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Abstract 

Bacterial integrative & conjugative elements (ICEs) are chromosomally-

integrated DNA islands that excise to form circular molecules capable of 

horizontal self-transmission via conjugation (cell-to-cell contact). Symbiosis 

ICEs, such as ICEMlSymR7A of Mesorhizobium loti, are a group of ICEs that 

carry genes enabling rhizobial bacteria to engage in N2-fixing symbioses with 

leguminous plants. Transfer of symbiosis ICEs can convert non-symbiotic 

rhizobia into legume symbionts in a single evolutionary step. 

In this thesis, a novel form of “tripartite” ICE (ICE3) is reported that exists as 

three entirely separated regions of DNA residing in the chromosomes of 

genetically diverse N2-fixing Mesorhizobium spp. These ICE3 regions did not 

excise independently, rather through multiple recombinations with the host 

chromosome they formed a single contiguous region of DNA prior to excision 

and conjugative transfer. Upon integration into a recipient chromosome, the 

ICE3 recombined the recipient chromosome to disassemble into the tripartite 

form. These recombination reactions were catalysed by three Integrase 

proteins IntG, IntM, and IntS, acting on three associated integrase attachment 

sites. The “excisive” recombination reactions (i.e. assembly and excision) 

were stimulated by three recombination directionality factors RdfG, RdfM, and 

RdfS. Expression of ICE3 transfer and conjugation genes were found to be 

induced by quorum-sensing. Quorum-sensing activated expression of rdfS, 

and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, 

RdfS acts as a “master controller” of ICE3 assembly and excision. A model for 

ICE3 recombination and transfer is presented in this thesis. 
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The conservation of gene content between symbiosis ICE and ICE3 indicated 

that these elements share a common evolutionary history. However, the 

persistence of ICE3 structure in diverse mesorhizobia is perplexing due to its 

seemingly unnecessary complexity. Bioinformatic comparisons of ICE and 

ICE3 indicated that the tripartite configuration itself may provide selective 

benefits to the element, including enhanced host range, host stability and 

resistance to destabilization by tandem insertion of competing integrative 

elements. 

In congruency with ICEMlSymR7A, ICE3 acquisition can convey upon recipients 

the ability to form N2-fixing symbiosis with the host-legume of the ICE3 donor. 

Interestingly, the effectiveness of N2-fixation may be impaired. The 

consequences of the emergence of sub-optimal N2-fixing strains following 

ICE3 transfer in agriculture is discussed. If ICE3 transfer poses a barrier for 

future inoculation success, the elucidation of the mechanism of ICE3 

assembly, excision, and transfer will allow for the development of strategies 

for management. 

.  
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1.1. The symbiosis between rhizobia and legumes 

Although dinitrogen (N2) is abundant in Earth’s atmosphere, the inert nature of 

this molecule renders it metabolically inaccessible to most organisms. A group 

of soil-dwelling α and β-proteobacteria termed rhizobia possess the 

remarkable ability to infect specialised nodule cells that form on the roots of 

leguminous plants and within these nodules, terminally differentiate into a 

bacteroid capable of reducing atmospheric N2 into NH3 (5-8). The interaction 

between rhizobia and legumes is considered symbiotic because the legume 

host provides the bacteroids with carbon in the form of dicarboxylic acids, and 

in return, the bacteroids secrete NH3 to the plant root cells where it is 

assimilated into amino-acids and distributed via the xylem (5, 9). 

 

1.1.1. Establishment of N2-fixing symbiosis 

To establish a successful N2-fixing symbiosis, rhizobia must colonise the 

legume roots and infect the nodule cells. Although multiple modes of rhizobial 

root infection have been described, the traditional “root hair curling” (RHC) 

mode of infection is the most common and best characterised (6, 7). RHC 

infection (Fig 1.1) is initiated when rhizobia recognise the presence of legume-

derived chemical signals such as flavonoids, methoxychalcones, aldonic acids 

and betaines secreted in the root exudate (10-14). Rhizobial NodD receptors 

detect this signal and respond by directing transcription of various nod genes 

involved in production and secretion of lipochito-oligosaccharide molecules 

termed Nod factors (15-17). Nod factors trigger several RHC infection-related 

responses in the legume host, including Ca2+ oscillations, Ca2+ influx, root-hair 

curling and infection thread formation (6, 7, 18, 19). Many legumes exhibit 
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stringent requirements for specific confirmations or concentrations of Nod 

factors, which serve as a checkpoint for partner-choice in symbiosis (15, 16, 

20). 

Following plant recognition, rhizobia adhered to the root hair become 

entrapped when the root hair curls, forming a “Sherpard’s crook”-like structure. 

These entrapped rhizobia are directed into an invagination in the root hair cell 

wall where an infection thread begins to develop (6, 7). Rhizobia occupy the 

infection thread by cell division and are eventually released in an infection 

droplet into the microaerobic nodule primordium where bacteroid 

differentiation occurs (8, 21). In most well-studied rhizobia, the low-oxygen 

environment of the nodule cell triggers the activation of the N2 fixation regulator 

NifA, which transcriptionally activates a suite of nif genes required for the 

assembly of the nitrogenase enzyme complex. In some strains of rhizobia, FixJ 

and FixK are additionally activated in response to low oxygen, which in turn 

up-regulate expression fix genes involved in the assembly of bacteroid 

respiratory systems that fuel nitrogenase (5, 9, 22-26). 

Under laboratory conditions where environmental factors can be standardised, 

legume-rhizobia symbioses may exhibit variable N2-fixation effectiveness 

outcomes (i.e. amounts of N2 fixed) (27). N2-fixation effectiveness may range 

from ineffective (nodulation without N2-fixation) to effective (all N demands of 

the legume are met) N2-fixation. The amount of N2 fixed by rhizobia during a 

symbiosis is largely dependent on the legume host, the strain of rhizobium and 

the biological outcome of their interaction (27, 28).  Although many strains of 

rhizobia may nodulate a specific host, only a small subset of strains will fix 

optimal amounts of N2 (29, 30). 
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Figure 1.1. The establishment of rhizobia-legume symbioses. The classical root hair curling mode of infection in rhizobia-
legume symbioses is initiated when rhizobia perceive flavonoid or other signalling molecules secreted into the rhizosphere by the 
legume. These flavonoids are detected by rhizobial NodD receptors which trigger the expression of nodulation genes required for 
the biosynthesis and secretion of Nod factors. Nod factors secreted by rhizobia adhered to the legume root-hairs are detected by 
the legume cell-surface receptors, leading to Ca2+-spiking in epidermal and cortical cells. Perception of Nod factors also stimulates 
root hair curling, trapping rhizobia in a Shepard’s crook-like structure and stimulating the development of infection threads. Rhizobia 
proceed down the developing infection thread via cell division and are released in an infection droplet into developing nodule cells 
where they differentiate into bacteroids, capable of undergoing N2-fixation. This figure was reproduced from reference (31).

Shepard’s crook structure 
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1.1.2. The accessory nature of rhizobial symbiosis genes 

Genome sequencing efforts have revealed that strains within a bacterial 

species typically carry a set of conserved “core” genes that are essential for 

their growth and a selection of horizontally acquired “accessory” genes that 

that convey some beneficial adaptive trait (32-35). The core and accessory 

genes of a bacterial species are collectively termed the pan genome 

(34).Rhizobial nod, nif and fix genes (hereby referred to as the symbiosis 

genes) required to engage in N2-fixing symbioses comprise part of the 

accessory genome and have probably transferred horizontally to many taxa 

throughout evolutionary history (33, 36-40). However, the ability to fix N2 with 

legumes is restricted to only 14 distinct genera of α and β-proteobacteria (41-

44), suggesting that transfer of symbiosis genes between distantly related 

bacteria is rare. In contrast, horizontal transfer of symbiosis genes within 

rhizobial genera is considered one of the major forces driving genetic diversity 

and may result in the evolution of new N2-fixing species (45-50). Symbiosis 

genes transfer freely in rhizobial communities because they are typically 

carried on mobile genetic DNA elements (MGEs) (51). For most rhizobia, 

including Rhizobium and Sinorhizobium, these MGEs are large (>100-kb) 

plasmids (39, 52, 53) (Fig. 1.2B). Plasmids often encode genes necessary for 

horizontal self-transmission via conjugation (transfer via cell-to-cell contact), 

but some plasmids lacking these conjugation genes rely on extrinsic factors 

for their mobilisation (53). Horizontal transfer of both “conjugative” and 

“mobilisable” plasmids carrying symbiosis genes has been demonstrated 

under controlled conditions and conveys upon some recipients the ability to 
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nodulate and fix N2 in symbiosis with target legume. (54-58). However, the 

effectiveness of N2fixation of these recipients is commonly impaired compared 

to the plasmid donor strain. 

In contrast to Rhizobium and Sinorhizobium, rhizobia belonging to the 

Mesorhizobium, Bradyrhizobium and Azorhizobium genera typically carry their 

symbiosis genes on large (>400-kb) chromosomally-integrated genomic DNA 

islands termed symbiosis islands (59-63) (Fig 1.2A). Symbiosis islands of 

Mesorhizobium and Azorhizobium strains can be conjugatively transferred into 

other symbiotic or non-symbiotic rhizobia and confer on recipients an ability to 

nodulate or in some cases fix N2 with target legumes (59, 60). 



 

 

 

Figure 1.2. Rhizobial genome architecture. Inner circles represent GC%, and the second-third most inner circles represent 
predicted ORFs. The outermost circle details the genome coordinates. (A) The M. huakii (formerly M. loti) MAFF303099 genome 
consists of a ~7 mb chromosome and and two extrachromosomal plasmids; pMLa (~352 kb) and pMLb (~208 kb). The symbiosis 
genes are located on a chromosomally-integrated ~611-kb ICE. (B) The Sinorhizobium fredii NGR234 genome is composed of a 
~3.9-mb chromosome and two plasmids; pNGR234a (~536 kb), which carries most of the symbiosis genes, and pNGR234b (~2.4 
mb). This figure was reproduced from reference (49). 
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1.1.3. Mesorhizobium 

Symbiosis islands were first identified in the Mesorhizobium genus which was 

recognised in 1997 following the reclassification of five former Rhizobium 

species (64). Representatives of the genus are characterised by an 

intermediate growth rate (MGT 4-8 h) and share significant 16s rDNA 

homology (65). Based on 16s rDNA sequences, the Mesorhizobium genus is 

the taxonomic intermediate of Bradyrhizobium and Rhizobium (Fig 1.3). 

Mesorhizobia establish N2-fixing symbioses with temperate, tropical, sub-

tropical and arctic legumes (66). The symbiotic hostrange for Mesorhizobium 

spp. can be broad.  M. loti NZP2037, for instance, nodulates Leuceana 

leucocephala, Carmichaelia flagelliformis, Ornithopus sativus, Clianthus 

puniceus, Vigna spp. and at least 10 Lotus spp. (67-70). Other mesorhizobia 

exhibit a much narrower range, such as M. ciceri CC1192, which has only 

been confirmed to nodulate Cicer arietinum (chickpea) (63, 71). Importantly, 

not all Mesorhizobium spp. carry their symbiosis genes in their chromosomes 

and some entirely lack symbiosis genes (72, 73). Nevertheless, the existence 

of chromosomally-encoded symbiosis genes appears to be prevalent in the 

Mesorhizobium genus and extensive characterisation of the paradigm 

symbiosis island from M. loti R7A, ICEMlSymR7A, has revealed that these 

elements belong to the most abundant class of conjugative MGEs in bacteria, 

the integrative and conjugative elements (ICEs) (74-76). 
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Fig 1.3. Maximum likelihood phylogeny of four rhizobial genera based on 16s 
rDNA sequence. 16s rDNA Phylogenetic analysis places the Mesorhizobium 
genus taxonomically between Bradyrhizobium and Rhizobium genera. This figure 
was reproduced from reference (65).
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1.2. Integrative and conjugative elements (ICEs) 

ICEs are regions of DNA that primarily reside integrated within bacterial 

genomes, but can excise to form a circular entity prior to conjugative transfer 

(77, 78). Thus, ICEs combine features of bacteriophages, transposons and 

conjugative plasmids to maximise their propagation by both vertical and 

horizontal modes of descent (79, 80). ICEs are currently grouped into 28 

families (81), each carrying a conserved compliment of “cargo” genes that may 

convey a fitness benefit upon the host (77, 78). For example, the SXT/R931-

family ICEs of Vibrio cholerae carry genes conveying multi-drug resistance 

(82, 83), the ICEclc-family of Pseudomomas putida carry genes required for 

chlorocatechol catabolism (84), PAPI-1 ICE of P. aeruginosa carries genes 

required for pathogenicity (85) and ICEMcSymR7A of M. loti R7A carries genes 

essential to the establishment of N2-fixing symbioses with Lotus spp. (60). ICE 

transfer allows bacteria to acquire complex genetic traits in a single 

evolutionary step and has a major impact on bacterial adaptation and evolution 

(80). 

 

 

1.2.1. Site-specific integration and excision 

Most studied ICEs have evolved to conservatively integrate (i.e. integration 

with no loss nor gain of DNA) into the 3’-end of highly conserved bacterial 

genes, presumably to maximise their host-range and reduces the fitness cost 

of integration (86, 87). For example, ICEBs1 of Bacillus subtlis (88, 89) and 

PAPI-1 integrate into the amino acyl tRNA genes leu-tRNA and lys-tRNA, 
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respectively while the SXT-R391-family ICEs integrate into peptide chain 

release factor 3 (prfC). Some ICEs, such as Tn916 of Enterococcus faecalis, 

are less stringent in their specificity for integration, targeting AT-rich regions of 

the genome (90). Regardless of the target site for integration, ICEs typically 

catalyse their integration and excision from bacterial genomes with the aid of 

a self-encoded DNA recombinase protein. Recombinase proteins may belong 

to one of three families; serine recombinases, DDE recombinases, or tyrosine 

recombinases (also termed integrases). Each family name reflects the 

conserved amino acid residue(s) in the active site domain (91-93). Serine and 

DDE-motif-containing recombinases that catalyse excision and integration of 

ICEs have only been identified in the Firmicutes phylum of bacteria, whereas 

tyrosine recombinases involved in ICE excision and integration are far more 

widely distributed (78, 91, 94). 

The most extensively characterised tyrosine recombinase is that of 

bacteriophage λ (λ-Int), which forms a nucleoprotein intasome complex with 

the E. coli-encoded integration host factor IHF and factor for inversion 

stimulation FIS to catalyse integration of phage λ into the E. coli chromosome 

(95-102). Integration of the phage occurs via a strand-exchange reaction 

involving the cleavage and formation of a Holliday junction between two short 

(15 bp) imperfect direct-repeat “core” attachment (att) sites located on the 

circular phage (attP) and chromosomal DNA (attB) (Fig 1.4). Importantly, the 

15-bp core attP site located on the phage genome is structurally distinct from 

the attB site and comprises the central region of the complete 240-bp attP site 

containing at least 16 binding sites for proteins involved in recombination (95, 

103). Following the strand exchange between attP and attB sites, the 
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integrated λ phage (termed a prophage) exists in the chromosome flanked by 

regions of DNA originating from upstream (for attL) or downstream (for attR) 

of the attP core sequence in the circular phage. Therefore, although the core 

attL, attR, attP and attB regions share a perfect or near-perfect core sequence, 

each region can be distinguished by the sequence of adjacent DNA. It should 

be noted that although integration of λ phage by Int requires the accessory 

proteins FIS and IHF (77, 78, 95), many ICEs can integrate into bacterial 

genomes via the activity of a lone ICE-encoded integrase (74, 104, 105). 

Nevertheless, the mechanism of integration and excision in most cases 

appears to follow the λ-phage model for integration and excision (92) and 

therefore the att site nomenclature developed in the study of the E. coli phage 

λ is used widely to describe attachment sites of many integrative elements.  

Although integrases such as λ Int catalyse both phage integration (attP and 

attB  attL and attR) and excision (attL and attR  attP and attB) reactions, 

integration reaction is generally favoured in the absence of additional factors 

for most well-studied integrases (106). Small proteins termed recombination 

directionality factors (RDFs, also termed excisionases), may stimulate the 

excision of ICEs and other integrative elements (107). In the case of λ phage, 

overexpression of the Xis protein stimulates excision 106-fold and 

simultaneously inhibits integration by binding a 35-bp regulatory element on 

the λ attP and attL site, causing a conformational change in the DNA that 

facilitates formation of the excisive intasome (108). Most studied RDFs 

stimulate excision by binding to att sites and bending the DNA into a 

conformation promoting excisive recombination (107), however, a subset of 

RDFs in the P2-class and 186-class phages termed Cox or ApI proteins, 
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respectively, are also able to regulate transcription from phage-encoded 

promoters that control expression of genes involved in lysogeny (109-114). 

Thus, RDFs can function in both catalytic and regulatory roles to facilitate the 

excision of various integrative elements. 

 

 

Figure 1.4. Integration and excision of phage λ. Integration of λ phage is 
mediated by recombination between two imperfect direct-repeat attachment 
(att) sites positioned on the circular phage (the core of attP) and host 
chromosome (attB). Integration is catalysed by the nucleoprotein intasome 
complex composed of λ integrase (λ Int), and the accessory proteins factor for 
inversion stimulation FIS and integration host factor IHF (95-102). λ phage 
proceeds in the reverse of the integration reaction and is catalysed by the same 
protein complex, however, the excision reaction is favoured in the presence of 
the excisionase Xis (108, 115). 
 
 

1.2.2. Conjugative transfer 

Excision and circularisation is an essential prerequisite for conjugative transfer 

of ICEs. Like conjugative plasmids, ICEs typically encode a VirB/D4-like type 

IV secretion system (T4SS) (116). Evidence suggests that T4SSs of both 

classes of elements have moved between ICE and plasmid backbones during 
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their evolutionary history (116). Conjugative transfer of plasmids has been 

recently reviewed (117, 118). Conjugation initially requires the formation of the 

relaxosome, a complex containing a relaxase and various accessory DNA-

binding proteins. The relaxosome recognises a cognate double-stranded 

origin-of-transfer (oriT) sequence on the conjugative element, nicking a single-

strand of DNA at the oriT and forming a covalent phosphotyrosine bond with 

the 5’-end of the nicked single-strand of DNA (Fig 1.5). The relaxosome-DNA 

complex (also termed T-DNA) is recruited to the T4SS by a type-IV coupling 

protein (T4CP) and is translocated into a recipient cell where it is re-

circularised at the oriT by the relaxosome (117, 118). Because integrase 

proteins only catalyse recombination between double-stranded DNA 

molecules (119), it is thought that the single-stranded ICE acts as template for 

lagging (second) strand synthesis prior to integration into the bacterial 

genome. In support of this notion, many ICEs encode a single-stranded origin 

of replication resembling those required by conjugative plasmids for the 

initiation of rolling-circle replication (RCR) (120, 121). Importantly, not all ICEs 

follow this traditional mechanism of conjugative transfer. Actinobacterial ICEs 

such as pSAM2 of Streptomyces ambofaciens replicate in the donor cell prior 

to conjugative transfer and are horizontally transferred as double-stranded 

molecules by TraB-like translocases (122, 123). 



 

 

 
 
Figure 1.5. Conjugative transfer of an ICE. ICEs excise from the chromosome to form a circular plasmid-like entity prior to 
conjugative transfer (See Fig 1.3). Conjugative transfer is initiated by the relaxosome, a multiprotein complex composed of a 
relaxase and various accessory DNA-binding proteins. The relaxosome recognises the cognate origin of transfer (oriT) of the 
conjugative element, nicks a single-strand of DNA and forms a covalent bond with the 5’-end of the nicked DNA. The relaxosome-
DNA complex is guided to the T4SS by a type IV coupling protein and is translocated into a recipient cell. Within the recipient 
cytoplasm, the single-stranded ICE is re-circularised by the relaxosome, and acts as template for lagging (second) strand synthesis 
prior to integration into the bacterial genome (117-119). 
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1.2.3. Exploitation of conjugation systems by IMEs/CIMEs 

Like other MGEs, ICEs display a modular structure in which genes and non-

coding regions of DNA involved in similar functions are clustered together (77, 

78, 94) (Fig 1.5A). ICEs typically harbour genetic modules required for 

integration and excision, conjugative transfer and host fitness (124-130). 

elements exist in bacterial genomes that lack one of more of these modules, 

but exploit excision and (or) conjugation genes encoded by other MGEs for 

their excision and transfer (94) (Fig 1.6). Integrative and mobilisable elements 

(IMEs) carry genes required for integration and excision, an oriT sequence 

and potentially a cognate conjugative relaxase, but lack other genes required 

for conjugative transfer (94, 126, 131, 132). Nevertheless, these elements can 

be mobilised by conjugative machinery encoded elsewhere in the bacterial 

genome. Cis-integrative and mobilisable elements (CIMEs) have also been 

described that carry genes required for integration and excision but may lack 

an oriT or other conjugative factor that cannot be extrinsically provided to 

permit conjugative transfer (133-136). These elements may “hitchhike” 

through the conjugal mating pore with invading ICEs following tandem 

insertion. Tandem insertions occur when invading ICEs integrate into the attL 

or attR site of a resident element occupying the cognate attB site of both 

elements. The newly formed tandem element comprises attL and attR sites 

derived from each element and a hybrid attP-like site derived from attL and 

attR of adjacent elements (132-135, 137-139). The outer-most distal attL and 

attR may recombine to excise the ICE-CIME composite element, which is then 

capable of conjugative transfer via the ICE-encoded machinery. ICE-CIME 

arrays can be highly unstable (133, 137, 138, 140), however, tandem arrays 
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of integrative elements generated in the laboratory have been shown to 

recombine resulting in accretion of the two elements and the evolution of a 

novel ICE (137, 141). The existence of IMEs and CIMEs that pirate bacterial 

conjugative systems highlights that the bacterial mobilome should be viewed 

as a DNA ecosystem where MGE are constantly adapting and evolving to 

compete for an environmental niche (126, 131, 142, 143).
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Figure 1.6. Mobilisation strategies for ICE/IME/CIMEs. (A) ICEs carry modules required for integration, excision and conjugative 
transfer, and are therefore self-transmissible. (B) Integrative and mobilizable elements (IMEs) typically carry modules for integration 
and excision, and some conjugal transfer genes (at least an oriT), but lack other genes required for conjugative self-transmission 
(94, 126, 131, 132). IMEs can be mobilised by conjugative machinery encoded elsewhere in the bacterial genome. (C) cis-
integrative and mobilizable elements (CIMEs) carry genes required for integration and excision but may lack an oriT or other 
conjugative factor that cannot be extrinsically provided to permit conjugative transfer (133-136). These elements may be cis-
mobilised by invading ICEs following tandem insertion. (132-135, 137-139). 
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1.2.4. Maintenance and stability 

ICEs exist in bacterial populations in a bistable state. Most ICEs reside 

integrated within bacterial host genomes, while only a small proportion begin 

the process of excision and horizontal transfer (144). Because the excised ICE 

is not passively replicated with the host chromosome there is a risk that it may 

not be vertically disseminated to progeny cells following division and may 

therefore be lost from a population (145). Recent studies of diverse ICEs have 

suggested that excised ICEs may undergo transient autonomous replication 

and partitioning to circumvent this issue (146, 147). Autonomous replication 

was first discovered for ICEBs1 following the observation that the copy number 

of ICEBs1-encoded genes increases 2-5 fold in host cells induced for excision 

(148). Excised ICEBs1 was subsequently shown to replicate unidirectionally 

by RCR initiated at a double-stranded oriT by the conjugative relaxase NicK 

(148). RCR of ICEBs1 involves unwinding of the ICE DNA by a 

chromosomally-encoded helicase (PcrA) commonly associated with 

conjugative plasmids and a helicase processivity factor (HelP) that is 

conserved on diverse ICEs (148, 149). Following unwinding and RCR of 

ICEBs1, the single-stranded ICE is complemented by the initiation of lagging 

strand synthesis at one of two single stranded origins of replication (ori) (120). 

Strains carrying nicK or oriT mutations are unable to undertake RCR and show 

reduced stability of ICEBs1 in dividing host-cells induced for ICEBs1 excision 

(120, 148). Because many ICEs carry homologues of PcrA and HelP and all 

ICEs carry an oriT and conjugative relaxase, autonomous replication has been 

postulated to be a common feature of ICEs (147, 149, 150). 
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Autonomous replicative mechanisms resembling that of ICEBs1 have been 

described for ICESt3 of Streptococcus thermophilus, Tn916 and an SXT/R391 

family ICE (150-153). Remarkably, the SXT/R391 family ICEs are also able to 

partition replicated circular ICEs equally between progeny cells following cell 

division, preventing their loss (150). The loci responsible (srpMRC) are 

homologues of the actin-type ATPase parMRC partitioning system described 

for plasmid R1 (154). Expression of these components is co-regulated with the 

SXT-encoded integrase, RDF and T4SS by the SetCD regulon, such that 

excision, autonomous replication and partitioning of circular ICEs are 

coordinated (150, 155). The soj gene carried by PAPI-1 has also been 

implicated in partitioning and maintenance of this ICE in its circular form, 

however, its mechanism of action is yet to be elucidated (85). 

ICEs may also stabilise themselves in dividing populations by encoding toxin-

antitoxin (TA) modules (156). TA modules comprise both a toxic protein that 

may be lethal to the cell or arrest growth, and a cognate anti-toxin protein 

which neutralises the toxin. Relative to the labile anti-toxin protein, the toxin 

protein exhibits a long half-life in the cell. Thus, following loss of the TA 

module, the stable toxin protein outlasts the anti-toxin and prevents further 

replication of the cell (156). Three ICE-encoded TA modules have been shown 

to enhance the stability of SXT/R391 family ICEs; mosAT, tad-ata and hipAB 

(150, 157, 158). The TA module pezTZ has also been identified on 

pathogenicity island 1 of Streptococcus pneumoniae and on numerous Tn-

5253-family ICEs, although there is currently no experimental evidence that 

pezTZ enhances ICE stability (128, 159). Overall, the existence and diversity 

of TA modules on ICEs remains largely unexplored. 
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1.2. Symbiosis ICEs 

1.3.1. Discovery of ICEMlSymR7A 

The paradigm symbiosis ICE was discovered in the chromosome of M. loti 

ICMP3135 following inoculation of the pasture legume Lotus corniculatus with 

this strain in New Zealand (60, 160). Although indigenous L. corniculatus-

nodulating rhizobia did not exist in the soil at the time this legume was 

introduced (161), approximately 81% of L. corniculatus nodules sampled 6-

years post-inoculation harboured rhizobia that were genetically distinct from 

the inoculant (160). Further molecular analyses of these novel isolates and a 

re-isolate of ICMP3153, named M. loti R7A, revealed these strains each 

harboured a contiguous ∼502-kb ICE adjacent to the sole chromosomal phe-

tRNA gene (60, 160, 162, 163). This ICE carries gene modules containing nod, 

nif, fix and other symbiosis-related genes and can be conjugatively transferred 

to non-symbiotic mesorhizobia in the laboratory, converting them to Lotus-

nodulating strains (60, 130, 164). In line with naming conventions for 

previously discovered pathogenicity ICEs, the M. loti symbiosis ICE was 

termed ICEMlSymR7A (74). Mesorhizobium symbiosis ICEs described in this 

thesis are named using the same convention (ICE Genus species-Symstrain 

number). 

 

1.3.2. Integration, excision and transfer of ICEMlSymR7A 

ICEMlSymR7A is integrated within the 3' end of the sole phe-tRNA gene in the 

chromosome of M. loti R7A, but excises from the chromosome through site-

specific recombination between 17-bp core sequences contained within 
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attachment sites attLS and attRS (subscripts are used to identify attachment 

sites for distinct recombinases, in this case IntS) (60, 74) (Fig 1.7). 

Recombination between attLS and attRS produces the new attachment sites 

attPS on circularised ICEMlSymR7A and restores the attBS site within the M. loti 

R7A phe-tRNA gene. The tyrosine recombinase IntS catalyses both the 

excisive and integrative reactions. Excision additionally requires the 

recombination and directionality factor RdfS (74). Like other RDF proteins, 

RdfS likely stimulates IntS-mediated excision by binding to att sites (C. 

Verdonk, personal communication). Overexpression of rdfS cures R7A of 

ICEMlSymR7A, yielding the non-symbiotic derivative R7ANS (74).  

ICEMlSymR7A carries an oriT sequence, a conjugative relaxase gene (rlxS) 

and a full suite of type IV conjugation and pilus assembly genes (130). 

Therefore, conjugal transfer of ICEMlSymR7A likely occurs in a manner 

resembling that of bacterial plasmids (53, 165). In R7A cells that are induced 

for ICEMcSymR7A excision by overexpressing the quorum-sensing (QS) 

regulator gene traR (discussed in Section 1.3.3), attP exists at a ratio of 1.5:1 

relative to attB, suggesting that like bacterial plasmids, ICEMlSymR7A may also 

autonomously replicate in the circular form (74). ICEMlSymR7A also encodes a 

homologue of the plasmid partitioning protein ParB (130), however there is no 

functional evidence as to the role of this protein in partitioning of replicated 

forms of excised ICEMlSymR7A.  
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Figure 1.7. Integration and excision of ICEMlSymR7A. ICEMlSymR7A primarily 
integrated within the chromosome of M. loti R7A adjacent to the 3’-end of phe-
tRNA, but excises from the chromosome to form a circular plasmid-like element 
via site-specific recombination between the direct repeat sites attLS and attRS 
positioned at each ICE terminus. This recombination is conservative (there is 
no loss nor gain of DNA), thus, the direct repeat sequence is preserved within 
the 5’-end of the phe-tRNA gene (attBS), and in the excised ICE (attPS). 
Integration occurs via the reverse reaction of excision. Both integration and 
excision reactions are catalyzed by the integrase IntS, however, the 
recombination directionality factor RdfS stimulates excision. 

 

 

1.3.3. Regulation of excision and transfer of ICEMlSymR7A 

Excision and conjugative transfer of ICEMlSymR7A are presumably energy-

demanding processes and are tightly regulated at multiple levels (75, 76). This 

regulation is primarily achieved through transcriptional control of rdfS and the 

downstream conjugative transfer genes traF, msi107 and rlxS (Fig 1.8). The 

rdfS operon is activated by a LuxR-LuxI QS system resembling that of the 

Agrobacterium tumefaciens and R. leguminosarum plasmids pTi and pRL1JI, 
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respectively (130, 166-172) (Fig 1.8A). ICEMlSymR7A encodes the N-acyl-

homoserine lactone (AHL) synthase TraI1 that catalyses production of the 

autoinducer molecule N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-

HSL), which presumably accumulates as a function of population cell density 

(167, 173-175). At “quorum” concentration, 3-oxo-C6-HSL binds to the LuxR-

family transcriptional regulator TraR, activating this protein and allowing it to 

bind and recruit RNA polymerase at two “tra-box” promoters (167). The first 

tra-box is positioned upstream of traI1, allowing for positive feedback 

regulation of AHL production. The second tra-box is positioned upstream of a 

predicted AHL-synthase gene traI2. Strains carrying a mutation in traI2 show 

no defect in AHL production or ICEMlSymR7A excision. Furthermore, M. loti or 

E. coli strains constitutively expressing traI2 produce no known detectable 

AHLs, suggesting that traI2 may be a pseudogene (167). traI2 is translationally 

coupled to two open-reading-frames (ORFs) msi172 and msi171, which 

undergo ribosomal frameshifting in 4-13% of translational events to produce 

the transcriptional activator of the rdfS operon, FseA (170). The existence of 

QS-regulation of ICEMlSymR7A excision and transfer suggests that the most 

prevalent sites of ICEMlSymR7A transfer in nature are within cell dense areas, 

such as the rhizosphere, rhizoplane and legume nodule cells. 

Although overexpression of TraR in R7A activates ICEMlSymR7A
 excision in 

100% of cells, TraR mutants exhibit levels of ICE excision resembling that of 

wild-type cultures (167, 176). This is presumably because activated TraR and 

FseA are allosterically inactivated by the antiactivator protein QseM (170, 176) 

(Fig. 1.8B). A divergently-encoded gene qseC encodes a regulator that 

activates its own expression and represses the expression of QseM (176). 
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Thus, is thought that repression of QS-induced ICEMlSymR7A excision and 

transfer by QseM is alleviated in stationary-phase cultures via the action of 

QseC. QseM likely exists to ensure that the QS-induced transcriptional 

activation of the rdfS operon does not spuriously occur in individual cells within 

a population that is yet to reach the critical cell density and tightens the 

expression of the genes involved in the QS-induced cascade of genetic 

regulation. 
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Figure 1.8. Regulation of ICEMlSymR7A excision. (A) The AHL 3-oxo-C6-HSL, produced by TraI1, accumulates in stationary-
phase cultures of M. loti R7A activating the QS transcriptional regulator TraR. Active TraR stimulates transcription from the traI1 
traI1 promoter completing a positive feedback loop of regulation, and also stimulates transcription from the traI2 promoter. 
Although traI2 does not appear to encode a functional gene, it is encoded as a polycistronic mRNA with msi172-msi171 which 
undergoes a programmed ribosomal frameshift in ~4-13% of translational events producing the transcriptional activator of the 
rdfS operon, FseA. Although QseM is an antiactivator of TraR-3-oxo-C6-HSL and FseA, high levels of QseC expression in 
stationary phase cells repress expression of QseM. (B) In log-phase cultures QseC is lowly expressed, and presumably exists 
at an inadequate concentration to inhibit QseM expression. Therefore, QseM can allosterically inhibit TraR-3-oxo-C6-HSL and 
FseA in log-phase. This figure was reproduced from reference (170). 
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1.3.4. Diversity of symbiosis ICEs 

Since the discovery of ICEMlSymR7A, symbiosis ICEs have been functionally 

or bioinformatically identified in the Lotus-nodulating strains; M. loti R88B 

(162), NZP2037 (177, 178) and M. huakuii (formerly M. loti) MAFF303099 

(178, 179); the chickpea-nodulating strain M. ciceri CC1192 (63) and the B. 

pelecinus-nodulating strain M. sp. AA22 (A. Bekuma, Personal 

Communication). ICEMlSymR7A has also been transferred in the laboratory to 

the non-symbiotic M. loti strains CJ3, CJ4 and CJ7 creating CJ3Sym, CJ4Sym 

and CJ7Sym, respectively (60, 72, 164). Thus far the Astragalus sinicus 

symbiont, M. huakuii 7653R is the only Mesorhizobium strain to be reported to 

carry symbiosis genes on plasmids (pMhu7653Ra and pMhu7653Rb) rather 

than on a chromosomal symbiosis ICE (73). However, it has been argued that 

these plasmids may in fact have originated from an excised region of the host 

chromosome following acquisition of a module facilitating the autonomous 

maintenance and replication of this DNA (73).  

Outside of the Mesorhizobium genus, an ~86 kb symbiosis ICE (ICEAc
) has 

recently been identified adjacent to a gly-tRNA gene in the chromosome of the 

Sesbania rostrata symbiont A. caulinodans ORS571 (59) Unlike 

Mesorhizobium spp., A. caulinodans does not utilise the traditional RHC mode 

of legume infection (Fig.1.1) but instead infects the lateral roots and stems of 

S. rostrata via crack entry (180). ICEAc
 encodes nod genes, but is entirely 

devoid of nif and fix genes required for N2 fixation (59). ICEAc can be conjugally 

transferred to symbiotic strains of Sinorhizobium and Mesorhizobium that do 

not carry a symbiosis ICE and conveys upon them the ability to nodulate S. 

rostrata. ICEAc
 exconjugants of M. huakii 93 are also able to fix N2 with this 
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host, presumably through expression of native nif and fix genes in the M. huakii 

genome.  In contrast to ICEMlSymR7A, which regulates excision and transfer 

through QS, ICEAc excision and transfer is regulated in response to the plant-

derived flavonoid naringenin present in the rhizosphere (59). 

Large 860-kb and 681-kb genomic islands carrying nod, nif and fix genes have 

also been reported to exist adjacent to a val-tRNA gene in the chromosomes 

of B. diazoefficiens USDA110 and B. japonicum USDA6, respectively (61, 62). 

Although there is evidence that symbiosis genes may have horizontally 

transferred between Bradyrhizobium spp. in the field (46, 181, 182), there is 

currently no empirical data demonstrating mobility for these genomic islands. 

In-fact, it was reported that the B. japonicum USDA6 symbiosis ICE may be 

fragmented into three regions in the chromosome (61). Laboratory conjugation 

experiments will be critical to confirm whether these putative symbiosis ICEs 

remain transmissible. 

 

1.3.5. Core features of Mesorhizobium symbiosis ICEs 

The completion of genome sequences for M. ciceri CC1192 (63), M. huakuii 

MAFF303099 (179) and M. loti strains NZP2037 (177) and R7A (163) has 

revealed that Mesorhizobium symbiosis ICEs carry a conserved compliment 

of genes. Not surprisingly, this includes nod, nif, fix and other genes involved 

in rhizobia-legume symbiosis (130, 178). A comparison of the R7A, 

MAFF303099 and NZP2037 symbiosis ICEs revealed that two genes nodU 

and nolO whose products are involved in carbamoylation of Nod factors in 

Sinorhizobium fredii NGR234 (183, 184) are present in ICEMlSym2037, but 
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these are absent from ICEMlSymR7A and ICEMlSym303099 (178). The presence 

of nodU and nolO on ICEMlSym2037 may explain why NZP2037 is able to form 

nodules with at least six legume genera, whereas R7A and MAFF303099 

appear to be restricted to nodulating Lotus spp. (68, 69, 185-187). 

ICEMlSymR7A and ICEMlSym2037 both carry a VirB1/D4 type-IV protein 

secretion system (T4SS), whereas ICEMhSym303099 and ICEMcSym1192 carry 

a type-III secretion system (T3SS) (63, 130, 178, 188). Both have been 

implicated in the translocation of protein effectors into legume cells (187). 

Inactivation of the ICEMlSymR7A T4SS and ICEMhSym303099 T3SS enables 

R7A and MAFF303099 to nodulate the non-native host L. leucocephala, 

suggesting that there may be a common biological role for both T4SS and 

T3SS in Mesorhizobium symbioses (187). The queuosine biosynthetic genes 

(QueBCD), involved in hyper-modification of tRNAs (189) and required for 

functional symbiosis between S. meliloti and Medicago truncatula (190), also 

appear to be conserved on Mesorhizobium symbiosis ICEs (J Ramsay, 

Personal Communication). The biological relevance of queuosine biosynthesis 

in Mesorhizobium spp. is yet to be explored. 

The conserved core genes of Mesorhizobium symbiosis ICEs are not 

restricted to those involved in symbiosis. The symbiosis ICEs of all four of the 

fully sequenced Mesorhizobium genomes encode biosynthetic modules for 

production of the essential vitamins biotin, nicotinate and thiamine (63, 130, 

178, 191). Symbiotic mesorhizobia are therefore typically prototrophic for 

biotin, nicotinate and thiamine produciton, whereas symbiosis ICE devoid 

strains such as M. loti R7ANS and M. sp. strains N18 and M. sp CJ4 are 

auxotrophic. This feature of symbiosis ICEs has been exploited in the selection 
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for ICE exconjugants without the need for genetic marking of the symbiosis 

ICEs (60, 74). 

Despite some symbiosis ICEs, such as ICEMcSymR7A and ICEMcSym1192, 

existing within different chromosomal locations (phe-tRNA and ser-tRNA, 

respectively), nearly all  genes involved in regulation of ICE excision (rdfS , 

qseC, qseM, traR, traI1, msi172-msi171) and conjugative transfer (type IV 

conjugugation genes, rlxS, traF, msi107) are conserved in all four of the fully 

sequenced Mesorhizobium symbiosis ICEs (63, 130, 178), suggesting a 

common mechanism of excision and transfer. However, the oriT of 

ICEMhSym303099 appears to be interrupted by insertion of a transposon 

indicating that this symbiosis ICE may be non-mobile (130). 

Although many of the conserved or unique symbiosis ICE genes in 

Mesorhizobium spp. have been characterised, the vast majority of genes 

encoded by these elements currently have no assigned function (130).  

