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ABSTRACT

The dissertation is composed by three chapters. In Chapter 2 (coauthored with

Matthew Wiswall) I develop new results for the identification and estimation of the

technology of children’s skill formation when children’s skills are unobserved. In

Chapter 3 I shed light on the importance of dynamic equilibrium interdependencies

between children’s social interactions and parental investments decisions in explaining

developmental differences between different social environments. In Chapter 4 (coau-

thored with Giuseppe Sorrenti) I study the effect of family income and maternal hours

worked on both cognitive and behavioral child development.
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Chapter 1

INTRODUCTION

The dissertation is divided in three chapters. In Chapter 2, coauthored with Matthew

Wiswall, we develop a new estimator for the process of children’s skill formation. The

wide dispersion of measured human capital in children and its strong correlation with

later life outcomes has prompted a renewed interest in understanding the determi-

nants of skill formation among children (for a recent review, see Heckman and Mosso,

2014b). However, the empirical challenges in estimating the skill formation process,

principally the technology of child development, is hampered by the likely imperfect

measures of children’s skills we have available. While measurement issues exist in

many areas of empirical research, they may be particularly salient in research about

child development. There exists a number of different measures of children’s skills,

and each measure can be arbitrarily located and scaled and provide widely differing

levels of informativeness about the underlying latent skills of the child. 1 In the

presence of these measurement issues, identification of the underlying latent process

of skill development is particularly challenging, but nonetheless essential because ig-

noring the measurement issues through ad hoc simplifying assumptions could severely

bias our inferences.

In this paper, we develop a new method to estimate the skill formation process

in children when skills are not observed directly but instead measured with error.

Rather than assuming skills are measured perfectly by a particular measure, we ac-

commodate the variety of skills measures used in practice and allow latent skills to be

1For a recent analysis of how measurement issues can be particularly salient, see Bond and Lang
(2013b,a) who analyze the black-white test score gap.
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measured with error using a system of arbitrarily located and scaled skill measures.

In our framework, we treat the parameters of the measurement model as “nuisance”

parameters and use transformations of moments of the measurement data to elim-

inate them, analogous to the transformations used to eliminate fixed effects with

panel data. We show non-parametric identification of the primitive parameters of the

production technology, without assuming any particular values for the measurement

process parameters or “re-normalizing” latent skills each period.

The heart of our identification analysis is a characterization of the classes of pro-

duction technologies which can be identified given different assumptions about the

measurement process. We introduce the concept of production technologies that have

a known location and scale, technologies which are implicitly restricted so that the

location and scale is already known. These known location and scale (KLS) tech-

nologies include the CES production technologies considered in a number of previous

papers (Cunha and Heckman, 2007; Cunha et al., 2010; Cunha and Heckman, 2008;

Pavan, 2015). Starting with this class of technologies, we show that standard measure-

ment error assumptions non-parametrically identify the primitive production function

parameters, up to a normalization on the initial conditions only. Importantly, identifi-

cation is obtained without restrictions on the later skill measures as imposed in some

previous papers, which can bias the production function estimates (see Agostinelli

and Wiswall (2016b) for a discussion).

Our identification analysis builds on previous work but offers a distinct approach

to the empirical challenges. Previous approaches apply the techniques developed

for cross-sectional latent factor models (Anderson and Rubin, 1956; Jöreskog and

Goldberger, 1975; Goldberger, 1972; Chamberlain and Griliches, 1975; Chamberlain,

1977a,b; Carneiro et al., 2003) to the dynamic latent factor models describing the

development of children’s skills. In an influential paper applying latent factor model-
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ing to child development, Cunha et al. (2010) identify the skill production technology

by first “re-normalizing” the latent skill distribution at each period, treating the

skills in each period as separate latent factors. While latent skills, which lack a

meaningful location and scale, require some normalization (say at the initial period),

repeated re-normalization every period is an unnecessary over-identifying restriction

if the production function estimated already has a known location and scale, as is

the case for the technology estimated by Cunha et al. (2010). We show that non-

parametric identification of this class of KLS production functions is possible without

these re-normalization restrictions, and our identification approach avoids imposing

restrictions these restrictions because they can bias the estimation (Agostinelli and

Wiswall (2016b)).

In an important extension of our baseline results, we develop additional restric-

tions on the measurement process which are sufficient for identification of more gen-

eral production technologies, including those exhibiting Hicks neutral total factor

productivity (TFP) dynamics and non-constant returns to scale. Using standard as-

sumptions, these more general technologies cannot be identified because the location

and scale of the technology cannot be separately identified from the location and

scale of the measures. These more general aspects of the skill development formation

process are nonetheless potentially important as restricting the technology can reduce

the permissible skill dynamics and productivity of investments, substantially chang-

ing our inferences about the child development process and our evaluation of policy.

Our paper provides the first identification results for these more general models. Our

analysis makes clear the key identification tradeoff researchers face: identification

of restricted KLS technologies is possible with standard measurement assumptions,

but identification of more general technologies requires stronger assumptions. We

evaluate the empirical relevance of these additional assumptions, and provide guid-
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ance to researchers to evaluate whether the measures available to them satisfy these

assumptions.

In the second part of our paper, we estimate a flexible parametric version of

our model using data from the US National Longitudinal Survey of Youth (NLSY).

We examine the development of cognitive skills in children from age 5 to age 14,

and estimate a model of cognitive skill development allowing for complementarties

between parental investment and children’s skills; endogenous parental investment

responding to the stock of children’s skills, maternal skills, and family income; Hicks

neutral dynamics in TFP; non-constant returns to scale; and unobserved shocks to

the investment process and skill production. Following Cunha et al. (2010), our

empirical framework treats not only the child’s cognitive skills as measured with

error, but investment and maternal skills as well.

Constructively derived from our identification analysis, we form a method of mo-

ments estimator. Our estimator is not only relatively simple and tractable but also

robust because it does not impose parametric distributional assumptions on the distri-

bution of latent skills and measurement errors, as is commonly imposed in previous

estimators. We jointly estimate the technology of skill formation, the process of

parental investments in children, and the adult distribution of completed schooling

and earnings, allowing the production technology and investment process to freely

vary as the child ages. Our estimates of high TFP and increasing returns to scale

at early ages indicate that investments are particularly productive early in the de-

velopment period. We also find that the marginal productivity of early investments

is substantially higher for children with lower existing skills, suggesting the optimal

targeting of interventions to disadvantaged children.

Our estimates of the dynamic process of investment and skill development allow us

to estimate the heterogeneous treatment effects of some simple policy interventions.
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We show that even a modest transfer of family income to families at age 5 would

substantially increase children’s skills and completed schooling, with the effects larger

for low income families. When we compare these estimates to those using models

which restrict the technology or ignore measurement error, we estimate policy effects

which are substantially smaller, indicating that the generalities we allow are important

quantitatively to answering key policy questions.

The paper is organized as follows. In the next two sections, we develop the model

of skill development and the measurement process. The next sections analyze the

identification of this model, first under weak assumptions about the measurement

process, and then under stronger assumptions about measurement which allows the

identification of more general technology specifications, including those with TFP

dynamics and non-constant returns to scale. The remainder of the paper develops

our estimator and discusses our estimation results.

In Chapter 3, I study the effects of social interactions on the dynamics of chil-

dren’s skills. This paper analyzes the effect of social interactions on skill formation

in children. In particular, I build and estimate a model of child development, where

children grow up in different environments, which are defined by: peers’ composi-

tion, neighborhood quality and school quality. The dynamics of skills is governed

by a technology of skill formation, which depends upon parental investments, the

current child’s skills and the environment-specific inputs. In this framework, I shed

light on the importance of the dynamic effects of children’s endogenous social inter-

actions and the parental investment decisions in explaining developmental differences

between different environments. A growing consensus in the literature emphasizes the

importance of neighborhoods in shaping children’s opportunities later in life (Chetty

and Hendren, 2016a,b; Chetty et al., 2016a,b). However, despite extensive research,

the mechanisms behind these results remain unexplained. This paper reconciles the
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previous findings of childhood exposure to neighborhood with the role of children’s

social interactions in child development.

This project advances the current literature of child development by building and

estimating a dynamic equilibrium model of children’s skill formation with two inno-

vative empirically grounded features. First, within different environments, children

endogenously select their peer groups based on their preferences for their peers’ char-

acteristics. Social interactions can exhibit the tendency of children to become friends

with others who share similar characteristics: a phenomenon called homophily bias.

Second, parental investments respond to changes in peer groups. Decisions regarding

parental investments depend upon a child’s current peers, as well as on expectations

about future peer groups. Equilibrium effects arise from the socially determined

aspects of parental investments. In this framework, parental investments not only

directly affect a child’s skills, but also affect the development of the child’s peers

through social interactions. Consequently, the individual return on investing in chil-

dren is affected by the equilibrium parental engagement within each environment.

Skills are formed dynamically through a technology of skill formation, which de-

fines the complementarities between parental investments and the other inputs of

child development in producing a child’s skills: the current endowment of skills, the

skills of peers, the school quality and the neighborhood quality. In this framework,

there are two main channels through which peers affect parental behavior. First,

contemporaneous changes in current peers and parental investments are related to

the static complementarity between the two inputs. Second, permanent changes in

peer composition affect parental behavior through the dynamic complementarity in

skill formation. In other words, a permanent change in peer composition affect the

return of parental investments through the dynamic aspect of skill formation.
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The model is estimated using data on U.S. adolescents from the National Longi-

tudinal Study of Adolescent Health (Add Health). Add Health provides information

about friendships within each school, which is key for analyzing the formation of peer

groups. Moreover, information about child achievements and parental investments

are available.

The identification of the model comes with two main challenges: (i) unobserved

heterogeneity in how peer groups are endogenously formed; and (ii) children’s skills

and parental investments are unobserved. Ignoring these issues by using correlational

relationships would cause the model’s estimates and subsequent quantitative analysis

to be biased.

The first challenge presents itself from the fact that peer groups may be formed

based on additional unobserved heterogeneity, which can cause correlation between

peer groups’ realization and the residual unexplained variation in skill formation. To

address this concern, I implement a standard instrumental variable (IV) approach in

the literature. This identification strategy exploits random variations in cohort com-

position within school / across cohorts. The idea behind this identification strategy

is simple: random changes in cohort compositions affect the opportunities for friend-

ships between children. These shifts in the formation of peer groups affect the return

of parental investments and the subsequent parental decisions. 2

In addressing the second challenge, Cunha et al. (2010) illustrate that even the

classical measurement error in measuring a child’s skills can cause important biases

in estimating the technology of children’s skill formation. Following the approach

in Cunha et al. (2010) and Agostinelli and Wiswall (2016a), I implement a dynamic

2For previous use of similar source of identifying variation, see Hoxby (2000); Hanushek et al.

(2003); Ammermueller and Pischke (2009); Lavy and Schlosser (2011); Lavy et al. (2012); Bifulco
et al. (2011); Burke and Sass (2013); Card and Giuliano (2016); Carrell et al. (2016); Olivetti et al.
(2016); Patacchini and Zenou (2016)
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latent factor model, which allows me to identify the joint distribution of latent skills

and investments by exploiting multiple measurements in the data.

I estimate the model via simulated method of moments (SMM). I find that parental

investments and peers are substitute inputs in producing children’s skills. At the

same time, I find a strong dynamic complementarity between parental investments

and future expected peers. As a result of these two findings, a permanent change in

peer composition has two opposing effects on parental investments. On one hand,

“better” peers generate contemporaneous substitution effects in investment decisions

due to the high substitutability in the production function. On the other hand, higher

expected future skills for peers produce an “income” effect through the dynamic

complementarity of skill formation. Parents have the incentive to invest more in their

children because a higher-skilled child benefits more from higher-skilled peers in the

future.

Furthermore, my estimates suggest that the formation of peer groups displays an

extensive degree of homophily bias. I show evidence of homophily bias with respect

to a child’s race and level of latent skills. A child who is in the lower quartile of the

skill distribution and belongs to a minority group is four times more likely to befriend

a same-race child than a different-race child. In addition, the same child is two times

more likely to befriend a same-skill and same-race child than a same-race child in the

upper quartile of skill distribution.

I first use the estimated model to analyze the extent to which growing up in

different environments accounts for the variation in children’s outcomes. I find sizable

effects for children moving to better environments. The effects are in proportion to

the exposure time. The earlier children are moved, the higher the effect. A child

who is moved at age 12 to an environment where children have 1 percentile higher

skills at age 16 exhibits, on average, an improvement in her skills rank at age 16 by
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0.63 percentiles. The average effect is 0.48 percentiles if the child is moved at age

15. As model validation, I show that my findings track (out-of-sample) the quasi-

experimental findings of childhood exposure effects of neighborhoods for the U.S.

from Chetty and Hendren (2016a). In addition, my model allows me to decompose

these effects. I find that peers account for more than half of the exposure effects.

The relative importance of peers for the exposure effects underlines the role of

policies that change peers’ composition and promote socioeconomic integration in en-

vironments, as a way to improve outcomes for disadvantaged children. I find that by

moving the most disadvantaged children (in the lower quartile of skill distribution)

from a low-income environment to a high-income environment generates important

dynamic equilibrium effects, with heterogeneous treatment effects for both the moved

and receiving children. I first consider a large-scale policy, i.e. a policy that moves

a sizable fraction of disadvantaged children into a higher-income environment (ap-

proximately 5% of the population of the receiving cohort). I find that the policy

increases the skills of the moved population of 16-year-old children, on average, by

approximately 0.40 standard deviations. On average, I do not find any adverse ef-

fect for receiving children. On the contrary, when the fraction of moved population

increases to 30%, I find that the policy generates winners and losers. First, I find

that the policy increases the skills of the moved population of 16-year-old children on

average by 0.22 standard deviations. In contrast, there is an adverse effect for receiv-

ing children, with the skills of 16-year-old children decreasing, on average, by 0.15

standard deviations. Additionally, I find that children who remained in the sending

environment benefit from the outflow of the most disadvantaged companions, with

an average increase in skills at age 16 of 0.17 standard deviations.

I find that large-scale changes in peers’ composition generate important equilib-

rium feedback effects, and as a result amplify the policy effects. Ignoring equilibrium
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effects would lead to large biases in counterfactual policy predictions for children’s

final skills. In the case of the larger policy, I find that the policy predictions for the

children’s skills in the receiving environment would be approximately seven times

smaller. Part of the bias is due to the dynamic-equilibrium feedback effects on

parental investments. In fact, in the absence of dynamic-equilibrium feedback ef-

fects, the static complementarity between parents and peers dominates the dynamic

effects of the policy.

I find that policy effects for receiving and remaining children reduce in magnitude

as the fraction of moved children decreases. An increase of inflow of the most disad-

vantaged children from the low-income environment to the high-income environment

increases the probability of the receiving children becoming friends with the new com-

panions. For the same reason, an increase of the outflow of the moved population

benefits children who remain in the sending environment. For children who were

moved, the opposite is true. The higher the outflow of disadvantaged companions,

the higher the chances that the moved children remain friends with each other in the

new environment.

My structural model allows me to analyze the distributional policy effects. I find

that large-scale changes in peers’ composition exhibit heterogeneous treatment effects

as a result of the endogenous formation of new peer groups. Children with lower skills

(in the first quartile of the skills distribution in each subpopulation): (i) benefit the

most in leaving disadvantaged social environments; (ii) benefit the most amongst the

children who remained in the sending environment; (iii) are the ones who are more

adversely affected in receiving the new peers. Furthermore, I find stronger policy

effects for minorities, with detrimental effects in black and Hispanic children living

in the receiving environment. This is explained by the fact that most of the moved

children are minorities, and as a result, the minority children from the receiving
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environment are more likely to interact with the new companions because of the race

effects in the endogenous formation of peer groups. In line with this result, previous

empirical studies pointed out that peer effects seem to be stronger intra-race and for

minorities (see Hoxby, 2000; Angrist and Lang, 2004; Imberman et al., 2012)

The paper will be presented as follows. In Section 3.2, I discuss the related liter-

ature. In Section 3.3, I present the data used for the empirical work and preliminary

empirical results. In Section 3.4 and 3.5, I present the model. In Section 3.6, I de-

scribe the identification strategy. Section 3.7 contains a discussion of the structural

estimation and results. Section 3.8 and Section 3.9 discuss the quantitative analysis

and the model validation. Section 3.10 concludes.

In Chapter 4, coauthored with Giuseppe Sorrenti, we study the effect of family

income and maternal hours worked on child development. Poverty represents one of

the major threats to child development. In 2015, about 15 million children in the

United States (21 percent of all children) were living in families with incomes below

the federal poverty threshold (National Center for Children in Poverty, 2015). What

effect does growing up in a disadvantaged family have on a child’s achievements, and

how can living conditions be improved to promote child development?

Support programs such as the Earned Income Tax Credit (EITC), the Food Stamp

Program, and the Child Tax Credit attempt to reduce family poverty and especially

that experienced by children. Many of these programs (e.g. the EITC) provide cash

transfers on the condition that the recipient works (conditional cash transfers). Such

conditions might shape child development by introducing a trade-off between the

income effect, due to a surge in family income, and the substitution effect, due possibly

to parental labor supply responses and a decrease in time parents spend with their

child.
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The arising trade-off poses an important question: is the change in family income

more important than time spent with parents in shaping child development? In this

study we answer this question by appraising the contemporaneous effect of changes in

family income and maternal labor supply on cognitive and behavioral development of

children. We implement an instrumental variable (IV) approach exploiting changes

in the EITC benefits over time and shocks in the local labor demand as instruments

for family income and maternal labor supply. In this sense, we bridge the gap be-

tween the literature dealing with the estimate of the effect of family income on child

development and the literature on the effect of maternal labor supply and child-with-

parents time. Moreover, we provide important insights on what policies can foster

maternal employment and child development contemporaneously.

Family income is an important predictor of a child’s success and future oppor-

tunities. Figure 4.1 shows the wide dispersion in children’s achievements by family

income. Both cognitive (Panel A) and behavioral (Panel B) development measures

exhibit a steep income gradient, with high-achieving children placed in the top deciles

of the after-tax family income distribution. The impact of family income on child de-

velopment has been widely debated by economists. Previous studies such as Duncan

et al. (2011), Levy and Duncan (1999), and Blau (1999) have found a positive relation

between family economic conditions during childhood and child achievements. More

recently, works such as Løken et al. (2012) and Dahl and Lochner (2012b) employ

instrumental variable techniques to confirm this positive effect in Norway and in the

U.S., respectively.

In addition to studies regarding the income effect, a vast body of economic litera-

ture associates maternal labor supply during childhood with possible negative effects

on child development and future opportunities (Baum, 2003; Ruhm, 2004; Bernal,

2008; Carneiro and Rodriguez, 2009; Bernal and Keane, 2011; Hsin and Felfe, 2014;
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Carneiro et al., 2015; Del Bono et al., 2016; Fort et al., 2017). As examples, according

to Bernal and Keane (2011) each year of child care (versus maternal time input) be-

fore age 6 decreases test scores by 2.1 percent (0.11 standard deviations). Similarly,

Carneiro et al. (2015) estimate that the probability of dropping out of high school

decreases by 2 percent and wages increase by 5 percent at age 30 with the more time

mothers spend with their children in the first months of life.

This paper reconciles these strands of the literature. For most families, an increase

in income is due to an increase in maternal labor supply. In this case, a surge

in monetary resources is associated with a potential decline in the time the mother

spends with her offspring. To understand the possible trade-off between family income

and maternal labor supply, we build upon the empirical model in Dahl and Lochner

(2012b) by considering not only the role of family income but also the role of maternal

hours worked in shaping child development. 3 The work by Dahl and Lochner

(2012b) exploits quasi-experimental variation in the EITC to analyze the causal effect

of family income on child achievement. However, the EITC is designed to incentivize

individuals (including mothers) to work. 4 Mothers, and especially single mothers,

are usually the main target group of these welfare programs and are most responsive

to incentives (Meyer, 2002; Blundell and Hoynes, 2004; Blundell et al., 2016). This

affects the maternal allocation of time between working and parenting, with potential

effects on children’s test scores. More precisely, endogenous labor supply responses

affect child development through two channels. An increase in maternal hours worked

generates an income effect, with additional resources coming from a boost in labor

3Dahl and Lochner (2017), after the analysis by Lundstrom (2017), adjust for a coding error in
their previous work in the creation of the after-tax total family income. The results of the original
and reviewed studies are similar.

4Hotz and Scholz (2003) and Nichols and Rothstein (2016) summarize theoretical and empirical
findings about the effect of the EITC on maternal labor supply. Blundell et al. (2016) analyze the
case of the U.K. and find substantial elasticities for women’s labor supply (in particular for the
group of single mothers).
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income. At the same time, changes in maternal hours worked can also generate

a substitution effect, with changes in the time that mothers allocate to child care

(Heckman and Mosso, 2014a; Del Boca et al., 2014a). Moreover, this paper is related

to previous works that consider the effect of time and monetary resources on children

by estimating a structural model of household choices and child development (see Del

Boca et al., 2014a; Mullins, 2016).

An additional contribution of our study relates to the broad definition used for

child development. While many works (see Dahl and Lochner, 2012b; Del Boca et al.,

2014a) exclusively focus on test scores for cognitive achievements, we extend the anal-

ysis to proxies for child noncognitive development. 5 As stated by Heckman and

Rubinstein (2001), standard test scores only capture some of the multiple skills de-

termining individual success and well-being. Moreover, early childhood interventions

that boost personal traits such as self-discipline or motivation are usually deemed as

extremely effective (Heckman, 2000). Socio-emotional skills are often more predictive

of later-life success than cognitive skills. 6

Our empirical analysis is based on the National Longitudinal Study of Youth 1979

(NLSY79) data set matched with its Children (NLSY79-C) section. This combined

data set provides longitudinal information about measures of child development, fam-

ily income, and hours worked by the mother. At the same time, the longitudinal

structure allows us to account for individual unobserved heterogeneity through child

fixed effects. Cognitive development is measured through children’s achievements on

the Peabody Individual Achievement Test (PIAT), a set of tests assessing proficiency

5We also explore features related to early childhood development (1–7 years old).

6For example, data from the Perry Preschool Program, a high-quality U.S. preschool education
program, suggest that increased academic motivation generates 30 percent of the effects on achieve-
ment and 40 percent on employment for females. Reduced externalizing behavior decreases lifetime
violent crime by 65 percent, lifetime arrests by 40 percent, and unemployment by 20 percent. Visit
heckmanequation.org/resource/early-childhood-education-quality-and-access-pay-off/ for a discus-
sion of these results.
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in mathematics and reading. To study noncognitive development, we take advantage

of the Behavior Problems Index (BPI). This comprehensive index is comprised of

several different indicators for behavior such as aggressiveness or hyperactivity that

are likely to shape children’s future life opportunities.

