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I. INTRODUCTION 

In his seminal work Bowley [1924] introduced the concept of conjectural 
variations.1 In short, the idea is that a firm in an oligopolistic market be­
lieves that the quantity (price) it chooses will affect the quantities (prices) 
chosen by its rivals. This belief is taken into account by the firm when 
selecting the profit maximizing output (price) level. The reactions of the 
rivals to the quantity (price) decision of firm i, as subjectively perceived 
by firm i, is called conjectural variation. \\Then introducing this concept, 
Bowley (1924] and later Stackelberg [1934] clearly had in mind a dynamic 
phenomenon, although their analysis is a static one. Friedman (1977, 1983] 
criticizes the conjectural variations analysis in static models and lists sev­
eral arguments against it (Friedman (1983), page 110): (i) The models 
are not actually dynamic, thus a dynamic interpretation is not possible. 
(ii) The firms are assumed to maximize one-period profits rather than the 
discounted stream of profits over a given planning horizon. (iii) Firms have 
expectations about how their rivals will behave that need not be correct. 
This latter criticism was first put forward by Fellner (1949] who argued that 
ad hoe conjectural variations are generally inconsistent v-:ith rational firm 
behavior out of equilibrium. 

Recently, many authors elaborated on the third point and introduced 
the concept of consistent conjectural variations, i.e., conjectures that are 
consistent with the actual responses taken by the rivals after a quantity 
(price) decision of firm i (Laitner [1980}, Breshnahan [1981), Perry (1982], 
Kamien and Schwartz [1983], Boyer and Moreaux [1983]). But again the 
analysis is carried out ,vithin a static framework. 

Despite the criticism put forward by Friedman [1977, 1983] static con­
jectural variations analyses are very popular. Many writers in industrial 
organization and/ or international trade theory use this approach when an­
alyzing oligopolistic competition (see Dixit [1988a], (1988b], Eaton and 
Grossman (1986], and Hwang and Mai (1988], etc.). Common to these 
studies is the notion of modelling dynamic interactions even though the 
analyses are static. 

1When introducing the new concept, Bowley did not name it conjectural variation. 
This term stems from Frisch [1933]. 
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In the present paper we explore the relationship between dynamic oligo­
polistic competition and static conjectural variations equilibria. In partic­
ular, we are interested in the long-run (steady state) equilibrium of the 
dynamic game and compare it to a conjectural variations equilibrium of 
the corresponding static game. \Ve use the adjustment cost model to study 
dynamic oligopolistic quantity competition over an infinite horizon and 
identify the model with single period profit functions as the correspond­
ing static game. It turns out, that the steady state closed-loop (subgame­
perfect) equilibrium of the dynamic game coincides with a static conjectural 
variations equilibrium ,vith nonzero conjectures. Hence, in the limit, if the 
steady state closed-loop equilibrium is stable, it is possible and justified to 
interpret a conjectural variations equilibrium as the outcome of dynamic 
strategic interactions. ·with the simplifying assumptions of linear demand 
and quadratic costs we are able to sharpen our predictions. In this case, 
the steady state closed-loop ( sub game-perfect) equilibrium of the asymmet­
ric dynamic game corresponds to a conjectural rnriations equilibrium with 
constant and symmetric conjectures. This result suggest that it is not only 
possible to relate conjectural variations to dynamic competition, but also 
to justify the choice of constant and symmetric conjectures across firms as 
they correspond to firms' equilibrium behavior. This is particularly im­
portant, because many studies that employ a static conjectural variations 
approach make use of constant and symmetric conjectures (see for example 
Hwang and Mai [1988]). 

The analysis in this paper is related to recent research on dynamic 
oligopoly theory. Driskill and McCafferty [1989] study dynamic quantity 
competition in a differential game model with adjustment costs. They de­
rive the closed-loop (subgame-perfect) Nash equilibrium for the symmetric 
linear quadratic game and find that it results in more competitive behavior 
than Cournot. This ewn holds true for the limit game, i.e., the game with 
adjustement costs approaching zero. In this paper we employ an asymmet­
ric version of the Driskill and :tvfcCafferty [1989] model and generalize their 
result to this case. 1'-foreover, we fully explore the relationship between the 
closed-loop equilibrium of the dynamic game and the conjectural variations 
equilibrium of the corresponding static game. 

