the SCS and HCS was 

undertaken using the methods described in Sachdev et al. (2010) and Oldmeadow et al. (2014) 

respectively. The results of the analyses using these data are designated as ‘Present Study, 2017’. 

 

2.5 Statistical Analysis 

Meta-analyses were conducted for polymorphisms investigated in at least three studies. The strengths 

of the associations between each gene polymorphism and longevity were estimated by allelic odds 

ratios and 95% CIs. Wherever possible, analyses were also stratified by ethnicity and gender. A fixed-

effects model using the inverse variance method was used and the significance of the pooled OR was 

determined by the Z-test. The I2 statistic was used to estimate the percentage of variation across the 

results due to study heterogeneity, rather than sampling error, with the degree of heterogeneity being 

defined as low (25%), medium (50%) or high (75%).  No significant heterogeneity was defined as an I2 

value of less than 50% and/or a p-value <.05. Forest plots were prepared for each study. Evaluation of 

the winner’s curse phenomenon, which refers to the occurrence when the effect size for a newly 

described genetic association is overestimated by the earliest study compared to later studies, was 

examined by re-running the meta-analysis omitting the earliest study. Sensitivity analyses were 

performed after the sequential removal of each included study to assess the influence of each 

individual study on the pooled OR. Potential publication bias was evaluated by visual inspection of 

funnel plots and Egger’s regression test with p<0.05 (two-tailed) considered statistically significant. 

Pooled effect estimates were also obtained under random effect models using restricted maximum 

likelihood (REML) for comparison with fixed effects when more than three studies were available for 

analysis. Meta-regression was performed for stratified analysis. All analyses were conducted using the 

R metafor package (Viechtbauer, 2010).  

ACCEPTED M
ANUSCRIP

T



Revelas et al., 2018  
 

9 
 

 

3. Results 

The initial literature search identified 71 potentially relevant studies (Fig.1).  After applying exclusion 

criteria, 65 studies remained that resulted in eight genes with a total of nine variants, which are 

described in Table 1. 

 

3.1 Angiotensin Converting Enzyme (ACE), Deletion/Insertion Alu repeats  

A total of eight studies were included in the meta-analysis comprising 2043 cases and 8820 controls 

(Table S1). Heterogeneity between studies was absent. There was no evidence of winner’s curse 

phenomenon when the first study was omitted.  There was no evidence of publication bias as observed 

by the symmetrical funnel plot (Fig. S1). The current meta-analysis shows a modest, albeit statistically 

significant positive association of the ACE D-allele with exceptional longevity (Fig. 2) (OR = 1.11, 95% 

CI = 1.01-1.22, P = 0.02). A random effects model did not affect the result (Table S11). Details of the 

gene structure, genomic location and expression across a range of tissues is presented in the 

Supplementary. 

 

3.2 Apolipoprotein-E (APOE), ϵ2/ϵ3/ε4 variants 

A total of 12 studies were included in the APOE ϵ2/ϵ3/ε4 meta-analyses comprising 3229 cases and 

13685 controls (Table S2). 

ϵ4 vs ε3  

There was no evidence of winner’s curse phenomenon. Heterogeneity between studies was low (I2 = 

37.68%). There was no evidence of publication bias (Fig. S1).  A significant negative association of the 

APOE ε4-allele when compared to the ε3-allele with exceptional longevity was observed (OR = 0.42, 

95% CI = 0.37-0.48, P < 0.00001) (Fig. 3 upper panel). Heterogeneity was reduced to 32.42% under the 

random effects model but the overall conclusion remained the same (Table S11). A fixed meta-

regression analysis accounting for the ethnicity (Asian n=3 vs non-Asian n=9) showed homogeneity 

between the two groups (P=0.2669), thus there were no differences between these two ethnic groups.  
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ε2 vs ε3  

There was no evidence of a winner’s curse phenomenon. Due to high heterogeneity (65%, Fig S2), the 

Asian study (Feng et al., 2011) was omitted, resulting in acceptable levels of heterogeneity (35%). 

There was no evidence of publication bias as the funnel plot suggested no substantial asymmetry (Fig. 

S1). A positive association of the APOE ε2-allele with exceptional longevity was observed (OR = 1.38, 

95% CI = 1.21-1.58, P< 0.0001) (Fig. 3 lower panel). Heterogeneity reduced to 27% in the random 

effects model but the overall effect estimate was similar (Table S11).  Meta-regression showed no 

significant difference between the two ethnic groups (see Table S2), Caucasian (n=9) versus Asian 

(n=2) (p-value=0.84). Details of the APOE gene structure, genomic location and expression across a 

range of tissues is presented in the Supplementary. 