Given the strong interdependence between maternal labor supply and family in-

come, there is no suitable identifying source of variation that is likely to exclusively

affect one variable of interest. Hence, in order to identify the single causal effect of

either family income or maternal labor supply on child development, it is necessary

to allow for the endogeneity of both inputs. To deal with this challenge, we exploit

two instrumental variables. The first instrument is based on the longitudinal changes

in monetary benefits of the EITC, one of the largest U.S. federal income support

programs. This variation provides us with exogenous changes in family resources to

allocate in child development. At the same time, only working people are eligible for

EITC benefits, creating incentives for mothers to work. The second instrument is

constructed by using longitudinal shocks in the local labor market demand. Shifts in

local demand for labor affect equilibrium prices (wages) and, subsequently, the family

income resources and the equilibrium labor quantity. 7

Our instrumental variable analysis suggests different results for cognitive and be-

havioral development. An additional $1,000 in family income improves cognitive

development by 4.4 percent of a standard deviation. 8 The same income change has

no effect on child behavioral development. An additional $1,000 improves behavioral

7We provide evidence throughout the paper that both identifying sources of variation do not con-
found other contemporaneous state-specific factors, like state-specific trends in children’s achieve-
ments or changes in the per-pupil financial resources of schools in different states. Moreover, in the
spirit of Goldsmith-Pinkham et al. (2017), we assess the validity of our labor demand shock instru-
ment by formally testing for any parallel pre-trends between the instrument and child development.
We reject the hypothesis of the existence of any pre-trends.

8This result is in line with the findings of Dahl and Lochner (2012b) and Dahl and Lochner
(2017).
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development by 1.3 percent of a standard deviation, and the result is not statistically

significant.

We find that the income effect is counterbalanced by a negative effect of hours

worked by the mother on child development. An increase in maternal labor supply of

100 hours per year causes a statistically significant decrease in both child cognitive

and behavioral development by approximately -6 percent and -5 percent of a standard

deviation. The strong negative impact of the number of hours worked by the mother,

both in terms of cognitive test scores and behavioral problems, encourages the debate

in a new dimension: how to address concerns about the effect of maternal employment

on child development.

We attempt to answer this question in the last part of our study. By using the

time diary component of the American Time Use Survey (ATUS), we illustrate the

mechanism underlying the negative impact of hours worked by the mother on child

development. Similar to Sayer et al. (2004), Guryan et al. (2008), and Fox et al.

(2013), we find that working mothers, conditional on income, invest less time in their

children. As a consequence, labor market conditions play a role in shaping the effect

of labor supply on child development.

We focus on the role of wages and show that, according to our results, an after-

tax hourly wage up to $13.50 makes the substitution effect (less maternal time with

the child) dominant over the income effect (higher earnings). With higher earnings,

families face the option of substituting their decreased time investment with better

and more productive alternatives (e.g. nonparental care, additional schooling, youth

clubs, music activities, etc.).

We look for possible heterogeneous effects in different subgroups in order to high-

light the potential importance of alternative inputs in the child development process.

Behavioral development does not display evidence of heterogeneous impacts of income
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or hours worked by the mother. On the contrary, the negative effect of hours worked

by the mother on cognitive development only appears in less educated, low-skilled, or

single mothers. More educated and high-skilled mothers are likely to access to better

nonparental child care options. Moreover, the differences in the labor supply effect

can be reconciled with heterogeneous preferences for child care activities, generating

different patterns of time allocation between working, child care, and leisure time

(Guryan et al., 2008).

We further investigate these channels by comparing the investment in the child by

maternal employment status and family income. The Child Development Supplement

(CDS) of the Panel Study of Income Dynamics (PSID) collects detailed information

about a wide set of children’s activities and parental investment for a representative

sample of U.S. families. Results obtained with this data set highlight some evidence

of differential investments as a response to the maternal employment status when

low-income families are compared to high-income families.

Policymakers might obtain several suggestions from our results. First, by showing

the trade-off between the income and substitution effect in terms of child development,

this work speaks to the growing body of literature about the effect of conditional

versus unconditional cash transfers. Many income subsidies worldwide base monetary

transfers on work requirements. In this context, only looking at the effect of income

on child development might lead to biased policy predictions. Our results support

the idea that policies aimed at fostering maternal labor supply can be beneficial to

child development if integrated with specific consideration about a minimum wage

or the taxation of family income. Alternatively, policies that encourage maternal

employment in low-income families should also consider how to guarantee alternative

sources of child care to support child development.
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The remainder of the paper is structured as follows. Section 4.2 introduces the

empirical model and the identification strategy. The data used for the analysis are

presented in Section 4.3, while the results are described in Section 4.4. Section 4.5

sheds light on the mechanism underlying the main findings of the work. Section 4.6

concludes.
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Chapter 2

IDENTIFICATION AND ESTIMATION OF THE TECHNOLOGY OF

CHILDREN’S SKILL FORMATION (WITH MATTHEW WISWALL)

2.1 Introduction

The wide dispersion of measured human capital in children and its strong corre-

lation with later life outcomes has prompted a renewed interest in understanding the

determinants of skill formation among children (for a recent review, see Heckman and

Mosso, 2014a). However, the empirical challenges in estimating the skill formation

process, principally the technology of child development, is hampered by the likely

imperfect measures of children’s skills we have available. While measurement issues

exist in many areas of empirical research, they may be particularly salient in research

about child development. There exists a number of different measures of children’s

skills, and each measure can be arbitrarily located and scaled and provide widely

differing levels of informativeness about the underlying latent skills of the child. 1

In the presence of these measurement issues, identification of the underlying latent

process of skill development is particularly challenging, but nonetheless essential be-

cause ignoring the measurement issues through ad hoc simplifying assumptions could

severely bias our inferences.

In this paper, we develop a new method to estimate the skill formation process

in children when skills are not observed directly but instead measured with error.

Rather than assuming skills are measured perfectly by a particular measure, we ac-

commodate the variety of skills measures used in practice and allow latent skills to be

1For a recent analysis of how measurement issues can be particularly salient, see Bond and Lang
(2013b) and Bond and Lang (2013a) who analyze the black-white test score gap.
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measured with error using a system of arbitrarily located and scaled skill measures.

In our framework, we treat the parameters of the measurement model as “nuisance”

parameters and use transformations of moments of the measurement data to elim-

inate them, analogous to the transformations used to eliminate fixed effects with

panel data. We show non-parametric identification of the primitive parameters of the

production technology, without assuming any particular values for the measurement

process parameters or “re-normalizing” latent skills each period.

The heart of our identification analysis is a characterization of the classes of pro-

duction technologies which can be identified given different assumptions about the

measurement process. We introduce the concept of production technologies that have

a known location and scale, technologies which are implicitly restricted so that the

location and scale is already known. These known location and scale (KLS) tech-

nologies include the CES production technologies considered in a number of previous

papers (Cunha and Heckman, 2007; Cunha et al., 2010; Cunha and Heckman, 2008;

Pavan, 2015). Starting with this class of technologies, we show that standard measure-

ment error assumptions non-parametrically identify the primitive production function

parameters, up to a normalization on the initial conditions only. Importantly, identifi-

cation is obtained without restrictions on the later skill measures as imposed in some

previous papers, which can bias the production function estimates (see Agostinelli

and Wiswall (2016b) for a discussion).

Our identification analysis builds on previous work but offers a distinct approach

to the empirical challenges. Previous approaches apply the techniques developed

for cross-sectional latent factor models (Anderson and Rubin, 1956; Jöreskog and

Goldberger, 1975; Goldberger, 1972; Chamberlain and Griliches, 1975; Chamberlain,

1977a,b; Carneiro et al., 2003) to the dynamic latent factor models describing the

development of children’s skills. In an influential paper applying latent factor model-
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ing to child development, Cunha et al. (2010) identify the skill production technology

by first “re-normalizing” the latent skill distribution at each period, treating the

skills in each period as separate latent factors. While latent skills, which lack a

meaningful location and scale, require some normalization (say at the initial period),

repeated re-normalization every period is an unnecessary over-identifying restriction

if the production function estimated already has a known location and scale, as is

the case for the technology estimated by Cunha et al. (2010). We show that non-

parametric identification of this class of KLS production functions is possible without

these re-normalization restrictions, and our identification approach avoids imposing

restrictions these restrictions because they can bias the estimation (Agostinelli and

Wiswall (2016b)).

In an important extension of our baseline results, we develop additional restric-

tions on the measurement process which are sufficient for identification of more gen-

eral production technologies, including those exhibiting Hicks neutral total factor

productivity (TFP) dynamics and non-constant returns to scale. Using standard as-

sumptions, these more general technologies cannot be identified because the location

and scale of the technology cannot be separately identified from the location and

scale of the measures. These more general aspects of the skill development formation

process are nonetheless potentially important as restricting the technology can reduce

the permissible skill dynamics and productivity of investments, substantially chang-

ing our inferences about the child development process and our evaluation of policy.

Our paper provides the first identification results for these more general models. Our

analysis makes clear the key identification tradeoff researchers face: identification

of restricted KLS technologies is possible with standard measurement assumptions,

but identification of more general technologies requires stronger assumptions. We

evaluate the empirical relevance of these additional assumptions, and provide guid-
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ance to researchers to evaluate whether the measures available to them satisfy these

assumptions.

In the second part of our paper, we estimate a flexible parametric version of

our model using data from the US National Longitudinal Survey of Youth (NLSY).

We examine the development of cognitive skills in children from age 5 to age 14,

and estimate a model of cognitive skill development allowing for complementarties

between parental investment and children’s skills; endogenous parental investment

responding to the stock of children’s skills, maternal skills, and family income; Hicks

neutral dynamics in TFP; non-constant returns to scale; and unobserved shocks to

the investment process and skill production. Following Cunha et al. (2010), our

empirical framework treats not only the child’s cognitive skills as measured with

error, but investment and maternal skills as well.

Constructively derived from our identification analysis, we form a method of mo-

ments estimator. Our estimator is not only relatively simple and tractable but also

robust because it does not impose parametric distributional assumptions on the distri-

bution of latent skills and measurement errors, as is commonly imposed in previous

estimators. We jointly estimate the technology of skill formation, the process of

parental investments in children, and the adult distribution of completed schooling

and earnings, allowing the production technology and investment process to freely

vary as the child ages. Our estimates of high TFP and increasing returns to scale

at early ages indicate that investments are particularly productive early in the de-

velopment period. We also find that the marginal productivity of early investments

is substantially higher for children with lower existing skills, suggesting the optimal

targeting of interventions to disadvantaged children.

Our estimates of the dynamic process of investment and skill development allow us

to estimate the heterogeneous treatment effects of some simple policy interventions.
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We show that even a modest transfer of family income to families at age 5 would

substantially increase children’s skills and completed schooling, with the effects larger

for low income families. When we compare these estimates to those using models

which restrict the technology or ignore measurement error, we estimate policy effects

which are substantially smaller, indicating that the generalities we allow are important

quantitatively to answering key policy questions.

The paper is organized as follows. In the next two sections, we develop the model

of skill development and the measurement process. The next sections analyze the

identification of this model, first under weak assumptions about the measurement

process, and then under stronger assumptions about measurement which allows the

identification of more general technology specifications, including those with TFP

dynamics and non-constant returns to scale. The remainder of the paper develops

our estimator and discusses our estimation results.

2.2 A Model of Skill Development in Children

In this section, we lay out our simple stylized model of skill development. In later

sections, we develop a more detailed, and in many respects more general, empirical

model which we take to the data.

Child development takes place over a discrete and finite period, t = 0, 1, . . . , T ,

where t = 0 is the initial period (say birth) and t = T is the final period of childhood

(say age 18). There is a population of children and each child in the population is

indexed i. For each period, each child is characterized by a stock of skills θi,t, with

θi,t > 0 for all t and i, and a flow level of investments Ii,t, withe Ii,t > 0 for all i and

t. For each child, the current stock of skills and current flow of investment produce

next period’s stock of skill according to the skill formation production technology:
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θi,t+1 = ft(θi,t, Ii,t) for t = 0, 1, . . . , T − 1 (2.1)

where equation (2.1) can be viewed as dynamic state space model with θi,t+1 the

state variable for each child i. The production technology ft(·) is indexed with t to

emphasize that the technology can vary over the child development period. According

to this technology, the sequence of investments and the initial stock of child skills θi,0

produces the sequence of skill stocks for each child i: θi,0, θi,1, . . . , θi,T .

There are several features of the technology which have particular relevance both

to understanding the process of child development and in evaluating policy interven-

tions to improve children’s skills. We provide a more detailed analysis of policy inter-

ventions after the presentation of the full empirical model, but a few brief points are

important to emphasize here. First, a key question is the productivity of investments

at various child ages. At what ages are investments in children particularly productive

in producing future skills (“critical periods”) and, conversely, at what ages is it diffi-

cult to re-mediate deficits in skill? Second, how does heterogeneity in children’s skills,

at any given period, affect the productivity of new investments in children? Comple-

mentarity in the production technology between current skill stocks and investments

implies heterogeneity in the productivity of investments across children. Third, how

do investments in children persist over time and affect adult outcomes? Do early

investments have a high return because they increase the productivity of later in-

vestments (dynamic complementarities) or do early investments “fade-out” over time

as they are not reinforced by later investments? These features of the technology of

skill development then directly inform the optimal timing of policy interventions –

the optimal investment portfolio across early and late childhood – and the optimal

targeting of policy – to which children should scarce resources be allocated to, with

the goal of using childhood interventions to affect eventual adult outcomes.
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2.3 Measurement

The focus of this paper is estimating the technology determining child skill devel-

opment (2.1) while accommodating the reality that researchers have at hand various

arbitrarily scaled and imperfect measures of children’s skills. Our framework recog-

nizes that children’s skills are not directly measured by a single measure, but there

exists multiple measures which we hypothesize can have some relationship to the

unobserved latent skill stock θt.

2.3.1 Measurement Model

In our baseline case, we follow the literature and assume a commonly used (log)

linear system of measures. In later sections,. we explore a variety of other measures

and whether our identification results extend to these other types of measures. Each

measure m for child i skills in period (age) t is given by

Zi,t,m = µt,m + λt,m ln θi,t + ǫi,t,m, (2.2)

For period t, we have Mt ∈ {1, 2, . . .} measures for each child i skills (ln θi,t): m =

1, 2, . . . ,Mt. Zi,t,m are the measures, µt,m are the measurement intercepts, and λt,m

are the measurement “factor loadings” or “scaling” parameters, with λt,m > 0 for

all t and m. The µt,m and λt,m measurement parameters allow the latent skills to

be represented by arbitrarily located and scaled measures. Finally, ǫi,t,m are the

individual measurement errors, with E(ǫi,t,m) = 0 for all t,m (across children), which

given the free intercept µt,m, the assumption of mean zero ǫt,m errors is without

loss of generality. To focus on the key identification issues, we assume investments

It are observed without error. In the empirical model which we take to data, we

allow for investments to also be measured with error and allow the investments to be
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endogenously determined by the existing skill stocks.

This measurement system has two important advantages over the alternative ap-

proach of using a single measure and assuming it perfectly measure skills, that is

assuming Zi,t,m = ln θi,t. First, the measurement system allows for noisy measures,

in particular allowing measures to differ in their relative “noise” to “signal” ratio,

V (ǫi,t,m)/λ
2
t,mV (ln θi,t,m), thus allowing for the possibility that some measures have

higher correlations to latent skills than others. Given this flexibility the researcher

can then form estimators to take advantage of the greater signal some measures have

available.

A second advantage is that the measurement parameters allow a kind of “ar-

bitrariness” in the relationship between the measure and the latent skills. An ideal

measurement system is one which can accommodate arbitrary changes in the location

and scale of measures. Allowing the measures to have free measurement parameters

µt,m and λt,m, which can vary by measure, allows the measurement model to capture

the arbitrary location or scaling of particular measures. 2 We show below that the

estimator of the primitive production function parameters we develop is robust to

changes in the location and scale of the measures up to the initial normalization.

For the remainder of the paper, we omit the children’s i subscript to reduce

notational clutter. All expectations operations (E, V ar, Cov, etc) are defined over

the population of children (indexed i). For random variable Xi,t, we generically define

κt ≡ E(Xi,t) =
∫
Xi,tdFt, with Ft the distribution function for random variable Xi,t

in period t. For simplicity, we drop the i subscript and equivalently write this as

κt ≡ E(Xt).

2Measures, such as test scores, can be arbitrarily scaled and located in the sense that for any
measure Z, we could create a new measures Z ′ = a + bZ, where a and b > 0 are some constants,
and the new measure Z ′ therefore preserves at least the ordinal ranking of latent skills given by Z.

8



2.3.2 Normalization

Latent skill stocks θt have no natural scale and location. A normalization is then

required to fix the scale and location of the latent skill stocks to a particular measure.

We normalize the latent skill stock to one of the measures of initial period skills:

Normalization 1 Initial period normalizations

(i) E(ln θ0) = 0

(ii) λ0,1 = 1

This normalization fixes the location and scale of latent skills θ0 to a particular

measure, Z0,1, where the choice of the normalizing measure as measure m = 1 is

arbitrary. For the normalizing measure, we then have the following:

Z0,1 = µ0,1 + ln θ0 + ǫ0,1,

where µ0,1 = E(Z0,1) given the normalization E(ln θ0) = 0. The latent skill stock θ0

shares the scale of the normalizing measure in the sense that an 1 unit increase in log

latent skills is equal to a 1 unit increase in the level of the normalized measure Z0,1:

∂Z0,1

∂ ln θ0
= 1, where, for intuition, we have treated the Z as a deterministic function. For

symmetry with the latent skills, we also normalize log investment to be mean zero in

the initial period E(ln I0) = 0. 3

While the issue of model normalizations are typically trivial in most cases, in the

case of dynamic models such as this, the type of assumed normalization is actually

3In practice, if investments are truly observed without error, this can be accomplished by simply
de-meaning the investment data so that the sample mean of ln I0 is zero. In the more general model
we estimate, we assume investment is also observed with error and there are multiple measures of
latent investments. For now, given we assume investment is observed, this normalization is merely
for convenience.
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quite important. Our limited normalization for the initial period skills is quite dif-

ferent from the “re-normalization” approach used in much of the prior research (see

Cunha and Heckman, 2007; Cunha et al., 2010; Attanasio et al., 2015a,b). In this

approach, skills are re-normalized every period such that latent skills are assumed to

be mean log stationery (E(ln θt) = 0 for all t) and latent skills “load” onto a differ-

ent arbitrarily measure in each period (λt,1 = 1 for all t). Agostinelli and Wiswall

(2016b) analyze the implications of the re-normalization approach and find that in

many standard cases these assumptions are not necessary for point identification and

can bias the estimates of the production technology.

We argue that our limited normalization is appropriate for the dynamic setting

of child development we analyze. With our normalization for the initial period only,

latent skills in all periods share a common location and scale with respect to the one

chosen normalizing measure. This approach is analogous to deflating a nominal price

series to a particular base year; that is, “normalizing” prices to some chosen base

year (e.g. 2012 US Dollars). 4 As in the price normalization context, the choice

of normalizing skill measure does affect the interpretation of the production function

parameters, and we return to this issue when interpreting our particular estimates.

2.3.3 Ignoring Measurement Error

Before analyzing the identification of the model, it is helpful to motivate our anal-

ysis by briefly pausing to consider the consequences if we were to ignore measurement

error. Consider a simple regression estimator in which we regress a measure of skills

4Given the normalizing measure we use is for young children, as children develop, their stock of
skill may increase to the extent that the implied measure of skill using the initial normalizing measure
Z0,1 exceeds the sample maximum level of the measure. This is not an issue for the identification of
the model since the measurement system assumes no floor or ceiling to the measures. The measures,
and the normalization we use, fixes only the location and scale of the skills, but not the maximum or
minimum values. We briefly discuss the issues of measurement floor and ceilings in the Appendix.
For an example of an alternative measurement system which respects the discreteness, floor, and
ceiling of a particular skill measure, see Del Boca et al. (2014b).
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in period t+ 1 on a measure of skills in period t:

Zt+1,m = β0 + β1Zt,m + ηt,m

The Ordinary Least Squares (OLS) estimand is

β1(OLS) =
Cov(Zt+1,m, Zt,m)

V (Zt,m)

Assuming the measurement system above (2.2) and that the measurement errors ǫt,m

are uncorrelated with latent skills ln θt for all t,m and uncorrelated across time, we

have

β1(OLS) =
λt+1,mλt,mCov(ln θt+1, ln θt)

λ2t,mV (ln θt) + V (ǫt,m)

This expression makes clear several problems in naively using observed measures to

uncover latent production function relationships given by Cov(ln θt+1, ln θt). First, the

standard issue of attenuation bias: as the “noise” in the measure V (ǫt,m) increases

the OLS estimand goes to 0, biasing the inference of the relationship in latent skills

given by Cov(ln θt+1, ln θt). Second, the OLS estimand β1(OLS) is a combination

of model primitives (production technology parameters) and measurement parame-

ters, but we cannot directly separately identify them from the data. One common

solution is simply to set λt+1,m = 1 and λt,m = 1 (a “single measure” approach).

If this assumption is incorrect, then the resulting inference about latent production

function relationships are biased. 5 The problem is even more severe if we consider

5Other approaches include age standardizing the measures such that the measures have 0 mean
and standard deviation 1 at each child age. However this approach does not imply λt+1,m = 1.
Another approach is to re-normalize measures at all periods. This approach biases the resulting
estimates. See Agostinelli and Wiswall (2016b) for more discussion of these issues. Similar issues
arise if we to examine conditional expectations, E(Zt+1,m|Zt,m), instead of covariances. In this case,
the intercept of the measurement equations, µt,m and µt+1,m, would also come into play.
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regressions including higher order terms (with the goal of identifying some curvature

or complementarities in the skill production process):

Zt+1,m = β0 + β1Zt,m + β2Z
2
t,m + ηt,m

where

Z2
t,m = (µt,m + λt,m ln θt + ǫt,m)

2

In this case, λt,m (factor loadings), µt,m (measurement intercepts), and in general

the ǫt,m distribution need to be identified to uncover structural relationships between

latent skills.

2.4 Identification

This section provides our main identification results. These identification results

are constructive in the sense that they form the basis of our estimator of the skill

development technology.

Our identification analysis proceeds in two steps. First, we identify the distribu-

tion of latent skills and investments in the initial period G0(θ0, I0). Our identification

of the initial conditions follows standard arguments used in the current literature

(e.g.: Cunha et al., 2010), but for completeness we fully specify this first step of the

identification analysis. The second step of our identification analysis is to identify the

production technology. This identification analysis is new.