Driskill and McCafferty [19S9] are not the only ones who find that dy­
namic Cournot competition played with closed-loop ( or Markovian) strate-
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gies results in more competitive behavior than Cournot. The differential 
game model with sticky prices of Fershtman and Kamien [1987), the strate­
gic investment game of Reynolds [1987), and the discrete time Cournot 
model with alternating mo\·es of Maskin and Tirole [1987) are other exam­
ples that exhibit the same qualitative property. Our analysis clarifies the 
economic mechanism that generates these results. It is the use of closed­
loop (.Markovian) strategies that is responsible for this prediction. In the 
case with closed-loop strategies each firm employs a decision rule for maxi­
mizing profits which does take into account the notion that changes in each 
seller's output level may stimulate reactions by its rh·als. This corresponds 
to a conjectural variations equilibrium behavior. If, moreover, an increase 
in output of one firm stimulates a reduction of output of the rival (i.e., 
the closed-loop strategies induce dowmvard sloping reaction functions), the 
dynamic behavior must correspond to a conjectural variations equilibrium 
,vith negative conjectures. All the above examples satisfy this property, 
therefore resulting in an equilibrium outcome that is more competitive than 
Cournot. 

Similar in spirit to the present discussion is the analysis by Riordan 
[1985}. He introduces the concept of dynamic conjectural variations and 
relates it to equilibrium behavior in a two period Cournot model in which 
firms have imperfect information about the market demand, do not ob­
serve outputs of rivals but are able to draw inferences about the position 
of the demand curve from past observations on prices. Thus, changes in 
one firm's output in the current period cause the market price to change 
and therefore influence the rivals' estimates about future demand. In this 
setting, a firm perceives that an increase in its output decreases current 
market price which will cause rival firms to estimate that demand has gone 
down and therefore cause them to decrease ouput in the following period. 
This intertemporal link of perceived actions resulting in more competitive 
behavior than Cournot is called dynamic conjectural variations by Riordan 
[1985]. Finally, a different notion of dynamic conjectural variations was re­
cently used in an empirical analysis by Roberts and Samuelson [1988]. They 
formulate an infinite horizon time dependent supergame to study intertem­
poral advertising decisions of oligopolistic sellers. They derive what they 
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call a sophisticated equilibrium and distinguish it from a naive equilibrium.2 

In a sophisticated equilibrium each firm recognizes that its current action 
may alter its rivals actions in the future. These future reactions of the 
rivals to the current actions of firm i as subjectively perceived by firm i are 
called dynamic conjectural variations by Roberts and Samuelson [1988]. 

Our paper is organized as follows. In the next section we present the 
dynamic Cournot game. \Ve restrict our attention to two firms and discuss 
the concepts of an open-loop and perfect equilibrium. Section III presents 
the main results and is followed by a discussion of a special case with 
linear demand and quadratic costs. Sect.ion V summarizes our findings and 
concludes the paper. 

II. THE MODEL 

Consider a market consisting of two firms each producing a homoge­
neous product. The product price is related to industry output by means 
of an inverse demand function, p(Q(t)), where p(·) is the price at time t 
and Q(t) = q1 (t) + q2(t) is industry output at time t, i.e., the sum of out­
puts produced by each firm. Both firms operate with technologies that are 
summarized through the cost functions Ci (qi(t)), i = 1, 2. In addition to 
the variable production costs we assume that each firm faces adjustment 
costs when scaling up (or down) output. These adjustment costs can be 
thought of as investment expenditures, for example, that occur if firms in­
crease their plant sizes. Let xi(t) = qi(t) denote the rate of change of output 
of firm i at ti~e t. Adjustment costs are described by the cost functions 
Ai (xi(t)), i = 1,2. Finally, we assume that firms choose their production 
plans over an infinite planning period so as to maximize the discounted 
stream of profits, i.e., 

max rrt = fo00 

e-rt [p ( Q(t)) q;(t) - C; ( qi(t)) - Ai (xi(t))] dt, i = 1, 2 (1) 

subject to the given initial condition qi(O) = q;o and r > 0, the common 
discount rate. 