 

1.4. Emergence of novel Mesorhizobium spp nodulating the 

pasture legume Biserrula pelecinus 

The development of agriculture in Australia and New Zealand has been 

dependent on the introduction of exotic legumes which often lack compatible 

rhizobia naturally present in the soil (30, 161, 192). In New Zealand, novel 

Lotus-nodulating rhizobia that emerged following transfer of the M. loti R7A 

symbiosis ICE to indigenous soil mesorhizobia is a well-documented and 

unintended outcome of this practice (60, 160). A similar scenario is likely to 

have occurred in Western Australia following introduction of the pasture 
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legume Biserrula pelecinus, along with the effective inoculant strains M. ciceri 

bv. biserrulae WSM1271 and WSM1497 (193, 194). 

B. pelecinus nodules were sampled at an experimental field site six years post-

inoculation with WSM1271. Despite the fact that B. pelecinus-nodulating 

rhizobia were absent from the study at the time of inoculation, the Randomly 

Amplified Polymorphic DNA (RAPD) and Enterobacterial Repetitive Intergenic 

Consensus (ERIC) profiles from 88 isolates revealed that seven were 

genotypically distinct from WSM1271 (193). Glasshouse trials indicated 

effectiveness of N2
 fixation of these genetically distinct rhizobia on B. pelecinus 

was suboptimal. Five strains were partially effective (fixed N2 30-50%of the 

WSM1271 amount), while two strains nodulated B. pelecinus but did not fix N2 

(194). Each of these strains encoded an integrase homologous to IntS of 

ICEMlSymR7A adjacent to a phe-tRNA gene and carried chromosomal nifH and 

nodA genes 100% identical to the original inoculant strain WSM1271 (60, 74, 

160, 193). PCR and sequencing of 4 isolates also revealed that each 

harboured a region of DNA homologous to the attL junction that demarks the 

border between ICEMlSymR7A and the phe-tRNA symbiosis ICE insertion site 

in M. loti R7A (193). These four strains were later shown to belong to two 

entirely new species; M. opportunistum WSM2075 (nodulates but does not fix 

N2) and M. australicum strains WSM2073, WSM2074 and WSM2076 (partially 

effective N2-fixation) (195). Considering these data, it seemed plausible that 

like R7A, WSM1271 may harbour a symbiosis ICE that had transferred to soil 

mesorhizobia, converting them to Biserrula nodulating strains.  

The current commercial inoculant for B. pelecinus in Australia is  M. ciceri 

WSM1497 (196). As was observed with release of WSM1271, genotyping of 
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strains isolated from nodules at an experimental B. pelecinus field sites seven 

years after inoculation with WSM1497 revealed 193 out of 387 nodule isolates 

to be genetically distinct from the inoculant strain (194). Fifty-three genetically 

distinct isolates were screened for N2-fixation effectiveness in symbiosis with 

B. pelecinus and remarkably, none fixed N2 with effectiveness equal to 

WSM1497. Rather, 51 were partially effective (fixed N2 at < 70% that of 

WSM1497) and six of these strains nodulated but did not fix N2 in symbiosis 

with B. pelecinus. PCR and sequencing of 12 isolates also revealed that each 

harboured the region of DNA homologous to the attL junction demarkating the 

border between ICEMlSymR7A and the phe-tRNA symbiosis ICE insertion site 

in M. loti R7A (193). Like WSM1271, it seems likely that WSM1497 also carried 

a symbiosis ICE that had transferred to the native soil mesorhizobia.  

 

1.5 Aims of this thesis 

Inoculation of legumes with effective N2-fixing rhizobia is a crucial component 

of sustainable agriculture in both developed and undeveloped countries. 

Legumes may be grown in rotation with cereal crops to provide a primary 

source of N without the requirement for supplementation with energy-

expensive fertilisers and  provide a source of food for humans and domestic 

animals (197). In 2016, 225 million hectares of legumes crops were harvested 

globally, equating to approximately 10% of the planet’s arable land (198-200). 

Legumes account for ~27% of the world's primary crop production and provide 

at least 33% of humankind’s N needs (199, 201). 
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All legumes used in Australian and New Zealand argiculture have been 

introduced and due to the lack of compatible naturally occurring populations 

of rhizobia in the soil, so have their microsymbionts (30, 161, 192). The key to 

maximising the productivity of these legumes has been matching them with 

the most elite rhizobial strains that; a) are compatible with the host-legume; b) 

fix N2 effectively; and c) persist in the soil environment (29, 30, 197, 202, 203). 

One factor that has been often overlooked in the selection of elite rhizobial 

strains for Australian New Zealand agriculture is ‘symbiotic stability’ – i.e. the 

potential that inoculant rhizobia may transfer genes required to engage in N2-

fixing symbioses to other closely related bacteria, converting them to legume 

nodulating strains (54-60, 160). For B. pelecinus, the newly evolved strains 

were less effective than the original inoculant, suggesting that the mobility of 

the putative WSM1271 and WSM1497 symbiosis ICEs may produce 

substantial populations of suboptimally-effective B. pelecinus- nodulating 

mesorhizobia that could out-compete the inoculant for nodulation of the 

legume, leading to a reduction in agricultural productivity. 

Genome sequences for WSM1271 and two sub-optimal N2-fixing putative 

symbiosis ICE recipients WSM2073 and WSM2075 were recently completed, 

revealing that each strain carries an identical suite of symbiosis genes (73, 

204-206). As previously reported, each of the three strains carries a 

homologue of the ICEMlSymR7A integrase IntS adjacent to the ICEMlSymR7A 

insertion site (60, 193, 194) suggesting the presence of an ICEMlSymR7A-like 

element. However, the symbiosis genes in each strain appear to be carried on 

a region of the chromosome distant to this element, suggesting that they may 

be carried by a unique form of integrative element. Analysing the potential 
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existence and assessing mobility of this unique symbiosis element in 

WSM1271 and its symbiosis ICE recipients WSM2073 and WSM2075 will be 

critical for explaining how sub-optimal fixing N2-fixing rhizobia evolved 

following introduction of WSM1271 into Australia and provide insights into the 

mechaninsms of horizontal gene transfer of these mobile genetic elements.  

 

The aims of this thesis were as follows: 

 

1) Identify the symbiosis ICE of Biserrula pelecinus-nodulating strains M. 

ciceri WSM1271, M. australicum WSM2073 and M. opportunistum 

WSM2075. 

 

2) Characterise the mechanism of transfer for this symbiosis ICE 

 

 

3) Elucidate how the transfer of this symbiosis ICE is regulated 
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2.1. Media and growth conditions 

Escherichia coli strains were cultured on Luria-Bertani (LB) media (207) at 

37°C. E. coli ST18 (a hemA mutant of S17-1 which is auxotrophic for 5-

aminolevulinic acid) (208) culture medium was supplemented with 60 μg mL-1 

5-aminolevulinic acid. Mesorhizobium strains were cultured at 28°C on TY 

(209) or RDM (210) media supplemented with the vitamins: biotin (20 ng mL-

1); nicotinate (1 μg mL-1) and thiamine (1 μg mL-1), and either 10 mM D-glucose 

or 150 mM L-sucrose as a sole carbon source. Chromobacterium violaceum 

CV026 was cultured on LB media at 28°C. Difco grade A agar (1.5% w/v) was 

used to solidify media where required. Antibiotics (Sigma Aldrich) were added 

at the following concentrations where appropriate (μg mL-1); carbenicillin (Cb) 

20; gentamycin (Gm) 20; kanamycin (Km) 50; neomycin (Nm) 250; 

spectinomycin (Sp) 50 (for E. coli) or 250 (for rhizobia); tetracycline (Tc) 10 

(for E. coli) or 0.5-2.5 (for rhizobia). 

 

2.2. Bacterial strains in this thesis 

Bacterial strains and plasmids are detailed in Table 2.1. All mutant strains were 

constructed by replacing or deleting alleles by double crossover homologous 

recombination following the introduction of a suicide vector containing the 

levansucrase (sacB) gene described in Table 2.1. This was achieved via a 

two-step process. Single-crossover integration of suicide vectors was initially 

selected by plating serial dilutions of cells onto RDM agar supplemented with 

glucose and the appropriate antibiotics and incubating for 6-8 days at 28°C. 

Single colonies were then cultured in TY broth (without antibiotic selection) to 
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stationary phase (OD600 ~ 2.0) and serial dilutions spread onto RDM plates 

supplemented with sucrose, to select for double crossover recombinants. 

Mutants were confirmed by screening for the relevant antibiotic 

resistance/sensitivity profile on RDM agar, and by Sanger sequencing of PCR 

products amplified from the deleted/replaced region. 

 
Table 2.1. Bacterial strains, plasmids and NCBI accessions 
 

 
Strain a Relevant Characteristics and (NCBI accession) Source 

Chromobacterium 
violaceum 

  

CV026 C4-C8 N-acyl-homoserine lactone biosensor strain (211) 

Escherichia coli 

DH10B 

 

F- endA1 deoRand recA1 galE15 galK16 nupG rpsL Δ(lac)X74 
φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-

mcrBC) SmR λ– 

 

Invitrogen 

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 
mKand) phoA supE44 λ– thi-1 gyrA96 relA1 

 

ST18 S17 Δpir ΔhemA (208) 

Mesorhizobium 
australicum 

  

WSM2073 Field-isolated exconjugant of ICEMcSym1271 (NC_019973.1) (206) 

Mesorhizobium 
ciceri 

  

WSM1271 Wild-type Bisserula pelecinus symbiont, harbours ICEMcSym1271
 

(NC_014923.1) 
(204) 

1271∆intG::nptII WSM1271 intG nptII replacement mutant This study 

1271∆intM::nptII WSM1271 intM nptII replacement mutant This study 

1271∆intS WSM1271 intS frameshifted deletion mutant This study 

1271∆rdfG::ΩaadA  WSM1271 rdfG ΩaadA replacement mutant This study 

1271∆rdfM:: ΩaadA WSM1271 rdfM ΩaadA replacement mutant This study 

1271∆rdfS WSM1271 rdfS in frame deletion mutant This study 

1271∆traI1:: ΩaadA WSM1271 traI1 ΩaadA replacement mutant This study 

1271∆traI1:: ΩaadA 
∆ahlI 

WSM1271∆traI1::ΩaadA ahlI markerless deletion mutant This study 

WSM1497 Wild-type B. pelecinus symbiont isolated from Sardinia 
(NZ_CP021070) 

This study 

Ca181 Wild-type Cicer areninium (chick-pea) symbiont isolated from India, 
harbours ICEMcSym181 (NZ_CM002796) 

(212) 

WSM4083 Wild-type Bituminaria bituminosa symbiont (JAFG00000000) b G. O’Hara 
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Strain a Relevant Characteristics and (NCBI accession) Source 

WSM1284 Wild-type Biserrula pelecinus symbiont, harbours ICEMcSym1284 
(NZ_CP015064.1) 

This study 

M. loti   

NZP2037 Wild-type, isolated in New Zealand from L. divaricatus, harbours 
ICEMlSymNZP2037 and plasmid pRlo2037 (NZ_KB913026, CP016079, 
CP016080) 

This study, (4, 
177) 

SU343 Wild-type, Lotus sp. symbiont isolated in NSW, Australia, harbours 
ICEMlSym343 (LYTL00000000) 

c J. Sullivan 
and C. 
Ronson 

WSM1293 Wild-type Lotus sp. symbiont isolated in Greece (AZUV00000000.1) (213) 

NZP2042 Wild-type Lotus sp. symbiont isolated in New Zealand 
(LYTK00000000) 

c J. Sullivan 
and C. 
Ronson 

R7A Wild-type field re-isolate of ICMP3153; wild-type symbiotic strain 
(KI632510.1) 

(160) 

R7ANS Non-symbiotic derivative of R7A; lacks ICEMlSymR7A (74) 

R7ANSxWSM1271 R7ANS ICEMcSym1271 exconjugants carrying pFAJ1708 
(LZTK00000000) 

This study 

R7ANSxNZP2037 R7ANS ICEMlSym2037 exconjugants carrying pFAJ1708 
(LZTH00000000) 

c J. Sullivan 
and C. 
Ronson 

R7ANSxNZP2042 R7ANS ICEMlSym2042 exconjugants carrying pFAJ1708 
(LZTJ00000000) 

c J. Sullivan 
and C. 
Ronson 

R7ANSxSU343 R7ANS ICEMlSym343 exconjugants carrying pFAJ1708 
(LZTL00000000) 

c J. Sullivan 
and C. 
Ronson 

R7AMc1 R7ANS ICEMcSym1271 exconjugant cured of all plasmids This study 

M. metallidurans   

STM2683 Wild-type metal resistant symbiont of Anthyllis vulneraria 
(NZ_CAUM01000099) 

(214) 

M. opportunistum   

WSM2075 Wild-type field-isolated exconjugant of ICEMcSym1271 

(NC_015675.1) 
(205) 

M. sp.   

AA22 Wild-type B. pelecinus symbiont isolated from Ethiopia 
(LYTO00000000) 

b A. Bekuma 

Plasmids   

pJQ200 SK Suicide vector in Mesorhizobium, contains sacB, GmR (215) 

pEX18Tc Suicide vector in Mesorhizobium, contains sacB, TcR (216) 

pHP45Ω Insertional inactivation vector carrying an ΩaadA cassette, SmR, 
SpR 

(217) 

pJET-aadA1 pJET 1.2 carrying the ΩaadA cassette from pHP45Ω amplified 
using primers 55 & 56, CbR, SmR, SpR 

This study 

pJET-nptII pJET 1.2 carrying nptII amplified from pJP2neo using primers 93 & 
94, CbR, NmR 

This study 

pJQ∆intG pJQ200 SK carrying nptII from pJET-nptII flanked by regions 
upstream and downstream of intG, amplified from WSM1271 using 
primers 1, 2 & 3, 4, respectively, used to create 1271∆intG::nptII, 
GmR, NmR 

This study 
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Strain a Relevant Characteristics and (NCBI accession) Source 

pJQ∆rdfG pJQ200 SK carrying Ω-SpR/SpR cassette from pJET-aadA1 flanked 
by regions upstream and downstream of rdfG amplified using 
primers 13, 14 & 15,16, respectively, used to create 
1271∆rdfG::ΩaadA, SmR, SpR, GmR 

This study 

pJQ∆rdfM pJQ200 SK carrying Ω-SpR/SpR cassette from pJET-aadA1 flanked 
by regions upstream and downstream of rdfM amplified using 
primers 17, 18 & 19, 20, respectively, used to create 
1271∆rdfM::ΩaadA, SmR, SpR, GmR 

This study 

pJQ∆intM pJQ200 SK carrying nptII amplified from pJET-nptII using primers 
95 & 96, flanked by regions upstream and downstream of intM, 
amplified from WSM1271 using primers 5, 6 & 7, 8 respectively, 
used to create 1271∆intM::nptII, GmR, NmR 

This study 

pJQ∆traI1 pJQ200 SK carrying Ω-SpR/SpR cassette from pJET-aadA1 flanked 
by regions upstream and downstream of traI1 amplified using 
primers 104, 105 & 106,107, respectively, used to create 
1271∆traI1::ΩaadA, SmR, SpR, GmR 

This study 

pEX∆intS pEX18Tc carrying regions flanking intS amplified using primers 9, 
10 & 11, 12, respectively, used to create WSM1271∆intS, TcR 

This study 

pEX∆rdfS pEX18Tc carrying regions flanking rdfS amplified using primers 18, 
19 & 20, 21, respectively, used to create WSM1271∆rdfS, TcR 

This study 

pEX∆ahlI pEX18Tc carrying regions flanking ahlI amplified using primers 99, 
100 & 101, 102, respectively, used to create 
1271∆traI1::ΩaadA∆ahlI, TcR 

This study 

pTH3attP pJQ200 SK carrying ICEMcSym1271 attPG, attPM, attPS sites 
amplified from WSM1271 using primers 65 & 66, 61 & 62, 63 & 64, 
respectively, GmR 

This study 

pJP2 Stable (contains Par region), low copy number BHR IncP vector, 
CbR, TcR 

(218) 

pJP2neo pJP2 carrying nptII, CbR, TcR, NmR bJ. Terpolilli 

pJP2-intG pJP2 carrying intG from WSM1271 amplified using primers 28 & 29, 
CbR, TcR 

This study 

pJP2-intM pJP2 carrying intM from WSM1271 amplified using primers 30 & 31, 
CbR, TcR 

This study 

pJP2-intS pJP2 carrying intS from WSM1271 amplified using primers 32 & 33, 
CbR, TcR 

This study 

pJP2-rdfG pJP2 carrying rdfG from WSM1271 amplified using primers 34 & 
35, CbR, TcR 

This study 

pJP2-rdfM pJP2 carrying rdfM from WSM1271 amplified using primers 36 & 
37, CbR, TcR 

This study 

pJP2-rdfS pJP2 carrying rdfS from WSM1271 amplified using primers 38 & 39, 
CbR, TcR 

This study 

pPR3 pPROBE-KT carrying the nptII promoter from pFAJ1708, NmR (219) 

pPR3-rdfG pPR3 carrying rdfG from WSM1271 amplified using primers 40 & 
41, NmR 

This study 

pPR3-traI1 pPR3 carrying traI1 from WSM1271 amplified using primers 42 & 
43, NmR 

This study 

pPR3-mbrI pPR3 carrying mbrI from WSM1271 amplified using primers 91 & 
92, NmR 

This study 

pSRKKm pBBR1MCS-2-derived broad-host-range expression vector 
containing lac promoter and lacIq , lacZαand, NmR 

(220) 

pSacB pSRKKm carrying sacB gene amplified from pJQ200 SK amplified 
using primers 59 & 60, NmR 

This study 
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Strain a Relevant Characteristics and (NCBI accession) Source 

pSacB-IntG pSacB carrying intG amplified from WSM1271 using primers 77 & 
78, NmR 

This study 

pSacB-IntM pSacB carrying intM amplified from WSM1271 using primers 79 & 
80, NmR 

This study 

pSacB-IntS pSacB carrying intS amplified from WSM1271 using primers 81 & 82, 
NmR 

This study 

pSacB-rdfM pSacB carrying rdfM from WSM1271 amplified using primers 44 & 
37, NmR 

This study 

pSacB-ahlI pSacB carrying ahlI from WSM1271 amplified using primers 97 & 
98, NmR 

This study 

pSDz BHR plasmid, carries IPTG inducible promoter and promoterless 
lacZ, CbR, TcR 

(170) 

pSDz-traR1 pSDz carrying traR1 from WSM1271 amplified using primers 45 & 
46, CbR, TcR 

This study 

pSDz-traR2 pSDz carrying traR2 from WSM1271 amplified using primers 87 & 
88, CbR, TcR 

This study 

pSDz-mbrR pSDz carrying mbrR from WSM1271 amplified using primers 89 & 
90, CbR, TcR 

This study 

pSDz-msi172171 pSDz carrying msi172-msi171 from WSM1271 amplified using 
primers 47 & 48, CbR, TcR 

This study 

pSDz-PrdfG pSDz carrying the rdfG promoter from WSM1271 amplified using 
primers 49 & 50, CbR, TcR 

This study 

pSDz-PrdfM pSDz carrying the rdfM promoter from WSM1271 amplified using 
primers 51 & 52, CbR, TcR 

This study 

pSDz-PrdfS pSDz carrying the rdfS promoter from WSM1271 amplified using 
primers 53 & 54, CbR, TcR 

This study 

pSDz-tb pSDz carrying the traI1 promoter from WSM1271 amplified using 
primers 83 & 84, CbR, TcR 

This study 

pSDz-tbtraR1 pSDz-tb carrying traR from WSM1271 amplified using primers 45 & 
46, CbR, TcR 

This study 

pSDz-tbtraR2 pSDz-tb carrying traR2 from WSM1271 amplified using primers 87 
& 88, CbR, TcR 

This study 

pSDz-tbmbrR pSDz-tb carrying mbrR from WSM1271 amplified using primers 89 
& 90, CbR, TcR 

This study 

pSDz-mb pSDz carrying the mbrI promoter from WSM1271 amplified using 
primers 85 & 86, CbR, TcR 

This study 

pSDz-mbtraR1 pSDz-mb carrying traR from WSM1271 amplified using primers 45 
& 46, CbR, TcR 

This study 

pSDz-mbtraR2 pSDz-mb carrying traR2 from WSM1271 amplified using primers 87 
& 88, CbR, TcR 

This study 

pSDz-mbmbrR pSDz-mb carrying mbrR from WSM1271 amplified using primers 89 
& 90, CbR, TcR 

This study 

pTHQP-1 Standard construct for qPCR assays for ICE3 excision, GmR This study 

pJET 1.2. Commercial blunt cloning vector, CbR Thermo Fisher 
Scientific 

pFUS2 Suicide vector in Mesorhizobium, GmR (221) 

pMINI3 pFUS2 carrying attPG, attPM and attPS amplified from pTH3attP 
using primers 67 & 68, GmR 

This study 
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Strain a Relevant Characteristics and (NCBI accession) Source 

pTHQP-1 pTH3attP carrying ICEMcSym1271 attBG, attBM and attBS sites and a 
melR region amplified from WSM1271 using primers 39 & 40, 41 & 
42, 43 & 44, 45& 46 respectively, qPCR standard, GmR 

This study 

pFAJ1708 Broad-host-range plasmid containing GFP downstream of nptII 
promoter and MCS, CbR, TcR 

(222) 

a Abbreviations for antibiotic resistance (R) are as follows: Cb, carbenicillin; Gm, gentamycin; Km, kanamycin; 

Sm, streptomycin; Sp, spectinomycin; Nm, neomycin; Tc, tetracycline. See Table 2.2 for primer details. 

 
b Affiliation: Centre for Rhizobium Studies, Murdoch University, Perth, Australia 
 

c Affiliation: Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand 

 

 

2.3. Construction of plasmids 

Primers used to construct plasmids in study are detailed in Tables 2.1 and 2.2. 

Digested plasmids were dephosphorylated with alkaline shrimp phosphatase 

(rSAP, New England Biolabs) as described in Section 2.4.4. prior to ligation. 

Ligated plasmids were initially transformed into E. coli DH5α or DH10β, then 

purified and transformed into ST18 for biparental conjugative transfer into 

Mesorhizobium spp. (208) (described in Section 2.4.6). Plasmids were 

constructed as follows; 

pJET-aadA1 and pJET-nptII. aadA1 and nptII were each amplified by PCR 

from pHP45Ω or pJP2neo plasmid DNA, respectively, and ligated as a blunt 

fragment into the commercial cloning vector pJET 2.1. 

pJQ∆intG. Regions upstream and downstream of intG were amplified by PCR 

from WSM1271 genomic DNA and digested with SacI/XbaI (for upstream 

fragment) or XhoI/BamHI (for downstream fragment) and ligated with pJQ200 

SK digested with SacI/BamHI, and pJET-nptII digested with XbaI/XhoI. 

pEX∆intS, pEX∆rdfS, pEX∆ahlI. Regions upstream and downstream of intS, 

rdfS and ahlI were amplified by PCR from WSM1271 genomic DNA and each 
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pair of corresponding upstream and downstream regions were cloned into 

SalI/BamHI digested pEX18Tc using Gibson assembly. 

pJQ∆rdfG and pJQ∆rdfM. Regions upstream and downstream of rdfG and 

rdfM genes were amplified by PCR from WSM1271 gDNA. Upstream 

fragments were digested with SacI/XhoI, downstream fragments were 

digested with XbaI/NotI, and the pJET-aadA1 plasmid was digested with 

XhoI/XbaI to release the ΩaadA cassette. These three products were ligated 

with SacI/NotI digested pJQ200 SK and plated onto LB agar supplemented 

with gentamycin to select for the pJQ200 SK backbone, and spectinomycin to 

select for ΩaadA. The unique arrangement of restriction sites ensured that the 

final constructs comprised the pJQ200 SK backbone carrying the ΩaadA 

cassette flanked by the upstream and downstream regions of rdfG or rdfM. 

pJQ∆traI1. Regions upstream and downstream of the traI1 gene was 

amplified by PCR from WSM1271 gDNA. The upstream fragment was 

digested with SacI/KpnI and the downstream fragment was digested with 

SalI/NcoI. The pJET-aadA1 plasmid was digested with KpnI/NcoI to release 

the ΩaadA cassette. These three products were ligated with SacI/SalI digested 

pJQ200 SK and plated onto LB agar supplemented with gentamycin to select 

for integration of pJQ200 SK into the WSM1271 genome, and spectinomycin 

to select for ΩaadA. The unique arrangement of restriction sites ensured that 

the final constructs comprised the pJQ200 SK backbone carrying the ΩaadA 

cassette flanked by the upstream and downstream regions of traI1. 

pJQ∆intM. The nptII gene and regions upstream and downstream of the intM 

gene were amplified by PCR from pJP2neo plasmid DNA (for nptII) or 
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WSM1271 genomic DNA (for intM regions), and ligated into SacI/BamHI-

digested pJQ200 SK using Gibson assembly. The arrangement of 

homologous regions ensured that the final constructs comprised the pJQ200 

SK backbone carrying the nptII gene flanked by the upstream and downstream 

regions of intM. 

pJP2-intG and pJP2-intS. The intG and intS genes and upstream intergenic 

regions were amplified by PCR from WSM1271 DNA and cloned into pJP2 as 

BamHI fragments. 

pJP2-intM. intM and the upstream intergenic region was amplified by PCR 

from WSM1271 DNA and cloned into pJP2 as a XhoI fragment. 

pJP2-rdfG, pJP2-rdfM and pJP2-rdfS. The rdfG, rdfM and rdfS genes and 

upstream intergenic regions were amplified by PCR from WSM1271 DNA and 

cloned into pJP2 as HindIII-XbaI fragments. 

pPR3-rdfG. The rdfG gene and its ribosome binding site (RBS) were amplified 

by PCR from WSM1271 DNA and cloned into pPR3 downstream of the nptII 

promoter as a BamHI-KpnI fragment. 

pPR3-traI1 and pPR3-mbrI. The traI1 and mbrI genes and artificially 

introduced RBS sequences were amplified by PCR from WSM1271 DNA and 

cloned into pPR3 downstream of the nptII promoter as a KpnI fragments. 

pSacB-rdfM. The rdfM gene and an artificially introduced RBS were amplified 

by PCR from WSM1271 genomic DNA and cloned into pSacB downstream of 

the lac promoter as a XbaI-SacI fragment. 
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pSDz-traR1 and pSDz-mbrR. The traR1 and mbrR genes and artificially 

introduced RBS sequences were amplified by PCR from WSM1271 DNA and 

cloned into pSDz downstream of the IPTG inducible promoter as PstI-XbaI 

fragments. 

pSDz-traR2. The traR2 gene and an artificially introduced RBS (Sequence 

info??) was amplified by PCR from WSM1271 DNA and cloned into pSDz 

downstream of the lac promoter as a SpeI-XbaI fragment. 

pSDz-msi172171. The msi172-msi171 ORFs and an artificially introduced 

RBS (same as above?) were amplified by PCR from WSM1271 genomic DNA 

and cloned downstream of the lac promoter of EcoRI/HindIII-digested pSDz 

using Gibson assembly. 

pSDz-PrdfG, pSDz-PrdfM and pSDz-PrdfS. Non-coding regions upstream of 

the rdfG, rdfM, and rdfS genes (presumably capturing the native promoters) 

were amplified by PCR from WSM1271 DNA and cloned into pSDz 

downstream of the IPTG inducible promoter as XhoI fragments. 

pSDz-tb, pSDz-mb, pSDz-tbtraR1, pSDz-tbtraR2 pSDz-tbmbrR, pSDz-mb, 

pSDz-mbtraR1, pSDz-mbtraR2 and pSDzmb-mbrR. Non-coding regions 

upstream of the traI1 and mbrI genes were amplified by PCR from WSM1271 

DNA and cloned into pSDz, pSDz-traR1, pSDz-traR2 and pSDz-mbrR 

downstream of the promoterless lacZ genes as XhoI-BglII fragments. 

Plasmids are named pSDz, followed by the lacZ-promoter fusion (tb = traI1 

promoter, mb = mbrI promoter), followed by the LuxR-family gene carried by 

the parent vector. 
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pSacB. The sacB gene and promoter were amplified by PCR from pJQ200 

SK plasmid DNA and cloned as a XhoI-BamHI fragment into pSRKKm. 

pTH3attP. Regions capturing the attPG, attPM and attPS sites of ICEMcSym1271 

were amplified by PCR from WSM1271 and cloned in the same orientation as 

in ICEMcSym1271 into BamHI/NotI digested pJQ200 SK using Gibson 

assembly. 

pMINI3. The attPG-attPM-attPS region was amplified by PCR from pTH3attP 

plasmid DNA and cloned as a KpnI-EcoRI fragment into pFUS2. 

pTHQPS-1. Regions capturing ICEMcSym1271 attBG, attBM, attBS sites and a 

melR region were amplified from WSM1271(pSDz-traR1) DNA and 

sequentially cloned into pTH3attP as NotI-SacI, SmaI-XbaI, fragments 

respectively. 

pSacB-intG, pSacB-intM, and pSacB-intS. The intG, intM and intS genes 

and an artificially introduced RBS sequences were amplified from WSM1271 

DNA and cloned into pSacB, downstream of the IPTG inducible promoter as 

SacI fragments. 

pSacB-ahlI. The ahlI gene and native RBS were amplified from WSM1271 

DNA and cloned into pSacB, downstream of the IPTG inducible promoter as 

a SacI-XbaI fragment. 
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Table 2.2 Oligonucleotides used in this thesis 

No Primer a Sequence 
Cloning primers 

1 ΩintG_Up_5’_SacI ATCAGGAGCTCAGGGCGAGTCGGATCCGG 

2 ΩintG_Up_3’_XbaI ATCAGTCTAGAAGGAGGAGACGAACTGGCGTAAC 

3 ΩintG_Dn_5’_XhoI ATCAGCTCGAGCGGGTCTCGTCTTCCGCG 

4 ΩintG_Dn_3’_BamHI ATCAGGGATCCGGCTCTCCATGGGCATGAC 

5 intM_Up_5’_gib AGGGAACAAAAGCTGGAGCTCACATTGTAGGAATTCTCGC 

6 intM_Up_3’_gib TCGCGCGGCCTCAAATTGAGTCGGAACAAAC 

7 intM_Dn_5’_gib TCGCCTTCTTGACGAGTTCTTCTGACAACGTTCCTTCCAGACTTTCTCC 

8 intM_Dn_3’_gib TCGAATTCCTGCAGCCCGGGGGATCGCGATATTGGGACGGGCTC 

9 ∆intS_Up_5’_gib AGTGCCAAGCTTGCATGCCTGCAGGTGCTGCGCCTCGACCGCC 

10 ∆intS_Up_3’_gib CCCACCATTGCATCTCCCAAGGCCATAGGATCGGTAACC 

11 ∆intS_Dn_5’_gib ATGGCCTTGGGAGATGCAATGGTGGGCCGATTATC 

12 ∆intS_Dn_3’_gib TACGAATTCGAGCTCGGTACCCGGGATGGACGCTCTGCATAGGTTG 

13 ΩrdfG_Up_5’_SacI ATCAGGAGCTCAAGCAGCGTGACAAGCGGC 

14 ΩrdfG_Up_3’_XhoI ATCAGCTCGAGGTCAAATGGGATCGAGGATGACGG 

15 ΩrdfG_Dn_5’_XbaI ATCAGTCTAGAAATCCGTCGCGCCTCAATGT 

16 ΩrdfG_Dn_3’_NotI ATCAGGCGGCCGCTTGCCCGGCTGGGCCTT 

17 ΩrdfM_Up_5’_SacI ATCAGGAGCTCCCACGCAAGCGCAGCG 

18 ΩrdfM_Up_3’_XhoI ATCAGCTCGAGACGCTTGTTGCGTATACGCTGTAGAC 

19 ΩrdfM_Dn_5’_XbaI ATCAGTCTAGAGGACGCTGCCTCGGTCCT 

20 ΩrdfM_Dn_3’_NotI ATCAGGCGGCCGCGTCACCTGTCAACGATCGGCAAG 

21 ∆rdfS_Up_5’_gib ACTAAAGGGAACAAAAGCTGGAGCTCGGCATCGTACCCCGGTCG 

22 ∆rdfS_Up_3’_gib TGGGTGTGGTTCTCCTTTTTGGCGCGGGCGG 

23 ∆rdfS_Dn_5’_gib CGCGCCAAAAAGGAGAACCACACCCATTCCAACGATG 

27 ∆rdfS_Dn_3’_gib TTGGGTACCGGGCCCCCCCTCGAGGTAGCGCTCGGGTCCGGCG 

28 intG_5’_BamHI ATCAGGGATCCTCAAATGGGATCGAGGATGACG 

29 intG_3’_BamHI ATCAGGGATCCGCGGAATTATTTGGCGGTAGATC 

30 intM_5’_XhoI ATCAGCTCGAGGCTCGTGCGGAAGGGATGA 

31 intM_3’_XhoI ATCAGCTCGAGTGATTATCTGACGATGCGCAGGT 

32 intS_5’_BamHI ATCAGGGATCCTCCCGACACTCCCTTTCGC 

33 intS_3’_BamHI ATCAGGGATCCATGGCGCTTCAATCACTCTTCGC 

34 rdfG_5’_HindIII ATCAGAAGCTTGTTCGCCGTCCGCTCAATC 

35 rdfG_3’_XbaI ATCAGTCTAGATCATCCTCGATCCCATTTGACG 

36 rdfM_5’_HindIII ATCAGAAGCTTAGCAAGCCTATTCTGGTGGCCG 

37 rdfM_3’_XbaI ATCAGTCTAGATTATCGTTTTTCAACGTCCCGTTTGCT 

38 rdfS_5’_HindIII ATCAGAAGCTTGCCGAGGAGCGGCGAAA 

39 rdfS_3’_XbaI ATCAGTCTAGATCATGAGCGGCCTCCATCGT 

40 rdfG_5’_BamHI ATGACGGATCCACATTGAGGCGCGACGGATT 

41 rdfG_3’_KpnI ATGACGGTACCTCATCCTCGATCCCATTTGACG 

42 traI1_5’_KpnI ATCTAGGTACCGGAGGCGACGAATGATGCAGCTAATCACACCTGAGC 

43 traI1_3’_KpnI ATCTAGGTACCTTAAGCGTATGCCGGCAGGC 

44 rdfM_5’_SacI ATCAGGAGCTCGGAGGCGACGAATGAAGAGTGACGCAATCTCGTATGCC 

45 traR_5’_PstI ATCTACTGCAGGGAGGCGACGAATGCATCGCGTGTTTGAAAATTTC 

46 traR_3’_XbaI ATCTATCTAGATCAGGATCTCGAATGTCGGGAA 

47 msi172_5’_gib TAACAATTTCACACATAGCTAACTGGGAGGCGACGAATGCCTGCAGTTCTCGTG 
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No Primer a Sequence 
48 msi171_3’_gib CTTTAGATGCCGCTTCTTTTGCAGATCAAAGAAGGAAATCCCTGTACCC 

49 PrdfG_5’_XhoI ATGACCTCGAGTGCTCGTGAGCAAGACCTAGGCTT 

50 PrdfG_3’_XhoI ATGACCTCGAGAATCCGTCGCGCCTCAATGT 

51 PrdfM_5’_XhoI ATGACCTCGAGTGGGTCGTTGATCGCCAGC 

52 PrdfM_3’_XhoI ATGACCTCGAGGGACGCTGCCTCGGTCCT 

53 PrdfS_5’_XhoI ATGACCTCGAGTCCGGCCGACCCGAG 

54 PrdfS_3’_XhoI ATGACCTCGAGGATGATCCTCGTTTGGCTTGCG 

55 aadA1_5’_Blunt ATGCATGTCGACGGAGCTGCATGTGTCAGAGGT 

56 aadA1_3’_Blunt GAGCTCGGTACCGAGGCCCTTTCGTCTTCAAGA 

57 rdfS_5’_NcoI ATATCCATGGACAACGAAAACGAACGCG 

58 rdfS_3’_HindIII ATATAAGCTTTTATCATGAGCGGCCTCCATCG 

59 sacB_5’_XhoI ATCAGCTCGAGGCCAAAGAGCTACACCGACGAG 

60 sacB_3’_BamHI ATCAGGGATCCTAAATTGTCACAACGCCGCG 

61 attP(M)_5’_Gib TGGAGCTCCACCGCGGTGGCGGCCGCCTCGCTGAATGCAACATC 

62 attP(M)_3’_Gib CAATCCTAGTGAGAACTGGATGGTGCATG 

63 attP(S)_5’_Gib ATGCCCAATTCTCACTTTAATGGCTGCGATGAG 

64 attP(S)_3’_Gib CGAATTCCTGCAGCCCGGGGGATCCACCCAAAGCTGGAGCCCG 

65 attP(G)_5’_Gib TCCAGTTCTCAATGCCTCCCTCACCATAGC 

66 attP(G)_3’_Gib TTAAAGTGAGAATTGGGCATTACCCCGC 

67 3attP_5’_KpnI ATCAGGGTACCCCTCGCTGAATGCAACATC 

68 3attP_3’_EcoRI ATCAGGAATTCCCCAAAGCTGGAGCCC 

69 1271attB(G)_5’_NotI ATCTAGCGGCCGCGAGATCCTGCGCGAAGCC 

70 1271attB(G)_3’_NotI ATCTAGCGGCCGCTCTGAAATGAACGCTGCTTCATAAAG 

71 1271attB(M)_5’_SacI ATCTAGAGCTCCGCTTCCGGGACGTTCAG 

72 1271attB(M)_3’_SacI ATCTAGAGCTCTCGCCCGACACGATGATG 

73 1271attB(S)_5’_Blunt TCTAGAGTCGAGAAGTGACACCAGCGG 

74 1271attB(S)_3’_ Blunt AAGACATGTGACGGCGTTTCAG 

75 1271melR_5’_XbaI ATCTATCTAGATTTGGGATGGATGTCGGCG 

76 1271melR_3’_XbaI ATCTATCTAGACTGGGGCCAGCAGCGT 

77 intG_5’_SacI ATCAGGAGCTCGGAGGCGACGAATGCTCACAGACATCGCACTTAAGA 

78 intG_3’_SacI ATCAGGAGCTCTCAAATGGGATCGAGGATGACG 

79 intM_5’_SacI ATCAGGAGCTCGGAGGCGACGATGGCTAGGCCCTTTAAGGATGC 

80 intM_3’_SacI ATCAGGAGCTCTTATCTGACGATGCGCAGGTTT 

81 intS_5’_SacI ATCAGGAGCTCGGAGGCGACGAATGGCCCTTTCCGACGTAAAAT 

82 intS_3’_SacI ATCAGGAGCTCTCAATCACTCTTCGCCCTGG 

83 tb_5’_XhoI ATCTACTCGAGTTGTCGCCTCCGTGCAGG 

84 tb_3’_BglII ATCTAAGATCTCGACATTCGAGATCCTGATTCCTT 

85 mb_5’_XhoI ATCTACTCGAGGGCGCCCTCCCTTGGTC 

86 mb_3’_BglII ATCTAAGATCTCGCTTTCGATTGTCCGAGGG 

87 traR2_5’_SpeI ATCAGACTAGTGGAGGCGACGAATGACGAGGGACATGCCACTTGT 

88 traR2_3’_XbaI ATCAGTCTAGATCAGAGGATCGAGCTCCCTTGG 

89 mbrR_5’_PstI ATCTACTGCAGGGAGGCGACGAATGATCGATTCGGATGTATTCGAAT 

90 mbrR_3’_XbaI ATCTATCTAGATTAGGGATGGATCATGCGCC 

91 mbrI_5’_KpnI ATCTAGGTACCGGAGGCGACGAATGATAGCGGCTCATGTCGTAAACG 

92 mbrI_3’_KpnI ATCTAGGTACCTCATTCGCACATTTGCCGATG 

93 nptII_5’_Blunt GAGCTCGGATCCGAGGTCCAAGGCGGCCG 

94 nptII_3’_Blunt CGCGTCAGACGCCCGTAGCATGCGAATTC 
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No Primer a Sequence 
95 nptII_5’_gib TCGCCTTCTTGACGAGTTCTTCTGACAACGTTCCTTCCAGACTTTCTCCG 

96 nptII_3’_gib TCGAATTCCTGCAGCCCGGGGGATCGCGCGAACGCCTGCAAATG 

97 ahlI_5’_SacI ATCAGGAGCTCGACGGAGCGGATAATGACGATCTC 

98 ahlI_3’_XbaI ATCAGTCTAGACTACGCTCTGTCGACGCTTGCC 

99 ahlI_Up_5’_Gib AGTGCCAAGCTTGCATGCCTGCAGGGAACGCTCGGCGCGTATTG 

100 ahlI_Up_3’_Gib ACGCTCTGTCGACCTTCTGCGAGATCGTCATTATCCG 

101 ahlI_Dn_5’_Gib GATCTCGCAGAAGGTCGACAGAGCGTAGGTCCG 

103 ahlI_Dn_3’_Gib TACGAATTCGAGCTCGGTACCCGGGACCGGCCGAATTCGTTGG 

104 ΩtraI1_Up_5’_SacI ATCAGGAGCTCGGAATGTCACCAATTGGTGCAACA 

105 ΩtraI1_Up_3’_KpnI ATCAGGGTACCTTGTCGCCTCCGTGCAGG 

106 ΩtraI1_Dn_5’_NcoI ATCAGCCATGGGATCTTCCCACACTTGAAGGCGTC 

107 ΩtraI1_Dn_3’_SalI ATCAGGTCGACTCAGGTTTCGGCTAAGGGCAAG 

Attachment site qPCR primers  

108 attB(G)F GCATCAACCGCGTCGTCTA 

109 attB(G)R GAAGTCTCCGGCAGCGAAA 

110 attB(M)F GCTCCAGGTGTGCGTTTCT 

111 attB(M)R TGGGTTGATTTGGGCGATCT 

112 attB(S)F TGTCTTTGGGCTTAGCGTTCT 

113 attB(S)R ACAGGCCCAGATAGCTCAGTT 

114 attP(G)F CAGTCTGCAGCAACGATGAC 

115 attP(G)R CAGTGTGTTGAAATTCCGGTTGA 

116 attP(M)F GACCGTGGTCTTTGCTTTGG 

117 attP(M)R TCTCCGAACGTCCGCAAA 

118 attP(S)F GGAACCGAACCAATCCACAGA 

119 attP(S)R TGCCGAAACAGAAGCGTAGA 

120 melRF CTGATGTCACCAGTGTTGCG 

121 melRR CGCCCAGGTCGAGGTTAATT 

Attachment site PCR primers for WSM1271 and R7ANS   

122 Mes-guaAF TGACGGCGGATTTCTACCAC 

123 Mes-pheR TGCTATAACCCACGCGCT 

124 Mes-metR CGTAGAGCGCGATTATGGGT 

125 R7A-pheF TAGTCGCAGGAAACCCTTGG 

126 R7A-metF TGAGACGGACAAGACTGACG 

127 R7A-guaAR ACATAGGCCCTAACCTTCGC 

Exconjugant screening primers   

128 ICEMcSym1271-aF CGAATCACCGGTGCATCAAC 

129 ICEMcSym1271-aR CTTGATGCAGCAGTGATGGC 

130 ICEMcSym1271-bF GCAGCGTTCATTCCGACTTG 

131 ICEMcSym1271-bR TCTGAGGCATCGCTTGGATC 

132 ICEMcSym1271-gF CATGTGGTTGGAACTGCTGC 

133 ICEMcSym1271-gR CCGCGCAGTATGAGGAGATT 

134 MesGMCOF GCCAAATGGTCGACGCTCTA 

135 MesGMCOR GTCCGACACGAACAGGTTCT 

136 MesHPF TGACGGCATCGATGATAGGC 

137 MesHPR GCGATGCAATGACAGGAACG 
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a Text in bold demarks a restriction site, or overlapping region for Gibson (gib) 
cloning detailed in the primer name. Underlined text demarks an artificially 
introduced RBS.  

