
CHARACTERIZING IMPLEMENTATIONS THAT PRESERVE
PROPERTIES OF CONCURRENT RANDOMIZED ALGORITHMS

AMGAD RADY

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO
DECEMBER 2017

c© Amgad Rady, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/158457727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We show that correctness criteria of concurrent algorithms are mathematically

equivalent to the existence of so-called simulations between implementations of the

algorithms in a well-known framework (that of input/output automata) and simple

canonical automata. This equivalence allows us to frame our proofs of correctness

in a language much more amenable to machine-checking than conventional proofs.

We give the first demonstration that when strongly linearizable implementa-

tions of randomized concurrent algorithms are utilized, then the distributions of a

well-defined class of random variables are preserved under object substitution by

non-concurrent implementations of the same algorithms. We also consider weaker

conditions than strong linearizability under which implementations are still correct

in the presence of randomization.

ii

This thesis is dedicated to my mother, Heba A. Hassan, without whose selfless

love and support this would be impossible.

iii

Acknowledgements

I would like to first thank my supervisor, Professor Eric Ruppert of the Department

of Electrical Engineering and Computer Science at York University. His generosity

with his time, wise, patient, and insightful guidance, and insistence on clarity and

rigour have all made me a better researcher. His cheerful demeanour made this

journey a pleasure.

I would next like to thank Professor Franck van Breugel, Graduate Program

Director of the Department of Electrical Engineering and Computer Science at

York University. His door was always open when I needed his help, and his insights

and encouragement were nothing short of invaluable.

Last but not least, I would like to thank Professor Thomas Salisbury of the

Department of Mathematics and Statistics at York University for sitting on my

examination committee, for his input on the areas of my work that touched on the

theory of probabilities, and for the fresh perspective that only an outsider could

bring.

iv

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

1 Linearizability 1

1.1 A Rudimentary Bank Account . 2

1.2 The Binary Consensus Problem . 6

1.3 Attempted Repair of Banking Example 10

1.4 A Safe Rudimentary Bank Account 13

2 Strong Linearizability 16

2.1 A SRSW Implemented Using Bit Array 17

2.2 Ameliorating Linearizability’s Insufficiency 21

3 Main Results and Related Work 22

v

4 Abstract Data Types, Automata, and Simulations 26

4.1 Abstract Data Types . 26

4.2 Input-Output Automata . 28

4.3 Linearizable and Strongly Linearizable Implementations 30

4.4 Forward and Forward-Backward Simulations 46

5 Equivalences between Linearizability and Simulation 49

5.1 Linearizability and Forward-Backward Simulations 49

5.2 Strong Linearizability and Forward Simulations 50

6 Application of Equivalences to Implementation of Set ADT 64

6.1 Linearizing contains Using remove 70

6.2 Linearizing contains Using add . 78

7 Systems of ADT’s 80

7.1 Sequential Programs, Concurrent Systems, and Schedulers 81

7.2 Linearizability of Systems . 85

8 Probability Distribution on System Executions 88

8.1 Mappings between Coin Flips and Executions 88

8.2 The Probability Function . 91

9 Comparing PIST’s 96

vi

10 Generalizing Robustness 111

10.1 Local Coin Flips . 114

11 Conclusion and Future Work 119

Bibliography 121

vii

1 Linearizability

Linearizability, defined formally in Definition 4.3.2, is a crucial safety property of

asynchronous shared-memory systems introduced by Herlihy and Wing in (HW90).

An execution of an implementation of an abstract data type by several processes

(abstractions of processors, control threads, etc.) accessing and modifying a set of

shared objects is said to be linearizable if the operations, which are in actuality

interleaved by the executing system’s scheduler, can be thought of as taking place

atomically at some point during the operation. By this we mean there is some

sequential ordering of the operations that is indistinguishable from the actual ex-

ecution to any observer that cannot examine the implementation of the system.

It is possible to show that an execution is linearizable by specifying “linearization

points” – specific steps where the operations ‘take effect.’

The concept of linearizability was a crucial advance in the study of distributed

computation, since sequential executions are far more analytically tractable than

concurrent ones. Also, executions that are not linearizable (and the algorithms that

1

produce them) are almost always undesirable from a system design perspective, as

the following example will demonstrate.

1.1 A Rudimentary Bank Account

Suppose we wish to implement a bank account with two operations – DEPOSIT(n)

and WITHDRAW(n) – with the following properties:

• DEPOSIT(n) must increment the account balance by n at termination and

return TRUE.

• WITHDRAW(n) must, if the account contains at least n, disburse n to the

invoker and decrement the account balance by n. If n exceeds the balance,

WITHDRAW must return insufficient funds and leave the balance unal-

tered.

Consider two individuals, A and B, who simultaneously perform some sequence

of the above operations from separate terminals on a joint bank account. We say

that we can linearize the bank’s processing of these transactions if we can pro-

pose a sequential order of the transactions that is indistinguishable from the actual

execution of the transactions by the bank’s system, if we cannot inspect the im-

plementation details of that system. Let us consider the following implementations

for the operations DEPOSIT(n) and WITHDRAW(n), respectively, using a shared

2

memory location – implemented as a multi-reader/multi-writer register – called

“account”:

Algorithm 1: DEPOSIT(n) - Sequential

1 read the amount in the account and store in local variable v;

2 v ←− v + n;

3 write v to account;

4 return TRUE;

Algorithm 2: WITHDRAW(n) - Sequential

1 read the amount in the account and store in local variable v;

2 v ←− v − n;

3 if v ≥ 0 then

4 disburse n;

5 write v to account;

6 else

7 fail due to insufficient funds

8 end

These algorithms are valid implementations of the operations in a sequential

context. To see where the problem lies when steps are interleaved in an asyn-

chronous system, suppose that both A and B perform DEPOSIT(100). Clearly,

all valid executions of these two operations should leave the account with $200 at

termination. However, suppose that a concurrent system implementing Algorithm

3

1 is scheduled as follows:

• A and B read 0 and assign 0 to their local variables.

• A and B each stores 0 + 100 = 100 into its local variable v.

• A writes 100.

• B writes 100.

The account has $100 at termination of both operations. Therefore, this exe-

cution is not linearizable (and we now have two irate customers). Why has this

difficulty arisen? Let us examine Algorithm 1 more closely.

We observe that the read and write operations are separated in time. This is

not a problem in a sequential setting, as no process can cause any mischief between

the invocations of the read and write operations. However, as we have seen, A

interferes with B’s write since it invalidates B’s cached copy of the account balance.

How is this to be repaired?

One solution is to use a locking mechanism like a mutual exclusion object. A

mutual exclusion object (or mutex), is an object that allows several processes to

share a resource (here the location in memory where the account balance is stored)

ensuring that each process can employ the resource without interference by other

processes.

4

While this is a simple fix for our issue – and indeed is used in practice – it has

shortcomings of its own. By design, locks enable a process, for a shorter or longer

period, to monopolize the protected resource to the exclusion of other processes. If

the process holding the mutex is slow or in extremis, the entire system is hampered

in the same proportion. This is a pertinent worry, as we often cannot anticipate

how an operating system will choose to schedule processes, which it may privilege

or neglect.

Having seen that using a locking mechanism could cause all of the system’s

processes to crawl or crash, we desire a stronger guarantee of progress for our

system.

Definition 1.1.1. An algorithm using a set of processes P is lock-free if, for ev-

ery infinite execution, including those in which some processes experience halting

failures, infinitely often some process in P completes its operation.

It might be that a cleverer implementation of the operations that is linearizable

and uses only read and write instructions on shared registers is possible. In

fact, this is true for the DEPOSIT operation; however, this is not true for the

WITHDRAW operation if we impose the condition of lock-freedom.

Lemma 1.1.2. There is no lock-free implementation of the WITHDRAW operation

using only shared read/write registers.

5

We postpone the proof of this lemma until we introduce the consensus problem

(Definition 1.2.1).

Fortunately, hardware designers have introduced an operation known as com-

pare & swap (or CAS) which, instead of simply writing a value to a shared register,

does the following sequence of operations atomically – i.e., the constituent steps of

the algorithm are performed without interruption.

Algorithm 3: COMPARE & SWAP

Input: loc : &T, test : T, v : T

1 if ∗loc 6= test then

2 return FALSE

3 else

4
∗loc←− v;

5 return TRUE

6 end

Why have designers chosen to implement CAS in hardware? To understand the

answer we must take a brief jaunt into the theory of distributed computation and

one of its foundational problems: consensus.

1.2 The Binary Consensus Problem

The Binary Consensus Problem, to be defined shortly, plays a role in distributed

computing analogous to that played by the Halting Problem in the theory of com-

6

putability: It is a rich source of lower bound and impossibility results. We consider

the Binary Consensus Problem with crash failures, where processes either execute

their instructions faithfully or irrecoverably crash.

Definition 1.2.1. A protocol involving a set of processes P with input set I =

{0, 1} solves the Binary Consensus Problem if every execution of the protocol sat-

isfies the following conditions:

• Termination: Every correct process outputs some value, where a process is

correct if it faithfully executes its given protocol.

• Validity: If all processes propose the same value v, every correct process

outputs v.

• Agreement: All correct processes output the same value.

An object’s consensus number is defined to be the maximum number of processes

for which binary consensus can be solved in a lock-free manner using only objects

of that type and read/write registers, or ℵ0 if no such maximum exists. Read/write

registers themselves have a consensus number of 1 (Her91, LAA87), and stacks a

consensus number of 2. CAS objects have consensus number ℵ0, meaning they can

solve binary consensus for any number of processes (Her91).

We now give the proof for Lemma 1.1.2:

7

Proof. Let us suppose that there is some implementation of WITHDRAW (which

we shall also term WITHDRAW) that is lock-free and uses only read/write registers.

We use this to derive a contradiction to the claim that read/write registers have

consensus number 1 by giving an algorithm using WITHDRAW and the read

operation that can solve the binary consensus problem for any number of processes

– implying that read/write registers have consensus number ℵ0.

Let n ∈ N and P = {p1, p2, . . . , pn} be a set of n processes, each given an

initial value of either 0 or 1, and consider the following algorithm that each process

implements on a shared register initialized to the value 100.

Algorithm 4: Binary consensus for n processes using WITHDRAW

1 if initial value = 1 then

2 WITHDRAW(99)

3 else

4 WITHDRAW(100)

5 end

6 read the value in account and return it;

Let us now consider the conditions of termination, validity, and agreement for

the above algorithm.

• Termination: Since the implementation of WITHDRAW is lock-free, and

the read operation on registers is atomic, for each correct process pi, its

8

WITHDRAW operation eventually terminates. Since there are finitely many

processes, the algorithm itself eventually terminates.

• Validity: If all processes pi have the value 0, then the first process to success-

fully perform WITHDRAW will remove 100 from account. All subsequent

read operations will then return 0. The argument for value 1 is similar.

• Agreement: Suppose that the first process to successfully perform WITH-

DRAW has initial value 0. All subsequent read operations return 0. The

argument for value 1 is similar.

9

1.3 Attempted Repair of Banking Example

Let us make a first attempt to solve our problem by directly substituting a CAS

operation for write in our example:

Algorithm 5: DEPOSIT(n) - Attempt I

1 read the amount in the account and store in local variable v;

2 v′ ←− v + n;

3 CAS(account , v, v′);

Algorithm 6: WITHDRAW(n) - Attempt I

1 read the amount in the account and store in local variable v;

2 v′ ←− v − n;

3 if v ≥ 0 then

4 disburse n;

5 CAS(account , v, v′);

6 else

7 return insufficient funds

8 end

A couple of problems are evident with this substitution: First, if the CAS fails in

Algorithm 5, the operation halts without having deposited money into the account.

While it might be feasible, if annoying, for the user to repeat the operation until it

is successful, this rapidly becomes burdensome in a congested system. As we shall

10

soon see, this is easily fixed by enclosing the CAS in a while loop.

The second and much more dangerous problem is the order of the ‘disburse’

and CAS operations in Algorithm 6. The funds are disbursed before the account

is altered; while this might not have been a problem in the sequential system, it

is a glaring vulnerability here. Suppose that a pair of observant and unscrupulous

customers A and B keep performing DEPOSIT(MIN) and WITHDRAW(MAX),

respectively, where MIN and MAX are constants denoting the lowest and highest

denominations of currency that the system accepts, respectively. At least some of

the time, a DEPOSIT (Algorithm 5) changes the balance between WITHDRAW’s

(Algorithm 6) read and CAS. The system will disburse the maximum amount of

funds but the account will not be decremented since the CAS fails.

Both failures, the inconvenient first and disastrous second, arise because we

mechanically substituted a CAS for a write operation. We hope that this brief

example illustrates to the reader that a measure of caution and subtlety is required

when implementing even simple operations in a distributed setting using lock-free

primitives like CAS. Let us now present the correct code.

11

Algorithm 7: DEPOSIT(n) - Attempt II

1 while true do

2 read the amount in the account and store in local variable v;

3 v′ ←− v + n;

4 if CAS(account, v, v′) then

5 break;

6 end

7 end

12

Algorithm 8: WITHDRAW(n) - Attempt II

1 while true do

2 read the amount in the account and store in local variable v;

3 v′ ←− v − n;

4 if v′ ≥ 0 then

5 if CAS(account, v, v′) then

6 disburse n;

7 break;

8 end

9 else

10 fail due to insufficient funds

11 end

12 end

1.4 A Safe Rudimentary Bank Account

We have repaired the errors that arose when we mechanically transplanted the

sequential implementations (Algorithms 1 and 2) into a distributed setting (Algo-

rithms 5 and 6). However, while Algorithms 7 and 8 are safe in the sense that

certain classes of vulnerability are absent, there remains the possibility of resource

deprivation in our system. Let us consider the following execution of Algorithms 7

13

and 8 by two users A and B:

• A and B wish to perform WITHDRAW(10) once and DEPOSIT(1) ad infini-

tum, respectively, on an account with $100 initially.

• A reads, B performs CAS and increments the account, A performs CAS and

fails, A reads...

We can arbitrarily delay the completion of a procedure – in this example A’s

WITHDRAW(10) – by strategically interleaving other processes. A wait-free sys-

tem is one in which we cannot do this, i.e., one where every process can complete

its operation within a finite number of steps. We can modify our implementation

to make it wait-free; however, doing so is beyond the scope of our discussion as we

are principally interested in safety, not progress.

We now argue for the linearizability of Algorithm 7 and Algorithm 8:

• DEPOSIT(n) has two operations on shared data: read and CAS. The read

value is used only as an argument to CAS, hence DEPOSIT is linearized at a

successful CAS. An invariant maintained by the DEPOSIT operation is that

immediately preceding a successful CAS on line 4, the amount present in the

account is v, and immediately after the CAS, the amount present is v + n.

• WITHDRAW(n) is more interesting. How the value WITHDRAW reads from

14

the shared register is used depends on whether the account has sufficient funds

at the point of WITHDRAW’s read:

– If so, and the CAS is successfully performed, we linearize at the CAS. If

the CAS is unsuccessful, we loop anew. If sufficient funds are present,

the operation is correct since immediately before the CAS on line 5, the

amount present in the account is v, and immediately after the CAS the

amount is v − n ≥ 0.

– If not, we linearize at the previous read. This is correct since imme-

diately after the read operation on line 2, the account had an amount

v < n.

As the previous example has shown, even simple algorithms like DEPOSIT

and WITHDRAW can fail critically in distributed systems if care is not taken

to ensure their correctness. This is not merely an academic curiosity: multi-core

processors (an example of a distributed system) have become more widespread as

physical limits on processor clock speeds are reached (ABD+09). Linearizability

is a simple and natural criterion of correctness that has stood the test of time.

Despite its simplicity, proofs of linearizability for non-trivial algorithms oftentimes

require subtle techniques (DD15).

15

2 Strong Linearizability

In the bank account example, we can substitute our linearizable implementations for

the atomic operations and rest assured that the system will retain its correctness,

in the sense that for any execution of the implementation there is an equivalent

sequential execution.

Unfortunately – when randomization is introduced into algorithms that use

shared objects – there are certain examples where substituting linearizable imple-

mentations for atomic operations will manifest very subtle errors in the implemented

object. Randomized algorithms are of great importance in shared-memory systems,

and can sometimes render uncomputable problems tractable. For example, while

binary consensus is not solvable in the presence of crash failures by deterministic

algorithms that use only read/write registers (LAA87), (Her91), there are correct

randomized binary consensus algorithms that terminate with probability 1 (CIL94).

