
Satellite Orbit Determination Using Payload-collected Observation
Data

NICHOLAS H.J. BIJNENS

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

Graduate Program in
EARTH AND SPACE SCIENCE

York University
Toronto, Ontario

January 2018

c© NICHOLAS H.J. BIJNENS, 2018

Abstract

The rapid rise in small satellite deployment and miniaturization of communication

technology will require a cheaper, leaner and more efficient way of tracking those

satellites. Using the already-collected timing data from the payload observations

means that no additional on-board equipment or processing will be required and

that it could even be applied to existing missions, as well. This thesis provides a

solid foundation and development analysis to support this new way of using satellite

payload data. It shows how combining even the most basic form of observed data

(the time-of-access and location) can provide deeper and more insightful knowledge.

Each cost function used and explored combines this data in a different manner and,

therefore, provides a different kind of insight pertaining to a different aspect of the

satellite behaviour. This, combined with the power of machine learning, has proven

to be an effective way of determining the position and velocity of the satellite with

strong potential for future development in real-world Earth-observation or, perhaps

even, interplanetary missions.

ii

Acknowledgements

I would like to thank my co-supervisors Franz Newland and Jinjun Shan for their

guidance and support throughout my research work. It was the perfect balance

between pointing me in the right direction and allowing me to make my own mis-

takes that made this a rich, meaningful and enjoyable learning experience. I would

also like to extend my thanks to exactEarth for providing guidance from an in-

dustry perspective and supplying additional data and insight, as well as NSERC

and our provincial and federal governments for their financial support. Finally,

I could not have done this without the unconditional love and support I can al-

ways count on from my partner, Joshua, my parents, Murielle and Frank, and my

brother, Thomas. They were there to support me when things got a little tougher

and to celebrate with me when I achieved important milestones. This has truly

been an enriching and fulfilling experience that has added a new dimension to my

professional and personal life.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 3

1.2 Research Objectives . 5

1.3 Applications of Observation-based Orbit Determination Capabilities 6

1.4 Thesis Outline . 7

2 Background 9

iv

2.1 Satellite Orbit Determination . 9

2.1.1 Keplerian Orbital Elements 10

2.1.2 The Two-Body Equation . 11

2.1.3 Current Methods . 12

2.2 Automatic Identification System . 15

2.2.1 Operating Principle . 16

2.2.2 Satellite Receivers . 17

2.2.3 Challenges of Using AIS Signals 18

3 Methodology 20

3.1 Input Data Simulation . 20

3.2 Ground-track-based Estimation Method 21

3.2.1 Point Cluster Centroid . 21

3.2.2 Least Squares Intersection 23

3.3 Simultaneous Perturbation Stochastic Approximation Method . . . 24

3.3.1 Background . 25

3.3.2 The SPSA Algorithm . 26

3.3.3 Cost-function Selection . 28

3.3.4 Search-range Boundaries . 30

3.3.5 Customized Algorithm Methodology 31

v

3.3.5.1 Segment 1: Reading in the “true” visibility infor-

mation . 31

3.3.5.2 Segment 2: Analysis window and search range con-

straints . 32

3.3.5.3 Segment 3: Generate the “true” point set for analysis 33

3.3.5.4 Segment 4: Variable transmission interval settings . 33

3.3.5.5 Segment 5: Initializing the orbital elements 34

3.3.5.6 Segment 6: Applying the weighting factor 35

3.3.5.7 Segment 7: The optimization loop 36

3.3.5.8 Segment 8: Generating and applying the perturba-

tion vectors . 37

3.3.5.9 Segment 9: Generating the new best estimate . . . 38

3.4 Genetic Algorithm . 39

3.4.1 Background . 40

3.4.2 The Genetic Algorithm . 42

3.4.3 Customized Algorithm Methodology 45

3.4.3.1 Segment 5: Generating the STK point file 45

3.4.3.2 Segment 6: Parent selection 46

3.4.3.3 Segment 7: Generating the new population of children 47

3.4.3.4 Segment 8: Close Neighbour Approximation 49

vi

3.4.3.5 Segment 9: Determining Proximity to Convergence 51

4 Optimization Results 53

4.1 Preliminary Gradient Descent-based Optimization 53

4.1.1 Varying Transmission Intervals 68

4.2 Genetic Algorithm Optimization . 80

4.2.1 Simulated Environment . 80

4.3 Real-world AIS Data . 94

4.3.1 Optimization Results . 94

4.3.2 Improving Real-world Convergence 98

5 Concluding Remarks 101

5.1 Summary of Results . 101

5.2 Usage and Applications . 102

5.3 Future Work . 103

5.4 Conclusion . 104

Bibliography 105

vii

List of Tables

1.1 Orbit determination method comparison 3

2.1 AIS Reporting Intervals . 17

3.1 Orbital Elements Search-range Boundaries 30

3.2 Variable Transmission Interval Ship Distribution Assumption 34

3.3 Close Neighbourhood Approximation Range Values for the Orbital

Elements . 49

4.1 Confidence Levels Used to Develop the Weighting Function 73

viii

List of Figures

2.1 Overview of the Keplerian Orbital Elements - from ResearchGate . 11

2.2 Flow chart outlining the extended Kalman Filter 14

2.3 Ships transmitting their AIS signal with their ID, location informa-

tion and timing information at different intervals 16

3.1 STK scenario showing the grid points and satellite object in the ideal

case simulation . 21

3.2 Sample point cluster at one time step, using evenly distributed point

cluster . 22

3.3 Plot of the centroids of each point cluster at every time step over a

period of 5 hours . 23

3.4 Plots comparing the coordinates of the estimated sub-satellite point

on the surface using the centroid method and the LSI method with

randomly distributed data points - true orbit ground track is shown

in green . 25

ix

3.5 Figure showing the difference in visibility start and stop time for an

arbitrary ship of interest . 30

3.6 Outline of the general genetic algorithm 43

4.1 Modified SPSA algorithm results for the semi-major axis at Feb 1,

2016 00:30:00 UTC . 54

4.2 Modified SPSA algorithm results for the eccentricity at Feb 1, 2016

00:30:00 UTC . 55

4.3 Modified SPSA algorithm results for the inclination at Feb 1, 2016

00:30:00 UTC . 56

4.4 Modified SPSA algorithm results for the argument of perigee at Feb

1, 2016 00:30:00 UTC . 57

4.5 Modified SPSA algorithm results for the RAAN at Feb 1, 2016

00:30:00 UTC . 58

4.6 Modified SPSA algorithm results for the true anomaly at Feb 1, 2016

00:30:00 UTC . 59

4.7 Single cost function results for the semi-major axis at Feb 1, 2016

00:30:00 UTC . 61

4.8 Single cost function results for the eccentricity at Feb 1, 2016 00:30:00

UTC . 62

x

4.9 Single cost function results for the inclination at Feb 1, 2016 00:30:00

UTC . 63

4.10 Single cost function results for the RAAN at Feb 1, 2016 00:30:00

UTC . 63

4.11 Single cost function results for the argument of latitude at Feb 1,

2016 00:30:00 UTC . 64

4.12 Single cost function results for the semi-major axis at Mar 29, 2016

00:00:00 UTC . 65

4.13 Single cost function results for the eccentricity at Mar 29, 2016

00:00:00 UTC . 66

4.14 Single cost function results for the inclination at Mar 29, 2016 00:00:00

UTC . 67

4.15 Single cost function results for the RAAN at Mar 29, 2016 00:00:00

UTC . 67

4.16 Single cost function results for the argument of latitude at Mar 29,

2016 00:00:00 UTC . 68

4.17 Variable transmission interval results without weighting compensa-

tion for the semi-major axis at Mar 29, 2016 00:00:00 UTC 69

4.18 Variable transmission interval results without weighting compensa-

tion for the eccentricity at Mar 29, 2016 00:00:00 UTC 70

xi

4.19 Variable transmission interval results without weighting compensa-

tion for the inclination at Mar 29, 2016 00:00:00 UTC 71

4.20 Variable transmission interval results without weighting compensa-

tion for the RAAN at Mar 29, 2016 00:00:00 UTC 72

4.21 Variable transmission interval results without weighting compensa-

tion for the argument of latitude at Mar 29, 2016 00:00:00 UTC . . 73

4.22 Variable transmission interval results with weighting compensation

for the semi-major axis at Mar 29, 2016 00:00:00 UTC 75

4.23 Variable transmission interval results with weighting compensation

for the eccentricity at Mar 29, 2016 00:00:00 UTC 76

4.24 Variable transmission interval results with weighting compensation

for the inclination at Mar 29, 2016 00:00:00 UTC 77

4.25 Variable transmission interval results with weighting compensation

for the RAAN at Mar 29, 2016 00:00:00 UTC 78

4.26 Variable transmission interval results with weighting compensation

for the argument of latitude at Mar 29, 2016 00:00:00 UTC 79

4.27 Semi-major axis error results for the six cases 82

4.28 Eccentricity error results for the six cases 83

4.29 Inclination error results for the six cases 84

4.30 RAAN error results for the six cases 85

xii

4.31 Argument of latitude error results for the six cases 86

4.32 Semi-major axis error results . 88

4.33 Eccentricity error results . 89

4.34 Inclination error results . 89

4.35 RAAN error results . 90

4.36 Argument of latitude error results 90

4.37 Semi-major axis error results . 91

4.38 Eccentricity error results . 92

4.39 Inclination error results . 92

4.40 RAAN error results . 93

4.41 Argument of latitude error results 93

4.42 Semi-major axis error results . 95

4.43 Eccentricity error results . 95

4.44 Inclination error results . 96

4.45 RAAN error results . 96

4.46 Argument of latitude error results 97

4.47 Cost function test cases results . 99

xiii

1 Introduction

Nearly every satellite currently in-orbit or to be launched will require an ability

to determine its orbital elements or state vector as a function of time. Presently,

this is most often achieved through the use of a Global Navigation Satellite Sys-

tem (GNSS) receiver or NORAD-provided Two-Line Element (TLE) data. With

today’s significant increase of interest in nanosatellite development, as well as the

more affordable alternative offered by hosted payloads, functionality and capabil-

ity can often be limited. GNSS receivers can take up a relatively large amount

of power, mass and space on-board nanosatellites but provide the most accurate

means of satellite positioning. NORAD TLE data does not require any on-board

equipment or processing as it is obtained through a third-party website but its up-

date frequency can put severe limitation on its usability, especially when smaller

beamwidth transmitters are used. In the case of a hosted payload, this payload

often does not have access to the host telemetry for orbit information, yet such

information may provide useful insight for the payload mission itself.

