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Abstract. In this article we construct an Index of Austrian Initial Public 
Offerings (IPOX) which is isomorph to the Austrian Traded Index (ATX). 
Conjecturing that the ATX qualifies as an explaining variable for the IPOX, 
we investigate the time trend properties of and the comovement between 
the two indices. We use the relationship to construct a TJ.eural network and 
a linear error-correction forecasting model for the IPOX and base a tracling 
scheme on either forecast. The results suggest that trading based on the 
forecasts significantly increases an investor's return as compared to Buy 
and Hold or simple Moving Average trading strategies. 

1. Introduction 

Research in nonparametric, nonlinear methods has been extensive in recent 
years. Three popular examples of these approaches are projection pursuit 
regression (Friedman and Stuetzle, 1981 ), raclial basis functions (Powell, 
1987) and multilayer feedforward networks (Rumelhart et al, 1986). In this 
paper we shall focus on multilayer feedforward networks. The two most 
important areas of application of such networks are pattern classification 
and function approximation. Hornik, Stinchcombe and White (1989, 1990) 
show that neural networks are universal approximators and can learn arbi
trary functions. A review of the theoretical finclings is presented by Kuan · 
and White (1994). 
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We apply a certain type of neural networks, an augmented single hid
den layer feedforward network, to Initial Public Offerings which have gained 
rather little attention in financial econometrics so far. In this paper we con
struct an index oflnitial Public Offerings (IPOX) which is isomorph to the 
Austrian Traded Index (ATX). We conjecture that the ATX constitutes a 
powerful explaining variable for the IPOX. First, we predict the-ATX using 
linear and neural network models. In a second step we estimate the IPOX 
one day ahead based on observed ATX data. We compare the quality of this 
estimation to an IPOX forecast based on forecasted ATX values in a third 
step. For all predicting purposes in this paper we estimate linear models as 
well as neural networks, as the latter are becoming increasingly common in 
financial forecasting as well (for example (NNCM, 1994), (NNCM, 1993), 
(Trippi and Turban, 1993)). Section 2 analyses the data. Sections 3 and 4 
pr~sent the models used. Section 5 discusses the error measure:; and the 
forecasting results, and section 6 contains concluding remarks. 

2. Data 

2.1. THE AUSTRIAN TRADED INDEX 

At the foundation of the· Austrian Futures and Options Exchange, OTO B, 
the Austrian Traded Index (ATX) was formed as a modern and reliable 
stock index for the Vienna Stock Exchange. The ATX serves as both a 
basis for futures and options contracts and as a market indicator which 
reflects a representative and liquid market segment of Austrian stocks with 
about 70% of total stock market activity (OTOB, 1994, 1991). 

Three factors are essentially connected with the·construction of a stock 
market index, viz. the selection of stocks, their weights, and the calculation 
method. The selection of stocks for the ATX follows the criteria of conti
nuous trading, high market capitalisation, and a sufficiently high free float. 
The weight of a particular stock represents its equity market capitalisation. 
Thus, a title with a high market capitalisation (that is the number of stocks 
issued times the rate) has a larger impact on the index than a stock with a 
lower market capitalisation. The market capitalisation itself is corrected by 
a free float factor which ensures that the weight of a particular title in the 
ATX corresponds to the equity actually available for public trading at the 
stock exchange. The ATX is calculated according to the following formula 

AT X = AT X [ Li~l Pi,tQi,t-1 l 
t t-1 "\""fl p Q , 

L.,i=1 i,t-1 i,t-1 
(1) 

with AT Xt as the AT X value at time t, Pi,t the price of share i at time 
t, Qi,t-1 the number of shares of stock i issued ( corrected by the free float 
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factor), and n the number of stocks in the ATX. While the ATX reflects 
all price changes due to market fluctuations, technical price changes do not 
affect the index. For this reason the prices of the underlying shares are 
adjusted to changes in tlie dedicated capital or dividend payments. The 
basis of the ATX is 1000.00 as per January 2nd

, 1991, the ATX value as 
of October 14th, 1994 is 1060.43. The data used for estimation is of length 
487, starts on November 2nd , 1992 and ends on October 14th , 1994. The last 
100 observations were used as test set for the out of sample error measures. 