Let us examine an example due to Golab et al. (GHW11) using a linearizable

implementation by Vidyasankar (Vid88).

16

2.1 A SRSW Implemented Using Bit Array

Consider a single-reader/single-writer register with domain {0, 1, . . . , n} implemented

using an array A[0 . . . n] of atomic single-reader/single-writer bit registers (i.e., reg-

isters with domain {0, 1}), where the value 0 ≤ k ≤ n is represented by 1 in the

kth position of the array and 0 in every position preceding the kth (the values in

positions after the kth are irrelevant to the representation). The WRITE(k) and

17

READ() operations are implemented as follows:

Algorithm 9: WRITE(k)

1 A[k]←− 1

2 for i← k − 1, k − 2, . . . , 0 do

3 A[i]←− 0

4 end

Algorithm 10: READ()

1 i← 0

2 while A[i] = 0 do

3 i← i+ 1

4 end

5 k ← i

6 for j ← i− 1, i− 2, . . . , 0 do

7 if A[j] = 1 then

8 k ← j

9 end

10 end

11 return k

18

Consider two processes, r and w, with the following operations on a register

initialized to 1:

• r: READ().

• w: WRITE(2), c← Uniform({0, 2}), WRITE(c).

By c← Uniform({0, 2}), we mean that c is set to the value 0 or 2 with equal

probability.

We make a familiar argument commonly used in computer science to establish

lower bounds and impossibility results: the adversarial argument. Suppose that

an adversary that controls the scheduling of steps wishes to minimize the expected

value of r’s READ() operation. In the case of an atomic implementation, the

adversary should schedule r’s READ operation before the first or after the second of

w’s WRITE operations. In both cases, the expected value of the READ() operation

is 1.

Suppose that we replace the atomic implementation of READ and WRITE

with Vidyasankar’s linearizable implementations, Algorithms 9 and 10, respectively.

Initially, the array A contains [01000 . . . 0], and the adversary defines the scheduler

I that performs the following scheduling:

• Perform r’s READ() up to the termination of the while loop (which terminates

when i = 1).

19

• Perform w’s operations to completion. This leaves A in one of the following

states: [00100 . . . 0] or [10100 . . . 0], with equal probability.

• Perform the remainder of r’s operation, which returns either 1 or 0 with equal

probability.

Let us note that the scheduler I described above is completely oblivious to

the coin flip’s outcome. We can attempt to define a “scheduler” A for the atomic

operations that would have the same expected value for r’s READ() outcome under

scheduler I for Vidyasankar’s implementation. The only possible way to achieve

an expected READ() value of 1
2

using atomic operations is shown in the following

table:

c = 0 c = 2

w: WRITE(2) r: READ()

w: c← 0 w: WRITE(2)

w: WRITE(0) w: c← 2

r: READ() w: WRITE(2)

We see here that if the coin flip outcome is 0, A schedules r’s READ() last, and

if the the coin flip outcome is 2, A schedules r’s READ() first. In order to match

the expected value for READ() produced by an oblivious scheduler I, A must be

clairvoyant!

20

2.2 Ameliorating Linearizability’s Insufficiency

The reader can verify that no other scheduler will exhibit an expected value of 1
2

for

r’s READ(). Unhappily, linearizability is not a sufficient condition for maintaining

the distribution of operations’ returned values in a program. What can be done to

remedy this?

Golab et al. (GHW11) strengthened the definition of linearizability to disqual-

ify implementations such as Vidyasankar’s (Vid88) above. We formally introduce

strong linearizability in Definition 4.3.3.

We observe that for both coin flip outcomes, A’s executions are valid lineariza-

tions of the corresponding executions given by I. Hence, A defines a linearization

function for the set of executions given by I in a natural way. This function is

not prefix-preserving, hence it is not a strong linearization function since it fails to

satisfy the second condition of Definition 4.3.3.

21

3 Main Results and Related Work

Having introduced the core concepts of linearizability and strong linearizability to

the reader, we can now give an outline of the results that appear in this thesis. The

thesis is divided into two parts:

• In Chapter 4 and 5 we introduce input/output automata and simulations.

We give the first formal proof in the literature that the existence of a forward

simulation between an implementation of an abstract data type and a canon-

ical linearization automaton of the abstract data type is equivalent to the

implementation being strongly linearizable (Theorem 5.2.3). For complete-

ness we give a proof of an analogous result for forward-backward simulations

and linearizability (Theorem 5.1.1). The former result is especially important:

By linking strong linearizability with forward simulations – a commonly used

technique in computer verification (SAGG+93) – it forms the theoretical basis

for an automated strong linearizability checker.

• In Chapter 6 we apply our result to a singly-linked list based set algorithm to

22

demonstrate the existence of a forward simulation from the implementation

to the canonical automaton for the set abstract data type by showing that

the algorithm is strongly linearizable.

• In Chapter 7 we introduce and consider systems of linearizable/strongly lin-

earizable objects, whereas in the previous chapters we considered individual

objects in isolation. In Chapter 8 we introduce randomization to our systems

and define the probability space of executions. In Chapters 9-11 we compare

different systems and examine the conditions under which the systems can

be said to be indistinguishable. The main results of this part of the work

are Theorem 10.1.3 and Theorem 10.1.4. As far as we can tell, this is the

first direct analysis of the relationship between random variables defined on

executions and strong linearizability in the literature. Previous discussions

(GHW11) dealt only indirectly with this question through considering the

existence of equivalent adversaries.

As previously noted, strong linearizability was introduced by Golab, Higham,

and Woelfel in (GHW11). To the best of our knowledge, the links between strong

linearizability and simulations have not previously been investigated – this is in

contrast to the case of the links between linearizability and simulations. Further-

more, while Golab et al. show that strong linearizability is a necessary and sufficient

23

condition for the preservation of distributions of random variables defined on the

outcomes of executions, this is done by showing the existence of adversaries that

are “equivalent” or, in our terminology, directly linked (see Definition 9.0.1). As

we will show, this is not quite identical to preserving the distributions of random

variables defined on executions. There are programs and adversaries for which an

equivalent adversary (in the sense of Golab) does not exist, yet an non-equivalent

adversary exists that still preserves the distributions of random variables.

While we make only cursory note of progress conditions for strongly linearizable

implementations of objects, this very interesting research avenue is explored by

Helmi, Higham, and Woelfel in (HHW12), where the authors demonstrate that

• there is no strongly linearizable lock-free implementation of multi-writer reg-

isters, max-registers, snapshots, and counters from multi-reader/single-writer

atomic registers. In contrast, these objects have wait-free linearizable imple-

mentations from multi-reader/single-writer atomic registers.

• There is a universal strongly linearizable obstruction-free (a weaker progress

condition than lock-freedom, where a process eventually completes its oper-

ation if it is scheduled exclusively until termination of its current operation)

implementation of any object from multi-reader/single-writer registers.

• There is a strongly linearizable wait-free implementation of bounded max-

24

registers from multi-reader/multi-writer registers.

Denysyuk and Woelfel build on this work in (DW15) by introducing improved

proof techniques to prove the following results:

• There are no deterministic strongly linearizable wait-free implementations of

snapshots, counters, or max-registers for three or more processes from multi-

writer registers.

• There exist deterministic strongly linearizable lock-free implementations of

counters, snapshots, and logical clock objects for any number of processes

from multi-writer registers. Note that this answers an open question raised in

(HHW12) on whether employing multi-writer instead of single-writer registers

would improve the progress guarantee of the implementation – this result

answers the question in the affirmative.

25

4 Abstract Data Types, Automata, and

Simulations

So far, we have been quite informal in what we mean by terms like “execution”

or “scheduler.” We trust that the reader has sufficient grounding in the relevant

topics to be able to understand these heretofore imprecise notions. In the interest of

rigour and precision, we now give a model of abstract data types and input-output

automata that will serve as the theoretical foundation upon which we can build our

results.

4.1 Abstract Data Types

We begin by introducing a general notion of abstract data types. We use ADT’s to

specify the behaviour, at a high level, of the set of implemented objects on which

the processes act.

Definition 4.1.1. An abstract data type (abbreviated to ADT) D is a 5-tuple

26

(Q,OPS ,RSP , δ, q0) with a set of states Q, a set of operations OPS , a set of

responses RSP , a transition function δ : Q × OPS −→ P(RSP × Q) \ {∅} where

δ has finite non-determinism – i.e., for each (q, op) ∈ Q × OPS , |δ(q, op)| < ∞ –

and a unique start state q0 ∈ Q.

If (r, q′) ∈ δ(q, op), it means that if op is performed when the object is in state q,

one possible outcome is that op returns r and the object changes state to q′. Note

that abstract data types may be – at least without a priori restrictions – inherently

non-deterministic.

An abstract data type is called deterministic if, for each (q, op) ∈ Q × OPS ,

|δ(q, op)| = 1. We restrict our attention to finite non-determinism since this re-

striction avoids a host of pathological behaviours; we lose little by making such a

restriction, as most realistic and useful automata have finite non-determinism. For

completeness, we shall include an example (Counterexample 4.3.6) of the sort of

pathology that can arise in the absence of finite non-determinism.

As an example of an ADT, we can model a multi-writer/multi-reader register

27

that stores a natural number as follows:

Q = N

OPS = {write(j) | j ∈ N} ∪ {read}

RSP = {i | i ∈ N} ∪ {ack}

δ(i,write(j)) = {(ack , j)}

δ(i, read) = {(i, i)}

q0 = 0.

Definition 4.1.2. A sequential history S of an abstract data type D for a set of pro-

cesses P is a finite or infinite sequence a1a2 . . . where, for each i, ai = (opi, rspi, pi) ∈

OPS ×RSP ×P and there exists a sequence of states q0q1 . . . where q0 is the start

state of D and, for each i, (rspi, qi) ∈ δ(qi−1, opi).

The set of sequential histories of an ADT D is called the sequential specification

of D. We note that by Definitions 4.1.1 and 4.1.2, the sequential specification of an

ADT is prefix-closed, i.e., if a sequential history h is in the sequential specification

of D, then every prefix of h is in D’s sequential specification.

4.2 Input-Output Automata

We will use Lynch and Vaandrager’s definition of automata (LV95) to model both

the safety properties (in our context, linearizability) and implementation of shared

28

objects.

Definition 4.2.1. (LV95) An automaton A consists of:

• A set states(A) of states.

• A non-empty set start(A) ⊆ states(A) of start states.

• A set acts(A) partitioned into a set acts of internal actions and a set acts of

external actions.

• A set steps(A) ⊆ states(A)× acts(A)× states(A) of steps.

We write s′
a−→A s if (s′, a, s) ∈ steps(A).

Since the automata of Definition 4.2.1 can have an infinite number of states, they

can be used to model Turing machines in a natural way. Therefore, any program

can be represented by an input-output automaton.

Definition 4.2.2. An execution of an automaton A is an infinite sequence

s0a1s1a2 . . .

or finite sequence

s0a1s1 . . . aksk

of alternating states and actions of A where s0 ∈ start(A) and, for each i, si
ai+1−→A

si+1.

29

Definition 4.2.3. The interpretation Γ(E) of an execution E is the subsequence

of E formed by projecting E onto the set of external actions.

Thus, in an interpretation, both the states and internal actions are removed.

We also refer to the interpretations of an automaton A, by which we mean the set

HA = {Γ(E) | E is an execution of A}.

The external actions of an automaton are those that can be viewed by an outside

observer, while internal actions cannot be so viewed. We compare two automata A

and B by comparing the sets HA and HB of sequences of external actions generated

by A and B, respectively.

4.3 Linearizable and Strongly Linearizable Implementations

Definition 4.3.1. An automaton A implements or is an implementation of an

ADT D = (Q,OPS ,RSP , δ, q0) for a set P of processes if the set of external actions

of A is

{invoke(op, p), respond(rsp, p) | op ∈ OPS , rsp ∈ RSP , p ∈ P}

and every execution E of A is well-formed – i.e., for every process p ∈ P , Γ(E)||p,

the projection of Γ(E) onto operations by p, is of the form

invoke(op0 , p)respond(rsp0 , p)invoke(op1 , p)respond(rsp1 , p) . . .

30

Although Definition 4.3.1 is very basic, in that implementations need not satisfy

any safety or progress guarantees beyond elementary typing, there are many ways

to elaborate on and extend Definition 4.3.1 to add such properties, including the

ones we will consider: linearizability (Definition 4.3.2) and strong linearizability

(Definition 4.3.3).

We also refer to a specific instance of an operation op ∈ OPS by a process

p ∈ P , by which we mean a specific invocation invoke(op, p) and the response

immediately following it in Γ(E)||p, if such a response exists.

We adapt the definitions of linearizability given in (HW90) and strong lineariz-

ability given in (GHW11) to automata.

Definition 4.3.2. An execution E of an automaton implementing an ADT D for P

is linearizable if there is an extension H ′ of H = Γ(E) obtained by adding responses

to some subset of pending operation instances –i.e., instances of operations that

have been invoked but not yet returned – of H, and a sequential history S of D

such that:

• complete(H ′) is equivalent to S, where complete(H ′) is the history formed by

removing pending operation instances from H ′. By equivalent, we mean that

each process has the same number of operations and corresponding operation

instances have the same responses.

31

• If the response to operation instance opi by pi precedes the invocation of

operation instance opj by pj in H then the triple corresponding to opj does

not occur before the triple corresponding to opi is S.

Such a sequential history S is called a linearization of E.

Definition 4.3.3. An automaton A is strongly linearizable with respect to D if

there is a function g : EA −→ SD mapping the set of all executions of A to the

sequential specification of D such that:

• For any E ∈ EA, g(E) is a linearization of Γ(E).

• g is prefix-preserving, i.e., if E is a prefix of E ′ then g(E) is a prefix of g(E ′)

We say that an implementation is linearizable if each execution it produces is

linearizable. We say that an implementation is strongly linearizable if the set of all

its executions is strongly linearizable. Note that if an implementation is strongly

linearizable, then it is linearizable. We will have more to say about this when we

discuss systems.

We use the following automaton, first introduced by Lynch in (Lyn96) and re-

formulated by Doherty in (Doh04), to model a minimal linearizable implementation

of an abstract data type shared by a collection of processes. It is intended to pro-

duce all possible linearizable sequences of operation invocations and responses by

a finite set of processes P .

32

Definition 4.3.4. The abstract linearization automaton (called canonical automa-

ton in (Doh04)) B of an abstract data type D = (Q,OPS ,RSP , δ, q0) over a set of

processes P = {p1, p2, . . . , pn} is defined by

• states(B) = {idle, invoked(op), done(rsp) | op ∈ OPS , rsp ∈ RSP}n ×Q.

• start(B) = {(idle, idle, . . . , idle, q0)}.

• acts(B) = {invoke(op, p), do(op, p), respond(rsp, p) | op ∈ OPS , rsp ∈ RSP ,

p ∈ P}, where invoke(op, p) and respond(rsp, p) are external actions, and

do(op, p) is an internal action.

• The following is the set of steps of B:

– (. . . , idle, . . . , q)
invoke(op,pi)−→ (. . . , invoked(op), . . . , q) for q ∈ Q, op ∈

OPS , pi ∈ P .

– (. . . , invoked(op), . . . , q)
do(op,pi)−→ (. . . , done(rsp), . . . , q′) for q, q′ ∈ Q,

op ∈ OPS , pi ∈ P , and (rsp, q′) ∈ δ(q, op).

– (. . . , done(rsp), . . . , q)
respond(rsp,pi)−→ (. . . , idle, . . . , q) for q ∈ Q, op ∈ OPS , pi ∈

P .

The ellipses indicate that all elements of the tuple except the printed one are

unchanged.

33

The abstract linearization automaton models the states of processes: whether

they are idle or performing some operation. If the latter, then invoked(op) and

done(rsp) in the i-th position indicates that process pi has invoked operation op or

is has completed an operation and wishes to return rsp, respectively. This obviates

the need for input and output buffers, as given in (Lyn96). A do(op, pi) indicates

the linearization point of the operation instance op. This defines a linearization,

by taking operation instances in the order of their do actions. The responses of the

processes are consistent with the linearization order since both the rsp value and

the state variable q of the ADT are set atomically (i.e., in a single step) by the do

action.

Let us explore some properties of implementation and linearization automata.

