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Abstract 

BACKGROUND: Algal growth on solid surfaces confers the advantage of combining the 

algal harvesting and bioprocessing steps at a single stage, in addition to the easier handling 

of the immobilized cells that occupy reduced amount of space. The current work employed 

the application of macroporous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel disks 

as a water-insoluble, non-toxic and recyclable immobilization matrix for different microalgal 

strains (Nannochloropsis sp., Dunaliella salina, and Botryococcus braunii) that offer value-

added products for various commercial applications. 
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RESULTS: The study demonstrated the effect of variations in the surface characteristics of 

the algal strains and hydrogel surfaces on the immobilization efficiencies. Gelatin was further 

used to modify PHEMA hydrogels for achieving higher bioaffinity and surface hydrophilicity. 

The results showed that highly salt-tolerant microalgal cells (Dunaliella salina, 

Nannochloropsis sp.) had significantly higher tendencies to attach on the gelatin-modified 

PHEMA hydrogel compare to the freshwater B. braunii colonies; embedded within an 

extracellular matrix mainly made of hydrophobic components; which displayed better 

attachment to the unmodified PHEMA hydrogels. 

 

CONCLUSION: The proposed PHEMA hydrogels are easily-manufactured and highly 

durable materials with the hydrogel disks still retaining their integrity after several years when 

in contact with a liquid. PHEMA disks also own the benefits of having adjustable porosities by 

changing the composition of the polymerization mixture, and modifiable surface properties by 

simply binding various synthetic or natural molecules on their surfaces, which can bring 

several new opportunities for harvesting of various microalgal cells with different surface 

morphologies and chemical compositions. 

  

Keywords: Microalgae; PHEMA hydrogels; Immobilization; Cellular harvesting; Algal biofilm 

 

 

INTRODUCTION 

Immobilization of the cells has various benefits over their free-cell suspensions such as 

easier handling, conquering smaller space, single-stage cellular harvesting, enhancing the 

efficiency of wastewater treatment, and permitting the retention and recycling of the algal 

biomass for high-value-added bioproduct generation at further stages1-5.  Cells can be 

immobilized using different techniques including their entrapment within three dimensional 

gel matrices that can be made of either synthetic or natural polymers, attachment onto the 
This article is protected by copyright. All rights reserved.
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surface of solid supports, and confinement within liquid-liquid emulsions or semi-permeable 

membranes; while the two former methods are the most conventional techniques among 

others 1-3, 6-8. Challenges to find a proper matrix include surfaces with adequate porosity that 

would allow the diffusion of the nutrients towards the cells, while permitting the removal of the 

cellular waste or by-products through their environment 1, 9. Entrapment of microalgal cells 

within insoluble materials face some difficulties on the transfer of light and nutrients, which 

would reflect on lower cell viabilities and slower growth rates compare to their free-cell 

suspensions 3, 5, 10, 11. This is mainly due to the slower diffusion rates of the ions and/or light 

that need to reach the algal cells after passing through the mostly-spherical entrapment 

material, which typically has a volume to surface ratio larger than thin films3, 9, 12. Another 

important point is to use an insoluble matrix that would keep its integrity without being 

degraded throughout the process. In the light of those requirements, thin films of 

macroporous PHEMA and gelatin-modified PHEMA hydrogel were investigated as novel 

immobilization matrices for the biofilm growth of three different species of green microalgae: 

(i) Botryococcus braunii strain BOT-22, (ii) Nannochloropsis sp. (MUR 267), (iii) Dunaliella 

salina (MUR 8). We had chosen to test these three species of microalgae as they are 

currently targeted for mass production for biofuel generation (B. braunii and 

Nannochloropsis) 13-15, high value pigments such as carotenoids, (D. salina)13, 16-18, or high 

value fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) 

(Nannochloropsis) 13, 19. Biofilm growth on solid surfaces can potentially reduce the overall 

cost of mass production by reducing the associated costs of dewatering stage, while 

providing a more efficient harvesting step with the retention of the high-value-added algal 

biomass for product generations 1, 3, 4.  