2.2. THE INITIAL PUBLIC OFFERINGS INDEX 

The projections of expected future profits by the company-itself are a di
stinctive feature of Austrian IPOs. As the underwriting bank(s) can, beside 
others, be held liable for wrong or misleading statements, the prospectus 
contains relatively more comprehensive and reliable information than any 
other information source available to the outside investor. This feature of 
Austrian IPO& should affect their average performance in terms of lower 
volatility as compared to the market average, since the discounted value of 
future profits is less uncertain. 

In order to render the ATX and the IPOX comparable to each other, 
that is, to exclude a systematic deviation of the IPOX from the ATX, 
the IPOX is constructed isomorphically to the ATX. The IPOX covers 
all initial public offerings in the official market segment, including newly 
issued stock of companies whose stock other than the new category has 
been listed earlier. Initial public offerings in the regulated and unregulated 
market segments are excluded from consideration. 

We also disregard Inuestitionskredit AG and the three different catego
ries of Bank Austria AG stock. As opposed to the other hanks in the index, 
Inuestitionskredit AG has been founded to support investment in top prio
rity projects as determined by economic policy (Osterreichische lnvestiti
onskredit AG, 1994, p. 15). Being subject to governmental predilection the 
risk structure of its business and thus of its shares is unlikely to be reprodu
cible for any other Austrian company and would therefore unduly distort 
the comparison between the ATX and the IPOX. Being concerned with 
the particular portfolio of Austrian IPOs we also exclude Bank Austria AG 
for the sake of analytical clarity. The reason is that this title represents a 
particular portfolio of Austrian companies itself due to numerous affiliates. 
This argument is valid a fortiori as Bank Austria AG stocks would account 
for 48.52% of the total capital covered by the IPOX at the beginning of the 
sample period, November 19921. 

1For the composition of the IPOX cf. Haefke and Helrnenstein (1994) 
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Each individual initial public offering enters the IPOX with the first rate 
in public trading and not with the offeri~g price. Considering the additional 
information as being a typical attribute of a share to be defined as an IPO, 
we have reason to expect that this status will vanish at the end of the 
forecasting horizon which is one and a half years on average. For this reason 
one and a half years after the first listing on the stock exchange a stock 
does no longer qualify as an IPO and it is withdrawn from the index. For 
estimating the parameters of our models we use the first 387 observations 
beginning on November 2nd , 1992. The remaining 100 observations are used 
to calculate the out of sample error measures. 

2.3. AUTOCORRELATION AND CROSS-CORRELATION 

After taking logarithms of the ATX and the !POX we compute sample 
autocorrelations of their first differences. The results replicate the findings 
of Pichler (1993) that Austrian time series data of stock market indices 
exhibit significant sample autocorrelations of order 1 (Table 1 ). Our analysis 
confirms this outcome for another subsample of Austrian stocks, the initial 
public offerings. 

TABLE 1. Autocorrelations for observations 1 to 487 

Variable 

!POX 
ATX 

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 

0.227 0.087 0.035 0.065 0.022 -0.005 0.012 
0.240 0.033 -0.095 -0.002 0.061 0.007 -0.047 

As the ATX covers the most liquid shares at the Vienna Stock Exchange, 
the ATX can be expected to reflect price changes due to new information 
most quickly. It might therefore qualify as an explaining variable for the 
IPOX. Support for this hypothesis comes from the computation of cross
correlations between the ATX and the !POX. 

Table 2 displays a statistically significant cross-correlation between the 
current IPOX value and the previous ATX value. These findings should 
subsequently be confirmed by an econometric model. 

2.4. INTEGRATION AND COINTEGRATION 

The usual asymptotic properties cannot be expected to apply if any of the 
variables in a regression model is generated by a nonstationary process. 
Using unit root tests we explore the time trend properties of the ATX and 
the !POX series. If a series contains a stochastic trend, it is said to be 
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Figure 1. IPOX vs. ATX 
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TABLE 2. Cross - correlations between the ATX and the !POX 

Lags Lag-4 Lag-3 Lag -2 Lag -1 Lago 

X - correlation 0.038 -0.045 0.039 0.075 0.458 

Lags Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 

X - correlation 0.225 0.105 0.020 0.075 0.069 

integrated of order d, I(d). Differencing d times then yields a stationary 
series. 