Lemma 4.3.5. The set of interpretations HB of abstract linearization automaton

B of ADT D is limit-closed, i.e., if every finite prefix of an infinite sequence H is

in HB, then H ∈ HB.

Proof. Let Pre(H) = {H0, H1, . . .} where Hi is the length-i prefix of an interpreta-

tion H and suppose Pre(H) ⊆ HB. We construct a directed graph G with vertices

of the form (Hi, E) where E is an execution of B with Γ(E) = Hi.

LetG0 be the graph consisting of the single vertex v0 = (ε, (idle, idle, . . .,idle, q0)),

34

where ε is the empty sequence. Let Gi be the graph with vertex set

V (Gi) = {(Hj, E) | j ≤ i,Γ(E) = Hj}.

|V (Gi)| < ∞, since by Definition 4.3.4 and finite non-determinism, the number of

executions of B with interpretation Hj is finite.

Gi has the edge set

E(Gi) = {((Hj, E
′), (Hj+1, E)) | j < i, E ′ is a prefix of E}.

We now show that, for each i ≥ 0, there is a path from v0 to each vertex in

Gi. The claim holds trivially for G0. Suppose that the claim holds for some i ≥ 0.

Consider a vertex v = (Hj, E) in Gi+1. If v is also a vertex of Gi, then the claim is

true, since Gi is a subgraph of Gi+1.

If v is not in Gi, then v = (Hi+1, E). Let E ′ be the shortest prefix of E with

Γ(E ′) = Hi. By construction of Gi+1, there is an edge ((Hi, E
′), (Hi+1, E)) ∈

Gi+1. By the induction hypothesis, there is some path from the root to (Hi, E
′).

Therefore, the claim is true.

Let G =
∞⋃
i=0

Gi:

1. G is an infinite graph since it contains distinct vertices of the form {(Hj,)}j∈N.

2. Each vertex of G has finite out-degree, since in any execution of B, there are

at most |P| internal actions between any two external actions.

35

3. There is a path from v0 to every to each vertex of G.

By König’s Lemma (Lemma 2.1 of (LV95)), G has an infinite path (H1, E1)(H2, E2) . . .

with finite prefixes {Hi | i ≥ 0}. Therefore, H ∈ HB. The execution E =

limm→∞En is a valid execution since En is a prefix of En+1 for all n ≥ 1, and

Γ(E) = H.

Without the finite non-determinism restriction placed on ADT’s, Lemma 4.3.5

would not hold, as the following counter-example from (GR14) will demonstrate.

Counter Example 4.3.6. We construct an ADT representing a countdown object.

This object first chooses some natural number, and then counts down from that

number – outputting ‘1’ with each decrement – until it reaches 0 – whereupon the

object responds ‘0’ to each invocation.

36

The object has infinite non-determinism in its initial choice of a natural number.

Q = {qi | i ≥ 0}

OPS = {op}

RSP = {0, 1}

δ(qi, op) =

{(1, qj) | j > 0} if i = 0

{(0, qi)} if i = 1

{(1, qi−1)} if i > 1.

Let H be the following interpretation of an execution of an automaton A im-

plementing the countdown ADT for a single process:

invoke(op)respond(1)invoke(op)respond(1) . . .

Every prefix Hj of length j for j ≥ 0 is an interpretation of an execution of A, as

the following execution shows.

(idle, q0)
invoke(op)−→ (invoked(op), q0)

do(op)−→ (done(1), qj+1)
respond(1)−→ (idle, qj+1)

invoke(op)−→

(invoked(op), qj+1)
do(op)−→ . . .

do(op)−→ (done(1), q1)
respond(1)−→ (idle, q1).

However, H is not an interpretation of any execution of A since the responses to

op must eventually be 0.

Very often, implementation automata are difficult to analyze for correctness. As

we will shortly demonstrate in Lemma 4.3.7, if we can show that the set of inter-

37

preted histories – also called traces – produced by our implementation automaton

is a subset of the set of traces produced by the abstract linearization automaton,

then we would be certain that our program automaton meets the linearizability

criterion defined by the latter automaton.

This relationship, called trace inclusion, can be shown to hold by means of

simulations between two automata, A and B. If HA ⊆ HB, then we write A ≤T B.

Lemma 4.3.7. Let B be the abstract linearization automaton of an ADT D. Let

A be an automaton. Then A is a linearizable implementation of D if and only if

A ≤T B.

Proof. Suppose that A is linearizable and let H be an interpretation of A. We must

show H is also an interpretation of B.

Let SD be the sequential specification of D. By Definition 4.3.2, there is some

sequential history S ∈ SD such that S is equivalent to complete(H ′) for some

extension H ′ of H. We use S to construct an execution E of B with Γ(E) = H.

Since S is a sequential history, by Definition 4.1.2, there is some sequence Q =

q0q1 . . . of states of D and

S = (op1, rsp1, p1)(op2, rsp2, p2) . . .

where, for each i ≥ 0, (rspi, qi) ∈ δ(qi−1, opi), and q0 is the start state of D. Let

Pre(H) = {Hi | i ≥ 0, Hi is the prefix of H with length i}.

38

We will show, by induction over m, that Hm ∈ HB.

For m ∈ N, let Sm be the shortest prefix of S that contains all completed

operation instances in Hm; Sm exists since S contains all completed operation

instances of H. Let I(m) be the following claim:

There is an execution E of B such that:

• Γ(E) = Hm.

• The state of B following E is (s1, s2, . . . , sn, q) where, for each 1 ≤ i ≤ n:

– si is idle only if pi has no pending operation instance in Hm.

– si is invoked(op) only if pi has operation instance op pending in Hm but

there is no triple corresponding to op in Sm.

– si is done(rsp) only if pi has an operation instance op pending in Hm and

the operation instance has a corresponding triple in Sm with response

rsp.

– q is the state of D after Sm.

H0 = ε, the empty interpretation, is an interpretation of B, since the execution

(idle, . . . , idle, q0) is an execution of B satisfying the claim I(0). Choose m ≥ 0

and suppose that I(m) is true, let E be an execution that satisfies I(m), and let

the state of B following E be (s1, s2, . . . , sn, q). Let a be the last action of Hm+1.

We consider the following cases:

39

• a is invoke(op, pi) for some operation op ∈ OPS and some process pi ∈ P .

Since Hm is the interpretation of a well-formed execution, pi has no pending

operation instance in Hm. Therefore, by the claim, si is idle in E and

(. . . , idle, . . . , q)
invoke(op,pi)−→ (. . . , invoked(op), . . . , q)

is a valid extension of E by Definition 4.3.4, which, since Sm+1 = Sm, satisfies

I(m+ 1).

• a is respond(r , pi) for some response r ∈ RSP , and process pi ∈ P . Since

Hm+1 is the interpretation of a well-formed execution, a corresponds to some

previously invoked operation instance o (this is uniquely defined by Definition

4.3.1). Since Hm is an interpretation of a well-formed execution and Hm+1 =

Hmrespond(r , pi), the last external action by pi in Hm is invoke(o, pi). Let

(op1, rsp1, pi1), (op2, rsp2, pi2) . . . (opk, rspk, pik) be the sequence of triples such

that

Sm+1 = Sm(op1, rsp1, pi1)(op2, rsp2, pi2) . . . (opk, rspk, pik).

If k = 0 then, by the induction hypothesis, pi has o pending in Hm, the triple

corresponding to o is in Sm, and si = done(rsp). Therefore,

(. . . , done(rsp), . . . , q)
respond(rsp,pi)−→ (. . . , idle, . . . , q)

40

is a valid extension of E by Definition 4.3.4, which, since Sm+1 = Sm, satisfies

I(m+ 1).

If k > 0 then a is the response corresponding to the triple (opk, rspk, pik)

since Sm+1 is the shortest prefix of S that contains the completed operation

instance o with response rsp.

By Definition 4.3.4, for all 1 ≤ i ≤ n, si is either idle, invoked(op) for some

op ∈ OPS , or respond(rsp) for some rsp ∈ RSP .

Let us examine the state of a process pij from a triple (opj, rspj, pij) at the

terminal state of execution E.

– If sij = idle, then by the induction hypothesis, pij has no pending oper-

ation instances in Hm. By the real-time ordering condition of Definition

4.3.2 on S, we know that opj cannot begin after opk ends. Thus, opj is in-

voked in Hm. This means that opj responds in Hm. By definition of Sm,

(opj, rspj, pij) ∈ Sm. This contradicts the fact that (opj, rspj, pij) /∈ Sm.

Therefore, sij 6= idle.

– If sij = done(rsp), then by the induction hypothesis, the operation in-

stance referred to by the triple (opj, rspj, pij) is pending in Hm and

(opj, rspj, pij) ∈ Sm. This contradicts the fact that (opj, rspj, pij) /∈ Sm.

Therefore, sij 6= done(rsp).

41

This shows that, for all 1 ≤ j ≤ k, sij must be invoked(op) for some op ∈

OPS . By the real-time ordering condition of Definition 4.3.2, the operation

instance opj is the last operation instance invoked by pij in Hm+1. Since the

last action of Hm+1 is not an invocation, opj is the last operation instance

invoked by pij in Hm. This shows that op = opj.

Consider the following extension E ′ of E:

(. . . , invoked(op1), . . . , q)
do(op1 ,pi1)
−→ (. . . , done(rsp1), . . . , q1)

(. . . , invoked(op2), . . . , q1)
do(op2 ,pi2)
−→ (. . . , done(rsp2), . . . , q2)

...

(. . . , invoked(opk), . . . , qk−1)
do(opk ,pik

)
−→ (. . . , done(rspk), . . . , qk)

(. . . , done(rsp), . . . , qk)
respond(r ,pi)−→ (. . . , idle, . . . , qk).

The ‘do’ portion of this extension is legal since, by the induction hypothesis,

q is a state of D that can be reached after Sm. Since Sm+1 is in the sequential

specification of D by Definition 4.3.2, we have that (qj, rspj) ∈ δ(qj−1, opj)

for 1 ≤ j ≤ k, with q0 := q. Therefore, qk is a state of is a state of D that

can be reached after Sm+1. The ‘respond’ step is legal since pi = pik and si is

done(rsp) just before the last step of E ′.

We have that:

42

– Γ(E ′) = Hm+1.

– Let t′ = (s′1, s
′
2, . . . , s

′
n, q
′) and t = (s1, s2, . . . , sn, q) be the states of B

following E ′ and E, respectively. Note that s′i = idle by construction of

E ′ and that, by Definition 4.3.1, there are no pending operation instances

by pi in Hm+1. For j 6= i:

∗ If s′j is idle, then sj is idle since there are no respond actions for

process pj between t and t′. By I(m), pj has no pending operation

instances in Hm. By Definition 4.3.1, pj has no pending operation

instance in Hm+1 since the last step of Hm+1 is a response.

∗ If s′j is invoked(op) for some op ∈ OPS , then sj is invoked(op) since

there are no invocations between t and t′. By I(m), pj has operation

instance op pending in Hm but without a corresponding triple in Sm.

By construction of E ′, the sequence of do operations exactly matches

Sm+1 \ Sm. Since that sequence does not include do(opj , pj), there

is no triple corresponding to this operation instance in Sm+1. Since

A satisfies Definition 4.3.1 and Hm+1 = Hmrespond(rsp, pi), pj has

a pending operation instance in Hm+1.

∗ If s′j = done(rsp) for some response rsp ∈ RSP , then, by construc-

tion of E ′, sj = done(rsp) or sj = invoked(op) for some op ∈ OPS

43

and the transition

(. . . , invoked(op), . . . , q)
do(op,pj)−→ (. . . , done(rsp), . . . , q′)

is a step between t and t′. We consider the two cases:

· Suppose sj = done(rsp). By I(m), pj has operation instance op

pending in Hm and the operation instance has a corresponding

triple in Sm with response rsp. Then op is pending in Hm+1

since A satisfies Definition 4.3.1 and Hm+1 \ Hm is a response

by pi 6= pj. So, op has a corresponding triple in Sm+1 since Sm

is a prefix of Sm+1.

· Suppose sj = invoked(op). By I(m), pj has operation instance

op pending in Hm but there is no corresponding triple in Sm.

By construction of E ′, the sequence of do operations exactly

matches Sm+1 \ Sm. Since that sequence includes do(op, pj),

there is a triple corresponding to this operation instance in Sm+1.

Since the only response action from t to t′ is by pi 6= pj, op is

still pending in Hm+1.

By induction, for all m ∈ N, I(m) is true, therefore Hm ∈ HB. By Lemma

4.3.5, H ∈ HB.

Suppose that A ≤T B. Let H be an interpretation of A. Since H is also an

44

interpretation of B, there is an execution E of B such that Γ(E) = H.

The projection of E onto do operations yields a sequential history that is equiv-

alent to complete(H ′) for some extension H ′ of H as follows:

By Definition 4.3.4, the only allowable transitions for a process p are

idle
invoke(op,p)−→ invoked(op)

do(op,p)−→ done(rsp)
respond(rsp,p)−→ idle.

Hence, for every do(op, p) in E, there is a uniquely defined process p and re-

sponse rsp associated with do(op). Hence, for every do transition in E, there is a

uniquely defined triple (op, rsp, p). Projecting E onto do operations and replacing

each element in the sequence with its associated triple yields a well-defined sequence

J = (op1, rsp1, pi1), (op2, rsp2, pi2), . . .

By Definition 4.3.4, there is a sequence q0, q1, . . . – given by execution E – such

that, for each i ≥ 1, (rspi, qi) ∈ δ(qi−1, opi). Therefore, J is a sequential history of

D.

By construction, every operation instance that is complete in H appears in J –

this subsequence of J corresponds to H ′ in the first bullet of Definition 4.3.2. Pend-

ing operation instances in H that have do operations in E are present in J , while

those that do not are absent from J – the sequence J corresponds to complete(H ′)

of Definition 4.3.2. Therefore, J satisfies the first condition of Definition 4.3.2.

From the transition diagram above, we see that if rspj precedes opi as an action

45

of B, then doj precedes doi as an action of B, since, according to Definition 4.3.4,

every do operation by pi is preceding and succeeded by an invocation and response,

respectively.

4.4 Forward and Forward-Backward Simulations

We now consider simulations as a technique for proving trace inclusion (and hence

linearizability). In our discussion, A will be the implementation of the abstract

data type D, while B will be the corresponding abstract linearization automaton

for D with the same set of processes. We use the following notation:

• f [s] = {x | x ∈ states(B) ∧ (s, x) ∈ f}

• u′ â
=⇒B u means the sequence of actions â can take the automaton B from

state u′ to state u.

Definition 4.4.1. (LV95) A forward simulation from an automaton A to B is a

relation f over states(A) and states(B) that satisfies:

• If s ∈ start(A), then f [s] ∩ start(B) 6= ∅.

• If s′
a−→A s and u′ ∈ f [s′], then there exists a state u ∈ f [s] and a sequence

of steps â that has the same external actions as a such that u′
â

=⇒B u.

We write A ≤F B if there exists a forward simulation from A to B.

46

A result from (LV95) demonstrates that if A ≤F B, then A ≤T B. However,

the reverse is not necessarily true; in fact, some implementations that satisfy trace

inclusion do not have a forward simulation to their corresponding abstract lineariza-

tion automata – we shall see an example of this in Counterexample 5.2.1. We need

the following notion of simulation:

Definition 4.4.2. (LV95) An image-finite backward simulation from an automaton

A to B is an image finite relation f over states(A) and states(B) (i.e., |f [s]| < ∞

for all s ∈ states(A)) that satisfies:

• If s ∈ start(A), then f [s] ⊆ start(B).

• If s′
a−→A s and u ∈ f [s], then there exists a state u′ ∈ f [s′] and a sequence

of steps â that has the same external actions as a such that u′
â

=⇒B u.

We write A ≤iB B if there exists an image-finite backward simulation from A

to B.

We say there there is an image-set finite forward-backward simulation in between

A and B if there is some intermediate automaton C such that A ≤F C ≤iB B. We

write A ≤iFB B if there exists an image-set finite forward-backward simulation

from A to B.

This notion of simulation perfectly captures what we require, since another

47

result from (LV95) shows that, if B has finite non-determinism, then A ≤T B if

and only if A ≤iFB B.

48

5 Equivalences between Linearizability and

Simulation

We now have all of the concepts we need to express our results.