We consider identification under the following assumptions about the joint distri-

bution of latent skills ({θt}t), investments {It}t, and measurement errors ({ǫt,m}t,m):

Assumption 1 Measurement model assumptions:

(i) ǫt,m ⊥ ǫt,m′ for all t and m 6= m′

12



(ii) ǫt,m ⊥ ǫt′,m′ for all t 6= t′ and all m and m′

(iii) ǫt,m ⊥ It′ for all t and t′ and all m

(iv) ǫt,m ⊥ θt′ for all t and t′ and all m

Assumption 1 (i) is that measurement errors are independent contemporaneously

across measures. Assumption 1 (ii) is that measurement errors are independent over

time. Assumption 1 (iii) and (iv) are that measurement errors in any period are

independent of the latent stock of skills and parental investments in any period.

While these assumptions are strong in some sense, they are common in the current

literature. 6

2.4.1 Identification of Initial Conditions

Under Normalization 1, Assumption 1, and with at least 3 measures in the first

period, M0 ≥ 3, we identify the λ0,2, λ0,3, . . . , λ0,M0 factor loadings from ratios of

measurement covariances:

λ0,m =
Cov(Z0,m, Z0,m′)

Cov(Z0,1, Z0,m′)
, (2.3)

for m 6= m′, m 6= 1, m′ 6= 1, where measure m = 1 is the normalizing measure.

Further, under the normalization that E(ln θ0) = 0 (Normalization 1), we identify

the µ0,1, µ0,2, . . . , µ0,M0 intercepts from

µ0,m = E(Z0,m). (2.4)

We then construct the following “residual” skill measures from the original raw mea-

sures:

6Our assumption of full independence is sufficient, but not necessary, for at least some of our
identification analysis. Below, we point out instances where weaker assumptions, allowing for some
forms of dependence among measures and among measures and latent variable, can be used for
identification.
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Z̃0,m =
Z0,m − µ0,m

λ0,m
, (2.5)

where Z̃0,m identifies the sum of the latent skill and a scaled version of the measure-

ment error:

Z̃0,m = ln θ0 +
ǫ0,m
λ0,m

.

Applying the Kotalarski Theorem (Kotalarski 1964) to the {Z̃0,m}M0
m=1 residual

measures, conditional on each level of investment I0, we identify the distribution of θ0

for any level of investment I0. This then allows us to identify the joint distribution of

latent skills and investment in the initial period G0(θ0, I0), up to the normalizations

given in Normalization 1. 7

2.4.2 Identification of the Production Technology

With the initial distribution for latent skills and investmentsG0(θ0, I0) identified in

the first step, we next identify the process of child development given by the sequences

of production technologies f0(θ0, I0), . . . , fT−1(θT−1, IT−1). Our identification analysis

is sequential, and uses the production technology in period t, ft(θt, It), to identify the

distribution of latent skills (and investments) in the next period, Gt+1(θt+1, It+1). We

first establish a general identification result for any periods t and t + 1. We then

conclude this section by describing the sequence of identification steps starting from

the initial period t = 0.

7The key necessary condition for the Kotalarski theorem to hold in this case is that at least two

of the residual measures in the set of measures {Z̃0,m}M0

m=1 have full support conditional on I0, that

is Z̃0,m ∈ R conditional on I0.
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From Measures to Latent Relationships

Given the generalities we have allowed, in which we do not assume that skills are

measured perfectly in data, identification of the production technology now poses

considerable challenges. The production technology in some period t would in prin-

ciple be identified by the relationship between output θt+1 and inputs θt, It. We

do not directly observe latent skills θt+1 or θt in data. Instead, we observe relation-

ships among measures Zt+1,m and Zt,m. Under Assumption 1, we have the following

relationship between measures and latent variables:

E(Zt+1,m|Zt,m, ln It) = µt+1,m + λt+1,mE(ln θt+1|Zt,m, ln It)

This expression shows that E(Zt+1,m|Zt,m, ln It) does not identify a production func-

tion relationship directly, but instead a combination of latent skill relationships and

measurement parameters.

In the following Lemma, we first show that we can identify dynamic production

function relationships, E(ln θt+1| ln θt, ln It), from measures of latent skills in periods

t and t+1, Zt,m and Zt+1,m, up to the measurement parameters for the t+1 measure,

µt+1,m and λt+1,m.
8

Lemma 1 Given i) Gt(θt, It) is known, ii) a pair of measures Zt,m and Zt+1,m which

satisfy Assumption 1, and iii) measurement parameters for Zt,m (µt,m, and λt,m) are

known, E(Zt+1,m| ln θt = a, ln It = ℓ) is identified for some (a,ℓ) ∈ R2 and is equal to

µt+1,m + λt+1,mE(ln θt+1| ln θt = a, ln It = ℓ).

Proof. See Appendix.

8Note that the measure m for t+1, Zt+1,m, which is used to measure ln θt+1, can be a completely
different “kind” of measure from the measure Zt,m used to measure ln θt. The use of the same
measure index m does not connote any relationship.
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Lemma 1 establishes that while we cannot use realizations of measures Zt,m = z to

identify particular values of the latent variable θt = p, we can identify moments of

the latent distribution.

Substituting the production technology θt+1 = ft(θt, It), Lemma 1 shows that

measures Zt+1,m and Zt,m identify the following:

E(Zt+1,m| ln θt = a, ln It = ℓ) = µt+1,m + λt+1,m ln ft(e
a, eℓ) (2.6)

Note that the left-hand side of (2.6) is not directly observed in data (given the un-

observability of ln θt) but is identified from observed measures (Lemma 1). The

right-hand side of (2.6) is a combination of production function relationships and

measurement parameters µt+1,m and λt+1,m.
9 If we do not know the measurement

parameters µt+1,m, λt+1,m, we cannot directly use E(Zt+1| ln θt, ln It) to identify the

production technology. One simple but problematic solution to this problem is to

assume values for the µt+1,m and λt+1,m parameters, and identification is trivially

obtained. 10 However, if the assumptions on the measurement parameters are

incorrect, then estimation under these assumptions can be biased.

Transformations to Eliminate Measurement Parameters

Our solution to this problem is to treat the measurement parameters µt,m and λt,m

for all t > 0 as “nuisance” parameters and use transformations of the moments (2.6)

to eliminate them. Using four pairs of (ln θt, ln It) = {(a1, l1), (a2, l2), (a3, l3), (a4, l4)},
9Note that we have used the fact that in our stylized model, there are no stochastic elements to

the production process, hence θt+1 given θt, It is a constant for all t. We return to the topic of how
to identify a shock to the production technology below. In brief, adding a mean 0 (log) shock to the
production technology does not change the main identification analysis. Re-write the technology as
θt+1 = ft(θt, It) exp(ηt), where E(ηt) = 0 and ηt is independent of θt, It, and ǫt,m, ǫt+1,m. Log skills
are then ln θt+1 = ln ft(θt, It) + ηt, and mean log skills are ln ft(θt, It) as before.

10For example, the researcher could assume the values µt,m = 0 and λt,m = 1 for all t and m, as
in the case when all measures are assumed to be “classical” in the sense that Zt,m = ln θt + ǫt,m,
and ǫt,m is simply a mean zero measurement error.
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we compute the following transformation of the conditional expectations:

E(Zt+1,m| ln θt = a1, ln It = ℓ1)− E(Zt+1,m| ln θt = a2, ln It = ℓ2)

E(Zt+1,m| ln θt = a3, ln It = ℓ3)− E(Zt+1,m| ln θt = a4, ln It = ℓ4)

=
ln ft(e

a1 , eℓ1)− ln ft(e
a2 , eℓ2)

ln ft(ea3 , eℓ3)− ln ft(ea4 , eℓ4)
(2.7)

where the values ak, ℓk, k = 1, 2, 3, 4 are such that E(Zt+1,m| ln θt = a3, ln It = ℓ3) 6=

E(Zt+1,m| ln θt = a4, ln It = ℓ4).

The left-hand side of (2.7) is a transformation of moments which are identified

directly from the measures of skills for periods t+1 and t (Lemma 1), and the right-

hand side is the corresponding transformation of the technology. The transformation

in (2.7) has eliminated the measurement parameters µt+1,m and λt+1,m without making

any assumption about their values. This transformation is analogous to the transfor-

mation used in panel data analysis where differences at the observation level are used

to eliminate common fixed effects. 11 As in the panel data literature, we exploit

the particular form of the measurement equations and Assumption 1 to find an ap-

propriate transformation to eliminate the nuisance measurement parameters. Other

transformations can accomplish the same goal, and for convenience in some examples,

we work with ratios of covariances, which already implicitly eliminate dependence on

the measurement intercepts µt,m.

Location and Scale of the Production Technology

Much of our analysis centers on the classes of production technologies which can be

identified given that some inputs (latent skills) are measured with error. Crucial to

our analysis is whether the production technology has a known location and scale

or whether the location or scale is unknown in the sense that it depends on free

11Consider the model yi,t = µi+X ′
i,tβ+ ǫi,t, and the within transformation of the data yi,t+1−yit

eliminates the µi fixed effects.
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parameters which need to be estimated. This concept is new to the production

function identification literature, as far as we know. This concept is key to our analysis

because our results below show that we can identify the production technologies up

to location and scale, and can therefore point identify production technologies which

already have a known location and scale.

We first define the concept of a production function with “known location and

scale”:

Definition 1 A production function ft(θt, It) has known location and scale (KLS) if

for two non-zero input vectors (θ′t, I
′

t) and (θ′′t , I
′′

t ), where the input vectors are distinct

(θ′t 6= θ′′t or I ′t 6= I ′′t ), the output ft(θ
′

t, I
′

t) and ft(θ
′′

t , I
′′

t ) are both known (do not depend

on unknown parameters), finite, and non-zero.

A production technology with known location and scale implies that for a change

in inputs from (θ′t, I
′

t) to (θ′′t , I
′′

t ), the change in output ft(θ
′

t, I
′

t)− ft(θ′′t , I ′′t ) is known.

Other points in the production possibilities set may be unknown, i.e. depend on free

parameters to be estimated.

For example, consider the class of Constant Elasticity of Substitution (CES) skill

production technologies, the class of technologies estimated in a number of previous

studies (e.g.: Cunha et al., 2010). 12 The CES technology is

θt+1 = (γtθ
φt
t + (1− γt)I

φt
t )1/φt . (2.8)

with γt ∈ (0, 1) and φt ∈ (−∞, 1], and φt → −∞ (Leontif), φt = 1 (linear), φt → 0

(log-linear, Cobb-Douglas). The elasticity of substitution is 1/(1− φt).

12The functions estimated by Cunha et al. (2010) also include a mean zero production function
shock. We consider identification of these functions below. In general, including a mean zero shock
does not change the main results of the identification analysis, see Footnote 9.
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The production technology (2.8) satisfies Definition 1 because for inputs It = θt =

α > 0, θt+1 = α. That is, for inputs which are known to be equal at value α, we

also know the output is α as well. This property of known location and scale is

related to constant returns to scale property of this function, but constant returns to

scale is not necessarily a sufficient property to satisfy Definition 1, as shown below.

While the scale and location of the production function (2.8) are known, other points

in the production possibilities set are determined by the free parameters γt and φt.

Identifying these remaining parameters is the subject of the section.

Another example of KLS production technologies are those based on the translog

function, a generalization of the Cobb-Douglas production technology which does not

restrict the elasticity of substitution to be constant:

ln θt+1 = γ1t ln θt + γ2t ln It + γ3t(ln θt)(ln It) (2.9)

with
∑3

j=1 γjt = 1. Consider the points (θt, It) = (1, 1) and (e, e). For these points,

the output of the production technology is known at ln θt+1 = 0 and 1, respectively,

and thus this function satisfies Definition 1.

In contrast, a class of technologies which does not satisfy the known location and

scale property (Definition 1) is the following

θt+1 = At(γtθ
φt
t + (1− γt)I

φt
t )1/φt (2.10)

with At > 0 representing Total Factor Productivity (TFP). The previous case (2.8)

is a special case of (2.10) with At = 1. In the more general case, the addition of the

unknown TFP process term At implies that the scale of the function is unknown. For

example, for θt = It = α > 0, we have ft(α, α) = Atα, where At is a free parameter.

This class of technologies has constant returns to scale but does not have a known
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location and scale. 13

Another class of technologies which does not satisfy Definition 1 is CES technolo-

gies without constant returns to scale:

θt+1 = (γtθ
φt
t + (1− γt)I

φt
t )ψt/φt . (2.11)

where ψt > 0 is a returns to scale parameter, with ψt = 1 constant returns to scale,

ψt < 1 decreasing returns to scale, and ψt > 1 increasing returns to scale. In this

case, ft(α, α) = αψt . For this function, while we know the point ft(1, 1) = 1, and can

identify the location of the function, we do not know a second point in the production

possibilities set, and therefore cannot identify the scale of the function. Similarly, the

translog function (2.9) with
∑3

j=1 γj,t not equal to a known constant would not satisfy

the KLS definition (Definition 1).

Per Period Identification of the Production Technology

We next proceed to the main identification result. We show that with the distribution

of skills and investments in period t, Gt(θt, It) and the measurement parameters, µt,m

and λt,m, known for period t, then a single measure of skills in period t + 1, Zt+1,m,

with sufficient support, non-parametrically identifies a production technology θt+1 =

ft(θt, It) with known location and scale (satisfying Definition 1). The key aspect of the

identification result is that we identify the production technology without knowledge

of the period t+1 measurement parameters, µt+1,m and λt+1,m. We specify the exact

conditions for identification in the following theorem.

13Similarly, a function where the factor share parameters did not sum to a known constant would

also lack a known scale, for example θt+1 = (γ1tθ
φt

t + γ2tI
φt

t )1/φt , with γ1t + γ2t 6= 1. In this case,
θt = α, It = α, we have ft(α, α) = ((γ1t + γ2t)α)

1/ψt .
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Theorem 1 If i) the distribution of skills Gt(θt, It) is known, ii) measurement pa-

rameters µt,m, λt,m are known, iii) there exists at least one measure Zt+1,m which

satisfies Assumption 1, iv) the measure Zt+1,m has full support, Zt+1,m ∈ R, and v)

the production technology ft(θt, It) has known location and scale (Definition 1), then

the production technology ft(θt, It) is identified for all (θt, It) ∈ R2
+.

Proof. See Appendix.

Theorem 1 indicates that we can identify production technologies which have a

known scale (Definition 1), such as the CES technologies (2.8) considered in much

of the previous literature (see Cunha and Heckman, 2007; Cunha et al., 2010). The

limitation of Theorem 1 is that we cannot apply it to more general production tech-

nologies which do not satisfy the known location and scale property. In the next

section, we propose stronger assumptions on the measurement process which could

allow for identification of more general production technologies.

Sequential Production Function Identification

Theorem 1 shows identification of the production technology for period t, θt+1 =

ft(θt, It), given measures Zt+1,m and Zt,m. We now apply these per-period results to

show how we can sequentially identify the full sequence of production technologies,

f0(θ0, I0), . . . , fT−1(θT−1, IT−1), and hence the distribution of the sequence of skill

stocks (θ1, . . . , θT ). The minimal data we require are at least 3 measures of latent

skills for the initial period Z0,1, Z0,2, Z0,3, and a single measure m of latent skills in

the following periods, Z1,m, Z2,m, . . . , ZT,m.

The sequential identification proceeds as follows. First, using the measures for

the initial period, following the analysis above, we identify the initial distribution

of skills and investments G0(θ0, I0), and initial measurement parameters, µ0,m and
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λ0,m, for some measure Z0,m. Then, applying Theorem 1, we identify the production

technology for period 0, θ1 = f0(θ0, I0), where the technology is assumed to be of

the known location and scale class (satisfying Definition 1). With the production

function identified, we identify the distribution of period 1 skills from the production

technology:

G1(θ1|I0) = pr(θ1 ≤ θ|I1) =
∫
pr(f0(θ0, I0) ≤ θ)dG0(θ0|I0)

where G1(θ1|I0) is the conditional distribution of latent skills, which given that in-

vestments are assumed observed, can then be used to identify the joint distribution

of skills and investment.

We then proceed to identify the measurement parameters for measure Z1,m used

to measure period 1 latent skills. The factor loadings can be identified from the across

time correlation in measures of skills, Cov(Z1,m, Z0,m):

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(ln θ1, ln θ0)
.

where Cov(ln θ1, ln θ0) is identified from the production technology and the initial

distribution of skills:

Cov(ln θ1, ln θ0) = Cov(ln f0(θ0, I0) , ln θ0).

=

∫
(ln f0(θ0, I0) ln θ0)dG(θ0, I0)

The measurement intercept for period 1 is then identified from

µ1,m = E(Z1,m)− λ1,mE(ln θ1),

where as above E(ln θ1) is identified from the production technology, as above:
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E(ln θ1) =

∫
ln f0(θ0, I0)dG(θ0, I0).

This shows the identification of the technology f0(θ0, I0) and the measurement

parameters for µ1,m and λ1,m. We can continue to follow these steps, applying

Lemma 1 and Theorem 1 sequentially, to identify the technology in the next periods,

f1(θ1, I1), . . . , fT−1(θT−1, IT−1).

2.4.3 Intuition

Before we continue with examples and extensions to our identification concept,

we pause to consider some simple intuition for our idea in a general setting. Consider

a general production technology Y = f(X1, X2), where Y is some latent unobserved

output and X1 and X2 are some observed inputs. We have measure Z of the output,

and the measure has error of the form we consider above: Z = µ+ λ lnY + ǫ, where

ǫ is uncorrelated with lnY , X1, and X2, and µ and λ are measurement parameters.

The ratio of covariances of the measure of the output Z with the two inputs X1, X2

is

Cov(Z,X1)

Cov(Z,X2)
=
λCov(lnY,X1)

λCov(lnY,X2)

=
Cov(lnY,X1)

Cov(lnY,X2)
.

The ratio of covariances has eliminated the “nuisance” measurement parameter

λ. Working with covariances, rather than conditional expectations, has already elim-

inated dependence on the measurement intercept µ. This expression makes clear that

even with output mis-measured in data and with free unknown measurement param-

eters allowing for arbitrary scale and location, we can still learn something about the

production technology. For example, the ratio in this example is related to the relative
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marginal product of the two inputs X1, X2. Considering ratios of higher order covari-

ances, such as Cov(Z,X2
1 )/Cov(Z,X1) and Cov(Z,X1X2)/Cov(Z,X1), can similarly

provide information about the “curvature” of the production function and the degree

of complementarities between inputs. Our results above show identification in models

which generalize this simple example, allowing for a dynamic production technology

and mis-measured inputs as well.

2.4.4 Examples

We next proceed to demonstrate the identification results using simple two period

models and commonly used production technologies.

Example 1 Log-Linear (Cobb-Douglas) Technology

There are two periods T = 2. Skills in t = 1 are given by the following log-linear

(Cobb-Douglas) production technology:

ln θ1 = γ0 ln θ0 + (1− γ0) ln I0 (2.12)

where γ0 ∈ (0, 1) is the unknown production function parameter we would like to

identify. Like the more general CES class to which it belongs, this production function

has a known location and scale (Definition 1).

We have three measures of initial period skills: Z0,1, Z0,2, Z0,3. We have one mea-

sure of skills in period 1, Z1,m. The measures satisfy Assumption 1.

We normalize initial period skills as E(ln θ0) = 0 and initial investments E(ln I0) =

0. We normalize the factor loading for the first measure as λ0,1 = 1. Following the

analysis above, we then identify the remaining measurement factor loadings λ0,2, λ0,3

and measurement intercepts µ0,1, µ0,2, µ0,3 for the initial period measures. We then

identify the joint distribution of the latent skills and investments, G0(θ0, I0). Applying
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Lemma 1 identifies E(Z1,m| ln θ0, ln I0) for values of ln θ0, ln I0 from the measures Z1,m

and Z0,m and the identified measurement parameters µ0,m and λ0,m.

Next we apply Theorem 1 to identify the production function parameter γ0. The

key to our analysis is that we identify the production function primitive without

making any assumptions about the values of measurement parameters µ1,m or λ1,m.

We compute the following transformations of conditional expectations (algebra is

given in the Appendix):

E(Z1,m| ln θ0 = a, ln I0 = 0)− E(Z1,m| ln θ0 = 0, ln I0 = 0)

E(Z1,m| ln θ0 = 1, ln I0 = 1)− E(Z1,m| ln θ0 = 0, ln I0 = 0)
=
γ0a

1

Letting ∆ be the left-hand side of the expression and solving for the production

function parameter, we have

γ0 =
∆

a

This expression shows that the unknown parameter γ0 of the production technology

is identified from the transformation of the conditional expectations. Identification

of γ0 requires only a single measure of latent skills in period 1 and is invariant to the

measurement parameters, µ1,m and λ1,m.

With the production technology f0(θ0, I0) identified, we can now identify the mea-

surement parameters for Z1,m. λ1,m is identified from

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(ln θ1, ln θ0)

where we can use any of the three first period measures, m = 1, 2, 3 to form the

right-hand side. Substituting for the production technology, we have

λ1,m =
Cov(Z1,m, Z0,m)

λ0,mCov(γ0 ln θ0 + (1− γ0) ln I0, ln θ0)
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=
Cov(Z1,m, Z0,m)

λ0,m(γ0V (ln θ0) + (1− γ0)Cov(ln θ0, ln I0))
.

Given the identification of γ0, and that we have already identified the initial joint

distribution of θ0, I0 (and can compute V (ln θ0) and Cov(ln θ0, ln I0) ), we can compute

the right-hand side.

µ1,m is then identified from

µ1,m = E(Z1,m)− λ1,mE(ln θ1),

where, for this particular production technology, we have E(ln θ1) = γ0E(ln θ0) +

(1− γ0)E(ln I0) = 0, given the normalization for the initial period (E(ln θ0) = 0 and

(E(ln I0) = 0). As described in more detail below, the mean of log latent skills will

in general not be 0 in periods after the initial period. For alternative production

functions, E(ln θ1) can be computed from the identified production technology.

Example 2 General CES Technology

In our second example, we maintain the same setup as Example 1 but consider

the general CES function (2.8):

θ1 = (γ0θ
φ0
0 + (1− γ0)I

φ0
0 )1/φ0 .

with parameters defined as in (2.8). For this technology, there are two unknown

production function parameters we wish to identify, γ0 and φ0. We have the same

measures as in Example 1 and identify the initial condition as before.