2In the terminology of differential game theory a sophisticated equilibrium corresponds 
to a perfect equilibrium played with closed-loop (subgame-perfect) strategies and a naitie 
equilibrium corresponds to an open-loop equilibrium. 
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Through the introduction of adjustment costs the Cournot game (1) 
becomes what Friedman [1977] calls a time dependent or structurally linked 

dynamic game. More precisely, (1) constitutes a two person non-zerosum 
differential game with the levels of output as the state variables and the 
rates of change of output as the control variables. 

Throughout the paper ,\·e make use of the following assumptions: 

Assumption 1 q;(t) E [0,}11;], x;(i) E [-.M;,.M;J for all t ~ 0. 

Assumption 2 C; ( q;(t)) is C 2 in the interior of its domain and C;(O) = 0. 

Assumption 3 p(Q(t)) is C 2 in the interior of its domain and there exists 
a positive level of output Q such that p(Q(t)) > 0 for Q(t) < Q and 
p(Q(t)) = 0 othenvise. Furthermore p' (Q(t)) < 0. 

Assumption 4 q;(i)p"(Q(t)) + p'(Q(t)) < 0. 

Assumption 5 p'(Q(t)) < CI'(q;(i)). 

Assumption 6 A; (x;(t)) is C 2 in the interior of its domain. A(O) -
A~(O) = 0, and A; (x;(t)) strictly convex. 

Assumptions 1 to 6 are standard and frequently employed in oligopoly 
theory. Assumptions 3 to 6 together imply strict concavity of the instanta­
neous profit function p(Q)q; - C; (q;) - A; (x;) with respect to both q; and 
x;. Assumptions 4 and 5 are the stability conditions introduced by Hahn 
[1962). 

For the dynamic Cournot game (1) to be well defined we need to spec­
ify the strategy spaces available to the firms and the equilibrium concept 
employed. As far as the latter is concerned we choose the Nash/Cournot 
equilibrium. The choice of the strategy spaces deserves a separate treat­
ment. 

There are two concepts of strategy spaces that are frequently employed 
in economic applications of differential games (see Mehlrnann [1988]): the 
open- loop and the closed-loop (sub game-perfect) strategy space, respective­
ly.3 If firms use open-loop strategies they design their optimal policies as 

3The case of a closed-loop (subgame-perfect) strategy space is also referred to as feed­
back strategy space (see for example B~ar and Olsder (1982]). 
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simple time functions independent of the current state of the system. Since 
these time paths are set at the beginning of the game and specify actions of 
the players for the entire game their use requires the ability of commitment 
to preannounced plans. In that sense an open-loop strategy resembles many 
features of a one-shot action corresponding to a static game. Open-loop 
strategy spaces are defined as follows. 

Definition 1 The open-loop strategy space, SfL, of player i is defined as 

sC?L = { x; (q(O), t) I x; ( q(O), t) is a piecewise continuous function } 
i of time t for all t 2:: 0 · 

If firms choose closed-loop ( sub game-perfect) strategies they design their 
optimal policies as decision rules dependent on the state variables of the 
game (in our case the levels of production). Since the state variables at 
time t summarize the latest available information about the system at time 
t closed-loop strategies can be referred to as Markov strategies.4 The choice 
of closed-loop strategies implies that firms take into account the rivals reac­
tions to their own actions as expressed by the state variables of the game. 
This is exactly the characteristic present in the case of a conjectural vari­
ations equilibrium. Furthermore in using closed-loop (subgame-perfect) 
strategies firms' period of commitment is equal to zero. A formal definition 
of closed-loop (subgame-perfect) strategy spaces is as follows. 

Definition 2 The closed-loop (subgame-perfect) strategy space, SfL, of 
player i is defined as 

{ 

x; (q(t), t) Ix; (q(t), t) is a piecewise continuous function of } 
SfL = time t ~ 0, and Lipschitz-continuous with respect to q(t) = . 

( q1 ( t), q2 ( i)) 

Closed-loop equilibria of differential games derived through dynamic pro­
gramming techniques are subgame-perfect in the sense of Selten [1975). 

In the light of the preceeding discussion we define the corresponding 
Cournot /Nash equilibria. 

4 For a discussion of Markov strategies, see Maskin and Tirole (1988, especially p. 553). 

6 



Definition 3 A pair of strategies (xi, x2) constitutes a Cournot/Nash equi­
librium of the differential game (1 ), iff 

IIf (xi, x;) ~ Tif (x 1 , x2) and ni (xi, x2) ~ TI~ (xi, x2) 

for all admissible strategies of the corresponding strategy spaces. 