 

 

2.4. General molecular techniques 

Unless otherwise stated all enzymes were purchased from New England 

Biolabs and all chemicals were purchased from Sigma Aldrich. 

 

2.4.1. Isolation of genomic and plasmid DNA 

Genomic DNA was extracted for whole-genome sequencing and PCR 

amplification of cloning products using a phenol:chloroform:isoamylacohol 

extraction protocol described previously (223). Crude lysates containing 

genomic DNA were prepared for analytical PCR reactions using the PrepMan 

Ultra Sample Preparation Reagent (Thermo Scientific) as per the 

manufactures recommendations. Plasmid DNA was isolated from E. coli 

strains using a Plasmid DNA Extraction Mini Kit (Favorgen Biotech Corp) as 

per the manufactures recommendations. DNA concentration and purity was 

analysed using a NanoDrop 1000 (ThermoFisher Scientific) and agarose gel 

electrophoresis (described in section 2.4.3) where required. 

 

2.4.2. End-point PCR 

Primers used for end-point PCRs are listed in Table 2.1. Analytical end-point 

PCRs were performed in 10-μL volumes containing 500 nM of each primer, 1 

µL of genomic or plasmid DNA (1-200 ng μL-1) or cell lysate, 1 x GoTaq Green 
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Master Mix (Promega) and PCR grade milliQ water (Fischer Biotech). Cycling 

conditions were generally as follows 94°C 5 min (x 1); 94°C 30-s, 59°C 30 s, 

70°C 60 s per kb (x 30); 70°C 5 min (x 1). PCR amplification of DNA for cloning 

was performed in 50-uL volumes containing 500 nM of each primer, 3% (v/v) 

dimethyl sulfoxide, 1 µL genomic or plasmid DNA (1-200 ng μL-1) and 1 x 

phusion polymerase high fidelity master mix. Cycling conditions for phusion 

polymerase reactions were generally as follows; 98°C 30 s (x 1); 98°C 10 s, 

72°C 30 s per kb (x 30); 72°C 3 min (x 1). An additional cycle of 98°C 10 s, 

58-70°C 30 s, 72°C 30 s per kb (x 5) was also used following initial 

denaturation for primers which exhibited a Tm < 70°C. 

 

2.4.3. Agarose and Eckhardt gel electrophoresis 

PCR products and plasmids were electrophoresed at 9 V cm-1 for 45 – 60min 

in 1-1.5% (w/v) agarose (Fisher Biotechnology) dissolved in 1 x TAE buffer 

(224). HindIII digested λ, 1 kb, or 100-bp DNA Ladders (New England Biolabs) 

were used as molecular weight markers. Eckhardt gel electrophoresis was 

performed as previously described (223), however cultures were initially grown 

to early log phase (OD600nm 0.1 - 0.3) in TY broths. Samples were 

electrophoresed in Eckhardt gels for 15 h at 4°C. Agarose and Eckhardt gels 

were post-stained in 1 x TAE or TBE, respectively containing 50 µL L-1 

ethidium bromide prior to visualization on a GelDoc XRand (BioRad).  
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2.4.4. Restriction endonuclease digestions, ligations and Gibson 

assembly 

Amplified PCR products used for cloning were purified prior to 

digestion/ligation using a FavorPrep™ GEL/PCR Purification Kit (Favorgen 

Biotech Corp) as per the manufactures recommendations. Restriction 

digestion and ligation of DNA was performed using the buffers, temperatures 

and incubation times indicated by New England Biolabs. Vectors were 

dephosphorylated by adding 3 U μg-1 genomic DNA rSAP directly to the 

digestion reaction and continuing incubation at 37°C for 30 min. Restriction 

enzymes and rSAP were inactivated by incubation at 65°C for 20 min, or 

removed by phenol:chloroform:isoamylacohol extraction and ethanol 

precipitation (223) where products were digested with heat-tolerant enzymes. 

Ligation of cohesive end fragments was performed using T4 DNA ligase as 

per the manufactures recommendations and ligations for blunt fragments was 

performed as previously described (225). Gibson assembly was performed 

using Gibson Assembly HiFi Master mix as per the manufacturer’s (NEB) 

recommendations, however, reaction volumes were scaled to 5 μL and 

incubation at 50°C was extended to 20 min.  

 

2.4.5. Preparation and transformation of competent cells 

Chemical transformation or electroporation was used to transform Plasmids 

were transformed into E. coli either chemically or via electroporation. 

Chemically competent DH5α cells were purchased from Bioline, and 

chemically competent ST18 and electrocompetent DH10β cells were prepared 

as previously described (226, 227). For chemical transformations, 50-µL 
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competent cells were combined with 2 µL of DNA and 1 % (v/v) DMSO 

incubated on ice for 30 min, heat shocked at 42°C for 90 s and incubated on 

ice for a further 2 min. For electroporation, 1 μL of DNA was added to 40 uL of 

electrocompetent cells and transferred into a 0.2-mm gap cuvette (Fisher 

Biotechnology). A single 5-ms 2.5-kV pulse (25 μF resistance and 200 ohms) 

was delivered using a Gene Pulser II (BioRad). For both methods, 1 mL SOC 

recovery media (228) was immediately added directly to the transformation 

tube or cuvette and the entire contents transferred to a 10-mL falcon tube and 

incubated at 37°C on a rotary shaker (250 rpm) for 1 h. Transformation 

reactions were streaked or spread in serial dilutions onto selective LB agar 

media and incubated overnight at 37°C. 

 

2.4.6. Conjugal transfer of plasmids 

E. coli plasmid donors and Mesorhizobium plasmid recipients were grown in 

5-mL broths until mid-log phase (OD600nm 0.1 - 0.8) and late-stationary phase 

(OD600nm ~2.0), respectively. Cultures were harvested by centrifugation (5,500 

x g 5 min), washed once with 1 mL saline (0.89% NaCl in sterile DDI water), 

and resuspended in 200 μl saline. 50-μl aliquots of donor and recipient, and a 

100-μl aliquot of both strains combined (1:1) were spotted onto TY agar 

supplemented with ALA and incubated overnight at 28°C before streaking, or 

spreading serial dilutions onto selective media. Single colonies were passaged 

to remove potential contamination prior to use. 
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2.5. DNA sequencing and genome assembly 

Sanger sequencing of PCR amplicons and plasmids was performed by the 

Australian Genome Research Facility. Whole-genome sequencing was 

performed by Macrogen (South Korea), using Pacific BioSciences (PacBio) 

single-molecule real-time cell-sequencing or Illumina HiSeq 2500 technology. 

Trimmed PacBio sequencing reads (post-filter) were generated as follows; 

NZP2037, 92,934 reads averaging 8,462-bp; WSM1284, 102,356 reads, 

average of 11,824-bp; WSM1497, 136,085 reads average of 4,057-bp. 

Illumina 2 x 100-bp paired-end reads (post-filter) were generated as follows; 

WSM1284, 21,189,686; WSM1497, 25,226,358. NZP2037 illumina reads 

were obtained from the Joint Genome Institute (177). 

Quality control analyses and genome assemblies were carried out by Dr 

Joshua Ramsay using an Intel i7- 4790K, (32 Gb DDR4) desktop computer 

running Ubuntu Linux (v14.04). Raw Illumina reads were analysed using 

FastQC v0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 

Illumina sequence adapter contamination was removed using nesoni:clip 

(v0.132) (https://github.com/ Victorian-Bioinformatics-Consortium/nesoni) and 

reads were corrected using Lighter (v1.1.1) (47). Genome Filtered Illumina and 

PacBio reads were assembled de novo together with Illumina reads using the 

SPAdes assembler version 3.6.2 (11), with the number of mismatches and 

short indels reduced by incurring SPAdes’s postprocessing module 

MismatchCorrector, utilizing the BWAtool (12). Assemblies were scaffolded 

using SSPACE version 3.0 (13) and annotated using the NCBI Prokaryotic 

Genome Annotation Pipeline (http://www 

.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). 
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2.6. Mesorhizobium mating experiments 

The stable broad host-range plasmids pFAJ1708 or pPR3 were mobilized into 

R7ANS to create tetracycline or neomycin resistant recipient strains, 

respectively. Cultures of donor and recipient strains for mating assays were 

grown in triplicate by inoculating TY broths from single colonies, and growing 

these cultures to saturation at 28°C. These were used to seed (1/100) fresh 

TY broth cultures which were incubated for at 28°C for 64-h on a rotary shaker 

(250 rpm). Cells were harvested by centrifugation (5,500 x g, 5 min) and 

washed once with 1-mL saline before re-suspending cells in 200 uL saline. 

Individual 50-μL aliquots and combined 100-μL (1:1) aliquots of donor and 

recipient strains were spotted onto TY agar and grown for 24-h at 28°C. Mating 

spots were collected with a sterile inoculation loop, resuspended in saline and 

spread in 3-fold or 10-fold serial dilutions onto selective G/RDM agar 

supplemented with thiamine and the appropriate antibiotic. Serial dilutions of 

the donor strain were also spread onto non-selective media to determine the 

number of colony forming units in each mating. These plates were grown for 

8 - 10 days at 28°C.  

 

2.7. Quantitative PCR assays for ICE excision 

Cultures for qPCR were grown in triplicate by inoculating TY broths from single 

colonies and growing these cultures to saturation at 28°C. These were used 

to seed (1/100) fresh TY broths which were grown for 64 h (or 10-80 h for 

growth curve experiment), prior to extracting genomic DNA using the PrepMan 
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Ultra Sample Preparation Reagant (Applied Biosystems) as per the 

manufacturer’s recommendations. PrepMan Ultra genomic DNA samples 

were stored at -14°C until required. For Fig 3.4, the number of colony forming 

units in each culture sample was calculated at the time of DNA extraction by 

serially diluting cells and spreading them onto non-selective G/RDM agar. 

The quantitative PCR (qPCR) assay described in reference (74) was adapted 

to measure the abundance of ICEMcSym1271 attP and attB sites relative to the 

chromosomal copy number (melR gene), revealing the percentage of cells 

within a population that had undergone each Int-mediated excisive 

recombination reaction. The primers for the assay are detailed in Table 2.2 & 

Fig 3.3. qPCR was performed using an Applied Biosystems ViiA 7 Real-Time 

PCR System with default cycling conditions. Reactions were carried out in 20-

μL volumes containing 10 μL of 2 x SYBR select master mix (Applied 

Biosystems), 500 nM of each primer and 1-μL of DNA sample prepared using 

the PrepMan Ultra Sample Preparation Reagent (Thermo Fischer) as per the 

manufactures recommendations. 

The amplification efficiency for each primer pair was initially determined using 

the qPCR standard construct, pTHQPS-1 (Table 2.1), which carries a region 

of melR and each ICEMcSym1271 attP and attB site in the same order and 

orientation as found in the WSM1271 chromosome, as a template. The 

construct was initially linearized by NcoI-digestion and serially diluted in PCR 

grade milliQ water. qPCR of serially diluted pTHQPS-1 was used to generate 

standard curves for each qPCR by plotting relative DNA concentration versus 

the log(Ct) value (Fig 2.1). Amplification efficiency (E) for each primer pair was 

calculated using the formula 10(-1/C
tslope

)
 where Ctslope is the slope of the Ct 
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values. All qPCR primers had efficiency values between 1.88 and ~2.0, and 

each assay was accurate over template concentrations spanning 

approximately six orders of magnitude (12–32 amplification cycles). In qPCR 

assays for ICE3 excision, attP and attB relative abundance values were 

derived by normalizing results obtained for each PCR reaction against that of 

melR, using the following previously described formula (17):   

  

 

Where: Eatt represents the efficiency of either attP or attB PCR reactions for 

each ICEMcSym1271-encoded att site; EmelR represents the efficiency of the 

melR PCR reaction; ∆Ct(att) represents the difference in the Ct values between 

a reference PCR (where linearized pTHQPS-1 is the template), and the 

relevant attP and attB PCR; and ∆Ct(melR) represents the difference in the Ct 

values between a reference PCR and the melR PCR reaction. 
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Figure 2.1. Standard curves for qPCR assays. Standard curves were derived 
by performing qPCR on the serially diluted qPCR standard construct, pTHQPS-
1, then plotting relative DNA concentration versus the log(Ct) value. 
Amplification efficiency (E) for each primer pair was calculated using the 
formula 10(-1/slope). 
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2.8. β-galactosidase assays 

TY broths were seeded 1/100 with stationary-phase TY broth cultures of 

Mesorhizobium strains and grown for 24 h at 28°C. A 200-μL aliquot of the 

resulting cultures were transferred into clear-bottom 96-well culture plates and 

OD600nm was recorded on a Enspire Multimode Plate Reader (PerkinElmer). 

Samples were frozen at -80°C until required. β-galactosidase assays were 

performed as previously described (229) with three biological repetitions per 

treatment, unless otherwise specified.  

 

2.9. Melanin deposition assays 

For melanin deposition assays (230, 231), 20-μL aliquots of stationary-phase 

TY broth cultures were spotted onto TY agar supplemented with 600 μg mL-1 

L-tyrosine and 40 μg mL-1 CuSO.5H2O (TYT agar). These plates were 

incubated at 28°C for 14-days. 

 

2.10. Bioassays for detection of AHLs 

2.10.1. CV026 bioassays 

For CV026 streak bioassays, strains of interest were streaked adjacent to the 

biosensor strain C. violaceum CV026 on LB agar and these plates were 

incubated for 48 h at 28°C.  For CV026 well-diffusion bioassays, supernatants 

were collected from 50 mM MOPS buffered (pH 6.5) TY or LB broth cultures 

following centrifugation at 12,000 x g for 5-min. These supernatants were 

sterilized through a 0.22-μm syringe filter and 100-μL aliquots were loaded into 

wells bored into 1.5% (w/v) LB agar over-layed with molten 0.3% (w/v) LB agar 
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seeded 1/100 with a saturated LB broth culture of CV026. These plates were 

incubated at 28°C for 48 h.  

 

2.10.2. AHL inactivation assays 

AHL-inactivation assays were performed using a method adapted from Chan 

et al (232). Cultures were initially grown to stationary-phase in TY or LB broths 

buffered with 50 mM MOPS (pH 6.5). Cultures were supplemented with 10 μM 

3-oxo-C6-HSL and incubated at 28°C for 6 – 12 h. Five-hundred-microlitre 

samples of sterile supernatant were collected (as described in Section 2.10.1) 

before and after incubation and the pH of these samples was recorded. One-

hundred-microlitre aliquots of the sterile supernatants were subject to CV026 

well-diffusion bioassays as described in section 2.10.1. Intracellular AHL-

inactivation assays were performed using the same procedure as described 

above, however broth cultures were sterilized through a 0.22-μM pore syringe 

filter to remove cells prior to the addition of 3-oxo-C6-HSL. 

 

2.11. RNA Sequencing 

All equipment and benches were decontaminated with RNaseZap™ RNase 

decontamination solution prior to use. RNA quality and concentration was 

analysed at various points throughout processing using an Experion™ 

StdSense or HighSens analysis kit assays (Bio-Rad Technologies). 
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2.11.1. Isolation of total RNA 

Cultures (three biological replicates per treatment) for RNA-Seq libraries were 

initially grown by streaking single colonies onto TY agar slopes and incubating 

these cultures for 5-days at 28°C. Two technical replicates of each slope 

culture was washed off into 50-mL TY broths and incubated for 24 h (OD600 ~ 

0.8). Twelve-millilitres of each broth culture was added to 24 mL of RNA later 

solution (Qiagen) and cells were collected by centrifugation (10,000 x g 10-m 

4°C). Supernatant was removed by aspiration and the cell-pellet was 

resuspended in 250 μL of 10 mM Tris-Cl (pH 8.0). This cell-suspension was 

added to 2-mL lysis tubes filled with: 300 mg silica beads (0.1 mm), 100 mg 

glass beads (0.1 mm), 350 μL RLT buffer (Qiagen) and 3.5 μL β-

mercaptoethanol and mechanically lysed in a FastPrep®-24 instrument (MP 

biomedicals) at speed 6.5 for 30 s. Total RNA was extracted from the lysate 

using a RNeasy Mini Kit (Qiagen) as per the manufacturers recommendations. 

RNA concentration and quality was initially analysed using a NanoDrop 1000 

(ThermoFisher Scientific). To remove residual DNA, approximately 3 μg of 

total RNA was digested with a TURBO DNA-free™ kit (Invitrogen) as per the 

manufacturers recommendations, and DNA removal was confirmed with a 

Qubit fluorometer dsDNA BR assay (ThermoFisher Scientific). 

 

2.11.2. cDNA library construction and sequencing 

rRNA was depleted from total RNA using a Ribo-Zero rRNA magnetic kit 

(Illumina) as per manufacturers recommendations, and the resulting RNA was 

purified using a RNA Clean & Concentrator™ kit (Zymo Research). rRNA-

depleted RNA samples were fragmented, hybridised to adapters, reverse 
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transcribed to cDNA, amplified, barcoded and purified using the Ion Total 

RNA-Seq kit v2 (Thermo Fisher) as per the manufacturers recommendations. 

Barcoded cDNA libraries were diluted to 75 pM and pooled for template 

preparation using an Ion Chef™ instrument (Thermo Fisher). Sequencing was 

performed using Ion Proton™ system (Thermo Fisher). Read sets from 

technical repetitions were combined. 

 

2.11.3. Read mapping, read counting and statistical analyses 

Adapter sequences were removed using nesoni clip 

(http://www.vicbioinformatics.com/software.nesoni.shtml). To reduce any 

potential rRNA/total-RNA abundance biases introduced during rRNA 

depletion, reads mapping to rRNA genes were removed using FastQ Screen 

(https://www.bioinformatics.babraham.ac.uk). Reads were mapped to the 

WSM1271 genome (accession NC_014923) using Bowtie 2 (233) and 

visualised using Artemis (234). For gene expression analysis, read sets were 

additionally filtered to remove sequences matching plasmids pPR3-traI1 and 

pSDz-traR1 prior to mapping. An average (per biological replicate) of 14-

million (standard deviation (SD) = 3.3-million) QS+ and 8.5-million (SD = 1.5-

million) QS- post-filter reads were mapped to WSM1271 with 96.7-98.6% 

alignment rate. Read counts for gene features were performed using HTSeq 

(235) with default settings then imported into DESeq2 (236) for identification 

of differentially expressed genes. 

To measure expression from the traI1 and traI2 promoter regions, the 

unfiltered reads were mapped to the WSM1271 chromosome using the 
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procedures described above and read counting was performed using the “--

nonunique all function” on HTSeq so that reads mapping ambiguously to the 

traI1 and traI2 regions and ORFs were counted for both features. 

 

2.12. Glasshouse procedures 

Biserrula pelecinus L. was obtained from Dr Ron Yates (Murdoch University, 

Western Australia). B. pelecinus was grown in free-draining pots containing 

lawn sand as previously described (192). Pots were steam sterilised for 2.5 h, 

followed by two flushes with boiling water prior to sowing. Prior to sewing, 

seeds were lightly scarified with sand-paper and surface sterilised by 

submersion in 70% (v/v) ethanol, followed by 3% (v/v) NaOCl and then rinsed 

in sterile DI water 5 times. Plants were initially watered with 20 mL nutrient 

solution (192) supplemented with 1.5 mM KNO3, then subsequently watered 

with 20 mL aliquots of N-free nutrient solution once per week. N-fed control 

plants were supplemented weekly with 5 mL 100 mM KNO3. Seven days after 

inoculation, sterile alkathene beads were distributed evenly over the surface 

of the soil to maintain sterility and prevent restriction of plant growth. Plants 

were grown for 8-weeks and plant shoot dry weights were excised above the 

cotyledon and individually dried in polypropylene tubes for 2 days at 60°C prior 

to weighing. The glasshouse experiment was block-randomised with five pot 

replications, each containing four plants. 
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2.13. General bioinformatics and statistics 

For whole-genome BLASTN comparisons in Figs 3.1 & 6.1 BRIG (v0.9.5) 

(237) was used to produce BLASTN (options: -ungapped, -word_size 2000, 

upper and lower threshold 99%) alignments of sequence contigs or scaffolds. 

Nucleotide and amino-acid alignments were performed using the T-Coffee 

multiple sequence aligner on default settings (238). Synteny were performed 

using the Artemis Comparison Tool (239) on default settings, and plotted using 

GenplotR (240). Construction of primers and general sequence analysis was 

performed using Geneious (v9.1.8) (241). General BLAST searches were 

carried out using either the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) or 

IMG (242) databases as detailed in results. Statistical analyses were 

performed using Rstudio and are described in figure captions.
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Discovery of tripartite ICEs 
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3.1. Introduction 

Horizontal transfer of the M. loti R7A symbiosis ICE (ICEMlSymR7A) drives the 

evolution of novel Lotus-nodulating rhizobia in New Zealand soils (74, 160, 

162-164, 243). Since these studies, putative symbiosis ICEs have been 

identified in numerous sequenced Mesorhizobium genomes (74-76, 167, 170, 

176). Integration of ICEMlSymR7A is catalysed by the integrase IntS, which 

recombines the attachment site attPS located on the circularisedICEMlSymR7A 

with attBS located at the 3′ end of the sole phe-tRNA gene present in 

Mesorhizobium genomes. This recombination integrates ICEMlSymR7A, 

producing the flanking attachment sites attL and attR. Excision of 

ICEMlSymR7A is stimulated by a recombination directionality factor RdfS, 

which reverses the favoured direction of IntS-mediated recombination toward 

formation of attP and attB (12, 17). 

Following introduction of the Biserrula pelecinus inoculant Mesorhizobium 

ciceri bv. biserrulae WSM1271 (and later WSM1497) into Australian 

agriculture, the emergence of genetically distinct B. pelecinus-nodulating 

strains was observed (193, 194). Four of these strains (M. opportunistum 

WSM2075 and M. australicum strains WSM2073, WSM2074 and WSM2076) 

were found to carry nifH and nodA genes 100% identical to the original 

inoculant WSM1271 and an integrase homologous to ICEMlSymR7A IntS 

adjacent to the phe-tRNA gene (60, 74, 160, 193). Thus, it was postulated that 

WSM1271 may carry a symbiosis ICE resembling ICEMlSymR7A and that 

transfer of this ICE from WSM1271 into soil Mesorhizobium spp. resulted in 

the evolution of these novel B. pelecinus-nodulating organisms (194). 
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In this chapter, the identity and mechanism of excision/integration and transfer 

of the M. ciceri WSM1271 symbiosis ICE ICEMcSym1271 and two B. pelecinus-

nodule-isolated strains M. opportunistum WSM2073 and M. australicum 

WSM2075 (204-206) were explored. 

 

3.2. Results 

3.2.1. Three co-transferrable DNA regions in the WSM1271 chromosome 

Whole-genome BLASTN comparisons of WSM2073 and WSM2075 with the 

WSM1271 genome identified three distinct regions each with near-perfect 

nucleotide identity to regions found in each of the three strains (Fig 1). The 

first region, denoted α, was 445,220 bp in WSM1271 and was identical in 

WSM2073 and WSM2075, aside from a point mutation within a single putative 

transposase gene (Mesci_5575). The second largest region, denoted β, was 

22,971 bp, and the smallest region, denoted γ, was 7,760 bp. The β and γ 

regions were identical in each strain. The chromosome-region junctions in 

each genome assemby were confirmed by PCR-amplification (Table 2.3) and 

sequencing, discounting the possibility that the separation of these three 

regions was an artefact of de novo genome assembly.  

The near-identical sequence of α, β and γ in both the original inoculant strain 

WSM1271 and the novel nodule-isolated symbionts strongly suggested that 

these three regions had been acquired together through horizontal gene 

transfer and that they were likely involved in the capacity of WSM2073 and 

WSM2075 to nodulate B. pelecinus. To investigate whether α, β and γ 

transferred independently or in combination, conjugation experiments were 
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conducted using each of these strains as donors together with the non-

symbiotic M. loti strain R7ANS (74) carrying pFAJ1708 as a recipient. Genes 

for nicotinate and biotin biosynthesis were identified on region α in WSM1271, 

WSM2073 and WSM2075 genomes, providing a mechanism of selection for 

region α, since R7ANS is auxotrophic for both vitamins (4). Potential R7ANS 

exconjugants were selected by growth on minimal medium with tetracycline 

but lacking biotin and nicotinate. Following these mating experiments, 

tetracycline resistant biotin and nicotinate prototrophs were isolated at a 

frequency of 4.65 × 10−8 ± 7.89 × 10−9 (SE) in experiments using WSM1271 

as a donor, 8.5 × 10−9 ± 8.5 × 10−10 from WSM2073 donors and 3.0 × 10−9 ± 

6.0 × 10−10 from WSM2075 donors. Exconjugants from 16 independent 

conjugation experiments were screened by PCR targeting loci on regions α, 

β, γ and additionally a PCR specific for the R7ANS chromosome (Table 2.2). 

Despite only selecting for transfer of biotin and nictotinate genes on α region, 

all regions α, β and γ were detected in all exconjugants suggesting that all 

three regions had been acquired in these strains in all experiments. The 

genome of a one exconjugant (R7ANS×WSM1271) from a mating using the 

WSM1271 donor was also draft sequenced using Illumina techology. Whole-

genome BLASTN comparison of the de novo-assembled R7ANS×WSM1271 

genome with the WSM1271 genome confirmed complete transfer of all three 

regions and integration of each of these regions α, β and γ in the same relative 

position and orientation as found in the genomes of WSM1271, WSM2073 and 

WSM2075 (Fig 3.1). 
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Figure 3.1 Conservation of three ICEMcSym1271 regions in WSM1271 and 
exconjugants. Circular BLASTN alignments carried out using BRIG (237) of 
WSM1271 with WSM1271, WSM2073, and WSM2075 (204-206) and the 
laboratory ICEMcSym1271 exconjugant R7ANS×WSM1271. Black regions 
indicate >99% conserved nucleotide identity. 

 

 

3.2.2. Three integrases and three pairs of attachment sites 

Analysis of gene content of regions α, β and γ revealed intS gene identified in 

previous work was located on region γ downstream of the phe-tRNA gene and 

demarcated one boundary of this region in each strain (Fig. 3.2). Region γ 

carried a second putative integrase gene intM located adjacent to the met-

tRNA gene, marking the other region γ boundary. Region β was located 

adjacent to the GMP-synthase gene guaA and harboured a third integrase 

gene intG, the product of which resembled integrases associated with MGEs 

that integrate into guaA (87). Region α, despite being the largest region, did 

not carry an identifiable integrase gene. 
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Integrase-targeted attL sites are composed chromosomal DNA 5′ of the 

insertion site and ICE DNA 3′ of the insertion site, whereas attR sites contain 

ICE DNA 5′ of the insertion site and chromosomal DNA 3′ insertion site (74, 

95, 103-106). Therefore, all four att site types are structurally distinct and can 

be distinguished from each other through inspection of flanking DNA together 

with the relative orientation of the core sequence. attL sites are also commonly 

located adjacent to the integrase gene which facilitates ICE recombination 

(244). Because of the association of identified integrase genes intS, intG and 

intM with phe-tRNA, guaA and met-tRNA genes (respectively), it was predicted 

that these likely represented the integrase-targeted insertion sites for each 

region. The 17-bp core sequence associated with the ICEMlSymR7A integrase 

IntS is 5′-TCCGCCTCTGGGCACCA-3′. The same sequence was identified at 

the 3′ end of the γ-region boundary within the WSM1271 phe-tRNA gene which 

was denoted attLS (Fig 3.2). Another copy of the IntS core sequence was 

identified at the 3′ boundary of the α region and was denoted attRS. The 

conserved core sequence targeted by guaA-associated integrases has 

previously been identified as 5′-GAGTGGGA-3′ (87). Two 11-bp repeat sites 

(5’-ATCGAGTGGGA-3’) containing this sequence were identified in the 

WSM1271 chromosome; one within the guaA gene at the 5′ end of the β-

fragment – here named attLG, and one at the 3′ end of the α-fragment – here 

named attRG. Finally, a perfect duplication of the 16 bp sequence 5′-

CCCTCCGGGCCCACCA-3′ was identified at the 5′ end of region γ within the 

end of the met-tRNA gene and at the 3′ of region β. These were named attLM 

and attRM, respectively. In summary, regions α, β and γ were each bordered 

by putative integrase attachment core sites associated with two different 
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integrases (Figs 3.2 & 3.3) and together the three regions carried three 

integrases and three pairs of attachment sites. 

Excision and circularisation of DNA located between attL and attR sites 

requires that their core regions form a directly-orientated repeat. However, 

attRS on region α was inverted relative to attLS, indicating recombination of 

attLS and attRS to produce attPS and attBS would result in an inversion and 

juxtaposition of regions α and γ (Fig 3.3 state ii). Similarly, IntG-mediated 

recombination of convergently oriented attLG and attRG would produce attPG 

and attBG and juxtapose fragments α and β (Fig 3.3 state iv). Finally, attLM and 

attRM were in the same orientation, so their recombination would excise DNA 

between them, leaving behind attBM and juxtaposing regions β and γ on a 

circular 248-kb DNA fragment carrying attPM and 218 kb of chromosomal DNA 

(Fig 3.3 state iii). 

 

Figure 3.2 Schematic of ICEMcSym1271 regions α, β and γ, and predicted att 
site core sequences. Coloured arrows represent orientation of matching attL and 
attR site sequences, chromosomal DNA is coloured in grey. Schematics are not 
to scale. Genome (NC_014923.1) coordinates for each att site are provided above 
each region.



    

 

 
 
Figure 3.3. Model of ICEMcSym1271 recombination states i–viii of the WSM1271 chromosome obtained through the actions 
of IntS, IntG and IntM. The α, β and γ regions are coloured dark blue, brown and yellow, respectively. IntG and associated att sites 
are coloured magenta, IntM and associated att sites are coloured green, IntS and associated att sites are coloured cyan. 
Chromosomal DNA is coloured in grey and is fixed at the WSM1271 origin of replication, indicated by an “O.” The orientation of each 
att site is indicated by an arrow (5′–3′ direction) at each region boundary. The binding sites for primers used to amplify each attB and 
attP site are shown are displayed on the figure as block-headed arrows and tapered arrows, respectively. Diagrams are not to scale.
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3.2.3. Coordinated formation of three pairs of attB and attP sites 

The frequency of symbiosis ICE excision in M. loti R7A was previously 

calculated by quantitative PCR (qPCR) measuring attP and attB abundance 

relative to the chromosomal gene melR (74). Here, this assay was adapted to 

detect and measure attP and attB formation in WSM1271. Six pairs of primers 

for each of the 3 attP and 3 attB sites were designed along with primers for 

WSM1271 melR. WSM1271 was grown in broth culture and genomic DNA 

was extracted at 10-h intervals for qPCR (Fig 3.4). All attP and attB products 

were detected in DNA extracted from all samples and sequencing of qPCR 

products confirmed recombination had occurred within each predicted core 

site. The relative abundance of each attP and attB pair was comparable for att 

sites of the same type, consistent with the interdependent production of attP 

and attB sites from corresponding attL and attR sites. The attP and attB sites 

for IntS and IntG were detected in ∼0.01% of cells in log-phase growth (20-h) 

and this increased to 0.1% of cells in stationary-phase cultures (50 h onwards). 

While the proportion of IntM attachment sites attPM and attBM detected also 

increased ∼10-fold between log phase and stationary phase, the overall 

abundance of these sites was ∼10-fold less than those for IntS and IntG. 
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Figure 3.4. qPCR detection of attP and attB formation in WSM1271. 
Measurements represent the mean percentage of WSM1271 chromosomes in 
TY batch cultures harbouring each excisive Int-mediated recombination product 
(attBS, attPS, attBG, attPG, attPM and attPM) determined by qPCR. Samples of 
genomic DNA were extracted, and viable cell counts (red line) were performed 
at 10-h intervals for 80 h. Values for each of the assay types attBS, attPS, attBG, 
attPG, attPM and attPM site were individually compared between time points 
using ANOVA and Fisher’s LSD test controlling for type I error using the 
Bonferroni adjustment. Groups of values from the same assay type that are not 
significantly different from each other have the same letter (a, b or c) indicated 
above. 
 

 

3.2.4. Formation of three pairs of attP and attB sites requires IntG, IntM 

and IntS 

To explore the function of the three integrases IntG, IntM and IntS, each gene 

was inactivated in WSM1271. Both intG and intM were replaced with nptII 

(creating WSM1271∆intG::nptII and WSM1271∆intM::nptII, respectively) and 

a markerless deletion was made in the intS gene (creating WSM1271ΔintS). 

qPCR of DNA extracted from stationary-phase cultures of these strains 

following 64 h incubation (Fig. 3.5) revealed that while each attP and attB 

product was detected in the wild-type control strain, attPG, attBG, attPM, attBM, 

attPM and attBM formation could not be detected in WSM1271∆intG::nptII, 

WSM1271∆intM::nptII, or WSM1271ΔintS, respectively. In each mutant, 
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formation of the remaining attP and attB products remained relatively 

unaffected. Introduction of cloned wild-type copies of intG and intS restored 

attP and attB detection in WSM1271∆intG::nptII and WSM1271ΔintS, 

respectively demonstrating that IntG and IntS, catalyse the excisive 

recombination reactions producing attPG and attBG or attPS and attBS, 

respectively. In contrast, defective attPM and attBM production could not be 

complemented by introduction of a cloned wild-type copy of intM, suggesting 

that replacement of the intM ORF in WSM1271∆intM::nptII may have some 

polar effect on the production of attPM and attBM. 

 

 

Figure 3.5. qPCR detection of attP and attB formation in integrase mutants 
of WSM1271. Measurements represent the mean percentage of WSM1271 
chromosomes in stationary-phase cultures harbouring each excisive Int-
mediated recombination product (attBS, attPS, attBG, attPG, attPM and attPM) 
determined by qPCR. Where appropriate, plasmids carried by WSM1271 (here 
abbreviated as 1271) are listed in brackets after the strain name (see Table 1.1 
for a description of plasmids). Values for each of the assay types attBS, attPS, 
attBG, attPG, attPM and attPM site were individually compared between strains 
using ANOVA and Fisher’s LSD test controlling for type I error using the 
Bonferroni adjustment. Groups of values from the same assay type and in the 
same panel that are not significantly different from each other have the same 
letter (a, b, c, d or e) indicated above. 
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3.2.5. Reconstruction of ICEMcSym1271 integration and disassembly 

pathways 

Given that the symbiosis ICE of WSM1271 harbours three sets of attachement 

sites and three integrases (intS, intG and IntM) we speculated that 

recombination of regions α, β and γ leads to the formation of a a single circular 

“tripartite” ICE (ICE3) in the donor prior to conjugative transfer. To define the 

potential recombination pathways, a network diagram was created guided by 

the position and orientation of each att site and the predicted products of each 

recombination (Fig. 3.3). In this network, eight possible recombination states 

(states i-viii) were predicted, with each state able to transition to three other 

states through the action of one of the three integrases. This model indicated 

that sequential action of each integrase in any order to form three pairs of attB 

and attP sites would result in excision of a single circular ICE3 and restoration 

of the likely ancestral WSM1271 chromosome. The model also suggested that 

the three reverse reactions (forming attL and attR sites) in combination would 

integrate the putative circular ICE3 and disassemble it back into the tripartite 

configuration observed in all ICE3 exconjugants. To test this model, a non-

replicative mini-ICE3 plasmid (pMINI3) that contained each of the three attP 

sites arranged in the same order and orientation as on the circular ICE3 

predicted in state viii (Fig. 3.3A) was constructed. pMINI3 confers gentamicin 

resistance but does not replicate in Mesorhizobium, so recombination with the 

chromosome is required for it to be maintained. To facilitate this 

recombination, expression plasmids carrying intS (pSacB-intS), intG (pSacB-

intG) and intM (pSacB-intM) downstream of the pSacB lac promoter were 

constructed. pSacB is a derivative of the BHR vector pSRKKm (220) carrying 
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a copy of the Bacillus subtilis sacB gene (245), enabling selection for loss of 

each pSacB plasmid by exposure to sucrose. 