5.1 Linearizability and Forward-Backward Simulations

The following result is common lore among those in the distributed computing

community interested in linearizability (see (Lyn96)); for completeness, we provide

a formal proof of this equivalence result.

Theorem 5.1.1. Let B be the abstract linearization automaton of an ADT D. Let

A be an automaton. The following are equivalent:

1. A is a linearizable implementation of D.

2. A ≤T B.

3. A ≤iFB B.

49

Proof. (1)⇔ (2) is proved in Lemma 4.3.7. (2)⇒ (3) and (3)⇒ (2) are Theorems

5.6 and 5.5 of (LV95), respectively.

Forward-backward simulations are generally more difficult to work with than

the more straightforward forward simulations. This is because one must find a

suitable intermediate automaton such that there is a forward simulation from the

implementation to the intermediate automaton, and a backward simulation from

the intermediate automaton to the abstract linearization automaton (CGLM06).

Constructing such an automaton and its backward simulation is often more chal-

lenging than constructing a more intuitive forward simulation.

5.2 Strong Linearizability and Forward Simulations

It appears plausible that a forward simulation exists between an implementation

and an abstract linearization automaton of D if and only if that implementation

is strongly linearizable, since once a linearization decision is made in some prefix

of an execution, it is not changed in any continuation of the execution. However,

this is not the case for some non-deterministic abstract data types, as the following

counterexample will show.

Counter Example 5.2.1. Consider a binary register R initialized to 0 and sup-

porting two operations:

50

• write which non-deterministically writes 0 or 1 toR, i.e., δ(,write) = {(ack , 0),

(ack , 1)}.

• read which non-destructively reads the value stored in R, i.e., δ(i, read) =

{(i, i)}, for i ∈ {0, 1}.

Let B be the abstract linearization automaton of R for a single process and consider

the following automaton A that implements R for one process:

w

0start 1

s

r0 r1

invoke(write)
invoke(write)

respond(ack)

int(0)

int(1)

invoke(read) respond(0) invoke(read) respond(1)

The automaton A illustrated is an implementation of R for one process since it

conforms to Definition 4.3.1: all executions are well-formed, as the reader can verify

by tracing the illustrated transitions that no operation instance can be invoked while

51

another is ongoing. The non-determinism of the write operation can be seen by

the transitions (depicted as blue lines) from the state s.

Furthermore, it does not “show its hand” to an observer before the next read

operation since the non-deterministic transition is an internal action. This pecu-

liarity is the reason for the non-existence of a forward simulation from A to B.

Note also that A is strongly linearizable, since it is an implementation for a single

process, and the linearization formed by taking the instances of the operations in

the order in which they appear is prefix-preserving.

Lemma 5.2.2. There is no forward simulation from the implementation A of Coun-

terexample 5.2.1 to R’s abstract linearization automaton B for a single process.

Proof. To derive a contradiction, suppose that f is a forward simulation from A to

B. By Definition 4.3.4 and R’s specification, start(B) = {(idle, 0)}. Therefore, by

Definition 4.4.1, (idle, 0) ∈ f [0]. Consider the path 0ws in A, which has external

actions invoke(write), respond(ack). Since f is a forward simulation, there is some

state u ∈ f [s] such that

(idle, 0)
invoke(write,p),do(write,p),respond(ack ,p)

=⇒B u.

By Definition 4.3.4 and R’s specification, u = (idle, 0) or u = (idle, 1), i.e.,

(idle, 0) ∈ f [s] or (idle, 1) ∈ f [s].

Suppose (idle, 0) ∈ f [s]. Consider the path s1r11, which has external actions

52

invoke(read), respond(1); there is some state v ∈ f [1] such that

(idle, 0)
invoke(read ,p),do(read ,p),respond(1 ,p)

=⇒B v.

There is no state v ∈ states(B) satisfying this property since any call to read from

(idle, 0) will return 0. Therefore, (idle, 0) /∈ f [s]. A similar argument using the

path s0r00 shows that (idle, 1) /∈ f [s]. This is a contradiction, and hence there is

no forward simulation from A to B.

If we restrict our consideration to deterministic abstract data types, we can

show a correspondence between strong linearizability and forward simulations. We

now present our main result for automata and simulations:

Theorem 5.2.3. Let B be the abstract linearization automaton of a deterministic

ADT D over a set of processes P. Let A be an automaton. The following are

equivalent:

1. A is a strongly linearizable implementation of D for P.

2. A ≤F B.

Proof. We first prove that (1) ⇒ (2). Let g : EA −→ SD be a strong linearization

function from the set of executions of A to the sequential specification of D, given

by Definition 4.3.3.

53

For s ∈ states(A), let

Es := {E ∈ EA | E terminates in state s}.

We define the relation f ⊆ states(A)×states(B) as follows. For each s ∈ states(A),

let f [s] be the set of all states (r1, r2, . . . , rn, q) such that ∃ E ∈ Es such that:

(i) ∀ 1 ≤ i ≤ n, ri is idle only if there is no pending operation instance by pi in

Γ(E).

(ii) ∀ 1 ≤ i ≤ n, ri is invoked(op) only if pi has operation instance op pending in

Γ(E) but there is no triple corresponding to op in g(E).

(iii) ∀ 1 ≤ i ≤ n, ri is done(rsp) only if pi has an operation instance op pending

in Γ(E) and the operation instance has a corresponding triple in g(E) with

response rsp.

(iv) q is the state of D after applying g(E) to q0, the start state of D.

Note that since D is a deterministic ADT, the state q is uniquely determined.

We show that f is a forward simulation from A to B.

Suppose s0 ∈ start(A). The execution E = s0 terminates in s0. Therefore

start(B) = {(idle, . . . , idle, q0)} ⊆ f [s0]. This shows that f [s0] ∩ start(B) 6= ∅.

Consider the transition s′
a−→ s in A and let u′ ∈ f [s′]. By definition of f ,

u′ = (r′1, . . . , r
′
n, q
′) ∈ states(B) and there is some execution E ′ terminating in s′

54

such that u′ and E ′ satisfy (i) - (iv). Let E be the execution E ′as. Since g is

prefix-preserving, g(E ′) is a prefix of g(E). Let

g(E) = g(E ′)(op1, rsp1, pi1)(op2, rsp2, pi2) . . . (opk, rspk, pik).

Since u′ satisfies property (iii), none of r′i1 , r
′
i2
, . . . , r′ik is done(). To see why,

suppose rij = done() to derive a contradiction. Then pij has a pending operation

instance in Γ(E ′) and there is a corresponding triple in g(E ′) by (iii). Therefore,

of triples in g(E ′) for process pij ≥ # ops invoked by pij in E ′

= # ops invoked by pij in E

since E = E ′ · a and pij has a pending operation instance at the end of E ′, and E ′

and E are well-formed (i.e., if a is done by pij then it is a respond and, hence, not an

invoke). Therefore, the number of triples in g(E) for process pij is strictly greater

than the number of operation instances invoked by pij in E, since (opj, rspj, pij) ∈

g(E) but not in g(E ′). This contradicts Definition 4.3.2.

This leaves only idle or invoked(op) for operation instance op pending in Γ(E ′).

We first observe that a process features at most once in the triples

(op1, rsp1, pi1)(op2, rsp2, pi2) . . . (opk, rspk, pik).

To see why, suppose that pij features in g(E) at least twice and that this is the first

time this occurs in the execution for any process. Let T, T ′ be the number of triples

55

in g(E), g(E ′) for process pij , respectively. Let K,K ′ be the number of invocations

by pij in E,E ′, respectively.

We have T ≤ K, since, by the first part of Definition 4.3.2, only operation

instances that have been invoked can be linearized and T ′ + 1 ≥ K ′ since, also by

the first part of Definition 4.3.2, for each process at most one operation instance

can be excluded from a linearization – the last operation instance invoked, and only

if it has not responded. Furthermore,

2 + T ′ ≤ T by assumption

≤ K

= K ′

since pij is pending in E ′ and hence cannot invoke by well-formedness

≤ T ′ + 1.

This is a contradiction.

If r′ij = invoked(op), then op = opj. To see why, suppose that op 6= opj to derive

a contradiction. By (ii), pij is pending in Γ(E ′). Since E ′ is well-formed, op is the

last operation instance invoked by pij in E ′. Since pij features in a triple in g(E)

but not in g(E), it features exactly once by the observation above. By Definition

4.3.2, this triple is (op, rsp, pij). But by construction, this triple is (opj, rspj, pij),

a contradiction.

56

Case I: Suppose a is an internal action. Consider the path

u′
do(op1 ,pi1)
−→ . . .

do(opk ,pik
)

−→ u.

We show that this path P is a valid path for automaton B and that u and E

satisfy (i)-(iv). By Definition 4.3.2, if (opj, rspj, pij) ∈ g(E), then invoke(opj)

is in Γ(E). Since a is an internal action, Γ(E ′) = Γ(E). Therefore, invoke(opj)

is in Γ(E ′). respond(rspj) is not in Γ(E ′) since, by Definition 4.3.2, the triple

(opj, rspj, pij) would then be in g(E ′). Since opj is pending in Γ(E ′) and

(opj, rspj, pij) /∈ g(E ′), we have that r′ij = invoked(opj). So, P is valid.

1. ri is idle if and only if r′i is idle, since the path u′ =⇒ u defined above has

only do operations. If ri is idle then by property (i), pi has no pending

operation instances in Γ(E ′). Since Γ(E) = Γ(E ′), pi has no pending

operation instance in Γ(E).

This shows that ri is idle only if pi has no pending operation instance

in Γ(E).

2. If ri is invoked(op), then since P contains no invoke actions it follows

from Definition 4.3.4 that r′i is invoked(op). By property (ii), pi has oper-

ation instance op pending in Γ(E ′) but there is no triple corresponding

to op in g(E ′). Since Γ(E) = Γ(E ′), pi has op pending in Γ(E). By

construction of P , since pi has no do transition in P , there is no triple

57

corresponding to op in g(E).

This shows that pi has operation instance op pending in Γ(E) but there

is no triple corresponding to op in g(E).

3. If ri is done(rsp), then by the definition of P and Definition 4.3.4, r′i

is either done(rsp) and there is no transition by pi along P , or r′i is

invoked(op) for some operation op and there is a transition do(op, pi)

in P .

• Suppose r′i is done(rsp). By property (iii), pi has an operation in-

stance op pending in Γ(E ′) and the operation instance has a corre-

sponding triple in g(E ′) with response rsp. Since Γ(E) = Γ(E ′), pi

has op pending in Γ(E). Since g(E ′) is a prefix of g(E) and there is

a triple corresponding to op in g(E ′), there is a triple corresponding

to op in g(E).

This shows that pi has an operation instance op pending in Γ(E)

and the operation instance has a corresponding triple in g(E) with

response rsp.

• Suppose r′i is invoked(op) for some operation op and there is a tran-

sition do(op, pi) in P . By property (iii), pi has operation instance

op pending in Γ(E ′) but there is no triple corresponding to op in

g(E ′). By construction of P , there is a triple corresponding to op in

58

g(E) – specifically, our previous discussion shows that the operation

op is the same in Γ(E) and P ; by property (iv), B and D are in

the same state q; and, by Definition 4.3.4 and determinism of δ, the

responses to op are the same in the response to do(op, pi) and g(E).

This triple is in g(E)\g(E ′). Since Γ(E) = Γ(E ′), pi has op pending

in Γ(E).

This shows that pi has an operation instance op pending in Γ(E)

and the operation instance has a corresponding triple in g(E) with

response rsp.

4. Since u′ ∈ f [s′], q′ is the state of D after applying g(E ′) to q0, the start

state of D. Applying the do transitions of P to q′ yields q, the state

variable in the tuple u. By construction of P and property (iv), q is the

state of D after applying g(E) to q0.

Case II: Suppose a is an invoke(op, p) action for some op ∈ OPS by p ∈ P , and

consider the path

u′
invoke(op,p)−→ u′′

do(op1 ,pi1)
−→ . . .

do(opk ,pik
)

−→ u.

We show that this path is valid and that u and E satisfy (i)-(iv). We first show

that the u′
invoke(op,p)−→ u′′ is a valid transition. Since E = E ′ invoke(op, p) s

59

is an execution produced by an implementation of D, E is well-formed by

Definition 4.3.1. Therefore, p has no pending operation instance in Γ(E ′). By

property (i), p’s state r in u′ is idle. Therefore, the transition u′
invoke(op,p)−→ u′′

is valid. The validity of the remainder of the path and that u ∈ f [s] is given

by an argument similar that given for the case where a is an internal action.

Case III: Suppose a is a respond(rsp, p) action for some rsp ∈ RSP and p ∈ P ,

consider the path

u′
do(op1 ,p1)−→ . . .

do(opk ,pk)−→ u′′
respond(rsp)−→ u.

The validity of the of the path from u′ to u′′ is given by an argument sim-

ilar to that given for the case where a is an internal action. Since E =

E ′ respond(rsp, p) s is a well-formed execution, p has a pending operation in-

stance in Γ(E ′). Furthermore, since g is a linearization function, by Definition

4.3.2, the triple (op, rsp, p) ∈ g(E). By properties (ii) and (iii), p is in state

invoked(op) or done(rsp), if (op, rsp, p) ∈ g(E ′) or g(E) \ g(E ′), respectively

– i.e., if p is one of p1, p2, . . . , pk or not.

By construction of the path segment from u′ to u′′, the state of p in u′′ is

done(rsp). Therefore, the transition u′′ to u is valid, and since p has no

pending operation instance in Γ(E) and its state in u is idle, (i) is satisfied

60

by u. That the other conditions are satisfied by u follows from the argument

on the u′ to u′′ path segment.

Since u and E satisfy (i)-(iv), we have shown that u ∈ f [s]. Therefore, ∀ u′ ∈

f [s′], ∃ u ∈ f [s] such that u′
â

=⇒ u, which shows that f is a forward simulation

from A to B.

We now prove that (2) ⇒ (1). Let f be a forward simulation from A to B.

We construct a prefix-preserving linearization function g : EA −→ SD using f . We

see that the state (idle, idle, . . . , idle, q0) ∈ f [s0] since (idle, idle, . . . , idle, q0) is the

only element of the set start(B) and f [s0] ∩ start(B) 6= ∅ by Definition 4.4.1.

As we define g, we will associate with every execution E of A a state u(E) ∈

states(B) such that u(E) ∈ f [s], where s is E’s terminal state. Since f is a relation,

there is non-determinism in the choice of u(E) that satisfies Definition 4.4.1, and

we wish to resolve that non-determinism locally as we define g.

We first define g(s0) := ε, where ε denotes the empty sequence, and associate

u(s0) = (idle, idle, . . . , idle, q0) with s0. Consider an execution E ′ = s0a1s1 . . . s
′

for which g(E ′) is already defined, with u(E ′) ∈ f [s′] associated with E ′, and let

E = E ′as.
s′ s

u′ u

a

f [s′] f [s]

β

By Definition 4.4.1, there is some u ∈ f [s] and some sequence β with u′
β

=⇒ u such

61

that β̂ = â, where β̂ denotes the subsequence of external actions of β. There may

be several such states, hence their depiction using red in the diagram. Choose one

such state u and call it u(E). Let

g(E) := g(E ′)(op1, rsp1, p1)(op2, rsp2, p2) . . . (opk, rspk, pk)

where (opi, rspi, pi) is the triple associated with the ith do operation in β as follows:

By Definition 4.3.4, every do(op, p) operation is preceded by a unique invoke(op, p)

operation and has a well defined response rsp ∈ RSP since δ is deterministic. In this

way, a do(op, p) operation is associated uniquely with a corresponding (op, rsp, p)

triple. This completes the inductive definition.

By definition, g is prefix-preserving. Choose m ∈ N, g has the following prop-

erties for all executions E with |E| ≤ m (counted by number of transitions):

Let E = s0a1s1 . . . amsm and g(E) = (op1, rsp1, p1) . . . (opk, rspk, pk). There is

an execution u0β1u1 . . . βmum of automaton B where, for 1 ≤ i ≤ m, βi denotes a

group of actions such that

(i) ui ∈ f [si] for all 0 ≤ i ≤ m.

(ii) β̂i = âi for all 1 ≤ i ≤ m.

(iii) Projecting β1β2 . . . βm onto do operations produces a subsequence that yields

a sequence of triples with (op1, rsp1, p1) . . . (opk, rspk, pk) where rsp1 is the

62

response in the pair (q1, rsp1) = δ(q, op1), where q is the state variable at u0,

and rspi is the response in the pair δ(qi−1, opi) for 1 < i ≤ m.