If firms play an open-loop game, i.e., choose open-loop strategies, we 
call the equilibrium an open-loop equilibrium, if they choose closed-loop 
strategies we call it a perfect equilibrium. 

As stated in the introductory section of this paper our aim is not to deal 
·with the problem of existence of equilibria. General existence results for dif­
ferential games can be found in Fershtman and 11uller [1984) or Mehlmann 
[1988). Instead, in this paper we assume that there exists an open-loop as 
well as a closed-loop (subgame-perfect) equilibrium. 5 

III. CONJECTURAL VARIATIONS AND 
DYNAI'viIC COURNOT CO11PETITION 

As motivated in the introduction of this paper we are primarily in­
terested in the relationship between the steady state equilibrium (long­
run equilibrium) of the dynamic game (1) played with open or closed-loop 
strategies and the equilibrium of its correpsonding static game. As the cor­
responding static game ,ve identify the game with the single period profit 
functions Ilf = p(Q)qi - C;(qi)-

Recent research on differential games applications to oligopoly theory 
suggests that in the case of linear quadratic models the steady state open­
loop equilibrium coincides with the solution of the corresponding static 
game, whereas the steady state perfect equilibrium does not. This is true 
even in the limit if we remove the structural links ( time dependency) of the 
original dynamic game (see Fershtman and Kamien [1987), Reynolds [1987), 
:Maskin and Tirole [1987), Dockner [1988], and Driskill and McCafferty 

5In fact, it is easy to show existence and global asymptotic stability of an open-loop 
equilibrium in our game as long as Assumptions 1-6 hold. To establish existence and 
stability of a perfect equilibrium is not so easy. But in Section 4 of this paper we will 
prove both existence and stability of a perfect equilibrium for the special case with linear 
demand and quadratic costs. 
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[1989]). In this section we extend these results to the general nonlinear 
case and demonstrate how the steady state perfect equilibrium corresponds 
to a conjectural variations equilibrium of the corresponding static game. 

Theorem 1 The steady state open-loop equilibrium of the dynamic game 
(1) coincides with the Cournot equilibrium of the corresponding static game. 

Proof:6 As mentioned above it can be shown that with Assumptions 1 -
6 the open-loop game admits a unique globally and asymptotically stable 
equilibrium. This equilibrium has to satisfy Pontryagin's maximum prin­
ciple (see Mehlmann [1988] for details). \Ve _formulate the current-value 
Hamiltonian of player i. 

(2) 

where ..\} are the current value adjoint variables. They satisfy the adjoint 
equations 

.-\! = r..\~ - p'qi - P + c;, (3) 

and 
\ i \ i I 
Aj = TAj - p qi. (4) 

The maximum condition is given by 

A~=,\~. (5) 

A steady state open-loop equilibrium is defined as the solution to the equa­
tion system 

(Ji = Xi = ,\: = ,\~ = 0. 

Assumption 6 together with (5) implies ,\~ = 0 at the steady state. Thus, 
(3) reduces to 

(6) 

or equh-a.lently 

( Si) 1 
p l + ry = Ci (7) 

6From now on, unless otherwise stated, we suppress the time argument t. 
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where Si= %j and 17 = ~~·~is the price elasticity of demand. (7), however, 
is identical to the first order conditions of the corresponding static game. 
Q.E.D. 

Theorem 1 provides us with the result that the outcome of a static 
Cournot game can be considered as the limit of a dynamic game, played 
with open-loop strategies, as time goes to infinity. This holds because our 
open-loop model possesses the global asymptotic stability property. The 
economic reasoning behind this result is straight forward. If firms choose 
open-loop strategies they announce their optimal plans at the beginning 
of the game and commit themselves to stick to these time paths for the 
entire duration of the game. Thus, they base their strategies only on the 
information available at the beginning of the game and do not update 
their actions as nev,' information becomes available: they are myopic. As a 
consequence the steady state open-loop equilibrium is identical to the static 
Cournot outcome. Put differently, a static Cournot game captures many 
of the essential characteristics of dynamic oligopolistic competition played 
with open-loop strategies. 

Let us now turn to the case where firms employ closed-loop (subgame 
perfect) strategies. 