1

Furthermore, the nanosatellite industry is still very much an up-and-coming

industry and has only been developed over the past approximately 15 years, with

most of the developement occurring since 2012 [23]. They have opened the door to

a new kind of big data collection through satellite constellations. However, because

of this novelty, these types of missions are still left to use technology that was

originally designed for larger, heavier satellites, such as communications satellites.

There has been very little development so far in terms of developing a new way for

these nanosatellites to determine their orbit, keeping in mind their restrictions in

terms of mass, space and financial cost, meaning there was also a limited amount

of background references for this research to build upon. The research in this thesis

does just that; develop a solid backbone for developing a new way of determining the

orbit of a nanosatellite, provided that it conforms to the payload data restrictions

outlined in Chapter 5.

The research starts with a crude, geometric solution that attempts to estimate

the satellite’s orbit based on the position of the sub-satellite point on the surface

through finding the centroid of the data point cluster at each time step, and the

altitude through the apparent diameter of the satellite footprint. However, while

working on this method, severe limitations were discovered that lead to the devel-

opment of more advanced methods in cost function minimization through gradient

descent and machine learning techniques.

2

1.1 Motivation

There are a number of commercial nanosatellites equipped with Automatic Iden-

tification System (AIS) receivers that can receive and track AIS signals transmitted

by ships and land beacons on the surface of Earth. Up until this point, they are

reliant upon the NORAD TLE data to determine the satellite’s orbit since no GPS

receiver is installed on-board. Given that the NORAD TLE data update frequency

for commercial satellites can be as infrequent as once every 1 to 2 weeks, the known

orbital state vector can grow outdated very quickly. While the satellite orbit can

be propagated using software such as AGI System Tool Kit (STK) in between TLE

updates, the satellite drift in between updates is significant enough over a 2-week

timespan to cause connection loss for ground station downlinks, especially in the

case of small beamwidth transmitters. It also limits knowledge of any events or

unexpected perturbations that could have caused the satellite’s orbit to be altered.

Therefore, the ability to receive daily updates with TLE-level accuracy would be

advantageous in terms of downlink uptime and orbit validation. Table 1.1 provides

a comparison between using a GPS receiver, NORAD-provided TLE data and what

would be an ideal solution for nanosatellite operations.

Table 1.1 Orbit determination method comparison

3

GPS NORAD IDEAL
Power Cost MED NONE NONE
Dollar Cost MED NONE LOW
Mass Cost LOW NONE NONE

Update Frequency HOURS WEEKS DAYS
Accuracy SUB-METER KILOMETERS KILOMETERS

On-board Computation LOW NONE NONE

As can be seen from Table 1.1, NORAD TLE data corresponds to the orbit

determination needs of the nanosatellite industry, or better, except for the update

frequency. Unfortunately, as mentioned earlier, the update frequency is what causes

downlink losses if left for more than 1 week, which is a high impact risk to take into

consideration. Hence, if a method were to be developed that can meet all the criteria

of the TLE data but also provide an update on the order of a few days, it would

match the needs of the nanosatellite industry exactly in terms of cost, accuracy,

on-board computation, and downlink uptime through a more appropriate update

frequency.

Using the payload observation data that the satellite has already collected as

part of its main mission has several unique advantages. First and foremost it allows

for leaner, more efficient satellite missions as no on-board power, mass or downlink

capacity needs to be dedicated to orbit determination information. Second, it also

allows for near-instantaneous orbit determination using data that has already been

downlinked to the ground station, without the computational restrictions that exist

for on-board processing. And finally, developing algorithms for this observation-

4

based orbit determination method will also allow for other related data analyses to

be conducted, revealing more insight about the satellite’s orbit, its maneuvers and

the observed data points themselves. AIS provides just one type of data that can be

used with the algorithm developed in this thesis and will be used for testing the real-

world applicability of that algorithm. However, the aim is that the algorithm can be

used for many other types of large, observation data sets with similar characteristics

to AIS data, such as ADS-B and the Internet of Things.

1.2 Research Objectives

At its essence, the purpose of this research is to develop a proof-of-concept for an

orbit determination method that allows for near-instantaneous orbit determination

of a satellite using payload-collected time-of-access data of a large number of known

data points. This kind of orbit determination has never before been successfully

implemented and would bring a new level of functionality to new and existing

nanosatellites observing the body they orbit. As part of this thesis, the algorithm

is developed using simulated satellite data based on real-world AIS data and ship

locations, made progressively more realistic to properly incorporate many of the

subtleties involved in this type of orbit determination. The algorithm can then

later on, as a future project, be made more general beyond AIS-based applications.

The objective of this research is to consistently achieve TLE-level accuracy or

5

better, meaning 20km along-track and 10km cross-track and radially, using the

most realistic simulation data to date. These simulations will take into account all

constraints and challenges specific to surface data point observations mentioned in

this thesis, such as the data point transmission interval, location distribution and

altitude variations. The algorithm also needs to be sufficiently flexible, meaning

that it needs to work reliably and with the same level of accuracy for any desirable

date of interest and, thus, any realistic distribution of ships. In order to achieve

this, data point restrictions and known challenges were kept in mind throughout

the entire implementation process, with additional suggestions at the end of this

thesis in order to facilitate the expansion of the algorithm to include functionality

with real-world observation data. The focus of this thesis will be with specific

application of AIS observation data.

1.3 Applications of Observation-based Orbit Determina-

tion Capabilities

The algorithm proposed in this thesis has a wide range of potential applications

in the nanosatellite industry. Some examples of specific scenarios in which the

method could applied are AIS, ADS-B, Internet of Things, BlueForce tracking

and other remote sensing missions with a sufficiently large set of observed data

6

points. Earth observation tracking and data collection missions are increasingly

more popular and these kinds of tracking missions are more effectively carried out

by many small, low-cost satellites, rather than a few large satellites. The beauty of

this technique then is that it will allow these nanosatellites to focus their resources

on their specific mission, such that they can be designed lighter and cheaper, while

maintaining critical orbit determination functionality. These types of space missions

usually require a LEO space segment, a wide field-of-view, and will generally observe

a large number of data points, making them ideal for the type of orbit determination

algorithm discussed in this thesis. Furthermore, due to the fact that the statistical

advantage of a large data set will be used to ensure stability and accuracy, any

outliers in the observation data that do not agree with the estimation based on the

large majority of the data points can then be analyzed in reverse sense.

1.4 Thesis Outline

Chapter 1 of this thesis has provided an introduction to the motivation behind

this research and the objectives to be achieved. Chapter 2 will discuss the back-

ground behind current orbit determination techniques, as well as the satellite AIS

infrastructure. In Chapter 3, the methodology will be explained in detail, with

specific regard to the different attempts made at developing a successful algorithm.

Chapter 4 then shows and analyses the results and improvements made to the al-

7

gorithm, finishing off with the latest version. Finally, Chapter 5 will conclude this

thesis with improvement suggestions in terms of convergence accuracy and future

development potential.

8

2 Background

2.1 Satellite Orbit Determination

Determining a satellite’s orbit with high accuracy is a mission-critical function

that can either be achieved through on-board or ground-based data collection. It

involves determining or estimating the state vector (in this case, position-velocity-

time (PVT) or orbital elements) of a satellite at a given moment in time. It is most

often achieved by applying a form of statistical estimation or optimization to a set

of observations, from sensors on-board or from ground-based stations. The current

state vector of the satellite can then be used for observation scheduling, downlink

scheduling, pointing requirements, as well as a basis for orbital and attitude ma-

neuver requirements. However, the accuracy and effectiveness of these operations

is dependent upon the accuracy of the state vector. While some methods, such as

GPS-based orbit determination, can generate a very accurate and up-to-date state

vector, other methods can cause the error in the propagated state vector to grow

to a point where it causes ground stations to no longer be able to communicate

9

effectively with the satellite, prior to the next available update.

Jerome Vetter offers an in-depth look into the history of satellite orbit determi-

nation in ”Fifty Years of Orbit Determination” [33]. Milani and Gronchi present

general theoretical considerations involved in satellite orbit determination in the

”Theory of Orbit Determination” [1]. ”Statistical Orbit Determination” by Tap-

ley, Schutz and Byron focuses more on the typical observations involved and the

mathematical tools used for state estimation [3]. Finally, Vallado and Crawford

offer an even more specialized view of satellite orbit determination based solely on

TLE-data through SGP4 propagations in ”SGP4 Orbit Determination” [12].

2.1.1 Keplerian Orbital Elements

A satellite’s current orbit and position along that orbit can be represented

through the six Keplerian orbital elements (see Figure 2.1 below, as taken from

ResearchGate). The first of the six elements is the semi-major axis (a), defined as

half the length of the line of apsides (the line connecting the closest and furthest

points from the central body along the orbit). Second is the eccentricity (e), which

ranges between 0 and 1 and describes the circularity of the orbit - 0 being perfectly

circular and 1 being hyperbolic. Next is the inclination (i), indicating the angular

offset of the orbit from the equatorial plane. Fourth is the argument of periapsis

(ω), which describes the angular distance in the orbital plane between the ascending

10

node and the periapsis. The fifth element is the right ascension of the ascending

node (Ω), defined as the angular distance in the equatorial plane between the Vernal

Equinox and the ascending node. And finally, the true anomaly (Θ) describes the

angular distance in the orbital plane between the periapsis and the current satellite

position.

Fig. 2.1 Overview of the Keplerian Orbital Elements - from ResearchGate

2.1.2 The Two-Body Equation

The two-body problem is concerned with determining the motion of two gravita-

tional bodies interacting with one another. Based on Newton’s Law of Gravitation,

11

the motion of these two bodies can be written as:

−→
F12 = −

−→
F21 = G

m1m2

r2

−→r
r

Setting µ = Gm1 and
−→
F12 = m2

−̈→r and rearranging, gives what is known as the

two-body equation of orbital motion:

−̈→r =
−µ
r3
−→r

This equation only takes into account the pure gravitational interaction between

the two bodies (such as, for example, a satellite and Earth) but not any of the

perturbation affecting this motion. Since determining the orbit of a spacecraft

requires an accurate of the spacecraft’s motion, these perturbations need to be

taken into account as well. This can include atmospheric drag, Earth’s oblateness

and solar radiation pressure. More information on how these perturbations can be

accounted for is outlined in Section 2.1.3.

2.1.3 Current Methods

One of the most popular and accurate orbit determination methods is using

the observations from an on-board GPS receiver. With the appropriate hardware,

availability, and processing, accuracy of less than 15m in position and 0.05 m/s in

velocity can be achieved. However, the major downside to using a GPS receiver

to perform orbit determination is that its power, mass and cost specifications can

12

easily exceed the mission constraints. This often limits the allowable specifications

of other on-board equipment, increases the launch and operational costs or simply

makes using a GPS receiver infeasible, especially in terms of nanosatellites.