Sequence analysis of R7ANS revealed it carried attBS, attBG and attBM in the 

same relative position and orientation as predicted for the WSM1271 

chromosome when cured of the ICE3 (Fig 3.3 state viii) and lacked genes for 

intS, intG and intM. Each pSacB plasmid was separately introduced into 

R7ANS. pMINI3 was then conjugated into each of the three strains and 

colonies harbouring integrated pMINI3 were selected on medium containing 

gentamicin. Integration of pMINI3 was observed in each strain carrying an 

integrase-expressing pSacB plasmid, but not in a strain carrying an empty 

pSacB vector, confirming dependence of pMINI3 integration on the presence 

of an integrase gene (Fig 3.6A). PCR of predicted pMINI3-chromosome 

junctions were used to confirm attBS::pMINI3 and attBM::pMINI3 insertion 

occurred in the predicted regions in R7ANS(pSacB-intS) and R7ANS(pSacB-

intM), thus reconstructing recombination states vii and vi, respectively (Fig 

3.6A) (Fig 3.6B). Although pMINI3 R7ANS(pSac-intG) integrants were 

isolated, their PCR profiles did not match those predicted for state v, as 

individual colonies lacked either attLG or attRG (Fig 3.6B), suggesting pMINI3 

had integrated elsewhere in the R7ANS chromosome. 

attBM::pMINI3 and attBS::pMINI3 integrants were further manipulated by curing 

the pSacB-int plasmid and separately introducing each of the two other types 

of pSacB-int plasmid. Following IPTG induction, randomly selected single 

colonies were isolated, cured of the pSac-int plasmid and again screened by 

PCR to confirm the recombination state of each isolate. Using this approach 

states iv and ii were derived from state vi, and state iv was successfully derived 
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from state vii. However, attempts to derive state iii from state vii were 

unsuccessful, producing an unexpected attBG PCR product (Fig 3.6B). 

Moreover, the 248,280-bp region which would presumably exist separated 

from the chromosome in this state could not be detected by Eckhardt gel 

electrophoresis (Fig 3.7). 

Finally, to stimulate the formation of state i, the final tripartite cojnfiguration 

observed for WSM1271, WSM2073 and WSM2075, each previously 

unintroduced pSacB-int plasmid was introduced into strains in states ii and iv. 

Following IPTG induction and curing of pSacB-int, PCR screens confirmed the 

conversion of strains in states ii and iv to state i. Sequencing of PCR amplicons 

of all attL and attR junctions amplified from the two independently derived state 

i strains confirmed the predicted pMINI3-chromosome recombination 

junctions. In summary, this experiment demonstrated that six of the eight 

predicted recombination states could be isolated solely via the sequential 

expression of the three ICEMcSym1271 encoded integrases (Fig. 3.6).
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Figure 3.6. Reconstruction of ICEMcSym1271 Integration and Disassembly Pathways in M. loti R7ANS. (A) Colours correspond to Fig. 
3.3.” The orientation of each att site is indicated by an arrow (5′–3′ direction) at each region boundary. Diagrams are not to scale. (B) DNA 
gels of PCR products amplified from the 12 att sites (rows) in each of the eight possible recombination states (columns) from M. loti R7ANS 
carrying the pMINI3 plasmid depicted in (A). Each dashed-line arrow represents a pathway successfully demonstrated using pMINI3. 
*Recombination states iii and v were not obtained. An example PCR profile from a single isolate is shown for each of these recombination 
states; recombination state iii showed the presence of an unexpected PCR product for attBG (†), whereas recombination state v lacked an 
expected attRG PCR product (‡). 
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Figure 3.7. Eckhardt gel electrophoresis of R7ANS and R7ANS-
attBM::pMINI3(pSac-IntG). Lane 1: Rhizobium leguminosarum 3841 (sizes of 
lower two bands are indicated on left); Lane 2: M. loti NZP2037, revealing 
plasmid pRlo2037; Lane 3: M. loti R7ANS; Lane 4: M. loti R7ANS carrying the 
attB::pMINI3 insertion following introduction and curing of plasmid pSacIntG. 
DNA is the same as in PCR profile iii* in Fig. 3.6.B. 
 

 

 

3.2.6. Symbiotic phenotypes of R7ANS ICEMcSym1271 exconjugants 

Strains WSM1271, WSM2073 and WSM2075 all harbour a near identical ICE3 

with an identical compliment of symbiosis genes on this element. However, 

WSM1271 is an effective N2-fixing microsymbiont of B. pelecinus, whereas 

WSM2073 is only partially effective and WSM2075 nodulates but does not fix 

N2 with this host (194). To assess the symbiotic properties of R7ANS 

exconjugants harbouring ICEMcSym1271, B. pelecinus was inoculated with 

nine R7ANS exconjugants, one derived from each of three independent 

matings with each of WSM1271, WSM2073 and WSM2075. Plants were 

grown for 8 wk before recording shoot dry weights (Fig. 3.8). All R7ANS 

exconjugants yielded weights comparable to that of the partially effective strain 

WSM2073, irrespective of the symbiotic proficiency of the donor strain from 

which their ICE3 originated. 
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Figure 3.8. Effectiveness of ICEMcSym1271 exconjugants on B. pelecinus. 
B. pelecinus plants grown in nitrogen-limited conditions were inoculated with 
indicated strains and grown for 8 wk. Uninoculated and nitrogen-fed (supplied 
as KNO3) plants were included as negative and positive controls, respectively. 
Each bar represents the mean dry shoot weight for 20 plants split between five 
position-randomized pots. Shoot dry weights were compared using one-way 
ANOVA followed by Tukey’s honest significant difference post hoc test at 5% 
significance. Treatments that share a letter are not significantly different. 
R7ANS did not nodulate B. pelecinus. 
 
 
 

 

3.3. Discussion 

In this chapter, it was demonstrated that the Biserrula pelecinus-nodulating 

mesorhizobia WSM1271, WSM2073 and WSM2075 each carry a novel 

symbiosis ICE ICEMcSym1271 composed of three separated chromosomal 

regions of DNA termed α, β and γ. Each ICEMcSym1271 region is distinct from 

that of previously characterised symbiosis ICEs (59, 60). Integrases IntS, IntG 

and IntM each facilitated recombination between specific pairs of attL and attR 

sites to form corresponding pairs of attP and attB sites. Therefore, it is likely 

that regions α, β and γ assembled into a single transferrable entity via the 

sequential action of three ICEMcSym1271-encoded integrases prior to transfer. 

Following transfer, the circular ICE3 is likely able to integrate into any one of 

the three attB sites in a mesorhizobial chromosome and disassemble into the 
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three regions via the action of the three integrases acting on the three pairs of 

attP and attB sites. Acquisition of this ICE3 by R7ANS conferred an ability to 

nodulate and fix N2 with B. pelecinus, albeit partially effectively.  

Tyrosine recombinases like the ICEMlSymR7A integrase, IntS, catalyse the 

reversible recombination of attL + attR ←→ attP + attB (74). For a “single-part” 

ICE, the forward reaction excises and circularises the ICE, whereas the 

reverse reaction integrates the ICE (74, 92). For the ICE3 ICEMcSym1271, the 

recombination reaction substrates and products are similar, but the 

macromolecular rearrangement depends on the relative positions and 

orientations of three pairs of att sites (Fig. 3.3). The action of any  

single integrase is inadequate for excision of the ICEMcSym1271, but the 

combined forward (i.e. attL + attR → attP + attB) actions of the three integrases 

excises this ICE3. It is therefore possible that the forward reactions are 

coregulated. qPCR analysis revealed the abundance of all three pairs of attP 

and attB sites increased ∼10-fold in stationary-phase cultures (Fig 3.4). A 

caveat of the qPCR assay is that it averages the ensemble of recombination 

states in a population, so further single-cell experiments would be necessary 

to confirm that the three reactions occur concurrently in the same cell. 

Nevertheless, co-transfer of all three ICEMcSym1271 fragments by conjugation 

is consistent with all three forward reactions occurring together in single cells 

to facilitate excision and circularisation of the three ICE3 regions prior to 

conjugal transfer (77, 78). 

Using pMINI3 and sequential expression of each integrase, the formation of 

six of the eight predicted recombination states was demonstrated (Fig 3.6A & 
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B). However, states iii and v could not be reproduced. When pMINI3 was 

introduced into R7ANS(pSacB-IntG) to produce state v, isolated colonies had 

lost both attPG and attBG, suggesting recombination had occurred as 

expected. However, individual colonies were positive for either attLG or attRG, 

but not both (Fig. 3.6B † symbol). Further inspection of the R7ANS 

chromosome revealed the presence of an additional copy of the attBG core 

sequence within Meslo_RS0109425 (NZ_KI632510). This second attBG (not 

present in WSM1271, WSM2073 or WSM2075), together with overexpression 

of IntG from pSacB-intG, may have led to additional IntG-mediated 

recombination events, destroying one of the attLG or attRG sites in each isolate. 

Interestingly, these secondary recombination events were not apparent in the 

genomes of the sequenced exconjugants WSM2073, WSM2075 and 

R7ANS×WSM1271, so this phenomenon could be limited to the artificial 

system in this study. 

Recombination state iii is the only state that is predicted to split the 

chromosome into two parts. The smaller portion (248,280 bp) harbours regions 

β and γ along with the guaA and phe-tRNA genes, but appears to lack an origin 

of replication. Presumably, state iii is not viable, because post-segregational 

loss of the excised region would result in loss of the sole phe-tRNA gene (163). 

In attempts to recombine pMINI3 from state ii to state vi using pSacB-intG, 

secondary recombination events mediated by IntG may have reintegrated this 

fragment into the main chromosome, resulting in the rescue of these 

recombined cells and the unexpected PCR profile (Fig. 3.6B † symbol). 

Eckhardt gel DNA electrophoresis did not identify an episomal fragment in the 

250-kbp size range. Interestingly, the IntM-mediated excision products attPM 
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and attBM were the lowest-abundance products detected using the qPCR 

assay. This finding implies that attLM + attRM → attPM + attBM may be the last 

or lowest-rate reaction, or that non-viable cells in state iii are lost from cell 

populations. If attPM and attBM formation is the final step in excision of the 

assembled ICEMcSym1271 (transition state vi → viii in Fig. 3.3), then 

recombination state iii would be avoided during the recombination pathway 

that produces circularised ICEMcSym1271. 

The data presented in this Chapter strongly support the hypothesis that 

following agricultural introduction of WSM1271, ICEMcSym1271 was 

transferred from WSM1271 to the progenitors of WSM2073 and WSM2075, 

converting them into B. pelecinus-nodulating strains (193, 194). Although all 

three of these strains carry the same ICE3, WSM1271 fixes N2 effectively with 

B. pelecinus, WSM2073 fixes N2 partially effectively and WSM2075 does not 

fix N2 with this host (194). Transfer of ICEMcSym1271 from any of these donors 

to M. loti R7ANS here converted all recipients to partially effective N2-fixing 

symbionts of B. pelecinus. R7A, which carries ICEMlSymR7A, also exhibits 

partially effective N2 fixation with B. pelecinus relative to WSM1271. Overall, 

these data suggest that the chromosomal background of symbiosis ICE 

recipients is a crucial factor governing proficiency for N2 fixation. The evolution 

of poorly N2-fixing rhizobia may pose a significant problem associated with 

legume inoculation in agriculture, because ineffective strains may dominate 

soil populations and reduce crop productivity (46, 160, 193, 194). These 

experiments provide insight into how ineffective rhizobia can evolve through 

ICE3 transfer. 
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4.1. Introduction 

ICEMcSym1271 comprises a novel tripartite ICE that exists in WSM1271, 

WSM2073 and WSM2075 as three entirely separated chromosomal DNA 

regions that recombine the host chromosome and assemble into a contiguous 

DNA region prior to excision and conjugative transfer. In this chapter, the 

unique features of ICEMcSym1271 are used as a tool to identify similar ICE3s in 

other mesorhizobia isolated from geographically diverse locations. A 

bioinformatical analysis of these newly discovered ICE3s was undertaken to 

expand our understanding of the diversity and evolutionary history of these 

elements. 

 

4.2. Results and discussion 

4.2.1. ICE3s exist in genetically diverse mesorhizobia 

BLASTP searches were carried out against sequenced mesorhizobial 

genomes using the IntS, IntG and IntM amino acid sequences as queries. All 

three integrase genes were identified (> 70% amino acid similarity to 

WSM1271) in the B. pelecinus symbionts isolated from Ethiopia and Greece, 

M. sp. AA22 and M. ciceri bv. biserrulae WSM1497; the Anthyllis vulneraria 

symbiont Mesorhizobium metallidurans STM2683 (28); the Bituminaria 

bituminosa symbiont M. ciceri WSM4083; and the Lotus spp. symbionts M. loti 

strains WSM1293, NZP2037 (29), NZP2042 and SU343 (Table 4.1).



 

  
  

Table 4.1. ICE3s identified in genetically diverse Mesorhizobium spp. 



 

 

aGenome status D indicates a draft sequence, F indicates finished (or completed).  

Integrase protein sequences are >70% similar to the relevant WSM1271 homologue, except for the *Ca181 IntM protein, for which the 

coding sequence has undergone several frameshift mutations. Ca181 intM nucleotide sequence is 87% (1032/1192) identical to intM from 

WSM1271. 



 

  
  

c Coordinates for newly discovered ICE3 regions in complete genomes are as follows; ICEMcSym1284- α, 858,217-1,396,927; ICEMcSym1284-

β, 4,374,751-,4,392,030; ICEMcSym1284-γ, 4,618,567-4,626,359; ICEMcSym1497- α, 6,100,975–6,544,486; ICEMcSym1497-β, 2,746,844–

2,766,245; ICEMcSym1497-γ, 2,527,429–2,532,841; ICEMlSym2037-α, 6,351,799-6,880,279; ICEMlSym2037-β, 3,031,348-3,058,941; and 

ICEMlSym2037-γ, 2,577,913-2,584,147. For a full list of ICE3 att site and region coordinates, see reference (4) 

d ND indicates not determined.
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The drought and salt-tolerant chick-pea symbiont, M. ciceri Ca181 (212) also 

carried homologues of IntG and IntS, but not IntM. Nevertheless, a BLASTN 

search for the nucleotide sequence of intM against the Ca181 genome 

revealed the presence of an intM homologue 87% (1032/1192) identical to that 

of ICEMcSym1271 which carried several critical point mutations rendering this 

allele a likely pseudogene. Thus, intM may be a pseudogene in Ca181, but 

the full complement of ICE3 integrase genes were present (Table 4.1). In 

addition to the previously published genome sequences listed above, the 

genomes of the B. pelecinus symbionts M. ciceri bv. biserrulae WSM1284 and 

WSM1497 were sequenced and assembled in this work (CP015064 for 

WSM1284 and CP021070 for WSM1497). All three ICE3 integrase proteins 

were identified by BLASTP on the chromosomes of each of these 

mesorhizobia. 

To delineate the α, β and γ regions of these potential ICE3, BLASTN searches 

for the three pairs of attL and attR core sites corresponding to IntS, IntG and 

IntM were performed.  All attL and attR core sites were identified in all but three 

strains. attRS was not identified in AA22 and STM 2683 and attRG was not 

identified in Ca181 (Table 4.1).   

Completely assembled genome sequences are available for three strains 

predicted to carry an ICE3: NZP2037, WSM1284 and WSM1497. For 

WSM1284 and WSM1497, ICE3 regions α, β and γ regions were identified in 

the same relative position, order and orientation as observed in WSM1271. 

However, as previously noted by others, the 7.5 Mbp assembly of the 

sequenced NZP2037 genome is likely incorrect (177). Specifically, the single-
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contig assembly of NZP2037 encompasses pRlo2037, which is an 

experimentally confirmed extrachromosomal plasmid  (56, 67, 177). To amend 

this issue, SMRT-cell sequencing was performed on genomic DNA extracted 

from this strain and sequence reads were combined with previously acquired 

short-read paired-end sequences to create a hybrid de novo genome 

assembly. Two circular contigs were assembled, corresponding to the 

NZP2037 chromosome (NZ_CP016079) and pRlo2037 (NZ_CP016080), 

respectively. Using this corrected genome assembly, chromosomal regions 

corresponding to ICEMcSym1271 regions α, β and γ were identified in the same 

relative position, order and orientation as located in WSM1271. The 

coordinates for ICE3 regions in WSM1284, WSM1497 and NZP2037 are 

provided in Table 4.1. 

To test the ability of predicted ICE3s to transfer, NZP2037, NZP2042 and 

SU343 were used as donors in conjugation experiments carried out (by Dr 

John Sullivan at the University of Otago) using R7ANS carrying pFAJ1708 as 

the recipient, as described in Chapter 3. Putative ICE3 exconjugants were 

isolated from all three matings and were confirmed to nodulate the host 

legume of the donor strains L. pedunculatus. R7ANS did not nodulate this 

host. Exconjugants were re-isolated from L. pedunculatus nodules and draft-

sequenced. Whole-genome BLASTN comparisons of the de novo-assembled 

exconjugant genomes R7ANS×NZP2037, R7ANS×NZP2042 and 

R7ANS×SU343 with the corresponding donor genome sequences confirmed 

transfer of regions α, β and γ from all three donors (Fig. 4.1).



    

 
 

  

 

Figure 4.1. Genome comparisons of ICE3 donor and recipients. BRIG (237) was used to carry out circular ungapped BLASTN 
alignments of the draft-sequenced exconjugants genomes with the ICE3-carrying donor genomes. (A) A comparison of the draft 
R7ANSxNZP2037 sequence with the complete NZP2037 chromosome. (B) A comparison of the draft R7ANSxSU343 with a draft SU343 
sequence scaffold. (C) A comparison of the draft R7ANSxNZP2042 sequence with a draft NZP2042 sequence scaffold. Black regions 
indicate >99% nucleotide identity. The α, β and γ regions are indicated for each genome comparison. 

  

 



 

  
  

 

4.2.2. Conservation of symbiosis ICE and ICE3-α genes indicates a 

common evolutionary history 

In the above experiments, 13 putative ICE3s were identified and/or functionally 

confirmed to exist in 13 genetically diverse Mesorhizobium spp. isolated from 

various geographical locations. The genome sequences of these ICE3-

harbouring strains were compared to identify conserved ICE3 genes and to 

gain insight into the evolutionary history of ICE3. The α region of each of the 

four ICE3 identitfied in strains for which complete genome sequences are 

available (NZP2037, WSM1271, WSM1497 and WSM1284) represents the 

largest portion (at least 90%) of ICE3 DNA ranging from 468.3 kbp in 

WSM1497 to 563.8 kbp in WSM1284 (Table 4.1). Each ICE3-α region carried 

several gene clusters common to the single-part symbiosis ICEs of M. loti R7A 

and MAFF303099 (130, 163, 178, 179). This included genes associated with 

nodulation (nod) and N2 fixation (nif, fix) of legume hosts, a type-IV protein-

secretion system and genes for biosynthesis of essential vitamins biotin and 

nicotinate, as well as thiamine for ICEMlSym2037 (130, 187, 191). ICE3-α 

regions also carried genes associated with ICE excision and transfer, including 

those encoding the conjugative type-IV secretion-system (traG–trbB-trbI-

msi021), RdfS, RlxS (130) and homologues of QS transcriptional activators 

related to TraR and the AHL synthase, TraI1 (74, 167, 176) (A comparison of 

ICEMcSym1271-encoded excision and transfer genes with ICEMlSymR7A is 

given in Table 4.2). Like the single-part symbiosis ICEs, ICE3-α regions were 

also littered with transposons, insertion sequences and other MGEs that 

appear to have undergone significant diversification in genetic regions 

unrelated to symbiosis or ICE transfer (130, 178). 



     

 
 

Table 4.2. Comparison of selected ICEMlSymR7A and ICEMcSym1271 genes 
 

 

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=COG2771
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=COG2771
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=COG3916
http://pfam.xfam.org/family/PF12728
http://pfam.xfam.org/family/PF12728
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=COG3843
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The conservation of genes between symbiosis ICE and ICE3 suggests that 

these elements share a common evolutionary history. Considering the 

increased complexity of ICE3 over single-part ICEs, it seems plausible that 

ICE3 may have evolved in a bacterium carrying an ancestral single-part 

symbiosis ICE and two other integrative elements integrated within the attBS, 

attBG and attBM sites. In such a strain, a genomic inversion between an IntS-

associated element and an IntM-associated element, followed by an inversion 

between a resulting hybrid element and an IntG-associated element, would 

produce an ICE3 resembling the structure of ICEMcSym1271 (Fig. 4.2). Such 

inversions could have easily been mediated by one of the numerous 

transposable elements found on mesorhizobial ICEs (130), either as part of 

the transposition process or through RecA-mediated recombination between 

repetitive elements.  

 

 

Fig. 4.2. Model of tripartite ICE evolution. The arrangement of att sites on 
ICE3 may have evolved through two chromosomal inversions between three 
separate elements flanked by distinct attL and attR sites. Colours correspond 
to Fig. 3.3. The dashed lines segmenting the chromosome indicate where the 
inversions may have occurred. (A) The ancestral chromosome configuration. 
(B) Configuration of the chromosome following the first inversion. (C) The final 
tripartite ICE structure following the second inversion 
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4.2.3. ICE3 regions γ and β carry disparate genetic cargo  

In addition to the four completely sequenced ICE3-harbouring mesorhizobia, 

sequences of β and γ regions are also available for four additional isolates; M. 

loti strains SU343, NZP2042 and WSM1293 (247) and M. ciceri Ca181 

(NZ_CM002796). For all ICE3s except ICEMcSymCa181, the β region was larger 

than γ (Fig 4.3). All ICE3-β regions carry the intG recombinase gene and RDF 

gene rdfG, located directly downstream of attLG. The DNA sequences of the 

att sites and recombination genes were highly conserved, however, disparate 

genetic cargo was present on the remainder of each β region. For example, 

ICEMcSym1497 region β carried a large operon encoding ABC-type transporter 

proteins, ICEMcSym1271-β carried the melanin biosynthesis gene cluster and 

the ICEMcSym1293-β region carried genes encoding enzymes of the pentose 

phosphate pathway (Fig 4.3). ICEMlSymNZP2073 and ICEMlSymSU343 shared 

near-identical β regions and both were closely related to the β region of 

ICEMlSymNZP2042, however, comparative analysis suggested insertion, 

deletion and inversion events had occurred in the ICEMlSymNZP2042-β region. 

The ICEMlSymNZP2073, ICEMlSymSU343 and ICEMlSymNZP2042-β regions each 

also carried radical SAM (S-adenosyl-L-methionine)-superfamily genes 

hsxABC similar to those required by NifB for the successful assembly of the 

nitrogenase molybdenum cofactor (248). The hsxABC operon was inverted in 

ICEMlSym2042-β and present on region α in ICEMcSym1284. ICEMlSymNZP2073, 

ICEMlSymSU343 and ICEMlSymNZP2042-β regions also carried homologues of 

the A. tumefaciens iaaM gene, which encodes a tryptophan monooxygenase 

required for synthesis of indole-3-acetamide (IAA), a precursor to the plant 

auxin hormone indole-3-acetic acid (249-251). iaaM was also found on the α 
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region of the ICEMcSym1293. If IaaM is contributing to IAA production (252, 

253), then its presence on these ICE3s may indicate a role in symbiosis. Lastly, 

the ICE3-β regions of ICEMlSymNZP2073, ICEMlSymSU343, ICEMlSymNZP2042 and 

ICEMcSym1284 carried genes encoding homologues of the RecD exonuclease 

protein. RecD is the alpha subunit of the exonuclease V complex, involved in 

homologous recombination and plasmid maintenance in E. coli (254-256). Like 

the ICE3-α regions, many of the ICE3-β regions carried recombinase and 

transposase genes or gene-fragments/pseudogenes, suggesting these 

regions have been subject to invasion and recombination events mediated by 

foreign MGEs. In summary, the genetic cargo carried by regions β and γ of 

genetically diverse Mesorhizobium spp. appears to be highly disparate (Fig 

4.3). 
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Figure 4.3. GenoplotR (240) gene map and synteny alignment of ICE3 
regions beta and gamma. Gene maps for each of the assembled ICE3s β and 
γ sequences are shown and annotated where possible. Coloured arrows 
indicate homologues that are also found on other regions, where they are 
coloured similarly. Grey arrows are unique to each element and may encode 
hypothetical proteins, or conserved proteins of unknown function unless 
otherwise specified. Coloured blocks or lines linking each gene represent 
BLASTN hits (15-bp window) in the same orientation (red) or in an inverted 
orientation (blue), with increased colour intensity indicating increased similarity. 
The NZP2042-β was reconstructed using the genome sequences for both wild-
type and the ICE3 exconjugant (R7ANSxNZP2042) (4). *ICEMcSymCa181-γ 
carries an intM pseudogene carrying four stop codons, central to the region, 
and encodes a serine recombinase (intMser) adjacent to the site of integration 
at a distinct met-tRNA (M1C_RS0523) 
 
 
 

Similar to the β region, the γ region attLS-intS and rdfM-intM-attLM sequences 

were highly conserved, but the genetic cargo between them varied 

considerably. Most genes located in ICE3-γ regions appeared to encode 

products with unknown function, these regions also contained various 

transposase sequences or potential remnants of “crash-landed” MGEs, so it 

is difficult to predict if any of the γ region genes, or regions apart from the att 

sites and recombination genes, have a role in symbiosis or ICE3 transfer. 
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4.2.4. Evolution of a new ICE3-γ integration site through evolutionary 

recruitment of a serine recombinase 

Because the ICE3 excision process naturally requires the assembly of the 

three ICE3 regions into a single contiguous region of DNA, there is evolutionary 

potential for ICE3 to revert into a single-part ICE. Why then do these elements 

persist in nature? One possibility is that the cotransfer of three regions is more 

beneficial than transfer of any single ICE3 region. Implicit in this reasoning is 

that genes contributed by each distinct region are of significance to the long-

term persistence of ICE3, however, the dispartity of genetic cargo carried by 

diverse ICE3 β and γ regions suggests that this is not the case. Rather, ICE3 

may persist because the tripartite configuration itself provides some selective 

advantages. The putative ICE3 of M. ciceri Ca181 exhibited distinct features 

that strongly supported this notion. The genome of M. ciceri Ca181 was found 

to carry a putative ICE3 including α, β and γ regions and the expected 

recombinase genes intS, intG and intM (Fig 4.4). However, the intM gene 

(M1C_RS32875) contained several stop codons, suggesting intM has become 

a pseudogene (Fig 4.4). Adjacent to the intM pseudogene was a sequence 

matching the IntM-associated att core sequence not associated with the 

canonical ICE3 met-tRNA integration site (M1C_RS10995 in Ca181). A serine 

recombinase gene intMser (M1C_RS05230) was identified ~9-kb downstream 

of the intM pseudogene positioned adjacent to a distinct met-tRNA gene 

(M1C_RS05235) (not the normal ICE3 integration site). Homologues of intMser 

were also identified encoded adjacent to met-tRNA genes in several other 

organisms including Gdia_1616 in Gluconacetobacter diazotrophicus PAl 5 

and BUE85_RS01630 in Ochrobactrum pituitosum strain AA2. As expected, 
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the intG gene was located adjacent to the guaA gene on the ICEMcSymCa181-

β region. Although the IntM att core site was not present near this region, an 

exact 14-bp duplicate of the 3’ end of the intMser-associated met-tRNA gene 

sequence 5’-TGGTTGCGGGGACA-3’ was identified directly downstream of 

intG and rdfG. Thus, it appears that for ICEMcSymCa181, the IntM recombinase 

has been replaced by IntMser and ICEMcSymCa181 has adopted the new 

IntMser-associated met-tRNA attB site for integration. Remarkably, the 

replacement of intM with intMser in Ca181 has preserved the arrangement and 

orientation of each of the attachment sites such that recombination of the three 

ICE3 regions would still be expected to form a single contiguous element for 

transfer (excluding the attRG site which remains unidentified). Therefore, the 

putative ICE3 of Ca181 appears to be an instance of a potentially recent 

replacement event of an attB site and its cognate recombinase with a new 

recombinase and attB site. This clearly indicates that the tripartite structure of 

this element has been maintainted even when one of the recombinases and 

regions has been completely replaced. 

. 
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Figure 4.4. ICEMcSymCa181 region γ recruitment of a new met-tRNA integration site and serine-recombinase gene. ICEMcSymCa181-γ is 
integrated in the M. ciceri Ca181 genome between convergently orientated phe-tRNA and met-tRNA genes. However, the met-tRNA gene 
is distinct to that in which the other identified ICE3-γ regions are integrated. ICEMcSymCa181-γ also carries a new serine recombinase 
(intMser) adjacent to the met-tRNA gene. Therefore, ICEMcSymCa181 likely utilises a new 14 bp IntMser core sequence present within a 
distinct met-tRNA gene (M1C_RS05235), forming the attLM sequence, and at the end of the β region, forming attRM. An intM pseudogene 
containing several stop codons (*) is located in the centre of the γ region.  
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4.2.5. Proposed selective advantages of the ICE3 configuration 

The observed preservation of ICE3 structure on ICEMcSym181 indicates that 

there may be selectable benefits associated with the ICE3 structure. Four 

proposed scenarios that might explain the evolutionary success of ICE3 are 

discussed below. 

a) Increased host range afforded by multiple attachment sites 

ICEs site-specifically integrate into bacterial chromosomes at attB sites, 

usually within conserved genes such as tRNAs (86, 257), guaA (87) and prfC 

(258). There is selective pressure to maintain this specificity for integration, 

because non-specific ICE integration results in reduced viability and frequency 

of ICE transfer in recipients (259). Given the enormous diversity and 

abundance of ICEs in bacteria (116), competition for available attB sites in 

bacterial chromosomes would be expected. The configuration of ICE3 may 

therefore be advantageous because the ability to integrate at three distinct 

attB sites maximizes the potential for chromosomal integration, even if one or 

more of the cognate attB sites are not present or are not perfectly conserved 

in the recipient (Fig 4.5A).  

b) Passive stabilization  

Toxin anti-toxin modules such as mosAT, tad-ata and hipAB enhance the 

stability of spuriously excised SXT-family ICEs by post-segregational killing or 

growth arrest following loss of the element (150, 158, 260). However, in the 

absence of such active stabilization modules, spurious excision of ICEs from 

their host chromosomes may lead to their loss (145). Therefore, any 

mechanisms that can reduce or prevent spurious excision likely stabilize ICEs 
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in the long term. Work on the regulation of transfer of ICEMlSymR7A has 

demonstrated that numerous layers of transcriptional, translational and post-

translational regulation are present that likely prevent spurious excision of 

ICEMlSymR7A from the M. loti chromosome (75). Although there may be 

unidentified TA modules or other genes facilitating the active stabilization of 

symbiosis ICEs and ICE3s, it is plausible that the tripartite configuration of ICE3 

is intrinsically resistant to spurious excision and loss because it requires three 

separate recombination events for excision (Fig 4.5B). 

c) Genome stability and competitiveness in an ICE/IME-rich environment 

It has been observed that elements with the same integration site and similar 

recombinases may integrate in tandem at a single site (132-135, 137-139). 

Tandem arrays of integrative elements are formed when one or more invading 

ICE(s) integrate site-specifically at the attL or attR site of a resident ICE/IME 

occupying its cognate attB site in the bacterial chromosome (Fig 4.5B). The 

result is a composite ICE carrying distal attL and attR sites derived from the 

most outer elements, and one or more central hybrid attP-like site(s) derived 

from attL and attR of adjacent elements. The Streptomyces scabiei ICE 

resembles a tandem ICE/IME array comprised of two “toxigenic regions” (TR1 

and TR2) which can each excise independently through recombination of a 

distal attL or attR site with the central attP-like site, or which can excise as a 

composite element through recombination of the distal attL and attR sites 

(261). Arrays of SXT and R391-family ICEs (138), and ICE-CIME (cis-

integrative and mobilizable element) arrays of ICESt3 and CIMEL3catR3 (133) 

also excise as individual units or composite elements in the same manner. 

However, tandem arrays can be highly unstable, even in RecA- backgrounds 
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(133, 137, 138, 140). This is probably because most tyrosine recombinases 

exhibit a strong directional preference for integrative recombination, i.e. attP + 

attB  attL + attR (107), and thus formation of the central attP-like site in 

tandem ICE arrays facilitates excision and loss of one or more adjacent 

elements in the array carrying a DR attL or attR site (133, 138). However, the 

instability caused by tandem ICE/IME insertion may not affect ICE3 elements 

in this manner, since no individual region of an ICE3 carries any directly 

repeated att sites. Tandem insertion of an invading ICE into attL or attR sites 

of any ICE3 region would result in the formation of a composite element where 

only the invading ICE/IME carries a direct repeat of compatible attL and attR. 

Thus, an ICE3 is likely stable following a tandem insertion event by an invading 

element because none of its regions can be excised by a single recombination 

event (Fig 4.5B). Moreover, following transfer of the ICE3 into a strain occupied 

by a resident ICE/IME, ICE3 integration within the attL or attR sites of the 

resident element should not affect the ICE3 integration process and tripartite 

separation, but may induce instability in the resident element. Therefore, ICE3s 

may be competitively superior in their ability to occupy attB sites and usurp 

resident integrated elements in an ICE/IME-rich environment. 

d) Increased opportunity for gene capture 

Although tandem arrays of SXT and R391-family ICEs are highly unstable and 

have never been found in natural isolates, tandem arrays of these ICEs 

generated in the laboratory recombine to facilitate the evolution of hybrid 

elements (137, 141) (Fig 4.5C). Rearrangement of genes in tandem arrays 

has also been observed for ICESt3 and CIMEL3catR3 (133). Therefore, ICE 

attL and attR sites represent hotpots for the capture and generation of novel 
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MGEs through tandem integration and accretion of associated genes. It seems 

possible that ICE3 structure could be advantageous because stably occupying 

three attB sites might provide ICE3
 with an increased opportunity to capture 

and stockpile genes from invading ICEs/IMEs, enabling more rapid evolution 

and adaptation of the ICE3 gene content (Fig 4.5C). Accretion of an invading 

ICE/IME carrying IntMser likely explains the evolution of the distinct γ region of 

ICEMcSymCa181 (Fig 4.4). 
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Figure 4.5. Evolutionary advantages of ICE3. (A) Carrying three attP sites in 
the circular form enables the ICE3 the option of integrating at 3 different attB 
sites, increasing its chances of becoming stably integrated within the 
chromosome following transfer. (B) Tandem ICE/IME arrays may in some 
cases produce an unstable arrangement in which one or both ICE/IME are lost. 
Because no region of the ICE3 carries DR att sites and no single recombination 
event causes excision of the ICE3, insertion of an ICE/IME at any of the sites 
already occupied by the ICE3 cannot destabilise the ICE3. Moreover, when the 
ICE3 integrates into the attL or attR site of a resident element and disassembles 
into it tripartite form, only this resident element carries a DR of the newly formed 
attP site on the now composite ICE3 region. Thus, recombination of these sites 
could drive the excision and potentially loss of the resident element from its 
cognate attB site, while the ICE3 remains stably integrated. ICE3s may therefore 
be competitively superior in their occupation of attB sites. (C) By stably 
occupying three attB sites in the bacterial chromosome, the ICE3 has increased 
opportunity to become associated with other ICE/IME elements at the same 
sites via tandem integration, potentially facilitating increased propensity for 
gene capture through acquisition of genes from adjacent elements.  
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4.3. Summary 

In this Chapter, ICE3s were identified in 13 genetically diverse Mesorhizobium 

spp. originally isolated from various geographical locations. Analysis of the 

ICE3-α regions revealed that ICE3 share several clusters of genes common to 

single-part symbiosis ICEs of M. loti R7A and MAFF303099, suggesting a 

common evolutionary history for these elements. It was proposed that 

symbiosis ICE3s probably evolved following recombination between a single-

part symbiosis ICE and two other integrative elements in an ancestral 

bacterium. As to why ICE3s have persisted in nature is a more complex 

question to answer. Here, it was proposed that the tripartite structure itself may 

provide four selective benefits for ICE3; 

a) Increased host range afforded by multiple attachment sites 

b) Passive stabilization  

c) Genome stability and competitiveness in an ICE/IME-rich environment 

d) Increased opportunity for gene capture 

Although the four proposed advantages for the ICE3 configuration are yet to 

be experimentally tested, it seems likely that such benefits may be important 

in environments where integrative elements are abundant and there may be 

competition for commodities such as available attB integration sites. 

In the next Chapter, the information uncovered regarding the genetic content, 

evolutionary history, and mechanism of recombination for ICE3 are integrated 

to explore the regulatory control of ICE3 excision and transfer.
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Chapter 5. 

Regulation of ICEMcSym1271 

assembly, excision and transfer
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5.1. Introduction 

The direction of recombination catalysed by an integrase is often determined 

by a recombination directionality factor, also known as an excisionase (106, 

107, 262). Excisionases are non-catalytic DNA-binding proteins that promote 

formation of attP and attB. In R7A, ICEMlSymR7A excision is stimulated by 

RdfS and in its absence, IntS activity favours formation of attL and attR (74). 

Expression of IntS, IntG and IntM stimulated recombination of the pMINI3 attP 

sites with each cognate attB site in R7ANS, producing attL and attR, 

suggesting equilibrium reactions favour attL and attR production in the 

absence of other ICEMcSym1271 genes for all three ICEMcSym1271 integrases. 

ICEMcSym1271 encodes a homologue of rdfS and two other putative AlpA-

family excisionase (263) genes located adjacent to intG and intM, termed rdfG 

and rdfM, respectively (Table 3.1). It seems likely that expression of the rdfS, 

rdfG and rdfM genes is coregulated to promote excision of ICEMcSym1271. 

For the tripartite ICEMcSym1271, the increased complexity introduced by the 

three separate recombination reactions required for ICEMcSym1271 integration 

and excision leads to the potential formation of eight distinct chromosomal 

recombination states (Figure 5.1A). The arrival at any particular state depends 

on the prior order and direction of the Int-mediated recombination reactions. 

In the synthetic “mini-ICEMcSym1271” experiments presented in Chapter 3, not 

all eight states were reconstructed, suggesting some states are non-viable. 

Specifically, the model for ICEMcSym1271 excision (Fig 5.1A) indicates that if 

the first excisive reaction is catalysed by IntM, i.e. attLM + attRM > attPM + attBM, 

then the chromosome is split into two parts, one part lacking the likely essential 

phe and his-tRNA genes and the other part an origin-of-replication (ICE3 
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reactions producing attP and attB do not necessarily result in excision per se 

for ICE3, but for simplicity recombinations producing attP and attB will be 

referred as ‘excisive’). qPCR assays measuring IntM-mediated formation of 

attPM and attBM indicate the excisive IntM reaction occurs at the lowest 

frequency of the three integrase-mediated reactions, suggesting evolved 

regulatory control mechanisms might prevent IntM-mediated excisive 

recombination occurring before other reactions, precluding formation of the 

non-viable chromosome state. 

In this chapter, the role of the three predicted RDFs RdfS, RdfG and RdfM 

during ICEMcSym1271 assembly and excision are explored through a 

combination of mutation analysis qPCR, RNAseq and reporter assays, with 

the aim of producing a robust model for the coordination and regulation of 

ICEMcSym1271 assembly and excision (Figure 5.1). 

 

 

 

 



Chapter 5 

112 
 

 

Fig 5.1. ICEMcSym1271 assembly, excision and regulation. (A) Schematic 
representing excisive chromosomal recombinations leading to excised 
ICEMcSym1271 or formation of a non-viable state (pink box). RdfS stimulates the 
IntS-mediated excisive reaction attLS and attRS > attPS and attBS delineated by 
cyan arrows; RdfG stimulates the IntG-mediated excisive reaction attLG and 
attRG > attPG and attBG delineated by purple arrows; RdfM stimulates the IntM-
mediated excisive reaction attLM and attRM > attPG and attBM delineated by 
green arrows. The combined data in this chapter support the hypothesis that 
the excisive reactions likely occur in the order IntS > IntG > IntM (highlighted in 
yellow) during ICEMcSym1271 excision. (B) Following the model of QS-mediated 
induction of excision for ICEMlSymR7A and data presented here, TraR1 and 
TraR2 bind AHLs produced by TraI1 and TraR1/R2-AHL complexes activate 
transcription from the traI1 and traI2 promoters. This results in autoinduction of 
traI1 and activation of traI2-msi172-msi171 expression. The programmed 
ribosomal frameshift site within the 3’ end of msi172 fuses the translational 
reading frames of msi172-msi171 producing FseA. FseA then activates 
transcription of the rdfS operon. RdfS stimulates excisive IntS-mediated 
recombination and promotes expression of RdfG and RdfM which subsequently 
stimulates the excisive IntG and IntM-mediated recombination reactions, 
respectively. 
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5.2. Results 

5.2.1. RdfG and RdfM are required for excisive IntG and IntM-mediated 

recombination 

The tripartite ICEMcSym1271 encodes three predicted excisionase genes rdfS 

(Mesci_5530), rdfG (Mesci_2550) and rdfM (Mesci_2345). rdfG is oriented 

convergently with intG on ICEMcSym1271 region β and rdfM  is encoded directly 

upstream of intM on ICEMcSym1271 region γ. Like RdfS, RdfG and RdfM are 

MerR superfamily proteins with a predicted winged helix-turn-helix secondary 

structure (Fig 5.2). Each of these genes was replaced with an ΩaadA cassette 

producing strains 1271∆rdfG::ΩaadA and 1271∆rdfM::ΩaadA, respectively. 

qPCR assays were performed with each strain to assess the affects of these 

insertions on ICE3 assembly/excision. In wild-type WSM1271, attPG and attBG 

and attPS and attBS sites were detected at a frequency of 0.1-1% per 

chromosome and attPM and attBM sites were detected at 0.01-0.1% (Fig 5.3A). 