Theorem 2 Any steady state closed-loop (subgame-perfect} equilibrium of 
the dynamic game (1) can be viewed as a conjectural variations equilibrium 
of the corresponding static game. 

Proof: A closed-loop equilibrium has to satisfy Pontryagin's maximum 
principle. But now we have to keep in mind that the strategy of player i, 
x;, is a function of q = (q1 , q2 ). Thus, the cost.ate equations for a closed-loop 
equilibrium become 

and 

,i ,i I C' ,iOij A·=TA·-pq·-p+ ·-A--
' ' ' ' i oq; 

\ i \ i I \ i QX j A·= TA· -pq· - A·-
] i ' i oqi 

(8) 

(9) 

where the deri\ative ~ar captures the reaction of firm j to an output change q, 

of firm i and *' expresses the change by how much firm j scales up ( down) 
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its current output given a change in its la3t period output. The ma.ximum 
conditions are given by (5). A steady state closed-loop solution is charac­
terized by 

and 

I 

.,\i.= 0 {:}),i.= p q; 
, , r-5' 

8q; 

,\: = 0 ~ p' qi (1 + ~x -) + p = c;, 
r - :::::i. 
. 8qj 

which in turn can be rewritten to yield 

( 
S· ( 5- )) p 1 +-;j" 1 + r~q~ 

(10) 

(11) 

8,:-

Identifying ~ _ as the conjectural variation that firm i has about the 
r-~ 

reaction of its rival the result is obvious. Q.E.D. 
Theorem 2 provides us with an important result that has two main im­

plications. Firstly, it demonstrates that in general the long-run steady state 
perfect equilibrium price of a dynamic oligopoly model is different from the 
corresponding static Cournot price. Secondly, it shows that the steady state 
perfect equilibrium can be viewed as a conjectural variations equilibrium 
of a static game. This is particularly important if the closed-loop game is 
stable, i.e., the equilibrium path over time approaches the steady state as 
time goes to infinity. In such a case a static conjectural variations approach 
can be viewed as the limit of dynamic strategic interactions. Hence, the 
interpretation that a conjectural variations equilibrium captures dynamic 
interactions is justified. From the proof of Theorem 2 it is clear that the 
conjectures corresponding to the steady state closed-loop equilibrium are 
not ad hoe but rather endogeneously determined. vVe call them dynamic 
conjecture3. The dynamic conjectures are consistent with the model as well 
as the rival's reactions and are not subject to the criticism put forward by 
Friedman [1983]. They are entirely determined by the equilibrium decision 
rules chosen by the firms that relate the rate of change of output of firm i 
to the current levels of output of all firms in the industry. 
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The sign of the dynamic conjecture, ~~,!~~; ) , determines whether the r- x1 q1 

long-run perfect equilibrium price will be below or above the static Cournot 
equilibrium price. If it is negative the industry equilibrium is more com­
petitive than Cournot if it is positive it is more collusive. In the following 
section we will prove that for the special example with linear demand and 
quadratic costs dynamic conjectures are negative. 

Additionally, our result suggests that dynamic Cournot competition 
played with closed-loop ( sub game-perfect) strategies allows for a reaction 
curve analysis (see Samuelson [1987]). The reaction curves are given by the 
system of differential equations qi = Xi ( qi, qj). These equations relate the 
current levels of output of both firms in the industry to the rates of change 
of output. Thus, current levels of output of both firms determine furture 
production in the industry. This reflects the inherent dynamics present in 
an oligopolistic market. Over time these dynamics result in an outcome 
consistent with a conjectural variations equilibrium. 

IV. AN IMPORTANT EXAMPLE: THE 
LINEAR-QUADRATIC CASE 

In the preceeding section we dicussed the general relationship between 
steady state closed-loop ( subgame-perfect) equilibria of dynamic games and 
conjectural variations equilibria of the corresponding static games. In this 
section we introduce specific functional forms for the demand and the cost 
functions. These simplifying assumptions - linear demand and quadratic 
costs - allow us to sharpen our predictions. In particular, we will derive 
explicit formula for the dynamic conjectures and use these results for inter­
esting economic propositions. 

