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Abstract

Intuitively, most datasets found in Open Data are organised by spatio-temporal scope, that is, single datasets
provide data for a certain region, valid for a certain time period. For many use cases (such as for instance
data journalism and fact checking) a pre-dominant need is to scope down the relevant datasets to a particular
period or region. Therefore, we argue that spatio-temporal search is a crucial need for Open Data portals
and across Open Data portals, yet - to the best of our knowledge - no working solution exists. We argue
that - just like for for regular Web search - knowledge graphs can be helpful to significantly improve search:
in fact, the ingredients for a public knowledge graph of geographic entities as well as time periods and
events exist already on the Web of Data, although they have not yet been integrated and applied – in
a principled manner – to the use case of Open Data search. In the present paper we aim at doing just
that: we (i) present a scalable approach to construct a spatio-temporal knowledge graph that hierarchically
structures geographical, as well as temporal entities, (ii) annotate a large corpus of tabular datasets from
open data portals, (iii) enable structured, spatio-temporal search over Open Data catalogs through our
spatio-temporal knowledge graph, both via a search interface as well as via a SPARQL endpoint, available
at data.wu.ac.at/odgraphsearch/

Keywords: open data, spatio-temporal labelling, spatio-temporal knowledge graph

1. Introduction

Open Data has gained a lot of popularity and
support by governments in terms of improving
transparency and enabling new business models:
Governments and public institutions, but also pri-
vate companies, provide open access to raw data
with the goal to present accountable records [1],
for instance in terms of statistical data, but also in
fulfillment of regulatory requirements such as, e.g.,
the EU’s INSPIRE directive.3 The idea to provide
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raw data, instead of only human-readable reports
and documents, is mainly driven by providing di-
rect, machine-processable access to the data, and
enable broad and arbitrary (through open licences)
reuse of such data [2, 3].

Yet, it is still humans who mostly consume this
data, so far mostly developers of apps who are
needed as intermediaries to make the said data ac-
tually accessible to end users. Even worse, search
in Open Data is largely unaddressed, since most
known search techniques rely on keywords and
human-readable cues in documents. With the ad-
vent of ”Knowledge Graphs” search recently has
been revolutionized in that search results can be
categorized, browsed and ranked according to well-
known concepts and relations, which cover typical
search scenarios in search engines.

But these scenarios are different for Open Data:
in our experience, we note that search in Open
Data probably needs to be targeted from a differ-
ent angle than keyword-search (alone). Intuitively,
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most datasets found in Open Data – as it is mostly
regional/national census-based – are organized by
spatio-temporal scope, that is, single datasets pro-
vide data for a certain region, are valid for a cer-
tain time period. For many use cases (such as
for instance data journalism and fact checking) the
pre-dominant need is to scope down the relevant
datasets to a particular period or region. There-
fore, we argue that spatio-temporal search is a cru-
cial requirement across Open Data portals [4].

We further argue that also for this use case,
knowledge graphs can be helpful: in fact, the ingre-
dients for a public knowledge graph of geographic
entities as well as time periods and events exist al-
ready, although they have not yet been integrated
and applied – in a principled manner – to the use
case of Open Data search. In the present paper
we aim at doing just that: We present a scalable
approach to (i) construct a spatio-temporal knowl-
edge graph that hierarchically structures geograph-
ical entities, as well as temporal entities, (ii) anno-
tate a large corpus of tabular Open Data, currently
holding datasets from eleven European (govern-
mental) data portals, (iii) enable structured, spatio-
temporal search over Open Data catalogs through
this spatio-temporal knowledge graph, available at
http://data.wu.ac.at/odgraphsearch/.

In more detail, we make the following concrete
contributions:

• A detailed construction of a hierarchical base
knowledge graph for geo-entities and temporal
entities and links between them.

• A scalable labelling algorithm for linking open
datasets (both on a dataset-level and on a
record-level) to this knowledge graph.

• Indexing and annotation of datasets and meta-
data from 11 Open Data portals from 10 Euro-
pean countries and an evaluation of the anno-
tated datasets to illustrate the feasibility and
effectiveness of the approach.

• A prototypical search interface, consisting of
a web user interface allowing faceted and full-
text search, a RESTful JSON API that allows
programmatic access to the search UI, as well
as API-access to retrieve the indexed dataset
and respective RDF representations

• A SPARQL endpoint that exposes the an-
notated links and allows structured search
queries.

• Code, data and a description on how to re-run
our experiments, which we hope to be a viable
basis for further research extending our results,
are available for re-use (under GNU General
Public License v3.0).

The remainder of this paper is structured as
follows: In the following Section 2 we introduce
(linked) datasets, repositories and endpoints to re-
trieve relevant temporal and spatial information.
Section 3 provides a schematic description of the
construction and integration of these sources into
our base knowledge graph; its actual realization in
terms of implementation details is fully explained
in Appendix A. In Section 4 we present the al-
gorithms to add spatio-temporal annotations to
datasets from Open Data portals, and evaluate and
discuss the performance (in terms of precision and
recall based on a manually generated sample) and
limitations of our approach. The vocabularies and
schema of our RDF data export are explained in
Section 5 and the back-end, the user interface and
the SPARQL endpoint (including example queries)
are presented in Section 6. We provide related and
complementary approaches in Section 7, and even-
tually we conclude in Section 8.

2. Background

When people think of spatial and temporal con-
text of data, they usually think of concepts rather
than numbers, that is “countries” or “cities” in-
stead of coordinates or a bounding polygon, or an
“event” or “time period” instead of e.g. start times
end times. In terms of data search that could mean
someone searching for datasets containing informa-
tion about demographics for the last government’s
term (or in other words between the last two gen-
eral elections).

In order to enable such search by spatio-temporal
concepts, our goal is to build a concise, but effec-
tive knowledge base, that collects the relevant con-
cepts from openly available data into a coherent,
base knowledge graph, for both (i) enabling spatio-
temporal search within Open Data portals and (ii)
interlinking Open Data portals with other datasets
by the principles of Linked Data.

The following section gives an overview of the
available datasets and sources to construct the base
knowledge graph of temporal- and geo-entities.
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GeoNames.org. The GeoNames database4 contains
over 10 million geographical names of entities such
as countries, cities, regions, and villages. It assigns
unique identifiers to geo-entities and provides a de-
tailed hierarchical description including countries,
federal states, regions, cities, etc.. For instance,
the GeoNames-entity for the city of Munich5 has
the parent relationship “Munich, Urban District”,
which is located in the region “Upper Bavaria” of
the federal state “Bavaria” in the country “Ger-
many”, i.e. the GeoNames database allows us to
extract the following hierarchical relation for the
city of Munich:

Germany > Bavaria > Upper Bavaria
> Munich, Urban District > Munich

The relations are based on the GeoNames ontol-
ogy6 which defines first-order administrative divi-
sion (gn:A), second-order (gn:A.ADM2) , ... (until
gn:A.ADM5)7 for countries, states, cities, and city
districts/sub-regions. In this work we make use of
an RDF dump of the GeoNames database,8 which
consists of alternative names and hierarchical rela-
tions of all the entities.

OpenStreetMap (OSM). OSM9 was founded in
2004 as a collaborative project to create free ed-
itable geospatial data. The map data is mainly
produced by volunteers using GPS devices (on foot,
bicycle, car, ..) and later by importing commercial
and government sources, e.g., aerial photographies.
Initially, the project focused on mapping the United
Kingdom but soon was extended to a worldwide ef-
fort. OSM uses four basic “elements” to describe
geo-information:10

• Nodes in OSM are specific points defined by a
latitude and longitude.

• Ways are ordered lists of nodes that define a
line. OSM ways can also define polygons, i.e.
a closed list of nodes.

4http://www.geonames.org/
5http://www.geonames.org/6559171/
6http://www.geonames.org/ontology/ontology\_v3.1.

rdf
7Here, gn: corresponds to the namespace URL http:

//www.geonames.org/ontology#
8http://www.geonames.org/ontology/documentation.

html, last accessed 2018-01-05
9https://www.openstreetmap.org/

10A detailed description can be found at the OSM doc-
umentation pages: http://wiki.openstreetmap.org/wiki/

Main\_Page

• Relations define relationships between differ-
ent OSM elements, e.g., a route is defined as
a relation of multiple ways (such as highway,
cycle route, bus route) along the same route.

• Tags are used to describe the meaning of
any elements, e.g., there could be a tag
highway=residential11 (tags are represented
as key-value pairs) which is used on a way el-
ement to indicate a road within settlement.

There are already existing works which exploit the
potential of OSM to enrich and link other sources.
For instance, in [5] we have extracted indicators,
such as the number of hotels or libraries in a city,
from OSM to collect statistical information about
cities.

Likewise, the software library Libpostal12 uses
addresses and places extracted from OSM: it pro-
vides street address parsing and normalization by
using machine learning algorithms on top of the
OSM data. The library converts free-form ad-
dresses into clean normalized forms and can there-
fore be used as a pre-processing step to geo-tagging
of streets and addresses. We integrate Libpostal in
our framework in order to detect and filter streets
and city names in text and address lines.