 

3.3 Cholesteryl ester transfer protein (CETP)  

CETP (I405V polymorphism, G vs A allele, rs5882) 

Initially, a total of 7 studies, with 2110 cases and 2220 controls, were included in the meta-analysis for 

the CETP I405V polymorphism (rs5882) (Table S3, Figure S3 upper panel). There was evidence of 

winner’s curse phenomenon resulting in the Barzilai et al. (2003) being omitted from the analysis. 

However, heterogeneity was high (I2 = 52.29%); and removal of the one non-Caucasian study by Sun 

et al. (2013) resulted in heterogeneity dropping to an acceptable level (36.44%). The symmetrical 

funnel plot suggested no publication bias after the outlier studies were removed (Fig. S1). However, 

there was no significant association with exceptional longevity for the G allele (OR = 0.93, 95% CI 0.83-

1.05, P= 0.27).  Comparison with a random effects model did not affect the result (Table S11). 

CETP (Taq1B polymorphism, T vs C alleles, rs708272) 

A total of 4 studies examined the Taq1B polymorphism (rs708272) with a total of 1231 cases and 1795 

controls (Table S4).  There was no evidence of winner’s curse phenomenon nor of heterogeneity (I2 = 

0%). The symmetrical funnel plot suggested no publication bias (Fig. S1). The pooled OR for the T allele 
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(equivalent to B1) compared to the C allele (corresponding to B2) was 0.93 (95% CI 0.83-1.04, P= 0.184) 

(Fig S3 lower panel). Thus, no statistical significance was observed. A random effects model did not 

affect the result (Table S11).   

 

3.4 Forkhead box 03 transcription factor (FOXO3A, G vs T alleles, rs2802292) 

Fourteen studies were identified giving a total of 7937 cases and 9572 controls examining rs2802292 

in both sexes (Table S5). There was no between study heterogeneity (I2=22.75%). The symmetrical 

funnel plot suggested no publication bias (Fig. S1). As shown in Figure 4 the G allele compared to the 

T allele was significantly associated with exceptional longevity (OR = 1.12, 95% CI 1.07-1.18, P <0.0001) 

(Fig. 4 upper panel). A random effects model produced a similar result (Table S11). Details of the gene 

structure, genomic location and expression across a range of tissues is presented in the 

Supplementary. 

 

Analysis separately in males and females  

As data was available for sex-specific analyses and there is prior evidence that this SNP may have a 

gender effect (reviewed in Bao et al, 2014) we undertook analyses stratified by gender. A sub-analysis 

of six samples comprised of 1739 cases and 2625 controls (Anselmi et al., 2009; Broer et al., 2015; Li 

et al., 2009; Soerensen et al., 2010; Willcox et al., 2008 and Present Study), examined the association 

of the rs2802292 polymorphism with exceptional longevity in men (Table S6, Figure S4). The winner’s 

curse phenomenon was observed; thus, the Japanese study was excluded (Willcox et al., 2008). The 

present study and the MrOS sample from Broer et al. 2015 were also dropped from the meta-analysis 

due to high heterogeneity (I2 >50%), which resulted in acceptable heterogeneity (I2 =0). The final meta-

analysis was undertaken including only three studies (Fig. 4 lower panel).  The symmetrical funnel plot 

suggested no publication bias (Fig. S1). A highly significant association with the G allele of this 

polymorphism and exceptional longevity was observed in males (Fig. 4 lower panel, OR =1.45, 95% CI 

1.25-1.68, P <0.0001).  
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There were only three studies available for a female only meta-analysis  (Present Study, Li et al., 2009; 

Soerensen et al., 2010) but due to high heterogeneity (I2 = 60.1%, Figure S5), the Chinese study was 

dropped (Li et al., 2009) resulting in too few studies for a meta-analysis. 

 

3.5 Interleukin 6 (IL6, G174C polymorphism, G vs C allele, rs1800795) 

A total of 4 studies, with 1377 cases and 2227 controls, were included in this meta-analysis (Table S7). 

There was no evidence of winner’s curse phenomenon. There was no between-study heterogeneity 

(I2 = 0%) and the symmetrical funnel plot suggested no publication bias (Fig. S1). The significant pooled 

OR for the G allele in association with exceptional longevity was 1.13 (95% CI 1.02-1.25, P = 0.015, 

Figure 5). A random effects model did not affect the result (Table S11).  Details of the gene structure, 

genomic location and expression across a range of tissues is presented in the Supplementary. 