We specify the linear market demand curve as 

(12) 

assume quadratic asymmetric production costs 

( 
b 2 

Ci qi)= Ciqi + 2qi (13) 

with a, b, Ci ( i = 1, 2) constant, a - Ci > 0, and quadratic adjustment costs 

k 2 
Ai(xi) = 2xi. (14) 
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·with these specifications the dynamic Cournot game (1) becomes an asym­
metric linear-quadratic differential game. Hence, it generalizes the game 
discussed by Driskill and lVfcCafferty [1989] that allow only for symmet­
ric technologies across firms. Restricting attention to the linear-quadratic 
game structure opens up the possibility of characterizing closed-loop ( sub­
game-perfect) equilibria. 

Theorem 3 For r < 1 and k < 1 there exists a unique, globally and 
asymptotically stable perfect equilibrium within the class of linear closed­
loop (subgame-perfect) strategies. 

Proof: See Appendix. 
Three points of Theorem 3 need to be discussed. Firstly, it generalizes 

Theorem 1 in Driskill and McCafferty [1989] to the case with differences in 
production technologies across firms. Secondly, the perfect equilibrium is 
globally and asymptotically stable. Thus, the long-run behavior of the firms 
can be characterized by the steady state equilibrium. This is an observation 
that we will use later on. Thirdly, firm behavior in the perfect equilibrium 
is governed by the following linear decision rules ( reaction functions) 

(15) 

This linear decision rules capture all the strategic dynamics present in the 
model and are responsible for the key results on dynamic conjectural vari­
ations. 

Theorem 4 The steady state closed-loop (subgame-perfect) equilibrium of 
the dynamic game {1} coincides with a conjectural variations equilibrium of 
the corresponding static game with constant conjectures equal to X = r/_5 • 

The conjectures are symmetric and satisfy 

b g2 (1 
- 1 - - + b + - < -- < 0. 

2 4 rk-5 
(16) 

Proof: Follows from (15), Theorem 2, and the proof of Theorem 3. Q.E.D. 
Theorem 4 is a striking result: It demonstrates that dynamic Cournot 

competition played with linear closed-loop ( subgame-perfect) strategies can 
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be approximated in the limit by a static conjectural variations equilibrium 
with constant and negative conjectures. In this sense, static conjectural 
variations analyses really capture what is a truly dynamic process. Hence, 
the claim put forward by many researchers in industrial organization and/ or 
international trade is justified. But what is the economic mechanism that 
generates this result? The key to it can be found in the Markovian decision 
rules (reaction functions) (15) and the negativity of both 8 and <7.

7 Accord­
ing to the linear rules (15), each firm takes into account its O'vvn current 
output and the reaction of the rival when deciding upon future levels of 
output. With the Cournot assumption (zero conjectural variations) firms 
ignore the reactions of the rivals and make their output decision only on 
the basis of the residual demand curve. 

If a firm takes its rival's reaction into account, i.e., uses decision rule 
(15), it knows that if it finds it profitable to decrease current production 
in order to increase price, firm 2 will react by increasing its output and 
therefore partially offsettir;ig firm 1 's action. Thus, a movement along the 
residual demand curve is offset by a shift as caused by the rival's reaction. 
Clearly, in equilibrium, this results in a more competitive behavior than 
Cournot or ·put differently, corresponds to a conjectural variations equilib­
rium with negative conjectures. This explains the relationship between a 
perfect equilibrium of a dynamic game and a conjectural variations equilib­
rium of a static game. That the dynamic conjectures x are constant follows 
from the linearity of the decision rules (15). Symmetry is a consequence of 
the structure of the model that is symmetric with respect to the quadratic 
terms but asymmetric with respect to the linear terms. 

Finally, Theorem 4 establishes that the constant conjectures correspond­
ing to the steady state perfect equilibrium are different from consistent 
conjectures in the sense of Bresnahan [1981]. This, however, does not im­
ply that they are ad hoe. They are endogeneously determined but their 
numerical value is above that of the static consistent conjectures, i.e., 

X > -1 - } + Jb + ~. 
The decision rules (15) corresponding to firms' equilibrium behavior 

7That the constants U" and 5 are both negative is an immediate consequence of the global 
asymptotic stability of the Nash equilibrium. This implies that the reaction functions 
corresponding to (15) are downward sloping, or put differently, that the homogeneous 
product is a strategic substitute. 