Table 3 reports the results of Dickey-Fuller tests (DF) (Dickey and Ful
ler, 1979) and Augmented Dickey-Fuller tests (ADF) that-the ATX and the 
IPOX series might have up to two unit roots. In no case there is significant 
evidence against the single unit root hypothesis. Thus the null hypothesis 
that both series are not stationary in levels cannot be rejected. All test sta
tistics for a second unit root, that is a unit root in the first difference of the 
series, are highly significant. We therefore adopt the alternative hypothesis 
that the series are stationary in first differences. Since both series con-

TABLE 3. Tests for Integration 

Single Unit Root Second Unit Root 
Series2 DF ADF DF ADF 

ATX -1.09 -1.13 -17.22 -13.87 

IPOX -1.03 -1.09 -17.27 -13.11 

ta.in a stochastic trend we proceed with investigating whether they share a 
common stochastic trend. This refers to testing for cointegration which is 
a way of testing for a long-run equilibrium relationship between the ATX 
and the IPOX. Two variables 1.re said to be cointegrated of order one, 
Cl(l,l), if they are individually 1(1) and yet some linear combination of 
the two is 1(0) (Engle and Granger, 1987). Under the assumption that a 
first order model is correct, we test whether the estimated residual of the 
cointegrating regression is stationary. Specifically, we perform ADF tests in 
order to test the null hypothesis that the residual series of the cointegrating 
regression is nonstationary. Reporting a value of -3.28 an ADF test with 

2 Critical values for 500 observations at the 1 % and 5% significance level, respectively, 
are -3.44 and -2.87. 
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one lag and with the IPOX as the independent variable rejects the null 
of no cointegration at the 10% level ( critical values for the ADF test are 
-:3.34 and -3.04 at the 5% and 10% significance levels, respectively )3. Since 
the cointegrating vector establishes an equilibrium relationship, the ADF 
test should not lead to a different conclusion if the cointegrating equation 
is estimated invertedly, that is with the ATX as the independent variable. 
With a value of -3.30 the result indeed confirms this requirement. 

3. Linear ATX and IPOX Models 

Implementing the above findings we base the IPOX forecasts on a dynamic 
specification of a linear regression model with error-correction term. 

The regression results (table 4, second column) give evidence that the 
current value of the IPOX is positively related to the previous values of 

TABLE 4. The ATX as explaining variable for the IPOX 

Independent variable d/POXt dATXt 

Intercept -0.000158 0.000438 
(-0.3779) . (0.8089) 

d/POXt-1 0.1426** -0.0780 
(2.6293) (-1.1132) 

dATXt-1 0.0893* 0.2616** 
(2.0509) (4.6468) 

/POX-ATXt-1 -0.0343** -0.00709 
(-3.7765) (-0.6047) 

f(_2 0.0943 0.0546 
DW 2.0141 1.9632 
LM (p-value) 0.6422 0.1402 
Ljung-Box Q 43.35 35.51 
p-value of Q 0.1865 0.4916 

the IPOX and the ATX. The highly significant value for the error-correction 

3 These critical values differ from those used above as the asymptotic distributions of 
residual-based cointegration test statistics are not the same as those of ordinary unit root 
test statistics (cf. Davidson and MacKinnon {1993), p. 720). 

*Statistically significantly different from zero at the 0.05 significance level. 
**Statistically significantly different from zero at the 0.01 significance level. 
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term (I POX - AT X) 1 with a lag of order 1 reveals that deviations of the 
IPOX from the ATX cause a strong pull back tendency towards the ATX 
while the opposite does not hold. In order to check this finding, we use the 
same explaining variables as before to model the ATX in first differences, 

Due to the insignificant values for the error-correction term and for the 
IPOX term (table 4, third column), the above result finds support. 

In order to forecast the ATX one day ahead we choose an autoregressive 
process of order 1, AR[l], that is 

dAT X1 = ,o + ,1dAT X1-1 + Et (4) 

Table 5 presents the coefficient estimates. 