In contrast, attPG and attBG sites were undetectable in 1271∆rdfG::ΩaadA and 

attPM and attBM sites were undetectable in 1271∆rdfM::ΩaadA. The 

abundance of the two remaining attP and attB sites in each of these mutant 

strains was similar to that of WSM1271. Complementation of 

1271∆rdfG::ΩaadA with a cloned copy of rdfG and its native promoter partially 

restored attPG and attBG formation and complementation of 

1271∆rdfM::ΩaadA with a cloned copy of rdfM and its native promoter restored 

attPM and attBM production. These experiments therefore confirmed the roles 

of RdfG and RdfM in excisive IntG and IntM reactions, respectively. 
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Fig 5.2. Predicted secondary structures of RdfG, RdfM and RdfS. 

Secondary structures were predicted using Jpred(v4) (264). α-helices are 

highlighted in yellow, β-sheets are highlighted in blue. All three proteins carry 

a predicted two stranded MerR-family winged helix-turn-helix motif 

characteristic of RDFs (107, 265). 
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Fig 5.3. qPCR measurement of excisive ICEMcSym1271 recombination. 
Measurements represent the mean percentage of WSM1271 chromosomes in 
stationary-phase cultures harbouring each excisive Int-mediated recombination 
product (attBS, attPS, attBG, attPG, attPM and attPM) determined by qPCR. Where 
appropriate, plasmids carried by WSM1271 (here abbreviated as 1271) are 
listed in brackets after the strain name (see Table 1.1 for a description of 
plasmids). Values for each of the assay types attBS, attPS, attBG, attPG, attPM 
and attPM site were individually compared between strains within the same 
panel (panel A, B, or C) using ANOVA and Fisher’s LSD test controlling for type 
I error using the Bonferroni adjustment. Groups of values from the same assay 
type and in the same panel that are not significantly different from each other 
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have the same letter (a, b, c, d, e, f or g) indicated above. Expression from the 
IPTG inducible promoter of pSDz constructs were not induced with IPTG as 
they exhibit leaky expression without induction in TY medium used for assays. 
(A) Involvement of rdfG and rdfM in excisive recombination. (B) Quorum 
sensing induction of excisive recombination. (C) Involvement of rdfS in excisive 
recombination 

 

 

5.2.2. Quorum sensing stimulates all three excisive Int-mediated 

recombination reactions 

ICEMcSym1271 carries two homologues of ICEMlSymR7A traR, hereby termed 

traR1 (Mesci_5573) and traR2 (Mesci_5676) and a homologue of 

ICEMlSymR7A traI1 (Mesci_5572). ICEMcSym1271 traI1, traR1 and traR2 were 

each individually overexpressed in WSM1271 on plasmids and ICE3 excision 

was measured by qPCR (Fig 5.3B). Constitutive expression of traI1 from the 

nptII promoter stimulated a 10-100-fold increase in abundance of all three attP 

and attB sites relative to vector-only controls. Non-induced lac promoter-driven 

expression of traR1 or traR2 only stimulated a modest increase in att site 

abundance relative to WSM1271, however, the vector-only control exhibited 

~10-fold reduced excision frequencies, so relative to this background 

overexpression of the traR1/2 genes each induced a 10-100-fold increase for 

all attP and attB sites. Overexpression of traI1 and traR1 in the same 

background stimulated ~1000-fold increase in abundance of all three attP and 

attB sites relative to the vector-only control strain. To investigate effects of the 

QS genes on conjugative transfer, strains overexpressing traR1, traR2 and 

traI1 were each used as donors in mating assays where M. loti R7ANS 

carrying pPR3 or pFAJ1708 was the recipient (Table 5.1). The pattern of fold-

changes in conjugation frequencies for each donor strain largely mirrored 
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excision frequency changes observed in qPCR assays (Fig 5.3B) confirming 

that traI1, traR1 and traR2 also stimulated conjugative transfer.  

 

Table 5.1. Quorum sensing induced ICEMcSym1271 conjugative transfer. 

 

aDonor Recipient 
Exconjugants 

(per donor) 

Standard 

deviation 

bFold-

change 

WSM1271 R7ANS(pPR3) 8.02 x 10-8 1.82 x 10-8 - 

WSM1271(pSDz) R7ANS(pPR3) 2.22 x 10-8 9.12 x 10-9 - 

WSM1271(pSDz-traR1) R7ANS(pPR3) 4.69 x 10-7 1.11 x 10-7 21 

WSM1271(pSDz-traR2) R7ANS(pPR3) 5.97 x 10-7 1.66 x 10-7 27 

WSM1271(pSDz-

msi172171) 
R7ANS(pPR3) 8.49 x 10-7 8.23 x 10-8 38 

WSM1271 R7ANS(pFAJ1708) 8.35 x 10-8 4.87 x 10-8 - 

WSM1271(pPR3) R7ANS(pFAJ1708) 8.74 x 10-8 3.89 x 10-8 - 

WSM1271(pPR3-traI1) R7ANS(pFAJ1708) 1.04 x 10-5 1.50 x 10-6 119 

a Plasmids carried by WSM1271 are listed in brackets after the strain name 
and are named according to the parent vector (pPR3 or pSDz) and the gene 
carried. Genes cloned into pPR3 and pSDz vectors are under transcriptional 
control from the constitutive nptII promoter, or an inducible IPTG promoter, 
respectively. Expression from the IPTG inducible promoter of pSDz constructs 
was not induced as they exhibit leaky expression without induction in TY 
medium used for assays. 

b Fold-change is relative to control strains carrying the appropriate pPR3 or 
pSDz parent vector. 

 

 

 

5.2.3. Dissection of quorum sensing-induced ICE3 excision using RNA 

deep sequencing 

To explore the regulation of genes downstream of traR1, traR2 and traI1, 

transcriptome sequencing (RNAseq) was carried out for a QS-induced (QS+) 

strain, carrying plasmid-borne copies of traR1 and traI1 and an uninduced 

strain (QS-) carrying the parent vectors pSDz and pPR3. Overall, 187 

significantly differentially-expressed genes (adjusted P-value < 0.05) were 
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identified and although ICEMcSym1271 comprised only ~7.6% of the 

chromosome, 15.5% (29 genes) of the differentially-expressed genes were 

located on ICEMcSym1271. Genes likely involved in activation of excision and 

conjugation, including msi172-msi171, rdfS, rlxS and the type-IV conjugative 

pilus gene cluster msi031-trbBCDEJLFGI-msi021, were all significantly 

induced (Fig 5.1B and Table 5.2). The full list of differentially expressed genes 

has been uploaded to NCBI GEO database accession GSE108732. 

An alignment of the traI1 promoter regions (PtraI1) from ICEMlSymR7A and 

ICEMcSym1271 revealed a tra-box sequence centred 69-bp upstream of the 

ICEMcSym1271 traI1 start codon (Fig 5.4A). The reads mapping to the traI1 

coding sequence were filtered from the RNAseq libraries prior to differential 

expression analyses (Table 5.2) because they were also present on the 

introduced plasmid, however, a secondary comparison of the unfiltered 

RNAseq reads mapping to the PtraI1 region in the QS+ transcriptome libraries 

relative to the QS- libraries revealed a sharp 121-fold increase in mapped 

reads beginning ~44-bp downstream from tra-box centre and 26-bp upstream 

of the traI1 start codon (Table 5.2 & Fig 5.4A). 
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Table 5.2. QS induced/repressed ICEMcSym1271-encoded genes 

Gene Locus ID aFold-change SE (+ 1) 

Region-α    
rdfS Mesci_5530 19.74 1.20 
traF Mesci_5529 29.21 1.20 
msi107 Mesci_5528 41.10 1.19 
rlxS Mesci_5527 58.14 1.17 
PtraI1 - 121.45 1.16 
PtraI2 - 37.54 1.18 
traI2 - 141.41 1.16 
msi172 - 61.71 1.18 
msi171 - 156.99 1.16 
msi021 Mesci_5513 8.28 1.19 
trbI Mesci_5514 10.58 1.17 
trbG Mesci_5515 18.07 1.19 
trbF Mesci_5516 14.48 1.19 
trbL Mesci_5517 19.35 1.19 
trbJ Mesci_5518 42.31 1.18 
trbE Mesci_5519 64.16 1.17 
trbD Mesci_5520 14.43 1.20 
trbC Mesci_5521 9.71 1.20 
trbB Mesci_5522 5.39 1.21 
msi031 Mesci_5523 13.88 1.20 
traG Mesci_5524 2.75 1.16 
queD Mesci_5560 -2.35 0.83 
queC Mesci_5561 -2.29 0.82 
queB Mesci_5562 -2.34 0.83 
hypothetical Mesci_5526 1.90 1.18 
Region-β    
cbb3-type COx (SI) Mesci_5510 1.92 1.16 
Nicotinate biosynthesis Mesci_5579 -1.85 0.83 
rdfG Mesci_2550 2.46 1.18 
Hypothetical Mesci_2555 2.03 1.19 
Region-γ    
intS Mesci_2349 2.85 1.15 

a Differentially expressed genes (adjusted two-sided P-value of < 0.05) were 
identified using the DESeq2 package (236). Since introduced plasmids carried 
copies of the traI1 and traR ORFs (not including promoter regions), reads 
mapping to these sequences were of an ambiguous origin and were therefore 
filtered and removed prior to mapping reads. Differential expression analysis 
of the traI1 and traI2 untranslated mRNA promoter regions, PtraI1 and PtraI2, 
was carried out prior to filtering – as these reads were able to be distinguished 
from plasmid-borne mRNAs. Reads mapping to the plasmid backbones and 
rRNA genes were removed prior to mapping reads for both analyses. The full 
list of differentially expressed genes has been uploaded to NCBI GEO 
database accession GSE108732. 
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Fig 5.4. RNA-Seq mapping of the transcriptional start sites for traI1, traI2 

and rdfS. The promoter regions of (A) traI1, (B) traI2  and (C) rdfS genes from 

WSM1271 were identified based on similarity with homologous regions in R7A. 

Nucleotide alignments were performed using the T-Coffee multiple sequence 

aligner (238). Transcriptional start sites for R7A genes previously mapped by 

5’-RACE are shown in bold (167, 170). Relative read depth (or sequencing 

depth) plots represent a standardised value for the mean number of reads 

mapped to the positive strand of the regions shown in this figure from the three 

unfiltered QS+ transcriptome libraries of WSM1271.These plots were 

produced using Integrated Genome Browser (266). QS+ strains were induced 

for QS by overexpressing both traI1 and traR1 from the plasmids pPR3-traI1 

and pSDz-traR1, respectively Mean values of 2196.16 + (SD) 434.70 TPM 

unfiltered reads and 660.88 + 276.84 TPM unfiltered reads were mapped to 

the non-coding regions between the transcriptional start sites and start codons 

for traI1 and traI2, respectively. A students t-test revealed that this difference 

was significant (P = 0.01). 
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Homologues of msi172 and msi171 are present on ICEMcSym1271 (4) (Fig 

5.1B) but initial sequence analaysis did not identify an ICEMlSymR7A traI2 

homologue positioned upstream of these genes. traI2 of ICEMlSymR7A 

appears to encode an AHL synthase paralogous with TraI1, however, mutation 

of traI2 has no effect on ICEMlSymR7A excision and no identifiable AHL 

products are produced by TraI2 (167). Further inspection of the ICEMcSym1271 

msi172-msi171 region (Figs 5.4B & 5.5A) revealed the presence of a potential 

tra-box sequence centred 398-bp upstream of the msi172 start codon. A 

nucleotide alignment with the corresponding ICEMlSymR7A region revealed 

this tra-box was also centred 66-bp upstream of an internally-truncated traI2 

gene remnant (Figs 5.4B & 5.5). This traI2 pseudogene overlapped the start 

codon of msi172, as does traI2 on ICEMlSymR7A. Interestingly, inspection of 

traI2-msi172 regions in M. loti USDA 3471 and M. ciceri strains WSM4083, 

WSM1497 and WSM1284 revealed a similar situation; the traI2 gene in each 

case was present as a potential protein-coding pseudogene upstream of 

msi172 and overlapping the msi172 start codon (Fig 5.5B). Therefore, 

although traI2 has likely become a pseudogene on ICEMcSym1271 and other 

symbiosis ICEs, the transcriptional coupling of the tra-box and translational 

coupling of the TraI2 and Msi172 coding sequences has been maintained. In 

the RNAseq experiments, traI2, msi172 and msi171 reads were increased 

~60-160-fold in QS+ cells (Table 5.2). A sharp increase in relative read depth 

was observed at the traI2 promoter 44-bp downstream of the tra-box centre 

and 21-bp upstream of the traI2 start codon (Fig 5.4B) which spanned the 

entire traI2-msi172-msi171 operon (Fig 5.6A). The likely transcription start site 

for traI2  observed from RNAseq reads was consistent with the previously 
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mapped ICEMlSymR7A traI2 promoter (Fig 5.4B) (167). Interestingly, 

comparison of the number of unfiltered transcripts mapping to the traI1 and 

traI2 promoter regions revealed that QS-induced expression from the traI1 

promoter (2196.16 + [SD] 434.70 TPM) is ~3-fold stronger than that of traI2 

(660.88 + 276.84 TPM) (Figs 5.4A-B). A similar ratio of traI1:traI2 expression 

is also observed for ICEMlSymR7A (167). 

 

 

Fig 5.5. Alignment of traI2 promoter regions and TraI2 protein sequences 

in diverse Mesorhizobium spp. (A) The nucleotide sequence of traI2 

promoters and (B) the TraI2 amino acid sequences from six Mesorhizobium 

strains were aligned using the T-coffee multiple sequence aligner (238). 
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Fig 5.6. Quorum-sensing activation of ICEMcSym1271 promoters. 
Overlayed relative read coverage (or sequencing depth) plots represent 
standardised values for the mean number of reads mapped to the positive 
strand of the regions shown in this figure from the three unfiltered QS+ (grey) 
and QS- (black) transcriptome libraries of WSM1271. QS+ strains were 
induced for QS by overexpressing both traI1 and traR1 from the plasmids 
pPR3-traI1 and pSDz-traR1, respectively, whereas the QS- control strains 
carried the parent vectors pPR3 and pSDz. The mean read depth (or 
sequencing coverage) in the (A) traI2-msi172-msi171 and (B) rdfS-traF-
msi107 and rlxS regions of ICEMcSym1271 for QS- transcriptome libraries were 
almost non-existent relative to that of the QS+ strain. A magnified view of reads 
mapping to the promoter region and the DNA sequence is shown in Fig 5.4. 
These plots were produced using Integrated Genome Browser (266). 

 

For ICEMlSymR7A, FseA stimulates expression from an operon containing 

rdfS, traF and msi107 (130, 170) (Fig 5.6B). The same gene cluster is present 

on ICEMcSym1271 and the RNAseq read depth for the corresponding 

ICEMcSym1271 homologues was increased 20-58-fold in QS+ cells (Table 5.2). 

A distinct read depth increase was observed 25 bp upstream of the rdfS start 

codon corresponding closely with the mapped transcriptional start site for 

ICEMlSymR7A rdfS (Fig 5.4C) (170). In summary, despite several genetic 
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rearrangements, the QS regulon of ICEMcSym1271 appears functionally 

analogous to that of ICEMlSymR7A and importantly, QS induces the expression 

of msi172, msi171 and rdfS. 

 

5.2.4. rdfS is required for all three excisive Int-mediated recombination 

reactions  

To explore the involvement of RdfS in ICE3 assembly and excision, a 

markerless deletion in rdfS was constructed. As expected, no attPS and attBS 

products were detected in this strain, but interestingly attPG and attBG and 

attPM and attBM products were also undetectable (Fig 5.3B). Introduction of 

rdfS expressed from its native promoter restored attP and attB production at 

all three sites, albeit at lower levels than wild-type WSM1271. Plasmid-based 

overexpression of traR1 or msi172-msi171 in the rdfS mutant did not induce 

excision, however, the same plasmids did induce excision and conjugative 

transfer in the wild-type WSM1271 (Fig 5.3C, & Table 5.2). Together these 

data confirmed that the stimulation and coordination of all three excision 

reactions by QS and msi172-msi171 was dependent on rdfS. 

RdfS could act either by directly stimulating excisive recombination at attG and 

attM sites or by up-regulating rdfG and rdfM expression. To explore these 

possibilities, rdfG and rdfM were overexpressed in the rdfS mutant to observe 

whether it would restore the formation of attPG and attBG and attPM and attBM 

sites, respectively. rdfG was cloned downstream of the strong constitutive nptII 

promoter and rdfM was cloned downstream of the lac promoter. Interestingly, 

introduction of lac driven rdfM resulted in growth arrest even in the absence of 
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IPTG inducer and in the presence of glucose to repress lac expression. This 

was consistent with the model for ICE3 excision (Fig 5.1A), in which expression 

of rdfM alone splits the chromosome, presumably resulting in loss of viability. 

Constitutive expression of rdfG in the rdfS mutant resulted in the restored 

detection of attPG and attBG products in approximately 0.01% of cells (Fig 

5.3A) while the other two sites remained undetectable. In contrast to lac-driven 

expression, introduction of the cloned copy of rdfM downstream of its native 

promoter restored the production of attPM and attBM sites in 0.001-0.01% of 

cells. Therefore, it was clear that attP and attB formation was abolished in the 

rdfS mutant but RdfS was not directly essential for excisive IntG and IntM 

recombination. The observation that artificially increased levels of rdfG or rdfM 

compensated for the loss of rdfS implied RdfG and RdfM expression was 

abolished in the rdfS mutant. 

 

5.2.5. Overexpression of rdfS stimulates expression of rdfG and rdfM 

Inspection of RNAseq data revealed rdfG mRNA abundance was ~2.5-fold 

higher in QS+ cells (Table 5.1). rdfM was very weakly expressed in both QS+ 

and QS- cells and while there was ~2-fold more rdfM reads in QS+ cells, this 

difference was not statistically significant (P > 0.05). To clarify the potential 

role for RdfS in activation of the rdfG and rdfM promoters, the non-coding 

regions present upstream of each gene were cloned upstream of the 

promoterless lacZ gene of pSDz. Constructs carrying this fusion were 

introduced into WSM1271 carrying a constitutively expressed copy of rdfS (Fig 

5.7A). β-galactosidase expression from the rdfG and rdfM promoters was 

induced ~4.5 and ~8-fold, respectively, in the presence of constitutively 
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expressed rdfS. Consistent with RNAseq data, rdfM expression was much 

lower than rdfG expression and almost undetectable in the absence of rdfS. 

To discount the possibility that RdfS induced expression indirectly through 

other factors on ICEMcSym1271, the same set of experiments were repeated 

using the heterologous M. loti R7ANS background, which lacks all ICE genes 

(Fig 5.7B). These assays produced comparable results to those carried out in 

WSM1271, supporting the hypothesis that the transcriptional activation of rdfG 

and rdfM promoters by RdfS was likely direct. 

 

 

Fig 5.7. Transcriptional regulation of rdfG and rdfM by RdfS. β-

galactosidase assays (229) were performed for (A) WSM1271 and (B) R7ANS 

carrying either control vector pPR3 or pPR3-rdfS (constitutively expressing 

rdfS) together with one of three RDF promoter-lacZ fusion constructs cloned 

into the pSDz vector. Assays were performed with six biological replicates and 

mean β-galactosidase activity values Relative Fluorescent Units 

(RFU)/s/OD600) were compared by Bonferroni adjusted student’s t-tests. SD is 

denoted by error bars. 

 

5.3. Discussion 

Excision and circularisation is an essential prerequisite for conjugative transfer 

of ICEs. Integrase proteins of ICEs and temperate phages generally catalyze 
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both the excision and integration reactions, but integrative recombination is 

generally favoured in the absence of a cognate RDF (107). Unlike most ICEs 

that excise following a single integrase-mediated recombination, 

ICEMcSym1271 requires three Int-mediated reactions to excise (4). This 

Chapter demonstrated that RdfG, RdfM and RdfS are required for the 

ICEMcSym1271 excisive IntG, IntM and IntS-mediated recombination reactions, 

respectively. It was also demonstrated that overexpression of the QS sensors 

TraR1 and TraR2 or autoinducer synthase TraI1 in WSM1271 simultaneously 

increased the proportion of cells in a population undergoing all three 

ICEMcSym1271 excision reactions 10-100-fold. QS significantly induced mRNA 

abundance for the WSM1271 traI1, traI2-msi172-msi171, rdfS and rdfG genes, 

as well as those for conjugative pilus formation (74, 167, 170). In addition to 

stimulating the ICEMcSym1271 IntS-mediated excisive recombination, RdfS 

was shown to transcriptionally activate the rdfG and rdfM genes. Therefore, 

RdfS acts as the master regulator for ICEMcSym1271 excision. 

The model for assembly and excision of ICEMcSym1271 indicates that if the 

first excisive reaction is catalysed by IntM, then the chromosome is split into 

two inviable parts (Fig 5.1A). However, transcription of rdfM and rdfG is 

dependent on RdfS and thus excisive IntS-mediated recombination probably 

occurs prior to that of IntM and IntG in WSM1271 cells induced for 

ICEMcSym1271 assembly an excision. This hierarchical genetic regulation of 

the three RDFs has likely evolved to minimise the potential for formation of the 

non-viable split chromosome configuration following spurious rdfM expression. 

In wild-type WSM1271 or QS-induced WSM1271 cells, the frequency attPM 

and attBM site formation was also significantly less than either attPG and attBG 
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or attPS and attBS, as was expression of rdfM relative to rdfG and rdfS. 

Moreover, introduction of a plasmid-borne copy of rdfM under the control of 

the relatively weak lacI promoter on pSacB (220) resulted in arrested growth 

of 1271∆rdfS cells suggesting that even a low level of RdfM expression in the 

absence of RdfS and RdfG is deleterious. It is possible that the rdfM promoter, 

in addition to evolving transcriptional dependency on RdfS, has evolved to 

promote only subtle levels of rdfM expression to further reduce the likelihood 

of the formation of a non-viable chromosomal state. Considering the data, it 

seems probable that the in situ excisive recombination pathway of 

ICEMcSym1271 follows the sequence IntS > IntG > IntM (Fig 5.1A). 

In addition to RdfS, several other bacteriophage excisionases exist that act as 

both RDFs and transcriptional regulators (109-111, 113, 114, 267-271). 

Phage-P2 Cox and the coliphage-186 Apl excisionases bind and bend attP 

and attL DNA to promote prophage excision, but they also stimulate induction 

of the lytic cycle by blocking transcription of repressor genes cl and c, 

respectively (109-111, 113, 114, 267-270). The Cox protein additionally 

stimulates derepression of neighbouring P4 prophages by activating 

transcription from the late P4-phage promoter (269, 272). Cox-bound promoter 

and attP regions each contain six or more repeats of a “cox-box” consensus 

sequence that may vary in direction or percentage identity between different 

binding targets, and may be bound with variable affinity (111, 269, 270). A 

protein sharing structural homology with excisionases has recently been 

shown to be essential for relaxasome processing of the conjugative plasmid 

pIP501 (273). These examples and the findings in this Chapter emphasise that 
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RDFs/excisionases have evolved differential and evolutionarily flexible roles 

in the control of MGE dissemination. 

As described in Chapter 3, the formation of ICEMcSym1271 may have occurred 

following only two chromosomal inversions between three single-part ICEs or 

non-conjugative integrating elements (Fig 3.10). The RdfS proteins of 

ICEMcSym1271 and ICEMlSymR7A are almost identical at the amino-acid level 

apart from the extreme C-terminus (Fig 5.2). Therefore, it is possible that the 

rdfG and rdfM promoter regions could have evolved DNA-binding targets that 

respond to RdfS, rather than RdfS having evolved specific new functions 

associated with ICE3
. Preliminary analysis of the attL and attPS or the rdfG or 

rdfM promoter regions did not reveal any clearly conserved DNA sequence 

motifs for RdfS binding. However, excisionase binding sites are often poorly 

conserved at the DNA-sequence level and for most the mode of site 

recognition is not well understood. Most characterised RDFs have a winged-

helix-turn-helix structure that contacts both major and minor DNA grooves, 

therefore overall DNA topology is believed to be especially critical for 

recognition (274). Given that RdfS presumably binds multiple distinct sites on 

ICEMcSym1271, further work characterising the excisionase-DNA recognition 

characteristics of this protein could reveal the multifaceted roles of 

excisionases in stimulating horizontal transfer of diverse MGE. 

It seems likely that the regulatory control of RdfS over rdfG and rdfM 

transcription could have pre-existed ICE3 on the ancestral single-part 

constituents from which ICE3 putatively evolved. Several putative symbiosis 

ICEs carry rdfS but lack an associated IntS gene and instead carry a unique 

integrase and distinct attL site within one of five serine tRNA genes 
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(Mesorhizobium spp. strains CC1192 (63); WSM3873 

(NZ_LYTM00000000.1), AA23 (NZ_LYTP00000000.1) and WSM3859 

(NZ_NSGG00000000.1)). Moreover, numerous more distantly related putative 

ICEs in the α-proteobacteria carry a homologue of rdfS but lack an obvious 

intS homologue (176). The conservation of rdfS but lack of conservation of 

intS on these ICEs suggests that RdfS homologues may be able stimulate 

excisive recombination through interactions with multiple distinct 

recombination systems. With this view in mind, the evolution of ICE3 and 

capture of unique ICE genes (3) potentially involves recombination between 

groups of distinct ICE3, single-part ICEs and non-conjugative integrative 

elements that already share common regulatory control elements. 

ICEMcSym1271-α carries two functional QS-sensor genes, traR1 and traR2. 

Sequence comparisons of the ICEMlSymR7A and ICEMcSym1271 QS loci 

suggest that the ICEMcSym1271-derived TraR2 protein is the more immediate 

orthologue of R7A-derived TraR. Broader comparisons of the QS loci 

organisation between these ICEs suggest that each ICE may have evolved 

from an ancestral ICE carrying two complete sets of traR-traI loci (Fig 5.8). 

The DNA sequence upstream of traI1 on ICEMlSymR7A lacks a traR1 

homologue but does contain sequence homologous to the 3’ end of traR1 from 

ICEMcSym1271, suggesting deletion of an ancestral copy of traR1 has occurred 

in R7A. The traI2 gene on ICEMcSym1271 appears to have become a 

pseudogene with several internal truncations, but a truncated seemingly 

nonsense open-reading-frame remains that has retained both its position 

relative to the upstream tra box and translational overlap with msi172, as is 

the case on other related ICEs (Fig 5.5). On ICEMlSymR7A, traI2 is a complete 
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and potentially functional gene, but ICEMlSymR7A excision or transfer is 

unaffected for a markerless deletion traI2 mutant, suggesting it too may be in 

the early stages of pseudogenisation. 

 

 

Fig 5.8. Possible evolution of QS loci on ICEMlSymR7A and ICEMcSym1271. 

On ICEMlSymR7A, traR is encoded upstream of an operon encoding the likely 

non-functional AHL-synthase gene traI2, msi172-msi171 and qseM-qseC. The 

functional AHL synthase TraI1 is encoded at a separate location. 

ICEMcSym1271 carries traR2 upstream of qseM-qseC, however, the traI2-

msi172-msi171 region has been translocated to a different position and traI2 

has become internally truncated. ICEMlSym1271 carries a second traR gene 

traR1 paired with the traI1 gene. It is likely that ICEMlSymR7A originally had a 

traR1 gene that has subsequently been deleted. Consistent with this notion, 

the 100 bp upstream of traI1 closely resembles the 3’ end of traR1. Thus, it 

seems likely that an ancestral ICE carried an operon comprising traR2-traI2-

msi172-msi171 upstream of divergent qseC and qseM genes and a second 

QS locus containing traR1-traI1. Synteny comparisons were performed using 

the Artemis Comparison Tool (239) and plotted with genoplotR (240). 

 

 

For both ICEMcSym1271 and ICEMlSymR7A the functional AHL-synthase traI1 

and the apparent traI2 pseudogene that is translationally coupled to msi172-

msi171 are proceeded by a tra-box sequence allowing for transcriptional 
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control by TraR. ICEMlSymR7A is sensitive to overexpression of msi172-

msi171 or rdfS, which cause growth inhibition and loss of ICEMlSymR7A
 

respectively (74, 76, 170). In the presence of AHLs, expression from traI2-

msi172-msi171 in R7A is lower than that observed for traI1 (167). The RNAseq 

data presented in this chapter similarly indicates that that expression from the 

ICEMcSym1271 traI1 promoter is stronger than from the traI2-msi172-msi171 

promoter (Table 5.2 & Figs 5.4A-B). As previously speculated (167), this 

separation of QS-activated genes involved in stimulation of excision (msi172-

msi171) and AHL-production (traI1) has likely facilitated independent 

adjustment of expression levels from each QS-activated promoter. This type 

of genetic uncoupling of AHL synthase genes from other QS-activated genes 

could in some instances explain the presence of orphan – or solo - QS 

regulators and AHL synthase genes frequently identified throughout gram-

negative bacteria (275, 276). 

ICE3s are a novel and unexpected form of MGE that exhibit a complex three-

integrase system with eight separate theoretical recombination states, some 

of which may be inviable (Fig 5.1A).  This chapter demonstrated that the 

activity of RdfS as a master regulator of ICE3 excision greatly simplifies the 

pathway to excision. With RdfS in control, the excisive recombination reactions 

are induced in a predetermined order to excise ICEMcSym1271. Like the single-

part ICEs, expression of rdfS and excision and conjugative transfer of 

ICEMcSym1271 are under QS-control. However, the ICEMcSym1271 QS system 

encodes an addition LuxR-family regulator that has been lost from 

ICEMlSymR7A. In the next chapter, the ICEMcSym1271 QS-systems are 

explored in greater detail. 
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 ICEMcSym1271 quorum-sensing 

systems 

 



Chapter 6 

134 
 

6.1. Introduction 

Quorum sensing (QS) is a form of bacterial cell-to-cell communication that 

involves the production of diffusible signalling molecules, termed 

autoinducers, that accumulate as a function of increasing population density. 

Bacteria perceive this signal and modulate their gene expression accordingly 

(168, 169). Biological functions that are controlled via QS include the 

production of virulence factors, biofilm formation, swarming motility, 

bioluminescence and horizontal transfer of conjugative MGEs (167, 174, 277-

281). 

Quorum sensing systems are present in both Gram-positive and Gram-

negative bacteria and may be facilitated by a numerous distinct autoinducer 

signalling molecules including N-acyl-homoserine lactones (AHLs), 

diketopiperazines, 4-hydroxy-2-alkylquinolines, diffusible signal factors (DSF), 

autoinducer-2 (AI-2) and others (282). N-acyl-homoserine lactone-induced QS 

systems are undoubtedly the most common class found in gram-negative 

bacteria. N-acyl-homoserine lactones are small neutral lipid molecules that are 

synthesised by a LuxI-family AHL synthase through coupling of an acyl carrier 

protein (ACP) with S-adenosyl-L-methionine (SAM). Specific AHL-synthases 

produce AHLs that may vary by acyl chain length, 3-oxo or 3-hydroxy 

substituents, degree of unsaturation and terminal methyl branches (282-285). 

However, the conformation of AHLs produced by an AHL-synthase is also 

dependent on the availability of ACP molecules in the bacterial lipid pool (286-

288). Thus, competition for available ACP substrate molecules influences the 

functionality of AHL-dependent bacterial QS systems. 
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The LuxR-family of cytosplasmic receptors perceive AHL signals (289, 290). 

These receptors are structurally composed of two domains; the first is an N-

terminal acyl-binding pocket, which facilitates binding of AHLs required for the 

stabilisation, activation, or in some cases repression, of activity (276, 291-

297); the second is a C-terminal domain helix-turn-helix motif that facilitates 

promoter binding required for LuxR-mediated transcriptional activation (276, 

289, 290). AHLs together with LuxR-family regulators typically up-regulate 

cognate AHL-synthase gene expression, either through transcriptional 

activation or derepression mechanisms (168, 169, 277). LuxR proteins exhibit 

varying degrees of specificity in their response to different AHL types (275, 

291, 292). Some LuxR regulators, such as AbaR of Acinetobacter baumannii, 

are highly selective, binding only a specific AHL molecule (291), whereas other 

LuxR regulators, such as LasR of P. aeruginosa, bind AHLs far more 

promiscuously to over 15 unique AHLs, permitting cross-talk between distinct 

QS systems that may exist within a single cell or within the microbial 

community (291, 298). 

While some bacteria “eavesdrop” on AHL-signal production in neighbouring 

organisms via QS-cross-talk, other bacteria may attenuate or “quench” QS-

regulation in neighbouring organisms through the activity of AHL-inactivating 

enzymes (299-303). AHL-inactivating enzymes may be beneficial for 

competitiveness, exogenous genetic regulation or resource scavenging (303). 

However, the biological relevance of these proteins is rarely fully understood. 

AHL-inactivating enzymes are broadly classified into three families; acylases, 

lactonases, or oxido-reductases, based on their mechanism of action (301). 

Acylases hydrolyse the amide bond between the acyl chain and the 
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homoserine lactone ring, whereas lactonases hyrdolyse an ester bond in the 

AHL opening the homoserine lactone ring. Lastly oxidoreductases modify 

AHLs by oxidizing or reducing the acyl chain at the third or distal carbon 

without cleaving the AHLs.  

In Chapter 4, it was demonstrated that QS regulation of assembly, excision 

and conjugative transfer of the ICE3 ICEMcSym1271 closely resembles that 

described for ICEMlSymR7A (74, 75, 167, 170, 176). However, unlike 

ICEMlSymR7A which encodes a single copy of TraR, ICEMcSym1271 encoded 

two distinct TraR homologues (TraR1 and TraR2), indicating that the QS 

regulation of ICE3 excision and transfer may be more complex in this system. 

Therefore, in this chapter, the activity of the QS-systems of ICEMcSym1271 

were further explored.  

 

6.2. Results 

6.2.1. Three pairs of LuxR-LuxI QS loci in WSM1271 

Interrogation of the WSM1271 genome for the AHL-synthase pfam domain 

pfam00765 revealed that in addition to the TraI1 (Fig 6.1), a second AHL-

synthase domain protein Mesci_2559 was encoded within the putative 

melanin biosynthesis gene-cluster carried on ICEMcSym1271 region β (Fig 

6.1B). A LuxR-family regulator Mesci_2554 harbouring the characteristic 

autoinducer-binding domain pfam03472 and helix-turn-helix motif (289) was 

encoded ~3.5 kb upstream of Mesci_2559. Mesci_2559 and Mesci_2554 were 

later shown to be involved in the regulation of melanin biosynthesis. These loci 

were renamed melanin biosynthesis regulator (mbr)I and mbrR, respectively. 
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A third AHL-synthase domain containing protein (Mesci_5594) was also 

encoded on the chromosome of WSM1271 (Fig 6.1C) that was 98% identical 

to Mlr1 of M. loti DSM 2626 (formerly NZP 2213). Mlr1 catalyses the synthesis 

of C12 AHLs when expressed in E. coli (304), and DSM 2626 Mlr1 mutants are 

defective in the production of C12 AHLs. A putative LuxR-family transcriptional 

regulator Mesci_5995 was identified directly upstream of Mesci_5594 (Fig 

6.1C). BLASTN searches revealed that the Mesci_5594-5 loci are conserved 

across Mesorhizobium spp., and in reflection of this, these loci were denoted 

Mesorhizobium quorum-sensing loci (mqs)R and mqsI, respectively.  
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Figure 6.1. Organization of quorum-sensing loci in WSM1271. (A) traR1-

traI1 and traR2 are encoded on ICEMcSym1271-α and each gene stimulates QS-

induced assembly, excision and transfer of ICEMlSym1271 when overexpressed 

in WSM1271. Data presented in this chapter revealed that TraR1 and TraR2 

promote expression from the traI1 promoter and are activated by TraI1-derived 

AHLs. (B) mbrR-mbrI are encoded on ICEMcSym1271-β. MbrR promotes 

transcription from the mbrI promoter and stimulates the biosynthesis of melanin, 

presumably through transcriptional activation of the downstream multi-copper 

oxidase and blue-copper domain containing protein which together likely 

encode a laccase protein (305-309). MbrR is activated by TraI1 or MbrI-derived 

AHLs. (C) The mqsR-mqsI-mqsC genes are conserved in Mesorhizobium 

chromosomes, however, their biological function and regulation has not yet 

been elucidated. All QS systems are may be partially repressed in WSM1271 

through the inactivation of AHLs by AhlI. 

 
 
 
 

6.2.2. CV026 bioassays for AHL production by TraI1 and MbrI 

To functionally characterize the QS-genes identified in ICEMcSym1271, 

Chromobacterium violaceum CV026 bioassays (211) were used to detect the 

production of short chain (C4-C8) AHLs in E. coli DH5α ectopically expressing 
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traI1 and mbrI following introduction of the plasmids pPR3-traI1 and pPR3-

mbrI (a vector carrying mbrI downstream of the nptII promoter), respectively. 

Violacein production was induced in CV026 streaked adjacent to DH5α 

overexpressing traI1, but not when streaked next to DH5α overexpressing 

mbrI or carrying the empty vector pPR3 (Fig 6.2A), confirming that like its 

homologue in R7A, TraI1 likely produced C4-C8 AHLs (167), whereas MbrI 

may produce a different molecule (Fig 6.2A). pPR3-traI1 was then introduced 

into R7ANS. Violacein production was induced in CV026 by supernatant 

collected from this strain, but not by supernatants from the control strain 

R7ANS, confirming that traI1 catalysed the synthesis of C4-C8 AHLs in R7ANS 

(Fig 6.2C). 

Next, CV026 well-diffusion bioassays were performed on supernatants from 

cultures of WSM1271 and WSM1271 carrying pPR3-traI1.  Unexpectedly, 

violacein production in CV026 was not induced by any of these supernatants 

(Fig 6.2B,C). Therefore, despite pPR3-traI1 conferring the capacity for CV026 

violacein production in both E. coli and R7ANS, the same construct was 

unable to induce the production of CV026-detectable AHLs in WSM1271. This 

suggested that TraI1-dependent short-chain AHL production might be either 

defective in this background, or that the AHLs produced might be actively 

degraded. 

To test whether AHL production from ICEMcSym1271 could be detected when 

the ICE is expressed in different Mesorhizoibum backgrounds, pPR3-traI1 was 

introduced into three other ICEMcSym1271-harbouring strains; M. australicum 

WSM2073, M. opportunistum WSM2075 and R7Mc1 (an R7ANS exconjugant 
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of ICEMcSym1271 cured of all introduced plasmids). Supernatants of 

WSM2073 and WSM2075 failed to induce violacein production in CV026, with 

or without pPR3-traI1 (Fig 6.2C). In contrast, supernatants of R7Mc1 induced 

violacein synthesis in CV026 with or without pPR3-traI1, demonstrating that 

the existence of the ICEMcSym1271-derived AHL-synthase was able produce 

C4-C8 AHLs at a concentration detectable by CV026 bioassays in the R7ANS 

background. These observations together with the previously presented 

RNAseq and qPCR data (Chapter 4) suggest that traI1 is functional, but the 

detection of TraI1-derived AHLs in WSM2073, WSM2075 and WSM1271 is 

suppressed. 