13 



can also be interpreted as dynamic reaction functions. If we make use of 
a phase portrait analysis we get downward sloping reaction functions that 
are depicted in Figure 1. The intersection of the hrn reaction functions 
corresponds to the steady state equilibrium that is globally and asymptot­
ically stable. A path leading to the steady state describes an output path 
for both firms for some initial conditions. 

So far we have established that dynamic competition played with closed­
loop strategies relates to a conjectural variations equilibrium with nonzero 
conjectures. \Vhat remains to be shown is, if it is also consistent with static 
Cournot outcomes. 

Corol1ary 1 In the limit a.s the discount rate or the adjustment costs be­

come very large, i.e., r - oo or k - oo, the dynamic conjectures>. converge 

to the Cournot conjectures, i.e., X - 0. 

Proof: See Appendix. 
The results in Corollary 1 prove that for large enough discount rates 

(high degree of myopia) or as the adjustment cost parameter, c, becomes 
large the long-run perfect equilibrium is near the Cournot outcome. This 
result can also be found in the paper by Maskin and Tirole [1987]. As noted, 
the model they use differs substantially from our_s. Firms in the Maskin and 
Tirole [1987] framework are assumed not to change their ouput plans for 
a given finite time (they are able to commit themselves for finite periods) 
and move alternatingly. 

To see why high adjustment costs lead to Cournot outcomes let us look 
at the decision rules (15). As a firm increases its output the rfral firm 
decreases its own output. But with increasing c (higher adjustment costs) 
the reaction of the rival becomes smaller ( aggressive behavior becomes more 
costly) and converges to zero in the limit. This, hO\vever, is identical with 
static Cournot behavior. 

The last two results are of importance because they show that dynamic 
duopolistic competition played with closed-loop (subgame perfect) strate­
gies does not only produce more competitive outcomes than Cournot but 
is also consistent with static Cournot behavior. 
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V. CONCLUSION 

In this paper we studied dynamic duopolistic competition when firms 
face adjustment costs. A differential game model was used to capture time 
dependency and structural links present in dynamic markets. ,ve derived 
open-loop and perfect equilibria for the game and compared the steady state 
values to the outcome of the corresponding one-shot game. V-.7e found that 
the steady state open-loop equilibrium coincides with the static Cournot 
solution, whereas the steady state perfect equilibrium does not. The steady 
state perfect equilibrium of the dynamic game can be viewed as a conjec­
tural variations equilibrium of the corresponding static game. Thus, in the 
limit a static conjectural variations analysis approximates long-run dynamic 
interactions. Hence, our findings can be used to justify a static conjectural 
variations analysis for modelling dynamic interactions. 

The use of specific functional forms made additional results possible. 
Vile demonstrated that the use of constant and symmetric conjectures in 
static Cournot models with asymmetric technologies can be justified on 
the basis that they relate to long-run dynamic competition. Finally, we 
were able to relate the numerical value of the dynamic conjecture to the 
corresponding consistent conjecture a la Bresnahan [1981]. Vle found that 
the dynamic conjecture is greater than the consistent one. 

Our discussion is explicitly based on a dynamic Cournot model with 
adjustment costs. This does not imply, however, that our results are lim­
ited to this class of dynamic games. Alternatively, we could have used the 
sticky pricing model of Fershtman and Kamien [1987] or the game with 
alternating moves of Maskin and Tirole [1987]. Although, each of these 
models differs in terms of its structural dynamics8 the conclusions as to the 
characteristics of perfect equilibria are the same. In all cases dynamic com­
petition played with Markov-perfect strategies implies more competitive 
behavior than Cournot and thus is consistent with a conjectural variations 
equilibrium with negative conjectures. 