 PHEMA is made of crosslinked polymers of 2-hydroxyethyl methacrylate (HEMA). Due to 

its swelling properties within water, it is classified as a type of hydrogel material that can 

sustain its three-dimensional structure 20, 21. This highly hydrophilic material has various 

advantages including its stability and inertness at varying environmental conditions such as 
This article is protected by copyright. All rights reserved.
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temperature and pH; ease of fabrication and alteration of its physical form into any desired 

shape; and permitting the incorporation of various natural or inorganic molecules into its 

structure that would change its mechanical/chemical assets and its biocompatibility 20, 22, 23. 

Its high biological tolerance permits various applications including vision improvements in the 

form of intraocular and contact lenses 24, 25; tissue engineering 23, 26; dental implants 27, 28; 

breast prosthesis 29, 30 or nasal cartilage replacements 31 in plastic surgeries; and controlled 

drug delivery systems 32-34. PHEMA hydrogels were also used as an immobilization matrix for 

various enzymes and biomolecules for enhancing the bioreactor applications35-37. Although 

the utilization of PHEMA for the intraocular and contact lenses mainly involves the use of 

nonporous and transparent PHEMA hydrogels 24, 25, there is also a significant interest on the 

fabrication of macroporous PHEMA hydrogels for other biological applications such as the 

delivery of drugs at higher drug loading capacities 34, 38 and ability to transfer large 

biomolecules including growth factors and proteins 33. One of the cost-effective ways to 

generate macroporous PHEMA hydrogels is the polymerization of HEMA monomers under 

the presence of free radical initiator to activate a HEMA molecule that will continuously attach 

onto another one under a chain reaction until the termination of the HEMA supply; a cross 

linking agent that forms an insoluble network by connecting the PHEMA chains together; and 

a diluent 38-41. The concentration of the diluent used during the polymerization process is 

quite essential for the determination of the porosity of the generated hydrogel. When water is 

used as the diluent, optically transparent and nonporous hydrogels are produced if the 

concentration of water in the monomer mixture kept below the critical limits (cited variously in 

between 40-50 wt%), whereas exceeding those limits would result opaque hydrogels with 

macroporous morphology as the excess water would induce phase separation during 

polymerization process 20, 34, 42. One of the main advantages of the solution polymerization 

processes is to allow the alteration of the pore sizes and structures by simply changing the 

concentration ratios of the components within the mixture; i.e. [HEMA]:[solvent] or 

[initiator]:[crosslinking agent]39. Applying suitable mixture concentrations at the beginning of 
This article is protected by copyright. All rights reserved.
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the free radical processes would allow us to produce a stable macroporous material with 

opaque and spongy characteristics as the presence of hydrophilic groups in their structure let 

them absorb water 21, 39. In the current study, gelatin is used for the generation of a modified 

PHEMA hydrogel with greater surface hydrophilicity and more importantly stronger bioaffinity, 

which would allow us to compare its bioactivity with unmodified PHEMA hydrogels at different 

porosities and light transparencies. Gelatin has been known as a surface modifier to PHEMA 

due to its biocompatibility, low cost and its collagen-based structure 23. It has been largely 

used in various biological applications -mostly with mammalian cells- via improving the 

cellular attachment on culture plates43, 44, which has also been applied for several microalgal 

processes such as long-term preservation of microalgae by embedding the cultures on a 

gelatin based matrix45 and encapsulation of microalgal oil within a gelatin-gum Arabic 

complex46.  

 

 

MATERIALS AND METHODS 

 

Preparation of PHEMA hydrogels and gelatin-modified PHEMA hydrogels 

 Previously reported method has been applied to cast the PHEMA hydrogel discs used in 

this study27, 34, 38. In brief, HEMA and water were well mixed in a beaker followed by the 

addition of the cross-linking agent (ethylene glycol dimethacrylate = EDMA) and the initiators 

(ammonium persulfate= APS & N,N,N’,N’-tetramethylethylene diamine = TEMED), according 

to the chemical composition listed in Table S1 and S2. The solution was then distributed into 

a 24-well tissue culture plate in a way to obtain 1 ml solution per each well. Polymerization 

was carried out at room temperature for 3 h, followed by 50 °C for 24 h. Following the 

polymerization, the discs were removed from the mould and immersed in deionized water for 