Sources to obtain Postal codes and NUTS codes.
Postal codes are regional codes consisting of a series
of letters (not necessarily digits) with the purpose
of sorting mail. Since postal codes are country-
specific identifiers, and their granularity and avail-
ability strongly varies for different countries, there
is no single, complete, data source to retrieve these
codes. The most reliable way to get the com-
plete dataset is typically via governmental agen-
cies (made easy, in case they publish the codes as
open data).13 Another source worth mentioning for
matching postal codes is GeoNames: it provides a
collection of postal codes for several countries and
the respective name of the places/districts.14

11cf. https://wiki.openstreetmap.org/wiki/Tag:

highway=residential
12https://medium.com/@albarrentine/

statistical-nlp-on-openstreetmap-b9d573e6cc86, last
accessed 2017-09-12

13For instance, the complete list of Austrian postal
codes is available as CSV via the Austrian Open Data
portal: https://www.data.gv.at/katalog/dataset/

f76ed887-00d6-450f-a158-9f8b1cbbeebf, last accessed
2018-04-03

14http://download.geonames.org/export/zip/, last ac-
cessed 2018-01-05
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Partially, postal codes for certain countries are
available in the knowledge bases of Wikidata and
DBpedia (see below) for the respective entries of
the geo-entities (using “postal code” properties).
However, we stress that these entries are not com-
plete, i.e., not all postal codes are available in the
knowledge bases as not all respective geo-entities
are present, and also, the codes’ representation is
not standardized.

NUTS (French: nomenclature des unitès terri-
toriales statistiques). Apart from national postal
codes another geocode standard has been devel-
oped and is being regulated by the European Union
(EU). It references the statistical subdivisions of
all EU member states in three hierarchical levels,
NUTS 1, 2, and 3. All codes start with the two-
letter ISO 3166-1 [6] country code and each level
adds an additional number to the code. The cur-
rent NUTS classification lists 98 regions at NUTS 1,
276 regions at NUTS 2 and 1342 regions at NUTS
3 level and is available from the EC’s Webpage.15

Wikidata and DBpedia. These domain-
independent, multi-lingual, knowledge bases
provide structured content and factual data. While
DBpedia [7] is automatically generated by extract-
ing information from Wikipedia, Wikidata [8], in
contrary, is a collaboratively edited knowledge
base which is intended to provide information
to Wikipedia. These knowledge bases already
partially include links to GeoNames, NUTS iden-
tifier, and postal code entries, as well as temporal
knowledge for events and periods, e.g., elections,
news events, and historical epochs, which we also
harvest to complete our base knowledge graph.

PeriodO. The PeriodO project [9] offers a gazetteer
of historical, art-historical, and archaeological pe-
riods. The user interface allows to query and fil-
ter the periods by different facets. Further, the
authors published the full dataset as JSON-LD
download16 and re-use the W3C skos, time and
dcterms:spatial vocabularies to describe the tem-
poral and spatial extend of the periods. For in-
stance, the following (shortened) PeriodO entry de-
scribes the period of the First World War:

@prefix dbr: <http :// dbpedia.org/resource/> .
@prefix skos:<http :// www.w3.org /2004/02/ skos/core#>

15http://ec.europa.eu/eurostat/web/nuts/overview,
last accessed 2018-01-05

16http://perio.do/, last accessed 2018-03-27.

@prefix dcterms: <http :// purl.org/dc/terms/> .
@prefix time: <http ://www.w3.org /2006/ time#> .

<http :// n2t.net/ark :/99152/ p0kh9ds3566 >
dcterms:spatial dbr:United_Kingdom ;
skos:altLabel "First World War"@eng -latn ;
time:intervalFinishedBy [

skos:prefLabel "1918" ;
time:hasDateTimeDescription [

time:year <"1918"^^ xsd:gYear >
]

];
time:intervalStartedBy [

skos:prefLabel "1914";
time:hasDateTimeDescription [

time:year <"1914"^^ xsd:gYear >
]

].

3. Base Knowledge Graph Construction

The previous section listed several geo-data
repositories as well as datasets containing time pe-
riods and event data – some already available as
Linked Data via an endpoint – which we use in the
following to build up a base knowledge graph: Sec-
tion 3.1 describes the extraction and integration of
geo-spatial, and Section 3.2 of temporal knowledge.

Herein, we describe the composition of the graph
by presenting conceptual SPARQL CONSTRUCT

queries. This means that (most of) the presented
queries cannot be executed because either there is
no respective endpoint available or the query is not
feasible and times out. While this section shall
serve as a schematic specification of the constructed
graph, we detail the actual realization of the queries
in Appendix A.

Still, we deem the use of these conceptual
SPARQL CONSTRUCT useful as a mechanism to
declaratively express knowledge graph compilation
from Linked Data sources, following Rospocher et
al.’s definition, who describe knowledge graphs as
“a knowledge-base of facts about entities typically
obtained from structured repositories”[10].17

3.1. Spatial Knowledge

Our knowledge graph of geo-entities is based on
the GeoNames hierarchy, where we want to extract

• geo-entities and their labels

17As a side remark, such queries could for instance be used
to declaratively annotate the provenance trail of knowledge
graphs compiled from other Linked Data sources, e.g. ex-
pressed through labeling the activity to extract the relevant
knowledge with PROV’s[11] prov:wasGeneratedBy property
with a respective SPARQL CONSTRUCT query.
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• links parent entities and particularly the con-
taining country

• coordinates in terms of points and (if available)
geometries in terms of polygons

• postal codes (again, if available)

• sameAs-links to other sources such as DBpe-
dia, OSM, or Wikidata (again, if available)

The respective SPARQL CONSTRUCT query over
the GeoNames dataset in Figure 1 displays how
the hierarchical data could be extracted from a
(currently nonexistent) GeoNames SPARQL end-
point for a selected country ?c, i.e., if a respec-
tive SPARQL endpoint existed to access GeoN-
ames’ published RDF data,18 we could get all the
relevant data for our knowledge graph per coun-
try, by replacing ?c in this query with a concrete
country URL, such as http://sws.geonames.org/
2782113/ (for Austria). The GeoNames RDF data
partially already contains external links to DBpedia
(using rdfs:seeAlso) which we model as equiva-
lent identifiers using owl:sameAs. The hierarchy
is constructed using the gn:parentFeature prop-
erty. As GeoNames offers various different proper-
ties containing names, we extract all official English
and (for the moment) German names, as we will use
those later on for fuilding our search index.

The query in Figure 2 then displays how we inte-
grate the information in Wikidata into our spatial
knowledge graph. In particular, Wikidata serves
as a source to add labels and links for postal codes
(gn:postalCode) and NUTS identifiers (wdt:P605)
for the respective geographical entities. Further, we
again add external links (to OSM and Wikidata it-
self) that we harvest from Wikidata as owl:sameAs
relations to our graph.

The query in Figure 3 conceptually shows how
and which data we extract for certain OSM entities
into our knowledge graph. We note here that OSM
does not provide an RDF or SPARQL interface,
but the idea is that we - roughly - perceive and
process data returned by OSM’s Nominatim API
in JSON as JSON-LD; details and pre-processing
steps in Appendix A.2 below.

3.2. Temporal Knowledge

As for temporal knowledge, we aim to compile
into our knowledge graph a base set of temporal-

18cf. http://geonames.org/ontology/

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

CONSTRUCT {
?g rdfs:label ?label ; gn:parentFeature ?parent ;

gn:parentCountry ?c ; gn:postalCode ?code ;
geo:lat ?lat ; geo:lat ?long ;
owl:sameAs ?external .

} WHERE {
?g gn:name ?label ; gn:parentCountry ?c ;

geo:lat ?lat ; geo:lat ?long .
OPTIONAL { ?q gn:officialName ?label

FILTER (LANG(?label) = "en" ||
LANG(?label) = "de" ||
LANG(?label) = "" ) }

OPTIONAL { ?q gn:alternateName ?label
FILTER (LANG(?label) = "en" ||

LANG(?label) = "de" ||
LANG(?label) = "" ) }

OPTIONAL { ?g gn:parentFeature ?parent }
# external links if available
OPTIONAL { ?g rdfs:seeAlso ?external }
# postal code literals
OPTIONAL { ?wd gn:postalCode ?code }

}

Figure 1: Conceptual SPARQL CONSTRUCT query to extract
hierarchical data for our base Knowledge Graph from GeoN-
ames for a particular country ?c.

entities (that is, named periods and events from
Wikidata and PeriodO) where we want to extract

• named events and their labels,

• links parent periods that they are part of, again
to create a hierarchy,

• temporal extent in terms of a single beginning
and end date, and

• links to a spatial coverage of the respective
event or period (if available).

We observe here that temporal knowledge is typ-
ically less consolidated than geospatial knowledge,
i.e. “important” named entities in terms of periods
or events are not governed by internationally agreed
and nationally governed structures such as border-
agreements in terms of spatial entities. Even worse,
cross-cultural differences such as different calendars
or even timezones) add additional confusion. We
still believe that the two sources, which we try to
integrate here, which cover events of common in-
terest in a multilingual setting on the one hand
(Wikidata), and historical periods and epochs from
the literature (PeriodO), provide a good starting
point. In the future, it might be useful to index
as well news events, or recurring periods or points

5



PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

CONSTRUCT {
?g owl:sameAs ?wd ; gn:postalCode ?code;

owl:sameAs ?osm ; owl:sameAs ?nuts .
?nuts wdt:P605 ?n .