When using a GPS receiver is unrealistic given the mission constraints, satellite

operators most often resort to using the NORAD-provided TLE data. The orbital

elements contained in the TLE set for a specified date and time can be used as input

to an SGP4 propagation to predict the satellite orbit at other time instances. The

accuracy of such a propagation is on average around 10km cross-track and radially

and 20km in-track. However, the accuracy depends on the update frequency of the

TLE data, which, for commercial satellites, can be up to two weeks. Moreover,

relying on a third party, like NORAD, for orbit information also makes the satellite

operator vulnerable to any changes such provider may make to their services or

policies. Satellite operators can also use a range of other methods such as using

Doppler observations or radar tracking, but these methods are expensive and mostly

used on large communications satellites or by organizations such as NORAD to

provide input for the TLE data.

Two of the most common methods of determining the orbit of a satellite are

through Least Squares (LSOD) or the extended Kalman Filter (EKF). The main

difference between the two is that the LSOD method requires an entire set of

measurements in order to output the satellite state vector, whereas the EKF can

13

be run with every new measurement taken. The EKF will be briefly explained

below (see Fig 2.2).

Fig. 2.2 Flow chart outlining the extended Kalman Filter

At its essence, the EKF contains two main phases, the prediction phase and the

update phase. During the prediction phase, the satellite’s state vector, which in-

cludes information on satellite’s current estimated position and velocity OR orbital

elements, is propagated in time by means of the state transition matrix Φk,k−1. This

matrix, representing how the satellite’s position and velocity change over time, is

obtained through integration of the two-body equation of motion. Any perturba-

tions such as atmospheric drag, Earth’s oblateness and solar radiation pressure, are

contained in the control input matrix Bk. Similarly the covariance matrix Pk−1 is

14

also time-updated.

During the update phase, the state vector and covariance matrix are updated

with the observation measurements z. In order to do so, a transformation matrix

Hk needs to be constructed that relates the state vector parameters to the measure-

ments themselves. This allows for the computation of the Kalman gain K, which

is in turn used to update the state vector and covariance matrix.

In summary, the EKF allows one to start with an estimated satellite orbit

state vector (such as from TLE data), and update this state vector with each new

measurement coming in (such as from a GPS receiver on-board).

2.2 Automatic Identification System

According to Chapter V of the Safety of Life at Sea Convention, all ships over

300 gross tonnage on international routes, all cargo ships over 500 gross tonnage

not on international routes and all passenger ships must be equipped with an AIS

transponder to send and receive AIS signals [25]. These signals contain the ship’s

course, position, speed and rate of turn. Due to the curvature of Earth, ships and

coastal marine stations can receive signals from any ship or ground station within

an 80km radius [4]. The information received can then be used to avoid colliding

with other vessels as well as to monitor maritime activity.

15

Fig. 2.3 Ships transmitting their AIS signal with their ID, location information

and timing information at different intervals

2.2.1 Operating Principle

The AIS system retrieves the necessary information from on-board instruments

and a GNSS receiver, transmits that information through a VHF signal and relies

on Self-Organizing Time Division Multiple Access (SOTDMA) to avoid interference

of signals transmitting at the same time [16]. Before transmitting the signal, each

AIS transponder checks and announces its transmission time slot to other AIS

transponders in the immediate vicinity - these are referred to as cells of ships.

16

Using SOTDMA ensures that there is very little to no interference amongst signals

in the same cell. Furthermore, each ship transmits its signal at a variable time

interval. This means that, depending on the ship’s turning rate and speed, the

interval at which it transmits its AIS signal can range from every second to once

every 3 minutes (see Table 2.1 below [2])

Table 2.1 AIS Reporting Intervals

Ship Condition Not Changing Course Changing Course
At anchor or moored and speed <3 knots 3 min 3 min
At anchor or moored and speed >3 knots 10 s 10 s

Speed 0 to 14 knots 10 s 3.33 s
Speed 14 to 23 knots 6 s 2 s

Speed >23 knots 2 s 2 s

2.2.2 Satellite Receivers

While being able to receive signals from ships and land beacons within an 80km

radius is sufficient for ship navigation and safety requirements, when it comes to

global marine traffic monitoring it significantly limits the amount of information

available. In order to break the 80km barrier, satellites were launched with their

own AIS receivers in order to receive signals from ships worldwide. Commercial

satellite operators, such as exactEarth and Orbcomm, maintain and monitor these

satellites to receive available AIS signals around the clock. They have also worked to

guarantee signal reception despite interference caused by being able to see multiple

17

ship cells at any one time instant.

The satellites to be studied are exactView satellites in various orbits. At an

altitude of around 700km, their field-of-view spans approximately 50 degrees in

latitude and 50 degrees in longitude on Earth’s surface, assuming visibility out to

the limb. The exactView satellites can receive the AIS data from ships and land

beacons worldwide, meaning that at any given time anywhere from less than ten

to many thousands of ships could be visible. Most of the time, there will be an

abundance of data points to be used for computations, especially if the analysis

time period extends over an entire orbit, for instance.

2.2.3 Challenges of Using AIS Signals

While the algorithm was developed with the goal of it being a general applica-

tion of the orbit determination method proposed, the initial objective here was to

apply it successfully to AIS signal data. These signals and their inherent operating

principles also come with their own challenges; some applicable to other data forms

as well and some unique to AIS itself. The most significant of these challenges is

believed to be the transmission interval. As mentioned previously in this Chapter,

each ship’s transmission interval is a function of that individual ship’s speed and

turning rate. Given the large number of ships observed on average within the satel-

lite footprint, it can be assumed that the vast majority of ships will be detected

18

at least once during the pass. It was, furthermore, initially assumed that all ships

transmit their signal continuously in order to develop the base algorithm. However,

since this aspect of the AIS transmissions was expected to have the largest impact

on the performance of the algorithm, it was taken into account early on. The results

can be found in Section 4.3 of this report.

Another challenge of AIS is the potential for missed messages. In satellite AIS

operations, the focus is placed on ship detection rather than message detection,

which could result in a message detection rate of 10% or less. This means that

nearly all ships will be detected at least once but it is highly likely that many of

the ships messages will not be detected. This can place an additional uncertainty on

the ship visibility timing. However, statistics play an advantage here, once again,

as many hundreds to thousands of ships will be within the satellite footprint on

average at any given time.

Finally, the unknown altitude of the AIS transceiver (in terms of the transceiver

location relative to mean sea level, as well as extreme weather conditions) and the

potential for ionospheric bounce effects could potentially affect the overall perfor-

mance of the algorithm.

19

3 Methodology

3.1 Input Data Simulation

As part of the initial stages of this research, STK by AGI Inc. was used to create

a uniform grid of simulated ships and ground stations on a simulated Earth’s surface

orbited by a simulated LEO satellite (see Fig.3.1). This way, any transmission

variations, signal source uncertainties and interference sources were eliminated such

that a baseline proof-of-concept could be constructed. The information extracted

from STK is the coordinates of each ship (assuming zero altitude at mean sea level)

and the time information for each instant that each ship is visible. This way, the

expected ”true” visibility information is known for each ship beneath the satellite

during a pre-determined time interval. In a real-world scenario, this data would

come from the satellite payload rather than the simulation. In the later stages, the

simulation was made increasingly realistic, such that it resembles the real-world

AIS data scenario much more closely. However, the type of data collected remained

the same.

20

Fig. 3.1 STK scenario showing the grid points and satellite object in the ideal case

simulation

3.2 Ground-track-based Estimation Method

The first attempt at using this visibility information to determine the satellite’s

orbit was to estimate the sub-satellite point on the surface and altitude and every

time step over the course of one or more orbits.

3.2.1 Point Cluster Centroid

One way of estimating the sub-satellite path is by determining the location of

the centroid of each point cluster (see Fig.3.2). Plotting these centroids over the

21

course of three orbits will give the result in Fig. 3.3, assuming a two-body point

mass scenario. However, this method heavily relies on an evenly distributed and

densely populated point cluster, which is unlikely to occur in a real-world setting.

Fig. 3.2 Sample point cluster at one time step, using evenly distributed point

cluster

22

Fig. 3.3 Plot of the centroids of each point cluster at every time step over a period

of 5 hours

3.2.2 Least Squares Intersection

In order to try and mitigate this, a Least Squares Intersection (LSI) method

was designed such that the subsatellite point can be computed more accurately

and more reliably. The centroid method and LSI method are compared in Fig.

3.4 for 300 randomly distributed data points. While the LSI method significantly

23

improved the result, the sub-satellite path estimation was still significantly noisy

(with 1 degree of error in the sub-satellite point translating to over 10km of error on-

orbit), even in the ideal two-body point mass scenario, which does not yet account

for gravitational and other orbital perturbations.

Moreover, the satellite altitude estimation, which was based on geometry, is

inherently very noisy and becomes significantly more complex when considering

the variations in Earth’s gravitational field. An accuracy better than 60km in

altitude could not be achieved.

3.3 Simultaneous Perturbation Stochastic Approximation

Method

After considering and testing multiple other orbit estimation techniques, such

as a ground-track-based method, it was determined that using a gradient descent-

based Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm would

be a much more accurate, reliable and adaptable solution than the geometric

ground-track-based estimation method.

24

Fig. 3.4 Plots comparing the coordinates of the estimated sub-satellite point on

the surface using the centroid method and the LSI method with randomly

distributed data points - true orbit ground track is shown in green

3.3.1 Background

The original SPSA algorithm was developed by James C. Spall at Johns Hop-

kins University in the late 1990’s. Its objective was to provide the ability to apply

an optimization algorithm when a detailed model of the relationship between the

optimization parameters is not available or easily determined. Rather than as-

suming that the user can compute the gradient numerically, the SPSA algorithm

makes use of ”perturbations” to the original functions to analytically determine

the gradient. At its core, it is a gradient descent-based optimization algorithm,

with added functionality for cases where there is no explicit gradient of the cost

25

function available. The algorithm developed in this paper uses the SPSA algorithm

as a backbone but is fully customized, with added and removed elements, for this

particular application.

3.3.2 The SPSA Algorithm

The original SPSA algorithm as developed by James C. Spall is very theoretical

in nature and makes use of a variety of constant coefficients. The algorithm [32]

thus starts with the ”Initialization and Coefficient Selection” phase, followed by

generating the perturbation vector, evaluating the cost function values, updating

the parameter guess and iterating until the termination conditions are reached.

1. Initialize the parameters to be optimized to an initial guess Θ0 and set k = 0

2. Select non-negative coefficients a, c, A, α and γ which will constitute the

SPSA gain sequences:

ak =
a

(A+ k + 1)α

ck =
c

(k + 1)γ

For more guidelines on how to determine such coefficients according to the

original SPSA algorithm, please consult [32].