TABLE 5. Estimated coefficients for the linear ATX model 

Explaining variables dATX 

Intercept 0.0005 
{1.0782) 

dATX(t-1) 0.2415** 
{ 4.8673) 

4. Neural Network Models 

The idea of modelling brain functionality goes back to McCulloch and Pitts 
( 1943) who first introduced units that were constructed analogously to a 
neuron in the brain. By combining these neurons we arrive at a linear 
perceptron, or ADALINE as it was first called by Widrow and Hoff, (1960). 

f (fit, a)= G (x~a), (5) 

with x1 being the input vector augmented by a constant and a a set of 
weights. By taking a closer look at the formula, we see that for G( x) = x 
we arrive at the simple linear model which is a standard paradigm in econo
mic and econometric modelling. Kuan and White (1994) point out, that for 
G ( x) = I+e!p-"' we arrive at the binary logit model and for G( x) being any 

••statistically significantly different from zero at the 0.01 significance level. 
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normal cumulative distribution function we obtain a binary prohit. Hence 
even at the outset of neural network modelling, standard econometric mo
dels could easily he included as special cases. With these possibilities, the 
perceptrons' popularity kept increasing until Minsky and Papert 1969 pu
blished their book Pcrccptrons in which they pointed out that perceptrons 
were only capable of solving linearly separable problems. A way to over
come the separability problem was obtained by looking at nature again. 
It is very rare that signals directly flow from the sending to the receiving 
cell. They usually pass a number of intermediate layers. These intermedia
te layers were also adopted by the neural network community (Rosenblatt, 
1958). However, until Werbos (1974) and Rumelhart et al. (1986) there was 
no way of actually estimating such networks. The output produced by such 
a multilayer perceptron is given by: 

(6) 

Standard neural network learning algorithms use incremental updates of 
the form 

(7) 

with x denoting the input vector x augmented by a constant, and() denoting 
a weight vector. White (1987) pointed out that this is actually a form of 
stochastic approximation (Robbins and Monro, 1951) where 17 is fixed over 
time instead of being dependent on t. For further discussion see Kuan and 
White (1994). There are now a number of approaches that explicitly allow 
for a time varying learning rate 17. It has been useful to start with a high 
17 and slowly decrease it which incorporates a speciai form of simulated 
annealing. Many different forms of neural networks are successfully applied 
to time series data with the simple single hidden layer network being one of 
them (White, 1988), (Lee and Park, 1992). However, it has frequently been 
noted that performance sometimes degrades after adding a hidden layer 
as compared to a simple perceptron. To avoid these shortcomings we use 
an augmented single hidden layer feeclforward neural network as proposed 
for example by Swanson and White (1992) which covers all the models 
discussed so far and thus constitutes a very flexible model for econometric 
tasks. This structure incorporates a simple perceptron and a simple single 
hidden layer network. Therefore the output is calculated as follows: 

q 

f(xt,8) = xt'a+ ~G(:r.~1)/3 (8) 
j=l 

with x denoting the input vector x augmented by a constant, and (J denoting 
a weight vector containing the weights a, /3, 1 , that is () = (a', /3', ,')', 
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/3 = (/31,/3-i., ... ,/39)', 1 = ( 1~, .. . ,,~)'. q is the number of hidden units and 
G is a nonlinear function, in this case 

2 
G(x) = ----1, 

1 + exp-x 
(9) 

mapping x into the ]-1; + 1 [ interval. This architecture not only allows to 
capture the nonlinearity in the data but also makes use of the well known li
near regression approach and therefore ensures that the ANN will in sample 
perform at least as good as a linear model. If the input - output connections 
were dropped, this could not be guaranteed. Training takes place in two 
steps. First, the direct input-output connections o: are estimated through 
OLS and fixed. In a first step we estimate 

f (:it, a)= :it'a + ft (10) 

with x being the input vector x augmented by a constant, o: the correspon
ding weight vector, and ft the vector of the residuals. Matrices /3 and , are 
estimated to model the residuals of the linear regression with any nonlinear 
optimisation technique. This approach generally improves the performance 
over OLS. In a second step we solve the problem: 

1 n 
min - L(Yt - f(it,0))2 

8 n i=l . 
(11) 

with o: fixed. Our programme is designed to find the optimal number of 
hidden uriits itself, using SIC (Schwartz, 1978) as suggested in Swanson 
and White (1992). This approach helps increasing the generalisation per
formance of the net, which is a topic of keen interest (for example (Moody, 
1992), (Terasvirta and Lin, 1993), (Moody and Utans, 1994)). 