 

3.6 Klotho (KLOTHO, KL-VS polymorphism) 

The KL-VS polymorphism is a haplotype tagged by a number of SNPs in total linkage disequilibrium 

(e.g. rs9527026, rs9536314) and hence different SNPs have been used across studies.  A total of 3 

studies (Invidia et al., 2010; Novelli al., 2008 and Present Study), with 1290 cases and 1797 controls, 

were included in this meta-analysis (Table S8). There was no evidence of winner’s curse phenomenon 

and heterogeneity was not high (I2 = 22%) (Fig S1). The KL-VS haplotype was positively associated with 

exceptional longevity with a modest effect size (OR = 1.18 and 95% CI 1.01-1.37, P = 0.035, Figure 6).  

Details of the gene structure, genomic location and expression across a range of tissues is presented 

in the Supplementary. 

 

3.7 Sirtuin protein (SIRT1, C vs T allele, rs3758391) 

A total of three studies, with 747 cases and 1698 controls (Han et al., 2014; Lin et al., 2016 and Present 

Study), were included in this meta-analysis of the SIRT1 polymorphism, rs3758391, with longevity 
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(Table S9). There was no evidence of heterogeneity (I2 =0%), publication bias (Fig S1) or Winner’s curse. 

The pooled OR for the C allele in association with exceptional longevity was not significant (OR= 1.08, 

95% CI 0.95-1.23 P = 0.25, Fig S6). Thus, no statistical significance was observed.  

 

3.8 Tumour necrosis factor-alpha (TNFa, G308A polymorphism, rs1800629) 

A total of 4 studies, with 747 cases and 1698 controls, were included (Bruunsgaard et al., 2004; 

Khabour, 2010; Wang et al., 2001 and Present Study) (Table S10). There was no evidence of winner’s 

curse phenomenon. Heterogeneity was low (I2 = 11%). The symmetrical funnel plot suggested no 

publication bias (Fig. S1). The association with exceptional longevity for the G allele compared to the 

A allele was not significant (OR = 1.18, 95% CI 0.99-1.40; P = 0.07, Fig. S7). A random effects model did 

not affect the result (Table S11).   

 

4. Discussion  

Many genes have been investigated in relation to exceptional longevity, although the results 

have been inconsistent. Therefore, we assessed the contributions of previously identified genetic 

variants using meta-analyses.  We focused on eight genes with a total of nine polymorphisms, which 

have been investigated for association with exceptional longevity in at least three published studies. 

Our results indicate that at least five out of the nine polymorphisms, ACE rs4340, APOE ε2/3/4, 

FOXO3A rs2802292, the KLOTHO KL-VS variant and IL6 rs1800795 were significantly associated with 

exceptional longevity, although the pooled effect sizes were in general, modest.  

 

The ACE enzyme is a key component of the renin-angiotensin system that regulates blood pressure 

(Rigat et al., 1990) and plays a key role in sodium homesotasis (Farag et al., 2017). We examined the 

most frequently studied variant, an insertion/deletion (I/D) polymorphism. Our ACE I/D meta-analysis, 

comprising 8 studies with a total of 10,863 participants, indicated that the ACE D-allele shows a 

modest positive association with exceptional longevity. The deletion allele is missing the 287-bp Alu 
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repetitive element, which leads to higher ACE enzyme activity in blood (Danser et al., 1995) and may 

increase the risk of cardiovascular disease by up to 10% (You & Shen, 2016; Zhao et al., 2014).  

However, as demonstrated by our meta-analysis and other studies, the D allele is associated with 

exceptional longevity (Zajc Petranovic et al., 2012).  This suggests that the ACE I/D polymorphism may 

be an example of antagonistic pleiotropy, whereby earlier in life the D allele may increase the risk of 

disease but later in life it may lead to a survival advantage.  It has also been speculated that the D 

allele may influence longevity by its potential positive effects on tissue repair (Eisenlohr et al., 1992), 

the immune system (Ehlers & Riordan, 1989), and preservation of muscle strength (Montgomery et 

al., 1998). Additionally, there is the possibility that this polymorphism is in linkage with another locus 

that may be driving the observed relationship (Garatachea et al., 2013). Our finding concurs with a 

meta-analysis undertaken by Garatachea et al. (2013), although our meta-analysis included new 

studies and had a greater number of cases whilst Garatachea et al. had a higher number of controls 

due to differences in study selection criteria.  We used a lower age cut-off for cases (85+ vs Garatachea 

et al. 100+ years) and did not include small studies (N cases<100). Despite these differences, the 

observed odds ratios were very similar (OR= 1.11 current study vs 1.16 Garatachea et al).  