4 weeks with daily water exchange to remove residual monomers and oligomers. For the 

synthesis of PHEMA-gelatin disks, 1 wt% gelatin in water was used instead of pure water in 
This article is protected by copyright. All rights reserved.
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the preparation. Then it followed the same polymerization procedure as stated above for the 

PHEMA hydrogels. After polymerization, the discs were swollen in 0.5 wt% glutaraldehyde 

solution at room temperature and 170 rpm (orbital shaker) for 16 hrs to allow crosslinking of 

gelatin with glutaraldehyde. The discs were rinsed with deionized water for 3 times at 170 

rpm for 10 minutes and further purified with daily water exchange for four weeks. It should be 

noted that all hydrogels can be cast into polymer sheets and cut into any geometry 

necessary47. In this study, the polymer sheets were cut into disks of two different sizes with 

diameters of 8 mm and 17 mm, having a constant thickness of around 1 mm. 

 

Microalgal strains and culture conditions 

 Race B Botryococcus braunii (BOT-22), Nannochloropsis sp. (MUR 267) and Dunaliella 

salina (MUR 8) were used as the microalgal species of this study.  Botryococcus braunii 

(BOT-22) was obtained from The Network of Asia Oceania Algal Culture Collections 

(AOACC), Japan. Botryococcus braunii culture was maintained in modified AF-6 medium48 at 

a pH around 6.4. The marine Eustigmatophyceae, Nannochloropsis sp. (MUR 267) and the 

Chlorophyceae, Dunaliella salina (MUR 8) used in this study were obtained from Murdoch 

University Algae culture collection. Nannochloropsis sp. was grown in F/2 medium with a 

salinity of 3.5%, while Dunaliella salina was grown in F medium with a salinity of 7% as 

formulated by Guillard (1975)49. Both F and F/2 media were made using natural sea water, 

which was previously collected from the coastal waters off Hillary’s Beach, Perth, Western 

Australia. The seawater was first charcoal filtered and autoclaved prior to the addition of 

sterile nutrients. Initial algal cell cultures were grown in 250 mL Erlenmeyer flasks, under 

continuous cool-white fluorescent illumination at incident intensity of around 200 µmol 

photons m-2s-1(PAR).  

 

Initiation and progress of microalgal growth on the surface of PHEMA hydrogels 

 PHEMA hydrogel disks were initially placed at the centre of a sterile and transparent 6-well 
This article is protected by copyright. All rights reserved.
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tissue culture plate with an internal diameter of 3.5 cm and a depth of approximately 1.5 cm 

(Cellstar®). Identified amount of algal culture solutions were slowly added on top of larger (Ø: 

17 mm; 0.4 mL) and smaller (Ø: 8 mm; 50 µL) disks (refer to Figure S1, Supplementary 

Information), which were selected according to the near-maximum capacity of the fluid that 

would stay at the surface of each disk without falling from the sides. Chlorophyll content and 

quantum yield measurements were both used to validate the uniformity of the initial cell 

concentrations by inoculating from the algal culture flasks with dark-adapted quantum yields 

of ∼0.65 ± 0.05, which have the initial total-chlorophyll contents as ∼1.5 mg/L D. salina, ∼0.7 

mg/L Nannochloropsis sp., and ∼0.4 mg/L B.braunii cells (refer to the Supplementary 

Information for the calculations of chlorophyll contents). Initial quantum yields of the 

microalgal cultures were measured after 20 minutes of dark-adaptation period under the 

room temperature, using a portable fluorometer AquaPen-C (Photon Systems Instruments, 

Czech Republic). After the first introduction of the cells, the disks were kept on the bench for 

two days without any additional processing under the illumination of natural cool white 

fluorescent light with an intensity of 50±5 µmol photon m-2 s-1 and at a temperature of 25±2 º 

