Population dynamics of mantis shrimp, Harpiosquilla harpax in the coastal waters of Pantai Remis, Perak, Peninsular Malaysia

Arshad A.*; Sofea T.; Zamri Z.; Amin S.M.N.; Ara R.

Received: January 2013
Accepted: September 2014

Abstract

This study estimated the length-weight relationship, sex ratio and population parameters of mantis shrimp, Harpiosquilla harpax from the coastal waters of Pantai Remis, Perak, Malaysia between February 2012 and October 2012. Total length and weight of 804 specimens of H. harpax were measured and the sex ratio was 1:0.83(M: F). Males of H. harpax were dominant over the females throughout the study period. The value of relative growth coefficient (b) for H. harpax was 2.698 for males and 2.884 for females. For the length-weight relationship, the species exhibited negative allometric growth for males, females and combined sexes. The L_{∞} and K of H. harpax was 18.38 cm and $1.10 \mathrm{yr}^{-1}$ for males; and 21.53 cm and $0.75 \mathrm{yr}^{-1}$ for females. The growth performance index (φ^{\prime}) was calculated as 2.57 for males and 2.54 for females. Total mortality (Z), natural mortality and fishing mortality was found to be $4.084 \mathrm{yr}^{-}$ ${ }^{1}, 2.247 \mathrm{yr}^{-1}$ and $1.837 \mathrm{yr}^{-1}$ for males; whereas $3.259 \mathrm{yr}^{-1}, 1.674 \mathrm{yr}^{-1}, 1.585 \mathrm{yr}^{-1}$ for females, respectively. The recruitment pattern of the species was continuous throughout the year for males and females. The exploitation level (E) of H. harpax was estimated at 0.449 for males and 0.486 for females. It is revealed that the stock of H. harpax was very close to optimum level of exploitation $(E=0.50)$ in the coastal waters of Pantai Remis, Perak, Malaysia.

Keywords: Harpiosquilla harpax, Condition factor, Sex ratio, Recruitment, Exploitation

[^0]
Introduction

The mantis shrimp H. harpax is locally known as 'udang lipan' in Peninuslar Malaysia and one of the popular food in Malaysia. It occurs very widely in the IndoWest Pacific ranging from Red Sea, Gulf of Oman, Madagascar, South Africa, Sri Lanka, Pakistan, India, Thailand, Singapore, Malaysia and Indonesia. To this date, the status of this shrimp is still undefined as it is assumed as trash fish (Wild Fisheries Research Program, 2009). However, the main uses of this shrimp for food is for local dishes like 'mee udang lipan' and 'mee rebus udang lipan' in Pantai Remis, Malaysia.

Population dynamics of stomatopod has been studied in other countries such as in Mekong Delta of South Vietnam by Dinh et al. (2010), in Kuala Tungkal of Jambi Province Sumatera Island, Indonesia by Wardiatno and Mashar (2011), and in Madras of India by James and Thirumilu (1993). Many researches have been completed on the behaviour of mantis shrimp (Manfrin and Piccinetti, 1970), population genetics of stomatopod (Barber et al., 2002) and relationship between body
length, processed meat length and seasonal changes in net processed-meat of Oratosquilla oratoria (Kodama et al., 2006). However, study regarding population biology of stomatopods in Malaysia is still lacking. Therefore, the present study was undertaken on the population dynamics to know the stock status of H. harpax in the coastal waters of the Pantai Remis, Perak, Peninsular Malaysia

Materials and methods

Study area and sampling
The present study was conducted in the coastal waters of Pantai Remis, ($4^{\circ} 26^{\prime}$ 41.9202" N, $100^{\circ} 37$ ' $2.4564^{\prime \prime}$ E), Perak, Peninsular Malaysia (Fig. 1). This mantis shrimp is usually caught by a trawl net and random sampling was implemented monthly between February 2012 and October 2012. The samples were preserved in a freezer until ready to be analyzed. In the laboratory, total length of 804 individuals was measured using a digital calliper to the nearest 0.1 mm and total weight was taken by an electronic balance of 0.001 g accuracy.