} WHERE {
?wd wdt:P1566 ?g .
# postal code literals
OPTIONAL { ?wd wdt:P281 ?code }
# NUTS identifier
OPTIONAL { ?wd wdt:P605 ?n.

BIND (CONCAT("<http://dd.eionet.europa.eu/vocabulary
concept/common/nuts/", ?n,">") AS ?nuts) }

# OSM relations
OPTIONAL { ?wd wdt:P402 ?osm }

}

Figure 2: SPARQL query to extract Wikidata links and
codes – times out on https://query.wikidata.org

in time, such as public holidays, that occur regu-
larly, but we did not find structured datasets avail-
able on Linked data for that, which is the focus of
our current work. So, we have to defer these to
future work, or respectively, the creation of respec-
tive structured datasets as a challenge for the com-
munity: one obvious existing starting point here
would be the work by Rospocher et al. [10] and the
news events datasets they created in the EU Project
NewsReader,19 which however we for the moment
did not consider due to its fine granularity, which
in our opinion is not needed in a majority of Open
Data Search use cases.

Again, we model knowledge graph extraction in
terms of conceptual SPARQL queries. We use the
query in Figure 4 to extract events information
from Wikidata. Note, that this query times out
on the public Wikidata endpoint. Therefore, in or-
der to extract the relevant events and time periods
as described in Figure 4, we converted a local Wiki-
data dump to HDT [12], extracted only the relevant
triples for the query, materialized the path expres-
sions, and executed the targeted CONSTRUCT query
over these extracts on a local endpoint; the full de-
tails are provided in Appendix A.3.

As you can see, again, we do not just extract
existing triples from the source, but try to ag-
gregate/flatten the representation to a handful of
well-known predicates from Dublin Core (prefix
dcterms:) and the OWL time ontology (prefix
time:).

Likewise, we use the query in Figure 5 to ex-

19http://www.newsreader-project.eu/results/data/

PREFIX osm: <https://www.openstreetmap.org/>
PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geosparql: <http://www.opengis.net/ont/geosparql#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://data.wu.ac.at/ns/osm#>

CONSTRUCT {
?OSMentity rdfs:label ?label;

geo:lat ?lat; geo:long ?long ;
gn:parentFeature ?parent;
gn:parentCountry ?pc ;
geosparql:hasGeometry ?geometry .

?pc gn:countryCode ?country .
} WHERE {

[ :display_name ?label ;
:osm_id ?id ; :osm_type ?type ;
:address [ :country ?country ];
:lat ?lat ; :lon ?long ;
:geojson [ :coordinates ?geometry] #this is simplifying!

]
BIND( IRI(concat(str(osm:),?type,"/",?id)) AS ?OSMentity)

}

Figure 3: Conceptual SPARQL query to extract data from
OSM for a particular OSM entity with the OSM numeric
indentifier ?id

tract periods from the PeriodO dataset, again using
the same flattened representation. To execute this
query, in this case we could simply download the
available PeriodO dump into a local RDF store.

Note that in these queries – in a slight
abuse of the OWL Time ontology – we “in-
vented” the properties timex:hasStartTime and
timex:hasEndTime that do not really exist in the
original OWL time ontology. This is a compromise
for the desired compactness of representation in our
knowledge graph, i.e. these are mainly introduced
as shortcuts to avoid the materialization of unnec-
essary blank nodes in the (for our purposes too) ver-
bose notation of OWL Time. A proper representa-
tion using OWL Time could be easily reconstructed
by means of the following CONSTRUCT query:

CONSTRUCT {
?X time:hasBeginning [

time:inXSDDateTime ?StartDateTime
] ;

time:hasEnd [
time:inXSDDateTime ?EndDateTime

] .
} WHERE {

?X timex:hasStartTime ?StartDateTime ;
timex:hasEndTime ?EndDateTime

}

For this purpose we define our own vocabulary
extension of the OWL Time ontology, for the mo-
ment, under the namespace http://data.wu.ac.

at/ns/timex#.

4. Dataset Labelling Algorithm

In order to add spatial and temporal annota-
tions to Open Data resources we use the CSV files
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PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX timex: <http://data.wu.ac.at/ns/timex#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {
?event rdfs:label ?label ; dcterms:isPartOf ?Parent ; dcterms:coverage ?geocoordinates ;

timex:hasStartTime ?StartDateTime ; timex:hasEndTime ?EndDateTime ; dcterms:spatial ?geoentity .
} WHERE {

# find events with (for the moment) English, German, or non-language-specific labels:
?event wdt:P31/wdt:P279* wd:Q1190554 . ?event rdfs:label ?label .
FILTER( LANG(?label) = "en" || LANG(?label) = "de" || LANG(?label) = "" ).
# restrict to certain event categories, e.g. (for the moment) elections and sports events:
{ # elections #sports competitions
{ ?event wdt:P31/wdt:P279* wd:Q40231 } UNION { ?event wdt:P31/wdt:P279* wd:Q13406554 }

}
{ # with a point in time or start end end date

{ ?event wdt:P585 ?StartDateTime . FILTER ( ?StartDateTime > "1900-01-01T00:00:00"^^xsd:dateTime) }
UNION
{ ?event wdt:P580 ?StartDateTime. FILTER ( ?StartDateTime > "1900-01-01T00:00:00"^^xsd:dateTime)

?event wdt:P582 ?EndDateT. FILTER ( DATATYPE(?EndDateT) = xsd:dateTime) }
}
OPTIONAL { ?event wdt:P361 ?Parent }
# specific spatialCoverage if available
OPTIONAL { ?event wdt:P276?/(wdt:P17|wdt:P131) ?geoentity }
OPTIONAL { ?event wdt:P276?/wdt:P625 ?geocoordinates }
BIND ( if(bound(?EndDateT), ?EndDateT, xsd:dateTime(concat(str(xsd:date(?StartDateTime)),"T23:59:59"))) AS ?EndDateTime )

}

Figure 4: Conceptual SPARQL query to extract event data (from elections and sports competitions) from Wikidata – times
out on https://query.wikidata.org

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX timex: <http://data.wu.ac.at/ns/timex#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX periodo: <http://n2t.net/ark:/99152/p0v#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {
?P rdfs:label ?label ; dcterms:isPartOf ?Parent ; dcterms:spatial ?geo ;
timex:hasStartTime ?StartDateTime ; timex:hasEndTime ?EndDateTime .

} WHERE {
{

{ ?P skos:prefLabel ?label } UNION { ?P skos:altLabel ?label } UNION { ?P rdfs:label ?label }
}
?P time:intervalFinishedBy ?End ; time:intervalStartedBy ?Start.
OPTIONAL { ?P periodo:spatialCoverage ?geo }
OPTIONAL { ?P dcterms:spatial ?geo }
OPTIONAL { ?P dcterms:isPartOf ?Parent. }
OPTIONAL{ ?End time:hasDateTimeDescription ?EndTime .

OPTIONAL{ ?EndTime time:year ?EndYear }
OPTIONAL{ ?EndTime periodo:latestYear ?EndYear }

}
OPTIONAL{ ?Start time:hasDateTimeDescription ?StartTime .

OPTIONAL{ ?StartTime time:year ?StartYear }
OPTIONAL{ ?StartTime periodo:earliestYear ?StartYear }

}
OPTIONAL{ ?Start (!periodo:aux)+ ?StartYear. FILTER (isLiteral(?StartYear)) }
OPTIONAL{ ?End (!periodo:aux)+ ?EndYear. FILTER (isLiteral(?StartYear)) }

FILTER( ?StartYear >= "1900"^^xsd:gYear || xsd:integer(?StartYear) >= 1900 ||
?EndYear >= "1900"^^xsd:gYear || xsd:integer(?EndYear) >= 1900 )

BIND( xsd:dateTime(concat(str(?StartYear),"-01-01T00:00:00")) as ?StartDateTime )
BIND( xsd:dateTime(concat(str(?EndYear),"-12-31T23:59:59")) as ?EndDateTime ) }

Figure 5: SPARQL query to extract event data (from historic periods) from PeriodO
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and metadata from the resources’ data portals as
signals. The metadata descriptions and download
links are provided by our Open Data Portal Watch
framework [13] which monitors and archives over
260 data portals, and provides APIs to retrieve
their metadata descriptions in an homogenized way
using the W3C DCAT vocabulary [14]. Regarding
the meta-information, we look into several available
metadata-fields: we consider the title, description,
the tags and keywords, and the publisher. For in-
stance, the upper part of Figure 6 displays an ex-
ample metadata description. It holds cues in the
title and the publisher field (cf. “Veröffentlichende
Stelle” - publishing agency) and holds a link to the
actual dataset, a CSV file (cf. lower part in Fig-
ure 6), which we download and parse.