We can extend the domain of executions to include non-terminating executions.

Let E be a non-terminating execution and, for all m ∈ N, let Em be the prefix of

E of length m. Define

g(E) := lim
m→∞

g(Em).

Since g is prefix-preserving, the above limit is well-defined. We now show that g

is a linearization function for any execution E of A. By condition (ii) and Defini-

tion 4.3.4, the first condition of Definition 4.3.2 is satisfied for some extension of

complete{Γ(E)} – namely, the extension where invoked operation instance in Γ(E)

without a corresponding do operation are removed, and those with a corresponding

do but without a response are completed with the response in their corresponding

triple in g(E). Suppose that opi <Γ(E) opj. Then, by Definition 4.3.4,

do(opi , pi) < rsp(opi , pi) < invoke(opj , pj) < do(opj , pj).

Therefore, by construction of g

(opi, rspi, pi) <g(E) (opj, rspj, pj).

This shows that g satisfies the second property of Definition 4.3.2 – hence, g

is a linearization function. Since g is a prefix-preserving linearization function, by

Definition 4.3.3, it is a strong linearization function.

63

6 Application of Equivalences to

Implementation of Set ADT

These equivalences allow us to use abstract linearization automata and simulations

to verify the linearizability or strong linearizability of algorithms of interest, by

modeling implementations of those algorithms as automata in a straightforward

way. If simulations between these algorithms and the abstract linearization au-

tomata of the ADT’s they implement can be shown to exist, then we can be assured

that the algorithms in question have the corresponding correctness properties.

We can also use Theorem 5.2.3 to shed new light on old algorithms. For example,

we show that there is a forward simulation from an automaton representing the

singly-linked list algorithm due to (HHL+06) implementing a set data type and

presented in (CGLM06) and the abstract linearization automaton for that algorithm

– contradicting the claim in (CGLM06) that there is not. Theorem 5.2.3 allows us

to do this by showing that the algorithm is strongly linearizable.

In this linked-list representation, the elements of the set are stored as nodes

64

Algorithm 11: contains(k)

1 curr := Head;

2 while curr.key < k do

3 curr := curr .next ;

4 end

5 if curr.key = k && ¬curr.marked then

6 return true

7 else

8 return false

9 end

in shared memory with four fields per node: key – the value, a next pointer, a

boolean marked , and a lock lock – where a lock is an object with atomic operations

lock() and unlock() where once a process p performs lock(), it is the only process

permitted to perform any operations on the node until it performs unlock().

The sentinel node Head always has Head .key = −∞ and Head .marked = false,

while Tail has Tail .key =∞, Tail .marked = false, and Tail .next = Tail .

We give the pseudocode for the contains(k), locate(k), remove(k), and add(k)

from (CGLM06).

Colvin et al. give linearization points for all operations except a contains(k)

65

Algorithm 12: locate(k)

1 while true do

2 pred := Head;

3 curr := pred .next ;

4 while curr.key < k do

5 pred := curr ;

6 curr := curr .next ;

7 end

8 pred .lock();

9 curr .lock();

10 if ¬pred.marked && ¬curr.marked && pred.next = curr then

11 return pred , curr

12 else

13 pred .unlock();

14 curr .unlock();

15 end

16 end

66

Algorithm 13: remove(k)

1 pred , curr := locate(k);

2 if curr.key = k then

3 curr .marked := true;

4 entry := curr .next ;

5 pred .next := entry ;

6 res := true;

7 else

8 res := false;

9 end

10 pred .unlock();

11 curr .unlock();

12 return res

67

Algorithm 14: add(k)

1 pred , curr := locate(k);

2 if curr.key != k then

3 entry := new Entry();

4 entry .key := k ;

5 entry .next := curr ;

6 pred .next := entry ;

7 res := true;

8 else

9 res := false;

10 end

11 pred .unlock();

12 curr .unlock();

13 return res

68

operation that returns the result false. They are:

• Line 5 of Algorithm 11 for a successful contains(k) operation.

• Line 3 of Algorithm 13 for a successful remove(k) operation and line 8 of

Algorithm 13 for an unsuccessful remove(k) operation.

• Line 6 of Algorithm 14 for a successful add(k) operation and line 9 of Algo-

rithm 14 for an unsuccessful add(k) operation.

Moreover, the paper outlines the following invariants:

1. The list is strictly sorted by key, i.e., Head .key < k1 < k2 < ... < Tail .key .

2. The set of keys represented is exactly the set of keys in unmarked nodes that

can be reached by following next pointers from the Head node.

3. The node keys are immutable.

The authors claim that an unsuccessful contains operation cannot be linearized

by giving a step in contains ’s pseudocode – at any proposed step, another operation

may have added the key to the set. They go on to note

For some algorithms and their specifications, however, there is no way to
define such a forward simulation [from an implementation to an abstract
linearization automaton] because for some action of [implementation] C,
the actions of [the abstract linearization automaton] A that we should
choose depend on future actions (i.e., actions that appear later in the ex-
ecution). As we explain later, LazyList is one such algorithm.[Emphasis
added.]

69

This is not, strictly speaking, true. Although it is not possible to give a lin-

earization point in the contains pseudocode for the reasons the authors state, it

is possible to linearize a failed contains operation instance without foreknowledge

of the future. We discuss two linearization strategies for doing this, both of which

linearize active contains operation instances at the linearization points of other

operation instances – in one case a remove operation, and in the other an add

operation – without requiring any more knowledge than the current state of the

execution.

6.1 Linearizing contains Using remove

From examining Algorithm 11, we see that contains(k) returns false if and only if

curr .key 6= k or curr .marked after the while loop on line 2 has concluded.

Consider the following illustrations of entries in a singly-linked list. We use a red

border to denote a node that has been marked for deletion by line 3 of Algorithm

13. Suppose that curr is the pointer owned by a process p executing contains(k),

with k1 < k < k2.

k1 k2

curr (6.1)

In this case, if p executes line 3 of Algorithm 11 and transitions from k1 to k2, then

contains(k) can be linearized at that step, since the list does not contain k due to

70

the list-ordering invariant.

k1 k

curr (6.2)

In this case, if p executes the while loop in Algorithm 11 and transitions from k1 to

k, then contains(k) can linearize at that step, since k is absent from the set since

the node is marked (logically deleted) and locked – hence no other process can add

k to the list until the deletion is complete. Also, since the list is sorted, k does

not occur elsewhere (marked or not) in any node accessible from Head by following

next pointers.

k1 k2

curr (6.3)

The problem arises in this case, since some process can add k to the list without

the contains operation (which is going to return false) being ‘aware’ of it. Unlike

the contains operation, we, as linearizers, have a global view of the execution, and

can define a precise point along it – without being clairvoyant – when the contains

operation instance is linearized. To do so, we require the following concept.

Definition 6.1.1. Suppose p ∈ P is performing Algorithm 11. The join of p is the

first unmarked node along the chain of next pointers from the node pointed to by

curr p, p’s curr pointer.

Note that if curr p itself is unmarked, then join(p) = curr p. The key idea of our

71

strategy is to linearize a contains(k) operation instance at the first moment where:

1. join(p).key > k or,

2. the value true is read from the marked field of curr on line 5 of Algorithm

11.

This is a valid strategy by the following lemmas:

Lemma 6.1.2. Suppose p ∈ P is performing contains(k). If contains(k) by p

terminates then one of the above events must occur during the execution. If it

returns false, then 1 happens. If it returns true, then 2 happens. Moreover, 1 and

2 cannot both occur during the same call to contains(k).

Proof. From examining Algorithm 11, we see that it terminates by returning either

true on line 6 or false on line 8. In both cases, the value returned is dependent on

the test on line 5 of Algorithm 11.

We know that at the completion of the test on line 5 that curr .key ≥ k. To see

why, suppose curr .key < k when the test on line 5 of Algorithm 11 is performed.

By the key immutability invariant, p last set curr to a node with key less than k

– i.e., p exited the loop on line 2 of Algorithm 11 with curr < k. But this violates

the condition on line 2 of Algorithm 11. Therefore, curr .key ≥ k throughout the

test on line 5. We consider the possibilities for the curr .key and curr .marked at

the completion of the test on line 5:

72

• Suppose curr .key = k and ¬curr .marked . Then the test on line 5 of Algo-

rithm 11 was successful and event 2 occurred in the execution.

• Suppose curr .key > k and ¬curr .marked . Then, by Definition 6.1.1, join(p) =

curr and join(p).key > k. This shows that event 1 occurred in the execution.

• Suppose curr .key ≥ k and curr .marked . Then, by Definition 6.1.1, join(p)

is the first unmarked node reachable from curr by next pointers. By the

list-ordering invariant, this is some node with key larger than curr .key – i.e.,

join(p).key > k. This shows that event 1 occurred in the execution.

In all cases we have shown that one of the events occurs during the call. Therefore,

the moment when the event first occurs is well-defined.

Lemma 6.1.3. If join(p).key > k during a call to contains, then join(p).key > k

for the remainder of that call.

Proof. Suppose not. Let t be the first step in an execution where join(p).key

changes from a value greater than k to one less than or equal to k for some k.

Case I: join(p) = curr p immediately before t. The key-immutability condition

implies that the only step t that can change join(p) is marking join(p) or

advancing curr p to the next node. In both cases, the list-ordering condition

implies that t does not change join(p) to a node with key at most k since the

keys are sorted in increasing order.

73

Case II: join(p) 6= curr p immediately before t. Then the chain of marked nodes

from curr p to join(p) (including curr p) is non-empty. t cannot be advancing

curr p since that would leave join(p) unaltered. Similarly, join(p).key cannot

be changed by the key-immutability condition. Since marked nodes cannot

be unmarked (there is no line of code that sets a marked field to false), the

only remaining possibility is that t is an insertion of an unmarked node with

key k′ ≤ k in this chain between curr p and join(p).

Let t be the insertion of a node with key k′ ≤ k by process q – i.e., process

q performs line 6 of Algorithm 14. The nodes pred q and curr q are returned

on line 1 of Algorithm 14 by q calling locate(k′). Furthermore, by examining

Algorithm 12 we see that pred q and curr q are locked and unmarked when

they are returned to q. Since they are marked immediately before t, they

must be marked at some step between line 1 of q’s add(k ′) and line 6 of that

same call. This is impossible by the locking semantics.

This shows that no such step t exists.

We now show that the events given on page 72 are mutually exclusive.

• If event 1 occurs first then at that moment join(p).key > k. By Definition

6.1.1 and the list-ordering invariant, subsequent to event 1’s occurrence during

that call to contains(k), join(p).key > k by Lemma 6.1.3. By examining the

74

test on line 5 of Algorithm 11, we see that it is true only if at the moment of

its completion join(p).key = k. Therefore, event 2 never occurs subsequent

to event 1.

• If event 2 occurs first then the call to contains(k) terminates with join(p).key =

k. Therefore, event 1 never occurs subsequent to event 2.

Lemma 6.1.4. Let Node = join(p) and k = Node.key at some point in the execu-

tion. Then remove(k) by q is the only operation by a process other than p that can

change join(p). Furthermore, join(p) is changed by q only on line 3 of Algorithm

13.

Proof. It is clear from Definition 6.1.1 that join(p) is changed by a process other

than p only when the next pointers of the data structure are altered or a node

is marked. By examining the pseudocode, we see that nodes’ next pointers are

changed only on line 5 of Algorithm 13 and lines 5 and 6 of Algorithm 14. Marking

occurs only on line 3 of Algorithm 13.

We argue that the next pointer changes do not change join(p). Since entry is a

new node created by Algorithm 14 that cannot be reached from any node in the list

until q performs line 6 of Algorithm 14, changing entry .next can have no effect on

join(p) until q performs line 6 of Algorithm 14. If curr p is pointing to an unmarked

75

node, then that node is the join and no alteration of the data structure (besides

marking) will change join(p). If curr p is marked, then consider the chain of marked

nodes between curr p and joinp, including curr p. Since curr p 6= join(p), this chain

is non-empty. Let N be the first node along this chain where N.next is altered by

line 5 of Algorithm 13 or line 6 of Algorithm 14 by some process q 6= p. In both

cases, pred q = N and pred q is set by q calling the subroutine locate.

By the test on line 10 of Algorithm 12, pred is not marked when it is returned

by locate to q, since it is locked on line 8 of Algorithm 12 before it is returned.

Therefore, it must have been marked at some point between q completing line 1 of

Algorithm 14 (and setting pred q ← N) and invoking line 6 of Algorithm 14. This

is impossible by the locking semantics, since no other process can mark N until q

relinquishes its hold on N on line 11 of Algorithm 14 that it obtained on line 8 of

Algorithm 12. A similar argument holds for pred q if q is performing Algorithm 13.

This shows that the next pointers along this chain are unaltered; therefore, join(p)

is unaltered by addition of nodes or physical removal of marked nodes.

A remove(k) can change join(p) by marking join(p) (if Node.key = k).

The following observations demonstrate that this is a valid linearization of

contains(k):

• If join(p).key = k in the read of the marked field of curr on line 5 of Algorithm

11, then k is an unmarked node reachable from Head and is thus in the set.

76

• If join(p).key is greater than k, then at least one of the conditions in the

final execution line 5 of Algorithm 11 is falsified, hence the invocation will

return false. Note that once join(p) is greater than k, it remains so at

all subsequent configurations until the termination of the contains operation

instance by Lemma 6.1.3.

• The only step that can change join(p) from a node with key less than or equal

to k to a node with key larger than k, is line 3 of Algorithm 11. At this step,

k is absent from the set by the list-ordering invariant.

• In the step where the remove(k′) operation instance changes contains(k)’s

join to a node with a key larger than k, we can be sure that k is absent from

the list, because of two invariant properties of the list implementation:

i There is at most one unmarked node reachable from Head with value k.

ii The nodes reachable from Head are sorted in non-decreasing order.

There is no unmarked node with key k between join(p) before and after the

remove(k′) operation, else it would either be the new join(p) or some node

with key less than k would be the new join(p). Therefore, by the list-ordering

invariant, k is absent from the list at the moment remove(k′) marks join(p).

The linearization strategy now becomes clear: Whenever an remove(k′) operation

instance performs line 3 of Algorithm 13, we linearize all contains(k) operation

77

instances, with k ≥ k′, whose join that step causes to become larger than k,

immediately after the linearization of the remove(k) operation instance – crucially,

we can do this knowing only the present state of the execution.

This is a strong linearization, as once we make a linearization decision, we never

revisit it – i.e., the linearization is prefix-preserving.

6.2 Linearizing contains Using add

This is not the only strong linearization we can give for this implementation. Just

as we used remove operation instances to linearize pending contains operation

instances, we can use add operation instances to do the same. Recall that the issue

arose in case (6.3) where some process can add k to the list without the contains

operation instance (which is going to return false) being ‘aware’ of it.

This suggests the following strategy: Whenever an add(k) operation instance

performs line 6 of Algorithm 14, we linearize all pending contains(k) operation

instances whose performing process’s join key is larger than k immediately before

we linearize the add(k) operation instance.

The validity of this linearization follows from Invariant (i) above: Since per-

forming line 6 adds a node with value k to the list, no node in the list could have

had that value immediately preceding this step. Therefore, it is valid to linearize

a contains(k) that returns false at that point because it is guaranteed to return

78

false.

Contrast this strategy with the one above: In this case, add(k) only linearizes

contains(k) operation instances, while in the other strategy remove(k) can, in prin-

ciple, linearize contains(k′) with k′ ≥ k. In the previous strategy, we linearized some

contains operation instances immediately after a remove, while in this strategy, we

linearize them immediately before an add .

We have shown the existence of two strong linearizations for this implementa-

tion, and we can easily see that the implementation is deterministic. By Theorem

5.2.3, there is a forward simulation from C to A, in Colvin et al.’s terminology.

79

7 Systems of ADT’s

Having considered abstract data types and their implementations using automata

in isolation, we now turn our attention to the combination of ADT implementa-

tions and control structures into complex systems and the issues of safety in such

systems. What properties are preserved when, for instance, a simple, atomic model

of an ADT is replaced in a system with a linearizable or strongly linearizable im-

plementation? This is what we hope to address in this section.