 

APOE has been implicated in cardiovascular and neurodegenerative diseases, with the ϵ4 allele variant 

the major genetic risk factor for Alzheimer’s disease. The APOE gene encodes the primary cholesterol 

carrier in the brain as well as contributing to the clearance of beta-amyloid across the blood brain 

barrier (Forero et al., 2018)and plays an important role in lipid and cholesterol homeostasis (Leduc et 

al., 2010).   

 

Our meta-analyses examining the APOE ϵ2/ ϵ3/ ϵ4 polymorphism (≥11 studies) indicated that when 

compared to the most common allele, ϵ3, the ϵ4 allele was negatively associated with exceptional 

longevity, whereas a positive association was observed for APOE ϵ2.  Similar meta-analysis results 

were observed when considering the influence of ethnicity, although there were substantially fewer 
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non-Caucasian studies (Caucasians ≥8studies; Asians 2- 3 studies). Our findings differ from a meta-

analysis undertaken by Garatachea et al. (2015), where no significant results were observed for either 

of these analyses. However, we investigated different studies and the age cut-offs for the cases 

differed as only centenarians were analyzed in Garatachea et al., 2015. Nevertheless, Garatachea et 

al. did find significant relationships with exceptional longevity when using other genetic models that 

were consistent with our results (e.g. ϵ4 carriers negatively associated with longevity).  In support of 

these results, a prior genome-wide longevity study found evidence of linkage in nonagenarians (1408 

sibling pairs) with a region on chromosome 19 (19q13.11-q13.32), which harbors the APOE gene.   The 

same authors using a GWAS in an independent sample also found significant associations with APOE 

SNPs (Beekman et al., 2013). Moreover, exceptional longevity associations with polymorphisms from 

the APOE locus (Broer et al., 2015; Sebastiani et al., 2012; Zeng et al., 2016), TOMM40 (Deelen et al., 

2011) and APOC1 (Nebel et al., 2011) genes on chromosome 19, which are in strong linkage 

disequilibrium with the APOE gene, have also been observed.  It should also be noted that the APOE 

ϵ2/3/4 polymorphism spans a CpG island found in exon 4 and hence epigenetic regulation of APOE 

expression may be involved (Forero et al., 2018).  Thus, the contribution of the APOE ϵ2/3/4 variant 

to exceptional longevity deserves a comprehensive assessment including not only genetic variation 

but epigenetic as well. 

 

FOXO3A is an evolutionary conserved transcription factor and is a strong exceptional longevity 

candidate. FOXO3A has previously been shown to contribute to lifespan extension in a variety of 

different animal models (Bonafe et al., 2003).  FOXO3A is a member of the Forkhead family of 

transcription factors and unlike invertebrates, which have only one FOXO gene, mammals have four 

FOXO genes, (FOXO1, FOXO3, FOXO4, FOXO6), all containing the ‘forkhead box’ DNA binding domain.  

The FOXO family play important regulatory roles in insulin/insulin-like growth factor (IGF1) signaling, 

which impacts diverse biological processes including cellular homeostasis (Morris et al., 2015), 

metabolism, proliferation, differentiation, oxidative stress, apoptosis, senescence (Lee & Dong, 2017; 

ACCEPTED M
ANUSCRIP

T



Revelas et al., 2018  
 

16 
 

Martins et al., 2016). In our FOXO3 meta-analysis of over 7900 cases and 9500 controls, using studies 

of both genders, the G allele of the intronic SNP, rs2802292, was significantly associated with 

exceptional longevity (OR =1.12). This is consistent with two prior meta-analyses, where Bao et al. 

(2014) and Broer et al. (2015) observed similar associations with exceptional longevity (OR = 1.36 & 

OR =1.17 respectively).  The difference between the strength of the observed OR of Bao et al. (2014) 

compared to that reported by Broer et al. (2015) and the current study is most likely due to the 

number of included studies (n=5 for Bao et al; n=20 Broer et al; n=14 current study) and their sample 

sizes. We had fewer studies than Broer et al. (2015), as we included only studies comprising both 

sexes. The recent Han Chinese centenarian GWAS also found evidence for an association with FOXO3A 

SNPs with exceptional longevity at the p<.05 level (Zeng et al., 2016), providing support that it plays 

an exceptional longevity role in a Chinese population. 