4.1. Geo-spatial labelling

Figure 6: Geo-information in metadata and CSVs.
Example dataset from the Austrian data por-
tal: https://www.data.gv.at/katalog/dataset/

4d9787ef-e033-4c4f-8e50-65beb0730536

The geo-spatial labelling algorithm uses the dif-
ferent types of labels in our base knowledge graph
to annotate the metadata and CSV files from the
input data portals.

4.1.1. CSVs

Initially, the columns of a CSV gets classified
based on regular expressions for NUTS identifier

and postal codes. While the NUTS pattern is rather
restrictive,20 the postal codes pattern has to be
very general, potentially allowing many false pos-
itives. Basically, the pattern is designed to allow
all codes in the knowledge graph, and to filter out
other strings, words, and decimals.21

Potential NUTS column (based on the regular ex-
pression) get mapped to the existing NUTS identi-
fier. If this is possible for a certain threshold (set to
90% of the values) we consider a column as NUTS
identifier and add the respective semantic labels. In
case of potential postal codes the algorithm again
tries to map to existing postal codes, however, we
restrict the set of codes to the originating country
of the dataset. This again results in a set of seman-
tic labels which we only accept with a threshold of
90%.

The labelling of string columns, i.e. set of words
or texts, uses all the labels from GeoNames and
OSM and is based on the following disambiguation
algorithm:

Value disambiguation. The algorithm in Figure 7
describes shows how we disambiguate a set of
string values based on the surroundings. First,
the function get context(values) counts all po-
tential parent GeoNames entities for all of the val-
ues. To disambiguate a single value we use these
counts and select the GeoNames candidate with
the most votes from the context values’ parent re-
gions; cf. disamb value(value). The function
get geonames(value) returns all potential GeoN-
ames entites for an input string. Additionally, we
use the origin country of the dataset (if available)
as a restriction, i.e., we only allow GeoNames labels
from the matching country.

For instance, in Figure 6 the Austrian “Linz” can-
didate gets selected in favor of the German “Linz”
because the disambiguation resulted in an higher
score based on the matching predecessors “Upper
Austria” and “Austria” for the other values in the
column (Steyr, Wels, Altheim, ...).

If no GeoNames mapping was found the algo-
rithm tries to instantiate the string values with
OSM labels from the base knowledge graph. Again,
the same disambiguation algorithm is applied, how-
ever, with the following two preprocessing steps for
each input value:

20[A-Z]{2}[A-Z0-9]{0, 3}
21(([A-Z\d]){2, 4}|([A-Z]{1, 2}.)?\d{2, 5}(\s[A-

Z]{2, 5})?(.[\d]{1, 4})?)
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# disambiguate a se t of input va lues
def disamb values ( values , country ) :

disambiguated = [ ]
cont par = get context ( va lues )
for v in va lues :

v id = disamb value (v , country , cont par )
disambiguated . append ( v id )

return disambiguated

# disambiguate a s i n g l e value based on
# the parents of the surrounding va lues
def disamb value ( value , country , cont par ) :

cand idates = get geonames ( va lue )
c s c o r e = {}
for c in cand idates :

i f country and country != c . country :
continue

else :
parents = get all parents ( c )
for p in parents :

c s c o r e [ c ] += cont par [ p ]
top = sorted ( c s c o r e ) [ 0 ]
return top

# counts a l l parent va lues
def get context ( va lues ) :

cont par = {}
for v in value :

for c in get geonames ( va lue ) :
parents = get all parents ( c )
for p in parents :

cont par [ p ] += 1
return cont par

Figure 7: Python code fragment for disambiguating a set of
input values.

1. In order to better parse addresses, we use the
Libpostal library (cf. Section 2) to extract
streets and place names from strings.

2. We consider the context of a CSV row, e.g., if
addresses in CSVs are separated into dedicated
columns for street, number, city, state, etc. To
do so we filter the allowed OSM labels by can-
didates within any extracted regions from the
metadata description or from the correspond-
ing CSV row (if geo-labels available).

4.1.2. Metadata descriptions

The CSVs’ meta-information at the data por-
tals often give hints about the respective regions
covering the actual data. Therefore, we use this
additional source and try to extract geo-entities
from the titles, descriptions and publishers of the
datasets:

1. As a first step, we tokenize the input fields,
and remove any stopwords. Also, we split any
words that are separated by dashes, under-
scores, semicolon, etc.

2. The input is then grouped by word sequences of
up to three words, i.e. all single words, groups

of two words, ..., and the previously introduced
algorithm for mapping a set of values to the
GeoNames labels is applied (including the dis-
ambiguation step).

Figure 6 gives an example dataset description found
on the Austrian data portal data.gv.at. The la-
belling algorithm extracts the geo-entity “Upper
Austria” (an Austrian state) from the title and
the publisher “Oberösterreich”. The extracted geo-
entities are added as additional semantic informa-
tion to the indexed resource.

4.2. Temporal labelling

Similarly to the geospatial cues, temporal infor-
mation in Open Data comes in various forms and
granularity, e.g., as datetime/timespan information
in the metadata indicating the validity of a dataset,
or year/month/time information in CSV columns
providing timestamps for data points or measure-
ments.

4.2.1. Metadata descriptions

We extract the datasets’ temporal contexts from
the metadata descriptions available at the data por-
tals in two forms: (i) We extract the published and
last modified information in case the portal pro-
vides dedicated metadata fields for these. (ii) We
use the resource title, the resource description, the
dataset title, the dataset description, and the key-
words as further sources for temporal annotations.
However, we prioritize the sources in the above or-
der, meaning that we use the temporal information
in the resource metadata rather than the informa-
tion in the dataset title or description.22

The datetime extraction from titles and descrip-
tions is based on the Heideltime framework [15]
since this information typically comes as natural
text. Heideltime supports extraction and normal-
ization of temporal expressions for ten different lan-
guages. In case the data portal’s origin language is
not supported we use English as a fallback option.

22For instance, consider a dataset titled “census data from
2000 to 2010” that holds several CSVs titled “census data
2000”, “census data 2001”, etc.: This metadata allows to
infer that the temporal cues in the CSVs’ titles are more
accurate/precise than the dataset’s title, which gives a more
general time span for all CSVs.
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4.2.2. CSVs

To extract potential datetime values from the
datasets we parse the columns of the CSVs using
the Python dateutil library.23 This library is able
to parse a variety of commonly used date-time pat-
terns (e.g., ‘‘January 1, 2047’’, ‘‘2012-01-19’’,

etc.), however, we only allow values where the
parsed year is in the range of 1900 and 2050.24

For both sources of temporal information, i.e.
metadata and CSV columns, we store the minimum
and maximum (or start and end time) value so that
we can allow range queries over the annotated data.

Datetime periodicity patterns. The algorithm in
Figure 8 displays how we estimate any pattern of
periodicity of the values in a column for a set of
input datetime values. Initially, we check if all the
values are the same (static), e.g., a column where
all cells hold “2018”. Then we sort the values; how-
ever, note that this step could lead to unexpected
annotations, because the underlying pattern might
not be apparent in the unsorted column.

We compute all differences (deltas) between
the input dates and check if all these deltas have
approximately – with 10% margin – the same
length. We distinguish daily, weekly, monthly,
quarterly, and yearly pattern; in case of any
other recurring pattern we return other.

4.3. Indexed Datasets & Evaluation

Our framework currently contains CSV tables
from 11 European data portals from 10 different
countries, cf. Table 1. Note, that the notion of
datasets on these data portals (wrt. Table 1) usu-
ally groups a set of resources; for instance, typically
a dataset groups resources which provide the same
content in different file formats. A detailed descrip-
tion and analysis of Open Data portals’ resources
can be found in [13]. The statistics in Table 1, i.e.
the number of datasets and indexed CSVs is based
on the third week of March 2018. The differing
numbers of CSVs and indexed documents in the
table can be explained by offline resources, pars-
ing errors, etc. Also, we currently do not index
documents larger than 10MB due to local resource
limitations; the basic setup (using Elasticsearch for
the indexed CSVs, cf Section 6) is fully scalable.

23https://dateutil.readthedocs.io/en/stable/
24The main reason for this restriction is that any input

year easily yields to wrong mappings of e.g. postal codes,
counts, etc.

def datetime pattern ( dates ) :
# a l l the dates have the same value
i f len ( set ( dates ) ) == 1 :

return ’ s t a t i c ’

# sor t the dates and compute the de l t a s
dates = sorted ( dates )
d e l t a s = [ ( d−dates [ i −1])

for i , d in enumerate ( dates ) ] [ 1 : ]

for p , l in [ ( ’ d a i l y ’ , delta ( days=1)) ,
( ’ weekly ’ , delta ( days=7)) ,
( ’ monthly ’ , delta ( days=30)) ,
( ’ qua r t e r l y ’ , delta ( days=91)) ,
( ’ y ea r ly ’ , delta ( days =365) ) ] :

# add 10% to lerance range
i f a l l ( l−( l ∗0 . 1 ) < d < l +( l ∗0 . 1 )

for d in de l t a s ) :
return p

# none of the pre−def ined pattern
i f len ( set ( d e l t a s ) ) == 1 :

return ’ o ther ’

# values do not f o l l ow a regu lar pat tern
return ’ vary ing ’

Figure 8: Python code fragment for estimating the datetime
patterns of a set of values.

portal datasets CSVs indexed

total 15728

govdata.de 19464 10006 5646
data.gv.at 20799 18283 2791
offenedaten.de 28372 4961 2530
datos.gob.es 17132 8809 1275
data.gov.ie 6215 1194 884
data.overheid.nl 12283 1603 828
data.gov.uk 44513 7814 594
data.gov.gr 6648 414 496
data.gov.sk 1402 877 384
www.data.gouv.fr 28401 6038 258
opingogn.is 54 49 41

Table 1: Indexed data portals

Table 2 lists the total number of annotated
datasets. With respect to the spatial labelling algo-
rithm, were able to annotate columns of 3518 CSVs
and metadata descriptions of 11231 CSVs (of a total
of 15k indexed CSVs). Regarding the temporal la-
belling, we detected date/time information in 2822
CSV columns and in 9112 metadata descriptions.