3. Generate a perturbation vector ∆k of the same dimension p as the number

of parameters to be optimized. Each of its p components are determined by

26

Monte Carlo and should be independently generated from a zero-mean distri-

bution (for example, a Bernoulli distribution with a 1
2

likelihood of assigning

a ±1 value to each component)

4. Evaluate the cost function measurements y(Θk) at:

y(Θk + ck∆k)

y(Θk − ck∆k)

5. Approximate the local gradient gk(Θk) as:

gk(Θk) =
y(Θk + ck∆k)− y(Θk − ck∆k)

2ck

∆−1
k1

∆−1
k2
...

∆−1
kp

6. Update the parameter estimate Θ as:

Θk+1 = Θk − akgk(Θk)

7. Increment k to k + 1 and continue to iterate until the difference in the opti-

mization parameters between iterations is sufficiently small.

The SPSA-based algorithm developed and used in this research is largely iden-

tical to the one outlined above. However, upon experimentation with a variety of

different values and combinations of the gain sequence coefficients, no values within

the ranges suggested in [32] resulted in proper convergence. Therefore, rather than

27

determining the coefficients individually, the gain sequences ak and ck themselves

were determined experimentally. These two gain sequences represent the gradient

step size (how far to move down the gradient) and perturbation step size (by how

much to perturb the current best estimate), respectively.

3.3.3 Cost-function Selection

The choice of cost function, perturbation amount and step size are extremely

important. After careful analysis of the timing information available and the effect

each orbital element has on this information, it was determined that two types of

cost functions can be identified. The start and stop time (SST) error is computed

in two parts: the start time error for each ship by taking the difference between

when it is first seen during the estimated orbit and when it is first seen during the

”true” orbit, as well as a similar procedure with the time it was last seen for the

stop time error. The SST error then is the RMS value of both the start and stop

time errors combined over the observation period.

Fig. 3.5 illustrates the concept behind the SST error. As is evident in the figure,

the ship of interest will enter the footprint along the estimated satellite orbit prior

to entering the footprint along the ”true” orbit. For the sake of argument, let us

assume the estimated satellite first observed the ship at 1750 seconds. Since the

”true” satellite would only start seeing the ship at the current time step (1800

28

seconds), the start time error would be -50 seconds. Similarly, the ship would pass

out of view from the estimated satellite approximately 45 seconds from now at 1845

seconds, whereas it would pass out of view from the ”true” satellite approximately

100 seconds from now at 1900 seconds. The stop time error would then be -55

seconds. This would be repeated for each ship of interest, after which the RMS

value will be taken of the start time errors and stop time errors all at once.

The total visibility length (TVL) error is computed by taking the difference

between the total time a ship is observed by the estimated satellite and the ”true”

satellite, then taking the RMS value over the entire observation period. For the

ship in Fig. 3.5, the TVL error would be 95seconds − 100seconds = −5seconds.

The TVL error points to an offset predominantly in the radial and/or cross-track

direction.

This means that a and i have a negligible effect on the SST error (as they do

not cause any along-track offset) and can only be estimated using the TVL error

cost function. However, ω and θ produce almost entirely along-track variations and

are therefore most accurately estimated using the SST error function. Finally, e

and Ω produce significant effects on both error metrics and can thus be estimated

using both cost functions.

29

Fig. 3.5 Figure showing the difference in visibility start and stop time for an ar-

bitrary ship of interest

3.3.4 Search-range Boundaries

It is assumed that the most accurate first guess we have to start the optimiza-

tion would either be based on the latest available TLE data or a previous estimate,

both no older than 2 weeks. Given this assumption, the search range for each of

the orbital elements can be constrained as presented in Table 3.1.

Table 3.1 Orbital Elements Search-range Boundaries

30

a 15km in each direction
e 1 order of magnitude in each direction
i 1.5 degrees in each direction
Ω 0 to 360 degrees
ω 0 to 360 degrees
θ 0 to 360 degrees

These boundaries significantly decrease the computation time, and can be as-

sumed to do so without loss of generality.

3.3.5 Customized Algorithm Methodology

3.3.5.1 Segment 1: Reading in the “true” visibility information

To start, the algorithm takes as input the simulation-generated coverage file.

This will contain each observed data point and note its identification number, lat-

itude, longitude, number of accesses (including if it is 0) and a list of each access

time interval in seconds from epoch. This information is similar to what would

be available from the AIS data, except that the time information will not be an

interval in that case but a UNIX timestamp. This is because the AIS signal is

not transmitted continuously. However, the AIS-based UNIX timestamps could be

converted to time intervals in a separate function.

31

3.3.5.2 Segment 2: Analysis window and search range constraints

This section will define the start and stop time of the analysis window and

the upper and lower bounds on the orbital element search range. The variable

firstinview specifies when the analysis will start, in terms of seconds from epoch.

In other words, what is the earliest visibility start time any of the analyzed points

can have? Similarly, lastinview specifies the latest visibility start time. For instance,

the STK scenario that is used to generate the “true” visibility data has a length of

4 hours - approximately 1.5 hours before the time of interest and 2.5 hours after

the time of interest. That way it can be assured that all analyzed points will have

a complete visibility interval, not cut-off by the starting and stopping of the STK

simulation. The algorithm then uses these two variables to specify what portion of

this STK-generated data will actually be used for the optimization.

Important to note is the “time of interest”. This refers to the exact time instance

(in UTC time) for which orbital elements of the satellite will be estimated. This will

also be the equivalent value (in seconds from epoch instead of UTC) of firstinview.

Given that an average orbit for the simulated satellite is just over an hour long,

lastinview was set to 3600 seconds after firstinview. However, the algorithm can

also handle analysis windows of longer than one orbit and distinguish between the

multiple times a single point is seen over multiple orbits. This can prove to be useful

32

in estimating slow-changing orbital elements more accurately later on by capturing

more of their effect in the data collection.

As mentioned previously, knowing the upper bound on the age of the initial guess

(for instance TLE data of at most 2 weeks old) allows us to impose boundaries on

the search range. These are defined as LBounds and UBounds. The bounds are

defined as outlined in section 3.3.3 above.

3.3.5.3 Segment 3: Generate the “true” point set for analysis

Based on the defined firstinview and lastinview, this section generates the matrix

containing all of the points to be analyzed that fall within this interval, referred

to as compPointSet. It will store their point ID, latitude, longitude, visibility start

time, visibility stop time and total time of visibility. Later on in the code, the

estimated orbit will generate a similar matrix adjPointSet with the same format

for comparison.

3.3.5.4 Segment 4: Variable transmission interval settings

The initial assumption of a continuous transmission interval for each individual

ship was expected to be the one with the largest impact on the performance of

the algorithm. Hence, it was one of the first improvements made to the algorithm

to bring it closer to reality. This segment of the code sets the percentage of ships

33

transmitting at each respective interval (see Table 3.2) and then adjusts the visibil-

ity interval values for each respective population of ships with randomly assigned

point IDs. This is done by setting the visibility start time and stop time of each

ship to a multiple of its assigned transmission interval. Since only the real-world

ships are affected by the variable transmission interval and not our simulations of

the estimated orbits, this is only done once and only to compPointSet.

Table 3.2 Variable Transmission Interval Ship Distribution Assumption
Transmission Interval Ship Percentage

180 s 5% of ships
30 s 10% of ships
10 s 46% of ships
2 s 30% of ships
1 s 9% of ships

3.3.5.5 Segment 5: Initializing the orbital elements

The initial orbital element guess would ideally be either the latest available TLE

data for the satellite (which would be at most 2 weeks old) or the last estimation,

whichever is newer. Currently, the initial guess contains the orbital elements based

on the TLE data set. These orbital elements form the Orbital Elements Guess

(OEG) and will be updated throughout the optimization.

Once initialized, the function genSTKScript produces the script that will be

used to run the STK simulation for the orbit estimate. The function runSTKScript

will then take as input the script generated in the previous step and execute it. This

34

will open up a new instance of STK, run the simulation, save the new .cvaa file

and then exit the STK instance. This leaves behind the .cvaa file for readCVAAfile

to read through and output a matrix of point ID’s and their respective latitude,

longitude, visibility start time, visibility stop time and total visibility time called

adjPointSet. In other words, it will have the exact same format as compPointSet

such that both matrices can be compared. This is done through the function

compErrors which takes as input both matrices and computes the SST and TVL

errors for each analyzed data point. As a means for stabilizing the algorithm, all

errors are filtered such that only those within 2 standard deviations are retained.

All others are considered outliers and have an adverse effect on the error metric

computation.

3.3.5.6 Segment 6: Applying the weighting factor

Applying a weighting factor to the error metrics of each individual point/ship

compensates for the misinterpretation due to the variable transmission interval.

Initially a linear weighting factor was applied where each low-confidence error metric

was multiplied by 90% and the high-confidence error metrics were left untouched.

While this worked well in some cases, when the date of interest was changed and the

initial error values were significantly larger, the algorithm failed to converge. This

was avoided by changing the weighting factor to an exponential function, raising

35

the low-confidence error metrics to the power of 0.985. This value was determined

experimentally to have the highest reliability when testing different dates of interest

but should be refined and studied further.

3.3.5.7 Segment 7: The optimization loop

This segment starts by initializing the termTVL variable to 0. This variable

will track the amount of consequent iterations in which the TVL error (which is the

only error metric being used as the cost function) difference is less than 0.1 seconds.

Once this amount exceeds 3 iterations, the optimization loop is terminated. This

was found to be superior to setting a limit on each orbital element step size between

iterations or terminating when the TVL error difference falls below a pre-determined

value just once. The reason for the latter being that in order for this to be a viable

termination condition, the error difference would have to be sufficiently small, but

when set this small it might sometimes never be reached. When then set to a

larger value, like the current 0.1 seconds, this may by chance occur somewhere

earlier on in the optimization just once and should, therefore, not yet be a reason

for termination.

36

3.3.5.8 Segment 8: Generating and applying the perturbation vectors

The next step is to generate the negative and positive perturbation vectors.

First, a vector of 6 values (this was eventually changed to 5 values to reflect the

incorporation of the argument of perigee into the argument of latitude - see section

4.1) is created, with each value being randomly assigned a direction coefficient of

+1 or -1 with equal probability. Next the step sizes are defined for each orbital

element, as a function of the TVL error value at the end of the previous iteration.

These values were determined by studying the behaviour of the optimization for

a wide range of intial guesses and dates of interest such that the algorithm can

converge within reasonable error and in a timely fashion.