Our reader will undoubtedly have an intuitive model of what is meant by a

program – perhaps a short piece of code written in her programming language of

choice will spring to mind. Once the pieces of code grow to prodigious size and

complexity, she might choose to organize them into a system. We now develop

definitions of ‘program’ and ‘system’ expressed in the language of the automata

defined above that correspond to the intuitive notions.

We are primarily interested in the behaviour of strongly linearizable imple-

mentations and assume throughout this section that all abstract data types are

80

deterministic.

7.1 Sequential Programs, Concurrent Systems, and Sched-

ulers

Definition 7.1.1. A sequential program for a process p using a set of abstract data

types D = {Di | i ∈ I} for some finite or infinite index set I is an automaton Progp

with the set of external actions

{invokeDi
(op, p), respondDi

(rsp, p) | i ∈ I, op ∈ Di.OPS , rsp ∈ Di.RSP}⋃
{coin flip(p, 0), coin flip(p, 1)}.

Furthermore, we require that the traces of Progp be well-formed, i.e., every

trace begins with a coin flip or an invocation, and every invocation, except possibly

the last, is immediately followed by a corresponding response. Likewise, every

response is immediately preceded by a corresponding invocation. Also, we require

the automaton Progp to make decisions based only on responses to operations it

has previously invoked.

Although we study the specific case of coin flips for simplicity, the results for

any probability distribution over a finite number of outcomes (e.g. die rolling) is

81

analogous. The state space of a sequential program Progp can be visualized as

follows:

No pending operation Pending operation

internal

coin flip

invoke

respond

Definition 7.1.2. A concurrent program M, using a set D of ADT’s, for a finite

set of processes P is a set of sequential programs {Progp | p ∈ P}.

Definition 7.1.3. A concurrent system (or system) Q for a finite set of processes

P using a set of abstract data types D = {Di | i ∈ I} is an automaton composed of

a concurrent program M using D for P = {p1, p2, . . . , pn}, and automata Objs =

{Oi | i ∈ I} such that each Oi ∈ Objs is an implementation of the corresponding

Di ∈ D for P .

• states(Q) =
n∏
i=1

states(Progpi)×
∏
j∈I

states(Oj).

• start(Q) =
n∏
i=1

start(Progpi)×
∏
j∈I

start(Oj).

• acts(Q) =
⊔

acts(Progpi)∪
⊔

acts(Oj).
⊔

acts(Progpi) and
⊔

acts(Oj) are

82

disjoint unions. The set of external actions of Q is

acts(Q) =
⊔
p∈P

acts(Progp)

• We first consider steps of the form invokeDi
(op, p), respondDi

(rsp, p), and

internal steps:

– (s1, s2, . . . , sn, o1, o2, . . .)
invokeDi

(op,p)
−→ (s1, s2, . . . , s

′
p, . . . , sn, o1, o2, . . . , o

′
i, . . .)

if and only if

sp
invokeDi

(op,p)
−→ s′p ∈ steps(Progp) and

oi
invoke(op,p)−→ o′i ∈ steps(Oi).

– (s1, s2, . . . , sn, o1, o2, . . .)
respondDi

(rsp,p)
−→ (s1, s2, . . . , s

′
p, . . . , sn, o1, o2, . . . , o

′
i, . . .)

if and only if

sp
respondDi

(rsp,p)
−→ s′p ∈ steps(Progp) and

oi
respond(rsp,p)−→ o′i ∈ steps(Oi).

– (s1, s2, . . . , sp, . . . , sn, o1, o2, . . .)
a−→ (s1, s2, . . . , s

′
p, . . . , sn, o1, o2, . . .) if and

only if a is an internal action or a coin flip of Progp and sp
a−→ s′p ∈

steps(Progp).

– (s1, s2, . . . , sn, o1, o2, . . . , oi, . . .)
a−→ (s1, s2, . . . , sn, o1, o2, . . . , o

′
i, . . .) if and

only if a is an internal action of Oi and oi
a−→ o′i ∈ steps(Oi).

83

We begin our discussion of the executions produced by systems by defining

schedulers that select continuations of the executions of systems.

Definition 7.1.4. Given a concurrent system Q and the set of all processes P in

Q, a scheduler S for Q is a function S : EQ −→ P ∪ {⊥}, where EQ is the set of all

finite executions of Q and ⊥ is a special symbol unused as a process ID.

If a process p has completed all of its actions in an execution e, i.e., the au-

tomaton is in a state with no outward transitions, then S(e′) 6= p for all executions

e′ where e is a prefix of e′. If all processes have terminated in an execution e, then

S(e) = ⊥.

The function S given above has the following properties:

• S(ε) is the first process that takes a step, giving a one-step execution e.

• S(e) gives the next process to take a step after e, yielding the execution

e′ = e ◦ action(S(e)) where action(S(e)) is the next action taken by process

S(e) in Q after e. Since the ADT’s used by systemQ are deterministic, action

is uniquely determined except for coin flip outcomes.

For example, the function S(e) = p|e| mod n is a round-robin scheduler. It is clear

from the above definition that schedulers may arbitrarily interleave process execu-

tions, i.e., a scheduler may invoke operation op by process p1, and then schedule

84

an operation by p2 before op has responded to p1. We wish to consider a restricted

class of schedulers that is not permitted to do this:

Definition 7.1.5. An atomic scheduler S of a system Q is a scheduler with the

restriction that if e is an execution of Q with an invokeDi
(op, p) step in e without

a matching response, then S(e) = p.

We are interested in the relationship between randomization in programs and

linearizability. As such, we have previously introduced a special operation: the coin

flip, which is local to a process, is 1 or 0 with probability p or 1−p, respectively, for

some p ∈ (0, 1), and is independent of other coin flips. By construction of program

automata, all schedulers schedule coin flips atomically, i.e., they are not permitted

to interleave other operations with coin flips.

7.2 Linearizability of Systems

We have introduced a method of combining isolated implementations of (deter-

ministic) abstract data types into systems composed of many (perhaps infinitely

many) such implementations. It is necessary to ensure that the executions of the

combined systems are linearizable (or strongly linearizable) if the constituent im-

plementations are linearizable (or strongly linearizable). Fortunately, Herlihy and

Wing have shown in (HW90) that linearizability is a local property, i.e., if the pro-

85

jection of the executions of the system onto an object O is linearizable for all O,

then the set of executions is linearizable. Golab et al. have shown in (GHW11)

that strong linearizability is also a local property.

We extend Golab et al.’s work in (GHW11) by introducing a special class of func-

tions on executions – which we term robust functions – and showing that strongly

linearizable implementations of programs preserve the distribution of random vari-

ables derived from these functions. We further demonstrate that strong lineariz-

ability is not a necessary condition for preserving distributions.

Definition 7.2.1. Let E be the set of all executions produced by concurrent sys-

tems. A function X : E −→ R is robust if, for every h, h′ ∈ E where h and h′ have

a common linearization, i.e., there is a sequential history S that is a linearization

of both h and h′, we have X(h) = X(h′).

An execution may have several valid linearizations, with some concurrently

scheduled operations ordered differently in different linearizations. The proper-

ties we wish to measure should be independent of our choice of linearization, i.e.,

they should remain constant in all possible linearizations. This property invariance

between linearizations is what we intend to capture by restricting our attention to

functions that obey Definition 7.2.1. Examples of robust functions would be the

number of invocations of a certain operation by a process or the return value of

some operation.

86

In the definitions and results we will introduce shortly, we consider program-

implementation-scheduler triples (abbreviated as PIST’s) of the form (M, I, S),

where M and I are a concurrent program and implementation, respectively, that

together define a concurrent system Q, and S is a scheduler for Q. Such a triple

completely determines a set of executions (referred to by E(M,I,S)). We consider

only full executions, and not execution fragments, to be in E(M,I,S).

We shall assume the following about all PIST’s (M, I, S) we consider:

• Finite randomness. Every execution h ∈ E(M,I,S) has only finitely many coin

flip operations.

• Completeness. Every execution h ∈ E(M,I,S) is complete, i.e., every operation

invoked in h returns a value.

87

8 Probability Distribution on System

Executions

We now specify the probability distribution over the executions generated by a PIST

(M, I, S). Given an execution h ∈ E(M,I,S), what is the probability that (M, I, S)

generates the execution h?

8.1 Mappings between Coin Flips and Executions

We define a special projection Γflip from executions to sequences of coin flip steps

– where Γflip(h) denotes the subsequence of coin flip operations of h. Let

F = {Γflip(h) | h ∈ E(M,I,S)}.

Let π : F −→ {0, 1}? be the projection of sequences of F onto {0, 1}?, the set of

finite binary sequences; for example, π((0, p1), (1, p7), (1, p3), (0, p9)) = 0110.

Lemma 8.1.1. Γflip is a bijection between E(M,I,S) and F .

88

Proof. Γflip is clearly a surjection between E(M,I,S) and F . We now show that it is

an injection.

Let f ∈ F . Let h, h′ ∈ Γ−1
flip(f) and suppose h 6= h′. Let e be the longest

common prefix of h, h′. The next step of e scheduled by S is s = action(S(e)). If

s is not a coin flip operation, then by Definition 7.1.4, s is the same in both h and

h′, contradicting the definition of e.

If s is a coin flip, then the outcome must be the same in both h and h′, since

Γflip(h) = Γflip(h′). Therefore, s is the same in both h and h′, contradicting the

definition of e. Since we arrive at a contradiction in both cases, our assumption

that h′ 6= h is invalid and we conclude that h = h′.

This shows that Γflip is a bijection.

Lemma 8.1.2. There are no two elements of F where one is a prefix of the other.

Proof. Suppose not. Let f, f ′ ∈ F where f is a prefix of f ′ and f 6= f ′. Since Γflip is

bijective by Lemma 8.1.1, h = Γ−1
flip(f) 6= Γ−1

flip(f ′) = h′. Since the implementations

of ADT’s and schedulers are deterministic, and the coin flip subsequence of h is a

prefix of the coin flip sequence of h′, h is a strict prefix of h′. This contradicts the

assumption that E(M,I,S) contains no execution fragments, i.e., E(M,I,S) would not

contain h.

Lemma 8.1.3. π is a bijection between F and π(F)

89

Proof. π is clearly a surjection between F and π(F). We now show that it is an

injection.

Let c ∈ π(F). Let f, f ′ ∈ π−1(c) and suppose f 6= f ′. Let o be the first

element of f that is different from the corresponding element o′ in f ′ – o, o′ are

well-defined since, by Lemma 8.1.2, f is not a prefix of f ′ or vice versa – and let

h, h′ be Γ−1
flip(f),Γ−1

flip(f ′), respectively. Since, by Lemma 8.1.1, Γflip is a bijection,

h 6= h′.

Let e be the longest prefix common to h and h′. We claim that e is the longest

prefix of h that does not contain o.

h

h′

e

To see why, suppose e is shorter than the longest prefix g of h that does not

contain o, i.e., g = ed where d is non-empty, there are two cases for first step of d:

• The first step of d is not a coin flip. Since the implementations are determin-

istic, action(S(e)) is the same in both h and h′, i.e., e can be extended by at

least one step and remain a common prefix of both h and h′. This contradicts

the definition of e.

• The first step of d is a coin flip. By construction, this coin flip is not o, i.e.,

90

its outcome is the same in both h and h′. Therefore, action(S(e)) is the same

in both h and h′. Again this contradicts the definition of e.

This shows that e = g.

In this case, S(e) would be the same in h and h′, i.e., the process identity of o is

the same as that of o′. Since π maps f and f ′ to the same sequence, the outcomes

of o and o′ are the same. Therefore, o = o′, a contradiction.

This shows that π is a bijection.

Corollary 8.1.4. π ◦ Γflip is a bijection from E(M,I,S) to (π ◦ Γflip)(E(M,I,S))

8.2 The Probability Function

We now turn our attention to defining the probability distribution itself. When

we consider the space {0, 1}? of finite binary sequences, a probability function P

and set of events 2E(M,I,S) on this space immediately suggest themselves: those of a

Bernoulli process, where for some finite sequence c of length k, P (c) = pl(1− p)k−l,

where l is the number of 1’s in c.

Since we have a bijection from E(M,I,S) to some subset of {0, 1}?, we define a

probability distribution on E(M,I,S) as follows:

• Probability space is E(M,I,S).

• Set of events is 2E(M,I,S) .

91

• Probability function P = P ◦ π ◦ Γflip.

To show that P is a probability function, we require the following lemmas:

Definition 8.2.1. A Bernoulli tree is a proper binary tree where, from each non-

leaf node, one edge is labeled 0 and the other 1.

Lemma 8.2.2. There is a function g from the set of PIST’s to the set of Bernoulli

trees B such that for each execution e of a PIST E, there is a path from the root to a

leaf of the Bernoulli tree g(E) and the labels on that path form the string π(Γflip(e)).

Furthermore, there are no other paths to a leaf in g(E).

Proof. Consider the complete infinite Bernoulli tree T ∈ B, where every node has

exactly two children, with outbound edges labeled 0 and 1. The set of finite binary

sequences π ◦ Γflip(E(M,I,S)) are labels of paths in T . We show that the smallest

subgraph G of T that contains all of the paths in E(M,I,S) is a Bernoulli tree.

First, G is acyclic since it is a subgraph of a tree. Furthermore, since G is

a subgraph of a directed graph, G retains the directionality of the parent-child

relationships inherent in T . By construction, there is a path from the root to every

node in G.

To show that G is a proper binary tree, suppose not. Then there is at least

one vertex v ∈ V (G) with exactly one child. Let v be such a vertex with minimum

height. By construction, there must be some path P containing v that corresponds

92

to an execution e ∈ E(M,I,S).

Let e′ be the longest execution fragment of e that does not contain the coin flip

operation corresponding to v. By Definition 7.1.4, there are at least two contin-

uations of e′ in E(M,I,S), one with the coin flip returning 1 and another with the

coin flip returning 0. By definition of g, v has two children. This contradicts the

definition of g. Therefore, G is a Bernoulli tree.

Lemma 8.2.2 allows us to partition the set of PIST’s into equivalence classes

given by g−1(B). The following property of Bernoulli trees will allow us to prove

that the function P is complete – i.e., the sum of probabilities of the executions of

a PIST is 1.

Lemma 8.2.3. The sum of the path label probabilities for all paths from the root

to a leaf node of a finite non-empty Bernoulli tree is 1.

Proof. The claim is true for a Bernoulli tree consisting of just one node. It is clear

from Definition 8.2.1 that any binary subtree of a Bernoulli tree is a Bernoulli tree.

Consider a Bernoulli tree T with more than one node. By Definition 8.2.1, T has

right and left subtrees Tr and Tl, respectively.

Since Tr and Tl are both Bernoulli trees, the claim holds for them. Let P(T)

denote the set of paths in T from the root to a leaf; for any path p ∈ P(T),

p = 0 · pl or p = 1 · pr for paths pl, pr in P(Tl),P(Tr), respectively. Therefore,

93

P(T) = 0 · P(Tl) ∪ 1 · P(Tr) and

∑
s∈P(T)

P (s) =
∑

s∈P(Tl)

P (0 · s) +
∑

s∈P(Tr)

P (1 · s)

=
∑

s∈P(Tl)

(1− p)P (s) +
∑

s∈P(Tr)

pP (s)

= (1− p)
∑

s∈P(Tl)

P (s) + p
∑

s∈P(Tr)

P (s)

= 1− p+ p

= 1.

Lemma 8.2.4. P is a probability function on E(M,I,S).

Proof. Let E ⊆ E(M,I,S).

P(E) = (P ◦ π ◦ Γflip)(E)

= P (π(Γflip(E)))

= P (C) for some C ∈ 2{0,1}
?

≥ 0 since P is a probability distribution on {0, 1}?.

Let E1, E2, . . . , Em ⊆ E(M,I,S) be disjoint sets. Since π ◦ Γflip is a bijection by

94

Corollary 8.1.4, π ◦ Γflip(E1), π ◦ Γflip(E2), . . . ,Γflip(Em) are disjoint sets.

P

(
m⊔
i=1

Ei

)
= P ◦ π ◦ Γflip

(
m⊔
i=1

Ei

)

= P (π(Γflip

(
m⊔
i=1

Ei

)
))

= P

(
m⊔
i=1

π(Γflip(Ei))

)
π ◦ Γflip is a bijection

=
m∑
i=1

P (π(Γflip(Ei))) P is a probability distribution

=
m∑
i=1

P(Ei).