Spatial Temporal
Columns Metadata Columns Metadata

3518 11231 2822 9112

Table 2: Total numbers of spatial and temporal annotations
of metadata descriptions and columns.
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Here we focus on evaluating the annotated geo-
entities, and neglect the temporal annotations with
the following two main reasons: First, the date-
time detection over the CSV columns is based on
the standard Python library dateutil. The library
parses standard datetime formats (patterns such as
yyyy-mm-dd, or yyyy) and the potential errors here
are that we incorrectly classify a numerical column,
e.g., classifying postal codes as years. As a very
basic pre-processing, where we do not see a need
for evaluation, we reduce the allowed values to the
range 1900-2050 (with the drawback of potential
false negatives), however, using the distribution of
the numeric input values [16] would allow a more in-
formed decision. Second, the labelling of metadata
information is based on the temporal tagger Hei-
deltime [15] which provides promising evaluations
over several corpora.

Manual inspection of a sample set. To show the
performance and limitations of our labelling ap-
proach we have randomly selected 10 datasets
per portal (using Elasticsearch’s built-in random
function25) and from these again randomly se-
lect 10 rows, which resulted in a total of 101 in-
spected CSVs, i.e. 1010 rows (with up to several
dozen columns per CSV). As for the main find-
ings, in the following let us provide a short sum-
mary; all selected datasets and their assigned labels
can be found at https://github.com/sebneu/

geolabelling/tree/eu-data/jws_evaluation.
Initially, we have to state that this evaluation

is manually done by the authors and therefore re-
stricted to our knowledge of the data portals’ ori-
gin countries and their respective language, re-
gions, sub-regions, postal codes, etc. For in-
stance, we were able to see that our algorithm
correctly labelled the Greek postal codes in some
of the test samples from the Greek data por-
tal data.gov.gr,26 but that we could not assign
the corresponding regions and streets.27 However,
as we are not able to read and understand the
Greek language (and the same for the other non-
English/German/Spanish portals) we cannot fully

25https://www.elastic.co/guide/en/elasticsearch/

guide/current/random-scoring.html, last accessed 2018-
04-01

26E.g., https://github.com/sebneu/geolabelling/blob/
eu-data/jws_evaluation/data_gov_gr/0.csv, the datasets
use “T.K.” in the headers to indicate these codes.

27The Greek data portal uses the Greek letters in their
metadata and CSVs which would require a specialized label
mapping wrt. lower-case mappings, stemming, etc.

guarantee any potential mismatches or missing an-
notations that we did not spot during our manual
inspections.

We categorize the datasets’ labels by assessing
the following dimensions: are there any correctly
assigned labels in the dataset (c), are there any
missing annotations (m), and did the algorithm as-
sign incorrect links to GeoNames (g) or OSM (o);
a result overview is given in Table 3.

total c m g o

101 87 37 9 9

Table 3: Evaluation result of sample CSVs.

Out of 101 inspected datasets we identified in 87
CSVs correct annotations. In particular, for the
Spain and the Greek data portal only in 50% of
the test samples there were correct links, while for
the 9 other indexed data portals we have a near to
100% rate. Regarding any missing annotations, we
identified 37 datasets where our algorithm (and also
the completeness of our spatial knowledge graph)
needs improvements. For instance, in some datasets
from the Netherlands’ data portal28 and also the
Slovakian portal29 we identified street names and
addresses that could potentially mapped to OSM
entries.

Regarding incorrect links there were only 9 files
with wrong GeoNames and 9 files with wrong OSM
annotations. An exemplary error that we observed
here was that some file30 contains a column with
the value “Norwegen” (“Norway”): Since the file is
provided at a German data portal, we incorrectly
labelled the column using a small German region
Norwegen instead of the country, because our al-
gorithm prefers labels from the origin country of
the dataset. Another example that we want to con-
sider in future versions of our labelling algorithm
is this wrong assignment of postal codes:31 We
incorrectly annotated a numeric column with the
provinces of Spain (which use two-digit numbers as
postal codes).

28E.g.,https://github.com/sebneu/geolabelling/tree/
eu-data/jws_evaluation/data_overheid_nl/4.csv

29E.g., https://github.com/sebneu/geolabelling/tree/
eu-data/jws_evaluation/data_gov_sk/3.csv

30https://github.com/sebneu/geolabelling/blob/

eu-data/jws_evaluation/offenedaten_de/0.csv
31https://github.com/sebneu/geolabelling/blob/

eu-data/jws_evaluation/datos_gob_es/7.csv
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5. Export RDF

We make our base knowledge graph and RDFized
linked data points from the CSVs available via a
SPARQL endpoint. Figure 9 displays an example
extract of the RDF export of the knowledge graph.
The sources of the aggregated links between the dif-
ferent entities and literals in our graph are indicated
in the figure; we re-use the GeoNames ontology
(gn:) for the hierarchical enrichments generated by
our algorithms (see links [m]), and owl:sameAs for
mappings to OSM relations and NUTS regions, cf.
Figure 9.

Annotated data points. We export the linked data
points from the CSVs in two ways: First, for any
linked geo-entity <g> in our base knowledge graph,
we add triples for datapoints uniquely linked in
CSV resources (that is, values appearing in partic-
ular columns) by the following triple schema: if the
entity <g> appears in a column in the given CSV
dataset, i.e., the value V ALUE in that column has
been labeled with <g>, we add a triple of the form

<g> <u#col> "V ALUE" .

That is, we mint URIs for each column col ap-
pearing in a CSV accessible through a URL u by the
schema u#col, i.e., using fragment identifiers. The
column’s name col is either the column header (if a
header is available and the result is a valid URI) or
a generic header using the columns’ index column1,
column2, etc. These triples are coarse grained, i.e.
they do not refer to a specific row in the data. We
chose this representation to enable easy-to-write,
concise SPARQL queries like for instance:

SELECT ?geo ?value
WHERE {

?geo <https ://www.wien.gv.at/finanzen/ogd/
hunde -wien.csv#Postal_CODE > ?value .

}

The above query selects all values and their geo-
annotations for the selected column named ”Postal
CODE” in a specific dataset about dog breeds in
Vienna per district.32

Second, a finer grained representation, which we
also expose, provides exact table cells where a cer-
tain geospatial entity is linked to, using an exten-
sion of the CSVW vocabulary [17]: note that the
CSVW vocabulary itself does not provide means
to conveniently annotated table cells in column

32Link to the query: https://tinyurl.com/y897rwrl

col and row n which is what we need here, so
we define our own vocabulary extension for this
purpose (for the moment, under the namespace
http://data.wu.ac.at/ns/csvwx#):

@prefix csvwx: <http :// data.wu.ac.at/ns/csvwx#> .
@prefix csvw: <http ://www.w3.org/ns/csvw#> .
<u#col> csvwx:cell [

a csvw:Cell ; csvw:rownum n ;
csvwx:rowURL <u#row=n> ;
rdf:value "V ALUE" ;
csvwx:refersToEntity <g>

] .

We use the CSVW class csvw:Cell for an anno-
tated cell and add the row number and value (us-
ing csvw:rownum and rdf:value) to it. We ex-
tend CSVW by the property csvwx:cell to refer
from a csvw:Column (using again the fragmented
identifier u#col) to a specific cell, and the prop-
erty csvwx:rowURL to refer to the CSV’s row (us-
ing the schema u#row=n). Here, the property
csvwx:refersToEntity connects the labelled geo-
entity <g> to a specific cell.

Analogously, in case of available (labelled) tem-
poral information for a cell, we use the property
csvwx:hasTime:

@prefix csvwx: <http :// data.wu.ac.at/ns/csvwx#> .
@prefix csvw: <http ://www.w3.org/ns/csvw#> .
<u#col> csvwx:cell [

a csvw:Cell ; csvw:rownum n ;
csvwx:rowURL <u#row=n> ;
rdf:value "V ALUE" ;
csvwx:hasTime "DATE"^^ xsd:dateTime .

] .

Moreover, we denote the geo-spatial scope of the
column itself by declaring the type of entities within
which geographic scope appearing in the column.
The idea here is that we annotate – on column level
– the least common ancestor of the spatial entities
recognized in cells within this column. E.g.,

<u#col> csvwx:refersToEntitiesWithin <g1> .

with the semantics that the entities linked to col in
the CSV u all refer to entities within the entity g1
(such that g1 is the least common ancestor in our
knowledge graph.