In FOXO3A sex-specific analyses, which were also performed by Bao et al. (2014), we observed a 

similar significant positive association for males only (Bao et al. OR =1.54 versus current study OR = 

1.45). Due to the winner’s curse phenomenon and heterogeneity in our results, our final number of 

included studies was smaller (n=3 vs Bao et al., n=5). The Willcox et al. (2008) examined a Japanese 

cohort and the frequency of the G allele in the Japanese population is ~24% (compared to 43% in 

Europeans), which suggests that there may be population-specific effects when considering 

exceptional longevity. Bao et al. (2014) found male-specific associations for two other FOXO3A SNPs 

(rs2764264, rs13217795) that we did not examine due to a lack of studies with the relevant 

information.  Of note, these three SNPs are in moderate to high linkage disequilibrium (r2 ~0.615-

0.889). Data on female studies is lacking with only two studies previously reported for rs2802292, both 

of which found an association with longevity (Li et al., 2009; Soerensen et al., 2010) and the present 

study, which did not find a significant association (OR=1.00 [0.78-1.28]).  A meta-analysis for females 

was not undertaken due to high heterogeneity.  Further studies are required to investigate the gender 

effects of FOXO3A in exceptional longevity even though recruiting long-lived males may prove difficult 

as they are less common than their female counterparts. 
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The investigated FOXO3A SNP, rs2802292, is located in intron 2 and is a cis-eQTL for a nearby long 

non-coding RNA, LINC0022, of which little is known.  Recently, the presence of the G allele was found 

to be protective for coronary artery disease mortality in older populations (~76 yrs age), including 

Japanese and Caucasians (Willcox et al., 2017).  The exact mechanism by which such a protective effect 

occurs is unclear but different lines of evidence suggest FOXO3 may have beneficial cardiovascular 

effects (Willcox et al., 2017).  Other studies are required to replicate and extend these results. 

 

The majority of prior work examining the influence of the FOXO3A gene on exceptional longevity has 

focused on SNP variants.  However, the regulation of FOXO3A and its corresponding protein is complex 

and includes not only genetic variation but also epigenetic (e.g. circular RNA, miRNAs, Yang et al., 

2016), and post-translational modifications (e.g. protein acetylation).  Recently, a broader 

chromosomal perspective was undertaken by Donlon et al. (2017), who demonstrated long range 

physical contacts with FOXO3A and 46 nearby genes on a large region of chromosome 6 in a Japanese-

American cohort.  This work suggests that the FOXO3A gene may participate in important 

chromosomal conformational changes that may contribute to regulation of a large number of genes.  

Indeed, the authors suggest that this set of genes, ‘the FOXO3 longevity interactome’ may act as an 

‘ageing hub’ (Willcox et al., 2017).  The role of rs2802292 as an eQTL of LINC0022 also deserves 

attention (see Suppl.).  Future comprehensive longevity studies examining the regulation of FOXO3A 

gene expression and its protein product and its influence on human ageing related phenotypes (e.g. 

age-related disease) are warranted to fully investigate its role in exceptional longevity.   

 

We observed a modest association for rs1800795 (also known as -174G/C) and exceptional longevity 

(OR=1.13), which is a SNP located in the IL6 gene promoter (See Suppl.). This gene encodes a member 

of the interleukin family and has two contrasting actions, as an inflammatory cytokine and also an 

anti-inflammatory myokine, and plays a critical role in immune defense (Pal et al., 2014). The allele 

ACCEPTED M
ANUSCRIP

T



Revelas et al., 2018  
 

18 
 

frequency of rs1800795 varies greatly amongst Caucasian subpopulations but in Asian and African 

populations this polymorphism is almost monomorphic for the G allele, which is associated with higher 

levels of IL6 (Albani et al., 2009). Interestingly, Di Bona et al. (2009) found a male-specific association 

with this polymorphism but only in Italian centenarians and not in other European groups, suggesting 

again that there are longevity gender differences and that environmental factors are also important. 