As in Example 1, we compute the following:

E(Z1,m| ln θ0 = ln a1, ln I0 = ln ℓ1)− E(Z1,m| ln θ0 = ln a2, ln I0 = ln ℓ2)

E(Z1,m| ln θ0 = ln a3, ln I0 = ln ℓ3)− E(Z1,m| ln θ0 = ln a4, ln I0 = ln ℓ4)
=

ln f0(a1, ℓ1)− ln f0(a2, ℓ2)

ln f0(a3, ℓ3)− ln f0(a4, ℓ4)
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Now define ∆1 to be the left-hand side of the above equation and take values

a1 6= 0, a3 6= 0, where a1 6= a3, a2 = a4 = ℓ2 = ℓ4 = 1, ℓ1 = 0 and a3 = ℓ3 = e1. We

have (see Appendix for omitted algebra):

∆1 =
ln f0(a1, 0)− ln f0(1, 1)

ln f0(e1, e1)− ln f0(1, 1)
,

∆1 =
ln(γ0a1)

1
,

Solving for γ0 , we have

γ0 =
e∆1

a1

This expression identifies γ0. With γ0 identified, we form a second ratio:

∆2 =
ln f0(a1, 1)− ln f0(1, 1)

ln f0(a3, 0)− ln f0(1, 1)
,

=
ln(γ0a

φ0
1 + 1− γ0)

ln(γ0a3)
,

Solving for φ0 (see Appendix for omitted algebra), we have

φ0 =
ln

(
(γ0a3)∆2−1+γ0

γ0

)

ln(a1)

This analysis shows that a single measure of period 1 skills identifies the unknown

production function parameters γ0, φ0 without imposing any restrictions on the values

of the period 1 measurement parameters. We can follow the same analysis as in

Example 1 to identify the measurement parameters.
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2.4.5 Comparison to Cunha et al. (2010)

Our results show identification of a production function with known location and

scale without imposing any particular values for the measurement parameters after

the initial period. Cunha et al. (2010) provide identification results in which they not

only normalize initial period latent skills, as we do here, but also “re-normalize” latent

skills each period. In our notation, their re-normalization restriction is E(ln θ0) =

E(ln θ1) = · · · = E(ln θT ) = 0 and λ0,1 = λ1,1 = · · · = λT,1 = 1 for the normalized

measure m = 1.

Some normalization is necessary (and we impose a normalization on the initial

period), but, as we prove here, the additional restrictions on later periods are not

necessary for identification of a known location and scale technology. The function

Cunha et al. (2010) estimate is a known location and scale CES technology of the

form given by (2.8). Because this function is already restricted (as compared to the

more general functions with non-constant returns to scale and TFP dynamics), the

additional normalizations are unnecessary and over-identifying. Importantly these

re-normalization restrictions are not cost free as these additional normalizations can

bias the technology estimates toward the Cobb-Douglas technology and away from

more general patterns of substitution (see Agostinelli and Wiswall, 2016b).

2.4.6 Errors-in-Variables Formulation

The KLS class of technologies can also be understood as a restriction in a tradi-

tional error-in-variables model (Chamberlain (1977a)). In this literature, identifica-

tion is often achieved by proportionality restriction (linear regression parameters are

assumed proportional to each other) within the context of a “reduced form” linear

regression model. In our case, the restrictions we consider come from restrictions
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on the primitive production function, which is intuitively appealing because we can

understand the consequences of these restrictions on the primitive production rela-

tionships.

Consider the Cobb-Douglas case (2.12). Using the normalizations on the initial

period, we proceed as before and form measures for the initial period:

Z̃0,m =
Z0,m − µ0,m

λ0,m
= ln θ0 + ǫ0,m.

We also have a single measure of period 1 skills θ1 given by

Z1,m = µ1,m + λ1,m ln θ1 + ǫ1,m

As in all of our analysis above, the measurement parameters µ1,m and λ1,m are treated

as free parameters.

Substituting the production technology into the period 1 measurement equation,

we have

Z1,m = µ1,m + λ1,m[γ0 ln θ0 + (1− γ0) ln I0] + ǫ1,m

Substituting one of the measures for ln θ0, say Z̃0,m, we have

Z1,m = µ1,m + λ1,m[γ0(Z̃0,m − ǫ̃0,m) + (1− γ0) ln I0] + ǫ1,m

with ǫ̃0,m = ǫ0,m/λ0,m.

Re-arranging, we have

Z1,m = µ1,m + λ1,mγ0Z̃0,m + λ1,m(1− γ0) ln I0 + (ǫ1,m − λ1,mγ0ǫ̃0,m)

= β0 + β1Z̃0,m + β2 ln I0 + π1,m (2.13)
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where β0 = µ1,m, β1 = λ1,mγ0, β2 = λ1,m(1 − γ0), and π1,m = ǫ1,m − λ1,mγ0ǫ̃0,m. The

“reduced form” equation (2.13) now has the standard errors-in-variables form: (2.13)

is a linear regression of a measure of period 1 skills Z1,m on a measure for period 0

skills Z̃0,m. The β1 and β2 coefficients are combinations of the measurement factor

loading λ1,m and the production function parameter γ0.

Identification takes two steps. First, the standard error-in-variables problem is

that the OLS regression estimands for β1 and β2 do not identify β1 and β2. We can

solve this problem using any number of standard techniques. In this setting with

multiple measures available satisfying independence assumptions, a second measure

for period 0 skills, Z̃0,m′ , can be used as an instrument for Z̃0,m, and we identify β1 and

β2. Second, with β1 and β2 identified, we can then solve for the underlying primitive

parameters γ0 and λ1,m:

γ0 =
β1

β1 + β2
, λ1,m = β1 + β2 and µ1,m = β0

The key to the identification here is that this commonly used production function

(2.12) is already restricted (the factor shares sum to 1) and hence we can identify the

production function parameters separately from the measurement parameters. With-

out this restriction on the production function, a function ln θ1 = γ0,θ ln θ0+γ0,I ln I0,

where γ0,θ and γ0,1 are free parameters and do not sum to 1, point identification is

not possible as there would be three unknown parameters γ0,θ, γ0,I , and λ1,m and only

two regression coefficients β1, β2.

2.4.7 Robustness to Alternative Types of Measures

One of the characteristics of the data used to study child development is the rich

variety of skill measures. Here we considered identification where the skill measures

are in a “raw” form: each measure is a linear function of the latent log skill. This mea-
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surement system, while commonly assumed in the prior literature, is in some respects

a “best case.” In the Appendix, we briefly discuss alternative forms of measures and

re-examine whether we can identify the same types of production technologies using

these alternative measures. We consider four classes of measures which are sometimes

encountered empirically: (i) age-standardized measures where the raw measures are

transformed ex post (in the sample) to have mean 0 and standard deviation 1; (ii)

relative measures where the measures reflect not the level of a child’s skill but the

child’s skill relative to the population mean (i.e. other children); (iii) ordinal mea-

sures which provide a discrete ranking of children’s skills; and (iv) censored measures

where the measures are truncated with a “floor” (finite minimum value) and/or a

“ceiling” (finite maximum value).

For the age-standardized and relative measures, we find that our identification

results continue to hold because these alternative measures can be expressed as al-

ternative linear functions of the latent skills with particular measurement intercepts

and factor loadings. Our identification results are invariant to these measurement pa-

rameters as the measurement parameters would be “transformed away,” as described

above (2.7). More generally, our identification results are robust to any linear in-

creasing transformation of the original raw measures. On the other hand, without

additional assumptions, the latter two classes of measures would appear to not allow

non-parametric identification, at least globally, as these measures do not provide a

one-to-one mapping between latent variables and measures (in expectation) as with

the linear continuous measurement system we consider here.

2.5 Identification of General Technologies

The preceding analysis demonstrated that production functions with known loca-

tion and scale (KLS, Definition 1) are non-parametrically identified using measures
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of latent skills that satisfy Assumption 1. This class of production technologies in-

clude the CES technologies analyzed in much of the previous work (see Cunha and

Heckman, 2007; Cunha et al., 2010). These types of production functions are re-

stricted, and these restrictions can affect our inferences about the child development

process and the effects of policy interventions, as we demonstrate empirically below.

14 We next consider classes of technologies which are more general and no longer

have a known location and scale, and we analyze identification of these more general

technologies under additional assumptions about the measurement error process. We

conclude this section with a discussion of what empirical measures may justify these

additional assumptions.

2.5.1 Identifying Production Technologies with Dynamics in TFP

Consider a general class of technologies which exhibit Hicks-neutral TFP growth:

θt+1 = Atf̃t(θt, It) (2.14)

where At > 0 is the TFP term and the f̃t(θt, It) sub-function is a known location and

scale (KLS) production technology. An example of this class of functions is the CES

production technologies augmented with TFP dynamics:

θt+1 = At(γtθ
φt
t + (1− γt)I

φt
t )1/φt

We first establish that our identification result for KLS production technologies

fails in this case because we cannot separately identify the TFP parameter At from

the measurement parameters. To see this, write the production technology in logs:

14See the Appendix for more discussion. For example, a CES technology with constant returns to
scale implies that the elasticity of skill formation with respect to investment must be between 0 and
1, regardless of the data. This restriction can then bias downward the effects on skill formation of
investment and interventions which increase investment.
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ln θt+1 = lnAt + ln f̃t(θt, It)

Note that At is the scale of the production technology in levels, but lnAt is the

location of the production function in logs.

Next consider the following difference in the conditional expectations for a latent

log skill measure m, Zt+1,m:

E(Zt+1,m| ln θt = a1, ln It = ℓ1)− E(Zt+1,m| ln θt = a2, ln It = ℓ2)

= µt+1,m + λt+1,m(lnAt + ln f̃t(e
a1 , eℓ1))− [µt+1,m + λt+1,m(lnAt + ln f̃t(e

a2 , eℓ2))]

= λt+1,m(ln f̃t(e
a1 , eℓ1)− ln f̃t(e

a2 , eℓ2))

From this expression, it is clear that the TFP location lnAt cannot be identified.

Without further restrictions, the location of the production function (in logs) can-

not be separately identified from the location of the measurement equations (which

measure skills in logs) given by µt,m intercept.

Given the failure of identification for this more general technology, it is natural

to ask what additional assumptions would be sufficient for identification. We show

that if we have some auxiliary information on the relationship between measurement

intercepts over time, then we can identify the At TFP terms in production functions

of the form (2.14. We consider identification under the following assumption:

Assumption 2 For some measures Zt+1,m = µt+1,m + λt+1,m ln θt+1 + ǫt+1,m and

Zt,m′ = µt,m′ + λt,m′ ln θt + ǫt,m′, we have µt+1,m = g(µt,m′), where g(·) is a known

relationship.

Whether Assumption 2 holds depends on the particular measures the researcher

has available. We discuss the applicability of this assumption to our particular data
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and measures in our empirical application. This assumption could be justified if

the measure in period t + 1 and period t are age-invariant measures, as discussed

below, where for example the measure is the same test given to children of different

ages. In this case, it is plausible that the measures have the same location so that

µt+1,m = µt,m. This assumption of age-invariant intercepts is of course sufficient but

not necessary. And, to be clear, Assumption 2 does not require the researcher to

assume any particular values for the measurement intercepts, but simply that they

are related to each other in a known way.

We next present identification results which show that with Assumption 2, and

the other assumptions previously used to prove Theorem 1, we can now identify skill

development technologies of the form given in (2.14) which do not have a known

location and scale:

Theorem 2 Consider a production technology of the form ft(θt, It) = Atf̃t(θt, It)

where f̃t(θt, It) has known scale and location (Definition 1) and At ∈ R++. Under

Assumption 1, Assumption 2, the full support assumption on some measure Zt+1,m

and the conditions for Theorem 1, the technology f̃t(θt, It) and At are separately iden-

tified.

Proof.

The identification of f̃t(θt, It) follows directly from Theorem 1, as the unknown At

term is “differenced” away allowing identification of the f̃t(θt, It) KLS sub-function.

We identify the factor loading for the measure λt+1,m as well because identification of

this parameter does not depend on the At value. We then identify At from the mean

of the measure of skills in period t+ 1, E(Zt+1,m), and re-arranging for lnAt:

lnAt =
E(Zt+1,m)− (µt+1,m + λt+1,mE(ln f̃t(θt, It)))

λt+1,m
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From Assumption 2, with µt,m known, we also identify the measurement intercept for

t+ 1 from µt+1,m = g(µt,m).

From the proof we have some intuition for our result. As is common in the

literature estimating TFP in a variety of contexts, TFP here is also identified by the

residual growth in mean measured skills from period 0 to period 1 (scaled by λt+1,m

factor loading), netting out the growth due to period t inputs θt, It. Identification of

the full sequence of production technologies then proceeds as above in a sequential

fashion, and we identify the production function parameters, including the sequence

of At TFP terms, for all periods. In the estimation sections below, we use this

identification result constructively to develop an estimator for the TFP sequence.

2.5.2 Example

Next consider an example:

Example 3 Log-Linear (Cobb-Douglas) Technology with TFP

Return to the two period Cobb-Douglas example considered above (Example 1)

but now add a scaling factor A0 > 0:

ln θ1 = lnA0 + (γ0 ln θ0 + (1− γ0) ln I0)

Assume the single period 1 measure Z1,m satisfies Assumption 2 and µ1,m = g(µ0,m)

for some m = 1, 2, 3. We proceed as before to identify γ0 from

E(Z1,m| ln θ0 = a, ln I0 = 0)− E(Z1,m| ln θ0 = 0, ln I0 = 0)

E(Z1,m| ln θ0 = 1, ln I0 = 1)− E(Z1,m| ln θ0 = 0, ln I0 = 0)
=

lnA0 + γ0a− lnA0

lnA0 + 1− lnA0

where the lnA0 TFP terms drop out of the expression. As in Example 1, we can then

solve for the γ0 production function parameter.
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The TFP term lnA0 is identified from

lnA0 =
E(Z1,m)− (µ1,m + λ1,mE(ln f̃0(θ0, I0)))

λ1,m

=
E(Z1,m)− g(µ0,m)

λ1,m

because E(ln f̃0(θ0, I0)) = 0 for this log-linear production function. lnA0 is iden-

tified from the growth in mean measured skills because µ0,m = E(Z0,m) given the

normalization of the initial conditions. Substituting, the TFP term is then

lnA0 =
E(Z1,m)− g(E(Z0,m))

λ1,m
.

TFP is identified from the growth in mean skills between periods 0 and 1, scaled by

the identified measurement factor loading for the period 1 measures, λ1,m.

2.5.3 Identifying Production Technologies with Unknown Scale

We next consider a parallel problem to that of identifying the location (in logs)

of the production technology considered above: identifying a production technology

with an unknown scale. Consider the following production technology:

θt+1 = f̃t(θt, It)
ψt , (2.15)

where ψt ∈ R+ is an unknown scaling parameter and f̃t is a sub-function with known

location and scale. Given the unknown scaling parameter, the technology described

in (2.15) is not a known location and scale technology (Definition 1). An example of

this type of production function is the following CES function with unknown scale:

θt+1 = (γtθ
φt
t + (1− γt)I

φt
t )ψt/φt (2.16)
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As in the TFP case above, we cannot separately identify the scale parameter ψt from

the measurement factor loading λt+1,m. We consider an auxiliary restriction on the

factor loadings which would allow identification:

Assumption 3 For some measures Zt+1,m = µt+1,m + λt+1,m ln θt+1 + ǫt+1,m and

Zt,m′ = µt,m′ + λt,m′ ln θt + ǫt,m′, we have λt+1,m = q(λt,m′), where q(·) is a known

function.

We show that with Assumption 3, together with the other assumptions previously

used to prove Theorem 1, we can now identify skill development technologies of the

form given in (2.15), which do not have a known scale:

Theorem 3 Consider a production technology of the form ft(θt, It) = f̃t(θt, It)
ψt,

where f̃t(θt, It) has known scale and location (Definition 1) and ψt ∈ R++. Under As-

sumption 1, Assumption 3, the full support assumption on some measure Zt+1,m and

the conditions for Theorem 1, the technology f̃t(θt, It) and ψt are separately identified.

Proof.

Identification of f̃t(θt, It) follows directly from Theorem 1, as the unknown ψt term

drops out allowing identification of the f̃t(θt, It) KLS sub-function. To identify ψt,

take the covariance between a measure of latent skills at age t+ 1 and at age t:

Cov(Zt+1,m, Zt,m) = λt+1,mλt,mCov(ln θt+1, ln θt)

= q(λt,m)λt,mψtCov(ln f̃t(θt, It), ln θt)

Given λt,m is known and Cov(ln f̃t(θt, It), ln θt) can be computed from the identified

sub-function f̃t(θt, It), then we can re-arrange this expression to solve for ψt.

This proof mirrors the identification result for TFP. If we assume that the factor

loading in the measurement equation (which provides the scale of the measure) has

37



some known relationship with already identified factor loadings, then we can identify

the scale of the production technology.

2.5.4 Age-Invariant Measures

We conclude this section with a discussion of measures which would satisfy these

auxiliary assumptions. An extensive literature, principally in the field of psycho-

metrics, is concerned with designing skill measures which can be “equated” across

children of different ages so that the development of children can be tracked using a

coherent single measure. These measures consist of tests which are designed to be

applicable for children of various ages, and include a range of test items (questions)

which show meaningful variation for both younger and older children. Tests such as

the Peabody Individual Achievement Test (PIAT)and the Woodcock-Johnson tests

are designed so that they include a range of questions of various difficulty levels. The

simple raw scores on these tests, reflecting the total number of questions answered

correctly, can then be interpreted as an age-invariant measure of skills. 15

We formalize this notion of age-invariant measures in the following definition.

A pair of measures are age-invariant if their measurement parameters are constant

across child ages:

Definition 2 A pair of measures Zt,m and Zt+1,m is age-invariant if E(Zt,m|θt =

p) = E(Zt+1,m|θt+1 = p) for all p ∈ R++ .

15In practice, these types of age-invariant tests are often administered such that the questions are
endogenously determined by the previous answers of the child. Therefore, while not all children are
in fact answering the exact same test questions, their scores are determined in an age comparable
way. The typical test includes a number of test items ranging from low difficulty to high difficulty
questions. Testing begins by first establishing a baseline test item for each child. While the baseline
is initially based on the child’s age, the baseline adjusts downward (to less difficult questions) as
the child is unable to answer questions correctly. Once the baseline is established, the test then
progressively asks more difficult questions. Testing stops when the child makes a certain number
of mistakes. The score is then determined as the number of correct answers before testing stops.
Included in this number of correct answers are the lower difficulty test items prior to the baseline
item because it is assumed the child would have answered these items correctly (given she was able
to answer more the difficult items).
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Age-invariant measures imply that two children of different ages t and t + 1 would

nonetheless have the same expected level of measured skill if the children have the

same latent level of skill: θt = θt+1 = p. 16 In this case, the younger child, aged t,

could be considered “ahead” of her age group, and the older child, aged t+ 1, could

be considered “behind” her age group. The age invariant measures Zt,m and Zt+1,m

would report the same score (in expectation) for these two children. Definition 2

implies that for age-invariant measures both Assumption 2 and Assumption 3 hold,

allowing identification of the technology with unknown TFP and unknown return to

scale (see Theorem 3 (i)-(ii)). 17

Finally note that whether a given pair of measures is age-invariant depends on

the measures and must be evaluated on a case-by-case basis. Using pairs of unrelated

measures, such as birth weight to measure cognitive skills at birth and SAT scores to

measures skills at age 18, would not seem to constitute a set of age-invariant measures

as there is no reason to believe these measures would have a common location and

scale.

2.6 Estimation

In this section we discuss the empirical model we take to the data, the estimation

algorithm we develop based on the identification analysis of the preceding sections,

and briefly describe the data. Additional details about the data and sample are left

for the Appendix.

16Age-invariant measures should not be confused with “age-standardized” measures, which are
measures the researcher constructs to be mean 0 and standard deviation 1 at all ages for the particular
sample at hand (See the Appendix). Our concept of age-invariant measures concerns the underlying
primitive and unobserved parameters of the measurement equations. Age-standardized measures
would in fact not represent any growth in average skills or changes in the dispersion of skills as
children age.

17Age-invariance implies the following restrictions on measurement parameters: µt+1+λt+1 ln p =
µt + λt ln p for all p. Re-arranging, we have (µt+1 − µt) = ln p (λt − λt+1) for all p. This is the case
if and only if µt = µt+1 and λt = λt+1.
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2.6.1 Empirical Model

There are five parts to the empirical model: 1) a model of skill development where

skills in the next period are produced by the stocks of existing skills and parental in-

vestments; 2) a model of parental investment where investment depends on household

characteristics and the existing stock of skills; 3) a distribution of initial conditions of

household characteristics and child skills; 4) a model of the relationship between final

childhood skills and adult outcomes (schooling and earnings); and 5) a measurement

model relating each of the latent model elements to observed data measures. Be-

sides specifying particular functional forms for the production technology, the major

distinction between the empirical model and the preceding identification analysis is

that we assume parental investment is also measured with error and allow parental

investment to be endogenously related to the stock of existing children’s skill.

The timing of the model is as follows. There are five biannual periods of child

development: ages 5-6 (t = 0), 7-8 (t = 1), 9-10 (t = 2), 11-12 (t = 3), 13-14 (t = 4).

While it would be ideal to extend the model to even earlier ages (to birth or even to

pre-natal periods), we face the common tradeoff of assuming “too much” relative to

the data we have available. We have chosen here to focus on the childhood period

from age 5 to 14 where we have more skill measures, and plausibly age-invariant

measures, and can judge the performance of the model and estimator in closer to

ideal conditions.

Skill Production Technology

At each age t the current level of latent cognitive skills and investment produce the

next period’s (t+ 1) skills. The technology takes a stochastic translog specification:
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ln θt+1 = lnAt + γ1,t ln θt + γ2,t ln It + γ3,t ln It · ln θt + ηθ,t, (2.17)

where lnAt is the TFP term, and ηθ,t is the stochastic production shock, which is

assumed i.i.d. ∼ N(0, σ2
θ,t) for all t and independent of the current stock of skills and

investment. The translog specification is a generalization of the Cobb-Douglas specifi-

cation, where the special case γ3,t = 0 is the typical Cobb-Douglas specification (with

the addition of a TFP term and a stochastic shock). We use the translog specification

because of its flexibility relative to the Cobb-Douglas and other CES functions. The

translog function allows a non-constant elasticity of substitution between inputs and

can be expanded with the inclusion of additional terms to a close provide an approx-

imation of any unknown production technology. The log-linear form of the function

also facilitates convenient and fast closed form estimators, as detailed below. Our

general translog function also allows non-constant returns to scale. With γ3 6= 0, the

elasticity of skill production with respect to investment depends on the current level

of children’s skills:

∂ ln θt+1

∂ ln It
= γ2,t + γ3,t ln θt,

where γ3,t > 0 implies a higher return to investment for children with currently high

levels of skill than for children with low levels of skill, a dynamic complementarity

where past skills (and past investments which produced those skills) affect the pro-

ductivity of current investments. Moreover, γ3,t 6= 0 implies that the elasticity of next

period skills with respect to investment is a function of the child’s stock of skills.