Figure 1: Geographical location of the sampling sites in coastal waters of Pantai Remis ($\mathbf{4}^{\circ} \mathbf{2 6}{ }^{\prime} \mathbf{4 1 . 9 2 0 2 \prime \prime}$ N, $100^{\circ} 37$ ' $2.4564^{\prime \prime}$ E), Perak, Peninsular Malaysia.

Data analysis

To establish the length-weight relationship, $\mathrm{W}=a \mathrm{~L}^{\mathrm{b}}$ was used where W is the weight (g), L is the total length (cm), ' a ' is the intercept (condition factor) and ' b ' is the slope (relative growth coefficient). In addition, 95\% confidence limits of the parameters a and b and the statistical significance level of r^{2} were estimated.

Total length frequencies data of H. harpax was grouped by 1 cm interval. The data were then analysed using the FiSAT (FAO ICLARM Fish Stock Assessment Tools) software, explained in details by Gayanilo Jr. et al. (1996). Asymptotic length $\left(L_{\infty}\right)$ and growth coefficient (K) of the von Bertalanffy growth function (VBGF) were estimated using ELEFAN-1 routine (Pauly and David, 1981) in the FiSAT software. K scan routine was conducted to estimate reliable value of K . The L_{∞} and K were used to calculate the growth performance index (φ^{\prime}) (Pauly and Munro, 1984) of the species H. harpax using below equation:
$\varphi^{\prime}=2 \log 10 \mathrm{~L}_{\infty}+\log 10 \mathrm{~K}$
Total mortality (Z) was calculated using Jones and van Zalinge Plot (Jones and van Zalinge, 1981) and natural mortality was estimated by Pauly's empirical formula (Pauly, 1980):
$\log _{10} \mathrm{M}=-0.0066-0.279 \log _{10} \mathrm{~L}_{\infty}+$ $0.6543 . \log _{10} \mathrm{~K}+0.4634 \log _{10} \mathrm{~T}$

Where M is the natural mortality, L_{∞} is the asymptotic length; K is the growth
coefficient of the VBGF, and T is the mean annual water temperature $\left({ }^{\circ} \mathrm{C}\right)$ of habitat.

Fishing mortality (F) was estimated using the relationship as $\mathrm{F}=\mathrm{Z}-\mathrm{M}$; where Z is the total mortality, F is the fishing mortality and M is the natural mortality.

The exploitation level (E) was obtained by the formula of Gulland (Gulland, 1971) as $\mathrm{E}=\mathrm{F} / \mathrm{Z}$. The recruitment pattern was determined by projecting the available length frequency data backwards on the length axis as described in FiSAT. Normal distribution of the recruitment pattern was determined by NORMSEP (Pauly and Caddy, 1985) in FiSAT.

Results

Length-weight relationships

Length weight relationships were calculated for males and females separately. The regression between total length (TL) and total body weight (TW) for both males and females of H. harpax showed negative allometric relationship (Fig. 2). The exponential length-weight equation was $\mathrm{W}=0.0225 \mathrm{TL}^{2.6978} \quad\left(\mathrm{r}^{2}=\right.$ $0.7148, p<0.05$) for males and $\mathrm{W}=$ $0.0142 \mathrm{TL}^{2.8837}\left(\mathrm{R}^{2}=0.8988, p<0.05\right)$ for females. The computed growth coefficient (b) was 2.6978 for males and 2.8837 for females. The b values ranged from 2.538 to 2.858 for males and from 2.784 to 2.984 for females at 95\% confidence limit (Table 1).

Figure 2: Length weight relationship for males (a) and females (b) of \boldsymbol{H}. harpax in the coastal waters of Pantai Remis during February - October, 2012.

Table 1: Length weight relationship parameters of H. harpax in the coastal waters of Pantai Remis, Perak during the study period from February to October 2012.