5. Empirical Results 

The quality of our results is evaluated using the following out of sample 
error measures: 

- out of sample MSE 
- out of sample R2 

- Theil's coefficient of inequality 

~ 2 

TI ·1 Lt (Yt - Yt) 
iei = 2 

Lt (Yt - Yt-1) 
(12) 

This measure constitutes a simple sanity check of our forecasts against 
a no-change forecast which performs better for Theil> 1 (Theil, 1966); 

/ 

\ 
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- Normalised Mean Squared Error 

. ~ 2 

NM s E = Lt (Yt - Yt\ 
Lt (Yt - ii) 

11 

(13) 

NM SE is a second sanity check against the out of sample mean of the 
dependent variable. This measure is used by Weigend and Gershenfeld 
(1994) to evaluate entries into the Santa Fe Time Series Competition; 

- Confusion Matrix 
The forecasts, obtained through a feedforward pass through the net
work, are then evaluated, and the up and down signals of the net are 
used to compute a confusion matrix as in Swanson and White (1992). 
We find the number of correct classifications in the main diagonal 
and the errors off the diagonal. The rows contain the actual ups and 
downs, while the columns contain the forecasts. The confusion rate is 
calculated as the sum of the off diagonal elements divided by the to
tal number of elements. A binomial test is performed to check if the 
number of correct classifications differs significantly from 50%; 

- Trading Scheme 
We apply a very simple and conservative trading scheme without trans
action costs. We start out on the first day of the evaluation period. If 
the forecast for the following day indicates a rise in prices and we do 
not yet hold the IPOX - portfolio, we buy. In case that we already hold 
it we do not buy again but just keep still. In case offalling prices we sell 
if we hold but never go short. Returns are annualised and compared 
to a Buy and Hold strategy and to a case of perfect foresight which 
represents the maximum return achievable with this strategy;· 

- Moving Average Trading Rule 
We also compare our returns against the returns generated by a 2-50 
MA-Trading Rule. If the short MA intersects the long MA from below 
we receive a buy signal and keep the portfolio until the two moving 
averages intersect again and vice versa. 

- t-values for returns of the Trading Scheme 
In order to test whether the returns generated through the trading 
scheme are significantly different from the Buy and Hold strategy, t
values atre computed according to the following formula (Brock et al, 
1991): 

t= µt-µb 
. /u2 + u2 
VN1 N 

(14) 

with µ being the mean returns of the two series, a 2 the estimated 
variance for the entire sample, N 1 the number of days a stock is held 
under the trading scheme, and N the number of observations. 

. .. 
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Table 6 presents the results for the ATX forecast. We see that the 

TABLE 6. Results of out of sample ATX forecasts 

Error measures Linear model ANN 

MSE 95.291 96.759 
R2 0.921 0.919 

Theil 0.953 0.967 

NMSE 0.079 0.081 

Confusion Matrix [ 28 
21 

21 ] 
30 

[ 29 
20 

21] 
30 

t-values {1.62) {1.83) 

nonlinear model with I lag and 1 hidden unit performs as well as the AR[l] 
with regard to the MSE criteria. By looking at the Theil measure, we still 
detect a great potential for improving the forecast which will be left for 
further work. 

TABLE 7. Results of out of sample !POX forecasts with a linear model 

Error measures Linear ATX model ANN ATX Observed ATX 

MSE 57.646 57.698 54.879 
R2 0.888 0.888 0.894 
Theil 1.008 1.009 0.960 
NMSE 0.119 0.119 0.113 

Confusion Matrix [ 30 
20 

23] 
27 

[ 30 
20 

23] 
27 

[ 30 
20 

22] 
28 

t-values {1.41) {1.41) (1.62) 

We compare the findings of the linear model as reported in table 7 to 
the results obtained through an estimation of the IPOX with an artificial 
neural network with 1 hidden unit in table 8. It turns out that, given 
the ATX forecasting method, the IPOX forecast based on an ANN mo
del outperforms the linear IPOX forecast except for the linear ATX. By 
contrast, given the IPOX forecasting method, the ANN ATX forecast mat
ches or beats the linear ATX forecast. We see that for the linear IPOX the 
ANN does not boost the performance of the !POX forecasts as all three 
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TABLE 8. Re5ults of out of sample IPOX forecasts with ANN model 