C (Figure S1, Supplementary Information). This phase is followed by the addition of sterile 

algae-specific growth media  (AF-6 48 medium for B. braunii; F medium 49 for D. salina and 

F/2 medium for Nannochloropsis sp.) by slowly dripping from the side of the culture-well (4 

mL for larger disks, 500 µL for smaller disks). Then the disks were measured for their dark-

adapted photosynthetic activity for every three days. At the end of the growth experiments 

(with a total duration of 15 days), culture solutions were discarded from the containers 

followed by the addition of ∼3 mL ethanol (70% v/v) by vigorously spraying on the surface of 

all disks. 3 mL of sterile deionized water were then added on top of the ethanol solution, in a 

way that the entire disks would be completely immersed within this mixture. These disks, 

inside the ethanol-water mixture, were kept on the bench for 2 days, followed by the removal 

of ethanol-water solution and washing with sterile deionized water at least for 3 times. In 

order to assure that the surfaces of the disks were cleaned from the cells, photosynthetic 
This article is protected by copyright. All rights reserved.
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activities of the remaining disks were measured. Recycled disks were kept ready within 

sterile deionized water until their further usage for algal immobilization.  

 Cell growth of all cultures was carried out on the surface of hydrogel disks under batch 

conditions at around 25±2 º C and under artificial diurnal-illumination (12 h light / 12 h dark 

cycle). The light periods of the cycle is provided by natural cool white fluorescent lights at a 

light intensity of 50±5 µmol photon m-2 s-1.  

 

Algal growth measurements 

Minimum fluorescence yield 

Algal growth was examined by evaluating the photosynthetic activity of the cells through 

measuring the minimum fluorescence yields (Fo) of the biofilms after their dark-adaptation for 

20 minutes before each measurement.  Fo  values were recorded using a Handy-PEA 

chlorophyll fluorimeter (Hansatech Instruments, UK) that contains high-intensity LED arrays 

delivering red-light at a peak-wavelength of 650 nm, while the infrared region of any light 

source can be blocked by its NIR short-pass filters 50. Dark-adaptation process allows the re-

oxidation of the photosystem-II reaction centre of algal cells, which would lead to the 

calculation of the minimum fluorescence yield under the lack of any photochemical or non-

photochemical quenching of the fluorescence yield50-52. Released fluorescence values from 

the biofilms were later recorded by the integrated software of the fluorimeter, PEA Plus 

V1.10. All experiments were conducted in triplicates and the standard deviation of each value 

is given in the form of error bars within the related figure.  

 

Confocal laser scanning microscopy 

The viability and thickness of the biofilm were observed under the Confocal Laser Scanning 

Microscopy (CLSM), Nikon C2+ multispectral laser scanning confocal microscope, which is 

equipped with 405 nm, 458 nm, 514 nm, 488 nm, 561 nm and 647 nm lasers. The fresh 

sample of algal biofilm was used for this observation. The surface of each disk was cut into 
This article is protected by copyright. All rights reserved.
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thinner layers in a way that the light and the laser can easily penetrate the sample. The 

sample was put upside down on a 35 mm diameter glass bottom dish. The lugol solution was 

added to Dunaliella salina culture for stopping the movement of algal cells prior to the 

microscopic imaging. No solution addition was necessary for the non-motile species of 

Botryococcus braunii and Nannochloropsis sp.. 20x objective was used to capture a three-

dimensional biofilm structure and thickness, while Mito Tracker Deep Red laser (640.0 nm) 

was used for observing the algal cells. Due to their chlorophyll contents, the algal cells 

autofluorophore in red 53, 54. The images were recorded and processed by the software 

package (Nikon Imaging Software (NIS)-Elements) that converted the images into their three-

dimensional forms with two constant dimensions (L:632 μm × W:632 μm) and varying biofilm 

depths (stated as “D” in Figure 5). This observation was done in 2 replicates. 