Higher levels of IL6 are reported for the G allele.  This SNP is also located in an uncharacterized long 

non-coding RNA, LOC541472 (alias: ACO73072.5), and is an eQTL for this gene and also the STEAP1B 

gene (Fig. S11d). In addition, it should be noted that DNA methylation of the IL6 promoter may also 

contribute to its transcriptional regulation (Ma & Ordovas, 2017).  The role IL6 plays in exceptional 

longevity may be due to its role in maintaining homeostasis as it is both pro-inflammatory and anti-

inflammatory as well as its function in the maturation of B cells (Minciullo et al., 2016).  

 

Klotho can be found as either a membrane and/or a secreted protein in cerebrospinal fluid, plasma 

and urine.  Interestingly, at least in mice, the membrane klotho protein can be cleaved by proteins of 

the beta-amyloid pathway, implicated in Alzheimer’s disease, namely ADAM 1, ADAM 17 and BACE 

(Bian et al., 2015; Pavlatou et al., 2016).  Klotho is involved in diverse pathways including the insulin 

signaling pathway and in regulation of ion channel activity, calcium and phosphorus homeostasis, 

inflammation (Hui et al., 2017)and the preservation of stem cells (Bian et al., 2015). It also plays a 

protective role against oxidative stress, senescence, and cancer (Pavlatou et al., 2016). Animal 

experiments suggest klotho plays a role in ageing and longevity. For example, increased klotho 

expression can extend lifespan in C. elegans (Chateau et al., 2010; Kuro-o et al., 1997; Kurosu et al., 

2005). Two non-synonymous SNPS, rs9536314 (F325V) and rs952705 (C370S), in conjunction with four 

other SNPs that are in complete linkage disequilibrium define the haplotype “KL-VS” (See Suppl.). This 

variant alters the structure of the protein and is reported to increase klotho secretion as well as being 

associated with greater brain cortical volume in humans and slower cognitive decline in older adults 

(Shardell et al., 2016).  Only a few human exceptional longevity studies have examined KLOTHO 
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variation and have published inconsistent results, with some suggesting a KL-VS heterozygote 

advantage for longevity (e.g. Arking et al., 2002) but others not (e.g. Novelli et al., 2008).  

 

In our meta-analysis a modest association between the KLOTHO haplotype, KL-VS, and exceptional 

longevity (OR =1.18) was noted, however, there was a limited number of studies (n=3) and the result 

appears to be driven by the present study. There was no evidence of winner’s curse or publication 

bias and between study heterogeneity was acceptable.  Despite our positive results for this KLOTHO 

variant, more human KLOTHO longevity studies are required to further explore this relationship.  

 

Four polymorphisms (CETP rs5882, CETP rs708272, TNFa rs1800629 and SIRT1 rs3758392) did not 

reach statistical significance in our meta-analyses.  Possible explanations for this are that there is no 

effect or insufficient statistical power. In general, our meta-analyses that failed to reach statistical 

significance had relatively small sample sizes (e.g. SIRT1). Thus, more studies are required to conclude 

that these polymorphisms are in fact not associated with exceptional longevity.   

 

Throughout our meta-analysis we have carefully assessed heterogeneity, winner’s curse phenomenon 

and publication bias. The winner’s curse phenomenon was observed for CETP (rs5882) resulting in the 

omission of the first published study (Barzilai et al., 2003), which examined Ashkenazi Jews.  Similarly, 

the first published study for the FOXO3A rs2802292 variant (Willcox et al., 2008), examining a 

Japanese cohort was also excluded due to the winner’s curse. Apart from APOE (ε2 vs ε3), CETP 

(rs5882) and FOXO3A (rs2802292 gender analyses only), study heterogeneity was either absent or 

defined as low with an I2 value ranging from 11-22%. For two of the meta-analyses with high 

heterogeneity, removal of a single study for APOE ε2 (I2 = 65%) and for CETP rs5882 (I2 = 52%) resulted 

in an acceptable, albeit moderate, level of heterogeneity (35 & 36% respectively). Omission of two 

studies from the FOXO3A male analysis (the Australian present study & MrOS sample from Broer et 

al. (2015)) resulted in greatly improved heterogeneity but only a small number of studies could then 
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be assessed (n=3).  Omission of the only Chinese study for the FOXO3A female analysis resulted in only 

two acceptable studies. Publication bias was not detected across all studies.  