Sex	\mathbf{N}	\mathbf{a}	\mathbf{b}	$\mathbf{9 5 \%}$ CI of b	\mathbf{r}^{2}	Growth type
M	439	0.023	2.698	$2.538-2.858$	$0.715(p<0.05)$	Allometric $(-)$
F	365	0.014	2.884	$2.784-2.984$	$0.899(p<0.05)$	Allometric $(-)$
B	804	0.015	2.852	$2.767-2.983$	$0.841(p<0.05)$	Allometric $(-)$

Condition factor and sex ratio
Based on the graph above, the relative condition factor was calculated monthly for both male and female of H.harpax. The
highest value of condition factor (CF) for males of H. harpax was 1.021 in September and for females was 1.025 in May, while the lowest value for males was 1.002 in March
and for females was 1.01 in December (Fig. 3). A total number of 804 specimens were examined with 365 females and 439 males of H. harpax. The overall sex ratio for the study period was found to be $1: 0.83(\mathrm{M}: \mathrm{F})$. Males were predominant throughout this study except in February, June and October
(Fig. 4). Chi square test revealed that the total number of males was significantly higher than females in the samples of H. harpax throughout the sampling period $\left(\chi^{2}=\right.$ 30.98 , df $=8, p<0.05$).

Figure 3: Condition factors of \boldsymbol{H}. harpax from coastal waters of Pantai Remis, Peninsular Malaysia waters during February - October, 2012.

Figure 4: Temporal variations of sex ratio of \boldsymbol{H}. harpax in the coastal waters of Pantai Remis, Perak. The dotted line indicates a ratio of $1: 1$ (Males : Females).

Exploitation and recruitment

The best value of von Bertalanffy growth function (VBGF), asymptotic length (L_{∞}) and growth coefficient (K) obtained using the ELEFAN-I was 18.38 cm and $1.10 \mathrm{yr}^{-1}$ for males, and 21.53 cm and $0.75 \mathrm{yr}^{-1}$ for females (Fig. 5). The optimized growth curves with the best value of VBGF are shown on the restructured length distribution for males and females (Fig. 6). The observed maximum length was 17.50 cm and the predicted maximum length was 18.43 cm for males, while for female these values were 20.50 cm and 21.43 cm , respectively (Fig. 7). The range of confidence interval at 95% was 17.35 to 19.50 cm for males, and 19.70 to 23.16 cm for females (Table 2). The growth
performance index (φ ') was found to be 2.57 for males and 2.541 for females. The values of total mortality (Z) and natural mortality (M) were calculated using Jones and van Zalinge Plot (Fig. 8). The value of total mortality (Z) for males was $4.084 \mathrm{yr}^{-1}$ and it was $3.259 \mathrm{yr}^{-1}$ for females. The natural mortality (M) for males was 2.247 yr^{-1} and it was $1.674 \mathrm{yr}^{-1}$ for females. The fishing mortality rate (F) was obtained by subtracting the total mortality (Z) with the natural mortality (M). It was estimated that the value of fishing mortality rate was 1.837 y^{-1} for males and $1.585 \mathrm{y}^{-1}$ for females (Table 2). From these figures, an exploitation rate (E) was calculated at 0.449 and 0.486 for males and females, respectively.

Figure 5: K-scan routine for best value of von Bertalanffy growth function (VBGF), asymptotic length $(\mathrm{L} \infty$) and growth coefficient (K) of males (a) and females (b) of H. harpax using ELEFAN-I.

Figure 6: von Bertalanffy growth curves of H. harpax for males (a) and females (b) superimposed on the restructured length-frequency histograms

Figure 7: Predicted maximum length for males (a) and females (b) of \boldsymbol{H}. harpax based on extreme value theory (Formacian et al., 1991). The predicted maximum length value and the $\mathbf{9 5 \%}$ confidence interval are obtained from the intersection of overall maximum length with the line y and x, z, respectively.

Figure 8: Jones and van Zalinge Plot for males (a) and females (b) of \boldsymbol{H}. harpax in the coastal waters of Pantai Remis, Perak.

Table 2: Estimated population parameters of Harpiosquilla harpax in the coastal water of Pantai Remis, Perak.