 

Scanning electron microscopy 

Surface analysis of hydrogels, with and without attached algal cells, were investigated by a 

scanning electron microscopy (SEM, NEON 40EsB) analysis at an accelerating voltage of 

3kV on the samples coated with platinum (layer thickness of ~3nm). The hydrogel samples 

were freeze-dried for a day prior to the SEM analysis. The hydrated hydrogels were 

previously kept overnight at -40 °C inside a freezer, then the frozen samples were transferred 

into a vacuum chamber that is connected to a condenser and cooled to -55ºC. For the SEM 

analysis of the microalgal cultures, given in Figure 2, 200 µL of liquid cultures were initially 

placed on the surface of the SEM pin stubs with carbon adhesive tabs, and allowed to dry 

under the laminar hood before being coated with a layer of platinum for the SEM analysis. 

Size measurements, such as the pore diameters and the sizes of microalgal cells, were 

calculated with the aid of ImageJ 1.50i software. 
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RESULTS AND DISCUSSION  

Immobilization efficiencies of PHEMA hydrogel disks with different porosities 

 The first challenge of the present work was to test the immobilization capabilities of two 

different PHEMA hydrogel disks with different porosities. Opaque E25 PHEMA and 

transparent E60 PHEMA are the labels of the hydrogel specimens used in this study, where 

the numbers represent the percentage of HEMA in the polymerization solutions (see Table 

S1) and the capital letter “E” symbolizes the cross-linking agent EDMA. Porosities of PHEMA 

hydrogels are known to be affected by the variations in the ratios of HEMA to water 

concentrations present in the polymerization mixtures20, 27, 34, 39, 42. Figure 1 shows the 

scanning electron microscopic (SEM) images of as-prepared E25 and E60 PHEMA 

specimens before the introduction of any algal cells. SEM images indicated that the porosity 

of the disks increased as the percentage of HEMA decreases (or percentage of water 

increases), making E25 sample more porous than E60 (Figure 1). On the other hand, E60 

PHEMA specimen’s surface was only composed of flakes rather than porous holes (Figure 

1c&d). The reason to continue testing the E60 sample for algal growth was its more 

transparent nature compare to E25 PHEMA, which would have facilitated the photosynthesis 

process by allowing the transfer of the light throughout the entire disk. The diameter of the 

pores at the surface of E25 PHEMA had a range between 0.6 to 2.5 µm, with an average 

diameter of around 1.6 µm (Figure 1a&b). It should be noted that these pore sizes are 

calculated according to the SEM imaging of the freeze-dried samples, which might be slightly 

higher in their actual moist conditions 55.  The porous structure of E25 PHEMA disk makes it 

a good candidate for serving as a supporting matrix of the microalgal cells, mainly for the 

Nannochloropsis sp. and D. salina cells due to their smaller sizes than B.braunii cells (Figure 

2). According to the SEM images of those cells, Nannochloropsis sp. and D. salina cells have 

spheroidal shapes with average diameters of around 2.8 μm (Figure 2a-b) and 3.5 μm 

(Figure 2c-d), respectively. On the other hand, B.braunii cells form large colonies of around 
This article is protected by copyright. All rights reserved.
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30 µm that are made of pyriform-shaped individual cells with an average length of around 9.5 

µm (Figure 2e&f). One of the advantages of porous surface structures is the possibility to 

allow the replication of the cells on their surfaces by facilitating the diffusion of the nutrients 

towards the cells, while transferring the cellular waste/by-products from the cells through their 

environment 1, 9. It is worth noting that porous PHEMA hydrogels produced in the presence of 

large amounts of water, as reported in this paper, are termed ‘phase separation’ hydrogel24. 

These materials are well known for their applications as medical implants and tissue 

engineering scaffolds in which the presence of interconnected pores and the non-toxic nature 

are essential to facilitate the growth, proliferation and migration of animal cells 24, 25, 39, 56. 

Such hydrogels have also been studied for sustained delivery of therapeutic drugs34, 38 and 

gas transportation and storage57. The feature of open pore channels and its correlation with 

the transportation characteristics of drugs and gases are extensively studied58-61.  