 

All of the five identified exceptional longevity-related genes in our meta-analysis have been related to 

cardiovascular health, in particular lipoprotein/cholesterol and blood pressure metabolism.  APOE has 

been linked to cardiovascular disease, including heart attack and stroke (Lahoz et al., 2001). ACE has 

been related to hypertension and heart failure (Cambien et al., 1992) and FOXO3A has been implicated 

in coronary heart disease (Donlon et al., 2017). Klotho has been linked to atherosclerosis and 

premature coronary disease (Pavlatou et al., 2016). The IL6 rs1800795 SNP has been linked to 

atherosclerosis (Yin et al., 2013) and coronary artery disease (Hou et al., 2015). These results suggest 

that cardiovascular-related pathways are important contributors to attaining exceptional longevity.  It 

is of great interest to note that KLOTHO interacts with the FOXO family.  For example, together with 

foxo, the klotho protein can play a role in the reduction of oxidative stress.  Circulating klotho can bind 

to cell surface receptors, which inhibits phosphorylation of FOXO, resulting in its nuclear translocation.  

In the nucleus, foxo can then bind to the promoter of the oxidative stress gene, SOD2, increasing its 

expression ultimately resulting in the removal of reactive oxygen species (Pavlatou et al., 2016).   

 

Longevity GWAS meta-analyses have in general had limited success identifying genetic variants.  

Over the last decade GWAS studies have been performed and have defined exceptional longevity in 

various ways.  When cases were defined as 85 years plus, the APOE gene locus was identified (Deelen 

et al., 2011).  When using cases aged 90 years and over GWAS meta-analyses have found SNPs in the 

MINPP1 gene (Newman & Murabito, 2013), the CAMKIV gene (Malovini et al., 2011), the 

APOE/TOMM40/APOC1 gene region (Beekman et al., 2013; Nebel et al., 2011) and in a long-non-

coding RNA gene on chromosome 5q33.3 (RP11-524N5.1) (Deelen et al., 2011).  However, Broer et al. 

(2015) did not find any genome-wide significant results using 90+ year old cases but did replicate 

candidate gene results for the APOE locus and the FOXO3A SNP, rs2802292. Focussing on centenarian 
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cases, genome-wide significant results have also been observed in the APOE/TOMM40 locus 

(Sebastiani et al., 2012).  The most recent study, using a very large sample of Chinese centenarians 

identified ethnic-specific and other cross-ethnic exceptional longevity SNPs, including APOE (Zeng et 

al., 2016).  This study also replicated the findings for FOXO3 and chromosome 5q33.3 as exceptional 

longevity loci by Deelen et al. (2011).  However, it should be noted that the comparison groups 

(controls) differed widely between these studies and the sample sizes also varied greatly. 

 

There is some uncertainty regarding the concept of ‘exceptional longevity’ compared to ‘longevity’.  

What is the appropriate age cut-off for exceptional longevity?  Presumably, it should be greater than 

the average life expectancy, which will be specific for each cohort. As previously discussed, there is 

also evidence that the genetic contribution to longevity increases with age.  In our study, we have 

used a criterion for exceptional longevity of 85 years and over, which would exceed the average life 

expectancies of most of the participants previously studied.  Moreover, the vast majority of 

exceptionally long-lived individuals included in our meta-analyses were 90 years and older (see 

Suppl.).  If we had used a more extreme age cut-off (e.g. 100+) the number of studies would have been 

severely restricted for our analyses.  Additionally, should the age cut-off take into consideration 

gender, as prior work suggests that there are sex differences in life expectancy?  For example, genetic 

influences on longevity may be stronger for men (Sebastiani & Perls, 2012). Another major issue of 

exceptional longevity studies is the optimal study design. A longitudinal birth cohort study would be 

ideal, enabling selection of early deceased controls and long-lived cases that exceed the average life 

expectancy from the same cohort.  Such a design would control for ethnicity to some extent and birth 

cohort differences. Alternatively, exceptional longevity can be assessed as a continuous trait (years of 

survival).   

 

Exceptional longevity is a heterogeneous phenotype; more homogenous exceptional longevity-related 

phenotypes may be more useful for genetic studies.  For example, healthy aging, defined as free of 
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most common diseases at age (Reed, 2003), has been reported as highly heritable in a male only study.  

Another exceptional longevity-related phenotype is age-related cognitive performance, which has 

moderate to high heritability in very old adults (80+) (McClearn et al., 1997).  However, most genetic 

studies have focused simply on exceptional longevity and not longevity-related phenotypes.   