Population parameters	Male	Female
Asymptotic length (L ∞)	18.38 cm	21.53 cm
Growth coefficient (K)	$1.10 \mathrm{yr}^{-1}$	$0.75 \mathrm{yr}^{-1}$
Growth performance index (φ^{\prime})	2.57	2.541
Total mortality (Z)	$4.084 \mathrm{yr}^{-1}$	$3.259 \mathrm{yr}^{-1}$
Fishing mortality (F)	$1.837 \mathrm{yr}^{-1}$	$1.585 \mathrm{yr}^{-1}$
Natural mortality (M)	$2.247 \mathrm{yr}^{-1}$	$1.674 \mathrm{yr}^{-1}$
Exploitation level (E)	0.449	0.486
95% confidence interval	$17.35-19.50 \mathrm{~cm}$	$19.70-23.16 \mathrm{~cm}$

The recruitment patterns of H. harpax were continuous for both males and females throughout the year (Fig. 9). The recruitment varied from 0.84 to 15.96% for males and 0.72 to 18.71% for females throughout the study. The highest
recruitment for males was in May with 15.95% while the lowest was in November at 0.84%. For females, the highest recruitment was in March with 18.71%, while the lowest was in November at 0.72%.

Figure 9: Recruitment patterns of males (a) and females (b) of \boldsymbol{H}. harpax in the coastal area of Pantai Remis, Perak.

Discussion

The estimated value of 'b' for H. harpax was 2.698 for males, 2.884 for females and 2.852 for combined sexes, respectively. Based on the results of the analysis of length-weight relationship, we observed that the growth patterns of H. harpax, for both males and females were negative allometric, as the value of regression coefficient (b) was significantly ($p<0.05$) below 3 . The estimated value of 'b' for both sexes of H. harpax was 2.852 and it lied between the values mentioned by Carlander (1977) and Ecoutin et al. (2005), which are significantly lower from isometric value 3 at 5% level. This species undergo negative allometric growth which could be caused by the competition of mantis shrimp populations among themselves as well as the competition among mantis shrimp with fish or other crustacean species. During the study period at the study site, there was abundance of other fish and crustaceans were found to inhabit the same area as the H. harpax. Regression analysis on the logtransformed data showed a strong relationship between both sexes of H. harpax $\left(\mathrm{r}^{2}=0.841\right)(p<0.05)$. It is reported (Mili et al., 2011) that Squilla mantis in the Gulf of Gabes (Tunisia), has strong relationship in both sexes as the regression coefficient (r^{2}) for males, females and combined sexes were above 0.96 , which was very close to $r^{2}=1$.

When compared to the value ' b ' of H. raphidea $(\mathrm{b}=2.73$ for males and $\mathrm{b}=2.743$ for females) from mud flats in Kuala Tungkal, not much difference was observed between H. harpax and H. raphidea (Wardiatno and Mashar, 2011). In another study, Mili et al. (2011) found the value 'b'
for males and females, and both sexes of Squilla mantis to be 3.2097, 3.0644 and 3.1375, respectively indicating a positive allometic growth as the value ' b ' was more than 3. The variations in b values between populations might be due to the differences in geographical locations and environmental conditions (Maynou, 2005).

The relative condition factor (CF) of H. harpax was the highest and peaked at 1.021 in September for males and 1.025 for females in May. This CF is also one of the ways to find the spawning season of aquatic organism if only the length and weight measurement were taken instead of the weight of mature gonad of females. The highest peak of CF for females H. harpax was in May and suddenly dropped in June (Fig. 3). Thus, it can be concluded that the peak spawning season for H. harpax was in May-June. This result is almost similar with Kodama et al. (2006) who reported that the peak spawning period of Oratosquilla oratoria was in March-June in the Tokyo Bay.

An appropriate number of males and females mantis shrimps can be mated during artificial spawning which can be known through calculating sex ratio. Throughout this study, the sex ratio for H. harpax was found to be 1: 0.83 (M: F). Comparing with the studies implemented by Wardiatno and Mashar (2010), the sex ratio of H. raphidea from Indonesia was 1:1.46 (males: females) giving a femalebiased ratio while the sex ratio of H. harpax is giving a male-biased with ratio of 1:0.83. While in squilla mantis, males were dominated over females in five months throughout the year, especially in May to August (Mili et al., 2011). The higher ratio
of males against females for both H. harpax and Squilla mantis might be due to the females staying in burrows to incubate their eggs (Mili et al., 2011).