 

Figure 6.2. AHL production in various bacterial strains ectopically 

expressing the WSM1271 derived AHL synthases traI1 or mbrI. (A) The C. 

violaceum CV026 biosensor strain (211) was streaked adjacent to E. coli DH5α 

carrying constitutively expressed plasmid borne copies of traI1 (pPR3-traI1), 

mbrI (pPR3-mbrI), or the empty vector pPR3. (B & C) Spent supernatants of pH 

6.5 buffered TY cultures of Mesorhizobium strains were loaded into 10 mm 

diameter wells bored into LB agar that had been overlayed with a molten agar 

culture of CV026. Ten micro-molar 3-oxo-C6-HSL was loaded as a positive 

control where relevant. The production of the purple pigment, violacein, 

indicates detection of C4-C8 AHLs. 



   Chapter 6 

141 
 

6.2.3. The α/β-fold family hydrolase AhlI inactivates TraI1-derived AHLs 

in diverse mesorhizobia 

To explore whether WSM1271, WSM2073 and WSM2075 actively degraded 

AHLs, 10 µM 3-oxo-C6-HSL was added into pH 6.5 buffered stationary-phase 

broth cultures of these strains and the cultures were incubated for 12 h at 

28°C, prior to collecting sterile supernatants for detection of AHLs by CV026 

bioassays (232). Supernatants collected from each culture immediately 

following the addition of 3-oxo-C6-HSL (0 h incubation) induced violacein 

production in CV026 (Fig 6.3A). Following 12 h incubation, supernatants 

collected from the R7ANS culture still induced CV026 violacein production, 

whereas supernatants collected from culture of WSM1271, WSM2073 and 

WSM2075 showed no induction. The pH of samples after 12 h incubation was 

confirmed to be between 6.5 and 7.0, seemingly ruling out the possibility of 

alkaline pH-dependent AHL lactonolysis (310). Therefore, it seemed likely that 

3-oxo-C6-HSL had been degraded in the cultures of WSM1271, WSM2073 

and WSM2075.  

To elucidate whether 3-oxo-C6-HSL inactivation required WSM1271, 

WSM2073 and WSM2075 cells or could occur with exposure to supernatant 

alone, the previous experiment was modified by adding 10 µM 3-oxo-C6-HSL 

to the filter sterilised (cell-free) broth culture supernatants of these strains, prior 

to incubation and detection of AHLs by CV026 bioassays. Supernatants 

collected from all cultures at both 0 and 12 h incubation induced violacein 

synthesis in CV026 (Fig 6.3B), indicating that inactivation of 3-oxo-C6-HSL 

does not occur in the in supernatants. Therefore, inactivation was likely to 

occur through some intracellular degradation mechanism. 
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Figure 6.3. aidH-dependent inactivation of 3-oxo-C6-HSL. C. violaceum 
CV026 well-diffusion bioassays (211) were used to detect C4-C8 AHLs in 
samples of cell-free supernatant collected from stationary-phase (A&C) cell 
suspensions; or (B) culture supernatants that had been incubated in the 
presence of 10 μM 3-oxo-C6-HSL. Production of the purple pigment violacein 
at 0 h post incubation (hpi) but not at later time points indicates that the 
concentration of 3-oxo-C6-HSL had fallen below detectable levels by CV026 
bioassays. 

 
 
 

To identify potential AHL-inactivating enzymes encoded by WSM1271, 

WSM2073 and WSM2075, the amino-acid sequences of diverse bacterial and 

archaeal AHL-inactivating enzymes listed in reference (301) were queried 

against these bacterial genomes using BLASTP. Based on a cutoff value of 

70% amino-acid similarity, only homologues of the Ochrobactrum sp. T63 α/β-

hydrolase fold family C4-C10 AHL-lactonase AidH were identified (311). AidH 

was 81% similar to Mesci_2383 in WSM1271, 80% similar to Mesop_2525 in 

WSM2075, 79% similar to Mesau_02412 in WSM2073, with the protein absent 

in R7A (Table 6.1). An alignment of these AidH homologues revealed that 

each carried the Ser(102)/His(248)/Glu(219) catalytic triad typical of the α/β-

hydrolase fold family proteins (312), and each also carried the Gly100-X-

Ser102-X-Gly104 motif required for AidH lactonolysis activity (311, 313) (Fig 
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6.4). Using a BLASTP query for the Ochrobactrum sp. T63 AidH amino acid 

sequence against the 113 fully or partially sequenced Mesorhizobium 

genomes on the NCBI (https://www.ncbi.nlm.nih.gov/) and IMG (242) 

databases, AidH homologues were identified in an additional 17 diverse 

Mesorhizobium strains (Table 6.1). None of the identified homologues 

harbored a type III or type IV secretion signal peptide sequence suggesting 

that these proteins were not secreted from the cell. Moreover, AidH was not 

encoded on a symbiosis ICE in any of the mesorhizobia with completed 

genomes sequences or present in the R7ANS genome. Considering these 

observations, the Mesorhizobium AidH homologue appeared a good 

candidate for further investigation of the observed inactivation AHLs in strains 

WSM1271, WSM2073 and WSM2075. 

 

Figure 6.4. Alignment of AidH homolgoues. Amino acid sequences of AidH 
(sequence ID ACZ73823.1) from O. sp. T63, AiiO from O. sp. A44 (sequence 
ID WP_095447712.1), and homologues in WSM1271 (Locus ID Mesci_2383), 
2073 (Locus ID Mesau_02412) and WSM2075 (Locus ID Mesop_2525) were 
aligned using T-COFFEE multiple sequence aligner (238). Each protein carries 
the Ser(102)/His(248)/Glu(219) catalytic triad (highlighted in grey) typical of α/β-
fold family hydrolase proteins (312), and the Gly100-X-Ser102-X-Gly104 motif 
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which has shown to be essential for AidH activity in O. sp. T63 (311, 313). 
Catalytic residues are shown in bold. 

Table 6.1. BLASTP results for Ochrobactrum sp. T63 AidH homologues in 
diverse Mesorhizobium spp. 

 
Strain Locus ID a Length Identities Positives 

Mesorhizobium australicum 
B5P 

Ga0048943_5523 275 154/267 189/267 

M. australicum WSM2073 Mesau_02412 272 186/271 215/271 

M. ciceri bv. biserrulae 
WSM1271 

Mesci_2383 272 182/266 217/266 

M. ciceri bv. biserrulae 
WSM1497 

Ga0199033_11 272 182/266 216/266 

M. ciceri CC1192 Ga0133496_126007 272 182/266 217/266 

M. ciceri CMG6 MescicDRAFT_00051400 272 180/266 216/266 

M. ciceri WSM1284 Ga0133321_122410 272 182/266 217/266 

M. ciceri WSM4083 MESCI2DRAFT_00027250 272 180/266 214/266 

M. loti DSM 2626 Ga0215673_11147 272 176/266 214/266 

M. loti TONO - 272 183/266 212/266 

M. loti WSM1293 MesloDRAFT_00041470 272 180/266 215/266 

M. mediterraneum USDA 
3392 

- 274 164/268 197/268 

M. opportunistum WSM2075 Mesop_2525 272 178/271 216/271 

M. sp. L2C084A000 Ga0123922_101761 272 178/266 215/266 

M. sp. LNHC221B00 Ga0123916_103246 244 152/226 181/226 

M. sp. LNHC232B00 Ga0123914_114216 272 178/266 215/266 

M. sp. Root172 Ga0124814_10272 272 184/266 214/266 

M. sp. STM 4661 Ga0035947_04202 274 163/267 201/267 

M. sp. URHC0008 N549DRAFT_05317 272 185/266 216/266 

M. sp. YR577 Ga0115469_10271 272 177/271 215/271 

a A dash (-) indicates a sequence that has not been denoted a Locus ID. Proteins 
were considered homologous if above 70% similarity (positives). 

 

 

To assess whether Mesci_2383 encoded an AHL-inactivating protein, this 

ORF was cloned from WSM1271 downstream of the IPTG inducible promoter 

of pSacB (creating pSacB-ahlI) and introduced into E. coli DH5α for AHL 

inactivation assays (as described in Fig 6.3). Culture supernatants of both 

DH5α overexpressing Mesci_2382 and the control strain DH5α carrying 

pSacB were collected immediately following the addition of 3-oxo-C6-HSL (0 h 

incubation). These supernatants induced violacein production in CV026 (Fig 

6.3C). However, although supernatants of DH5α carrying pPR3 collected at 6 

h incubation induced violacein production in CV026, the supernatant of DH5α 
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overexpressing Mesci_2383 did not, indicating that the 3-oxo-C6-HSL in this 

sample had been inactivated. Owing to the observed AHL-inactivating activity 

of this enzyme, Mesci_2383 was subsequently termed N-acyl-homoserine 

lactone inactivator (ahlI).  

To further characterize ahlI, a markerless deletion of WSM1271 was attempted 

using the two-step gene deletion protocol described in Section 2.2. Although 

strains were readily isolated carrying the ahlI alelle deletion vector pEX∆ahlI 

integrated via single crossover adjacent to ahlI, screening of all colonies 

following SacB-mediated selection of double crossover ahlI deletion mutants 

revealed that the plasmid integrants had reverted to wild-type genotype during 

final recombination step. Overexpression of the QS system in M. loti R7A, or 

overexpression of msi172-msi171, can cause growth-inhibitory effects due to 

deregulated overexpression of rdfS and potentially other genes involved in ICE 

excision and transfer (167, 170). It seemed possible that deletion of ahlI might 

have similar effects in WSM1271 through the increased stability of AHLs 

produced from traI1 and the resulting positive-feedback loop with 

TraR1/TraR2. To test this hypothesis, the traI1 ORF in WSM1271 was 

replaced with an ΩaadA cassette and ahlI mutant construction was then 

attempted in the resulting strain 1271∆traI1::ΩaadA. The ahII deletion was 

successfully constructed in the 1271∆traI1::ΩaadA background in the first 

attempt, producing strain 1271∆traI1::ΩaadA∆ahlI. Introduction of pPR3-traI1 

into this strain stimulated CV026-detectable AHL production in supernatants, 

confirming that ahlI was responsible for the inability to detect AHLs in wild-type 

WSM1271 (Fig 6.2C).  
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6.2.4. TraR1 and TraR2 are activated by TraI1-derived AHLs 

The RNAseq data presented in Chapter 4 demonstrates that expression from 

the traI1 promoter (PtraI1) is induced in WSM1271 cells co-overexpressing 

traR1 and traI1. To confirm that TraR1 and TraR2 activate expression from 

PtraI1, the 112-bp DNA region upstream of traI1 was fused to the lacZ genes of 

pSDz, pSDz-traR1 and pSDz-traR2, creating pSDz-tb, pSDz-tbtraR1 and 

pSDz-tbtraR2, respectively. The resulting constructs were mobilized into 

WSM1271 and expression from the plasmid borne PtraI1 of each strain 

monitored by β-galactosidase assays. Expression from PtraI1 was measured in 

the negative-control strain WSM1271 carrying the pSDz-tb at 100.69 + 9.07 

(SD) relative fluorescent units (RFU)/s/OD600, and this was increased a further 

3.74-fold to 386.32 + 32.74 in the presence of cloned traR1 (without addition 

of IPTG), confirming that TraR1 stimulates expression from PtraI1. In contrast, 

the presence of cloned traR2 (120.56 + 22.31 RFU/s/OD600) did not induce 

PtraI1.  

The effect of overexpressing various combinations of ICEMcSym1271-derived 

QS genes on the induction of PtraI1 was next investigated in the background of 

M. loti R7ANS, which lacks QS genes apart from the chromosomal mqsRI 

locus present in all Mesorhizobium spp. To facilitate this, a set of R7ANS 

strains carrying pSDztb, pSDz-tbtraR1, or pSDz-tbtraR2, in combination with 

pPR3, pPR3-traI1 and pPR3-mbrI, were generated, and β-galactosidase 

assays were performed. 

Expression from PtraI1 was measured in the negative-control strain R7ANS 

carrying pSDz-tb and pPR3 at 28.50 + 9.22 RFU/s/OD600 (Fig 6.5). 

Overexpression of traI1 or mbrI in the absence of traR1 or traR2 did not induce 
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PtraI1. In contrast, overexpression of traR1 in the absence of traI1 and mbrI 

induced PtraI1 17.75-fold, and this was increased a further 2.16-fold by co-

overexpressing traI1 with traR1, demonstrating that TraR1-derived AHLs 

activated TraR1. Interestingly, co-overexpression of mbrI with traR1 resulted 

in PtraI1 induction ~half that observed when traR1 was overexpressed in the 

absence of traI1 or mbrI, indicating that MbrI-derived AHLs may inhibit TraR1. 

Although both overexpression of traR2 in the absence of traI1 and mbrI, or co-

overexpression of traR2 with mbrI did not induce PtraI1, co-overexpression of 

traR2 with traI1 induced PtraI1 ~44-fold more than that of the control strain 

R7ANS carrying pSDz-tb and pPR3. Therefore, like TraR1, TraR2 also 

promotes expression from the traI1 promoter and requires TraI1-derived AHLs 

for its activation. It is possible TraR2-dependent activation of the traI1 

promoter was masked our previous experiments for WSM1271 as a 

consequence of AhlL-mediated AHL-inactivation in this strain.
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Figure 6.5. Activation of TraR1 and TraR2 by TraI1-derived AHLs. A set of 

9 R7ANS strains carrying pSDztb, pSDz-tbtraR1, or pSDz-tbtraR2, in 

combination with pPR3, pPR3-traI1 and pPR3-mbrI, were generated to monitor 

expression from plasmid borne traI1 promoter-lacZ fusions when traR1 or traR2 

was overexpressed alone, or in combination with traI1 or mbrI. β-galactosidase 

assays were used to monitor expression. Values for relative fluorescent units 

(RFU)/s/OD600 are the mean and SD (denoted by error bars) of 3 biological 

replicates. Mean values were compared using Fisher’s LSD test controlling for 

type I error using the Bonferroni adjustment. Matching letters above bars 

indicate no significant difference between mean values.  

 

 

If TraI1-derived AHLs were required for the activation of TraR1 or TraR2 in 

WSM1271, then overexpression of traR1 or traR2 in 1271∆traI1::ΩaadA would 

presumably not induce ICEMcSym1271 excision. To test this, pSDz-traR1 and 

pSDz-traR2 were mobilised into 1271∆traI1::ΩaadA and analysed by qPCR. 

In wild-type WSM1271, attBG/PG and attBS/PS sites were detected in 0.1-1% 

of cells and attBM/PM sites in 0.01-0.1% of cells (Fig 6.6). Deletion of traI1 in 

WSM1271 did not have a major effect on the abundance of any ICEMcSym1271 

attP and attB sites, demonstrating that this gene was not essential for 

ICEMcSym1271 assembly and excision. Although overexpression of traR1 in 
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WSM1271 elevated the abundance of all attP and attB sites 10-100-fold 

relative to the control strain WSM1271 carrying pSDz, overexpression of traR1 

in 1271∆traI1::ΩaadA only elevated the abundance of attP and attB sites ~2-

10 that of the same control strain WSM1271(pSDz). The same trend was 

observed when traR2 was overexpressed in WSM1271 and 

1271∆traI1::ΩaadA. Therefore, traI1-produced AHLs were not essential for the 

activation of TraR1 or TraR2, but were required for maximum activation of 

ICEMcSym1271 assembly and excision by either traR gene. This situation 

mirrors observations for ICEMlSymR7A, where deletion of traI1 does not reduce 

excision but is required for activation of excision by TraR. 

 

 

Figure 6.6. Involvement of traI1 for TraR1/TraR2-induced excision of 
ICEMcSym1271. Measurements represent the mean percentage of WSM1271 
chromosomes in stationary-phase cultures harbouring each excisive Int-
mediated recombination product (attBS, attPS, attBG, attPG, attPM and attPM) 
determined by qPCR. Where appropriate, plasmids carried by WSM1271 (here 
abbreviated as 1271) are listed in brackets after the strain name (see Table 1.1 
for a description of plasmids). Values for each of the assay types attBS, attPS, 
attBG, attPG, attPM and attPM site were individually compared between strains 
using ANOVA and Fisher’s LSD test controlling for type I error using the 
Bonferroni adjustment. Groups of values from the same assay type and in the 
same panel that are not significantly different from each other have the same 
letter (a, b, c, d, e, f, g or h) indicated above. 
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6.2.5. MbrR regulates melanin biosynthesis 

mbrR is encoded upstream of a predicted melanin biosynthesis gene cluster 

of ICEMcSym1271, therefore it seemed likely that this gene may be involved in 

the regulation of melanin biosynthesis. To explore this possibility, mbrR was 

overexpressed in WSM1271 by introducing the plasmid pSDz-mbrR which 

carries the mbrR ORF fused to an IPTG inducible promoter and melanin 

deposition assays were performed (230, 314). An intense purple-brown 

pigment was produced by WSM1271 induced for mbrR expression with IPTG 

following 14 d incubation at 28°C, however, no such pigmentation was 

observed for the control strains WSM1271 or WSM1271 carrying pSDz (Fig 

6.7A). Thus, MbrR appears to function as a regulator of melanin biosynthesis 

in WSM1271. Melanin deposition assays were also performed on WSM1271 

overexpressing traR1 and traR2, however both strains failed to produce the 

melanin-like pigment (Fig 6.7A). 

The potential role of MbrR in ICEMcSym1271 assembly and excision was also 

explored by performing qPCR on WSM1271 overexpressing mbrR. Even 

when mbrR expression was induced with IPTG, attP and attB abundance was 

no different from the control strain WSM1271 carrying pSDz (Fig 6.7B). 

Therefore, it was unlikely that MbrR stimulated ICEMcSym1271 excision. 
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Figure 6.7. Role of mbrR in melanin biosynthesis.  (A) Melanin production 
was monitored visually by spotting 20-μL aliquots of stationary-phase 
Mesorhizobium broth cultures onto TYT agar supplemented with 1 μM IPTG 
and incubating for 14 days at 28°C (230, 314). (B) Measurements represent the 
mean percentage of WSM1271 chromosomes in stationary-phase cultures 
harbouring each excisive Int-mediated recombination product (attBS, attPS, 
attBG, attPG, attPM and attPM) determined by qPCR. Values for each of the 
assay types attBS, attPS, attBG, attPG, attPM and attPM site were individually 
compared between strains using ANOVA and Fisher’s LSD test controlling for 
type I error using the Bonferroni adjustment. Groups of values from the same 
assay type and in the same panel that are not significantly different from each 
other have the same letter (a) indicated above. 
 
 
 

Inspection of the predicted melanin biosynthesis cluster of ICEMcSym1271 

revealed the presence of a 12-bp inverted repeat centred 69-bp upstream from 

the mbrI start codon that may comprise a binding site for MbrR (Fig 6.7C). To 

explore whether MbrR stimulated expression from this putative promoter, the 

193-bp region of DNA upstream of mbrI was fused to the lacZ gene of the 

plasmids pSDz and pSDz-mbrR (creating pSDz-mb and pSDz-mbmbrR, 

respectively) and the resulting plasmids were mobilised into WSM1271. β-

galactosidase assays were used to monitor expression from the putative mbrI 
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promoter region (PmbrI) in the resulting strains. Expression from PmbrI was 

measured in the negative-control strain WSM1271 carrying pSDz-mb at 5.11 

+ 0.69 RFU/s/OD600, and this was increased a further 28.8-fold to 147.14 + 

16.11 RFU/s/OD600 when mbrR was overexpressed without IPTG induction. 

Thus, it seemed likely that MbrR induced transcription from PmbrI in WSM1271. 

 
 

6.2.6. MbrR is activated by TraI1 or MbrI-derived AHLs 

To explore which ICEMcSym1271-encoded AHL-synthase(s) produced AHLs 

that activated MbrR, a set of 6 R7ANS strains carrying pSDzmb, or pSDz-

mbmbrR, in combination with pPR3, pPR3-traI1 and pPR3-mbrI were 

generated. β-galactosidase assays were used to monitor the induction of 

expression from the plasmid-borne mbrI promoter PmbrI in each of the newly 

generated strains where mbrR was overexpressed alone, or in combination 

with traI1 or mbrI.  

Expression from PmbrI was measured in the negative-control strain R7ANS 

carrying pSDz-mb and pPR3 at 3.87 + 1.34 RFU/s/OD600 (Fig 6.8). 

Overexpression of traI1 or mbrI in the absence of mbrR did not induce PmbrI, 

but surprisingly, overexpression of mbrR alone induced PmbrI 118-fold 

indicating that this regulator maintains its ability to induce PmbrI in the absence 

of traI1 and mbrI. 
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Figure 6.8. Activation of MbrR by TraI1 and MbrI-derived AHLs. A set of 6 
R7ANS strains carrying pSDzmb, or pSDz-mbmbrR, in combination with pPR3, 
pPR3-traI1 and pPR3-mbrI, were generated to monitor expression from plasmid 
borne mbrI promoter-lacZ fusions when mbrR was overexpressed alone, or in 

combination with traI1 or mbrI. β-galactosidase assays were used to monitor 
expression. Values for relative fluorescent units (RFU)/s/OD600 are the mean 
and SD (denoted by error bars) of 3 biological replicates. Mean values were 
compared using Fisher’s LSD test controlling for type I error using the 
Bonferroni adjustment. Matching letters above bars indicate no significant 
difference between mean values.  

 

6.3. Discussion 

WSM1271 encodes three sets of LuxR-LuxI QS-loci, two of which were located 

on ICEMcSym1271. TraR1/TraR2-TraI, is encoded on region α of 

ICEMcSym1271 and regulates assembly, excision and transfer of 

ICEMcSym1271, and at least 187 chromosomally-encoded genes (Chapter 4). 

Both TraR1 and TraR2 appeared to activate the traI1 promoter in the absence 

of traI1, but expression was greatly increased in the presence of traI1. This 

suggests that the TraR molecules may have weak capacity for transcriptional 

activation in the absence of AHLs, or that they can be weakly activated by 

AHLs produced from the conserved chromosomal QS locus. MbrR-MbrI were 

encoded within the melanin biosynthesis gene cluster of ICEMcSym1271 region 

β, and overexpression of MbrR stimulated production of a melanin-like 
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pigment in WSM1271. MbrR was activated by either TraI1 or MbrI-derived 

AHLs and engaged in positive feedback regulation with mbrI. WSM1271 and 

19 other Mesorhizobium sp. were found to encode an AHL inactivating enzyme 

AhlI homologous to the Mn2+-dependent C4-C10 AHL lactonase AidH, similar 

to that described in Ochrobactrum sp. T63 (311). AhlI was shown to inactivate 

TraI1-derived AHLs in WSM1271, however the full range of AHLs inactivated 

by this protein was not explored. Nevertheless, it seems likely that QS 

regulation may be partially repressed in these strains.  

Most LuxR family of proteins become functional only after interacting with 

AHLs (276, 289-292). Some LuxR proteins require the cognate AHL to remain 

stable (295, 296), whereas others can stably exist in the cell, but require a 

cognate AHL for biological activity (297). Even though M. loti R7ANS does not 

carry the typical ICE/ICE3-AHL-synthase genes, overexpression of traR1 or 

mbrR here partially induced expression from target promoters. R7ANS does 

carry the chromosomally-encoded AHL-synthase mqsI (167), therefore it was 

possible that TraR1 and MbrR may have been partially activated by non-

cognate MqsI-derived AHLs. Such activation of LuxR proteins by promiscuous 

AHLs has been reported for LasR of P. aeruginosa (291), which is activated 

by > 15 AHL species and for CepR of Burkholderia cepacia, which is activated 

by C4-C12 AHLs with or without 3-oxo constituents (315).  Alternatively, the 

activity of TraR1 and MbrR in the absence of cognate AHLs may be a 

consequence of overexpressing traR1 and mbrR from the IPTG inducible 

promoter of pSDz at artificially high levels. More fine-tuned control of 

expression for the LuxR-family regulators may be required to more accurately 

analyse the LuxR-autoinducer interactions. 
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Although TraR1 and TraR2 were shown to be activated by TraI1-derived AHLs 

and each induced PtraI1 when coexpressed in R7ANS with traI1, TraR2 failed 

to induce PtraI1 in WSM1271. It is possible that there may have been 

differences in the availability of ACP within the lipid pools of WSM1271 and 

R7ANS that may explain the differential function of TraR2 in these strains 

(286-288). However, it seemed more likely that the AHL-inactivating enzyme 

AhlI present in WSM1271 was responsible for this result. The CV026 

bioassays performed in this chapter demonstrated that AhlI restricts the 

concentration of TraI1-derived AHLs in WSM1271, so perhaps TraR2 requires 

a higher concentration of TraI1-derived AHLs for its activation. TraR2 also 

exhibited lower levels of activity than TraR1 when overexpressed in the 

R7ANS background which lacks TraI1-derived AHLs. The AHL “quorum” 

concentration for activation of different LuxR receptors is known to vary 

between biosensor strains that respond to the same AHLs (316). Considering 

these observations, clarification of the interactions between the QS-sensor 

proteins and AHL-synthases encoded by WSM1271 will require the 

engineering of AHL-synthase free strains of WSM1271 and R7ANS that do not 

degrade AHLs. WSM1271ΩtraI1∆ahlI or R7ANS may serve as ideal parent 

strains in which to undertake this work. 

Melanin is a common bacterial secondary metabolite produced by several 

plant-associative bacteria of the Rhizobium and Sinorhizobium genera (230, 

306, 308, 314, 317, 318). Microbial melanin production is the result of the 

oxidative polymerisation of phenolic compounds by two main polyphenol multi-

copper oxidases: a tyrosinase and a laccase (230, 314, 319, 320), however 

the exact biosynthetic pathway in rhizobia is yet to be functionally or 
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genetically characterised. Nevertheless. it is known that most rhizobia encode 

the melanogenic tyrosinase and (or) laccase protein on plasmids (230, 314, 

317) and that in R. leguminosarum 8008, the tyrosinase is under the regulatory 

control of nifA (318, 321). nifA-dependent regulation of the 8008 tyrosinase 

implies that melanin biosynthesis may be induced during symbiosis, however, 

melanogenic mutant strains show no obvious defects in nodulation or N2 

fixation (322). In contrast to all other melanogenic rhizobia, the tyrosinase and 

laccase genes of WSM1271 are encoded on region β of ICEMcSym1271, and 

melanin production in WSM1271 is induced by the QS-regulator MbrR. To our 

knowledge, WSM1271 is the first bacterium in which QS-regulation of melanin 

production has been observed, however, melanin production is controlled by 

QS in the dual-lifestyle pathogenic yeast Cryptococcus neoformans that 

causes severe central nervous system infections in immune-compromised 

humans (323). Melanisation in C. neoformans acts as a major virulence factor 

allowing the yeast to thrive within the host at high cell-density (305, 307, 323). 

Evidence has been presented suggesting that melanisation may also protect 

free-living C. neoformans cells from ultraviolet light (324), temperature 

fluctuations (325), heavy metal toxicity (326) and cell wall-degrading enzymes 

such as those that may be produced by fungal predators (327). Such biological 

functions may explain why the melanin biosynthesis genes have persisted in 

WSM1271. 

The genes involved in QS-regulation of melanin biosynthesis in C. neoformans 

are yet to be elucidated. In WSM1271, it is also unclear which genes are 

activated by MbrR to induce the production of melanin, however it was here 

demonstrated that MbrR activates expression from the mbrI promoter. A 
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hypothetical protein, a multi-copper oxidase and a blue-copper domain 

containing protein are encoded in close proximity downstream of mbrI (Fig 

6.1B). Thus, it is possible that these genes may be transcribed as a 

polycistronic mRNA under MbrR-dependent QS induction. The tyrosinase 

gene is encoded upstream of mbrI within the melanin biosynthesis gene 

cluster and visual inspection of this revealed that there is no inverted repeat 

resembling that present in the mbrI promoter region (Fig 6.7A). Therefore, if 

this gene is regulated via QS, then this regulation may be indirect. 

WSM1271 and a large cohort of related Mesorhizobium sp. encode a 

homologue of the Ochrobactrum. sp. T63 α/β-fold family C4-C10 AHL-

lactonase AidH (311, 313) on their chromosomes that was shown to inactivate 

TraI1-derived AHLs. Interestingly, a C4-C14 AHL-acylase termed AiiO was 

recently discovered in O. sp. A44 (328) that is 95.9% identical to AidH (Fig 6.4) 

and ~80% identical to AhlI in WSM1271, WSM2073 and WSM2075. 

Therefore, it is difficult to speculate as to whether AhlI comprises an AHL-

lactonase or acylase. Given that both AidH and AiiO inactivate a broad range 

of AHLs (311, 313, 328, 329), it is possible that this may also be true of AhlI. 

AhlI may even inactivate all AHLs produced by TraI1, MbrI and MqsI in 

WSM1271 supressing or partially supressing QS in this strain. 

It seems counterintuitive that WSM1271 and other QS bacteria would benefit 

from inactivating endogenously synthesised AHLs. However, in A. 

tumefaciens spp. it has been proposed that inactivation of AHLs by the AHL-

lactonase blcC (formerly termed attM) may be an important component of 

genetic regulation, allowing for rapid exit from the QS-dependent pTi conjugal 

transfer state (330, 331). If the primary role of BlcC or AhlI-mediated AHL-
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inactivation was to attenuate QS-induced transfer of pTi or symbiosis ICEs, 

one might expect that the blcC and ahlI genes would have evolved to be 

transcribed in response to increasing concentrations of AHLs. Although blcC 

expression is strongly induced in the stationary phase of growth, this is not a 

response to the accumulation of AHLs (330, 332, 333). The RNAseq 

experiments presented in Chapter 4 also revealed that ahlI was not 

differentially expressed in QS+ cells of WSM1271 overexpressing traI1 and 

traR1, relative to the QS- cells (fold change = 1.067 + 1.18). Therefore, like 

blcC, transcription of ahlI is probably not induced in response to increasing 

concentrations of AHLs. Indeed, it was recently demonstrated that A. 

tumefaciens mutants for the AHL-lactonase blcC exhibit wild-type frequencies 

of Ti plasmid conjugative transfer, even in stationary phase, suggesting that 

blcC may have an alternative primary role (332). blcC was subsequently 

shown to comprise the third gene encoded in the blcABC operon that functions 

in the catabolism of γ-butyrolactone to succinate, which may be fully oxidisied 

in the tricarboxylic acid cycle to produce energy (332, 334). Alternatively, to 

resource scavenging or exogenous genetic regulation, AhlI may function in 

WSM1271 to attenuate QS induction of genes in neighbouring organisms. This 

has been proposed as the role for the closely related AHL-acylase AiiO 

encoded by O. sp. A44 (328), which has been shown to attenuate the QS-

dependent maceration of potato tissue by the bacterial pathogen 

Pectobacterium carotovorum (329). Further characterisation of AhlI will be 

crucial for the determination of its biological function and may provide useful 

insight regarding attenuation of QS-regulation in pathogenic bacteria. 
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The data presented in this chapter illustrate the complexity of QS-regulation in 

bacteria. WSM1271 encodes three QS systems; MbrR-MbrI, which controls 

melanin biosynthesis; TraR1/2-TraI1, which controls ICE3 assembly, excision, 

transfer and the expression of at least 187 chromosomal genes; and lastly 

MqsR-MqsI, for which the biological function is unknown. Although TraR1 and 

TraR2 regulate the same biological process, these regulators probably require 

different concentrations of TraI1-derived AHLs for their activation. Within 

single cells, there may be competition between AHLs for binding various TraR 

proteins, and there may even be crosstalk between QS systems. In WSM1271 

and other mesorhizobia listed in the chapter, QS may even be partially 

supressed by the AHL-inactivating enzyme AhlI. Because ICE3 excision and 

transfer are regulated by QS, these above factors may have a profound 

influence on the dynamics of ICE transfer in different environments. 
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7.1. ICE3 assembly, excision, integration and dissassembly 

ICEs have traditionally been regarded as comprising single regions of 

contiguous DNA integrated within bacterial genomes, capable of excision and 

horizontal transfer via conjugation (77, 78). In this thesis, a unique family of 

symbiosis ICEs, termed ICE3s, were identified in 13 diverse Mesorhizobium 

spp., existing as three entirely separated chromosomal DNA regions (α, β and 

γ). Detailed analysis of the first identified ICE3 ICEMcSym1271 of 

Mesorhizobium ciceri bv. biserrulae WSM1271 revealed that these three 

regions do not excise independently, but rather, recombine in the host 

chromosome to form a single contiguous DNA element prior to excision and 

conjugative transfer. Following transfer, ICEMcSym1271 integrates within a 

recipient chromosome at one of three insertion locations and reconfigures the 

chromosome to disassemble back into the tripartite configuration. Acquisition 

of ICEMcSym1271 conveys upon recipient’s nodulation proficiency with the 

legume-host of the donor strain B. pelecinus, however, N2 fixation 

effectiveness is commonly impaired. Given the structural similarity of the 13 

identified ICE3s, it is highly probable that each shares the same mechanism of 

assembly, excision, integration and transfer. 

A model for the mechanism of assembly, excision, integration and 

dissasembly of ICEMcSym1271 was here proposed. The three regions of 

ICEMcSym1271 collectively carry three distinct attL and attR sites at their 

termini and encode three associated Int proteins. The arrangement and 

orientation of the three pairs of attL and attR sites across ICEMcSym1271 

regions α, β and γ is fundamental for the assembly mechanism prior to 

excision. Overall, the complete assembly and excision of ICEMcSym1271 prior 
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to conjugative transfer requires the concerted action of IntS, IntG and IntM 

acting on their associated attL and attR sites in any sequential order, except 

for those that result in non-viable segregation of the chromosome. Following 

conjugative transfer of ICEMcSym1271, IntS, IntG and IntM catalyse integration 

of the ICE3 into attB sites nested in the 3’-ends of the chromosomal phe-tRNA, 

guaA, or met-tRNA genes, respectively, and the concerted action of the three 

Int proteins reverses the assembly and excision process dispersing the ICE3 

back into the tripartite configuration. 

Although ICEMcSym1271 is the only element discovered which obligatorily 

requires chromosomal inversions to facilitate excision and transfer, other 

integrative elements have been found to harbour multiple sets of att sites 

capable of site-specific inversion (335). Given the diversity and abundance of 

ICEs in bacterial genomes (116), it is plausible that “multipartite” elements 

resembling the structure of ICEMcSym1271 have been overlooked in other 

organisms. It may even be that many presumed immobile genetic elements 

identified in diverse organisms could in-fact be mobile. The discovery and 

characterisation of ICE3s provides the foundation for the discovery of 

increasingly diverse and complex multipartite ICEs in other bacterial species 

and genera. 

 

7.2. Regulation of ICE3 excision and transfer 

Following the discovery of ICEMcSym1271 and the elucidation of the 

mechanism of excision and integration, ICE3s were identified in a total of 13 

genetically diverse Mesorhizobium spp. originally isolated from various 
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geographical locations. ICE3-α regions of diverse mesorhizobia carry genes 

required for symbiosis, vitamin biosynthesis, and all the genes necessary for 

QS-induction of rdfS and ICEMlSymR7A excision and transfer in M. loti R7A 

(74-76, 130, 167, 170, 176). It was proposed that ICE3s may have evolved 

from single-part symbiosis ICEs following recombination between two other 

integrative elements in an ancestral bacterium. 

Considering the common evolutionary history of ICE and ICE3, it is not 

surprising that ICE3 excision and transfer is regulated via QS. ICEMcSym1271 

encoded dual copies of the LuxR-family transcriptional regulator TraR (termed 

TraR1 and TraR2). Overexpression of traR1 or traR2 in WSM1271 activated 

expression from the traI1 promoter, but maximum expression from this 

promoter was only achieved in the presence of the AHL-synthase gene traI1, 

suggesting that TraI1 produced the autoinducer of TraR1 and TraR2. This was 

consistent with results observed for R7A TraR (167). Induction of QS in 

WSM1271 by overexpression of traR1 and traI1 stimulated the transcription of 

genes involved in ICEMlSymR7A excision (rdfS, intS and msi172-msi171) and 

conjugative transfer (traF, msi107, rlxS, traG and msi031-trbBCDEJLFGI-

msi021), and stimulated ICEMcSym1271 assembly, excision and conjugative 

transfer ~10-100-fold. The cascade of genetic regulation leading to the 

activation of rdfS was shown to closely resembled that described for M. loti 

R7A (74, 75, 167, 170). 

In contrast to single-part symbiosis ICEs that encode a single RDF (75), 

ICEMcSym1271 encodes three RDFs RdfS, RdfG and RdfM, which were shown 

to be required for the excisive IntS, IntG and IntM-mediated recombination 

reactions, respectively. Transcription of rdfG and rdfM is dependent on RdfS. 
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QS activation of dual function RDF and transcriptional activator rdfS suggests 

a hierarchical order of expression for the three RDFs. rdfS is expressed first in 

the hierarchy, and therefore likely catalyses excisive IntS-mediated 

recombination prior to the occurrence of excisive IntG and IntM-mediated 

recombination, avoiding the formation the inviable chromosomal state (Fig 

4.1A. state iii). These combined data demonstrated that rdfM is always the 

lowest expressed RDF gene, and that excisive IntM-mediated recombination 

is always ~10-fold less prevalent than the other Int-mediated excision 

reactions. Thus, excisive IntM-mediated recombination is probably the final 

recombination reaction to occur following QS-induction of ICEMcSym1271 

assembly and excision, and the entirely assembly/excision of ICEMcSym1271 

probrably occurs via the sequence of excisive Int-mediated recombination 

reactions IntS -> IntG -> IntM. 

Interestingly, ICEMcSym1271 encoded a second QS-system mbrR-mbrI that 

was absent from all other identified ICE3s. mbrR was shown to activate mbrI 

expression in a mbrI-dependent manner, and also stimulated the production 

of a melanin-like pigment. However, the mbrR-mbrI QS-system had little effect 

on the QS-regulation of ICEMcSym1271 excision. A third QS-system mqsR-

mqsI was found to be encoded on the chromosomes of all analysed 

mesorhizobial genomes, however, it is currently unclear as whether this QS-

system imparts an influence on ICE or ICE3 excision and transfer. Although 

the biological role of the conserved chromosomal QS-loci mqsRI is yet to be 

discerned, it has been demonstrated that MqsI catalyses the synthesis of C12 

AHLs when its gene is overexpressed in E. coli, and DSM 2626 mqsI mutants 

fail to produce C12 AHLs (304). Moreover, both mqsR and mqsI are required 
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to induce expression from a plasmid borne mqsI promoter in M. loti DSM 2626, 

indicating that MqsR is probably activated by MqsI-derived AHLs, and 

engages in positive feedback regulation of mqsI (304). Interestingly, 

comparison of the mqsRI regions of diverse Mesorhizobium spp. revealed the 

presence of a conserved crotonase-family gene mqsC that exists downstream 

of mqsI (Fig 5.1C). Although the function of this gene has not been elucidated, 

a bi-functional crotonase homologue Bcam0581 has been shown to catalyse 

biosynthesis of the B. cenocepacia QS DSF cis-2-dodecenoic that controls 

virulence in this bacterium (336-338). Bcam0581 exhibits both dehydratase 

activity, introducing a double bond at the C2 position of the fatty acid 

intermediate substrate molecule hydroxy-dodecanoyl-ACP, and thioesterase 

activity, cleaving the thioester bond of this molecule to leave the free 

unsaturated fatty acid (336). A similar mechanism of action has been reported 

for the X. campestris DSF synthase RpfF (339). Interestingly, the marine 

Mesorhizobium sp. R8-Ret-T53-13d carries the conserved mqsRIC loci and 

produces two novel DSF-like unsaturated AHL signalling molecules 5-cis-3-

oxo-C12-HSL and 5-cis-C12-HSL which activate V. fischeri LuxR and P. 

aeruginosa LasR regulators in E. coli bioassays (340). MqsC in 

Mesorhizobium spp. may therefore function to introduce a double bond at the 

C5 position of C12 AHLs produced by MqsI. Modification of AHLs in 

Mesorhizobium is an area which requires further further exploration, and could 

reveal new insight into the QS-regulation of ICE and ICE3 excision and 

transfer. 

In this thesis, it was discovered that WSM1271 and other ICE harbouring 

mesorhizobia encode an AHL inactivating enzyme AhlI, homologous to the 
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Mn2+-dependent C4-C10 AHL lactonase AidH encoded by Ochrobactrum sp. 