 

Limitations of this meta-analysis include: (i) variations in the definition of cases and controls; (ii) small 

sample sizes; and (iii) a lack of non-Caucasian studies.  In general, racial differences were not able to 

be assessed except where there were sufficient numbers of studies (APOE ε2/3/4).  As the majority of 

studies utilized Caucasian participants with a minority from Asian cohorts, the results from our 

Caucasian analyses may not be generalizable to non-Caucasian populations.  We examined only allelic 

differences and not different genotypic models or carrier status as not all studies provided the 

necessary information. Additionally, selection of appropriate controls is problematic. Ideally, cases 

and controls should be nominated from the same birth cohort avoiding the introduction of survivor 

bias. Lastly, few studies have examined gender differences and we were only able to examine the 

association of FOXO3A rs2802292 with longevity in males. 

 

Functional studies are required to follow-up the role of the significant genes identified in this analysis 

in promoting exceptional ageing.  To date few published studies have examined various polygenic risk 

scores (e.g. cancer, cardiovascular disease, Alzheimer’s disease) and exceptional longevity.  In 

addition, more in-depth study of the genes identified in this meta-analysis, as well as examining the 

role of epigenetics, lipid and protein modifications will be important to address as the field progresses. 

The more recent use of whole genome sequencing and pooling resources across independent studies 

to increase the sample size and racial diversity may further reveal the influence of sex, ethnicity and 

of rare and common variants as well as copy number variation on exceptional longevity.  
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Conclusions 

The meta-analyses performed revealed several genetic variants with consistent associations to 

exceptional longevity, with the strongest results observed for the APOE ε2/3/4 polymorphism and 

FOXO3A rs2802292 in males. However, in general, the effect sizes were not large, suggesting that 

many genes of small effect play a role, which is consistent with results for other complex traits.   
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Fig. 1. Literature Search Flow Diagram. 

 

 
Fig. 2. Meta-analysis of associations between the ACE deletion (D) versus insertion (I) alleles and 

exceptional longevity.      
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Fig. 3. Meta-analysis of associations between the APOE alleles and exceptional longevity: ε4 vs ε3 

(upper panel) and ε2 vs ε3 (lower panel).  
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Fig. 4. Meta-analysis of associations between FOXO3 rs2802292 alleles G vs T and exceptional 

longevity (top-panel) and within male samples only (lower-panel).  
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Fig. 5. Meta-analysis of associations between IL6 rs1800795 alleles G vs C and  

et exceptional longevity.     

 

 

 

Fig. 6. Meta-analysis of associations between KLOTHO KL-VS versus wild-type haplotype and 

exceptional longevity.     
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Table 1: Characteristics of investigated exceptional longevity genes  

Gene Chromosome 

Number 

Protein Variant (rs 

identification) 

Common 

Variant Name 

Function/ pathway 

ACE 17 Angiotensin-

converting 

enzyme 

Deletion/Insertion 

(Tagging SNP’s: 

rs4340, rs1799752, 

rs13447447) 

Insertion/Deletion 

(Alu repeats) 

Regulates blood pressure 

(Renin-angiotensin system); 

Balances fluids & salts 

APOE 19 Apolipoprotein-E rs7412 & rs429358 

haplotype 

ϵ2/ϵ3/ϵ4  Maintaining normal levels 
of cholesterol;  
Clearance of amyloid from 

the brain; Lipoprotein 

metabolism 

CETP 16 Cholesteryl ester 

transfer protein 

rs5882 I405V Involved in the transfer of 

neutral lipids (including 

cholesteryl ester & 

triglyceride) among 

lipoprotein particles 

CETP 16 Cholesteryl ester 

transfer protein 

rs708272 Taq1B (B1 vs B2) As above 

FOXO3A 6 Forkhead box 03 

transcription 

factor  

rs2802292 N/A Transcription factor 

involved in diverse cellular 

pathways e.g. apoptosis 

IL6 7 Interleukin 6 rs1800795 G174C  Immune defence: Cytokine 

pro-inflammatory & anti-

inflammatory myokine  

KLOTHO 13 Klotho Haplotype defined by 

six SNPs in total 

linkage 

disequilibrium (e.g. 

rs9536314, 

rs9527026) 

F352V (KL-VS vs 

wt) 

Inflammation, oxidative 

stress, insulin signalling, 

calcium & phosphate 

homeostasis affecting 

growth & maintenance of 

bone strength 

SIRT1 10 Class 1 sirtuin 

protein 

rs3758391 N/A (NAD)-dependent 

deacetylase affecting a 

variety of substrates  

TNFa 6 Tumour necrosis 

factor-alpha  

rs1800629 G308A Cytokine, Regulation of 

immune cells & 

Inflammation 
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