Parental Investment

We specify a parametric policy function for parental investment. Investment is en-

dogenously determined by the current stock of the child’s skills, mother’s skills, and
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family income:

ln It = α1,t ln θt + α2,t ln θMC + α3,t ln θMN + α4,t lnYt + ηI,t (2.18)

where
∑

j αj,t = 1 for all t, θMC is the mother’s stock of cognitive skills, θMN is

the mother’s stock of non-cognitive skills, Yt is household income, and ηI,t is the

investment shock, where ηI,t i.i.d. ∼ N(0, σ2
I,t) for all t and independent of latent

skills and income. Our concept of investment represents both quantity and quality

aspects, where we use measures of investments which capture quantity aspects of

investment (time parents spent reading to children) and quality aspects (whether

children are “praised” by their parents).

This specification of investment is a kind of “reduced form” specification repre-

senting a policy function for parental investment which is not derived from an explicit

economic model of the household behavior. This approach follows Cunha et al. (2010);

Attanasio et al. (2015a,b). The advantages of this approach are twofold. First, this

approach provides a simple and tractable model of the investment process which

avoids the computational burden of solving and estimating a formal model of house-

hold behavior. Second, this approach has the potential to allow for some generality as

our specification of the investment process can be consistent with multiple models of

the households. Other work derives parental investment from explicit models of the

household, including explicit representations of household preferences, decision mak-

ing, beliefs, and constraints (see for example Del Boca et al., 2014b, 2016; Cunha,

2013a; Cunha et al., 2013; Bernal, 2008). The advantage of these latter approaches is

that the counterfactual policy analysis incorporates well defined household responses

to policy, see Del Boca et al. (2016) for some discussion.

Given the investment function does not derive from an explicit model, the inter-

pretation of the parameters is in some sense speculative. α1,t can be interpreted as
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reflecting whether parents “reinforce” existing skill stocks (α1,t > 0) or “compensate”

for low skill stocks (α1,t < 0). α2,t and α3,t reflect the extent to which the mother’s

skills relate to the quantity and quality of her parental investment as in the case

where more skilled mothers read to their children more or provide higher quality in-

teractions. Finally, α4,t reflects the influences that household resources have on the

extent of parental investments, and reflects the combined effects of constraints the

household faces (such as credit market constraints) and preferences the household has

to invest scarce resources in children (see Caucutt et al., 2015).

Finally, to close the investment model, we assume that log-family income (lnYt)

follows an AR(1) process which allows for life-cycle trends in income:

lnYt+1 = µY + δY · t+ ρY lnYt + ηY,t (2.19)

where the innovation is ηY,t i.i.d. ∼ N(0, σ2
Y ) and is assumed independent of all

latent variables. Initial family income Y0 is allowed to be correlated with mother’s

and children’s initial skills, and hence our model captures important correlations

between household resources and the skills of parents and children.

Initial Conditions

The initial conditions consist of the child’s initial (at age 5-6) stock of skills θC,0, the

mother’s cognitive and non-cognitive skills (θMC and θMN), which are assumed to be

time invariant over the child development period, and the level of family income at

birth (Y0). Define the vector of initial conditions as

Ω = (ln θ0, ln θMC , ln θMN , lnY0)

We assume a parametric distribution for the initial conditions:
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Ω ∼ N(µΩ,ΣΩ)

where µΩ = [0, 0, 0, 0, µ0,lnY ]. µ0,lnY is the mean of the family log income when

children are 5-6 years old. The means of the remaining variables are set to zero by

Normalization 1. ΣΩ is the variance-covariance matrix for the initial conditions.

Adult Outcome

In order to provide a more meaningful metric to evaluate policy interventions in our

model, we relate adult outcomes to the stock of children’s skills in the final period of

the child development process (period T = 4 or age 13-14):

Q = µQ + αQ ln θT + ηQ, (2.20)

where ηQ is independent of ln θT . We use years of schooling measured at age 23 and

log earnings at age 29 as adult outcomes. Schooling is an attractive adult outcome to

use because it explains a large fraction of adult earnings and consumptions, is largely

determined at an early point in adulthood and, unlike realized labor market earnings,

does not suffer from a censoring issue due to endogenous labor supply.

Measurement

The final piece of our model is the model of measurement relating latent variables to

observed data. Children’s skills, parental investment, and mother’s skills are all as-

sumed to be measured with error. There are 4 latent variables: ω ∈ {θ, θMC , θMN , I}.

There are in general multiple measures for each latent variable. Each measure is

assumed to take the following form:

Zω,t,m = µω,t,m + λω,t,m lnωt + ǫω,t,m
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where m indexes the measures for each latent variable ω ∈ {θ, θMC , θMN , I}.

We assume a generalized version of Assumption 1 appropriate for this more gen-

eral empirical model. All measurement errors are assumed independent of each other

(across measures and over time), and all measurement errors are assumed independent

of the latent variables, household income, and the “structural” shocks (ηI,t, ηθ,t, ηQ).

This assumptions is strong, and weaker assumptions of mean-independence are suf-

ficient for identification of the parametric model. While we assume strong indepen-

dence assumption, we make no other restrictions on the distribution of measurement

error (e.g. we do not assume ǫω,t,m is distributed Normal) as is common in previ-

ous approaches. Our sequential estimator, described below, is therefore robust to

mis-specification of the marginal distributions of measurement errors.

2.6.2 Estimation Algorithm

Our estimation algorithm is formed from the identification results presented above,

and in particular relies on the error-in-variable formulation from Section 2.4.6. Be-

fore describing the steps of the algorithm, consider several estimation options. One

approach, a kind of “brute force” approach, is to simulate the full sequence of latent

variables and measures from candidate primitive parameters and explicit assump-

tions about the distribution of measurement errors (e.g. assume they are Normally

distributed) and compute a likelihood function or a set of moments to form the basis

of an estimator. We do not prefer this approach because it requires additional as-

sumptions about the distribution of measurement errors which are not required for

identification. This approach may also involve a tremendous amount of computation-

ally costly simulation given the non-linear nature of the model.

A second estimation approach is to use the measures directly to simulate the

distribution of latent variables by assuming a particular distribution for the latent
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variables. One then could estimate the production function in a second step from

the simulated distribution of latent variables. This is the approach of Cunha et al.

(2010) and Attanasio et al. (2015a,b) in which both assume the latent variables are

distributed according to a mixture of 2 Normal distributions. This approach too

makes specific parametric assumptions which are not required.

Our estimation approach directly follows our identification approach in treating

the measurement parameters as nuisance parameters which can be computed sequen-

tially along with the primitive parameters of the model generating the latent variables.

Following the estimation of the initial conditions using standard techniques, we se-

quentially estimate for each age the investment and production functions, followed

by the measurement parameters for the measures used for that age. The sequential

algorithm we develop has the advantage of tractability because our estimator does

not require the simulation of the full model; the primitives of the production tech-

nology and investment functions can be estimated directly from data. In addition,

another advantage of our approach over a joint estimation approach is by breaking

the estimator into steps, we make the identification assumptions as transparent as

possible. Of course, the disadvantage of our approach is a potential loss of efficiency

from not estimating the parameters jointly and exploiting “cross-step” restrictions.

We present two versions of the estimation algorithm. The first version works with

a unrestricted version of the technology:

Model 1 (General): lnAt free and
∑3

j=1 γj,t free. At least one measure is age-

invariant.

The availability of this age-invariant measure allows us to identify the more general

technology.

The second version of the model restricts the production technology (2.17) to have
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a known location and scale.

Model 2 (Restricted): lnAt = 0 for all t (no TFP dynamics) and
∑3

j=1 γj,t = 1

for all t (constant returns to scale).

Estimation of Model 2 (Restricted)

We begin with the estimator for the second version of the model, using the restricted

technology. The estimator for the more general technology (Model 2) is below.

Step 0 (Estimate Initial Conditions and Initial Measurement Parameter)

First, we estimate the measurement parameters at the initial period (age 5-6),

λω,0,m, µω,0,m for all measures m, for both children’s and mother’s skills. To estimate

these measurement parameters, we use ratios of covariances and measurement means

as outlined above (2.3) and (2.4). We choose one measure for children’s cognitive

skills, mother’s cognitive skills, and mother’s non-cognitive skills as the normalizing

measure (which we label m = 1, without loss of generality) and normalize the factor

loading for this measure to be 1: λθ,0,1 = 1, λMC,0,1 = 1, λMN,0,1 = 1. 18 We estimate

the remaining factor loadings using the average of the covariances between all of the

remaining measures, where each factor loading is computed from

λω,0,m =
Cov(Zω,0,m, Zω,0,m′)

Cov(Z0,ω,1, Zω,0,m′)
∀m 6= m′ and ∀ω ∈ {θ,MC,MN}.

Given the normalization that log skills are mean 0 in the initial period, we compute

the initial measurement intercepts as

18Note that while investment is a latent variable as well, we do not need to normalize the scale
and location of latent investment because investment already has a scale and location specified by
the KLS investment equation (2.18).
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µω,0,m = E(Zω,0,m) ∀m and ∀ω ∈ {θ,MC,MN}

With the factor loading estimates in hand, we then estimate the initial period

variance-covariance matrix ΣΩ using variances and covariances in measures of skills

and family income (assumed measured without error). This step provides estimates

of the initial joint distribution of children’s skills, mother’s skills, and family income.

In this initial step, we also estimate the parameters of the income process (2.19) using

a regression of income on lagged income and a time trend.

Finally, given the estimates of the measurement parameters for children and

mother skills, we form the following “residual” measures:

Z̃ω,0,m =
Zω,0,m − µω,0,m

λω,0,m
∀m and ∀ω ∈ {θ,MC,MN}

We are now ready to estimate the investment function for period t = 0, where

the investment in this first period depends on the initial child’s skills and household

characteristics (mother’s skills and family income).

Step 1 (Estimate Investment Function Parameters):

Following the errors-in-variables formulation described above, substitute a “raw”

measure for investment ZI,0,m and a “residual” measure for each of the latent skills

(Z̃θ,0,m, Z̃MC,0,m, Z̃MN,0,m) into the model of investment defined in terms of primitives

(2.18):

ZI,0,m − µI,0,m − ǫI,0,m
λI,0,m

= α1,0(Z̃θ,0,m − ǫ̃θ,0,m) + α2,0(Z̃MC,m − ǫ̃MC,m)

+α3,0(Z̃MN,m − ǫ̃MN,m) + α4,0 lnY0 + ηI,0

Re-arranging, we have
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ZI,0,m = µI,0,m + λI,0,mα1,0Z̃θ,0,m + λI,0,mα2,0Z̃MC,m + λI,0,mα3,0Z̃MN,m + λI,0,mα4,0 lnY0

+ ǫI,0,m + λI,0,m(ηI,0 − ǫ̃θ,0,m − ǫ̃MC,m − ǫ̃MN,m)

= β0,0,m + β1,0,mZ̃θ,0,m + β2,0,mZ̃MC,m + β3,0,mZ̃MN,m + β4,0,m lnY0 + πI,0,m (2.21)

where βj,0,m = λI,0,mαj,0 for all j and

πI,0,m = ǫI,0,m + λI,0,m(ηI,0 − α1,0ǫ̃θ,0,m − α2,0ǫ̃MC,m − α3,0ǫ̃MN,m).

Estimation of (2.21) by OLS would yield inconsistent estimates of the βj,0,m coef-

ficients because the measures are correlated with their measurement errors (included

in the residual term πI,0,m). Here the structure of the model affords the researcher

several possible strategies to consistently estimate the βj,0,m coefficients. We use an

instrumental variable estimator with the vector of excluded instruments composed

of alternative measures of skills: [Zθ,0,m′ , ZMC,0,m′ , ZNC,0,m′ ]. Under Assumption 1,

these instruments are valid because each of these alternative measures is uncorrelated

with all of the components of πI,0,m. Using this IV strategy, we obtain consistent esti-

mators for the βj,t,m coefficients. The primitive parameters of the investment function

are then recovered from

αj,0 =
βj,0,m∑4
j=1 βj,0,m

Step 2 (Compute Measurement Parameters for Latent Investment):

After estimating the primitive parameters of the investment function, we recover

the scale and location for the investment equation without further re-normalizations
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on the measurement equation parameters. The intercept and factor loading for the

investment measure are given by

µI,0,m = β0,0,m

and

λI,0,m =
4∑

j=1

βj,0,m

With these consistent estimators for the measurement parameters for investment,

we form the “residual” measures for investment in period t = 0:

Z̃I,0,m =
ZI,0,m − µI,0,m

λI,0,m

Step 3 (Estimate Skill Production Technology)

Next, we use a similar technique to estimate the production technology. Substi-

tuting the residual measures into the production technology (2.17), we have

Zθ,1,m − µθ,1,m − ǫθ,1,m
λθ,1,m

= γ1,0(Z̃θ,0,m − ǫ̃θ,0,m) + γ2,0(Z̃I,0,m − ǫ̃I,0,m)

+ γ3,0(Z̃θ,0,m − ǫ̃θ,0,m)(Z̃I,0,m − ǫ̃I,0,m) + ηθ,0

With some algebra, we can re-write this as:

Zθ,1,m = δ0,0,m + δ1,0,mZ̃θ,0,m + δ2,0,mZ̃I,0,m + δ3,0,mZ̃θ,0,m · Z̃I,0,m + πθ,0,m (2.22)

where δ0,0,m = µθ,0,m, δj,0,m = λθ,1,mγj,0 for j = 1, 2, 3 and

πθ,0,m = ǫθ,1,m+λθ,1,m[ηθ,0−γ1,0ǫθ,0,m−γ2,0ǫI,0,m−γ3,0(Z̃θ,0,mǫI,0,m+Z̃I,0,mǫθ,0,m−ǫθ,0,mǫI,0,m)]
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As with the investment function, estimation of 2.22 using OLS would lead to

inconsistent estimates. We use the same IV approach as above using instruments

formed from alternative measures [Zθ,0,m′ , ZI,0,m′ , Zθ,0,m′ · ZI,0,m′ ]. Under Assump-

tion 1 these instruments are uncorrelated the residual error term πθ,0,m.
19 With

consistent estimates of δj,0,ms in hand, we can then recover the structural parameters

and for the production technology as:

γj,0 =
δj,0,m∑3
j=1 δj,0,m

∀ j ∈ {1, 2, 3}

Step 4 (Compute Measurement Parameters for Latent Skill):

The measurement parameters for the latent skill measure in period t = 1 (Zθ,1,m)

can then be recovered from

µθ,1,m = δ0,0,m,

λθ,1,m =
3∑

j=1

δj,0,0.

We then form the residual measure for latent skill as

Z̃θ,1,m =
Zθ,I,m − µθ,1,m

λθ,1,m

Step 5 (Estimate variance of Investment and Production Function Shocks):

19Perhaps the less obvious terms are terms such as this E(Z̃θ,0,mǫI,0,m|Zθ,0,m′ · ZI,0,m′). Under
the assumption of independence of the errors, we have

E(Z̃θ,0,mǫI,0,m|Zθ,0,m′ · ZI,0,m′) = E(Z̃θ,0,m|Zθ,0,m′ · ZI,0,m′)E(ǫI,0,m|Zθ,0,m′ · ZI,0,m′)

given ǫI,0,m is independent of Z̃θ,0,m. Given the independence assumption, the latter term is

E(ǫI,0,m|Zθ,0,m′ · ZI,0,m′) = E(ǫI,0,m) = 0. Therefore, E(Z̃θ,0,mǫI,0,m|Zθ,0,m′ · ZI,0,m′) = 0.
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The remaining parameters to be estimated for this period are the variances of the

investment and production function shocks, σ2
I,0 and σ2

θ,0. To estimate σI,0, we use

the covariance between the residual from (2.21), πI,0,m and an alternative residual

measure of investment Z̃I,0,m′ = ln I0 + ǫI,0,m′ :

Cov(πI,0,m/λI,0,m, Z̃I,0,m′) = V (ηI,0) = σ2
I,0

To compute the residual measure Z̃I,0,m we need to compute the measurement pa-

rameters for this measure. We do this by repeating the estimation in Steps 2 and 3

replacing the left-hand side variable in (2.21) with the alternative measure ZI,0,m′ .

The variance of the production shock is estimated in the same way using an

alternative measure of children’s skills in period t = 1:

Cov(πθ,1,m/λI,1,m, Z̃θ,1,m′) = V (ηθ,0) = σ2
θ,0

Remaining Steps

We repeat Steps 1-5 for the remaining periods until the final period of child de-

velopment T . This algorithm produces estimates of the parameters of the investment

and production functions for all child ages.

Estimation of Model 1 (Unrestricted)

The preceding algorithm restricted the production technology to have no TFP dy-

namics and constant returns to scale (Model 2). Following Theorem 2 and Theorem

3, identification of the more general model can be accomplished with restrictions on

the measurement parameters. We assume we have available at least one child skill

measure which is age-invariant (Definition 2). Label the age-invariant measure to be
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measure m, and for this measure we have µθ,t,m = µθ,0,m for all t and λθ,t,m = λθ,0,m

for all t.

With this age invariant measure, we repeat Step 3 (Estimate Production Tech-

nology). The “reduced form” equation (2.22) and estimation of the δj,0,m parameters

remains the same. To allow for non-constant returns to scale we do not restrict the

structural γj,0 parameters to sum to 1. The structural parameters are computed as

γj,0 =
δj,0,m
λθ,1,m

∀ j ∈ {1, 2, 3}

With the inclusion of the TFP term lnA0, the δ0,0,m intercept from the reduced

form equation (2.22) is now

δ0,0,m = µθ,1,m + λθ,1,m lnA0

Given the age-invariance assumption, we can consistently estimate µθ,1,m and λθ,1,m

and compute lnA0.

With the addition of these computations to Step 3, the other steps in the algorithm

remain the same. We can use this extended to algorithm to compute the full sequence

of parameters for the investment and production functions for all child ages.

Estimating the Adult Outcome Equation

Finally, after we have computed the full path of primitive parameters for the invest-

ment and production functions, we are able to estimate the adult outcome process

(2.20). We focus on both final years of education at age 23 and log earnings at age

30. We use the same IV method as before to solve the measurement error issue.

Substituting the measures for skills at age 13-14 (t = 4) in equation (2.20), we have:

Q = µQ + αQZ̃θ,4,m + (ηQ − αQǫ̃θ,4,m) (2.23)
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We use a second measure for skills at age 13-14 as an IV to identify αQ.

2.6.3 Data

We estimate the model using information about children and their families ob-

tained from the National Longitudinal Study of Youth 1979 (NLSY). Descriptive

statistics for the sample and additional data construction details are left for the Ap-

pendix.

The NLSY dataset is constructed by matching female respondents of the original

dataset with their children who were part of the Children and Young Adults surveys,

from 1986 to 2012. The dataset provides observations of the first period of the model

(age 5-6) through adulthood. The total number of children in our sample is 11,509.

The NLSY dataset contains multiple measures of children’s skills, mother’s skills,

and parental investments. The complete set of measures, their ranges and descrip-

tive statistics for our sample are included in the Appendix. For children’s skills we

rely on different sub-scales of the Peabody Individual Achievement Test (PIAT) in

Mathematics, Reading and Recognition, and the Peabody Picture Vocabulary Test

(PPVT). Finally, we use information for children when they become young adults to

link the children skills into a more meaningful metric to evaluate policy intervention:

we use children’s highest grade completed at age 23 or older and their earnings at

age 29. The information about the educational attainment is measured as the highest

grade completed as of date of last interview. We considered schooling information

only for those young adults who were at least 23 years old or older in the last 2012

interview. Age 29 earnings is in real 2012 dollars.

For mother’s cognitive skills we use sub-scales of the Armed Services Vocational

Aptitude Battery (ASVAB), and for mother’s non-cognitive skills we use the Rotter

and Rosenberg indexes. For parental investments, we use the various HOME score
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measures from direct observation and interview with the mother. Family income

includes all sources of income for the parents, including mother’s and father’s labor

income, and any sources of non-labor income.

2.7 Results

In this section we discuss our parameter estimates, simulate the estimated model

to describe the development of children’s skills, and compute the effects of simple in-

terventions to improve skills and adult outcomes. We begin by presenting estimates

of the general model in which we allow for Total Factor Productivity (TFP) dynam-

ics and non-constant returns to scale (Model 1). Because this general technology

no longer has a known location and scale, we use an age-invariance restriction for

identification. Given the structure of the PIAT tests, which administer the same test

to children of various ages (given their ability level), we believe it is appropriate to

assume the measurement intercepts and factor loadings for these measures of cogni-

tive skills are age-invariant (Definition 2). Note that we do not assume any particular

values for these measurement parameters, only the age invariance of them, and treat

the measurement parameters as free parameters to be estimated.

We also consider results using alternative restricted models, and estimates which

do not correct for measurement error and treat the measures as error free measures.

We briefly discuss the policy predictions of these models below, but, for brevity, we

report estimates of these several alternative models in the Appendix.

Another key issue involves interpreting the magnitude of the parameter estimates.

Because the parameter estimates of the production technology and investment equa-

tions are relative to the initial skill normalizations, the magnitudes of many of the

parameters estimates are not directly interpretable in isolation. We conclude this

section with a series of policy counter-factual experiments using the estimated model.
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These exercises provide necessary metrics to interpret the estimates with respect to

adult outcomes, years of completed schooling at age 23 and earnings at age 29.

2.7.1 Parameter Estimates

Initial Conditions

Table 2.2 reports estimates of the initial conditions variance-covariance matrix ΣΩ

and the associated correlation matrix. We normalize children’s cognitive skills to

the PIAT-Mathematics test, mother’s cognitive skills to the ASVAB2 (Arithmetics

reasoning) and mother’s non-cognitive skills to the Self-Esteem1 (Rosenberg Self-

Esteem: “I am a person of worth”) measure. The variances and covariances of the

latent skills, and the investment and production function parameters, are interpreted

relative to these normalizations. As expected, we estimate that children’s skills,

mother’s cognitive and non-cognitive skills, and family income are all highly positively

correlated. For space considerations, estimates of the dynamic family income process

can be found in the Appendix.

Investment Function

Table 2.3 reports the estimates of the investment function specified in Section 2.6.1.