This article is protected by copyright. All rights reserved.
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harshness of the chlorophyll extraction from the surface of the disks; an in situ analysis was 

conducted by measuring the photosynthetic activity of the cells as an indication for the 

cellular growth without harming either the cells or the disks during the progression of the 

growth experiment.  Minimum fluorescence measurements in the dark-adapted state (Fo) is 

referred to have a significant positive correlation with the growth of microalgal cells, due to 

the observed linear relationship between Fo and Chl a,  allowing us to use Fo results as a 

non-invasive proxy tool for estimating algal biomass 51, 62, 63.  According to this information, 

we measured dark-adapted (20 min.) minimum fluorescence values using Handy-PEA 

chlorophyll fluorimeter (Hansatech Instruments, UK) as an indication for the bioactivity of the 

tested hydrogels. Figure 3 shows the variations observed for the photosynthetic activities of 

three different microalgal cells at different time intervals. The comparative growth tests 

between E25 and E60 PHEMA specimens indicated the clear success of the more porous 

E25 PHEMA sample for being a better support for all of the tested microalgal species (Figure 

3a-c).  Figure 3(d-f) showed that the gelatin-modified E20 PHEMA hydrogels provided the 

best support for Nannochloropsis sp. and D.salina cells (Figure 3d&e); whereas unmodified 

PHEMA disks were more attractive for the cells of B.braunii  (Figure 3f). When gelatin-

modified E20 PHEMA was compared with E25 PHEMA specimens at similar dimensions (Ø: 

8 mm), Nannochloropsis sp. cells had around 20 times higher photosynthetic activity on the 

surface of the gelatin-modified hydrogel (Figure 3d), while this increase was only around 5 

folds for D.salina cells (Figure 3e), where both differences were the highest at the 6th day of 

the growth experiments. It should be noted that larger E25 PHEMA hydrogel (Ø: 17 mm) had 

better biofilm activities than its smaller counterpart (Ø: 8 mm) due to the presence of greater 

area for the cells to form biofilms. Growth of microalgal cells was also observed visually, 

where the colour changes on the surface of each disk can be seen on the real-time images 

taken at the beginning, 6th day, and by the last day (15th day) of the growth experiments 

(Figure 4). Note the increasing green colour on the surfaces is due to the increased 

concentration of algal cells on the hydrogel mats. Larger E25 and E60 PHEMA disks had 
This article is protected by copyright. All rights reserved.
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their greenest colour by the 6th day due to their coverage with Nannochloropsis sp. (Figure 

4N(b&e)) or D.salina cells (Figure 4D(b&e)), whereas their gelatin-modified E20 PHEMA 

equivalents kept their green colour until the 15th day of the experiment with a slight increase 

on their growth during the second-half of the experiment (Figures 3d-e; 4N(i)&D(i)).  It 

should be noted that the overall duration of the growth experiments for Nannochloropsis sp. 

and D.salina cell cultures also lasted for 15 days in order to compare them with B.braunii 

cells with slower growth. Due to the characteristic slow-growth rates of B.braunii cells 50, 64, 

more pronounced delay was observed for reaching the maximal cellular activity as can be 

seen in Figures 3c&f and 4B. For the case of E25 and E60 PHEMA disks with B.braunii cells 

(Figure 4B(a-f)), less area is covered with green colour, which is mostly localized on specific 

places rather than being spread throughout the hydrogel surface. This might be mainly due to 

the colony-forming nature of the cells (Figure 2e&f) in addition to showing lower 

photosynthetic activities than Nannochloropsis sp. or D.salina cells (Figure 3).  B.braunii 

cells grown on the surface of gelatin-modified E20 PHEMA showed the lowest cellular 

activities, as also observed with the least colour change during the time course of the growth 

experiment (Figure 4B(g-i)).  
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modified E20 > E25 PHEMA > E60 PHEMA, whereas this order is different for B. braunii cells 

as E25 PHEMA > E60 PHEMA > gelatin-modified E20 PHEMA. As the two most successful 

mats, gelatin-modified E20 PHEMA and E25 PHEMA specimens have macroporous 

structures in common (Figure 1), revealing their physical availability to entrap various 

microorganisms. SEM images of both E25 PHEMA (Figure 6) and gelatin-modified E20 

PHEMA (Figure 7) were also investigated after the immobilization of the cultures, displaying 

the entrapment of the cells within the porous matrices with the exception of the larger 