This could be seen as a shortcut/materialization
for a CONSTRUCT query as follows:

CONSTRUCT
{ ?UrlCol csvwx:refersToEntitiesWithin ?G_1 }
WHERE {
?Col csvwx:cell [ csvwx:refersToEntity ?G ].
?G gn:parentFeature* ?G_1 .
# all elements of this column have to share
# parent feature ?G_1
FILTER NOT EXISTS {
?Col csvwx:cell [ csvwx:refersToEntity ?G_ ].
FILTER NOT EXISTS {
?G_ gn:parentFeature* ?G_1.

}
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Figure 9: Example RDF export of the geo-entities knowledge graph.

}
# this parent feature is the least one that
# fulfills this property:
FILTER NOT EXISTS {
?G_2 gn:parentFeature ?G_1.
?Col csvwx:cell [ csvwx:refersToEntity ?G ].
?G gn:parentFeature* ?G_2 .
# all elements of this column have to share
# parent feature ?G_2
FILTER NOT EXISTS {
?Col csvwx:cell [ csvwx:refersToEntity ?G__ ].
FILTER NOT EXISTS {
?G__ gn:parentFeature* ?G_2.

}
}

}
}

Obviously, this query is very inefficient and we
rather compute these least common ancestors per
column during labeling/indexing of each column.

CSV on the Web. In ordder to complete the de-
scriptions of our annotations in our RDF export,
we describe all CSV resources gathered from the
annotated Open Data Portals and their columns us-
ing the CSV on the Web (CSVW) [17] vocabulary,
re-using the following parts of the CSVW schema.
Firstly, we use the following scheme to connect our
aforementioned annotations to the datasets:

@prefix csvw: <http ://www.w3.org/ns/csvw#> .
@prefix dcat: <http ://www.w3.org/ns/dcat#> .

<d> a dcat:Dataset [ dcat:distribution
[ dcat:accessURL u ] ].

[] csvw:url u;
csvw:tableSchema [

csvw:column (<u#col1> <u#col2 >... <u#coln >)] .

<u#col1> a csvw:name "col1" ; csvw:datatype dcol1
.

<u#col2> a csvw:name "col2" ; csvw:datatype dcol2
.

Then, we enrich this skeleton with further CSVW
annotations that we can extract automatically from
the respective CSV files. Figure 10 displays an
example export for a CSV resource. The blank
node :csv represents the CSV resource which can
be downloaded at the URL at property csvw:url.

The values of the properties dcat:byteSize and
dcat:mediaType are values of the corresponding
HTTP header fields. The dialect description of the
CSV can be found via the blank node :dialect

at property csvw:dialect and the columns of the
CSV are connected to the :schema blank node (de-
scribing the csvw:tableSchema of the CSV).

Figure 10: Example export of CSVW metadata for a dataset.

6. Search & Query Interface

Our integrated prototype for a spatio-temporal
search and query system for Open Data currently
consists of three main parts: First, the geo-entities
DB and search engine in the back end, second the
user interface and APIs, and third, access to the
above described RDF exports via an SPARQL end-
point.

6.1. Back End

All labels from all the integrated datasets and
their corresponding geo-entities are stored in a
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look-up store, where we use the NoSQL key-value
database MongoDB. It allows an easy integration
of heterogeneous data sources and very performant
look-ups of keys (e.g., labels, GeoNames IDs, postal
codes, etc. in our case).

Further, we use Elasticsearch to store and index
the processed CSVs and their metadata descrip-
tions. In our setup, an Elasticsearch document cor-
responds to an indexed CSV and consists of all cell
values of the table (arranged by columns), the po-
tential geo-labels for a labelled column, metadata
of the CSV (e.g., the data portal, title, publisher,
etc.), the temporal annotations, and any additional
labels extracted from the metadata.

6.2. User interface

The user interface, available at
http://data.wu.ac.at/odgraphsearch/, al-
lows search queries for geo-entities but also
full-text matches. Note, that the current UI imple-
ments geo-entity search using auto-completion of
the input (but only suggesting entries with existing
datasets) and supports full-text querying by using
the “Enter”-key in the input form. The screenshot
in Figure 11 displays an example query for the
Austrian city “Linz”. The green highlighted cells
in the rows below show the annotated labels, for
instance, the annotated NUTS2 code “AT31” in
the second result in Figure 11. Likewise we allow
to filtering datasets relevant to a particular period
either by auto-completion in a separate field to
filter the time period by a period/event label,
or by chosing start and end dates via sliders (cf.
Figure 11).

The chosen geo-entities and durations which are
fixed via these lookups in our search index through
the UI are passed on as parameters as a concrete
geo-ID and/or start&end-date to our API, which
we describe next.

Additionally, the web interface provides APIs to
retrieve the search results, all indexed datasets, and
the RDF export per dataset. To allow program-
matic access to the search UI we offer the following
HTTP GET API:

/locationsearch?l={GeoIDs}
&limit={limit}&offset={offset}
&start={startDate}&end={endDate}
&mstart={startDate}&mend={endDate}
&periodicity={dateT imePattern}
&q={keyword}

Figure 11: Screenshot of of an example search at the UI.

The API takes multiple instances of geo IDs, that
is, GeoNames or OSM IDs (formatted as osm:{ID})
using parameter l, a limit and an offset param-
eter, which restricts the amount of items (datasets)
returned, and an optional white space separated
list of keywords (q) as full-text query parameter
to enable conventional keyword search in the meta-
data and header information of the datesets. To re-
strict the results to a specific temporal range we im-
plemented the parameters mstart, mend (for filter-
ing a time range from the metadata-information),
and start, end (for the min and max values of
date annotations from CSV columns). The param-
eter periodicity allows to filter for datetime pe-
riodicity patterns such as “yearly”, “monthly”, or
“static” (in case there is only a single datetime value
in this column), cf. Section 4.2.2 for a detailed de-
scription of the periodicity patterns.

The output consists of a JSON list of documents
that contain the requested GeoNames/OSM IDs or
any tables matching the input keywords.

6.3. SPARQL endpoint

We offer a SPARQL endpoint at
http://data.wu.ac.at/odgraphsearch/sparql

where we provide the data as described in Sec-
tion 5. Currently, as of the first week of April 2018,
the endpoint contains 88 million triples: 15 million
hierarchical relations using the gn:parentFeature
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relation, 11768 CSVs (together with their CSV
on the Web descriptions), where we added a
total of 5 million geo-annotations using the
csvwx:refersToEntity property, and 1.3 million
datetime-annotations using the csvwx:hasTime

annotation.

Example queries. The first example lists
all datasets from Vienna, using the
csvwx:refersToEntity metadata annotation,
and only lists CSVs where there exists a column
with dates within the range of the last Austrian
legislative period, using the Wikidata entities of
the past two elections:33

SELECT ?d ?url WHERE {
# dates of the past two elections in Austria
wd:Q1386143 timex:hasStartTime ?t1 .
wd:Q19311231 timex:hasStartTime ?t2 .

?d dcat:distribution [
dcat:accessURL ?url ;
# the min and max date values
timex:hasStartTime ?start ;
timex:hasEndTime ?end

] .
# filter datasets about Vienna
?d csvwx:refersToEntity

<http :// sws.geonames.org /2761369/ > .

FILTER ((? start >= ?t1) && (?end <= ?t2))
}

The next example query combines text search for
time periods with a structured query for relevant
data; it looks for information of datasets about
a time period before the 2nd World War, called
the “Anschluss movement” (i.e., the preparation
of the annexation of Austria into Nazi Germany)
and queries for all available CSV rows where a date
within this period’s range (1918-1938, according to
PeriodO), and a geo-entity within the period’s spa-
tial coverage location (i.e. Austria) occurs:

SELECT ?d ?url ?rownum WHERE {
# get the "Anschluss movement"
?p rdfs:label ?L.
FILTER (CONTAINS (?L, "Anschluss movement ") ) .
?p timex:hasStartTime ?start ;

timex:hasEndTime ?end ;
dcterms:spatial ?sp .

# find the GeoNames entities
?spatial owl:sameAs ?sp .
?d dcat:distribution [ dcat:accessURL ?url ] .
[] csvw:url ?url ;

csvw:tableSchema ?s .
# find a cell where date falls in the range
# of the found period
?s csvw:column ?col1 .
?col1 csvwx:cell [

csvw:rownum ?rownum ;
csvwx:hasTime ?cTime

]

33Link to query: https://tinyurl.com/ycl8x78b

FILTER ((? cTime >= ?start) &&
(?cTime <= ?end))

# find another cell in the same row where the
# geo -entity has the spatial coverage area of
# the found period as the parent country
?s csvw:column ?col2 .
?col2 csvwx:cell [

csvw:rownum ?rownum ;
csvwx:refersToEntity [

gn:parentCountry ?spatial
]

]
}

GeoSPARQL. GeoSPARQL [18] extends SPARQL
to a geographic query language for RDF data. It
defines a small ontology to represent geometries
(i.e., points, polygons, etc.) and connections be-
tween spatial regions (e.g., contains, part-of, inter-
sects), as well as a set of SPARQL functions to test
such relationships. The example query in Figure 12
uses the available polygon of the Viennese district
“Leopoldstadt” to filter all annotated data points
within the borders of this district.