That P(E(M,I,S)) = 1 is immediate from Lemmas 8.2.2 and 8.2.3.

We make mention here that since the σ-algebra defined on E(M,I,S) is 2E(M,I,S) ,

then, for any function X, X |(M,I,S) – the restriction of X to the set of executions

E(M,I,S) – is a random variable.

95

9 Comparing PIST’s

The aim of this part of our work is to formalize the conditions necessary for pre-

serving the properties of a program using atomic implementations of objects when

those implementations are substituted for non-atomic ones. Therefore, our defini-

tions and results are often stated using two PIST’s with the same program M .

We will denote by hc the execution of the triple (M, I, S) with coin flip vector

c, i.e., restricting hc to its subsequence of coin flips yields the coin flip vector c or,

more formally, π ◦ Γflip(hc) = c. Hence, we denote the executions of (M, I, S) and

(M, I ′, S ′) with coin flip vector c (called corresponding executions) by hc and h′c,

respectively.

Definition 9.0.1. (GHW11) Two PIST’s (M, I, S) and (M, I ′, S ′) are directly

linked (called equivalent in (GHW11)) if, for every coin flip vector c, hc exists

if and only if h′c exists, and h′c and hc have a common linearization.

Our definition differs slightly from Golab et al.’s in that we do not consider two

PIST’s equivalent if one has an execution with a coin flip vector that is not present

96

in the other.

Let us consider the relation R ⊆ E × E – where E is the set of all executions

– suggested by the above definition: (h, h′) ∈ R if and only if h and h′ have a

common linearization. By definition, R is reflexive and symmetric. However, R is

not transitive in general, as the following example shows:

Consider the following set of three PIST’s, where the program M has processes

p1 and p2 perform the operation WRITE(⊥) to the same register:

Example 9.0.2.

WRITE(⊥)p1:

WRITE(⊥)p2:

WRITE(⊥)p1:

WRITE(⊥)p2:

WRITE(⊥)p1:

WRITE(⊥)p2:

The first and second executions are directly linked, the second and third exe-

cutions are directly linked, however, the first and third executions are not directly

linked. It is helpful for our purposes to extend Golab et al.’s inaccurately named

definition to a true equivalence relation by considering the transitive closure R̄ of

the relation R.

Since R̄ is a reflexive, symmetric, and transitive relation on E × E , it partitions

E into equivalence classes. If we have an execution h, we term the equivalence class

of E to which h belongs Th.

We also have the following equivalent definition for the set Th:

97

Definition 9.0.3. The transitive closure under linearization of an execution h′ is a

set of executions Th′ such that, for all h ∈ Th′ , there is a collection of linearizations

l0, l1, . . . , ln and executions h′0, h
′
1, . . . , h

′
n−1 where h′i has linearizations li and li+1

for 0 ≤ i ≤ n− 1, l0 is a linearization of h′ and ln is a linearization of h.

h′

l0

h′0

l1

h′1 h′n−1

ln

h. . .

Definition 9.0.4. Two PIST’s (M, I, S) and (M, I ′, S ′) are linked if, for every coin

flip vector c, h′c exists if and only if hc exists and h′c ∈ Thc .

We say that an instance of operation op in h corresponds to an instance of

operation op′ in h′ if op and op′ are both the k-th operation performed by process

p in h and h′, respectively. By op1 <h op2, we mean that the response of operation

instance op1 precedes the invocation of operation instance op2 in h. We omit the

execution label when it is clear what execution we are referring to.

Definition 9.0.5. Let <<h be the subset of <h (the real-time ordering of execution

h) where, for each pair (op1, op2) ∈<<h, op1 and op2 are performed by different

processes. Two PIST’s (M, I ′, S ′) and (M, I, S) are cross-process consistent if, for

every coin flip vector c, <<hc⊆<<h′c or <<h′c⊆<<hc .

In Example 9.0.2, all three PIST’s are linked, since the first and last are lineariza-

tions of the second. However, the first and last executions are not cross-process

98

consistent because in the first execution WRITE(⊥) by p1 precedes WRITE(⊥) by

p2, while in the last execution WRITE(⊥) by p2 precedes WRITE(⊥) by p1. These

definitions help us capture the crucial differences between the three cases.

Definition 9.0.6. Two PIST’s (M, I, S) and (M, I ′, S ′) are distributionally equiv-

alent if, for every robust function X : E −→ R, X |(M,I,S) and X |(M,I′,S′) have the

same distribution.

We remind the reader that the following two results are restricted to PIST’s

where all executions have a finite number of coin flips and all invoked operations

eventually terminate, and we hope to extend these results by weakening these re-

strictions in the future. We now present the main results of this section:

Lemma 9.0.7. For any executions h, h′, if Γflip(h) 6= Γflip(h′), then Th ∩ Th′ = ∅.

Proof. Suppose not. Since R̄ is an equivalence relation, Th = Th′ . Consider a

chain of executions between h and h′ as given by Definition 9.0.3. There are two

consecutive executions g, g′ in this chain with common linearization l such that

Γflip(g) 6= Γflip(g′).

Γflip(g) and Γflip(g′) must have the same length since l is a common linearization

and coin flips are atomic, hence by Definition 4.3.2 must be linearized. Let k be the

index of the first pair that is different in Γflip(g) and Γflip(g′), and let the k-th pair of

Γflip(g) be (rspg, pg) and that of Γflip(g′) be (rspg′ , pg′). It must be that rspg 6= rspg′

99

or pg 6= pg′ .

Let t = (op, rsp, p) be the triple in l corresponding to the k-th coin flip operation

linearized in l. By Definition 4.3.2, rsp = rspg = rspg′ and p = pg = pg′ . This is a

contradiction. Hence Th ∩ Th′ = ∅.

Lemma 9.0.8. For any execution h, operations op1, op2, if op1 <h op2 and the

operations are done by the same process, then op1 <h′ op2 for every execution in

h′ ∈ Th.

Proof. Suppose not. Let h′ be an execution in Th where op2 ≮ op1. Consider a

chain of executions between h and h′ as given by Definition 9.0.3. There are two

consecutive executions g, g′ in this chain with common linearization l such that

op1 <g op2 and op1 ≮g′ op2. Since op1 and op2 are performed by the same process,

op2 <g′ op1.

We will abuse notation slightly and term the triples corresponding to op1, op2 in

l op1, op2. These triples exist since both op1 and op2 terminate by the completeness

assumption on page 87 and by Definition 4.3.2, completed operations must be

linearized. By the real-time ordering condition of Definition 4.3.2, op1 <l op2 since

l is a linearization of g and op2 <l op1 since l is a linearization of g′. This is a

contradiction.

Lemma 9.0.9. For any execution h and operation op, if op returns rsp in h, op

100

returns rsp in every execution in Th.

Proof. Suppose not. op returns in every execution in Th by the completeness as-

sumption. Let h′ be an execution in Th where op does not return rsp and consider

a chain of executions between h and h′ as given by Definition 9.0.3. There are two

consecutive executions g, g′ in this chain with common linearization l such that op

returns rspg in g and rspg′ in g′ with rspg 6= rspg′ .

By Definition 4.3.2, the triple (op, rsp, p) in l corresponding to the operation op

has rsp = rspg = rspg′ . This is a contradiction.

Lemma 9.0.10. X is a robust function if and only if, for every execution h, X is

constant on Th.

Proof. We first prove the forward direction. Suppose not, then there is some ex-

ecution h for which X is not constant on Th. Let h′ be an execution in Th where

X(h) 6= X(h′). Consider a chain of executions between h and h′ as given by Defi-

nition 9.0.3. There are two consecutive executions g, g′ in this chain with common

linearization l such that X(g) 6= X(g′). This contradicts Definition 7.2.1 of X,

since g and g′ have common linearization l.

The converse follows immediately from Definition 7.2.1 and Definition 9.0.3.

Lemma 9.0.11. Two PIST’s (M, I, S) and (M, I ′, S ′) are g-distributionally equiv-

alent if and only if they are linked.

101

Proof. Suppose that (M, I, S) and (M, I ′, S ′) are distributionally equivalent but

not linked. Then, by Definition 9.0.4, there is some coin flip vector c such that

h′c /∈ Thc or, without loss of generality, h′c exists but hc does not. Consider the

following function:

X(h) =

1 for h ∈ Th′c

0 otherwise.

X is a robust function by Lemma 9.0.10. Let us restrict our consideration to

the subdomain E = E(M,I,S) ∪ E(M,I′,S′) of X – by Lemma 9.0.7, on E, X takes the

value 1 only on h′c and 0 otherwise since h′c is the only execution in E ∩ Th′c with

coin flip vector c.

Since we assume that c has only finitely many coin flips, h′c and hc have positive

probability mass. Therefore, X |(M,I,S) and X |(M,I′,S′) have different distributions.

This contradicts our assumption – therefore, (M, I, S) and (M, I ′, S ′) are linked.

Suppose that (M, I, S) and (M, I ′, S ′) are linked and let X be a robust function.

For any coin flip vector c, X(hc) = X(h′c) by Definition 9.0.4 and Lemma 9.0.10.

Therefore, since X |(M,I,S) and X |(M,I′,S′) have the same distribution, (M, I, S) and

(M, I ′, S ′) are distributionally equivalent.

Theorem 9.0.12. Given two PIST’s (M, I, S) and (M, I ′, S ′) with S an atomic

scheduler, (M, I, S) and (M, I ′, S ′) are directly linked if and only if (M, I, S) and

(M, I ′, S ′) are cross-process consistent and distributionally equivalent.

102

Proof. Since S is atomic and complete by the assumptions on page 87, for every coin

flip vector c, execution hc of (M, I, S) has a unique linearization lc with <hc=<lc ,

where <lc is the ordering of operations in linearization lc.

Suppose (M, I, S) and (M, I ′, S ′) are directly linked. Therefore, for every coin

flip vector c, hc and h′c have a common linearization – namely, hc’s unique lineariza-

tion lc.

By the real-time ordering condition of Definition 4.3.2, <<h′c⊆<<lc=<<hc . This

shows that (M, I, S) and (M, I ′, S ′) are cross-process consistent. By Lemma 9.0.11,

(M, I, S) and (M, I ′, S ′) are distributionally equivalent.

Conversely, suppose that (M, I, S) and (M, I ′, S ′) are cross-process consistent

and distributionally equivalent. Since S does not schedule operations concurrently,

we have, from Definition 9.0.5, <<hc⊇<<h′c for each coin flip vector c. By Lemma

9.0.11, (M, I, S) and (M, I ′, S ′) are linked.

By Lemma 9.0.8 and atomicity of S, we have that

<hc \ <<hc⊇<h′c \ <<h′c .

Therefore, <hc⊇<h′c . By Lemma 9.0.9, corresponding operations in hc and h′c have

the same return values. By Definition 4.3.2, since h′c and lc are equivalent and

<h′c⊆<lc , lc is a linearization of h′c. Therefore, (M, I, S) and (M, I ′, S ′) are directly

linked.

103

We now present a counter-example to show why the cross-process consistency

condition is necessary in the above theorem.

Let us consider the following implementation of a single-reader single-writer reg-

ister with READ and WRITE operations using single-reader single-writer registers

with atomic read and write operations.

Algorithm 15: READ

1 x←− read base register;

2 y ←− read base register;

3 if y = 0 then

4 return x

5 else

6 return y

7 end

Algorithm 16: WRITE(v)

1 write(v) to base register;

Let the base register be initialized to the value ⊥ and suppose there are two

processes pr and pw using the read/write register implemented using the preceding

algorithms. Consider the following PIST, where c is a coin flip operation:

READ

WRITE(⊥)WRITE(c)cWRITE(0)

x← readpr : y ← read

pw :

This pair of executions is not strongly linearizable. As the reader can verify, if

104

c = 0, pr’s READ operation returns ⊥, while if c = 1, then the READ returns

1. In the former case, READ must be linearized before c, while in the latter case,

READ must be linearized after c. Thus, there is no way to provide a linearization

for the prefix of the execution up t (and including) the coin flip that will be prefix-

preserving. This argument shows than no prefix-preserving linearization of the

given schedule exists.

Consider the following PIST with an atomic scheduler, where the column labeled

c = 0 is the schedule where the coin flip returns 0 and c = 1 is the schedule where

the coin flip returns 1:

c = 0 c = 1

pw: WRITE(0) pw: WRITE(0)

pw: c← 0 pw: c← 1

pw: WRITE(0) pw: WRITE(1)

pw: WRITE(⊥) pr: READ

pr: READ pw: WRITE(⊥)

The two PIST’s are not cross-process consistent, since in the case where the coin

flip returns 0, pr’s READ operation completes before pw’s WRITE(⊥) is invoked

in the former PIST, while the reverse is true in the latter PIST.

Lemma 9.0.13. The above PIST’s are distributionally equivalent but not directly

105

linked.

Proof. We first show that the PIST’s are distributionally equivalent by showing that

they are linked and using Lemma 9.0.11. We call the executions of the concurrently

scheduled PIST h′0, h
′
1 and the corresponding executions of the atomic PIST h0, h1,

respectively.

h′1 and h1 have a common linearization, namely:

(WRITE(0),⊥, pw)(c, 1, pw)(WRITE(1),⊥, pw)(READ, 1, pr)(WRITE(⊥),⊥, pw).

This shows that h′1 ∈ Th1 .

Since h0 is a complete sequential execution, by Definition 4.3.2, h0 has only one

linearization, namely:

(WRITE(0),⊥, pw)(c, 0, pw)(WRITE(0),⊥, pw)(WRITE(⊥),⊥, pw)(READ,⊥, pr).

This is not a linearization of h′0, since READ <h′0
WRITE(⊥) while (WRITE(⊥),⊥, pw)

precedes (READ,⊥, pr) in the linearization, violating the real-time ordering condi-

tion of Definition 4.3.2. Therefore, h′0 and h0 have no common linearization and,

by Definition 9.0.1, are not directly linked.

Let h′′0 an execution of the above program, where c returns 0, that is scheduled

as follows:

1. pr performs line 1 of Algorithm 15.

106

2. pw performs WRITE(0), c which returns 0, WRITE(0), and WRITE(⊥).

3. pr performs lines 2, 3, and 6 of Algorithm 15.

h0 and h′′0 have a common linearization

(WRITE(0),⊥, pw)(c, 0, pw)(WRITE(0),⊥, pw)(WRITE(⊥),⊥, pw)(READ,⊥, pr).

In this case, the real-time ordering constraint is not violated since WRITE(⊥) and

READ are scheduled concurrently in h′′0. h′0 and h′′0 have a common linearization

(READ,⊥, pr)(WRITE(0),⊥, pw)(c, 0, pw)(WRITE(0),⊥, pw)(WRITE(⊥),⊥, pw).

This shows that h′0 ∈ Th0 . By Definition 9.0.4, the two PIST’s are linked.

Theorem 9.0.14. A PIST (M, I ′, S ′) is strongly linearizable if and only if there is

a PIST (M, I, S) with an atomic scheduler S where (M, I, S) is directly linked to

(M, I ′, S ′).

Proof. Suppose (M, I ′, S ′) is strongly linearizable and let g be a strong linearization

function from E(M,I′,S′) to SD, where SD is the sequential specification of the set of

objects D defined as

SD := {S | S||D ∈ SD for all D ∈ D}

where S||D is the projection of S onto operations invoked on object D.

107

Let I be the collection of objects formed by replacing all objects in I ′ with their

atomic implementations and define a scheduler S as follows:

For every execution h′ ∈ E(M,I′,S′), construct a sequential execution h where the

triples in g(h′) appear as atomic operations in h in the order in which they occur

in g(h′) and no other operations appear in h. Consider

H = {h | h is constructed from some g(h′) for h′ ∈ E(M,I′,S′)}.

By Definition 7.1.4 and Definition 4.3.3, there is some atomic scheduler S on

(M, I) that generates H since g is prefix-preserving.

For each coin flip vector c, hc and h′c have a common linearization since g is a

linearization function. Therefore, by Definition 9.0.1, (M, I, S) and (M, I ′, S ′) are

directly linked.

Conversely, suppose that there is some PIST (M, I, S) with atomic scheduler

S such that (M, I ′, S ′) and (M, I, S) are directly linked. Define a function g as

follows: For each execution E ′ ∈ E(M,I′,S′), let g(E ′) be the corresponding execution

in E(M,I,S) given in the form of a sequence of triples (op, rsp, p) – this is uniquely

defined since S is atomic and all executions are complete. For an execution prefix e

of an execution E, let g(e) be the shortest prefix of g(E) that contains all completed

operations in E.