The asymptotic length (L_{∞}) and growth co-efficient (K) of H. harpax reported by Dinh et al. (2010) from Mekong Delta was 21.0 cm and $0.89 \mathrm{yr}^{-1}$, while L_{∞} and K values of S. mantis from Ebro Delta was 20.0 cm and $1.60 \mathrm{yr}^{-1}$ for males and 20.0 cm and $1.30 \mathrm{yr}^{-1}$ for females (Abello and

Martin, 1993). The highest value of L_{∞} (21.53 cm) for females H. harpax was observed in the present study. The highest value of $\mathrm{K}\left(1.60 \mathrm{yr}^{-1}\right)$ was also observed in Ebro Delta waters (Abello and Martin, 1993) for S. mantis and the lowest was found in female of H. harpax. The value of L_{∞} and K estimated growth performance index (φ^{\prime}) for the present study were varied between 2.37 and 2.57 (Table 3).

Table 3: Growth parameters ($L \infty$ and K) and computed growth parameter index (φ ') of mantis shrimp from different countries

Location	Species	$\mathbf{L} \infty(\mathbf{c m})$	$\mathbf{K}\left(\mathbf{y r}^{-1}\right)$	$\left(\varphi^{\prime}\right)$	Source
Malaysia	H. harpax	$18.38(\mathrm{M})$	1.10	2.57	Present study
		$21.53(\mathrm{~F})$	0.75	2.54	
Malaysia	Miyakea nepa	$16.28(\mathrm{M})$	1.10	2.47	Present study
	H. harpax	$17.73(\mathrm{~F})$	0.75	2.37	Dinh et al. (2010)
Ebro Delta	S. mantis	$21.0(\mathrm{~B})$	0.89	2.59	
		$20.0(\mathrm{M})$	1.6	2.81	Albello and Martin (1993)

In mantis shrimp population that have been exploited, mortality is a combination of natural and fishing mortality (Yusli and Ali, 2011). In the present study at Pantai Remis, the total mortality for H. harpax were found to be higher for males and females than the H. harpax in littoral marine waters of the Mekong Delta, South of Viet Nam, where total mortality (Z), natural mortality (M), fishing mortality rate (F) and the exploitation rate (E) were 3.23, 1.80, 1.43 and 0.44 , respectively (Dinh et al., 2010). Similar results were observed in H. raphidea where the total mortality (Z), natural mortality (M), fishing mortality rate and the exploitation rate (E) were 0.820 , $0.473,0.342$ and 0.42 , respectively (Yusli and Ali, 2011). The rate of exploitation in the present study was 0.449 for males and 0.486 for females. The exploitation rate of
H. harpax for both males and females in the coastal waters of Pantai Remis was higher than both studies in Vietnam and Indonesia. It can be concluded that the exploitation level for the studied H. harpax has been below the optimum exploitation rate of $\mathrm{E}=$ 0.50 according to Gulland (1971) and Pauly (1984). Therefore, fishermen still have the opportunity to capture the mantis shrimp in coastal waters of Pantai Remis, but it must be confirmed by the stock assessment study to ensure that the mantis shrimp is not be overexploited.

Conclusions

The relative growth pattern was negative allometric for both males and females of H. harpax. The peak spawning season was observed in May-July although some matured gonad was found in other months
which indicated as multi-spanner behaviour of this species. The population of males were predominant over females in the investigated area. The rate of exploitation for H. harpax was slightly below the optimum level of Exploitation ($\mathrm{E}=0.50$) and thus precautions or stock assessment regarding this species in the coastal waters of Pantai Remis, must be taken so that the species might not undergo over exploitation.

Acknowledgements

The research was supported by the research grant provided by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia (Grant No. 5524144). Technical assistance and logistics were provided by the Universiti Putra Malaysia. The authors also acknowledge all the local fishermen for their assistance during field sampling.