While we do not yet offer a full GeoSPARQL
endpoint for our ptotoype yet (which we leave to
a forthcoming next release), our RDFized datasets
and knowledge graph is GeoSPARQL “ready”, i.e.
having all the geo-coordinates and polygons in the
endpoint using the GeoSPARQL vocabulary; an ex-
ternal GeoSPARQL endpoint could already access
our data using the SERVICE keyword and evalu-
ate the GeoSPARQL specific functions locally, or
simply import our data.

7. Related Work

The 2013 study by Janowicz et al. [19] gives
an overview of Semantic Web approaches and tech-
nologies in the geo-spatial domain. Among the in
the article listed Linked Data repositories and on-
tologies we also find the GeoNames ontology (cf.
Section 2), the W3C Geospatial Ontologies [20],
and the GeoSPARQL Schemas [18]. However, when
looking into the paper’s listed repositories, most of
them (6/7) were not available, i.e. offline, which
seems to indicate that many efforts around Geo-
Linked data have unfurtunately not been pursued
in a sustainable manner.

The 2012 project LinkedGeoData [21] resulted
in a Linked Data resource, generated by convert-
ing a subset of OpenStreetMap data to RDF and
deriving a lightweight ontology from it. In [22]
the authors describe their attempts to further con-
nect GeoNames and LinkedGeoData, using string
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PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geosparql: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX csvw: <http://www.w3.org/ns/csvw#>
PREFIX csvwx: <http://data.wu.ac.at/ns/csvwx#>

SELECT ?d ?url ?rownum WHERE {
# get the geometry of the Viennese district "Leopoldstadt"
<http://sws.geonames.org/2772614/> geosparql:hasGeometry ?polygon .

?d dcat:distribution [ dcat:accessURL ?url ] .
[ csvw:url ?url ; csvw:tableSchema ?s ].
# select the geometries of any annotated cells
?s csvw:column ?col .
?col csvwx:cell [ csvw:rownum ?rownum ; csvwx:refersToEntity [ geosparql:hasGeometry ?g ] ]

# filter all annotated data points within the polygon of Leopoldstadt
FILTER(geof:sfWithin(?g, ?polygon))

}

Figure 12: Example GeoSPARQL query over using the available geometries – not yet available via the endpoint.

similarity measures and geometry matching. How-
ever, while LinkedGeoData is also listed in [19] as
a geospatial Linked Data repository, unfortunately
it is currently not available online. Also, this work
was complementary to ours, as we do not focus on
matching and entity alignment, but rather the in-
tegration of existing structured entities from diffr-
erent Geo and Temporal (Linked) Data sources The
GeoKnow project [23] is another attempt to pro-
vide and manage geospatial data as Linked Data.
GeoKnow provides a huge toolset to process these
datasets, including the storage, authoring, inter-
linking, and geospatially-enabled query optimiza-
tion techniques.

The project PlanetData (2010 to 2014), funded
by the European Commission, released an RDF
mapping of the NUTS classifications34 [24] using
the GeoVocab vocabulary.35 This dataset models
the hierarchical relations of the regions, provides la-
bels and polygons. Unfortunately, the project does
not include external links to GeoNames, or Wiki-
data, except for the country level, i.e. there are only
28 links to the corresponding GeoNames entries of
the EU member states.

Complementary to our approach to access street
addresses via OSM, Open Addresses36 is a global
collection of address data sources, which could be
considered for future work as an additional dataset
to feed into our base knowledge graph. The manu-
ally collected and homogenized dataset consists of a

34http://nuts.geovocab.org/, last accessed 2018-01-05
35http://geovocab.org/, last accessed 2018-01-05
36https://openaddresses.io/, last accessed 2018-04-01

total of 478M addresses; street names, house num-
bers, and post codes combined with geographic co-
ordinates, harvested from governmental datasets of
the respective countries.

A conceptually related approach, although not
focusing on geo-data, is the work by Taheriyan et
al. [25], who learn the semantic description of a new
source given a set of known semantic descriptions
as the training set and the domain ontology as the
background knowledge.

In [26] Paulheim provides a comprehensive survey
of refinement methods, i.e., methods that try to in-
fer and add missing data to a graph, however, these
approaches work on graphs in a domain indepen-
dent setting and do not focusing on temporal and
spatial knowledge. Still, in some sense, we view our
methodology of systematic Knowledge Graph ag-
gregation from Linked Data sources via declaritive,
use-case specific, minimal mappings as potentially
complementary to the domain-independent meth-
ods mentioned therein. I.e., we think in future
works, such methods should be explored in com-
bination.

Most related wrt. the construction of the tem-
poral knowledge graph is the work by Gottschalk
and Demidova [27] (2018): they present a tempo-
ral knowledge graph that integrates and harmonizes
event-centric and temporal information regarding
historical and contemporary events. In contrast
to [27] we also integrate data from PeriodO [9],
and we focus on periods in a geospatial context.
This work is built upon [28] where the authors ex-
tract event information from the Wikipedia Current
Events Portal (WCEP). In future work we want to
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connect the resource from [27], since the additional
data extracted from the WCEP and WikiTimes in-
terface is in particular interesting for our frame-
work.

In [10] Rospocher et al. build a knowledge graph
directly from news articles, and in [29] by extracting
event-centric data from Wikipedia articles. These
approaches work over plain text (with the potential
drawback of noisy data) while we integrate existing
structured sources of temporal information; there-
fore these are complementary/groundwork to our
contributions.

8. Conclusions

Governmental data portals such as Austria’s
data.gv.at or the UK’s data.gov.uk release local,
regional and national data to a variety of users (citi-
zens, businesses, academics, civil servants, etc.). As
this data is mainly collected as part of census collec-
tions, infrastructure assessments or any other, sec-
ondary output data, these resources almost always
contain or refer to some kind of geographic and
temporal information; for instance, think of pub-
lic transport data, results of past elections, demo-
graphic indicators, etc. Search across these dimen-
sions seems therefore natural, i.e., we have identi-
fied the spatial and temporal dimensions as the cru-
cial, characterizing dimensions of datasets on such
data portals.

In order enable such search and to integrate these
datasets in the LOD cloud (as they are mainly pub-
lished as CSVs [13]) we have achieved the following
tasks in this work:

• We have described a hierarchical knowledge
graph of spatial and temporal entities in terms
of SPARQL queries, as well as the integra-
tion of temporal information and its interlink-
age with the geospatial-knowledge from various
Linked data sources (GeoNames, OSM, Wiki-
data, PerioDo), where our general approach is
extensible to adding new sources, further de-
tails of the construction are provided in the
appendix.

• We have described algorithms to annotate CSV
tables and their respective metadata descrip-
tions from Open Data Portals and we have an-
notated datasets and metadata from 11 Euro-
pean data portals.

• To demonstrate the performance and limita-
tions of our spatio-temporal labelling we have
evaluated the annotations by manual inspec-
tion of a random sample per data portal,
where we identified correct geo-annotations for
around 90% of the inspected datasets.

• To access and query the data we offer a user
interface, RESTful APIs and a SPARQL end-
point, which allows structured queries over our
spatio-temporal annotations.

To the best of our knowledge, this is the first work
addressing a spatial-temporal labelling and allow-
ing structured spatio-temporal search of datasets
based on a knowledge graphs of temporal and geo-
entities.

To further improve geo-labelling, we are currently
working on parsing coordinates in datasets. To do
so we have to consider that the long/lat pairs poten-
tially come in column groups, i.e., one column per
coordinate, which we might need to combine. Hav-
ing all the geometries for the geo-entities and data
points, we want to integrate a visual representation
and search interface for datasets by displaying and
filtering the datasets/records on a map.

While CSV is a popular and dominant data-
publishing format on the Web [13], we also want to
extend our indexing to other popular Open Data
formats (such as XLS and JSON). Additionally, we
want to test how well our approaches could be ap-
plied to unstructured or semi-structured data and
other domains such as tweets or web pages (e.g.,
newspaper articles), or complementarily, we could
use our knowledge graph along with known meth-
ods for temporal and geo-labelling of such unstruc-
tured sources link them to (supporting) Data, to
enable for instance fact checking. The applications
of Open Data sources searchable and annotated in
such a manner seem promising and widespread.
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Appendix A. Realizing the Queries from
Section 3

As mentioned earlier, we extract the relevant
RDF Data for constructing our knowledge graph
from different Linked Data Sources, which provide
RDF37 data either in the form of dumps or via
SPARQL endpoints, where we presented the respec-
tive SPARQL queries that theoretically should suf-
fice to extract the data relevant for us in Section 3.
A common problem with these sources is however
that either such a SPARQL endpoint is not avail-
able or does not support complex queries. To this
end, we discuss in this appendix how such limita-
tions could be circumvented in the specific cases.
We note that we expect the presented workaround
could be similarly applied to other use cases for ex-
tracting relevant data from large RDF dumps or
public endpoints, so we hope the discussion herein
might be useful also for others.