T63 (311), and the C4-C14 AHL-acylase AiiO encoded by O. sp. A44 (328) that 

degrades TraI1-derived AHLs. It is not yet clear as to the range of AHLs 

inactivated by AhlI, or the biological function of endogenous AHL-inactivation 

mesorhizobia, however, it is likey that QS-regulation may be partially 

supressed in these strains. This may influence the dynamics of ICE and ICE3 

transfer in this genus.  

The elucidation of ICE3 recombination and regulation of assembly/excision 

highlights the complex nature of ICE3s. Considering that ICE3s naturally 

assembly into a single contiguous element prior to conjugative transfer, it is 

not entirely clear as to why ICE3s have not simply reverted into single-part 

ICEs. The observation that ICEMcSym181 has maintainted its tripartite 

configuration following the replacement of a recombinase and associated att 

site indicated that there may be some selective advantages associated with 

this tripartite form. Four possible selective advantages associated with ICE3 

configuration were proposed; 

a) By being able to integrate into three distinct attB sites, ICE3s maximize their 

potential for host-integration and potentially broaden their host range. 

b) in the tripartite configuration, the ICE3 is more resistant to loss following 

spurious recombinase-mediated recombination events, because it requires 

three recombination events to excise, rather than one. 

c) Incoming ICE/IME that integrate in tandem at any of the ICE3 att sites cannot 

alone stimulate excision of the ICE3, thus ICE3s likely avoid the destabilization 

associated with formation of tandem ICE/IME arrays. 
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d) By occupying three attB sites in the fully integrated form, ICE3s likely have 

an increased propensity to acquire and accumulate genes from invading 

ICEs/IMEs that target the same sites.  

The benefits described would likely be most advantageous in an environment 

where ICE, IME and other integrative elements are abundant and there is 

fierce competition for a limited number of attB integration sites. If there are 

similar complex multipartite ICEs present in the genomes of bacteria other 

than mesorhizobia, then they may be most prevalent in genomes with these 

characteristics. 

 

7.3. Consequences for ICE and ICE3 transfer in agriculture 

Acquisition of a symbiosis ICE may convey upon recipient’s proficiency for 

nodulation. For example, transfer of symbiosis ICE3s from M. loti NZP2037, 

NZP2042 and SU343 converted R7ANS to a L. pedunculatus nodulating 

strain, and transfer of ICEMcSym1271 from WSM1271, WSM2073 or WSM2075 

converted R7ANS to B. pelecinus nodulating strain. However, acquisition of a 

symbiosis ICE3 may be insufficient to convert recipients into effective N2-fixing 

symbionts. In glasshouse trials, all R7ANS ICEMcSym1271 recipients fixed N2 

partially effectively relative to WSM1271, regardless of whether the ICE was 

donated from the effective N2-fixing strain WSM1271, the partially effective N2-

fixing strains WSM2073, or non-N2-fixing strain WSM2075. Other genetic 

factors are likely important in determining this outome. For example, genes 

essential to symbiotic N2 fixation may be harboured on the chromosome of 

WSM1271, which are absent from the chromosomes of WSM2073 or 
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WSM2075. Alternatively, there may be mis-regulation or inadequate 

expression patterns of ICE-encoded N2-fixation genes in these new genetic 

backgrounds. Introduction of new gene clusters into cells from diverse genetic 

sources often results in poor gene expression and the disruption of existing 

metabolic pathways in the recipient (341-343).  

Based on the data presented in this thesis, it seems highly probable that the 

genetically diverse, sub-optimal N2-fixing rhizobia found to occupy B. 

pelecinus nodules in Western Australian field sites inoculated with WSM1271 

or WSM1497 (193, 194) may comprise symbiosis ICE3 recipients. It could also 

be speculated that these newly evolved symbiotic strains frequently develop 

into stable persistent soil populations because they are well-adapted to the 

soil in which they exist, possessing unique chromosomal genes conferring 

beneficial adaptations which the inoculant strain may lack (344). This raises 

key questions regarding the consequences for agriculture. Pointedly, how 

prevalent is ICE/ICE3 transfer; what are the impacts on biological N2
 fixation 

by B. pelecinus in the field and does this influence agricultural productivity in 

these systems? 

The prevalence of symbiosis ICE transfer at B. pelecinus field sites is likely a 

function of the abundance of potential ICE/ICE3 recipients in the rhizosphere. 

Little is known regarding the identity of potential ICE/ICE3 recipients. As is the 

case for most HGT events, symbiosis ICE transfer and integration from donor 

cell to recipient seems most likely to occur between closely related species 

that share a common genetic framework (59, 345, 346). However, even closely 

related rhizobia that carry a compatible attB sequence for ICE/ICE3 integration 

may not be capable of aquiring a symbiosis ICE (59). In the Vibrio, Bacillus, 
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Streptomyces and Streptococcus genera, a range of barriers to the horizontal 

acquisition of ICEs and other MGEs have been idenfied. These include DNA 

restriction-modification or CRISPR systems in the recipient genome which 

may digest the incoming ICE prior to integration (347-350); ICE incompatibility 

or exclusion determinants which may prevent acquisition of a closely related 

element (139, 351, 352); or the inability of a recipient cell to express ICE 

recombination genes to allow integration of the element (341). Considering 

these barriers to ICE/ICE3 acquisition, it seems most probable that ICE/ICE3 

recipients are commonly non-symbiotic mesrhizobia, or perhaps mesorhizobia 

that carry symbiosis plasmids rather than ICEs. Non-symbiotic mesrhizobia 

were previously isolated from the rhizosphere of a L. corniculatus stand in New 

Zealand (72), however, it is unclear as to their abundance in the soil at these 

sites. Identifying precisely what comprises a potential ICE/ICE3 recipient, and 

how abundant these strains are in the rhizosphere of field sites, will be 

essential to producing estimations of the prevalence of symbiosis ICE/ICE3 

transfer in agricultural systems. 

It could be speculated that even in a field site where ICE/ICE3 recipients are 

abundant in the soil, and ICE/ICE3 transfer is prevalent, inputs of fixed N2 may 

not be significantly altered if newly evolved symbionts fix N2 with a similar 

efficacy to the inoculant strain. Of 59 genetically diverse strains that putatively 

acquired symbiosis ICE3s from WSM1271 or WSM1497 tested for N2-fixation, 

none fixed N2 with equal or improved effectiveness relative to the original 

inoculant strain (194).  However, these putative symbiosis ICE3 recipient 

strains were isolated from B. pelecinus nodules over a relatively small 

geographical range. Thus, it is not clear as to the true proportion of sub-optimal 
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N2-fixing strains that emerge following ICE3 transfer. In a more recent study, it 

was speculated that the symbiosis ICE carried by the Australian commercial 

inoculant for Cicer arietinum (chickpea) inoculant M. ciceri CC1192 had 

transferred to indigenous soil rhizobia, converting them to chick-pea 

nodulating strains (353). Approximately 53% of nodules sampled over a small 

geographical range in New South Wales were found to be occupied by rhizobia 

other than CC1192 between 1 and 10 years after inoculation (353). 

Interestingly, of 29 strains tested for N2-fixation effectiveness with C. arietinum, 

approximately half fixed N2 with equal effectiveness relative to the inoculant 

CC1192, while the other half were less effective. In this study, there was no 

evidence that the novel mesorhizobia in the soils compromised N2 fixation or 

C. arietinum productivity (353). More comprehensive nodule sampling 

experiments will be necessary to gauge the proportion of suboptimal N2-fixing 

strains that arise following ICE/ICE3 transfer at both C. arietinum and B. 

pelecinus field sites. 

If ICE3 transfer poses a barrier for inoculation success in the future, the work 

performed in this thesis elucidating the mechanism of ICE3 assembly, excision 

and transfer will provide multiple genetic targets for engineering inoculant 

strains in which symbiosis ICE3 transfer has been neutered. For example, 

even in the rare event that the inoculant acquires an exogenous copy of the 

cognate relaxase on an invading MGE. Alternatively, transfer could be 

managed by targeting repression of the QS-system that controls ICE3 

assembly, excision and transfer. This could, for example, be achieved by co-

inoculating field sites with B. pelecinus symbionts paired with quorum-

quenching bacteria. 
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7.4. Conclusion 

In this thesis, it has been demonstrated that a diversity of Mesorhizobium spp. 

isolated from various geographical locations carry an entirely novel “tripartite” 

symbiosis ICE composed of three co-transferrable regions that convey upon 

recipients the ability to nodulate and fix N2 with target legumes. An elaborate 

mechanism for ICE3 assembly, excision, integration, disassembly and 

regulation of these processes was elucidated. In the field, transfer of ICE3s 

commonly results in the emergence of sub-optmimal N2-fixing strains that may 

compete with the original inoculant for legume nodulation. However, the 

prevalence of transfer, proportion of suboptimal N2-fixing strains emerged, and 

the overall effects on agricultural productivity are poorly understood. The data 

presented in this thesis now provides a crucial framework to further explore 

these questions and develop effective management strategies for agriculture 

 



Chapter 7 

172 
 

 

 

 

 

 

 

 

 

Bibliography 



     Bibliography

      

173 
  

1. Brewer RJM, Haskett TL, Ramsay JP, O’Hara GW, & Terpolilli JJ (2017) 
Complete genome sequence of Mesorhizobium ciceri bv. biserrulae 
WSM1497, an efficient nitrogen-fixing microsymbiont of the forage legume 
Biserrula pelecinus. Genome Announcements 5(35):e00902-00917. 

2. Haskett T, et al. (2016) Complete genome sequence of Mesorhizobium ciceri 
bv. biserrulae Strain WSM1284, an efficient nitrogen-fixing microsymbiont of 
the pasture legume Biserrula pelecinus. Genome Announcements 
4(3):e00514-00516. 

3. Haskett TL, et al. (2017) Evolutionary persistence of tripartite integrative and 
conjugative elements. Plasmid 92:30-36. 

4. Haskett TL, et al. (2016) Assembly and transfer of tripartite integrative and 
conjugative genetic elements. PNAS 113(43):12268-12273. 

5. Oldroyd GE, Murray JD, Poole PS, & Downie JA (2011) The rules of 
engagement in the legume–rhizobial symbiosis. Annual Review of Genetics 
45:119-144. 

6. Jones KM, Kobayashi H, Davies BW, Taga ME, & Walker GC (2007) How 
rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat. 
Rev. Microbiol. 5:619. 

7. Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. 
Molecular Plant-Microbe Interactions 24(6):631-639. 

8. Alunni B & Gourion B (2016) Terminal bacteroid differentiation in the legume-
rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New 
Phytolologist 211(2):411-417. 

9. Udvardi M & Poole PS (2013) Transport and metabolism in legume-rhizobia 
symbioses. Annual review of plant biology 64:781-805. 

10. Gagnon H & Ibrahim RK (1998) Aldonic acids: A novel family of nod gene 
inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. 
Molecular plant-microbe interactions : MPMI 11:988-998. 

11. Maxwell CA, Hartwig UA, Joseph CM, & Phillips DA (1989) A chalcone and 
two related flavonoids released from alfalfa roots induce nod genes of 
Rhizobium meliloti. Plant Physiology 91(3):842-847. 

12. Dakora FD, Joseph CM, & Phillips DA (1993) Alfalfa (Medicago sativa L.) root 
exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant 
Physiology 101(3):819-824. 

13. Kamboj DV, Bhatia R, Pathak DV, & Sharma PK (2010) Role of nodD gene 
product and flavonoid interactions in induction of nodulation genes in 
Mesorhizobium ciceri. Physiology and Molecular Biology of Plants 16(1):69-
77. 

14. Liu C-W & Murray JD (2016) The role of flavonoids in nodulation host-range 
specificity: an update. Plants 5(3):33. 



Bibliography 

174 
 

15. D’Haeze W & Holsters M (2002) Nod factor structures, responses, and 
perception during initiation of nodule development. Glycobiology 12(6):79R-
105R. 

16. Mergaert P, Van Montagu M, & Holsters M (1997) Molecular mechanisms of 
Nod factor diversity. Mol. Microbiol. 25(5):811-817. 

17. Geurts R & Bisseling T (2002) Rhizobium nod factor perception and signalling. 
The Plant Cell 14(Suppl):s239-s249. 

18. Wais RJ, Keating DH, & Long SR (2002) Structure-function analysis of Nod 
factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant 
physiology 129(1):211-224. 

19. Via VD, Zanetti ME, & Blanco F (2016) How legumes recognize rhizobia. Plant 
Signaling & Behavior 11(2):e1120396. 

20. Wang D, Shengming Y, Tang F, & Zhu H (2012) Symbiosis specificity in the 
legume – rhizobial mutualism. Cellular Microbiology 14(3):334-342. 

21. Fournier J, et al. (2008) Mechanism of infection thread elongation in root hairs 
of Medicago truncatula and dynamic interplay with associated rhizobial 
colonization. Plant physiology 148(4):1985-1995. 

22. Gallon JR (The oxygen sensitivity of nitrogenase: a problem for biochemists 
and micro-organisms. Trends in Biochemical Sciences 6:19-23. 

23. Tsoy OV, Ravcheev DA, Čuklina J, & Gelfand MS (2016) Nitrogen fixation and 
molecular oxygen: comparative genomic reconstruction of transcription 
regulation in alphaproteobacteria. Front Microbiol. 7:1343. 

24. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. 
Microbiology Reviews 58(3):352-386. 

25. Foussard M, et al. (1998) Regulation of Nitrogen Fixation Gene Expression in 
Rhizobia: An Overview. Biological Nitrogen Fixation for the 21st Century: 
Proceedings of the 11th International Congress on Nitrogen Fixation, Institut 
Pasteur, Paris, France, July 20–25, 1997, eds Elmerich C, Kondorosi A, & 
Newton WE (Springer Netherlands, Dordrecht), pp 101-106. 

26. Sciotti MA, Chanfon A, Hennecke H, & Fischer HM (2003) Disparate oxygen 
responsiveness of two regulatory cascades that control expression of 
symbiotic genes in Bradyrhizobium japonicum. J. Bacteriol. 185(18):5639-
5642. 

27. Terpolilli JJ, Hood GA, & Poole PS (2012) What determines the efficiency of 
N(2)-fixing Rhizobium-legume symbioses? Advances in microbial physiology 
60:325-389. 

28. Terpolilli JJ, O’Hara GW, Tiwari RP, Dilworth MJ, & Howieson JG (2008) The 
model legume Medicago truncatula A17 is poorly matched for N2 fixation with 
the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytologist 
179(1):62-66. 



     Bibliography

      

175 
  

29. Howieson JG, Malden, J., Yates, R.J. and O'Hara, G.W. (2000) Techniques 
for the selection and development of elite inoculant strains of Rhizobium 
leguminosarum in southern Australia. Symbiosis 28(1):33-48. 

30. Howieson JG, Nutt B, & Evans P (2000) Estimation of host-strain compatibility 
for symbiotic N-fixation between Rhizobium meliloti, several annual species 
of Medicago and Medicago sativa. Plant and Soil 219(1):49-55. 

31. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote 
beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252. 

32. Sim SH, et al. (2008) The core and accessory genomes of Burkholderia 
pseudomallei: implications for human melioidosis. PLoS Pathogens 
4(10):e1000178. 

33. Sugawara M, et al. (2013) Comparative genomics of the core and accessory 
genomes of 48 Sinorhizobium strains comprising five genospecies. Genome 
Biol. 14(2):R17. 

34. Tettelin H, et al. (2005) Genome analysis of multiple pathogenic isolates of 
Streptococcus agalactiae: implications for the microbial "pan-genome". PNAS 
102(39):13950-13955. 

35. Segerman B (2012) The genetic integrity of bacterial species: the core 
genome and the accessory genome, two different stories. Frontiers in Cellular 
and Infection Microbiology 2(116). 

36. Ochman H & Moran NA (2001) Genes lost and genes found: evolution of 
bacterial pathogenesis and symbiosis. Science 292(5519):1096-1099. 

37. Lemaire B, et al. (2015) Recombination and horizontal transfer of nodulation 
and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria 
nodulating legumes of the Cape Fynbos biome. FEMS Microbiology and 
Ecolology 91(11). 

38. Zheng JZ, et al. (2017) The structure and evolution of beta-rhizobial symbiotic 
genes deduced from their complete genomes. Immunome Research 13(2). 

39. Gonzalez V, et al. (2003) The mosaic structure of the symbiotic plasmid of 
Rhizobium etli CFN42 and its relation to other symbiotic genome 
compartments. Genome Biol. 4(6):R36. 

40. Laguerre G, et al. (2001) Classification of rhizobia based on nodC and nifH 
gene analysis reveals a close phylogenetic relationship among Phaseolus 
vulgaris symbionts. Microbiology 147(Pt 4):981-993. 

41. Masson-Boivin C, Giraud E, Perret X, & Batut J (2009) Establishing nitrogen-
fixing symbiosis with legumes: how many rhizobium recipes? Trends in 
Microbiology 17(10):458-466. 

42. Werner GD, Cornwell WK, Sprent JI, Kattge J, & Kiers ET (2014) A single 
evolutionary innovation drives the deep evolution of symbiotic N2-fixation in 
angiosperms. Nature communications 5:4087. 



Bibliography 

176 
 

43. Peix A, Ramírez-Bahena MH, Velázquez E, & Bedmar EJ (2015) Bacterial 
associations with legumes. Critical Reviews in Plant Sciences 34(1-3):17-42. 

44. Pawlowski K & Demchenko KN (2012) The diversity of actinorhizal symbiosis. 
Protoplasma 249(4):967-979. 

45. Gnat S, et al. (2015) Phylogeny of symbiotic genes and the symbiotic 
properties of rhizobia specific to Astragalus glycyphyllos L. PLoS ONE 
10(10):e0141504. 

46. Barcellos FG, Menna P, da Silva Batista JS, & Hungria M (2007) Evidence of 
horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum 
inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and 
Bradyrhizobium elkanii in a Brazilian savannah soil. Applied and 
environmental microbiology 73(8):2635-2643. 

47. Menna P & Hungria M (2011) Phylogeny of nodulation and nitrogen-fixation 
genes in Bradyrhizobium: supporting evidence for the theory of monophyletic 
origin, and spread and maintenance by both horizontal and vertical transfer. 
International Journal of Systematic and Evololutionary Microbiology 61(Pt 
12):3052-3067. 

48. Bailly X, Olivieri I, Brunel B, Cleyet-Marel J-C, & Béna G (2007) Horizontal 
gene transfer and homologous recombination drive the evolution of the 
nitrogen-fixing symbionts of Medicago Species. J. Bacteriol. 189(14):5223-
5236. 

49. Laranjo M, Alexandre A, & Oliveira S (2014) Legume growth-promoting 
rhizobia: an overview on the Mesorhizobium genus. Microbiological Research 
169(1):2-17. 

50. Remigi P, Zhu J, Young JPW, & Masson-Boivin C (2016) Symbiosis within 
symbiosis: evolving nitrogen-fixing legume symbionts. Trends in Microbiology 
24(1):63-75. 

51. MacLean AM, Finan TM, & Sadowsky MJ (2007) Genomes of the symbiotic 
nitrogen-fixing bacteria of legumes. Plant physiology 144(2):615-622. 

52. Barnett MJ, et al. (2001) Nucleotide sequence and predicted functions of the 
entire Sinorhizobium meliloti pSymA megaplasmid. PNAS 98(17):9883-9888. 

53. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, & de la Cruz F 
(2010) Mobility of plasmids. Microbiology and Molecular Biology Reviews 
74(3):434-452. 

54. Rao JR, Fenton M, & Jarvis BDW (1994) Symbiotic plasmid transfer in 
Rhizobium leguminosarum biovar trifolii and competition between the 
inoculant strain ICMP2163 and transconjugant soil bacteria. Soil Biology and 
Biochemistry 26(3):339-351. 

55. Kondorosi A, Kondorosi E, Pankhurst CE, Broughton WJ, & Banfalvi Z (1982) 
Mobilization of a Rhizobium meliloti megaplasmid carrying nodulation and 
nitrogen fixation genes into other rhizobia and Agrobacterium. Molecular and 
General Genetics 188(3):433-439. 



     Bibliography

      

177 
  

56. Pankhurst CE, Broughton WJ, & Wieneke U (1983) Transfer of an indigenous 
plasmid of Rhizobium loti to other rhizobia and Agrobacterium tumefaciens. J 
Gen Microbiol 129(8):2535-2543. 

57. Marchetti M, et al. (2010) Experimental evolution of a plant pathogen into a 
legume symbiont. PLoS Biology 8(1):e1000280. 

58. Hirsch AM, et al. (1984) Rhizobium meliloti nodulation genes allow 
Agrobacterium tumefaciens and Escherichia coli to form pseudonodules on 
alfalfa. J. Bacteriol. 158(3):1133-1143. 

59. Ling J, et al. (2016) Plant nodulation inducers enhance horizontal gene 
transfer of Azorhizobium caulinodans symbiosis island. PNAS 113(48):13875-
13880. 

60. Sullivan JT & Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-
kb symbiosis island that integrates into a phe-tRNA gene. PNAS 95(9):5145-
5149. 

61. Kaneko T, et al. (2011) Complete genome sequence of the soybean symbiont 
Bradyrhizobium japonicum strain USDA6(T). Genes 2(4):763-787. 

62. Kaneko T, et al. (2002) Complete genomic sequence of nitrogen-fixing 
symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research 
9(6):189-197. 

63. Haskett T, et al. (2016) Complete genome sequence of Mesorhizobium ciceri 
strain CC1192, an efficient nitrogen-fixing microsymbiont of Cicer arietinum. 
Genome Announcements 4(3). 

64. Jarvis BDW, et al. (1997) Transfer of Rhizobium loti, Rhizobium huakuii, 
Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to 
Mesorhizobium gen. nov. International journal of systematic and evolutionary 
microbiology 47(3):895-898. 

65. Rogel MA, Ormeno-Orrillo E, & Martinez Romero E (2011) Symbiovars in 
rhizobia reflect bacterial adaptation to legumes. Systematic And Applied 
Microbiology 34(2):96-104. 

66. Chen WX, Wang ET, & Kuykendall LD (2005) The Proteobacteria. Bergeys 
manual of systematic bacteriology,  (Springer, New York), Vol 2, pp 403-408. 

67. Pankhurst CE, Macdonald PE, & Reeves JM (1986) Enhanced nitrogen 
fixation and competitiveness for nodulation of Lotus pedunculatus by a 
plasmid-cured derivative of Rhizobium loti. Microbiology 132(8):2321-2328. 

68. Pankhurst CE, Hopcroft DH, & Jones WT (1987) Comparative morphology 
and flavolan content of Rhizobium loti induced effective and ineffective root 
nodules on Lotus species, Leuceana leucocephala, Carmichaelia 
flagelliformis, Ornithopus sativus, and Clianthus puniceus. Canadian Journal 
of Botany 65(12):2676-2685. 

69. Chua KY, et al. (1985) Isolation and characterization of transposon Tn5-
induced symbiotic mutants of Rhizobium loti. J. Bacteriol. 162(1):335-343. 



Bibliography 

178 
 

70. Pueppke SG & Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. 
fredii USDA257 share exceptionally broad, nested host ranges. Molecular 
Plant-Microbe Interactions 12(4):293-318. 

71. Nandasena KG, et al. (2004) Symbiotic relationships and root nodule 
ultrastructure of the pasture legume Biserrula pelecinus L.—a new legume in 
agriculture. Soil Biology and Biochemistry 36(8):1309-1317. 

72. Sullivan JT, Eardly BD, van Berkum P, & Ronson CW (1996) Four unnamed 
species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus 
corniculatus. Appl. Environ. Microbiol. 62(8):2818-2825. 

73. Wang S, et al. (2014) Whole-genome sequencing of Mesorhizobium huakuii 
7653R provides molecular insights into host specificity and symbiosis island 
dynamics. BMC genomics 15:440. 

74. Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, & Ronson CW (2006) Excision 
and transfer of the Mesorhizobium loti R7A symbiosis island requires an 
integrase IntS, a novel recombination directionality factor RdfS, and a putative 
relaxase RlxS. Mol. Microbiol. 62(3):723-734. 

75. Ramsay JP & Ronson CW (2015) Genetic Regulation of Symbiosis Island 
Transfer in Mesorhizobium loti. Biological Nitrogen Fixation, ed de Bruijn FJ 
(John Wiley & Sons, Inc), Vol 1, pp 217-224. 

76. Ramsay JP & Ronson CW (2015) Silencing quorum sensing and ICE mobility 
through antiactivation and ribosomal frameshifting. Mob Genet Elements 
5(6):103-108. 

77. Wozniak RA & Waldor MK (2010) Integrative and conjugative elements: 
mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. 
Microbiol. 8(8):552-563. 

78. Johnson CM & Grossman AD (2015) Integrative and conjugative elements 
(ICEs): what they do and how they work. Annu. Rev. Genet. 49:577-601. 

79. Rankin DJ, Rocha EPC, & Brown SP (2011) What traits are carried on mobile 
genetic elements, and why? Heredity 106(1):1-10. 

80. Frost LS, Leplae R, Summers AO, & Toussaint A (2005) Mobile genetic 
elements: the agents of open source evolution. Nat. Rev. Microbiol. 3(9):722-
732. 

81. Bi D, et al. (2012) ICEberg: a web-based resource for integrative and 
conjugative elements found in Bacteria. Nucleic Acids Res 40(Database 
issue):D621-D626. 

82. Hochhut B, et al. (2001) Molecular analysis of antibiotic resistance gene 
clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents 
Chemother. 45(11):2991-3000. 

83. Wozniak RAF, et al. (2009) Comparative ICE genomics: insights into the 
evolution of the SXT/R391 family of ICEs. PLOS GENET 5(12):e1000786. 



     Bibliography

      

179 
  

84. Ravatn R, Studer S, Springael D, Zehnder AJ, & van der Meer JR (1998) 
Chromosomal integration, tandem amplification, and deamplification in 
Pseudomonas putida F1 of a 105-kilobase genetic element containing the 
chlorocatechol degradative genes from Pseudomonas sp. Strain B13. J. 
Bacteriol. 180(17):4360-4369. 

85. Qiu X, Gurkar AU, & Lory S (2006) Interstrain transfer of the large 
pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. PNAS 
103(52):19830-19835. 

86. Reiter WD, Palm P, & Yeats S (1989) Transfer RNA genes frequently serve 
as integration sites for prokaryotic genetic elements. Nucleic Acids Res 
17(5):1907-1914. 

87. Song L, Pan Y, Chen S, & Zhang X (2012) Structural characteristics of 
genomic islands associated with GMP synthases as integration hotspot 
among sequenced microbial genomes. Computational Biololgy and Chemistry 
36:62-70. 

88. Auchtung JM, Aleksanyan N, Bulku A, & Berkmen MB (2016) Biology of 
ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 
86:14-25. 

89. Auchtung JM, Lee CA, Monson RE, Lehman AP, & Grossman AD (2005) 
Regulation of a Bacillus subtilis mobile genetic element by intercellular 
signaling and the global DNA damage response. PNAS 102(35):12554-
12559. 

90. Roberts AP & Mullany P (2011) Tn916-like genetic elements: a diverse group 
of modular mobile elements conferring antibiotic resistance. FEMS Microbiol 
Rev 35(5):856-871. 

91. Hickman AB, Chandler M, & Dyda F (2010) Integrating prokaryotes and 
eukaryotes: DNA transposases in light of structure. Critical reviews in 
biochemistry and molecular biology 45(1):50-69. 

92. Grindley ND, Whiteson KL, & Rice PA (2006) Mechanisms of site-specific 
recombination. Annual review of biochemistry 75:567-605. 

93. Nesmelova IV & Hackett PB (2010) DDE transposases: structural similarity 
and diversity. Advanced drug delivery reviews 62(12):1187-1195. 

94. Bellanger X, Payot S, Leblond-Bourget N, & Guedon G (2014) Conjugative 
and mobilizable genomic islands in bacteria: evolution and diversity. FEMS 
Microbiol Rev 38(4):720-760. 

95. Casjens SR & Hendrix RW (2015) Bacteriophage lambda: early pioneer and 
still relevant. Virology 0:310-330. 

96. Papagiannis CV, et al. (2007) Fis targets assembly of the Xis nucleoprotein 
filament to promote excisive recombination by phage lambda. J. Mol. Biol 
367(2):328-343. 



Bibliography 

180 
 

97. Esposito D & Gerard GF (2003) The Escherichia coli Fis protein stimulates 
bacteriophage lambda integrative recombination in vitro. J. Bacteriol. 
185(10):3076-3080. 

98. Rice PA, Yang S, Mizuuchi K, & Nash HA (1996) Crystal structure of an IHF-
DNA complex: a protein-induced DNA U-turn. Cell 87(7):1295-1306. 

99. Mendelson I, Gottesman M, & Oppenheim AB (1991) HU and integration host 
factor function as auxiliary proteins in cleavage of phage lambda cohesive 
ends by terminase. J. Bacteriol. 173(5):1670-1676. 

100. Craig NL & Nash HA (1984) E. coli integration host factor binds to specific 
sites in DNA. Cell 39(3 Pt 2):707-716. 

101. Kikuchi Y & Nash HA (1979) Nicking-closing activity associated with 
bacteriophage lambda int gene product. PNAS 76(8):3760-3764. 

102. Miller HI, Kikuchi A, Nash HA, Weisberg RA, & Friedman DI (1979) Site-
specific recombination of bacteriophage lambda: the role of host gene 
products. Cold Spring Harbor symposia on quantitative biology 43(2):1121-
1126. 

103. Nash HA (1981) Integration and excision of bacteriophage λ: the mechanism 
of conservative site specific recombination. Annu. Rev. Genet. 15(1):143-167. 

104. Burrus V & Waldor MK (2003) Control of SXT integration and excision. J. 
Bacteriol. 185(17):5045-5054. 

105. Lee CA, Auchtung JM, Monson RE, & Grossman AD (2007) Identification and 
characterization of int (integrase), xis (excisionase) and chromosomal 
attachment sites of the integrative and conjugative element ICEBs1 of Bacillus 
subtilis. Mol. Microbiol. 66(6):1356-1369. 

106. Echols H & Guameros G (1983) Control of integration and excision. Lambda 
II, eds Hendrix R, Roberts J, Stahl F, & Wiesberg R (Cold Spring Harbor Lab 
Press, Cold Spring Harbor, New York), pp 77-93. 

107. Lewis JA & Hatfull GF (2001) Control of directionality in integrase-mediated 
recombination: examination of recombination directionality factors (RDFs) 
including Xis and Cox proteins. Nucleic Acids Res 29(11):2205-2216. 

108. Abbani MA, et al. (2007) Structure of the cooperative Xis–DNA complex 
reveals a micronucleoprotein filament that regulates phage lambda intasome 
assembly. PNAS 104(7):2109-2114. 

109. Dodd IB, Reed MR, & Egan JB (1993) The Cro-like Apl repressor of coliphage 
186 is required for prophage excision and binds near the phage attachment 
site. Mol. Microbiol. 10(5):1139-1150. 

110. Reed MR, Shearwin KE, Pell LM, & Egan JB (1997) The dual role of Apl in 
prophage induction of coliphage 186. Mol. Microbiol. 23(4):669-681. 

111. Saha S, Haggard-Ljungquist E, & Nordstrom K (1987) The cox protein of 
bacteriophage P2 inhibits the formation of the repressor protein and 
autoregulates the early operon. EMBO J 6(10):3191-3199. 



     Bibliography

      

181 
  

112. Haggard-Ljungquist E, Kockum K, & Bertani LE (1987) DNA sequences of 
bacteriophage P2 early genes cox and B and their regulatory sites. Molecular 
Genetics and Genomics 208(1-2):52-56. 

113. Yu A & Haggard-Ljungquist E (1993) The Cox protein is a modulator of 
directionality in bacteriophage P2 site-specific recombination. J. Bacteriol. 
175(24):7848-7855. 

114. Esposito D, Wilson JC, & Scocca JJ (1997) Reciprocal regulation of the early 
promoter region of bacteriophage HP1 by the Cox and Cl proteins. Virology 
234(2):267-276. 

115. Yin S, Bushman W, & Landy A (1985) Interaction of the lambda site-specific 
recombination protein Xis with attachment site DNA. PNAS 82(4):1040-1044. 

116. Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, & Rocha EP 
(2011) The repertoire of ICE in prokaryotes underscores the unity, diversity, 
and ubiquity of conjugation. PLOS GENET 7(8):e1002222. 

117. Ilangovan A, Connery S, & Waksman G (2015) Structural biology of the Gram-
negative bacterial conjugation systems. Trends in Microbiology 23(5):301-
310. 

118. de la Cruz F, Frost LS, Meyer RJ, & Zechner EL (2010) Conjugative DNA 
metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34(1):18-40. 

119. Rajeev L, Malanowska K, & Gardner JF (2009) Challenging a paradigm: the 
role of DNA homology in tyrosine recombinase reactions. Microbiology and 
Molecular Biology Reviews : MMBR 73(2):300-309. 

120. Wright LD, Johnson CM, & Grossman AD (2015) Identification of a single 
strand origin of replication in the integrative and conjugative element ICEBs1 
of Bacillus subtilis. PLOS GENET 11(10):e1005556. 

121. Khan SA (2005) Plasmid rolling-circle replication: highlights of two decades of 
research. Plasmid 53(2):126-136. 

122. Ghinet MG, et al. (2011) Uncovering the prevalence and diversity of 
integrating conjugative elements in actinobacteria. PLoS ONE 6(11):e27846. 

123. te Poele EM, Bolhuis H, & Dijkhuizen L (2008) Actinomycete integrative and 
conjugative elements. Antonie van Leeuwenhoek 94(1):127-143. 

124. Ambroset C, et al. (2015) New insights into the classification and integration 
specificity of Streptococcus integrative conjugative elements through 
extensive genome exploration. Front Microbiol. 6:1483. 

125. Burrus V, Pavlovic G, Decaris B, & Guedon G (2002) The ICESt1 element of 
Streptococcus thermophilus belongs to a large family of integrative and 
conjugative elements that exchange modules and change their specificity of 
integration. Plasmid 48(2):77-97. 

126. Coluzzi C, et al. (2017) A glimpse into the world of integrative and mobilizable 
elements in streptococci reveals an unexpected diversity and novel families 
of mobilization proteins. Front Microbiol. 8:443. 



Bibliography 

182 
 

127. Guerillot R, Da Cunha V, Sauvage E, Bouchier C, & Glaser P (2013) Modular 
evolution of TnGBSs, a new family of integrative and conjugative elements 
associating insertion sequence transposition, plasmid replication, and 
conjugation for their spreading. J. Bacteriol. 195(9):1979-1990. 

128. Mingoia M, et al. (2014) Tn5253 family integrative and conjugative elements 
carrying mef(I) and catQ determinants in Streptococcus pneumoniae and 
Streptococcus pyogenes. Antimicrob. Agents Chemother. 58(10):5886-5893. 

129. Dahmane N, et al. (2017) Diversity of integrative and conjugative elements of 
Streptococcus salivarius and their Intra- and interspecies transfer. Appl. 
Environ. Microbiol. 83(13):e00337-00317. 

130. Sullivan JT, et al. (2002) Comparative sequence analysis of the symbiosis 
island of Mesorhizobium loti strain R7A. J. Bacteriol. 184(11):3086-3095. 

131. Carraro N, Rivard N, Burrus V, & Ceccarelli D (2017) Mobilizable genomic 
islands, different strategies for the dissemination of multidrug resistance and 
other adaptive traits. Mob Genet Elements 7(2):1-6. 

132. Doublet B, Golding GR, Mulvey MR, & Cloeckaert A (2008) Secondary 
chromosomal attachment site and tandem integration of the mobilizable 
Salmonella genomic island 1. PLoS One 3(4):e2060. 

133. Bellanger X, et al. (2011) Site-specific accretion of an integrative conjugative 
element together with a related genomic island leads to cis mobilization and 
gene capture. Mol. Microbiol. 81(4):912-925. 

134. Pavlovic G, Burrus V, Gintz B, Decaris B, & Guédon G (2004) Evolution of 
genomic islands by deletion and tandem accretion by site-specific 
recombination: ICESt1-related elements from Streptococcus thermophilus. 
Microbiology (Reading, England) 150(4):759-774. 

135. Puymège A, Bertin S, Chuzeville S, Guédon G, & Payot S (2013) Conjugative 
transfer and cis-mobilization of a genomic island by an integrative and 
conjugative element of Streptococcus agalactiae. J. Bacteriol. 195(6):1142-
1151. 

136. Wang P, et al. (2017) Dissemination and loss of a biofilm-related genomic 
island in marine Pseudoalteromonas mediated by integrative and conjugative 
elements. Environmental microbiology 19(11):4620-4637. 

137. Burrus V & Waldor MK (2004) Formation of SXT tandem arrays and SXT-
R391 hybrids. Journal of bacteriology 186(9):2636-2645. 

138. Hochhut B, Beaber JW, Woodgate R, & Waldor MK (2001) Formation of 
chromosomal tandem arrays of the SXT element and R391, two conjugative 
chromosomally integrating eements that share an attachment site. Journal of 
bacteriology 183(4):1124-1132. 

139. Possoz C, Ribard C, Gagnat J, Pernodet JL, & Guerineau M (2001) The 
integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal 
transfer. Mol. Microbiol. 42(1):159-166. 



     Bibliography

      

183 
  

140. Ravatn R, Studer S, Springael D, Zehnder AJB, & van der Meer JR (1998) 
Chromosomal integration, tandem amplification, and deamplification in 
Pseudomonas putida F1 of a 105-Kilobase genetic element containing the 
chlorocatechol degradative genes from Pseudomonas sp. Strain B13. Journal 
of bacteriology 180(17):4360-4369. 

141. Garriss G, Waldor MK, & Burrus V (2009) Mobile antibiotic resistance 
encoding elements promote their own diversity. PLoS genetics 
5(12):e1000775. 

142. Ramsay JP, et al. (2016) An updated view of plasmid conjugation and 
mobilization in Staphylococcus. Mob Genet Elements 6(4):e1208317. 

143. Guédon G, Libante V, Coluzzi C, Payot S, & Leblond-Bourget N (2017) The 
obscure world of integrative and mobilizable elements, highly widespread 
elements that pirate bacterial conjugative systems. Genes 8(11):337. 

144. Delavat F, Miyazaki R, Carraro N, Pradervand N, & van der Meer JR (2017) 
The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 
41(4):512-537. 

145. Burrus V (2017) Mechanisms of stabilization of integrative and conjugative 
elements. Current Opinion in Microbiology 38(Supplement C):44-50. 

146. Carraro N & Burrus V (2015) The dualistic nature of integrative and 
conjugative elements. Mob Genet Elements 5(6):98-102. 

147. Grohmann E (2010) Autonomous plasmid-like replication of Bacillus ICEBs1: 
a general feature of integrative conjugative elements? Mol. Microbiol. 
75(2):261-263. 

148. Lee CA, Babic A, & Grossman AD (2010) Autonomous plasmid-like replication 
of a conjugative transposon. Mol. Microbiol. 75(2):268-279. 

149. Thomas J, Lee CA, & Grossman AD (2013) A conserved helicase processivity 
factor is needed for conjugation and replication of an integrative and 
conjugative element. cPLoS Genetics 9(1):e1003198. 

150. Carraro N, Poulin D, & Burrus V (2015) Replication and active partition of 
integrative and conjugative elements (ICEs) of the SXT/R391 family: the line 
between ICEs and conjugative plasmids is getting thinner. PLOS GENET 
11(6):e1005298. 

151. Wright LD & Grossman AD (2016) Autonomous replication of the conjugative 
transposon Tn916. J. Bacteriol. 198(24):3355-3366. 

152. Carraro N, et al. (2016) Plasmid-like replication of a minimal streptococcal 
integrative and conjugative element. Microbiology 162(4):622-632. 

153. Carraro N, et al. (2011) Differential regulation of two closely related integrative 
and conjugative elements from Streptococcus thermophilus. BMC 
microbiology 11:238. 



Bibliography 

184 
 

154. Salje J, Gayathri P, & Lowe J (2010) The ParMRC system: molecular 
mechanisms of plasmid segregation by actin-like filaments. Nat. Rev. 
Microbiol. 8(10):683-692. 

155. Poulin-Laprade D, Matteau D, Jacques PE, Rodrigue S, & Burrus V (2015) 
Transfer activation of SXT/R391 integrative and conjugative elements: 
unraveling the SetCD regulon. Nucleic Acids Res 43(4):2045-2056. 