8The structural dynamics in our model and in that of Driskill and McCafferty [1989] 
is given by adjustment costs. In the model of Fershtman and Karnien [1987] it is the 
sticky price that generates the structural links and in Maskin and Tirole [1987] it is the 
alternating order of moves together with adjustment costs. 
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APPENDIX 

Proof of Theorem 3: \Ye make use of the value function approach 
to derive closed-loop (subgame-perfect) equilibrium strategies. The Yalue 
functions Vi(qi,qi), i =/= j, ha,·e to satisfy the Bellman equations 

rFi = max x·{(a - q· - q·)q· - c·q· - ~q~ - ~x~ +Vix·+ Vix·) (17) 
I I J I I I 2 I 2 I q, I 9j J • 

Maximization of the right hand side of (17) yields 

. _ ! 17i x, - k IQ,' (18) 

Substitution of (18) into (17) provides us with a system of partial differential 
equations in Vi( qi, qi). Since our problem is of the linear-quadratic type we 
guess quadratic value functions of the form 

2 2 
17i( ) /3 cqi qj 
1 q;, qi =a+ iqi +,qi+ u2 + c2 + aq;qj. (19) 

Equation (19) shmvs that the Yalue functions are assumed to be symmetric 
except for /3; that accounts for the asymmetrie in the linear terms. The 
value functions (19) solve the partial differential equation system (17) if 
the parameters satisfy the following system of equations 
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(20) 

(21) 

(22) 

(23) 

(24) 

(25) 



Multiplying the last three equations through by k and introducing the vari­
able s = ~ results in 

bk 82 

-ks6 - k - - + - + a 2 = 0, (26) 
2 2 

-2ksa - k + 28a + E<J - 0, (27) 
(J2 

-kst+ - +E6 - 0. (28) 
2 

From (28) we get € = Zk;:26 . Equation (26) is quadratic in 6 and can be 
soh·ed as 

8 = sk ± ✓s2 k2 + 2k + bk - 2a2 • (29) 

Substituting for € in (27) and multiplying through by (2ks - 26), we get 

482a - (Ssak + 2k)8 = a 3 
- 4s2k2a - 2sk2. (30) 

Substituting (29) into (30) and rearranging terms yields a polynomial in a: 

b b b 
81a6 

- 72k(s 2 k + 2(1 + 2))a4 + Sk2[8(1 + 2)2 + Sks 2(1 + 2) 
b 

+2s4 k2 +1]a2 -4k3{s2 k+2(1+ 2)) = 0(31) 

After introducing the following changes of variables 1/; = a 2 and f = s 2 k + 
2(1 + ! ), equation (31) becomes 

811/;3 
- 72kf1/;2 + 8k2(2f2 + 1)1,i,- 4k3f = 0. (32) 

(32) is a cubic equation in t/; and identical to equation (A.11) in Reynolds 
[1987]. Thus, we can make use of his result that provides us with a complete 
solution to (32). Therefore, \\·e get six value functions that satisfy the 
dynamic programming equations (17). Out of these six candidates we are 
only interested in those that generate a globally and asymptotically stable 
closed-loop Nash equilibrium. 

Each candidate for a value function generates a pair of linear closed-loop 
strategies. Substituting these pairs into the state equations gives 

q1 = ¾LB1 + 8q1 + aq2] 

42 = ¾[P2 + 8q2 + aq1] 
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(34) 



System (33) - (34) is globally stable iff o + CJ < 0 and E, - CJ < 0. Following 
Reynolds [1987] this can only be the case if we pick the following solutions 
for o and CJ: 

o - sk - ✓s2 k2 + 2k + bk - 2CJ2 • 

CJ -J4k[2f- (4f2- 6) 112 cos(0/3)]/27 

where B = arctan( 'f:!) with 

D - 432f6(-64f4 + 107 j2 + 128)/99 < 0 

m 4k3(32f3 
- 991)/39 

(35) 

(36) 

It is now easy to show that for a large set of parameter values both stability 
conditions are satisfied simulaneously. The stability conditions imply that 
8 and CJ are negatiYe. To sum up, we proved existence, stability, as ,vell as 
uniqueness of the closed-loop (subgame-perfect) Nash equilibrium. Q.E.D. 

Proof of Theorem 4: The dynamic conjectures are given as X = rLs. 
Because of stability we get 8 - re < o < CJ < 0. Hence, the dynamic 
conjectures are negative. With the explicit solutions of 8 and CJ given by 

(35) and (36) it can be shown that -1 - % + Jb + b: < x holds. Q.E.D. 

Proof of Corollary 1: The dynamic conjectures are given as X = rku_o 
with o and CJ as in (35) and (36). Straight forward calculations show that 

1. (J 1· (J 0 
1m --- = lffi --- = 

r-oo r k - O k-oo r k - 0 

Hence, the dynamic conjectures approach zero as r -t oo or k -t oo. 
Q.E.D. 
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