Once the direction coefficients and step sizes have been determined, they are

combined to form the perturbation vectors. In order to get a good approximation

of the gradient, the perturbations are set to be twice the step size when the TVL

error is greater than 100 seconds and 1.5 times the step size when the TVL error

is less than or equal to 100 seconds. The perturbation vector is then added to and

subtracted from the previously determined OEG to create a positive perturbation

OEG PP and a negative perturbation OEG PN to the orbital element guess. Please

note that as part of these perturbations, each orbital element will be increased and

decreased by their own respective amounts. For instance, the semi-major axis may

37

be changed by 2000km, whereas the inclination would only be changed by 1 degree

during the same perturbation. Each perturbation is then checked to make sure it

falls within the pre-determined bounds and the semi-major axis is checked so that

the perigee altitude does not fall below 100km.

Once again, an STK script is generated and executed, the .cvaa file is read and

used to generate a new adjPointSet, the error metrics are computed, and the appro-

priate weighting factors are applied. This is done for each of the two perturbations.

3.3.5.9 Segment 9: Generating the new best estimate

Based on the results from the positive and negative perturbations, the gradient

can be determined based on the difference between the two TVL errors. The OEG

vector elements are then adjusted along the downward direction of the gradient

(towards zero) by the same step size as determined in the beginning of Segment 9.

This forms the new best estimate for the satellite orbit.

Finally, the elements for the new best estimate are checked to be within bounds

and to satisfy the perigee altitude requirement. Once again, an STK script is gen-

erated and executed, the .cvaa file is read and used to generate a new adjPointSet,

the error metrics are computed, and the appropriate weighting factors are applied.

The final TVL error value for this iteration is then computed so that it can be used

to determine the step sizes in the next iteration. This TVL error value is compared

38

to that of the previous iteration and termTVL is incremented if this difference falls

below 0.1; otherwise, termTVL is reset back to 0.

This concludes the iteration and the process is repeated until termTVL reaches

a value of 3, giving us confidence that the algorithm has converged properly and

sufficiently.

3.4 Genetic Algorithm

The Genetic Algorithm (GA) has the inherent advantage of being able to entirely

traverse a large search space, efficiently. Following some of the issues encountered

with the gradient-descent based algorithm, as explained further in section 4.1, it was

determined that designing a GA would overcome those challenges and increase the

stability and consistency of the algorithm. As opposed to searching a narrow range

along the gradient, risking being caught in local minima as with the gradient descent

approach, a GA introduces randomness in order to search the entire space and

increase flexibility of the algorithm. The GA has been used as a successful method

of orbit determination in various other applications before, such as ground-based or

space-based optical streak observations of a satellite [24] and optical observations of

a GEO satellite [17]. However, these solutions focus on observations of the satellite

itself and not its payload observations.

39

3.4.1 Background

The GA, as the name suggests, is derived from natural genetic reproduction

processes. It, generally, starts off with a random initial population of individuals

and chooses a set of parents from these individuals. The parents are chosen based

on their cost function and represent a large enough variety so as to avoid local

optimization. From these parents, children are then created through three different

reproduction techniques: direct copy, mutation and recombination. The key lies in

balancing the rates of reproduction of each technique such that enough randomness

is introduced but not so much that the algorithm fails to converge.

The implementation of a GA introduces some distinct advantages over the pre-

vious gradient descent-based approach. For one, it does not require any initial orbit

guess to seed the optimization. This is a significant advantage as it removes any

bias the user might inject with the initial guess and generalizes the algorithm to any

initial guess, within the boundaries specified in section 3.3.4. The GA does this by

initializing the optimization with a population of randomly generated initial guesses

within those pre-determined boundaries. The boundaries are sufficiently large so

as to guarantee that the correct orbit lies within those boundaries but sufficiently

small such as to avoid searching any unnecessary orbital element values.

The GA also eliminates any need for a pre-defined step size function, for both the

40

gradient estimation and the perturbation size since both are not longer required

operations. This also significantly generalizes the algorithm as it works towards

convergence and chooses its own step sizes based on the reproduction method def-

initions. The algorithm then determines independently which step sizes generate

more suitable results as it explores different orbital element combinations. As will

be explored in section 4.1.2 as well, the need for a step size function in the gradient

descent-based optimization is a limiting factor in the robustness and consistency

of the algorithm. The particular requirements of the step size function actually

change with the date of interest, so choosing a date of interest sufficiently far into

the future, say 6 months further than tested with the current step size function,

will cause the algorithm to be extremely unlikely to converge.

Additionally, the GA no longer requires a weighting function to be implemented

in order to compensate for the varying transmission intervals. Whereas the gradient

descent-based relied on the actual cost function values in order to determine the

progress of the optimization and proximity to convergence, the GA only considers

the relative cost function values throughout the optimization. This allows the GA

to determine the proximity of a given estimation to the “true” orbit without needing

a weighting function to normalize the cost function value to a similar range as when

all the ships transmit continuously.

Finally, the inherent ability of the GA to search the entire defined search space

41

and minimize the risk of converging on a local minimum is extremely desirable for

this particular research application. The estimation of satellite orbital elements

based on its observations is one with a highly irregular cost function slope, mean-

ing there are many local minima that the optimization could consider the correct

estimate if not handled appropriately. By introducing a sufficient amount of ran-

domness into the search process, as will be explored in more detail in section 3.4.2,

the GA can effectively eliminate estimates corresponding to local minima and con-

tinue its search along a path of global optimization. Refining the estimate locally

once the global minimum has been found can then be achieved through employing

a different search technique in combination with the GA. However, the key here

is that this should only be done once the area in the global space containing the

global minimum has been located.

3.4.2 The Genetic Algorithm

The GA is in itself a highly customizable type of algorithm. While a general

procedure is always followed, the internal operations of a genetic algorithm can

vary widely.

42

Fig. 3.6 Outline of the general genetic algorithm

In general, the following steps are always present in a genetic algorithm (see

Fig. 3.6):

1. Initialize a random population of individuals. Each individual constitutes a

valid guess of the optimization parameters. That is, they must have the same

dimension as the optimization parameters and contain appropriate values that

can be evaluated without error

2. Measure the fitness (i.e. cost function value) of each individual in the popu-

lation

43

3. Select the parent individuals

4. Generate the child individuals from the parents individuals through direct

copy, recombination or mutation

5. Continue to iterate from Step 2 until the termination conditions have been

reached

The next section will describe the customized GA that was developed for this

research from the ground up, and the changes that were made in order to make it

most effective for the optimization at hand. These custom changes include:

1. The manner in which parent individuals are select to maintain enough variety

while at the same time working towards convergence

2. The manner in which child individuals are generated and when to resort to

each of the reproduction techniques based on the behaviour of the optimiza-

tion

3. The addition of the simulated annealing-based minimization at the end of

each iteration in order to refine the orbital element guesses further, but still

avoid landing in a local minimum.

4. The manner in which proximity to convergence is determined

44

3.4.3 Customized Algorithm Methodology

This subsection will explore the details of the GA as implemented for this par-

ticular research project. The algorithm was designed and implemented completely

from the ground up, with many customizations to make is as effective as possible

in determining the correct orbital elements estimate for a simulated satellite. Seg-

ments 1 through 4 in the GA are identical to Segments 1 through 4 in the gradient

descent-based optimization algorithm.

3.4.3.1 Segment 5: Generating the STK point file

In order to speed up the algorithm and avoid computing the visibility of points

the satellite won’t pass over, the algorithm creates an STK point file with all the

points seen during the “true” orbit. This was not implemented in the gradient

descent-based algorithm as it does not allow the algorithm to compare data points

that are not seen during the true orbit but may be seen during the estimated

orbit. The gradient descent-based algorithm made use of this additional data to

estimate the gradient of the cost function. However, the GA does not require

this additional data and it was decided that significantly increased performance

warranted implementing the point file generation. It is also important to note that

the point file will assume an altitude of 0 meters for each data point. Even if the

45

actual data points vary in altitude during the “true” orbit, this assumption does

not change for the points created for the estimate orbit to observe.

3.4.3.2 Segment 6: Parent selection

The parent selection process is crucial to guaranteeing a sufficiently wide, yet

converging, traversal of the search space. In order to have an appropriate variety

of parents, the particular selection process in this algorithm first looks at the four

individuals with the lowest Total RMS (TRMS) error value. This error value is

computed by first taking the RMS value of the start time error, the stop time

error and the TVL error for each data point and then taking the RMS of all those

individual RMS values. Next it selects the 2 individuals with the lowest start

time error RMS, the lowest stop time error RMS and the lowest TVL error RMS,

respectively. It is important to note, again, that the start and stop time errors

are predominantly used for estimating orbital elements that represent along-track

motion of the satellite. The TVL error, on the other hand, relates to the radial and

cross-track components. Finally, the TRMS error combines all three error metrics

in one cost function and will therefore be used as the main cost function to measure

the overall progress and success of the optimization. By selecting a subset of parent

individuals with low error values in each of the aforementioned cost functions - start

error, stop error, TVL error and TRMS error - guarantees that each parent will

46

have at least one strength in the orbital elements, along with a set of parents (those

based on the TRMS error) that should have an overall good representation of the

true orbital elements as the algorithm approaches the global minimum.

In order to introduce additional randomness to the GA, a number of random

individuals are selected to be part of the parent pool based on the lowest TRMS

error value of the previous iteration. If that value was larger than 200 seconds, 5

random parents individuals are selected. This decreases by 1 parents individual for

every 50 second decrease in the lowest TRMS error value of the previous iteration.

When that minimum TRMS value is less than 50 seconds, only 1 random parent

individual will be selected.

The algorithm then generates a matrix of all possible unique combinations of

parent individuals. If more than 20 possible combinations result, random combina-

tions will be removed in order to limit the number of combinations to 20. This does

not affect the overall accuracy of the final estimate as there is still a large variety

in the combinations, and these combinations change randomly at every iteration,

but it significantly decreases running time.

3.4.3.3 Segment 7: Generating the new population of children

The population of children is generated through three main reproduction tech-

niques: direct copy, recombination and mutation. Each parent couple is assigned

47

a reproduction sequence, meaning that each orbital element of the child will be

assigned one of the three reproduction techniques. The percentage at which each

technique is assigned is determined based on the current state of the algorithm. If

the algorithm has detected an early convergence (more on this later), it will assign

50% of the orbital elements to recombination and 50% to mutation in order to

increase the random behaviour. If the algorithm has detected that it is close to

convergence (more on this later), it will increase the direct copy percentage and

decrease the mutation percentage. This ends up being divided as 30% direct copy,

65% recombination and 5% mutation. It is important to still maintain a minimal

level of randomness, hence why the mutation percentage is left at 5%. Any other

situation will prompt a direct copy percentage of 0%, recombination of 80% and

mutation of 20%.