Appendix A.1. Extracting postal codes and NUTS
identifier from Wikidata

Due to the fact that the query in Figure 2 re-
sulted in timeouts at the Wikidata SPARQL end-
point we split the query in sub-queries.38 The task
of extracting the NUTS identifier provides map-
pings for 1316 (out of 1716) NUTS codes. The miss-
ing 400 codes are NUTS regions where no Wikidata
and/or GeoNames entry exists because, strictly
speaking, there is no such corresponding adminis-
trative region. For instance, the Austrian NUTS
regions AT126 and AT127 are called “Wiener
Umland/Nordteil” and “Wiener Umland/Südteil”,

37We note OSM here as an exception; the JSON-data we
extract from OSM is not directly in an RDF serializtation,
but the provided JSON can be easily converted to JSON-LD.

38SELECT ?s ?nuts ?geonames WHERE {?s wdt:P605

?nuts. ?s wdt:P1566 ?geonames} to get the NUTS-to-
GeoNames mappings. Similarly for the postal code property
wdt:P281.

however, these are no political districts, but statis-
tical entities grouping a set of districts Wikidata/-
GeoNames entity to map.

To complement the set of postal codes in Wiki-
data we use the extra postal code dataset by GeoN-
ames39 which consists of a total of 1.1M entries
from 84 countries. For each code it provides a place
name, and (depending on the country) several par-
ent region/subdivion names. Based on these names
we use a simple heuristic to map the postal codes
to GeoNames entities: We split place names in the
dataset by separators (white spaces, “-”, “/”)40

and try to find GeoNames entries, in the respec-
tive country, with matching names.

Appendix A.2. Extracting Spatial Data from OSM

Since there exists – to the best of our knowledge
– no available and integrated linked data version of
OSM, we extract OSM relations, ways and nodes
and map these to our spatial knowledge graph. To
do so we perform the following steps on a local ex-
tract of OSM:41

1. OSM provides different administrative levels
for their relations, e.g., the relation which rep-
resents the states of a country, their subdi-
visions, and so on.42 We use the alignment
of these administrative levels with the previ-
ously introduced NUTS identifier to add the
mappings to GeoNames: We perform lookups
with the GeoNames labels of the NUTS 1, 2,
and 3 regions at OSM’s Nominatim service.43

This service returns a set of potential candidate
OSM relations for a given label. We select the
correct relation (i.e. OSM region) by choos-
ing the OSM relation at the same administra-
tive/NUTS level as the corresponding GeoN-
ames region.

2. Having the mapping for the countries’ regions
we again use OSM Nominatim to get the poly-
gons for all sub-regions. These polygons can be

39http://download.geonames.org/export/zip/, last ac-
cessed 2018-03-28

40We add this preprocessing step because there are many
translated place names separated by slash or comma.

41We use Geofabrik, http://download.geofabrik.de/, to
download extracts of OSM on a country level.

42http://wiki.openstreetmap.org/wiki/Tag:

boundary\%3Dadministrative
43http://nominatim.openstreetmap.org
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used to extract any street names, places, etc.
from a OSM data extract.44

The OSM polygons returned by OSM’s Nomina-
tim service in Item 2 are not available as RDF, so
we try to interpret the JSON from Nominatim as
JSON-LD. This could be done relatively straight-
forwardly by adding to the JSON you get by e.g.
calling https://nominatim.openstreetmap.org/

reverse?osm_id=1990594&osm_type=R&polygon_

geojson=1&format=json for obtaining the data for
OSM id 1990594 (i.e. Vienna’s district “Leopold-
stadt”, and extending the returned JSON with a
JSON-LD [30] context:

"@context ": {
"@vocab ": "https :// data.wu.ac.at/ns/osm#"

}

However, the query from Figure 3 still would not
work “as is”, since OSM returns the coordinates
of its entities as GeoJSON [31], which due to the
way that GeoJSON represents geometries as nested
JSON arrays, is incompatible with JSON-LD.45 We
therefore pre-convert, GeoJSONs nested way of rep-
resenting polygon’s to the format compatible with
GeoSPARQL [18], by replacing JSON attributes of
the form:

"geojson ": {
"type ":" Polygon",
"coordinates ":

[[[lat_1 ,long_1], ... , [lat_n ,long_n ]]]
}

with:

"geojson ": {
"type ":" Polygon",
"coordinates ":

"POLYGON(lat_1 long_1 , ... , lat_n long_n )"
}

and extend the context to:

"@context ": {
"@vocab ": "https :// data.wu.ac.at/ns/osm#",
"coordinates ": {

"@type":
"http ://www.opengis.net/ont/geosparql#wktLiteral"

}
}

in a simple pre-processing step. The query in Fig-
ure 3 works as expected on this respectively pre-
processed data from Nominatim.

44OSM provides a tool, Osmosis http://wiki.

openstreetmap.org/wiki/Osmosis, to process polygons
on OSM data dumps

45There is ongoing work to fix it, which, however points
to the same problem as an outstanding issue, cf. https:

//github.com/json-ld/json-ld.org/issues/397, retrieved
2018-03-29.

Appendix A.3. Extracting Temporal Data from
Wikidata

The query to extract event and time period data
from Wikidata is shown in Figure 4; however as
mentioned above, this query times out on the pub-
lic endpoint. We note that Wikidata contained (at
the time of writing) 4.8b RDF triples, so retrieving
a dump and trying to extract the relevant informa-
tion by setting up a local SPARQL endpoint also
didn’t seem an attractive solution. Rather, we pro-
pose a combination of

1. extracting relevant triples to answer the query
via HDT [12] and

2. executing targeted CONSTRUCT queries to the
full SPARQL endpoint for specific sub-queries
in order to materialize path expressions.

As for Item 1, we downloaded the complete Wiki-
data dump,46 converted it locally to HDT [12] and
executed the following triple pattern queries over it
to collect all data to match non-property-path triple
patterns in Figure 4. We note that alternatively,
we could have used Wikidata’s Triple Pattern Frag-
ment API [32] at https://query.wikidata.org/

bigdata/ldf similarly.
We then executed the following extraction

queries separately on the dump, to extract the nec-
essary component data:

CONSTRUCT WHERE {?S wp:P17 ?O} → 6613664 triples
CONSTRUCT WHERE {?S wp:P131 ?O} → 3928939 triples
CONSTRUCT WHERE {?S wp:P276 ?O} → 697238 triples
CONSTRUCT WHERE {?S wp:P580 ?O} → 26354 triples
CONSTRUCT WHERE {?S wp:P582 ?O} → 19241 triples
CONSTRUCT WHERE {?S wp:P585 ?O} → 91509 triples
CONSTRUCT WHERE {?S wp:P625 ?O} → 4158225 triples

In order to retrieve the remaining triples, that
is instances of (subclasses of) the Wikidata classes
of elections (wd:Q40231) and sports competitions
(wd:Q13406554) we executed the following queries
against the Wikidata SPARQL endpoint:

CONSTRUCT {
?S a wd:Q13406554. ?S rdfs:label ?label.

} WHERE {
?S wdt:P31/wdt:P279* wd:Q13406554.
?S rdfs:label ?label.
FILTER( LANG(?label) = "en" ||

LANG(?label) = "de" ||
LANG(?label) = "" )

} → 418136 triples

CONSTRUCT {
?S a wd:Q40231. ?S rdfs:label ?label.

} WHERE {

46https://www.wikidata.org/wiki/Wikidata:

Database_download

20



?S wdt:P31/wdt:P279* wd:Q40231.
?S rdfs:label ?label.
FILTER( LANG(? label) = "en" ||

LANG(?label) = "de" ||
LANG(?label) = "" )

} → 46899 triples

We then loaded these triples into a local triple store
and executed the following query on it, which is
equivalent to Figure 4 (namespaces same as above):

CONSTRUCT {
?event rdfs:label ?label ;

dcterms:isPartOf ?Parent ;
timex:hasStartTime ?StartDateTime ;
timex:hasEndTime ?EndDateTime ;
dcterms:coverage ?geocoordinates ;
dcterms:spatial ?geoentity .

} WHERE {
?event rdfs:label ?label .
{ # with a point in time or start end end date

{ ?event wdt:P585 ?StartDateTime.
FILTER (? StartDateTime >

"1900 -01 -01 T00 :00:00"^^ xsd:dateTime)
}
UNION
{ ?event wdt:P580 ?StartDateTime.

FILTER (? StartDateTime >
"1900 -01 -01 T00 :00:00"^^ xsd:dateTime)

?event wdt:P582 ?EndDateT.
FILTER(DATATYPE (? EndDateT) = xsd:dateTime )}

}
OPTIONAL { ?event wdt:P361 ?Parent. }
# specific spatialCoverage if available
OPTIONAL {

?event wdt:P276 ?/( wdt:P17|wdt:P131) ?geoentity
}
OPTIONAL {

?event wdt:P276?/wdt:P625 ?geocoordinates
}
BIND ( if(bound (? EndDateT), ?EndDateT ,

xsd:dateTime(concat(str(xsd:date(? StartDateTime )),
"T23 :59:59")))

AS ?EndDateTime )
}
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