We now show that g is well defined. g is well-defined on full executions by

properties of PIST’s. Suppose that g is not well-defined on execution prefixes. Then

108

there are executions E ′1, E
′
2 ∈ (M, I ′, S ′) and some non-empty execution prefix e

of E ′1, E
′
2 such that g(e) as defined by E ′1 (denoted by gE′1(e)) differs from g(e) as

defined by E ′2 (denoted by gE′2(e)).

Suppose that e contains k coin flips. Since e is a prefix of E ′1 and E ′2, E ′1 and

E ′2 are identical up to but not necessarily including the first k + 1 coin flips, since

S ′ is a function, i.e., deterministic. g(E ′1) and g(E ′2) (well-defined since E ′1 and E ′2

are full executions) have, by Lemma 9.0.7, the same first k coin flips.

g(E ′1) and g(E ′2) are identical up to but not necessarily including the first k+ 1

coin flips since S is a function, i.e., deterministic. We call this execution prefix up

to but not including the k + 1-th coin flip H.

All completed operations in e complete before the the k+1-th coin flip; otherwise

e would contain more than k coin flips. Therefore,

gE′1(e) = the shortest prefix of g(E ′1) that contains all completed operations in e

= the shortest prefix of H that contains all completed operations in e

= the shortest prefix of g(E ′2) that contains all completed operations in e

= gE′2(e).

This is a contradiction.

g is a linearization function since (M, I, S) is directly linked to (M, I ′, S ′) and S

is atomic. g is prefix-preserving by its definition on execution prefixes. Therefore,

109

g is a strong linearization function and (M, I ′, S ′) is strongly linearizable.

110

10 Generalizing Robustness

The definition of robustness we gave in Definition 7.2.1 was somewhat forced on us

given the observation that the functions we are interested in should have the same

value independent of our choice of linearization. Suppose that we have a sequential

specification for an abstract data type D with a single operation o with response

values in the set {1, 2, 3, 4,⊥}. Suppose that the sequential specification SD of D

is:

{(o, 1, podd), (o, 2, p?), (o, 3, p?), (o, 4, p?), (o,⊥, p?), (o,⊥, p?), (o,⊥, p?), . . .}⋃
{(o, 3, peven), (o, 4, p?), (o, 1, p?), (o, 2, p?), (o,⊥, p?), (o,⊥, p?), (o,⊥, p?), . . .}

by podd, peven, p? we mean processes whose identity parities are odd, even, or either,

respectively. Consider the following two executions involving processes p1 and p2:

111

Example 10.0.1.

o[1]

p2

p1

p2

p1

o[2]

o[3] o[4]

o[1] o[2]

o[3] o[4]

The reader can verify that the transitive closures of these executions are distinct

– to see why, consider the set of executions that have a linearization in common

with the first execution. It contains executions where o[2] is scheduled concurrently

with with o[3] or o[4], but no executions where o[1] is scheduled concurrently with

o[4], since that would entail o[2] being scheduled after o[3] by the real-time ordering

condition of Definition 4.3.2. We lack ‘bridging’ executions between the first and

second. Therefore, a functionX can take different values on each of these executions

and still be robust. However, these executions are locally indistinguishable, meaning

that the projections of the executions onto each process are identical. The only

difference between these executions is the timing: in the former case, p1’s operations

were completed before p2’s were invoked; vice-versa in the latter case.

Just as we wished the functions we considered to be invariant to linearization,

we want the functions we consider ‘robust’ to be invariant to such global timing

details. This leads us to formulate the following new definition of robustness.

112

Definition 10.0.2. Two executions h, h′ ∈ E are said to be locally indistinguishable

if Γ(h)||p = Γ(h′)||p for all p ∈ P , where Γ(h)||p is the subsequence of Γ(h) of oper-

ations by process p. Two PIST’s A and B are said to be locally indistinguishable if,

for every execution in A, there is an execution in B locally indistinguishable from

it and vice versa.

Definition 10.0.3. A function X : E −→ R is g-robust if for every h, h′ ∈ E , if

h, h′ are locally indistinguishable, then X(h) = X(h′).

Just as we partitioned the set of executions E using the transitive closure of

linearization, we can similarly partition E using the equivalence relation defined by

local indistinguishability. In fact,

Lemma 10.0.4. The relation R given by (h, h′) ∈ R if and only if h, h′ are locally

indistinguishable is an equivalence relation. Moreover, the partitioning of E given

by transitive closure of linearization is a refinement of the partitioning given by R.

Proof. R is clearly reflexive, symmetric, and transitive. Consider the partitioning

R of E given by R. Let h ∈ E and suppose that there is no set K ∈ R such

that Th ⊆ K. Since the sets {Th}h∈E partition E , there are sets K1, K2 ∈ R with

K1 6= K2 such that Th ∩K1 6= ∅ and Th ∩K2 6= ∅.

Let h1 ∈ Th ∩K1 and h2 ∈ Th ∩K2. By Lemmas 9.0.8 and 9.0.9, h1 and h2 are

locally indistinguishable, they belong to the same equivalence class inR. Therefore,

113

K1 = K2, a contradiction. Hence, there is some set K ∈ R such that Th ⊆ K.

As we defined Th to be the transitive closure under linearization of the execution

h, let us define Uh to be the equivalence class of h under the relation of local

indistinguishability. A direct consequence of Lemma 10.0.4 is that a robust function

is robust.

Corollary 10.0.5. A g-robust function X is robust

Proof. Choose an execution h and consider an execution h′ ∈ Th. By Lemma 10.0.4,

Th ⊆ Uh. Therefore, h′ ∈ Uh and X(h) = X(h′) by Definition 10.0.3. This shows

that X is constant on Th and, by Lemma 9.0.10, X is robust.

10.1 Local Coin Flips

In the previous sections, we have used the global ordering of coin flips in an exe-

cution (e.g, Lemma 9.0.7) to prove properties of the transitive closure under lin-

earization. However, when we consider local indistinguishability, we omit such

timing information. Instead of global coin flip vectors, we use local coin flip vectors

to make comparisons between executions.

Definition 10.1.1. A local coin flip vector of an execution h is an n-tuple (c1, c2, . . . , cn)

where, for each 1 ≤ i ≤ n, ci is the coin flip vector of Γ(h)||pi.

114

The following proposition demonstrates that we do not require the global timing

information in order to index executions in a PIST.

Lemma 10.1.2. For a PIST (M, I, S), there is an injection from the coin flip

vectors of E(M,I,S) to the local coin flip vectors.

Proof. Let L be the set of local coin flip vectors, and f : E(M,I,S) −→ L be defined

as follows:

f(h) =

π ◦ Γflip(h||p1)

π ◦ Γflip(h||p2)

...

π ◦ Γflip(h||pn)

.

Suppose that f is not 1-to-1. Then there are executions h1, h2 ∈ E(M,I,S) with

h1 6= h2, such that f(h1) = f(h2). Let o be the first operation that is different

in h1 and h2. o must be a coin-flip since S is deterministic; furthermore, the

process performing o is the same in h1 and h2 for the same reason. Suppose the

process performing o is p. If the coin-flip outcome is different, then π◦Γflip(h1||p) 6=

π ◦ Γflip(h2||p) – i.e., f(h1) 6= f(h2). Therefore, o is the same in h1 and h2. This is

a contradiction; hence, f is an injection.

We now present the analogues to Lemma 9.0.11 and Theorem 9.0.12. Analo-

gously to Definition 9.0.6, we say that two PIST’s are g-distributionally equivalent

if they yield the same distribution for every g-robust function.

115

Lemma 10.1.3. Two PIST’s (M, I, S) and (M, I ′, S ′) are g-distributionally equiv-

alent if and only if they are locally indistinguishable.

Proof. Suppose that (M, I, S) and (M, I ′, S ′) are g-distributionally equivalent but

not locally indistinguishable. Then, by Definition 10.0.2, there is some local coin

flip vector c of (M, I, S) such that h′c does not exist or h′c /∈ Uhc . Consider the

following random variable:

X(h) =

1 for h ∈ Uhc

0 otherwise.

X is a g-robust random variable by Definition 10.0.3. Let us restrict our con-

sideration to the subdomain E = E(M,I,S) ∪ E(M,I′,S′) of X – by Lemma 10.1.2, on

E, X takes the value 1 only on hc and 0 otherwise.

Since we assume that c has only finitely many coin flips, hc has positive prob-

ability mass. Therefore, X |(M,I,S) and X |(M,I′,S′) have different distributions.

This contradicts our assumption – therefore, (M, I, S) and (M, I ′, S ′) are locally

indistinguishable.

Suppose that (M, I, S) and (M, I ′, S ′) are locally indistinguishable and let X

be a g-robust random variable. For any local coin flip vector c, X(hc) = X(h′c)

by Definition 10.0.3. Therefore, since X |(M,I,S) and X |(M,I′,S′) have the same

distribution, (M, I, S) and (M, I ′, S ′) are distributionally equivalent.

116

Theorem 10.1.4. Given two PIST’s (M, I, S) and (M, I ′, S ′) with S an atomic

scheduler, (M, I, S) and (M, I ′, S ′) are directly linked if and only if (M, I, S) and

(M, I ′, S ′) are cross-process consistent and g-distributionally equivalent.

Proof. Since S is atomic and complete, for every coin flip vector c, execution hc of

(M, I, S) has a unique linearization lc with <hc=<lc , where <lc is the ordering of

operations in linearization lc.

Suppose (M, I, S) and (M, I ′, S ′) are directly linked. Therefore, for every coin

flip vector c, hc and h′c have a common linearization – namely, hc’s unique lineariza-

tion lc.

By the real-time ordering condition of Definition 4.3.2, <<h′c⊆<<lc=<<hc . This

shows that (M, I, S) and (M, I ′, S ′) are cross-process consistent. By Lemma 10.1.3,

(M, I, S) and (M, I ′, S ′) are g-distributionally equivalent.

Conversely, suppose that (M, I, S) and (M, I ′, S ′) are cross-process consistent

and g-distributionally equivalent. Since S does not schedule operations concur-

rently, we have, from Definition 9.0.5, <<hc⊇<<h′c for each coin flip vector c. By

Lemma 10.1.3, (M, I, S) and (M, I ′, S ′) are locally indistinguishable.

By Definition 10.0.2 and atomicity of S, we have that

<hc \ <<hc⊇<h′c \ <<h′c .

Therefore, <hc⊇<h′c . By Definition 10.0.2, corresponding operations in hc and h′c

117

have the same return values. By Definition 4.3.2, since h′c and lc are equivalent and

<h′c⊆<lc , lc is a linearization of h′c. Therefore, (M, I, S) and (M, I ′, S ′) are directly

linked.

118

11 Conclusion and Future Work

In our investigation of the properties of strong linearizability, we have shown that

an implementation of a deterministic abstract data type is strongly linearizable if

and only if there is a forward simulation from the implementation to the ADT’s

abstract linearization automaton. This equivalence allows us to frame our proofs of

correctness in a language much more amenable to machine-checking than conven-

tional proofs, which would allow more computer-aided verification of complicated

algorithms for correctness. Given that conventional proofs are error-prone, pro-

viding the basis for computer-aided verification could have a significant impact on

how concurrent algorithms are proved correct in the future. We believe these re-

sults form a firm theoretical starting point for constructing an automated theorem

prover for strong linearizability.

The second part of our investigation builds on the work of Golab et al. to

directly show that – in a restricted setting – strong linearizability does preserve

the distributions of a class of random variables – those defined by robust functions

119

– that encompass most, if not all, reasonable observations and measurements an

observer would want to make of a distributed computational system. The obvious

continuation of this work – and one we have made some progress towards – is to

remove the restrictions we have placed on the computational systems we studied,

namely finite randomness and completeness conditions given on page 87. We also

would like to remove the condition of atomicity of coin flips.

Preliminary work has given us reason to believe that these results hold when

the restrictions are removed, although more nuanced definitions of robustness and

linearizability will have to be used.

Also, a deeper examination of the relationship between preserving random vari-

able distributions and strong linearizability raises the question of the existence of a

universal strong linearization function – a prefix-preserving linearization function

defined on the set of all strongly linearizable executions, rather than a linearization

function whose restrictions to each strongly linearizable PIST is prefix-preserving.

120

Bibliography

[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik
Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view
of the parallel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

[CGLM06] Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir.
Formal verification of a lazy concurrent list-based set algorithm.
In Proceedings of the 18th International Conference on Computer
Aided Verification, CAV’06, pages 475–488, Berlin, Heidelberg, 2006.
Springer-Verlag.

[CIL94] Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using
asynchronous hardware. SIAM J. Comput., 23(4):701–712, August
1994.

[DD15] Brijesh Dongol and John Derrick. Verifying linearisability: A compar-
ative survey. ACM Comput. Surv., 48(2):19:1–19:43, September 2015.

[Doh04] Simon Doherty. Modeling and verifying non-blocking algorithms that
use dynamically allocated memory. Master’s thesis, Victoria University
of Wellington, Wellington, New Zealand, 2004.

[DW15] Oksana Denysyuk and Philipp Woelfel. Wait-freedom is harder than
lock-freedom under strong linearizability. In Proceedings of the 29th
International Symposium on Distributed Computing - Volume 9363,
DISC 2015, pages 60–74, New York, NY, USA, 2015. Springer-Verlag.

[GHW11] Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable im-
plementations do not suffice for randomized distributed computation.
In Proceedings of the Forty-third Annual ACM Symposium on Theory
of Computing, STOC ’11, pages 373–382, New York, NY, USA, 2011.
ACM.

121

[GR14] Rachid Guerraoui and Eric Ruppert. Linearizability is not always a
safety property. In Proceedings of the 2nd International Conference on
Networked Systems, NETYS ’14, pages 57–69. Springer, 2014.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, January 1991.

[HHL+06] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
William N. Scherer, and Nir Shavit. A Lazy Concurrent List-Based
Set Algorithm, pages 3–16. Springer-Verlag, Berlin, Heidelberg, 2006.

[HHW12] Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly lineariz-
able implementations: Possibilities and impossibilities. In Proceedings
of the 2012 ACM Symposium on Principles of Distributed Computing,
PODC ’12, pages 385–394, New York, NY, USA, 2012. ACM.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463–492, July 1990.

[LAA87] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement
among unreliable asynchronous processes. In Advances in Computing
Research, 4:163–183, 1987.

[LV95] Nancy Lynch and Frits Vaandrager. Forward and backward simulations
i.: Untimed systems. Inf. Comput., 121(2):214–233, September 1995.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1996.

[SAGG+93] Jørgen F. Søgaard-Andersen, Stephen J. Garland, John V. Guttag,
Nancy A. Lynch, and Anna Pogosyants. Computer-assisted simula-
tion proofs. In Proceedings of the 5th International Conference on
Computer Aided Verification, CAV ’93, pages 305–319, London, UK,
UK, 1993. Springer-Verlag.

[Vid88] K. Vidyasankar. Converting Lamport’s regular register to atomic reg-
ister. Inf. Process. Lett., 28(6):287–290, August 1988.

122

	Abstract
	Acknowledgements
	Table of Contents
	Linearizability
	A Rudimentary Bank Account
	The Binary Consensus Problem
	Attempted Repair of Banking Example
	A Safe Rudimentary Bank Account

	Strong Linearizability
	A SRSW Implemented Using Bit Array
	Ameliorating Linearizability's Insufficiency

	Main Results and Related Work
	Abstract Data Types, Automata, and Simulations
	Abstract Data Types
	Input-Output Automata
	Linearizable and Strongly Linearizable Implementations
	Forward and Forward-Backward Simulations

	Equivalences between Linearizability and Simulation
	Linearizability and Forward-Backward Simulations
	Strong Linearizability and Forward Simulations

	Application of Equivalences to Implementation of Set ADT
	Linearizing contains Using remove
	Linearizing contains Using add

	Systems of ADT's
	Sequential Programs, Concurrent Systems, and Schedulers
	Linearizability of Systems

	Probability Distribution on System Executions
	Mappings between Coin Flips and Executions
	The Probability Function

	Comparing PIST's
	Generalizing Robustness
	Local Coin Flips

	Conclusion and Future Work
	Bibliography