Error measures 

MSE 
R2 

Theil 
NMSE 

Confusion Matrix 

t-values 

Linear ATX model 

79.263 
0.836 
1.386 
0.164 

[ 
27 24 ] 
23 26 
(0.60) 

ANN ATX 

51.226 
0.896 
0.896 
0.106 

[ 
29 21 ] 
21 29 
(1.62) 

Observed ATX 

50.783 
0.896 
0.888 
0.105 

[ 
30 22 ] 
20 28 
(1.62) 

13 

models are of approximately equal quality with the one based on the origi
nal ATX series slightly outperforming chance as well as the other models. 
From the ANN IPOX forecast we conclude that the ANN ATX forecasts 
seem to contain some nonlinear information absent in the linear ATX fore
casts. Therefore the ANN IPOX estimation outperforms the linear IPOX 
estimation in all cases except for the linear ATX forecast where this in
formation is missing. This result gives evidence for some nonlinearity in 
both the IPOX and the ATX data. The analysis of the trading schemes 

TABLE 9. Summary statistics for returns of various forecasts 

Estimation Cumulated Number of t-value (vs. t-value ( vs. 
method returns transactions Buy&Hold) 2-50 MA) 

Linear IPOX, linear ATX 0.277 44 9.650 5.869 
Linear !POX, ANN ATX 0.277 44 9.650 5.869 
Linear !POX, orig. ATX 0.283 43 8.900 5.280 
ANN !POX, linear ATX 0.242 31 9.650 5.783 
ANN !POX, ANN ATX 0.254 45 9.650 5.318 
ANN IPOX, orig. ATX 0.252 43 8.900 5.374 
MA 2-50 0.011 26 5.227 n.a. 
Buy & Hold -0.002 2 n.a. -5.227 

yields the results presented in table 9. As benchmarks we use a simple Buy 
and Hold strategy, the 2-50 Moving Average and - in order to determine 
the highest possible return - a strategy based on perfect foresight of the 

1 next period's IPOX value. Considering the linear approach to forecast the 
IPOX, we compare three datasets. Two of the underlying ATX series are 
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Figure 2. Annualised Cumulated Returns for the Linear IPOX 
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Figure :1. Annualised Cumulated Returns for the ANN IPOX 
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generated by a linear model and a neural network. The third one is made up 
by the original ATX series. All of the datasets are very close to each other 
and all of them significantly beat the Buy and Hold strategy as well as the 
Moving Average. Second, modelling the IPOX with an ANN, we achieve 
similar results. All estimates are quite close again and far better than the 
returns based on Buy & Hold or the Moving Average strategy. Compared 
to the first case the profitability of all forecasts is lower. 

6. Conclusions 

Both the linear as well as the ANN ATX forecasts yield better results than 
a no-change forecast. Note that as far as the ATX is concerned, the ANN 
does not outperform the linear model. A multLvariate ATX forecast might, 
however, improve the significance level of the correct classifications. Any 
market participant capable of forecasting the ATX one day ahead should 
he able to take advantage of the property of the ATX to qualify as an 
explaining variable for the IPOX. The inspection of the results of a simple 
trading scheme reveals that nonzero profits can be expected by applying any 
of the IPOX models. Recall that the models - depending on the forecast 
- generate between 31 and 45 trading signals in just 100 days. Thus it 
remains to be inquired whether these profits sustain in an environment 
where transaction costs are accounted for. 

It is a well-established result that models with low Theil and NM SE 
are not the best ones for forecasting the sign of the index movement whereas 
those with good confusion rates are not optimal with respect to the accurate 
approximation of the index. Hence the choice of an adequate error function 
strongly depends on the objective of the forecast. As in this case we try to 
approximate the ( co )movement of the ATX and IPOX as good as possible, 
the MSE is the appropriate error function. For other purposes different 
error functions may be considered, such as minimising the confusion rate 
or maximising profits obtained through transactions based on the above 

. trading rules. 
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