At ages 5-6, we find that investment is increasing in children’s skills, mother’s skills,

and family income. Because of the log-log form of the investment equation, we can

interpret parameter estimates as elasticities. The parameter estimate of 0.230 on the

log children’s skills variable indicates that a 1 percent increase in children’s skills

raises investment by 0.23 percent, an inelastic response. The positive coefficient sug-

gests that parents are “reinforcing” existing skills with further investments: children

with higher skills are receiving even more investment than children with lower skills.

Mother’s cognitive skills and non-cognitive skills also increase investment at ages 5-
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6, with non-cognitive skills of the mother estimated to have a substantially higher

elasticity than cognitive skills. These coefficients indicate that mothers with higher

skills are providing higher quantities and qualities of investments in children. Turn-

ing to the importance of income to parental investments, we find that a 1 percent

increase in family income raises investment by 0.34 percent. The response of invest-

ment with respect to mother’s skills and family income reflects the combination of

parental preferences and household constraints, which we cannot unfortunately sep-

arately distinguish using this reduced form model of investment. Given that positive

correlation between mother’s initial skills, child’s initial skills, and household income,

taken together, these estimates of the investment function indicate that endogenous

investment increases inequality in children’s skills. The estimated variance on the in-

vestment shock reveals how much of the remaining variation in parental investments

remains unexplained by this model, such as investments from schools, peers, and the

child herself.

Comparing parameter estimates of the investment function over the development

period reveals that the influence of the child’s prior skills on investments becomes

much smaller at later ages, indicating that parental investments are less reinforcing

of existing skill stocks at older ages. As the child develops, we find that mother’s

non-cognitive skills becomes the dominant influence on investment. However, while

the importance of family income falls somewhat from an elasticity of 0.34 at age 5-6

to 0.275 at age 11-12, income is still a significant and positive factor for parental

investment even at later ages.

Production Function

Table 2.4 reports the parameter estimates for the technology of skill formation, as

described in Section 2.6.1. We present measurement error corrected estimates of the
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two versions of the model: our preferred unrestricted Model 1 and the restricted

Model 2. We turn first to the unrestricted Model 1 estimates.

At all ages, we find that skills are “self-productive” (next period’s skills are in-

creasing in existing skill stocks) and that skills are positively increasing in investment.

For age 5-6 skill production, we estimate a statistically significant from 0 negative co-

efficient on the interaction term (ln θt ln It) indicating that we reject the Cobb-Douglas

special case.

The elasticities of skill production with respect to investment are heterogeneous,

and we graph the skill elasticity for the age 5-6 production function in Figure 2.1 with

respect to the existing stock of children’s skill. The estimated negative coefficient on

the interaction term indicates that the elasticity of skill production with respect to

investment is decreasing in the child’s current skill level. For low skill children, the

elasticity approaches 1.4, indicating a that 1 percent increase in investment increases

next period’s skills by 1.4 percent. For already high skill children, the elasticity ap-

proaches 0.2, indicating that a 1 percent increase in investment raises future skills by

only 0.2 percent. These heterogeneous investment elasticities suggest that targeting

interventions to improve children’s skills would have the largest effect on skill disad-

vantage children. This estimate stands in contrast to the estimates reported in Cunha

et al. (2010). They estimate a CES technology which implies that the marginal pro-

ductivity of investment is higher for high skill children given that current investments

and the current stock of skills are complements. Note also that unlike the constant

returns to scale CES case, our unrestricted model allows investment elasticities to be

larger than 1, and we estimate, at least for some children, an elastic response of skill

formation to investment.

The high TFP estimate for age 5-6 and the increasing returns to scale (indicated

by the sum of the coefficients being greater than 1) indicate that existing skills and
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investments at this initial age are very productive relative to later ages. These esti-

mates of high returns to early investment will underlie the policy experiment results

we discuss next. As children age, Table 2.4 indicates that skills and investment be-

come generally less productive and skills less “malleable.” We graph the estimated

TFP at each age in Figure 2.2. Our estimate of TFP at age 11-12 falls to 1/6 the

level at age 5-6, indicating a dramatic slowdown in the productivity of existing skills

and investments in producing new skills. This feature of the technology is largely

consistent with the evidence that cognitive skills are difficult to change as children

after age 10.

Comparing these estimates for the unrestricted Model 1 to the restricted Model 2

in Table 2.4 reveals that we clearly reject the restricted technology of Model 2. The

estimated sum of the input coefficients far exceeds 1, with the estimated return to scale

of 2.66 in the early period indicating increasing returns to scale. The estimated return

to scale declines with the child’s age to a value of 1.3 at older ages, revealing that even

for older children we can reject constant returns to scale. In addition, the estimate

of high positive TFP term also indicates that we clearly reject the assumption of a

0 log TFP in Model 2. As discussed below, these differences in production function

estimates imply very different investment and policy effects, with the restricted Model

2 estimates implying a much smaller effect of an income transfer on children’s skill

development than in our preferred unrestricted model.

Adult Outcomes

Table 2.5 presents our estimates of the completed schooling outcome equation and

log earnings equation. We estimate that a percentage change in children skills at age

13-14 leads to an increase of 0.086 years of school. We also find that a 1 percentage

change in children skills leads to a 0.021 percentage change in earnings at age 29.
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Below, we use these estimates to “anchor” our policy estimates to a meaningful adult

outcome metric.

2.7.2 Estimated Child Development Path

We analyze the quantitative implications of the estimated model by simulating the

dynamic model. Simulation of the model proceeds by drawing 100,000 children from

the estimated initial conditions distribution and, for each child, forward simulating

the path of income, investments, children’s skills, and adult outcomes.

Figure 2.3 shows the estimated development path of mean log latent cognitive

skills. Figures 2.4 and 2.5 show the dynamics in the distribution of latent skills. And,

Figure 2.6 provides the estimated dynamics in the distribution of latent investment.

Perhaps not surprisingly, we find that children’s mean latent skills grow substan-

tially over this development period, from age 5 to 14, with the most rapid growth at

early ages and growth slowing somewhat in the later period. In addition to growth in

mean skills, we estimate that the latent distribution of cognitive skills becomes more

dispersed as children age. Inequality rises substantially as there are different rates of

skills growth for children at different percentiles of the initial skill distribution. Figure

2.5 shows that skills for high skill children at the 90th percentile grow 20% from age

5-6 to age 9-10 and grow 9% during the rest of the childhood. For low initial skill

children at the 5th percentile, growth is slower, with a 6 % growth rate from age 5-6

to age 7-8 and a 3 % growth rate from age 11-12 to age 13-14.

2.7.3 Policy Experiments

In this section, we explore implications of the estimated model by using the esti-

mated model to predict the effect of income transfers on childhood skill development

and adult outcomes. While we do not have a fully developed model of household re-
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source allocation to provide a more realistic setting to evaluate these policy, we argue

that the experiments do at the very least provide a meaningful metric to understand

the magnitude of the parameter estimates, and allow us to meaningfully compare the

importance of various model features such as measurement error and the specification

of general technologies.

Short and Long-Term Effects

Before we analyze the results for our particular parameter estimates, we first present

a brief discussion of the effects of income transfers in our model. To allow for the

possibility that an income transfer could have heterogeneous effects across households,

we examine policy effects conditional on a vector of current state variables Ωt =

[θt, θMC , θMN , Yt], which includes the child’s initial skills, the mother’s skills, and

initial family income. First, consider the expected short-term marginal effect of an

increase in household income Yt on the log of childhood skills in period t+ 1:

∆t+1,t(Ωt) =
∂ ln θt+1

∂Yt

=
∂ ln It
∂Yt

∂ ln θt+1

∂ ln It
,

∆t+1,t(Ωt) is the product of the marginal change in parental investment and the

marginal change in skill production. With our parametrization, this is given by

∆t+1,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt).

This short-term effect is heterogeneous by the level of family income and the existing

stock of the child’s skills. The marginal increase in investment is decreasing in the

current level of income, as would be expected given the log form of the investment

equation. The key parameter for the heterogeneity of the short-term effect is γ3,t,
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with γ3,t > 0 implying a higher return to investment for children with higher existing

stocks of skills.

The dynamic model of skill development we estimate also allows us to consider

the long-term effect of an income transfer at age t on outcomes beyond the immediate

next period. The expected long-term effect of a marginal increase in income at period

t on children’s skills in period t+ 2 is given by

∆t+2,t(Ωt) =
∂ ln θt+2

∂Yt

= ∆t+1,t(Ωt)
∂ ln θt+2

∂ ln θt+1

(1 +
∂ ln It+1

∂ ln θt+1

)

Note that we are analyzing the long-term effect of a one-time change in income at

period t; income remains at baseline levels for all subsequent periods. With our

parametrization, the long-term effect becomes

∆t+2,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt)(γ1,t+1 + γ3,t ln It)(1 + α4,t+1).

The short-term effect (∆t+1,t(Ωt)) and the long-term effect (∆t+2,t(Ωt)) can differ in

general. Our model of skill and investment dynamics allows for the possibility that

either short-term effects are higher than long-term effects (the effect of the policy

“fades-out” as the child ages) or that long-term effects can exceed short-term effects

(early interventions have a kind of “multiplier effect” on later skill development).

Effects on Final Skills

We first consider a simple exercise designed to assess the optimal timing of the income

transfer. In Figure 2.7 we show the average percent change in the level of latent

children’s skills at age 13-14 by the different timing (age) of income transfer:
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100 · E(θ
′

T (a)− θT
θT

)

where θ
′

T (a) is level of skill at age t = T (age 13-14) with an income transfer of $1,000

dollars (in 2012 $) provided to the family at age a, and θT is level of skill at age 13-14 in

the baseline model (no income transfer). The transfer is a one-time transfer and does

not affect the future levels of income. The figure shows that a $1,000 transfer given

at age 5-6 increase the average stock of age 13-14 skills by about 1 percent. Providing

the same transfer later in the childhood period has a smaller average effect. Providing

a $1,000 transfer at age 11-12 would increase the average skill stocks at age 13-14 by

less than 0.4 percent. We estimate that providing transfers early in the development

period would have a long-term effect that exceeds the short-term effect of providing

a transfer in later childhood. This result reflects the high productivity of investment

in the early periods and the high level of productivity of existing stocks of skill in

producing future skills (limited fade-out).

Effects on Completed Schooling

Figure 2.8 displays the results of the same set of policy experiments as in Figure 2.7

but using completed schooling at age 23 as the outcome. In this Figure, we plot

E(S
′

(a) − S), where S
′

(a) is the number of months of completed schooling at age

13-14 with an income transfer of $1,000 given at age a, and S is the number of months

of completed schooling at age 13-14 in the baseline model (no income transfer). These

estimates provide a meaningful metric to evaluate the magnitude of the policy effects.

We find that a $1,000 transfer given at age 5-6 would increase the number of average

months of completed schooling by about 1.80 months. Providing the same transfer

at a later period would increase completed schooling by only 0.55 months.
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Comparison with Dahl and Lochner (2012a)

Our estimated effects of a family income transfer on children outcomes are similar to

some previous finding in the literature using different sources of identifying variation.

Using changes in the Earned Income Tax Credit (EITC) to instrument for family

income, Dahl and Lochner (2012a) find that a $1,000 dollars increase in family income

implies an increase in PIAT score of about 4.5% of a standard deviation. 20 To

directly compare our estimates to their reported effects, we compute the equivalence

between their PIAT score outcome and years of schooling. We calculate that the

Dahl and Lochner (2012a) estimates imply an average increase of about 0.54 months

of schooling for a $1,000 transfer at age 11-12. 21 This results is quite similar to our

main results (see Figure 2.8).

Heterogeneous Treatment Effects

The previous results showed the average effect of policies providing transfers at dif-

ferent stages of the development process. Our modeling framework allows potentially

important sources of heterogeneity by the child’s initial skills, mother’s skills, and

20This result is based on the results reported in the correction dated March 2016 to the previous
results (Table 4). In comparing our results to their results, it should be noted that the policy
considered is different. Dahl and Lochner (2012a) consider a change in the EITC, which affects
after-tax wage rates, parental labor supply, and hence parental time allocation, and we consider
here a pure income transfer (where we do not distinguish between income from labor and other
sources).

21As an outcome, Dahl and Lochner (2012a) use a combined PIAT test score (the average of the
three separately age-standardized tests in Math, Reading Recognition, and Reading Comprehension).
We rescale the PIAT scores in terms of schooling in the same way as we estimate the factor loadings
for different skill measures. Define S to be years of schooling at age 23, ZT to be the PIAT test
score at age 13-14 (period T = 4), and ZT−1 the PIAT test score at age 11-12 (period 3). We write

S = µS + αS ln θT + ηS

ZT = µT + λT ln θT + ǫT

ZT−1 = µT−1 + λT−1 ln θT−1 + ǫT−1

Under the assumption that error terms are uncorrelated, the following ratio of covariances provides

the scaling of adult schooling with respect to the PIAT test score: αS

λT
= Cov(S,ZT−1)

Cov(ZT−1,ZT ) .
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initial family income levels; all of which could affect the individual level treatment

effect. The model estimates allow us to directly estimate this heterogeneity in the

policy treatment effects.

Figure 2.9 plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on

completed months of schooling by the percentile of initial (age 5-6) family income.

This figure also plots the average treatment effect (ATE), the average effect over the

income distribution; the same effect as reported above. While the ATE is about 1.8

months, the effect varies considerably depending on the child’s initial level of income.

For the children from poor households in the 9-10th income percentiles, the effect of

the income transfer is to increase completed schooling by around 4 months, and for the

children from the richest households, the effect is near 0. The large heterogeneous

effects by family income stem from the estimated importance of family income in

producing child investments and the estimated positive correlation of income with

maternal skills and the child’s initial skills. This heterogeneity in the effects by income

mirrors the heterogeneity in income effects found in previous papers using alternative

sources of identification (see Dahl and Lochner, 2012a; Loken et al., 2012). Using

the varied effects of the Norwegian oil boom to instrument for family income, Loken

et al. (2012) report estimates on completed schooling which are smaller in magnitude

than those reported here, but similar qualitatively in finding that the effects are

substantially larger for low income Norwegian families

Figure 2.10 plots the heterogeneous effect of the same policy but by the level of

the child’s initial (age 5-6) skill. The ATE plotted in this Figure is the same as in the

previous figure as it is simply the effect averaged over the initial skill distribution.

In this Figure, we also find evidence of heterogeneous treatment effects with low

initial skill children benefiting more (about 7 months of additional schooling) from the

policy intervention than high initial skill children (near 0 effect). But the importance
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of heterogeneity by initial skill is substantially less than by family income. This

suggest that it is better to target the policy to low income households than low skill

households, but of course it cannot be worse to target based on both criteria.

2.7.4 Comparing Model Predictions: Quantifying the Importance of Model

Generality and Measurement Error

Our results presented thus far have been focused on our preferred model estimates:

estimates of the general unrestricted technology (Model 1) with measurement error

correction. We next briefly discuss how the estimates of the primitive production

technology would differ if we were to instead estimate the restricted model (Model

2) or ignore the measurement error issues. This analysis allows us to quantify how

important measurement error and model generality are to our findings, using policy

predictions on adult schooling as a meaningful metric for comparison.

Table 2.6 presents estimates for four versions of the model: Models 1 and 2, using

both measurement error corrected and not corrected estimators. For each model

and estimator, we re-estimate all parts of the model: the investment and technology

process equations at each age and the final adult outcome equation. The estimates

of the primitive parameters for these equations can be found in the Appendix; we

present here only the implied policy effects.

In Panel A of Table 2.6, we present the average treatment effects (ATE) on adult

schooling of the $1,000 income transfer at various ages. The first row repeats the

estimates from the preferred model: using the unrestricted Model 1 and correcting

for measurement error, we estimate that $1,000 income transfer at age 5-6 would

increase average schooling by about 1.8 additional month. In comparison, using the

restricted Model 2 (assuming constant returns to scale and no TFP dynamics) would

imply an estimated increase in average schooling of about one-quarter this effect, at
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0.40 additional months. This shows that restricting the model and ignoring possible

TFP dynamics and non-constant returns to scale would severely bias downward the

implied effects of income transfers on children’s skill development.

The next panel of Table 2.6 presents the estimated ATE using the same models but

not correcting for measurement error. Using these uncorrected estimates, we estimate

policy effects less than half the size of the preferred measurement error corrected

estimates of the most general model, Model 1. These substantially lower estimates of

the effect of an income transfer are consistent with the standard attenuation bias in

standard linear models, where classical measurement error biases coefficient estimates

toward 0. Our models are dynamic, non-linear, and consist of inter-related multiple

equations, so there is no clear theoretical prediction about the sign of the measurement

error bias. But we estimate in this case that ignoring measurement error would

substantially bias downward the estimates of the ATE of the income transfer policy.

Panel B of Table 2.6 repeats the analysis but focusing on the heterogeneity in

the treatment effect at different parts of the family income distribution. Similar

conclusions are evident here: restricting the model to have constant returns to scale

and no TFP dynamics or ignoring measurement error would substantially reduce the

estimated policy effect of the income transfer. We see that ignoring measurement

error would bias the estimated policy effect on low income families at the 9-10th

percentile from an effect size of about 4 months to only 1.4 - 1.8 months.

2.7.5 Cost-Benefit Analysis

We have thus far shown that the estimated model implies that a policy intervention

of providing income transfers to family would produce modest but positive gains in

children’s skills, with larger effects for poorer households. Would these gains be

justified given the cost? We next present a simple cost-benefit analysis to answer this
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question.

Table 2.7 shows the effects of the income transfer policy, by children’s age, on

the present value of earnings. The Table also provides the associated cost of that

policy, including the cost of additional schooling. In this analysis, we consider a

median earner worker. The expected present value of her lifetime earnings when

she is age 5-6 is calculated to be approximately $ 260,000 (in 2012 dollars). 22 The

benefit of this policy is the comparison between the present value of worker’s earnings

with and without that policy during the childhood. In other words, we compute

the counterfactual present value of earnings if the worker’s family had received the

income transfer when the worker was a child. The effect of the family income transfer

to the growth in children earnings are computed using estimates in Table 2.5 under

the assumption that the change in the growth rate due to the policy intervention is

constant over the life-cycle. Table 2.7 suggests that, considering both the cost of the

income transfer and the cost of additional education, the net benefit of the policy

is positive for any age, and the effect is largest when implemented at age 5-6. The

additional present value for the policy intervention at age 5-6 is slightly more than $

5,500 and the net benefit is around $ 2,700.

2.8 Conclusion

This paper develops new identification concepts and associated estimators for the

process of skill development in children. One of the key empirical challenges in this

context is that the various measures of children’s skills are in general imperfect and

arbitrarily located and scaled. We introduce the concept of known location and scale

production technologies, which are the type of technologies actually estimated in

22The baseline present value of earnings is computed using data from the Bureau of Labor Statistics
(BLS) for the fourth quarter of 2012 with a discount rate of 4 %.
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many previous papers, and show that for these technologies, standard measurement

assumptions non-parametrically identify the production technology, up to the nor-

malization of initial period skills. Importantly, we show non-parametric identification

for these cases without re-normalizing latent skills each period which can bias the

production technology. For production functions which do not have a known location

or scale, additional assumptions are necessary, and we provide empirically grounded

assumptions which are sufficient for identification of these more general technologies.

Our paper provides the first analysis of these crucial identification tradeoffs, and

hopefully will serve as a useful guide for future work.

Based on our identification results, we develop a robust method of moments es-

timator and show that it can be implemented using a sequential algorithm. Our

estimator does not require strong assumptions about the marginal distribution of

measurement errors or the latent factors. We estimate the skill production process

using data for the United States and a flexible parametric model of skill develop-

ment allowing for non-constant returns to scale, dynamics in TFP, and for parental

investment to endogenously depend on unobserved children’s skills.

Our empirical results show a pattern of rapid skill development from age 5 to 14.

We find that as children age, not only does their mean skill level increase, but the level

of skill inequality also increases. Our parameter estimates reveal that investments

are more productive at early ages and in particular for disadvantaged children. Our

findings of a positive return to income transfers at early ages, especially for poorer

households, is largely consistent with prior evidence of a positive effect of income on

a number of child outcomes (see Dahl and Lochner, 2012a; Loken et al., 2012) using

different sources of identification. Our results suggest that family income is a better

“target” than initial children’s skills for children’s skills. Lastly, our finding that that

the estimated policy effects would be substantially smaller if one estimated a restricted
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technology or ignored measurement error demonstrates the critical importance of

allowing for general technologies and correcting estimates for measurement error.
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Figure 2.1: Estimates of Skill Production Elasticity with Respect to Investment at

Age 5-6 (Model 1)

Notes: This figure shows the measurement error corrected estimates of the elasticity of children’s

skills at age 7-8 (θ1) with respect to parental investments at age 5-6 (I0) for Model 1: ∂ ln θ1
∂ ln I0

=

γ2,0 + γ3,0 ln θ0.
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Figure 2.2: Total Factor Productivity (TFP) Estimates (Model 1)

Notes: This figure shows the estimated log TFP (correcting for measurement error) for Model 1

(see Section 2.6.2). The x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8, and so on.
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Figure 2.3: Estimated Mean of Log Latent Skills (Model 1)

Notes: This figure provides the mean log latent skills (E(ln θt)) predicted by the estimated Model

1 (see Section 2.6.2), controlling for measurement error) . The x-axis shows children age. Child age

of 5 is age 5-6, 7 is age 7-8, and so on. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 2.4: Estimated Distribution of Log Cognitive Latent Skills at Age 5-6 and Age

13-14 (Model 1)

Notes: This figure shows the distribution of log latent skills at age 5-6 and at age 13-14 simulated

from the estimated Model 1 (see Section 2.6.2), controlling for measurement error. Log latent skills

at age 5-6 are normalized to be mean 0.
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Figure 2.5: Estimated Dynamics in the Latent Skills Distribution (Model 1)

Notes: This figure shows the dynamics in the distribution of the log latent skill distribution for the

estimated Model 1 (see Section 2.6.2), controlling for measurement error. Log latent skills at age

5-6 are normalized to be mean 0.
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Figure 2.6: Estimated Distribution of Log Investments at Age 5-6 and Age 13-14

(Model 1)

Notes: This figure shows the distribution of log latent investments at age 5-6 and at age 13-14

simulated from the estimated Model 1 (see Section 2.6.2), controlling for measurement error.
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Figure 2.7: Average Effect of Income Transfer by Age of Transfer (Outcome: Final

Period θT Skills)

Notes: This figure shows the average percent change in the level of latent children’s skills at age

13-14 by the different timing (age) of income transfer for the estimated Model 1 (see Section 2.6.2),

controlling for measurement error. The transfer is $1,000 in family income at some age t. We report

100 ·E(
θ
′

T (a)−θT
θT

), where θ
′

T (a) is level of skill at age 13-14 with an income transfer of $1,000 dollars

provide to the family at age a and θT is level of skill at age 13-14 in the baseline model (no income

transfer).
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Figure 2.8: Average Effect of an Income Transfer by Age of Transfer (Outcome:

Schooling at Age 23)

Notes: This figure shows the average change in the number of months of completed schooling at

age 23 by different timing (age) of income transfer for the estimated Model 1 (see Section 2.6.2),

controlling for measurement error. We report E
[
S
′

(a)− S
]
, where S

′

(a) is the number of months

of completed schooling at age 23 with an income transfer of $1,000 given at age a while S is the

number of months of completed schooling in baseline model (no income transfer). This figure reports

the results of the same policy experiment as Figure 2.7 but with a different outcome measure.