Reference

Abello, P. and Martin, P., 1993. Fishery dynamics of the mantis shrimp Squilla mantis (Crustacea: Stomatopoda) population off the Ebro delta (northwestern Mediterranean). Fisheries Research, 16, 131-145.
Barber, P.H., Moosa, M.K. and Palumbi, S.R., 2002. Rapid recovery of genetic diversity of stomatopod populations on Krakatau: temporal and spatial scales of marine larval dispersal. Proceedings Royal Society London B, 269, 15911597.

Dinh, T.D., Moreau, J., Van, M.V., Phuong, N.T. and Toan, V.T., 2010. Population dynamics of shrimps in littoral marine waters of the Mekong Delta, South of Vietnam. Pakistan

Journal of Biological Sciences, 13, 683690.

Ecoutin, J.M., Albaret, J.J. and Trape, S., 2005. Length-weight relationship for fish populations of a relatively undisturbed tropical estuary: The Gambia. Fisheries Research, 72, 347351.

Gayanilo, F.C., Sparre, P., and Pauly, D., 1996. The FAO-ICLARM Stock Assessment Tools (FiSAT) user's guide: FAO computerized information series, fisheries, No. 8, 126P. Rome: FAO.
Gulland, J.A., 1971. The fish resources of the ocean. London, Farnham Fishing News Ltd. 512P.
Jones, R. and van Zalinge, N.P., 1981. Estimations of mortality rate and population size for shrimp in Kuwait waters. Kuwait Bulletin of Marine Science, 2, 273-288.
Jones, R.E., Petrell, R.J., and Pauly, D., 1999. Using modified length-weight relationship to assess the condition of fish. Aquatic Engineering, 20, 261-276.
Kodama, K., Kume, G., Shiraishi. H., Morita, M., and Horiguchi, T., 2006. Relationship between body length, processed-meat length and seasonal change in net processed-meat yield of Japenese mantis shrimp Oratosquilla oratoria in Tokyo Bay. Fisheries Science,72, 804-810.
Manfrin, G. and Piccinetti, C., 1970. Observations on the Squilla mantis L. etologiche. Laboratoria note the di Biologia Marina and Fishing-Fano, 3, 93-104.
Maynou, F., Abello, P., and Sartor, P., 2005. A review of the fisheries biology of the mantis shrimp, Squilla mantis
(Stomatopoda, Squillidae) in Mediteranean. Crustaceana, 77, 10811099.

Mili, S., Bouriga, N., Missaoui, H., and Jarboiu, O., 2011. Morphometric, reproductive parameters and seasonal variations in fatty acid composition of the mantis shrimp Squilla mantis (Crustacea: Stomatopoda) in the Gulf of Gabes (Tunisia). Journal of Life Sciences, 5, 1058-1071.
Moosa, M.K., 2000. Marine biodiversity of the South China Sea: a checklist of stomatopod crustacean. The Raffles Bulletin of Zoology, Supplement, 8, 405457.

Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. Journal of Conservation and International Exploration of Maritime, 39, 175-192.
Pauly, D. and David, N., 1981. ELEFANI BASIC program for the objective extraction of growth parameters from Length frequency data. Meeresforsch, 28, 205-211.

Pauly, D. and Munro, J.L., 1984. Once more on the comparison of growth in fish and invertebrate. ICLARM, Fishbyte, 2(1), 21.
Pauly, D. and Caddy, J.F., 1985. A modification of Bhattacharya's method for the analysis of mixtures of normal distributions. FAO Fisheries Circular, 781, 1-16.
Wardiatno, Y. and Mashar, A., 2010. Biological information on the mantis shrimp, Harpiosquilla raphidea (Fabricus 1789) (Stomatopod, Crustacea) in Indonesia with a highlight of its reproductive aspects. Journal of Tropical Biology and Conservation, 7, 65-73.
Wardiatno, Y. and Mashar, A., 2011. Population dynamics of the Indonesian mantis shrimp, Harpiosquilla raphidea (Fabricius
1798)
(Crustacea:Stomatopoda) collected from a Mud Flat in Kuala Tungkal, Jambi Province, Sumatera Island. IlmuKelautan, 16, 111-118.

[^0]: Laboratory of Biology and Aquatic Ecology, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
 *Corresponding author email: azizar.upm@gmail.com