156. Unterholzner SJ, Poppenberger B, & Rozhon W (2013) Toxin–antitoxin 
systems: biology, identification, and application. Mob Genet Elements 
3(5):e26219. 

157. Wozniak RA & Waldor MK (2009) A toxin-antitoxin system promotes the 
maintenance of an integrative conjugative element. PLOS GENET 
5(3):e1000439. 

158. Dziewit L, Jazurek M, Drewniak L, Baj J, & Bartosik D (2007) The SXT 
conjugative element and linear prophage N15 encode toxin-Antitoxin-
stabilizing systems homologous to the tad-ata module of the Paracoccus 
aminophilus plasmid pAMI2. J. Bacteriol. 189(5):1983-1997. 

159. Khoo SK, et al. (2007) Molecular and structural characterization of the PezAT 
chromosomal toxin-antitoxin system of the human pathogen Streptococcus 
pneumoniae. Journal  of Biological Chemistry 282(27):19606-19618. 

160. Sullivan JT, Patrick HN, Lowther WL, Scott DB, & Ronson CW (1995) 
Nodulating strains of Rhizobium loti arise through chromosomal symbiotic 
gene transfer in the environment. PNAS 92(19):8985-8989. 

161. Chapman HM, Lowther WL, & Trainor KD (1990) Some factors limiting the 
success of Lotus corniculatus in hill and high country. Proceedings of the New 
Zealand Grassland Association 51:147-150. 

162. Reeve W, et al. (2014) Genome sequence of the Lotus corniculatus 
microsymbiont Mesorhizobium loti strain R88B. Standards in genomic 
sciences 9:3. 

163. Kelly S, et al. (2014) Genome sequence of the Lotus spp. microsymbiont 
Mesorhizobium loti strain R7A. Standards in genomic sciences 9:6-6. 

164. Reeve W, et al. (2015) High-Quality draft genome sequence of the Lotus spp. 
microsymbiont Mesorhizobium loti strain CJ3Sym. Standards in genomic 
sciences 10:54. 

165. Ding H & Hynes MF (2009) Plasmid transfer systems in the rhizobia. Can J 
Microbiol 55(8):917-927. 

166. Frederix M & Downie JA (2011) Chapter 2 - Quorum Sensing: Regulating the 
Regulators. Advances in microbial physiology, ed Poole RK (Academic 
Press), Vol 58, pp 23-80. 

167. Ramsay JP, et al. (2009) A LuxRI-family regulatory system controls excision 
and transfer of the Mesorhizobium loti strain R7A symbiosis island by 
activating expression of two conserved hypothetical genes. Mol. Microbiol. 
73(6):1141-1155. 



     Bibliography

      

185 
  

168. Waters CM & Bassler BL (2005) Quorum sensing: cell-to-cell communication 
in bacteria. Annual Review of Cell and Developmental Biology 21(1):319-346. 

169. Papenfort K & Bassler B (2016) Quorum-sensing signal-response systems in 
gram-negative bacteria. Nat. Rev. Microbiol. 14(9):576-588. 

170. Ramsay JP, et al. (2015) Ribosomal frameshifting and dual-target 
antiactivation restrict quorum-sensing–activated transfer of a mobile genetic 
element. PNAS 112(13):4104-4109. 

171. McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, & Downie JA 
(2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer 
and replication genes in Rhizobium leguminosarum biovar viciae. 
Microbiology 153(Pt 7):2074-2082. 

172. Wisniewski-Dye F & Downie JA (2002) Quorum-sensing in Rhizobium. 
Antonie Van Leeuwenhoek 81(1-4):397-407. 

173. White CE & Winans SC (2007) Cell–cell communication in the plant pathogen 
Agrobacterium tumefaciens. Philosophical Transactions of the Royal Society 
B: Biological Sciences 362(1483):1135-1148. 

174. Fuqua WC & Winans SC (1994) A LuxR-LuxI type regulatory system activates 
Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor 
metabolite. J. Bacteriol. 176(10):2796-2806. 

175. Hwang I, et al. (1994) TraI, a LuxI homologue, is responsible for production of 
conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. 
PNAS 91(11):4639-4643. 

176. Ramsay JP, et al. (2013) A widely conserved molecular switch controls 
quorum sensing and symbiosis island transfer in Mesorhizobium loti through 
expression of a novel antiactivator. Molecular microbiology 87(1):1-13. 

177. Kelly S, et al. (2014) Genome sequence of the Lotus spp. microsymbiont 
Mesorhizobium loti strain NZP2037. Standards in genomic sciences 9:7. 

178. Kasai-Maita H, et al. (2013) Commonalities and differences among symbiosis 
islands of three Mesorhizobium loti strains. Microbes Environ. 28(2):275-278. 

179. Kaneko T, et al. (2000) Complete genome structure of the nitrogen-fixing 
symbiotic bacterium Mesorhizobium loti. DNA Research 7(6):331-338. 

180. O’Callaghan KJ, Davey MR, & Cocking EC (1998) Crack Entry Invasion of 
Sesbania rostrata by Azorhizobium caulinodans ORS571 is Nod Gene-
Independent. Biological Nitrogen Fixation for the 21st Century: Proceedings 
of the 11th International Congress on Nitrogen Fixation, Institut Pasteur, Paris, 
France, July 20–25, 1997, eds Elmerich C, Kondorosi A, & Newton WE 
(Springer Netherlands, Dordrecht), pp 266-266. 

181. Batista JS, Hungria M, Barcellos FG, Ferreira MC, & Mendes IC (2007) 
Variability in Bradyrhizobium japonicum and B. elkanii seven years after 
introduction of both the exotic microsymbiont and the soybean host in a 
cerrados soil. Microbial ecology 53(2):270-284. 



Bibliography 

186 
 

182. Ferreira MC & Hungria M (2002) Recovery of soybean inoculant strains from 
uncropped soils in Brazil. Field Crops Research 79(2):139-152. 

183. Jabbouri S, et al. (1995) Involvement of nodS in N-methylation and nodU in 
6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. Journal of 
Biological Chemistry 270(39):22968-22973. 

184. Jabbouri S, et al. (1998) nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are 
involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. Journal 
of Biological Chemistry 273(20):12047-12055. 

185. Pankhurst CE & Jones WT (1979) Effectiveness of Lotus Root Nodules. effect 
of combined nitrogen on nodule effectiveness and flavolan synthesis in plant 
roots. Journal of Experimental Botany 30(6):1109-1118. 

186. Jarvis BDW, Pankhurst CE, & Patel JJ (1982) Rhizobium loti, a new species 
of legume root nodule bacteria. International journal of systematic and 
evolutionary microbiology 32(3):378-380. 

187. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, & Ronson CW (2004) 
Symbiotic phenotypes and translocated effector proteins of the 
Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. 
Microbiol. 54(2):561-574. 

188. Sanchez C, Iannino F, Deakin WJ, Ugalde RA, & Lepek VC (2009) 
Characterization of the Mesorhizobium loti MAFF303099 type-three protein 
secretion system. Molecular Plant-Microbe Interactions 22(5):519-528. 

189. Vinayak M & Pathak C (2009) Queuosine modification of tRNA: its divergent 
role in cellular machinery. Bioscience reports 30(2):135-148. 

190. Marchetti M, et al. (2013) Queuosine biosynthesis is required for 
Sinorhizobium meliloti induced cytoskeletal modifications on HeLa cells and 
symbiosis with Medicago truncatula. PLoS ONE 8(2):e56043. 

191. Sullivan JT, Brown SD, Yocum RR, & Ronson CW (2001) The bio operon on 
the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a 
novel gene involved in pimeloyl-CoA synthesis. Microbiology 147(Pt 5):1315-
1322. 

192. Howieson JG, Loi A, & Carr SJ (1995) Biserrula pelecinus L.-a legume pasture 
species with potential for acid, duplex soils which is nodulated by unique root-
nodule bacteria. Australian Journal of Experimental Agriculture 46:997-1009. 

193. Nandasena KG, O'Hara GW, Tiwari RP, & Howieson JG (2006) Rapid on situ 
evolution of nodulating strains for Biserrula pelecinus L. through lateral 
transfer of a symbiosis island from the original mesorhizobial inoculant. Appl. 
Environ. Microbiol. 72(11):7365-7367. 

194. Nandasena KG, O'Hara GW, Tiwari RP, Sezmis E, & Howieson JG (2007) In 
situ lateral transfer of symbiosis islands results in rapid evolution of diverse 
competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation 
on the pasture legume Biserrula pelecinus L. Environmental microbiology 
9(10):2496-2511. 



     Bibliography

      

187 
  

195. Nandasena KG, O'Hara GW, Tiwari RP, Willems A, & Howieson JG (2009) 
Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. 
nov., isolated from Biserrula pelecinus L. in Australia. International Journal of  
Systematic and Evolutionary Microbiology 59(Pt 9):2140-2147. 

196. Bullard GK, Roughley RJ, & Pulsford DJ (2005) The legume inoculant industry 
and inoculant quality control in Australia: 19532003. Australian Journal of 
Experimental Agriculture 45(3):127-140. 

197. Drew E, Herridge, D., Ballard, R., O’Hara, G., Deaker, R., Denton, M., Yates, 
R., Gemell, G., Hartley, E., Phillips, L., Seymour, N., Howieson, J., Ballard, N. 
(2012) Inoculating legumes: a practical guide. Grains Research and 
Development Corporation (Grains Research and Development Organisation, 
Kingston, Australia). 

198. van Kessel C & Hartley C (2000) Agricultural management of grain legumes: 
has it led to an increase in nitrogen fixation? Field Crops Research 65(2):165-
181. 

199. FAOSTAT (2018) (FAO Statistics Division). 

200. Kinzig AP & Socolow RH (1994) Human impacts on the nitrogen cycle. 
Physics Today 47(11):24-31. 

201. Vance CP, Graham PH, & Allan DL (2000) Biological Nitrogen Fixation: 
Phosphorus - A Critical Future Need? Nitrogen Fixation: From Molecules to 
Crop Productivity, eds Pedrosa FO, Hungria M, Yates G, & Newton WE 
(Springer Netherlands, Dordrecht), pp 509-514. 

202. Slattery J, Pearce, D. (2002) Development of Elite Inoculant Rhizobium 
Strains in Southeastern Australia. Inoculants and Nitrogen Fixation of 
Legumes in Vietnam, ed Herridge D (ACIAR, Australia), pp 86-94. 

203. Slattery JF, Pearce DJ, & Slattery WJ (2004) Effects of resident rhizobial 
communities and soil type on the effective nodulation of pulse legumes. Soil 
Biology and Biochemistry 36(8):1339-1346. 

204. Nandasena K, et al. (2014) Complete genome sequence of Mesorhizobium 
ciceri bv. biserrulae type strain (WSM1271(T)). Standards in genomic 
sciences 9(3):462-472. 

205. Reeve W, et al. (2013) Complete genome sequence of Mesorhizobium 
opportunistum type strain WSM2075(T.). Standards in genomic sciences 
9(2):294-303. 

206. Reeve W, et al. (2013) Complete genome sequence of Mesorhizobium 
australicum type strain (WSM2073(T)). Standards in genomic sciences 
9(2):410-419. 

207. Miller JH (1972) Experiments in molecular genetics (Cold Spring Harbour 
Laboratory Press, New York) p pdb.rec8141. 

208. Thoma S & Schobert M (2009) An improved Escherichia coli donor strain for 
diparental mating. FEMS Microbiol Lett 294(2):127-132. 



Bibliography 

188 
 

209. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen 
Microbiol 84(1):188-198. 

210. Ronson CW, Nixon BT, Albright LM, & Ausubel FM (1987) Rhizobium meliloti 
ntrA (rpoN) gene is required for diverse metabolic functions. J. Bacteriol. 
169(6):2424-2431. 

211. McClean KH, et al. (1997) Quorum sensing and Chromobacterium violaceum: 
exploitation of violacein production and inhibition for the detection of N-
acylhomoserine lactones. Microbiology 143 ( Pt 12):3703-3711. 

212. Goel A, Sindhu S, & Dadarwal K (2002) Stimulation of nodulation and plant 
growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to 
fungal pathogens. Biology and Fertility of Soils 36(6):391-396. 

213. Reeve W, et al. (2015) A genomic encyclopedia of the root nodule bacteria: 
assessing genetic diversity through a systematic biogeographic survey. 
Standards in genomic sciences 10:14-14. 

214. Vidal C, et al. (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant 
symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, 
France. International journal of systematic and evolutionary microbiology 
59(Pt 4):850-855. 

215. Quandt J & Hynes MF (1993) Versatile suicide vectors which allow direct 
selection for gene replacement in gram-negative bacteria. Gene 127(1):15-
21. 

216. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, & Schweizer HP (1998) A 
broad-host-range Flp-FRT recombination system for site-specific excision of 
chromosomally-located DNA sequences: application for isolation of unmarked 
Pseudomonas aeruginosa mutants. Gene 212(1):77-86. 

217. Prentki P & Krisch HM (1984) In vitro insertional mutagenesis with a selectable 
DNA fragment. Gene 29(3):303-313. 

218. Prell J, Boesten B, Poole P, & Priefer UB (2002) The Rhizobium 
leguminosarum bv. viciae VF39 gamma-aminobutyrate (GABA) 
aminotransferase gene (gabT) is induced by GABA and highly expressed in 
bacteroids. Microbiology 148(Pt 2):615-623. 

219. Rodpothong P, et al. (2009) Nodulation gene mutants of Mesorhizobium loti 
R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. 
Molecular Plant-Microbe Interactions 22(12):1546-1554. 

220. Khan SR, Gaines J, Roop RM, & Farrand SK (2008) Broad-host-range 
expression vectors with tightly regulated promoters and their use to examine 
the influence of TraR and TraM expression on Ti plasmid quorum sensing. 
Appl. Environ. Microbiol. 74(16):5053-5062. 

221. Antoine R, et al. (2000) New virulence-activated and virulence-repressed 
genes identified by systematic gene inactivation and generation of 
transcriptional fusions in Bordetella pertussis. J. Bacteriol. 182(20):5902-
5905. 



     Bibliography

      

189 
  

222. Dombrecht B, Vanderleyden J, & Michiels J (2001) Stable RK2-derived 
cloning vectors for the analysis of gene expression and gene function in gram-
negative bacteria. Molecular Plant-Microbe Interactions 14(3):426-430. 

223. Reeve WG, Tiwari RP, Melino V, & Poole PS (2016) Fundamental molecular 
techniques for rhizobia. Working with rhizobia, ed Howieson JG, Dilworth, M.J. 
(Australian Centre for International Agricultural Research, Canberra), pp 221–
244. 

224. Sambrook J, Russell, R.W (2001) Molecular Cloning: A Laboratory Manual 
(Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York) 3 
Ed. 

225. Ma J, Wang, Y., Wang, Y. (2013) A simple, fast and efficient method for 
cloning blunt DNA fragments. Afr. J. Biotechnol. 12(26):4094-4097. 

226. Wu N, Matand, K., Kebede, B., Acquaah, G., Williams, S. (2010) Enhancing 
DNA electrotransformation efficiency in Escherichia coli DH10B 
electrocompetent cells. Electronic Journal of Biotechnology 13(5). 

227. Li X, et al. (2010) An improved calcium chloride method preparation and 
transformation of competent cells. Afr. J. Biotechnol. 9(50):8549-8554. 

228. Hanahan D (1983) Studies on transformation of Escherichia coli with 
plasmids. J. Mol. Biol 166(4):557-580. 

229. Ramsay J (2013) High-throughput β-galactosidase and β-glucuronidase 
assays using fluorogenic substrates. Bio-Protocol 3(14):e827. 

230. Cubo MT, Buendia-Claveria AM, Beringer JE, & Ruiz-Sainz JE (1988) Melanin 
production by Rhizobium strains. Appl. Environ. Microbiol. 54(7):1812-1817. 

231. Johnston AWB, Hombrecher G, Brewin NJ, & Cooper R, M. C. (1982) Two 
transmissible plasmids in Rhizobium leguminosarum strain 300. Microbiology 
128(1):85-93. 

232. Chan KG, et al. (2011) Characterization of N-acylhomoserine lactone-
degrading bacteria associated with the Zingiber officinale (ginger) 
rhizosphere: co-existence of quorum quenching and quorum sensing in 
Acinetobacter and Burkholderia. BMC microbiology 11:51. 

233. Langmead B & Salzberg SL (2012) Fast gapped-read alignment with Bowtie 
2. Nat Methods 9(4):357-359. 

234. Rutherford K, et al. (2000) Artemis: sequence visualization and annotation. 
Bioinformatics 16(10):944-945. 

235. Anders S, Pyl PT, & Huber W (2015) HTSeq - A Python framework to work 
with high-throughput sequencing data. Bioinformatics 31. 

236. Love MI, Huber W, & Anders S (2014) Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12):550. 



Bibliography 

190 
 

237. Alikhan NF, Petty NK, Ben Zakour NL, & Beatson SA (2011) BLAST Ring 
Image Generator (BRIG): simple prokaryote genome comparisons. BMC 
genomics 12:402. 

238. Notredame C, Higgins DG, & Heringa J (2000) T-Coffee: A novel method for 
fast and accurate multiple sequence alignment. J. Mol. Biol 302(1):205-217. 

239. Carver TJ, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 
21(16):3422-3423. 

240. Guy L, Roat Kultima J, & Andersson SGE (2010) genoPlotR: comparative 
gene and genome visualization in R. Bioinformatics 26(18):2334-2335. 

241. Kearse M, et al. (2012) Geneious basic: an integrated and extendable desktop 
software platform for the organization and analysis of sequence data. 
Bioinformatics 28(12):1647-1649. 

242. Markowitz VM, et al. (2012) IMG: the integrated microbial genomes database 
and comparative analysis system. Nucleic Acids Res 40(D1):D115-D122. 

243. Sullivan J & Ronson C (1998) Evolution of rhizobia by acquisition of a 500-kb 
symbiosis island that integrates into a phe-tRNA gene. Proceedings of the 
National Academy of Sciences 95:5145 - 5149. 

244. Groth AC & Calos MP (2004) Phage integrases: biology and applications. J. 
Mol. Biol 335(3):667-678. 

245. Hynes MF, Quandt J, O'Connell MP, & Puhler A (1989) Direct selection for 
curing and deletion of Rhizobium plasmids using transposons carrying the 
Bacillus subtilis sacB gene. Gene 78(1):111-120. 

246. Hubber AM, Vergunst AC, Sullivan JT, Hooykaas PJJ, & Ronson CW (2004) 
Symbiotic phenotypes and translocated effector proteins of the 
Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Molecular 
microbiology 54(2):561-574. 

247. Haskett TL, et al. (2016) Assembly and transfer of tripartite integrative and 
conjugative genetic elements. Proceedings of the National Academy of 
Sciences 113(43):12268-12273. 

248. Byer AS, Shepard EM, Peters JW, & Broderick JB (2015) Radical S-adenosyl-
L-methionine chemistry in the synthesis of hydrogenase and nitrogenase 
metal cofactors. Journal of Biological Chemistry 290(7):3987-3994. 

249. Lehmann T, Hoffmann M, Hentrich M, & Pollmann S (2010) Indole-3-
acetamide-dependent auxin biosynthesis: A widely distributed way of indole-
3-acetic acid production? European Journal of Cell Biology 89(12):895-905. 

250. Spaepen S & Vanderleyden J (2011) Auxin and plant-microbe interactions. 
Cold Spring Harbor Perspectives in Biology 3(4):a001438. 

251. Oetiker JH, Lee DH, & Kato A (1999) Molecular analysis of a tryptophan-2-
monooxygenase gene (IaaM) of Agrobacterium vitis. DNA Sequence 10(4-
5):349-354. 



     Bibliography

      

191 
  

252. Camerini S, et al. (2008) Introduction of a novel pathway for IAA biosynthesis 
to rhizobia alters vetch root nodule development. Archives of microbiology 
190(1):67-77. 

253. Bianco C, Senatore B, Arbucci S, Pieraccini G, & Defez R (2014) Modulation 
of endogenous indole-3-acetic acid biosynthesis in bacteroids within 
Medicago sativa nodules. Appl. Environ. Microbiol. 80(14):4286-4293. 

254. Amundsen SK, Taylor AF, Chaudhury AM, & Smith GR (1986) recD: the gene 
for an essential third subunit of exonuclease V. PNAS 83(15):5558-5562. 

255. Biek DP & Cohen SN (1986) Identification and characterization of recD, a 
gene affecting plasmid maintenance and recombination in Escherichia coli. 
Journal of bacteriology 167(2):594-603. 

256. Lovett ST, Luisi-DeLuca C, & Kolodner RD (1988) The genetic dependence 
of recombination in recD mutants of Escherichia coli. Genetics 120(1):37-45. 

257. Williams KP (2002) Integration sites for genetic elements in prokaryotic tRNA 
and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic 
Acids Research 30(4):866-875. 

258. Hochhut B & Waldor MK (1999) Site-specific integration of the conjugal Vibrio 
cholerae SXT element into prfC. Molecular microbiology 32:99-110. 

259. Menard KL & Grossman AD (2013) Selective pressures to maintain 
attachment site specificity of integrative and conjugative elements. PLoS 
genetics 9(7):e1003623. 

260. Wozniak RAF & Waldor MK (2009) A toxin–antitoxin system promotes the 
maintenance of an integrative conjugative element. PLoS genetics 
5(3):e1000439. 

261. Chapleau M, et al. (2015) Identification of genetic and environmental factors 
stimulating excision from Streptomyces scabiei chromosome of the 
toxicogenic region responsible for pathogenicity. Molecular plant pathology. 

262. Weisberg RA & Gottesman ME (1971) The stability of Int and Xis functions. 
The bacteriophage lambda, ed Hershey AD (Cold Spring Harbor Lab Press, 
Cold Spring Harbor, New York), pp 489–500. 

263. Trempy JE, Kirby JE, & Gottesman S (1994) Alp suppression of Lon: 
dependence on the slpA gene. J. Bacteriol. 176(7):2061-2067. 

264. Drozdetskiy A, Cole C, Procter J, & Barton GJ (2015) JPred4: a protein 
secondary structure prediction server. Nucleic Acids Res 43(W1):W389-
W394. 

265. Aravind L, Anantharaman V, Balaji S, Babu MM, & Iyer LM (2005) The many 
faces of the helix-turn-helix domain: transcription regulation and beyond. 
FEMS Microbiol Rev 29(2):231-262. 

266. Freese NH, Norris DC, & Loraine AE (2016) Integrated genome browser: 
visual analytics platform for genomics. Bioinformatics 32(14):2089-2095. 



Bibliography 

192 
 

267. Lundqvist B & Bertani G (1984) Immunity repressor of bacteriophage P2. 
Identification and DNA-binding activity. J. Mol. Biol 178(3):629-651. 

268. Dodd IB, Kalionis B, & Egan JB (1990) Control of gene expression in the 
temperate coliphage 186. VIII. Control of lysis and lysogeny by a 
transcriptional switch involving face-to-face promoters. J. Mol. Biol 214(1):27-
37. 

269. Saha S, Haggård-Ljungquist E, & Nordström K (1989) Activation of prophage 
P4 by the P2 Cox protein and the sites of action of the Cox protein on the two 
phage genomes. PNAS 86(11):3973-3977. 

270. Ahlgren-Berg A, et al. (2009) A comparative analysis of the bifunctional Cox 
proteins of two heteroimmune P2-like phages with different host integration 
sites. Virology 385(2):303-312. 

271. Piazzolla D, et al. (2006) Expression of phage P4 integrase is regulated 
negatively by both Int and Vis. J Gen Virol 87(Pt 8):2423-2431. 

272. Six EW & Lindqvist BH (1978) Mutual derepression in the P2-P4 
bacteriophage system. Virology 87(2):217-230. 

273. Goessweiner-Mohr N, et al. (2014) Structure of the double-stranded DNA-
binding type IV secretion protein TraN from Enterococcus. Acta 
crystallographica. Section D, Biological crystallography 70(Pt 9):2376-2389. 

274. Abbani M, Iwahara M, & Clubb RT (2005) The structure of the excisionase 
(Xis) protein from conjugative transposon Tn916 provides insights into the 
regulation of heterobivalent tyrosine recombinases. J Mol Biol 347(1):11-25. 

275. Patel HK, et al. (2013) Bacterial LuxR solos have evolved to respond to 
different molecules including signals from plants. Front Plant Sci. 4:447. 

276. Patankar AV & Gonzalez JE (2009) Orphan LuxR regulators of quorum 
sensing. FEMS Microbiol Rev 33(4):739-756. 

277. Verma SC & Miyashiro T (2013) Quorum sensing in the squid-Vibrio 
symbiosis. International Journal of Molecular Sciences 14(8):16386-16401. 

278. Daniels R, Vanderleyden J, & Michiels J (2004) Quorum sensing and 
swarming migration in bacteria. FEMS Microbiol Rev 28(3):261-289. 

279. Li Y-H & Tian X (2012) Quorum sensing and bacterial social interactions in 
biofilms. Sensors (Basel, Switzerland) 12(3):2519-2538. 

280. Rutherford ST & Bassler BL (2012) Bacterial quorum sensing: its role in 
virulence and possibilities for its control. Cold Spring Harbor perspectives in 
medicine 2(11). 

281. Antunes LC, Ferreira RB, Buckner MM, & Finlay BB (2010) Quorum sensing 
in bacterial virulence. Microbiology 156(Pt 8):2271-2282. 

282. Rajput A, Kaur K, & Kumar M (2016) SigMol: repertoire of quorum sensing 
signaling molecules in prokaryotes. Nucleic Acids Res 44(D1):D634-D639. 



     Bibliography

      

193 
  

283. Thiel V, Kunze B, Verma P, Wagner-Dobler I, & Schulz S (2009) New 
structural variants of homoserine lactones in bacteria. Chembiochem : a 
European journal of chemical biology 10(11):1861-1868. 

284. Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Jr., & Greenberg EP (1996) 
Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone 
synthase activity of a purified Vibrio fischeri LuxI protein. PNAS 93(18):9505-
9509. 

285. Churchill MEA & Chen L (2011) Structural basis of acyl-homoserine lactone-
dependent signaling. Chemical Reviews 111(1):68-85. 

286. Gould TA, Herman J, Krank J, Murphy RC, & Churchill MEA (2006) Specificity 
of acyl-homoserine lactone synthases examined by mass spectrometry. J. 
Bacteriol. 188(2):773-783. 

287. Hoang TT, Sullivan SA, Cusick JK, & Schweizer HP (2002) Beta-ketoacyl acyl 
carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway 
is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. 
Microbiology 148(Pt 12):3849-3856. 

288. Raychaudhuri A, Jerga A, & Tipton PA (2005) Chemical mechanism and 
substrate specificity of RhlI, an acylhomoserine lactone synthase from 
Pseudomonas aeruginosa. Biochemistry 44(8):2974-2981. 

289. Chen J & Xie J (2011) Role and regulation of bacterial LuxR-like regulators. 
Journal of cellular biochemistry 112(10):2694-2702. 

290. Fuqua C, Winans SC, & Greenberg EP (1996) Census and consensus in 
bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional 
regulators. Annual review of microbiology 50:727-751. 

291. Gerdt JP, et al. (2017) Chemical interrogation of LuxR-type quorum sensing 
receptors reveals new insights into receptor selectivity and the potential for 
interspecies bacterial signaling. ACS chemical biology 12(9):2457-2464. 

292. Koch B, et al. (2005) The LuxR receptor: the sites of interaction with quorum-
sensing signals and inhibitors. Microbiology 151(Pt 11):3589-3602. 

293. Minogue TD, Carlier AL, Koutsoudis MD, & Von Bodman SB (2005) The cell 
density-dependent expression of stewartan exopolysaccharide in Pantoea 
stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA 
gene. Mol. Microbiol. 56(1):189-203. 

294. von Bodman SB, Majerczak DR, & Coplin DL (1998) A negative regulator 
mediates quorum-sensing control of exopolysaccharide production in Pantoea 
stewartii subsp. stewartii. PNAS 95(13):7687-7692. 

295. Zhu J & Winans SC (2001) The quorum-sensing transcriptional regulator TraR 
requires its cognate signaling ligand for protein folding, protease resistance, 
and dimerization. PNAS 98(4):1507-1512. 

296. Urbanowski ML, Lostroh CP, & Greenberg EP (2004) Reversible acyl-
homoserine lactone binding to purified Vibrio fischeri LuxR protein. J. 
Bacteriol. 186(3):631-637. 



Bibliography 

194 
 

297. Yang M, Giel JL, Cai T, Zhong Z, & Zhu J (2009) The LuxR family quorum-
sensing activator MrtR requires its cognate autoinducer for dimerization and 
activation but not for protein folding. J. Bacteriol. 191(1):434-438. 

298. Pérez PD, Weiss JT, & Hagen SJ (2011) Noise and crosstalk in two quorum-
sensing inputs of Vibrio fischeri. BMC Systems Biology 5(1):153. 

299. Czajkowski R & Jafra S (2009) Quenching of acyl-homoserine lactone-
dependent quorum sensing by enzymatic disruption of signal molecules. Acta 
biochimica Polonica 56(1):1-16. 

300. Uroz S, Dessaux Y, & Oger P (2009) Quorum sensing and quorum quenching: 
the yin and yang of bacterial communication. Chembiochem : a European 
journal of chemical biology 10(2):205-216. 

301. Chen F, Gao Y, Chen X, Yu Z, & Li X (2013) Quorum quenching enzymes and 
their application in degrading signal molecules to block quorum sensing-
dependent infection. International Journal of Molecular Sciences 14(9):17477. 

302. Utari PD, Vogel J, & Quax WJ (2017) Deciphering physiological functions of 
AHL quorum quenching acylases. Front Microbiol. 8:1123. 

303. Grandclement C, Tannieres M, Morera S, Dessaux Y, & Faure D (2016) 
Quorum quenching: role in nature and applied developments. FEMS Microbiol 
Rev 40(1):86-116. 

304. Yang M, et al. (2009) Functional analysis of three AHL autoinducer synthase 
genes in Mesorhizobium loti reveals the important role of quorum sensing in 
symbiotic nodulation. Can J Microbiol 55:210+. 

305. Williamson PR, Wakamatsu K, & Ito S (1998) Melanin biosynthesis in 
Cryptococcus neoformans. J. Bacteriol. 180(6):1570-1572. 

306. Castro-Sowinski S, Martinez-Drets G, & Okon Y (2002) Laccase activity in 
melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol Lett 
209(1):119-125. 

307. Zhu X & Williamson PR (2004) Role of laccase in the biology and virulence of 
Cryptococcus neoformans. FEMS yeast research 5(1):1-10. 

308. Plonka PM & Grabacka M (2006) Melanin synthesis in microorganisms-
biotechnological and medical aspects. Acta biochimica Polonica 53(3):429-
443. 

309. Reiss R, et al. (2013) Laccase versus laccase-like multi-copper oxidase: a 
comparative study of similar enzymes with diverse substrate spectra. PLoS 
ONE 8(6):e65633. 

310. Yates EA, et al. (2002) N-acylhomoserine lactones undergo lactonolysis in a 
pH-, temperature-, and acyl chain length-dependent manner during growth of 
Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and 
immunity 70(10):5635-5646. 

311. Mei G-Y, Yan X-X, Turak A, Luo Z-Q, & Zhang L-Q (2010) AidH, an 
alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, Is 



     Bibliography

      

195 
  

a novel N-acylhomoserine lactonase. Appl. Environ. Microbiol. 76(15):4933-
4942. 

312. Holmquist M (2000) Alpha/beta-hydrolase fold enzymes: structures, functions 
and mechanisms. Current protein & peptide science 1(2):209-235. 

313. Gao A, et al. (2013) High-resolution structures of AidH complexes provide 
insights into a novel catalytic mechanism for N-acyl homoserine lactonase. 
Acta crystallographica. Section D, Biological crystallography 69(Pt 1):82-91. 

314. Mercado-Blanco J, García F, Fernández-López M, & Olivares J (1993) 
Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic 
plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase 
gene mepA. J. Bacteriol. 175(17):5403-5410. 

315. Riedel K, et al. (2001) N-acylhomoserine-lactone-mediated communication 
between Pseudomonas aeruginosa and Burkholderia cepacia in mixed 
biofilms. Microbiology 147(Pt 12):3249-3262. 

316. Steindler L & Venturi V (2007) Detection of quorum-sensing N-acyl 
homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol 
Lett 266(1):1-9. 

317. Hynes MF, Brucksch K, & Priefer U (1988) Melanin production encoded by a 
cryptic plasmid in a Rhizobium leguminosarum strain. Archives of 
microbiology 150(4):326-332. 

318. Borthakur D, Lamb JW, & Johnston AW (1987) Identification of two classes of 
Rhizobium phaseoli genes required for melanin synthesis, one of which is 
required for nitrogen fixation and activates the transcription of the other. 
Molecular Genetics and Genomics 207(1):155-160. 

319. Bell AA, Wheeler, M.H. (1986) Biosynthesis and functions of fungal melanins. 
Annual Review of Phytopathology 24(1):411-451. 

320. Pinero S, et al. (2007) Tyrosinase from Rhizobium etli is involved in nodulation 
efficiency and symbiosis-associated stress resistance. Journal of molecular 
microbiology and biotechnology 13(1-3):35-44. 

321. Hawkins FK & Johnston AW (1988) Transcription of a Rhizobium 
leguminosarum biovar phaseoli gene needed for melanin synthesis is 
activated by nifA of Rhizobium and Klebsiella pneumoniae. Mol. Microbiol. 
2(3):331-337. 

322. Lamb JW, Hombrecher G, & Johnston AWB (1982) Plasmid-determined 
nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Molecular and 
General Genetics 186(3):449-452. 

323. Albuquerque P, et al. (2014) Quorum sensing-mediated, cell density-
dependent regulation of growth and virulence in Cryptococcus neoformans. 
mBio 5(1). 

324. Wang Y & Casadevall A (1994) Decreased susceptibility of melanized 
Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 60(10):3864-
3866. 



Bibliography 

196 
 

325. Rosas AL & Casadevall A (1997) Melanization affects susceptibility of 
Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 153(2):265-
272. 

326. Garcia-Rivera J & Casadevall A (2001) Melanization of Cryptococcus 
neoformans reduces its susceptibility to the antimicrobial effects of silver 
nitrate. Medical mycology 39(4):353-357. 

327. Rosas AL & Casadevall A (2001) Melanization decreases the susceptibility of 
Cryptococcus neoformans to enzymatic degradation. Mycopathologia 
151(2):53-56. 

328. Czajkowski R, et al. (2011) Inactivation of AHLs by Ochrobactrum sp. A44 
depends on the activity of a novel class of AHL acylase. Environmental 
Microbiology Reports 3(1):59-68. 

329. Jafra S, et al. (2006) Detection and characterization of bacteria from the potato 
rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 
52(10):1006-1015. 

330. Zhang H-B, Wang L-H, & Zhang L-H (2002) Genetic control of quorum-
sensing signal turnover in Agrobacterium tumefaciens. PNAS 99(7):4638-
4643. 

331. Carlier A, et al. (2003) The Ti Plasmid of Agrobacterium tumefaciens Harbors 
an attM-paralogous Gene, aiiB, also encoding N-acyl homoserine lactonase 
activity. Appl. Environ. Microbiol. 69(8):4989-4993. 

332. Khan SR & Farrand SK (2009) The BlcC (AttM) lactonase of Agrobacterium 
tumefaciens does not quench the quorum-Sensing system that regulates Ti 
plasmid conjugative transfer. J. Bacteriol. 191(4):1320-1329. 

333. Zhang HB, Wang C, & Zhang LH (2004) The quormone degradation system 
of Agrobacterium tumefaciens is regulated by starvation signal and stress 
alarmone (p)ppGpp. Mol. Microbiol. 52(5):1389-1401. 

334. Chai Y, Tsai CS, Cho H, & Winans SC (2007) Reconstitution of the 
biochemical activities of the AttJ repressor and the AttK, AttL, and AttM 
catabolic enzymes of Agrobacterium tumefaciens. J. Bacteriol. 189(9):3674-
3679. 

335. Dorgai L, Oberto J, & Weisberg RA (1993) Xis and Fis proteins prevent site-
specific DNA inversion in lysogens of phage HK022. J. Bacteriol. 175(3):693-
700. 

336. Bi H, Christensen QH, Feng Y, Wang H, & Cronan JE (2012) The Burkholderia 
cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional 
crotonase homologue having both dehydratase and thioesterase activities. 
Mol. Microbiol. 83(4):840-855. 

337. Deng Y, Wu J, Eberl L, & Zhang LH (2010) Structural and functional 
characterization of diffusible signal factor family quorum-sensing signals 
produced by members of the Burkholderia cepacia complex. Applied 
Environmental Microbiology 76(14):4675-4683. 



     Bibliography

      

197 
  

338. Ryan RP, McCarthy Y, Watt SA, Niehaus K, & Dow JM (2009) Intraspecies 
signaling involving the diffusible signal factor BDSF (cis-2-dodecenoic acid) 
influences virulence in Burkholderia cenocepacia. J. Bacteriol. 191(15):5013-
5019. 

339. Zhou L, et al. (2015) The multiple DSF-family QS signals are synthesized from 
carbohydrate and branched-chain amino acids via the FAS elongation cycle. 
Scientific Reports 5:13294. 

340. Krick A, et al. (2007) A marine Mesorhizobium sp. produces structurally novel 
long-chain N-acyl-L-homoserine lactones. Appl. Environ. Microbiol. 
73(11):3587-3594. 

341. Wilson JW & Nickerson CA (2006) A new experimental approach for studying 
bacterial genomic island evolution identifies island genes with bacterial host-
specific expression patterns. BMC Evolutionary Biology 6(1):2. 

342. Wang L, et al. (2013) A minimal nitrogen fixation gene cluster from 
Paenibacillus sp. WLY78 enables expression of active nitrogenase in 
Escherichia coli. PLoS genetics 9(10):e1003865. 

343. Kim J & Copley SD (2012) Inhibitory cross-talk upon introduction of a new 
metabolic pathway into an existing metabolic network. Proceedings of the 
National Academy of Sciences 109(42):E2856-2864. 

344. Kumar N, et al. (2015) Bacterial genospecies that are not ecologically 
coherent: population genomics of Rhizobium leguminosarum. Open biology 
5(1):140133. 

345. Williams D, Gogarten JP, & Papke RT (2012) Quantifying homologous 
replacement of loci between haloarchaeal species. Genome biology and 
evolution 4(12):1223-1244. 

346. Coscolla M, Comas I, & Gonzalez-Candelas F (2011) Quantifying nonvertical 
inheritance in the evolution of Legionella pneumophila. Molecular biology and 
evolution 28(2):985-1001. 

347. Gormley NA, Watson MA, & Halford SE (2001) Bacterial restriction–
modification systems. eLS,  (John Wiley & Sons, Ltd). 

348. Thomas CM & Nielsen KM (2005) Mechanisms of, and barriers to, horizontal 
gene transfer between bacteria. Nature Reviews Microbiology 3(9):711-721. 

349. Lopez-Sanchez MJ, et al. (2012) The highly dynamic CRISPR1 system of 
Streptococcus agalactiae controls the diversity of its mobilome. Molecular 
microbiology 85(6):1057-1071. 

350. Zhang Q, Rho M, Tang H, Doak TG, & Ye Y (2013) CRISPR-Cas systems 
target a diverse collection of invasive mobile genetic elements in human 
microbiomes. Genome Biology 14(4):R40. 

351. Marrero J & Waldor MK (2007) The SXT/R391 family of integrative conjugative 
elements is composed of two exclusion groups. Journal of bacteriology 
189(8):3302-3305. 



Bibliography 

198 
 

352. Auchtung JM, Lee CA, Garrison KL, & Grossman AD (2007) Identification and 
characterization of the immunity repressor (ImmR) that controls the mobile 
genetic element ICEBs1 of Bacillus subtilis. Molecular microbiology 
64(6):1515-1528. 

353. Elias NV & Herridge DF (2015) Naturalised populations of mesorhizobia in 
chickpea (Cicer arietinum L.) cropping soils: effects on nodule occupancy and 
productivity of commercial chickpea. Plant and Soil 387(1):233-249. 

 