78



Figure 2.9: Heterogeneity in Policy Effects by Age 5-6 Household Income (Outcome:

Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed

months of schooling by the percentile of initial (age 5-6) family income for the estimated Model 1

(see Section 2.6.2), controlling for measurement error. Each income category is defined as the people

contained between nth and the n − 1th of the percentiles of the income distribution. For example,

Income category 10 in the graph means the people who belong between the 9th and 10th percentile

of the income distribution. In the estimated income distribution for our sample, income categories

10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual family income.

This figure also plots the average effect over the income distribution.
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Figure 2.10: Heterogeneity in Policy Effects by Age 5-6 Children’s Skills (Outcome:

Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed

months of schooling by the percentile of the child’s initial (age 5-6) skill for the estimated Model

1 (see Section 2.6.2), controlling for measurement error. Each initial skills category includes the

children contained between nth and the n − 1th of the percentiles of the skills distribution. For

example, skill category 10 is the children between the 9th and 10th percentile of the initial skills

distribution. This figure also plots the average effect over the initial skill distribution.
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Table 2.1: Sample Descriptive Statistics

Mean Std

N Obs 19,070

N of Mothers 3,199

N of Children 4,941

% Male Children 51.32

% Female Children 48.68

% Hispanic Children 21.44

% Black Children 30.44

% Other races 48.12

Mom Education 12.59 2.63

Family Income 61,657.88 47,527.85

Children Final Years of Education 13.30 2.36

Notes: This table shows the main descriptive statistics of the CNLSY79 sample we use to estimate

the model. Children’s Completed Education is the child’s completed years of education at age

23. The variable ”other races” represents all children which are not black neither Hispanic (i.e. it

includes white, non-Hispanic children). Income is in $2012 USD.
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Table 2.2: Estimates for Initial Conditions

Log Child Skills Log Mother Log Mother Log Family

at age 5 Cognitive Skills Noncognitive Skills Income

Variance-Covariance Matrix

Log Child Skills 4.947 6.254 0.122 0.668

at age 5 ( 0.471) ( 0.479) ( 0.031) ( 0.065)

Log Mother 6.254 30.190 0.593 2.588

Cognitive Skills ( 0.479) ( 1.032) ( 0.137) ( 0.099)

Log Mother 0.122 0.593 0.046 0.058

Noncognitive Skills ( 0.031) ( 0.137) ( 0.017) ( 0.012)

Log Family 0.668 2.588 0.058 0.780

Income ( 0.065) ( 0.099) ( 0.012) ( 0.018)

Correlation Matrix

Log Child Skills 1.000 0.512 0.256 0.340

at age 5 (-) ( 0.026) ( 0.029) ( 0.027)

Log Mother 0.512 1.000 0.504 0.533

Cognitive Skills ( 0.026) (-) ( 0.025) ( 0.015)

Log Mother 0.256 0.504 1.000 0.307

Noncognitive Skills ( 0.029) ( 0.025) (-) ( 0.022)

Log Family 0.340 0.533 0.307 1.000

Income ( 0.027) ( 0.015) ( 0.022) (-)

Notes: This table shows the estimated variance-covariance matrix (ΣΩ) and associate correlation

matrix of the initial conditions at age 5-6. Standard errors in parenthesis are computed using a

cluster bootstrap.
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Table 2.3: Estimates for Investment (Model 1)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018

( 0.059) ( 0.009) ( 0.009) ( 0.009)

[ 0.14, 0.33] [ 0.01, 0.04] [ 0.01, 0.04] [ 0.01, 0.03]

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005

( 0.022) ( 0.009) ( 0.015) ( 0.013)

[ 0.04, 0.12] [-0.01, 0.02] [-0.01, 0.04] [-0.02, 0.02]

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712

( 0.131) ( 0.060) ( 0.084) ( 0.088)

[ 0.11, 0.54] [ 0.64, 0.82] [ 0.52, 0.81] [ 0.54, 0.82]

Log Family Income 0.341 0.227 0.274 0.275

( 0.076) ( 0.056) ( 0.076) ( 0.087)

[ 0.25, 0.48] [ 0.15, 0.33] [ 0.17, 0.43] [ 0.17, 0.44]

Variance Shocks 1.186 1.019 0.868 1.087

( 0.232) ( 0.148) ( 0.236) ( 0.296)

[ 0.96, 1.53] [ 0.83, 1.29] [ 0.66, 1.33] [ 0.82, 1.64]

Notes: This table shows the measurement error corrected estimates for the investment equation for

Model 1 (see Section 2.6.2). Each column shows the coefficients of the investment equation at the

given ages. The dependent variable is investment in period t which is determined by the covariates

at time t . For example, the first column shows the coefficients at age 5-6 for both contemporaneous

parental investments and contemporaneous child’s skill and contemporaneous family income. Both

standard errors in parenthesis and the 90% confidence interval in square brackets are computed

using a cluster bootstrap.
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Table 2.4: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2


Free Return to Scale Technology

and TFP Dynamics







Restricted Return to Scale Technology

and No TFP Dynamics




Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 0.739 0.816 0.833 0.910

( 0.153) ( 0.036) ( 0.027) ( 0.029) ( 0.087) ( 0.072) ( 0.105) ( 0.096)

[ 1.69, 2.21] [ 1.03, 1.15] [ 0.84, 0.93] [ 1.01, 1.11] [ 0.61, 0.88] [ 0.69, 0.93] [ 0.71, 1.02] [ 0.76, 1.07]

Log Investment 0.799 0.695 0.713 0.252 0.300 0.187 0.170 0.087

( 0.262) ( 0.339) ( 0.404) ( 0.541) ( 0.077) ( 0.069) ( 0.097) ( 0.095)

[ 0.41, 1.23] [ 0.15, 1.24] [-0.10, 1.25] [-0.53, 1.20] [ 0.18, 0.42] [ 0.08, 0.32] [-0.01, 0.30] [-0.07, 0.23]

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.040 -0.004 -0.003 0.003

Log Investment ) ( 0.066) ( 0.019) ( 0.013) ( 0.010) ( 0.026) ( 0.015) ( 0.014) ( 0.009)

[-0.22,-0.03] [-0.04, 0.03] [-0.02, 0.02] [-0.02, 0.02] [-0.09,-0.01] [-0.03, 0.02] [-0.03, 0.02] [-0.02, 0.01]

Return to scale 2.660 1.776 1.606 1.320 1.000 1.000 1.000 1.000

( 0.225) ( 0.317) ( 0.398) ( 0.535) (-) (-) (-) (-)

[ 2.30, 3.02] [ 1.25, 2.31] [ 0.79, 2.14] [ 0.58, 2.25] [-,-] [-,-] [-,-] [-,-]

Variance shocks 5.612 4.519 3.585 4.019 2.110 1.279 0.944 0.903

( 0.174) ( 0.184) ( 0.181) ( 0.247) ( 0.178) ( 0.144) ( 0.163) ( 0.165)

[ 5.37, 5.93] [ 4.27, 4.89] [ 3.27, 3.88] [ 3.70, 4.46] [ 1.88, 2.44] [ 1.09, 1.57] [ 0.78, 1.32] [ 0.74, 1.33]

Log TFP 13.067 14.747 11.881 2.927 0.000 0.000 0.000 0.000

( 0.295) ( 0.367) ( 0.541) ( 0.957) (-) (-) (-) (-)

[12.67,13.61] [14.22,15.47] [11.17,13.00] [ 1.38, 4.65] [-,-] [-,-] [-,-] [-,-]

Notes: This table shows the measurement error corrected estimates for the technology of skills

formation for both Model 1 and Model 2 (see Sections 2.6.2 and 2.6.2) . Each column shows the

coefficients of the technology of skills formations at the given age. The dependent variable is log

skills in the next period t + 1, and the covariates (inputs) are at time t. For example, the first

column shows the coefficients for the skills inputs at age 5-6 which lead to log skills at age 7-8. Both

standard errors in parenthesis and the 90% confidence interval in square brackets are computed

using a cluster bootstrap.
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Table 2.5: Estimates for Adult Outcome Equation (Model 1)

Schooling Log Wage

Constant 7.088 9.444

( 0.399) ( 0.121)

[ 6.56, 7.71] [ 9.26, 9.64]

Log Children Skills 0.151 0.021

at age 13-14 ( 0.010) ( 0.003)

[ 0.14, 0.16] [ 0.02, 0.03]

Variance Shock 4.333 0.246

( 0.143) ( 0.012)

[ 4.07, 4.56] [ 0.22, 0.26]

Notes: This table shows the estimates for two adult outcome equation specifications: schooling and

log earnings. In both cases the estimates are for Model 1 (see Section 2.6.2) and they are corrected

for measurement error. The dependent variable is either the years of completed education for the

child at age 23 or log earnings at age 29. Both standard errors in parenthesis and the 90% confidence

interval in square brackets are computed using a cluster bootstrap.
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Table 2.6: Estimated Policy Effects under Different Modeling Assumptions

Panel A: ATE by Age of Income Transfer

Measurement Error Corrected

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 1.818 0.799 1.025 0.574

[ 0.93, 2.56] [ 0.29, 1.33] [-0.05, 2.15] [-0.39, 1.74]

Model 2 0.404 0.179 0.229 0.128

[ 0.22, 0.64] [ 0.07, 0.32] [-0.02, 0.42] [-0.10, 0.36]

Not Corrected for Measurement Error

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 0.687 0.220 0.210 0.251

[ 0.48, 0.90] [ 0.09, 0.36] [ 0.07, 0.34] [ 0.06, 0.47]

Model 2 0.846 0.271 0.259 0.309

[ 0.62, 1.06] [ 0.12, 0.44] [ 0.09, 0.41] [ 0.08, 0.55]

Panel B: ATE at age 5-6 by Family Income

Measurement Error Corrected

Low Income Families High Income Families

(10th Income Percentile) (90th Income Percentile)

Model 1 4.11 Model 1 0.313

Model 2 0.91 Model 2 0.070

Not Corrected for Measurement Error

Low Income Families High Income Families

(10th Income Percentile) (90th Income Percentile)

Model 1 1.465 Model 1 0.158

Model 2 1.806 Model 2 0.194

Notes: Panel A shows the average treatment effects on additional months of completed education by age of policy intervention ($ 1000

income transfer) for different model specifications (Model 1 vs Model 2, see Sections 2.6.2 and 2.6.2) and different estimators (controlling

for measurement error or not). The 90% confidence interval in square brackets are computed using a cluster bootstrap. Panel B shows

the ATE respect to family income for the different model specifications and different estimators.
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Table 2.7: Average Effect of an Income Transfer by Age of Transfer (Outcome: PV

of Earnings)

Panel A: Benefit-Cost Analysis by Age

Age of Benefit on Direct Cost Cost of Education Net Benefit

Intervention PV Earnings (Income Transfer)

($) ($) ($) ($)

Age 5-6 5549 1000 1818 2730

Age 7-8 2437 1000 799 638

Age 9-10 3128 1000 1025 1103

Age 11-12 1750 1000 574 177

Notes: This table shows the benefit-cost analysis for a 1000 dollars transfer to family of a future

median earner workers with 12 years of completed education. The benefit on the PV of earnings

is the difference between the present value of earnings with and without that transfer when worker

was age 5-6. The effect of family income transfer on earning growth is computed adjusting for the

increased earning growth implied by estimates in Table 2.5. The cost of that policy takes into account

both the direct transfer and the discounted cost of additional education that the policy induces. We

use a yearly cost of school of 12,000 dollars as approximately estimated from the National Center

for Education Statistics.
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Chapter 3

SKILLS, PARENTAL INVESTMENTS AND PEER EFFECTS

3.1 Introduction

This paper analyzes the effect of social interactions on skill formation in children.

In particular, I build and estimate a model of child development, where children grow

up in different environments, which are defined by: peers’ composition, neighborhood

quality and school quality. The dynamics of skills is governed by a technology of skill

formation, which depends upon parental investments, the current child’s skills and

the environment-specific inputs. In this framework, I shed light on the importance

of the dynamic effects of children’s endogenous social interactions and the parental

investment decisions in explaining developmental differences between different en-

vironments. A growing consensus in the literature emphasizes the importance of

neighborhoods in shaping children’s opportunities later in life (Chetty and Hendren,

2016a,b; Chetty et al., 2016a,b). However, despite extensive research, the mechanisms

behind these results remain unexplained. This paper reconciles the previous findings

of childhood exposure to neighborhood with the role of children’s social interactions

in child development.

This project advances the current literature of child development by building and

estimating a dynamic equilibrium model of children’s skill formation with two inno-

vative empirically grounded features. First, within different environments, children

endogenously select their peer groups based on their preferences for their peers’ char-

acteristics. Social interactions can exhibit the tendency of children to become friends

with others who share similar characteristics: a phenomenon called homophily bias.
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Second, parental investments respond to changes in peer groups. Decisions regarding

parental investments depend upon a child’s current peers, as well as on expectations

about future peer groups. Equilibrium effects arise from the socially determined

aspects of parental investments. In this framework, parental investments not only

directly affect a child’s skills, but also affect the development of the child’s peers

through social interactions. Consequently, the individual return on investing in chil-

dren is affected by the equilibrium parental engagement within each environment.

Skills are formed dynamically through a technology of skill formation, which de-

fines the complementarities between parental investments and the other inputs of

child development in producing a child’s skills: the current endowment of skills, the

skills of peers, the school quality and the neighborhood quality. In this framework,

there are two main channels through which peers affect parental behavior. First,

contemporaneous changes in current peers and parental investments are related to

the static complementarity between the two inputs. Second, permanent changes in

peer composition affect parental behavior through the dynamic complementarity in

skill formation. In other words, a permanent change in peer composition affect the

return of parental investments through the dynamic aspect of skill formation.

The model is estimated using data on U.S. adolescents from the National Longi-

tudinal Study of Adolescent Health (Add Health). Add Health provides information

about friendships within each school, which is key for analyzing the formation of peer

groups. Moreover, information about child achievements and parental investments

are available.

The identification of the model comes with two main challenges: (i) unobserved

heterogeneity in how peer groups are endogenously formed; and (ii) children’s skills

and parental investments are unobserved. Ignoring these issues by using correlational

relationships would cause the model’s estimates and subsequent quantitative analysis
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to be biased.

The first challenge presents itself from the fact that peer groups may be formed

based on additional unobserved heterogeneity, which can cause correlation between

peer groups’ realization and the residual unexplained variation in skill formation. To

address this concern, I implement a standard instrumental variable (IV) approach in

the literature. This identification strategy exploits random variations in cohort com-

position within school / across cohorts. The idea behind this identification strategy

is simple: random changes in cohort compositions affect the opportunities for friend-

ships between children. These shifts in the formation of peer groups affect the return

of parental investments and the subsequent parental decisions. 1

In addressing the second challenge, Cunha et al. (2010) illustrate that even the

classical measurement error in measuring a child’s skills can cause important biases

in estimating the technology of children’s skill formation. Following the approach

in Cunha et al. (2010) and Agostinelli and Wiswall (2016a), I implement a dynamic

latent factor model, which allows me to identify the joint distribution of latent skills

and investments by exploiting multiple measurements in the data.

I estimate the model via simulated method of moments (SMM). I find that parental

investments and peers are substitute inputs in producing children’s skills. At the

same time, I find a strong dynamic complementarity between parental investments

and future expected peers. As a result of these two findings, a permanent change in

peer composition has two opposing effects on parental investments. On one hand,

“better” peers generate contemporaneous substitution effects in investment decisions

due to the high substitutability in the production function. On the other hand, higher

1For previous use of similar source of identifying variation, see Hoxby (2000); Hanushek et al.

(2003); Ammermueller and Pischke (2009); Lavy and Schlosser (2011); Lavy et al. (2012); Bifulco
et al. (2011); Burke and Sass (2013); Card and Giuliano (2016); Carrell et al. (2016); Olivetti et al.
(2016); Patacchini and Zenou (2016)
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expected future skills for peers produce an “income” effect through the dynamic

complementarity of skill formation. Parents have the incentive to invest more in their

children because a higher-skilled child benefits more from higher-skilled peers in the

future.

Furthermore, my estimates suggest that the formation of peer groups displays an

extensive degree of homophily bias. I show evidence of homophily bias with respect

to a child’s race and level of latent skills. A child who is in the lower quartile of the

skill distribution and belongs to a minority group is four times more likely to befriend

a same-race child than a different-race child. In addition, the same child is two times

more likely to befriend a same-skill and same-race child than a same-race child in the

upper quartile of skill distribution.

I first use the estimated model to analyze the extent to which growing up in

different environments accounts for the variation in children’s outcomes. I find sizable

effects for children moving to better environments. The effects are in proportion to

the exposure time. The earlier children are moved, the higher the effect. A child

who is moved at age 12 to an environment where children have 1 percentile higher

skills at age 16 exhibits, on average, an improvement in her skills rank at age 16 by

0.63 percentiles. The average effect is 0.48 percentiles if the child is moved at age

15. As model validation, I show that my findings track (out-of-sample) the quasi-

experimental findings of childhood exposure effects of neighborhoods for the U.S.

from Chetty and Hendren (2016a). In addition, my model allows me to decompose

these effects. I find that peers account for more than half of the exposure effects.

The relative importance of peers for the exposure effects underlines the role of

policies that change peers’ composition and promote socioeconomic integration in en-

vironments, as a way to improve outcomes for disadvantaged children. I find that by

moving the most disadvantaged children (in the lower quartile of skill distribution)
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from a low-income environment to a high-income environment generates important

dynamic equilibrium effects, with heterogeneous treatment effects for both the moved

and receiving children. I first consider a large-scale policy, i.e. a policy that moves

a sizable fraction of disadvantaged children into a higher-income environment (ap-

proximately 5% of the population of the receiving cohort). I find that the policy

increases the skills of the moved population of 16-year-old children, on average, by

approximately 0.40 standard deviations. On average, I do not find any adverse ef-

fect for receiving children. On the contrary, when the fraction of moved population

increases to 30%, I find that the policy generates winners and losers. First, I find

that the policy increases the skills of the moved population of 16-year-old children on

average by 0.22 standard deviations. In contrast, there is an adverse effect for receiv-

ing children, with the skills of 16-year-old children decreasing, on average, by 0.15

standard deviations. Additionally, I find that children who remained in the sending

environment benefit from the outflow of the most disadvantaged companions, with

an average increase in skills at age 16 of 0.17 standard deviations.

I find that large-scale changes in peers’ composition generate important equilib-

rium feedback effects, and as a result amplify the policy effects. Ignoring equilibrium

effects would lead to large biases in counterfactual policy predictions for children’s

final skills. In the case of the larger policy, I find that the policy predictions for the

children’s skills in the receiving environment would be approximately seven times

smaller. Part of the bias is due to the dynamic-equilibrium feedback effects on

parental investments. In fact, in the absence of dynamic-equilibrium feedback ef-

fects, the static complementarity between parents and peers dominates the dynamic

effects of the policy.

I find that policy effects for receiving and remaining children reduce in magnitude

as the fraction of moved children decreases. An increase of inflow of the most disad-
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vantaged children from the low-income environment to the high-income environment

increases the probability of the receiving children becoming friends with the new com-

panions. For the same reason, an increase of the outflow of the moved population

benefits children who remain in the sending environment. For children who were

moved, the opposite is true. The higher the outflow of disadvantaged companions,

the higher the chances that the moved children remain friends with each other in the

new environment.

My structural model allows me to analyze the distributional policy effects. I find

that large-scale changes in peers’ composition exhibit heterogeneous treatment effects

as a result of the endogenous formation of new peer groups. Children with lower skills

(in the first quartile of the skills distribution in each subpopulation): (i) benefit the

most in leaving disadvantaged social environments; (ii) benefit the most amongst the

children who remained in the sending environment; (iii) are the ones who are more

adversely affected in receiving the new peers. Furthermore, I find stronger policy

effects for minorities, with detrimental effects in black and Hispanic children living

in the receiving environment. This is explained by the fact that most of the moved

children are minorities, and as a result, the minority children from the receiving

environment are more likely to interact with the new companions because of the race

effects in the endogenous formation of peer groups. In line with this result, previous

empirical studies pointed out that peer effects seem to be stronger intra-race and for

minorities (see Hoxby, 2000; Angrist and Lang, 2004; Imberman et al., 2012)

The paper will be presented as follows. In Section 3.2, I discuss the related liter-

ature. In Section 3.3, I present the data used for the empirical work and preliminary

empirical results. In Section 3.4 and 3.5, I present the model. In Section 3.6, I de-

scribe the identification strategy. Section 3.7 contains a discussion of the structural

estimation and results. Section 3.8 and Section 3.9 discuss the quantitative analysis
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and the model validation. Section 3.10 concludes.

3.2 Related Literature

This paper builds upon two important areas of the literature: child development

and social interaction. There is extensive evidence in the literature on parental and

public investment in children that highlights the important role of play inside and

outside the household on the development of children’s skills (see Todd and Wolpin,

2003, 2007; Del Boca et al., 2014b). Cunha and Heckman (2008) and Cunha et al.

(2010) estimate a dynamic latent factor model of cognitive and non-cognitive skill

formation, allowing for unobservability of both inputs and outputs, endogeneity of

inputs and unobserved child-specific heterogeneity. They find that investments made

early in life are more effective in remediations for low-skilled children. Agostinelli and

Wiswall (2016a) follow the framework considered in Cunha et al. (2010) and develop

a new identification strategy for the technology of skill formation with unknown total

factor productivity and unknown return to scale. Their empirical results show a

pattern of rapid skill development from age 5 to 14. They find that as children age,

skill inequality increases. Estimates reveal that investments are more productive at

early ages and in particular for disadvantaged children. This paper is the first work

in the literature that sheds light upon the dynamic equilibrium effects of children’s

social interactions and the parental investment decisions in explaining developmental

differences in children.