B.braunii colonies (Figure 2e&f) that are mostly attached on the surfaces of E25 PHEMA 

hydrogel mats rather than being embedded within its pores, which are relatively smaller than 

the sizes of the colonies (Figure 6e&f). For the case of the gelatin-modified E20 PHEMA 

hydrogels, spherical morphologies of both Nannochloropsis sp. and D.salina microalgal cells 

can be distinguished from their immobilizing hydrogel surfaces by the larger sizes of the algal 

cells (varying between ∼2.5 and ∼4 µm; Figure 2) than the more distorted spherical droplets 

of PHEMA polymers (average size ∼1.5 µm; Figure 1), which is in agreement with the 

reported observation of freeze-dried E20 PHEMA-only hydrogels by Paterson et al. 55. 

Additionally, Nannochloropsis sp. and D.salina microalgal cells appear to have smoother 

surfaces under the SEM imaging, which is a typical observation for various algal cells 65. 
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  Structural properties of the solid surfaces such as their porosities, sizes of the pores, and 

surface geometries; morphology of the cells; hydrophobicity and surface charges of both the 

cells and their solid supports are some of the important parameters that contribute on the 

efficiency of cellular attachment on to the supporting solid matrix 66. As two of the unmodified 

PHEMA hydrogels, the significant differences observed for the bioactivities of macroporous 

E25 PHEMA and nonporous E60 PHEMA specimens, which showed the importance of the 

porous surface structures for a proper algal immobilization process. According to the current 

literature, various porous surfaces had been tested for the immobilization of microalgae, such 

as electrospun nanofibers of chitosan 9; polycarbohydrate with grooves 67; controlled-pore 

glass 68; cotton cloth 69; and cellulose nitrate filter paper 50 revealing the successful 

entrapment capabilities of porous structures with sufficient pore sizes that can allow the 

adhesion of the targeted-cells. 

 Compatible surface hydrophobicity of the solid supports and the cells is an important 

parameter on defining the mechanism of cellular adhesion to the solid surfaces. The cell wall 

of an individual B. braunii cell is known to have internal fibrillary layer made of mucilaginous 

polysaccharides and an external-trilaminar-sheath 70, 71, while several individual cells adhere 

by being embedded within an extracellular matrix composed of oils and various cellular 

excretes 70. The hydrophobic nature of the terpenoid substrates present in the extracellular 

matrix of B.braunii microalgal colonies  -particularly botryococcene and associated carotenoid 

hydrocarbons for the B-race B.braunii cells 70, 72-75- might be the main reason for the 

decreased affinity of those cells on the surfaces of the gelatin-modified E20 PHEMA 

hydrogels with enhanced hydrophilic properties due to gelatin.  

 Hydrophilic surface proteins 76 and plasma membrane proteins with extracellular hydrophilic 

moieties 77 are some of the main mechanisms for the adhesion of D.salina cells on solid 

surfaces. It has been also stated that the salt concentration of the culture media is an 

important parameter for defining the hydrophilicity of the cell membrane of Dunaliella cells, as 
This article is protected by copyright. All rights reserved.
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the solutions with sodium chloride concentrations lower than 3M (i.e. natural sea water, and 

the F medium used within the current study 49) results the domination of the cell membrane 

with polar groups, indicating increased hydrophilic properties78. D.salina cells are also known 

to accumulate extracellular polymeric substances (EPS) on their surfaces with hydrophilic 

nature -mainly composed of various proteins, polymers, phospholipids, and nucleic acids- 

that are principally used as a carbon and energy storage material during starvation 

conditions79. These EPSs are the heterogeneous mixture of polyelectrolytes that include 

some groups such as primary amine, aliphatic alkyl, halide-group, aromatic compounds and 

polysaccharides 79, 80; which are compatible with the surfaces of both unmodified PHEMA and 

the more hydrophilic gelatin-modified PHEMA. The unique motility assets of D.salina cells 81 

would also increase their cellular migration and replication on the surface of the attachment 

matrix. 