Each parent couple is set to create two children. Each orbital element of each

of the two children from the same parents will be generated using the same repro-

duction technique, but the values will be different. To explain this idea further, in

the case of direct copy, child #1 with get a copy of the respective orbital element of

parent #1 and child #2 will get a copy of the orbital element of parent #2. In the

case of recombination, the recombination will happen with respect to each parent

respectively. Finally, when the orbital element is assigned a mutation, the orbital

element will be mutated by a relatively small amount for the first child, and by a

48

relatively large amount for the second child.

The recombination technique operates by taking the difference between the

values of the two parents for the particular orbital element that was assigned to be

reproduced by recombination. It then assigns a random recombination percentage

between 10% and 90%. This percentage is multiplied by the parental difference and

added to the respective parents’ orbital element value. For the first child it will be

added to parent #1 and for the second child it will be added to parent #2.

The mutation technique operates similarly to the recombination technique.

However, at the end of the recombination technique, a random mutation is ap-

plied to the orbital element in question.

Once the child orbital elements have been generated, the cost function values

are computed for each child.

3.4.3.4 Segment 8: Close Neighbour Approximation

In order to refine the estimation results further, a close neighbour approximation

is performed on the current parent population. First, a step size is set depending on

the lowest cost function value of the previous iteration in accordance with ranges

presented in Table 3.3:

Table 3.3 Close Neighbourhood Approximation Range Values for the Orbital El-

ements

49

a 5km to 50m
e 5E-4 to 5E-6
i 0.5 to 0.005 degrees
Ω 5 to 0.05 degrees
ω 5 to 0.05 degrees
θ 5 to 0.05 degrees

Subsequently, each parent individual of orbital elements is perturbed by that

step size in the positive and negative direction. The cost function values for each of

these perturbations are then compared to one another and the lower one of the two,

along with its associated perturbation direction, is chosen. The refining process

continues in this direction and with the same step size as long as the new cost

function value is lower than the original parent cost function value or 5 evaluations

have been performed.

A process similar to simulated annealing is then used to determine which orbital

element estimate will continue as a parent individual to the next iteration: the

original parent or the slightly perturbed parent with a lower cost function value.

Inherent to this method, early on in the optimization process the probability is

higher for the original parent to be chosen, even though its cost function value may

be higher, if the two cost function values are close together. If the cost function

value of the perturbed parent is significantly lower than that of the original parent,

the probability of it being chosen increases. The reason why this is useful for

the particular optimization in question is that, early on, there should be enough

variety in the parent pool, and, unless a significant improvement can be made,

50

there should be no close-neighbour optimization yet. However, later on in the

optimization process, there is more confidence that the algorithm is getting close

to the ”true” value, and therefore close neighbour approximations are more useful

at this stage.

3.4.3.5 Segment 9: Determining Proximity to Convergence

The final step is to determine whether or not the algorithm is approaching

convergence. This proximity to convergence can be estimated by two different

metrics: the difference between the parental cost function values and the difference

between the cost function values of subsequent iterations. In order for the algorithm

to detect full convergence, it must encounter two conditions:

1. the maximum and minimum of the parental cost functions values must be

within 1 second from each other for 5 subsequent iterations

2. the minimum cost function values of two subsequent iterations must be within

1% of each other 10 times in a row

One might notice that the actual cost function value is not used as a convergence

condition. The reason for this is that, while in theory the cost function value

should approach zero closely, all the noise introduced to the measurements and

cost function error metrics, such as the transmission interval, the cost function may

51

not necessarily be at zero when the algorithm converges to an estimate close to

the ”true” value. Moreover, the cost function value at which this happens cannot

confidently be predicted. Hence, convergence is instead determined by the relative

cost function values between parents and between iterations.

52

4 Optimization Results

4.1 Preliminary Gradient Descent-based Optimization

In order to test the conclusions metioned above regarding the cost function

usage, the algorithm was generated such that all orbital elements were estimated

first using the TVL error cost function. While doing this, it was known that ω and

θ would not be estimated accurately and would need to be refined. Hence, a second

phase of optimization then keeps a, e, i constant at the estimated value, and refines

ω, θ and even Ω. The Ω element would likely be within reasonable error after the

first phase but can be further refined using the SST error cost function as well. For

testing purposes and based on available TLE data, a date of interest of February 1,

2016 00:30:00.000 UTC was used in the results below. Please note that the ”RMS

value” takes the RMS value of the 10 last iterations.

53

Fig. 4.1 Modified SPSA algorithm results for the semi-major axis at Feb 1, 2016

00:30:00 UTC

54

Fig. 4.2 Modified SPSA algorithm results for the eccentricity at Feb 1, 2016

00:30:00 UTC

55

Fig. 4.3 Modified SPSA algorithm results for the inclination at Feb 1, 2016

00:30:00 UTC

56

Fig. 4.4 Modified SPSA algorithm results for the argument of perigee at Feb 1,

2016 00:30:00 UTC

57

Fig. 4.5 Modified SPSA algorithm results for the RAAN at Feb 1, 2016 00:30:00

UTC

58

Fig. 4.6 Modified SPSA algorithm results for the true anomaly at Feb 1, 2016

00:30:00 UTC

The technique converges to the correct orbital elements, using the simulated

evenly-distributed data points (see Figs 4.1-4.6). The initial guess was based on a

typical two-week-old TLE set orbit estimate. It can be seen that, as expected, the

first three orbital elements converge very closely after around 40 iterations using

the TVL error cost function. The ω,Ω and θ are then further refined using the SST

error cost function until they too converge.

59

It is important to note that the cost functions used in this optimization con-

sider only the ships seen during the estimated orbit and compare those to the same

ships as seen during the ”true” orbit. Additionally, due to the mostly low eccen-

tricity of the exactView satellite orbits, the argument of perigee is highly unstable

and changes very rapidly. Hence, it was determined that estimating the argument

of perigee is rather meaningless and, instead, the combination angle of the true

anomaly and argument of perigee will be considered. This will be referred to as the

argument of latitude, u.

In order to improve running time and the overall accuracy of the optimization,

a method to estimate u using only the TVL error cost function was developed.

Whereas ω and θ could initially only be estimated using the SST error cost function,

by expanding the range of ships being compared, the sum of the two elements can

be highly accurately determined using the TVL error cost function. This way, the

estimation of u can be combined with the other orbital elements all at once. Instead

of only comparing the ships seen during both the estimated orbit and the ”true”

orbit, we now also include the ships that are seen but should not be seen and the

ships that are not seen but should have been seen. This cuts down the running

time almost in half and makes sure that the error metrics are more accurate and

complete.

First, the optimization was run (see Fig.4.7-4.11) for the same date of interest

60

as the previous test, set to February 1, 2016 00:30:00 UTC. The perturbation size

P was also adjusted prior to this optimization such that it can be used on a wider

range of values and is applicable to all dates of interested without alteration. Please

note that the ”RMS value” takes the RMS value of the 10 last iterations.

Fig. 4.7 Single cost function results for the semi-major axis at Feb 1, 2016 00:30:00

UTC

61

Fig. 4.8 Single cost function results for the eccentricity at Feb 1, 2016 00:30:00

UTC

62

Fig. 4.9 Single cost function results for the inclination at Feb 1, 2016 00:30:00

UTC

Fig. 4.10 Single cost function results for the RAAN at Feb 1, 2016 00:30:00 UTC

63

Fig. 4.11 Single cost function results for the argument of latitude at Feb 1, 2016

00:30:00 UTC

All orbital elements converged closely to their expected values after approxi-

mately 200 iterations. Based on these results, the ground station misshaping would

be less than 5 degrees.

In order to confirm that the algorithm can indeed also be used for a different

date of interest, it was run for March 29, 2016 00:00:00 UTC (see Fig.4.12-4.16).

No changes were applied to the algorithm, other than the input file with the new

”true” visibility times from STK.

64

Fig. 4.12 Single cost function results for the semi-major axis at Mar 29, 2016

00:00:00 UTC

65

Fig. 4.13 Single cost function results for the eccentricity at Mar 29, 2016 00:00:00

UTC

66

Fig. 4.14 Single cost function results for the inclination at Mar 29, 2016 00:00:00

UTC

Fig. 4.15 Single cost function results for the RAAN at Mar 29, 2016 00:00:00 UTC

67

Fig. 4.16 Single cost function results for the argument of latitude at Mar 29, 2016

00:00:00 UTC

Once again, all orbital elements converged very closely to their expected values

after 200 iterations. The optimization was also run for July 1, 2016 00:00:00 UTC

and December 1, 2016 00:00:00 UTC with similar results.

4.1.1 Varying Transmission Intervals

Changing the rate at which each of the ships transmits its signal, changes when

they can be observed by the satellite passing by from above. While a continuously

transmitting ship will be seen from the moment the satellite is within range and

right up until the satellite passes out of view, this is not true for variably trans-

68

mitting ships. The higher the transmission interval, the higher the uncertainty of

whether a ship was seen when it first came into view or whether it had been in view

for some time before the signal was received. This can significantly impact the start

and stop time of the visibility and the associated error metrics for both the SST

error and the TVL error. The algorithm may detect a high error and believe the

orbital elements must be off, while in fact the only issue may be a late reception

of the signal. In order to test how the algorithm will handle these cases, it was

run for March 29, 2016 00:00:00 UTC (the significance of this date is that we have

real-world AIS data from exactEarth for testing in the future) without any changes

(see Fig.4.17-4.21).

Fig. 4.17 Variable transmission interval results without weighting compensation

for the semi-major axis at Mar 29, 2016 00:00:00 UTC

69

Fig. 4.18 Variable transmission interval results without weighting compensation

for the eccentricity at Mar 29, 2016 00:00:00 UTC

70

Fig. 4.19 Variable transmission interval results without weighting compensation

for the inclination at Mar 29, 2016 00:00:00 UTC

71

Fig. 4.20 Variable transmission interval results without weighting compensation

for the RAAN at Mar 29, 2016 00:00:00 UTC

72

Fig. 4.21 Variable transmission interval results without weighting compensation

for the argument of latitude at Mar 29, 2016 00:00:00 UTC

From these results it is clear that changing the transmission rate highly impacts

the RAAN and argument of latitude, whereas the other orbital elements still con-

verge relatively well. In order to compensate for the potential misinterpretations of

the error metrics, a weighting function was applied to the SST error values based

on a few characteristics. These characteristics determine whether we have high or

low confidence in the error value (see Table 4.1).

Table 4.1 Confidence Levels Used to Develop the Weighting Function

73

Error Type Confidence Level
negative start time error low
positive start time error high
negative stop time error high
positive stop time error low

For those instances with a negative start time error, it means the ship was seen

earlier than it should in the estimated orbit compared to the ”true” orbit. This

could be because the satellite was in fact offset from its true orbit and therefore

received the signal from the ship at a different time; it could be that the ship itself

had a high transmission interval and therefore did not transmit a signal until the

satellite had already been in view for some time; or it could be that the ship had

a high transmission interval but transmitted its signal just as the satellite came

into view and we are, once again, dealing with an orbit offset. Hence, we assign

this error metric a low confidence rating. A similar rationale is valid for those

ships with a positive stop time error. Each error value with a low confidence rating

was weighted using an exponential weighting function, such that the weighting gets

lighter as the error approaches zero. The optimization was run, with the weighting

function compensation for March 29, 2016 00:00:00 UTC (see Fig.4.22-4.26).

74

Fig. 4.22 Variable transmission interval results with weighting compensation for

the semi-major axis at Mar 29, 2016 00:00:00 UTC

75

Fig. 4.23 Variable transmission interval results with weighting compensation for

the eccentricity at Mar 29, 2016 00:00:00 UTC

76

Fig. 4.24 Variable transmission interval results with weighting compensation for

the inclination at Mar 29, 2016 00:00:00 UTC

77

Fig. 4.25 Variable transmission interval results with weighting compensation for

the RAAN at Mar 29, 2016 00:00:00 UTC

78

Fig. 4.26 Variable transmission interval results with weighting compensation for

the argument of latitude at Mar 29, 2016 00:00:00 UTC

This effectively eliminates the misinterpretation of the error metrics due to the

variable transmission interval and allows all orbital elements to converge very closely

to their true value.

However, it was discovered that while these results are acceptable in terms of

accuracy, they are not in terms of reliability. The parameters in this optimization,

including the weighting function, only worked well when the date of interest was

relatively close to Feb 1, 2016 and grew increasingly less reliable as this date of

interest was set futher into the future.

79

4.2 Genetic Algorithm Optimization

4.2.1 Simulated Environment

The genetic algorithm was designed to overcome many of the constraints and

limitations of the gradient descent-based optimization. In order to test the GA

optimization more extensively, six test cases were designed:

1. Evenly-spaced grid of observation points (e.g. ships in the case of an AIS

payload) with a constant transmission/visibility interval and zero altitude

(E-CT-ZA in results plots)

2. Real point location distribution (based on real AIS payload data) with a con-

stant transmission/visibility interval and zero altitude (R-CT-ZA in results

plots)

3. Real point location distribution with variable transmission/visibility, no weight-

ing function, and zero altitude (R-VTNW-ZA in results plots)

4. Real point location distribution with variable transmission/visibility, with

weighting function, and zero altitude (R-VTWW-ZA in results plots)

5. Real point location distribution with variable transmission/visibility, no weight-

ing function, and variable altitude. (R-VTNW-VA in results plots)

80

6. Real point location distribution with variable transmission/visibility, with

weighting function, and variable altitude (R-VTWW-VA in results plots)

Each of these test cases was tested using a basic from-scratch GA without any

of the aforementioned customizations on the parent selection (it only selected the

10 best TRMS parents), reproduction techniques (it only created one child per

parent couple, with large random values for the mutation technique), cost func-

tion combinations (it only considered the TRMS error metric) and close-neighbour

approximation (it did not perform any close-neighbour approximations).

The results in Fig. 4.27 - 4.31 show that the semi-major axis, eccentricity and

inclination have relatively high accuracy levels for all six simulation cases. All three

convergence errors satisfy TLE-level accuracy conditions. However, the RAAN and

argument of latitude estimations degrade with increasing realism. Especially the

varying altitude simulations fall significantly outside of the TLE-level accuracy

conditions, which would require each of these two orbital to converge at less than

0.05 degree error. The results also show that, given that the amount of points

observed in the real AIS data set is more than twice that of the evenly spaced grid,

an increase in observation points yields a significant increase in estimation accuracy

for the RAAN and argument of latitude. This is signified by the jump between the

E-CT-ZA and R-CT-ZA curves in Fig. 4.30 and Fig. 4.31 below. All orbital

elements, except for currently the semi-major axis, are also positively affected by

81

the use of the weighting function when considering variable transmission intervals.

This is signified by the jump between the R-VTNW-ZA and R-VTWW-ZA curves,

and the R-VTNW-VA and R-VTWW-VA curves.

Fig. 4.27 Semi-major axis error results for the six cases

82

Fig. 4.28 Eccentricity error results for the six cases

83

Fig. 4.29 Inclination error results for the six cases

84

Fig. 4.30 RAAN error results for the six cases

85

Fig. 4.31 Argument of latitude error results for the six cases

The GA is an ideal method for the orbit determination problem at hand as

it caters directly to the inherent issues present in the search space, as described

before. The results discussed prior in this section also prove it to be successful

in terms of accurately estimating the orbital elements and maintaining reliability

over different dates of interest and orbital conditions. In order to further increase

accuracy and reliability, some further algorithmic changes were implemented on the

GA algorithm:

86

1. Increasing the observation time frame from one orbit worth of data to three

orbits worth of data, in order to make the effect of an offset in the RAAN

and argument of latitude more pronounced and more easily detected by the

algorithm.

2. Adding more variety to the parent pool in order to help avoid premature

convergence.

3. Fine tuning the reproduction technique probabilities and their respective

methods.

4. Creating a Genetic Algorithm - Simulated Annealing (GASA) hybrid algo-

rithm that includes a process similar to Simulated Annealing at the end of

each iteration to explore the close neighbourhoods around the parent individ-

uals, especially as the algorithm nears convergence and only small steps are

needed.

The algorithm was first tested on the same date of interest as in the other

tests, March 29 2016 00:00:00.000 UTC. As can be seen in Fig. 4.32 - 4.36, the

algorithm consistently converges to orbital element values close to the ”true” orbit.

It is important to note that the figures show the error between the estimated orbit

and the ”true” orbit and not the actual orbital element values. In order to verify

consistency, 5 algorithm iterations were performed without making any changes to

87

the algorithm.

Fig. 4.32 Semi-major axis error results

88

Fig. 4.33 Eccentricity error results

Fig. 4.34 Inclination error results

89

Fig. 4.35 RAAN error results

Fig. 4.36 Argument of latitude error results

90

Next, the algorithm was also tested for a date of interest exactly one year

later on March 29 2017 00:00:00.000 UTC. This was an important test since the

original gradient descent-based algorithm was not able to consistently converge to

an accurate estimate at a date of interest this far from the initial date of interest.

Once again, the algorithm was run 5 consecutive times without making any changes

whatsoever. Fig. 4.37 - 4.41 show that the GA-based algorithm now has no problem

dealing with a different date of interest, and thus a different ”true” orbit and a

different initial state.

Fig. 4.37 Semi-major axis error results

91

Fig. 4.38 Eccentricity error results

Fig. 4.39 Inclination error results

92

Fig. 4.40 RAAN error results

Fig. 4.41 Argument of latitude error results

93

4.3 Real-world AIS Data

Upon successful testing of the simulated AIS data from real-world ship positions,

the algorithm was applied to real-world AIS data from the exactView 9 (EV9)

satellite, provided by exactEarth Ltd.

4.3.1 Optimization Results

The real-world data included the time-of-access timestamp, ship ID, latitude

and longitude of all messages received by EV9 from March 29, 2016 00:00:00.000

UTC until March 29, 2016 21:00:00.000 UTC. While accurate convergence was not

expected without any changes to the algorithm tested on simulated data, it was

nevertheless important to test the performance of the algorithm on this real-world

data, analyze the behaviour and hypothesize potential improvements.

94

Fig. 4.42 Semi-major axis error results

Fig. 4.43 Eccentricity error results

95

Fig. 4.44 Inclination error results

Fig. 4.45 RAAN error results

96

Fig. 4.46 Argument of latitude error results

As Fig. 4.42 - 4.46 show, the algorithm does not converge properly to any

particular estimated orbital elements. While the semi-major axis, eccentricity and

inclination estimations still stay within relatively error bounds, it is, once again,

the RAAN and argument of latitude that prove to be the most unstable in their

estimations. For these latter two orbital elements, the error remains at level of

10s of degrees for the RAAN to over 150 degrees for the argument of latitude.

This points to a similar issue as experienced before in terms of those two orbital

elements, but to a higher degree, not yet properly taken care of by the adjusted

cost functions described earlier.

97

While the true cause of this inability to converge on real-world AIS data is still

unknown, it is suspected that this is largely due to the cost function that is used,

especially with regard to estimating the RAAN and the argument of latitude. The

effect of the type of cost function on the error values was explored further.

4.3.2 Improving Real-world Convergence

While the results obtained by the optimization based on simulated data are ac-

ceptable for this study, especially given the novelty and consistency achieved with

simulated data, some tests were done in order to determine how convergence could

be improved in terms of the real-world AIS data. Since the first three orbital ele-

ments are slow-changing elements and can already be estimated with high accuracy,

these tests focused on added sensitivity in terms of the RAAN and argument of

latitude.

The errors of each of the two orbital elements were studied for a test starting

with the true orbit. The first 40 tests increased the error in both the RAAN and

argument of perigee as a function of the iteration number, and set a small constant

error on the other elements. Tests 41 to 80 maintained that small constant error

in the first three elements and decreased the error in the RAAN and argument of

perigee, starting at the truth values. Finally, the last 40 tests looked at the effect

of increasing the error in the RAAN and decreasing the error in the argument of

98

latitude.

Many combinations for the error metrics were explored, but only three were

found to collectively represent the errors introduced on the orbital elements accu-

rately. These were the TRMS error (which was used as a main cost function in the

previous optimizations), the STSP difference metric and STSP error metric. The

STSP difference metric takes the absolute value of the difference between the RMS

of the start time error for all data points and the RMS of the stop time error for

all data points. The STSP error metric, on the other hand, is quite different from

all previous metrics used. It counts the sum of all instances where the start time

error or stop time error were larger than 2 sigma.

Fig. 4.47 Cost function test cases results

99

The results of these tests showed that the TRMS error does not accurately reflect

an error in the RAAN and argument of latitude when their errors are opposite in

direction. In a sense, these errors will cancel one another out and still produce a

TRMS error equivalent to a very small error in these two orbital elements, even

though they might in fact be very large but opposite in direction from each other.

The hypothesis to be tested in future related work is if a cost function were to be

used that incorporates features from both the TRMS error metric and the STSP

error metric, then the RAAN and argument of latitude error will be represented

much more effectively and increase the response of the GA to such errors.