 Nannochloropsis sp. cells possess high oil contents82, like the oil-rich B.braunii cells, 

without forming any colonies. Previous studies revealed that Nannochloropsis cell walls have 

a bilayer structure made of a cellulosic inner layer surrounded by an outer hydrophobic 

algaenan layer83. Despite this hydrophobic algaenan outer layer, presence of negative 

surface charges might have played a more effective role on the attachment of 

Nannochloropsis sp. cells that clearly showed a higher affinity to the modified PHEMA 

surfaces with hydrophilic gelatin molecules. The presence of hydrophilic functional groups, 

such as -OH (hydroxyl), -NH2 (amine), and -COOH (carboxyl), can generate surface charges 

depending on the pH of the environment9, 84, 85. Most of the algal cells have negative zeta 

potentials, as those aforementioned surface groups create negative surface charges by their 

deprotonation at higher pH conditions above their isoelectric points 84, 86, which is the case for 

the salt-water media used for Nannochloropsis sp. and D.salina  cells having a pH value 

around 8.0 49. The isoelectric point of 4.7–5.2 range for gelatin (type B) 87, 88 shows the 

presence of negative surface charges on gelatin molecules under basic physiological 

conditions, revealing lesser electrostatic attraction to the negative surface charges of 
This article is protected by copyright. All rights reserved.
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microalgae. This might show that the amino groups present on the Nannochloropsis sp. and 

D.salina surfaces would be one of the main sources of electrostatic interactions with the 

negative groups of gelatin. When the repulsive energy barrier between two surfaces is low 

enough, the absorption of negatively charged surfaces onto the surfaces showing zeta 

potentials of the same signs is still possible, which is more pronounced for the low zeta 

potentials that are associated with low repulsive energies 89. It should be noted that the 

saltwater species (i.e., Nannochloropsis sp. and D.salina) showed lower absolute zeta 

potential values than the microalgal species living in freshwater media (i.e. B.braunii) 84, 

which was explained by the high ionic strength of the saltwater medium that would decrease 

the thickness of the electrical-double-layer formed at the solid-water interfaces by 

compressing it around the cells 84, 90, 91. Lower absolute zeta-potential values of salty water 

species (i.e., around -18.5 mV for Nannochloropsis 92) compare to the freshwater B.braunii 

cells (around -30 mV 84, 93), would overcome the repulsive energy barrier to show electrostatic 

attraction between PHEMA hydrogels (around -10 mV57) or type-B gelatin molecules (around 

-12.5 mV 94, 95) that also have negative zeta potentials at physiological conditions 57, 66, 96, 97. A 

comprehensive understanding of the position of attachment-sites, comprising their detailed 

surface morphology and chemical composition, are still needed to fully endorse the 

interactions between the cells and their immobilization matrices. 

 Material recycling experiments also revealed that cleaning the used hydrogel disks with an 

ethanol/water mixture at the end of each cycle was sufficient to re-immobilize new cells on 

the surface of the recycled disks while yielding similar bioactivities even after three 

consecutive cycles (data not shown), providing that the disks were kept within a solvent in 

between the experiments. 

 

CONCLUSIONS  

 We have established the use of macroporous PHEMA hydrogel-disks as a water-insoluble 

and non-toxic support for microalgal growth. Both unmodified PHEMA and gelatin-modified 
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PHEMA were proven to be highly durable polymer supports, with the disks still retaining their 

integrity after several years if kept moist within an aqueous solution. Holding the advantage 

of recycling the disks can contribute to the cost reduction of the overall process. PHEMA 

hydrogels also have the benefit of adjustable porosity, as it can be simply accustomed by 

regulating the chemical composition of the polymerization mixture to meet the specific needs 

of the applications.  Attachment efficiencies of PHEMA hydrogels can be simply altered by 

binding various natural molecules on their surfaces, as also revealed here with their gelatin-

modified PHEMA. Algae immobilized PHEMA systems will be further developed by 

integrating them with waste treatment processes and the generation of various microalgal 

bioproducts including biodiesel, photopigments and fatty acids.  
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