100

5 Concluding Remarks

5.1 Summary of Results

While the methodology of this research covered a variety of techniques, from

a purely geometric solution to a gradient descent-based optimization to a machine

learning GA, it is the GA that produced the most accurate, consistent and reliable

results with the simulated data. There are still a number of steps to take in order to

make the algorithm perform with the intricacies of real-world AIS data, but the GA

performed close to TLE-level with the simulated data, including modifications to

make it as realistic as possible. The most realistic results from the GA have an ac-

curacy of around 5-10km cross-track and radially and 25-35km along-track. Hence,

referring back to Table 1.1, the solution developed here has no additional on-board

power cost, it has no additional on-board dollar cost (it will require ground-based

computing but this can be achieved on any ordinary computer), it has no additional

mass cost, it can provide an orbit update daily, it provides an accuracy similar to

TLE on the order of 10 kilometers and it requires no on-board computation. The

101

algorithm meets all of the aforementioned ”ideal” needs for nanosatellite missions.

5.2 Usage and Applications

The usage of the algorithm depends on a variety of factors. First of all, the

algorithm needs to be customized and improved further to make sure that it can

perform accurately and reliably with real-world data. However, the data itself also

needs to conform to the following conditions:

• Data points need to be available for most of the satellite’s orbital path

• The satellite needs to be observing a large number of data points

• The satellite needs to have a wide field-of-view (out to the horizon)

• The data needs to include each point’s position coordinates and this position

needs to be known on the order of every few minutes.

• The data points need to be moving very slowly, relative to the satellite, such

that there speeds can be considered negligible (though, with modifications in

the future this could be expanded to faster moving objects, such as ADS-B

on aircraft)

• There needs to be a regular downlink of data, since data processing will be

done on the ground

102

• The operator needs to have access to a computer for data processing and

running the algorithm

• The algorithm in its current state takes about 20-24 hours to run

In addition to being used as the primary orbit determination method, the algorithm

also has a great potential in terms of orbit validation. This can be done in tandem

with other orbit determination techniques to verify the current orbit estimate, as

well as generate estimates in between updates from the primary OD method.

5.3 Future Work

The accomplishments and developments in this thesis provide a solid backbone

for an orbit determination algorithm based on the time-of-access information of a

large number of observed data points in real-world scenarios, AIS-based or other-

wise. However, as shown, more research and development will be necessary in order

to bring it to a level where it can operate on real-world data. The most obvious

next step is to adjust the cost function(s) so that they can more accurately reflect

errors in the RAAN and argument of latitude. However, a more in-depth study on

the assumptions made by the current algorithm and where these fail would per-

haps give a more complete overview of the types of changes that will need to be

made in order to guarantee convergence, and moreover accurate convergence, with

103

real-world data.

Another up-and-coming area of development is the Internet of Things (IoT) and

connecting such devices through satellite constellations. Many sensors in today’s

consumer and industrial environments are already connected to the internet but it

is widely believed by companies in the industry that satellite constellations are the

next step in making such IoT systems more scalable and accessible. Adapting the

algorithm discussed here to be compatible with such systems and provide near-real-

time feedback in a low-power environment will require changes to the efficiency and

computing requirements of the GA. Furthermore, the algorithm could also combine

knowledge of the data from multiple satellites to increase accuracy and convergence

speed.

5.4 Conclusion

The algorithm developed in this research provides a novel way of preparing

the space industry for the future. The rapid rise in nanosatellite deployment and

miniaturization of communication technology will require a cheaper, leaner and

more efficient way of tracking those satellites. Using the already-collected timing

data from the payload observations means that no additional on-board equipment

or processing will be required and that it could even be applied to existing mis-

sions, as well. This thesis provides a solid foundation and development analysis to

104

support this new way of using satellite payload data. It has shown how combining

even the most basic form of observed data (the time-of-access and location) can

provide deeper and more insightful knowledge. Each cost function used and ex-

plored combines this data in a different manner and, therefore, provides a different

kind of insight pertaining to a different aspect of the satellite behaviour. This,

combined with the power of machine learning, has proven to be an effective way of

determining the position and velocity of the satellite with strong potential for fu-

ture development in real-world Earth-observation or, perhaps even, interplanetary

missions.

105

Bibliography

[1] G. Gronchi A. Milani. Theory of orbit determination. Theory of Orbit Deter-

mination, 2009.

[2] Neil Arundale. Ais reporting interva. Web.

[3] G. Born B. Tapley, B. Schutz. Statistical orbit determination. Statistical Orbit

Determination, 2004.

[4] Heather Ball. Satellite AIS for Dummies. John Wiley & Sons Canada, Ltd.,

2013.

[5] Nicholas Bijnens. Gps-based satellite orbit determination using ekf. York

University, ESS5410 - Advanced Satellite Positioning, 2016.

[6] W. Boyce. Examination of norad tle accuracy using the iridium constellation.

Advances in the Astronautical Sciences, 2005.

[7] W. Marshall C. Levit. Improved orbit predictions using two-line elements.

Advances in Space Research, 2011.

106

[8] General Dynamics Canada. Spaceborne gps receivers. Web.

[9] J. Carson-Jackson. Satellite ais - developing technology or existing capability?

Journal of Navigation, 2012.

[10] H. Curtis. Preliminary orbit determination. Orbital Mechanics for Engineering

Students, 2010.

[11] P. Bohn D. Hobbs. Precise orbit determination for low earth orbit satellites.

Annals of the Marie Curie Fellowship Association, 2006.

[12] P. Crawford D. Vallado. Sgp4 orbit determination. AIAA/AAS Astrodynamics

Specialist Conference and Exhibit, 2008.

[13] David Bull David Beasley and Ralph Martin. An overview of genetic algo-

rithms: Part 1 fundamentals. University of Cardiff, 1993.

[14] O. Montenbruck E. Gill. Comparison of gps-based orbit determination strate-

gies. European Space Agency, (Special Publication), 2004.

[15] D. Finkleman. ”tle or not tle?” that is the question. Advances in the Astro-

nautical Sciences, 2007.

[16] U.S. Coast Guard. How ais works. U.S. Coast Guard Navigation Centre.

107

[17] T. Hanada H. Hinagawa, H. Yamaoka. Orbit determination by genetic algo-

rithm and application to geo observation. Advances in Space Research, 2014.

[18] C. Ryoo J. Hong, W. Park. Tle data-based precise estimation of satellite’s or-

bital parameters. Proceeding of the 16th International Conference on Control,

Automation and Systems, 2016.

[19] Kim S et.al. J. Hong, Kim J. Tle data based precise estimation of satellite’s

orbital parameters. International Conference on Control, Automation and Sys-

tems, 2017.

[20] D. Mortari Karimi R. Initial orbit determination using multiple observations.

Celestial Mechanics and Dynamical Astronomy, 2011.

[21] Elizabeth Keil. Kalman filter implementation to determine orbit and atti-

tude of a satellite in a molniya orbit. Virginia Polytechnic Institute and State

University, 2014.

[22] Govindarajan Kothandaraman and Mario Rotea. Spsa algorithm for parachute

parameter estimation. 17th AIAA Aerodynamic Decelerator Systems Technol-

ogy Conference and Seminar, 2003.

[23] Otto Koudelka. Nanosatellites for technological and science missions. Institute

of Communication Networks and Satellite Communications, 2017.

108

[24] F. Curti L. Ansalone. A genetic algorithm for initial orbit determination from

a too short arc optical observation. Advances in Space Research, 2013.

[25] International Maritime Organization. SOLAS - International Convention for

the Safety of Life at Sea. Lloyd’s Register, 2005.

[26] Q. Zhang R. Wang, J. Liu. Propagation errors analysis of tle data. Advances

in Space Research, 2009.

[27] K. Riesing. Orbit determination from two line element sets of iss-deployed

cubesats. 29th Annual AIAA/USU Conference on Small Satellites, 2015.

[28] Kathleen Riesing. Two line element sets of cubesats in leo: Accuracy assess-

ment and estimation techniques for improvement. 29th Annual AIAA/USU

Conference on Small Satellites, 2015.

[29] Franz Newland Ruben Yousuf and Thia Kirubarajan. Satellite orbit determi-

nation using ground-based navigation data. European Navigation Conference,

2011.

[30] S. Gangal S. Aghav. Simplified orbit determination algorithm for low earth

orbit satellites using spaceborne gps navigation sensor. Artificial Satellites,

2014.

109

[31] Payman Sadegh. Constrained optimization via stochastic approximation with

a simultaneous perturbation gradient approximation. Automatica, pages 889–

892, 1998.

[32] James C. Spall. Implementation of the simultaneous perturbation algorithm

for stochastic optimization. IEEE Transactions on Aerospace and Electronic

Systems, pages 817–823, 1998.

[33] Jerome R. Vetter. Fifty years of orbit determination: Development of modern

astrodynamics methods. Johns Hopkins APL Technical Digest, 27(3):239–252,

2007.

[34] I.-Jeng Wang and James C. Spall. Stochastic optimisation with inequality con-

straints using simultaneous perturbations and penalty functions. International

Journal of Control, pages 1232–1238, 2008.

[35] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 1994.

[36] J. Wright. Optimal orbit determination. Advances in the Astronautical Sci-

ences, 2002.

110

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Objectives
	Applications of Observation-based Orbit Determination Capabilities
	Thesis Outline

	Background
	Satellite Orbit Determination
	Keplerian Orbital Elements
	The Two-Body Equation
	Current Methods

	Automatic Identification System
	Operating Principle
	Satellite Receivers
	Challenges of Using AIS Signals

	Methodology
	Input Data Simulation
	Ground-track-based Estimation Method
	Point Cluster Centroid
	Least Squares Intersection

	Simultaneous Perturbation Stochastic Approximation Method
	Background
	The SPSA Algorithm
	Cost-function Selection
	Search-range Boundaries
	Customized Algorithm Methodology
	Segment 1: Reading in the ``true" visibility information
	Segment 2: Analysis window and search range constraints
	Segment 3: Generate the ``true" point set for analysis
	Segment 4: Variable transmission interval settings
	Segment 5: Initializing the orbital elements
	Segment 6: Applying the weighting factor
	Segment 7: The optimization loop
	Segment 8: Generating and applying the perturbation vectors
	Segment 9: Generating the new best estimate

	Genetic Algorithm
	Background
	The Genetic Algorithm
	Customized Algorithm Methodology
	Segment 5: Generating the STK point file
	Segment 6: Parent selection
	Segment 7: Generating the new population of children
	Segment 8: Close Neighbour Approximation
	Segment 9: Determining Proximity to Convergence

	Optimization Results
	Preliminary Gradient Descent-based Optimization
	Varying Transmission Intervals

	Genetic Algorithm Optimization
	Simulated Environment

	Real-world AIS Data
	Optimization Results
	Improving Real-world Convergence

	Concluding Remarks
	Summary of Results
	Usage and Applications
	Future Work
	Conclusion

	Bibliography