A wide set of previous work analyzed peer effects in various outcomes. Manski

(1993) points out the challenges in identifying peer effects by considering three observ-

able equivalent specifications in a model of social interactions: peer effects (endoge-

nous effects), selection into peer groups (correlated effects) and common exogenous

(contextual) effects. One part of the literature tried to overcome this challenge in
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identification of peer effects by exploiting exogenous variation in peer-group compo-

sition. 2 For example, in Abdulkadiroglu et al. (2014), the identification of peer

effects at school is based on test-score discontinuity in admission criteria. In the con-

text of college students, De Giorgi et al. (2010) and Sacerdote (2001), respectively,

exploited random assignments of peers at college. Arcidiacono et al. (2012) develop

a new algorithm for estimating peer effects using panel data and which controls for

peer selection and unobserved heterogeneity using University of Maryland transcript

data. Finally, Sacerdote (2001) highlights that the literature’s findings on peer ef-

fects are quantitatively and statistically larger when considering non-linear models

of peer effects. However, results are often context specific, a potential limitation for

policy analysis. This paper is exploiting quasi-experimental variation in cohort com-

position within school / across cohorts, to identify the degree of complementarity

between parental investments and peers in the technology of skill formation. The set

of policy-invariant parameters of the model are used to evaluate policies that have

not previously been implemented.

A parallel literature started to consider identification and estimation of peer ef-

fects within micro-funded models of behavior and social interactions (see Brock and

Durlauf, 2001b,a, 2007; Blume et al., 2011, 2015). Calvó-Armengol et al. (2009) esti-

mate a model of adolescent effort choice within a social network. The authors define

peers as the set of nominated children in Add Health data. However, the authors do

not consider any model of network formation and peer selection, while they control for

peer selection through network-specific fixed effects. This is equivalent to assuming

that peers select themselves into groups but friendship formation within each group

is independent of observable and unobservable characteristics of people in the group.

2For a complete literature review on the identification of peer effects through experiments, see
Sacerdote (2014)
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They find that the level of an adolescent’s connectivity (position within the network

measured by Katz–Bonacich centrality) is an important predictor for their school per-

formance. Finally, Fu and Mehat (2016) estimate a model of student achievements

and a class-tracking regime with endogenous parental effort using ECLS-K. They find

that accounting for endogenous parental responses to class-quality changes is key to

evaluating class-tracking policies. These works explicitly focus on the contempora-

neous peer effects on children’s outcomes. My paper contributes in this literature

by building a new structural model of child development and peer effects, and by

highlighting the importance of dynamic peer effects in shaping the developmental

trajectories of children.

Analysis of endogenous network formation became popular among both theoretical

(see for example Jackson and Wolinsky, 1996; Bala and Goyal, 2000; Dutta et al.,

2005; Mele, 2010) and econometric studies (see Christakis et al., 2010; Sheng, 2014;

Auerbach, 2016; Graham, 2016, 2017). Carrell et al. (2013) estimates peer effects on

academic performance at the United States Air Force Academy. Using an assignment

algorithm designed to foster the academic achievement of the lowest-ability students,

the authors find a negative treatment effect for the targeted group. The authors

provide evidence that this finding is the result of endogenous peer-group formation,

which displays the tendency of students to generate homogeneous subgroups. This

result underlines the importance of accounting for endogenous peer-group formation

once considering policies that manipulate peer composition.

Important progress has been made in Badev (2016), where the author develops a

model of individual behavior and endogenous peer selection. He estimates the model

using Add Health data on smoking decisions and friendship nominations. He finds

that neglecting the endogeneity of the networks leads to important biases on policy

evaluations. However, Badev (2016) focuses on the contemporaneous effects of peers,
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and through this paper, I will emphasize how the dynamic aspect of peer effects is key

in understanding the role of social interactions in child development. Additionally,

the empirical analysis in Badev (2016) looks at a specific outcome for adolescents

(smoking decisions), while my empirical analysis will be based on a dynamic latent

factor model. This allows me to consistently study peer effects on children’s skills

and to avoid relying on arbitrary variables as measures for children’s outcomes.

Finally, my work sheds light on the mechanisms behind the recent research on the

effects of neighborhood exposure on children. Chetty and Hendren (2016a) find sizable

childhood exposure effects of neighborhood. Their results show that the return for

children’s outcomes of moving to a better neighborhood is in proportion to the amount

of time spent in that neighborhood, with a rate of 4% decline for each additional

year of exposure to the origin area. In a companion paper, Chetty and Hendren

(2016b) find strong correlation between the childhood exposure effects and specific

characteristics of neighborhoods, like racial segregation, income inequality, school

quality, and social capital. My estimated model replicates (out-of-sample) the findings

in Chetty and Hendren (2016a), and it decomposes the causal effects of neighborhoods

in different policy-relevant mechanisms, like the effect of peer composition, school

quality and neighborhood quality in child development.

3.3 Data and Empirical Evidence

3.3.1 The National Longitudinal Study of Adolescent to Adult Health (Add

Health)

This paper uses the National Longitudinal Study of Adolescent to Adult Health

(Add Health). 3 The Add Health original sample comprises students among 132

3For additional information about the dataset, see Appendix B.1 or visit
http://www.cpc.unc.edu/projects/addhealth
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representative schools in the United States. There are 90,118 students, ranging be-

tween grade 7 and grade 12 in the 1994–1995 school year (Wave I). A subsample of

students (20,745) is selected for having an additional home interview (in-home). The

home interview includes new questions for the children and a questionnaire for one

of their parents. The dataset includes specific information on family background,

students’ school grades and their scores in the Add Health Picture Vocabulary Test

(AHPVT – a revised version of the Peabody Picture Vocabulary Test [PPVT]) , as

well as information about children’s peers.

A main source of information that makes the Add Health dataset particularly

attractive for achieving the objective of this project is the friendship nomination.

During the first two waves, children were asked, both during the in-home and in-

school interviews, to nominate their best five male and best five female friends. This

detailed information helps me to reconstruct the structure of friendship for every child

in the sample by simply matching their identifier. Additionally, during the in-home

interview, children are asked about their relationship with their parents. Respondents

provide information regarding whether, during the last four weeks, they were involved

in specific activities with their parents. The activities include: going shopping, sport

activities, going to a movie/museum/concert or sport event, talking about personal

problems or school, or working on a project for school. I use all the activities as

measures of parental investments.

One important challenge in the empirical analysis of peer effects using Add Health

comes from the fact that children are able to nominate up to five friends for each

gender. This feature of the data can lead to a potential censoring and mismeasurement

of peer groups (see for example Chandrasekhar and Lewis, 2016; Griffith, 2017). In

the sample I use for my empirical analysis approximately 11% of children showing
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a full list of 10 best friends within the school roster. 4 To address this concern, I

construct the peer-group information for each child from both the individual child’s

list of friends as well as from the unilateral friendship nominations coming from the

other children who are not nominated. In other words, if child i does not nominate

child j as a friend, but child j nominates child i, then I consider them as friends in the

data. In a case where child i’s list of friends is binding, I am able to recover additional

friends in his peer group, alleviating the truncation problem. Furthermore, through

my empirical analysis of parental investments and peer effects, I implement an IV

estimation analysis to deal with the endogeneity of the network formation. Given

that my instrument is unrelated to the network structure of friends, this approach is

also effective in dealing with mismeasurement of peer effects. 5

3.3.2 Descriptive Statistics

Table 3.1 reports descriptive statistics for the sample I use in the estimation of the

model. The average age is 15.65. In terms of racial composition, 16% of the children

are black and 17% are Hispanic, while the remaining 67% are white (or other races).

On average, children report 4.48 friends out of the maximum number of 10 possible

nominations. 6 The average PPVT raw score is 64.26, while the average grades for

4By gender, respectively, 28% of male and 32% of female children report a list of five best same-
gender friends within the school roster

5A common instrument in the analysis of peer effects is constructed with exogenous characteris-
tics of the friends of friends (see for example Bramoullé et al., 2009; Calvó-Armengol et al., 2009;
Patacchini and Zenou, 2012). The validity of this instrument requires the correct measurement of
the network structure, at least until the second degree of separation between links.

6Here, I report the average number of nominated friends. Later, in the empirical section, I will
consider the total number of friends, which is constructed by also including the unilateral friendship
nominations of other children. The average number of friends is approximately seven.
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English, math, history and science vary from 2.72 to 2.86. 7 , 8 The average family

income is $42,884 (in 1994), while the average number of years of schooling for the

child’s mother is 13.13. 9

Table 3.1 also provides descriptive statistics on measures of a parent’s (mother’s)

level of engagement, which I use to identify latent parental investments in my empir-

ical analysis. The most frequent activities performed by children with their mothers

in the four weeks preceding the in-home interview are: shopping (72%), talking about

school work (63%) and school activities (54%). On average, from one-third to approx-

imatively a half of children had a conversation about personal issues or an argument

with their mothers (47% of them talked with their mothers about someone they are

dating or about a party they attended, 39% talked about a personal problem and 33%

had a serious argument). A quarter of children went with their mother at least once

to a movie theater, museum, concert or sport events, while 38% went to a religious

service. Finally, approximately 10% of children either played a sport or worked on a

school project with their mother.

3.3.3 Empirical Findings on the Endogeneity of Network Formation

In this section, I provide some empirical evidence that friendships are not formed

at random, but instead children display the tendency to become friends with others

who are similar to themselves: a phenomenon called homophily bias. One impor-

tant concern in any empirical analysis of peer effects is related to the endogeneity of

the network formation (see Carrell et al., 2013). In particular, the tendency of chil-

7The national GPA in 1994 for U.S. high schools was 2.44 in math, 2.50 in science and 2.63 in
English. Source: the National Center for Education Statistics, The Nation’s Report Card

8Only 34 out of 19,713 children achieved the maximum PPVT score. Only five children scored
the minimum.

9 Using the Current Population Survey, I find that mothers of children with similar age, as in
Add Health, have an average family income for 1994 of $42,759. Their average number of years of
education is 12.63.

100



dren with a similar background (both observable and unobservable characteristics)

to socialize together can be an important challenge for identification. Furthermore,

evaluation of many policies which can change cohort composition in specific social

environments (e.g. school vouchers, housing vouchers, classroom tracking, etc.) is

required to predict new policy-induced children’s networks to account for social in-

teractions and to predict the effects on the dynamics of children’s skills.

Following the method in Currarini et al. (2010), I test for homophily bias in the

formation of peer groups by looking at the homophily bias index (hereafter referred

to as HBI) developed in Coleman (1958). The intuition behind the HBI is straight-

forward: the index captures the tendency of friendships to be biased towards other

children of the same type, adjusting for the relative frequency of that specific type in

the overall population. In detail, letting fx,s be the average fraction of friends who

are of the same type x at school s, and qx,s being the total fraction of children of type

x in a given school s, then we have:

HBIx,s =
fx,s
qx,s

(3.1)

A value of one for the HBI index in (3.1) suggests that friendships are formed at

random, preserving the frequencies of school composition in peer-group composition.

On the other hand, the homophily bias in network formation generates an HBI index

greater than one: the fraction of same-type friends consistently exceeding the fraction

of that type of children at school. Figure 3.1 shows graphically the HBI for race. The

x-axis represents the values for the fraction of same-race children in the school (qx,s).

The y-axis displays the fraction of same-race friends (fx,s). Each point in Figure 3.1

represents the average fraction of friends of the same race for individuals of a specific

race in a specific school. Figure 3.1 shows that children of different races tend to

form friendships with same-race children at a higher frequency than the frequencies
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of racial composition at school. Figure 3.2 is the analogue of the previous figure

with respect to a child’s skills. Each of the sub-figures in Figure 3.2 uses a different

criterion for defining “same-skills children” relative to the standard deviation of the

skills distribution. Each of the four specifications exhibits the tendency of children

to become friends with other children with the same level of skills. 10

3.3.4 Empirical Findings on Parental Investments and Peers’ Skills

In this section, I show the extent to which changes in peers’ skills induce changes

in parental investment behavior. The results provide the support for the framework

of my model of child development and peer effects described in the next section. In

addition, these empirical findings are used in the structural estimation of my model as

identifying moments. Consider the following empirical model of investment decision:

Ii,s,t = β0 + β1 lnhi,s,t + β2 lnH i,s,t +X ′

iβ3 + βs + ui,s,t , (3.2)

where Ii,s,t is the parental investment (as a fraction of time) for parent of child i, in

school s when she is t years old, which is recovered through a latent factor model (see

Section 3.5.1) using data on parental engagement described in the previous section.

The child’s skills are defined as hi,s,t , while H i,s,t is the mean of her peers’ skills. Xi is

a vector of the child’s and parents’ exogenous characteristics and βs is the school fixed

effects. The coefficient β2 represents the effect of peers’ skills on investment decisions.

The equation in (3.2) is similar to the investment decision function estimated in the

previous literature, where I additionally include peers’ skills as an explanatory variable

(see Cunha et al., 2010; Agostinelli and Wiswall, 2016a; Attanasio et al., 2017a,b,c).

I first estimate the model in (3.2) using school fixed effects. Column (1) of Table

10The null hypothesis of random formation of peer groups with respect to race and skills is rejected
in both cases at a 1% significance level.
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3.2 shows the results. 11 The effect of peers on parental investment is negative and

statistically significant at the 5% level. The estimate of -1.44 indicates that doubling

peers’ skills is associated with a decrease in investments of 1.44 percentage points. On

the other hand, the effect of a child’s skills on parental investment behavior is positive

and statistically significant at the 1% level. The point estimate of +2.66 suggests that

doubling a child’s skills induces parental investments to increase by 2.66 percentage

points. Overall, the school fixed effects estimates suggest that parental investments

respond in opposite direction to changes in their own child’s skills in comparison to

changes in skills of their child’s peers.

Following the analysis of endogenous network formation in the previous section, I

address the endogeneity of peers’ skills in (3.2), implementing a within-school instru-

mental variable (IV) estimator. I use variation in the racial compositions of different

cohorts within the same school to analyze the effect of changes in peers’ skills on

parental investments, where cohorts are defined by children’s ages (for previous use

of a similar source of within-school/across-cohorts identifying variation for peer ef-

fects, see Hoxby, 2000; Hanushek et al., 2003; Ammermueller and Pischke, 2009; Lavy

and Schlosser, 2011; Lavy et al., 2012; Bifulco et al., 2011; Burke and Sass, 2013; Card

and Giuliano, 2016; Carrell et al., 2016; Olivetti et al., 2016; Patacchini and Zenou,

2016). The idea behind this identification strategy is simple: the differences in cohort

composition define the choice set for the children’s network formations, shifting the

peer-group realizations and identifying the causal effect of peers’ skills on investment

decisions. 12

Evidence of homophily bias in friendships in Section 3.3.3 underlines that the

11All results in Table 3.2 are adjusted for measurement error through the latent factor model
explained in Section 3.5.1.

12This identification strategy does not require that friendships are only formed within a unique
cohort. It only requires that changes in cohort composition alter the peer-choice set between cohorts.
Empirically, most of the friendship nominations are within the same cohort.
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heterogeneous effects in the formation of peer groups in children depend on the in-

dividual characteristics of the child. Differences in the fraction of children from a

minority group between cohorts would asymmetrically impact the friendship realiza-

tions that depend on race. Likewise, differences in the fraction of low-skilled children

between cohorts would predict dissimilar changes in peers’ skills for low-skilled versus

high-skilled children. For this reason, I implement an IV specification which allows

for different effects of cohort racial composition based on the individual child’s own

race and skills.

I construct two different instrumental variables for whether the child is part of

a minority group or not. In the case of white children, the instrument corresponds

to the interactions between the individual child’s log-skills (lnhi,t) and the fraction

of white children in that cohort. In the case of children from a minority group, the

children’s skills are interacted with the fraction of black children in that cohort. 13

Allowing for the heterogeneous effects of cohort compositions is important in terms of

predicting power on the formation of peer groups, and consequently for the relevance

of the instrumental variables.

The validity of the instruments relies on (i) the conditional independence and

(ii) the exclusion restriction. The first condition requires that differences in racial

composition between cohorts be uncorrelated with the unobserved heterogeneity in

investment decisions. This assumption would be consistent with a sorting model

of neighborhood/school choice through which parents decide where to permanently

move according to their expectations about the school’s composition. Random differ-

ences between the ex-ante expectations and the actual realization of the new cohort’s

composition would generate exogenous shifts in the set of potential peers. Addition-

13The regression is estimated with a within-school IV estimator, and the instrumental variables
are all transformed with a within-school transformation.
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ally, conditional independence is valid under the assumption that the latent factor

model fully captures the child-specific unobserved heterogeneity, which is a common

assumption in studies that estimate the technologies of skill formation (see Cunha

and Heckman, 2007, 2008; Cunha et al., 2010; Agostinelli and Wiswall, 2016a). 14

The exclusion restriction requires that the differences in racial composition between

cohorts within the same school affect parental investment decisions only through the

peer-effects channel, and not directly in any other way.

Figure 3.3 shows graphically the first-stage coefficients of the two instruments. In

the background of the two figures is a histogram that shows the distribution of the

two instruments (after controlling for the explanatory variables in (3.2)), revealing the

identifying sources of the variation. Figures 3.3a-3.3b show the different predictions

for peers’ skills due to changes in compositional effects by race: an increase in the

fraction of children with the same race within the same cohort predicts a decrease in

the expected level of peers’ skills in the case of a child from a minority group, while

it predicts an increase in the expected level of peers’ skills for a white child in that

cohort. Specifically, for the average child, an increase of 20% of same-race children

within the same cohort induces an increase of peers’ skills of approximately 1.7% if

the child is white, while it induces a decline of peers’ skills of 2.2% if the child belongs

to a minority group 15 . Results are stronger for the high-skilled children. For children

in the 95th percentile of the skills distribution, a 20% increase of same-race children

within the same cohort induces an increase of peers’ skills of approximately 6% if the

child is white, while it induces a decline of peers’ skills of 7% if the child belongs to

14An exception to this can be found in Cunha et al. (2010), where the authors consider additional
model specifications that allow the factors to be correlated with unobserved heterogeneity in in-
vestment decisions. However, in order to identify the model, the authors need additional exclusion
restrictions. One possible exclusion restriction is that during the first period of development, skills
are uncorrelated with the unobserved heterogeneity.

15The average for children’s skills is approximately 1.1
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a minority group. Moreover, I formally test the relevance of the two instrumental

variables in Panel B of Table 3.2. I find that the two instruments are relevant, with

an F-statistic of the test of joint significance equal to 11.78. 16

Column (2) in Table 3.2 reports the IV estimates. Peer effects on parental in-

vestments are both statistically and quantitatively different from the estimate of the

school fixed effects estimator. In fact, using shifts induced from within-school/across-

cohort changes in cohort composition, I find that the causal effect of peers’ skills on

parental investment is positive. The estimate suggests that doubling the average of

skills of a child’s peers is associated with an increase of parental investment of 0.72

percentage points.

Anticipating the next discussions regarding the identification of the model of in-

vestment decisions and the formation of peer groups, there are three main findings

from the above estimates which are extremely informative for identification of the

model: (i) point estimates of fixed effect estimator; (ii) the permanent nature of

shift-induced changes in peers by the instrumental variables and the associated causal

findings; (iii) The relative bias of the school fixed effects estimates relative to the IV

estimates. Through the lens of the structural model, these three pieces of informa-

tion from the empirical analysis will directly map into three specific features of the

model of investment decisions and formation of peer groups: (i) static complemen-

tarity between parents and peers in producing skills; (ii) dynamic complementarity

between parents and peers in producing skills; (iii) endogenous network formation

and selection into peer groups on unobservables.

16Stock and Yogo provide critical values to test weak IV conditions based on the F-stat of excluded
instruments. Those critical values can be interpreted as a test, with a 5 % significance level, of the
hypothesis that the maximum relative bias (with respect to the OLS estimates) is 10% or at least
15%. In this case, Stock and Yogo’s critical values for the F-stat of the excluded instruments are
19.93 (10%) and 11.59 (15%)
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3.4 An Equilibrium Model of Parental Investments and Endogenous Network

Formation

The social environment in which children live predicts their success later in life,

defining important room for policy interventions in fostering children’s skills. How-

ever, analysis of any policy which changes the composition of a specific social context

(e.g. school vouchers, housing vouchers, classroom tracking, etc.) requires knowledge

of the endogenous policy-induced changes in parental investments and peer groups

in order to predict the overall policy effects. This is particularly relevant considering

the empirical evidence on endogenous network formation and peer effects on parental

investments shown in the previous section. For this reason, in this section, I develop

the model that serves as the basis of my empirical and quantitative analysis.

This model represents a network economy populated by a finite number of families,

each formed by one parent (mother) and one child. There are several environments

e ∈ {1, . . . , E}, each populated by Ne number of families. Children can form social

networks only within each environment e. Children from different environments are

isolated from each other and they cannot socially interact. The model has four periods

(T= 4), each consisting of one year. The first period (t = 1) is when children are

13 years old, while the last period (t = T ) is when children are 16 years old. Since

I observe a negligible percentage of people changing school during the considered

period (probably because children are enrolled in high school), I simplify the model

by assuming that the parent cannot decide to change their environment during the

model’s period of study.

Parents and children solve different problems. Mothers altruistically invest time

to foster children’s skills. Children endogenously decide their peers according to

their skills and other exogenous characteristics, forming a potentially large social
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t

Child’s skills (hi,t)

realized

Child’s Friendships

Decision

Peer groups

realized

Parental Investment

Decision

t+1

Child’s skills (hi,t+1

realized

network within the environment. Potential skills spillovers for child development

take place between peers within a children’s social network. Peers’ skills spillovers

affect parental investment productivity. In equilibrium, parental investments form

the within-environment children’s skills distribution, determining the children’s social

interactions. This mechanism generates an equilibrium-feedback effect on parental

behavior caused by peer effects through the formed social network.

3.4.1 The initial conditions

The initial period of the model (t = 1) is fixed when children are 13 years old. At

the beginning of this period, I assume each family i draws the vector of individual

initial conditions composed of the initial skills for both mother and child (mi, hi,1),

its exogenous characteristics Xi, and the neighborhood quality d and school quality

s. The peers’ composition is defined by the set of children who share the same

neighborhood quality and school quality. The combination of peers’ composition,

neighborhood quality and school quality defines the environments where children

live. I do not allow mobility of a family between different environments during the

period of consideration (when the child is between 13 and 16 years old). In Add
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Health, I observe a negligible percentage of people changing school neighborhood

during the considered period. This finding is probably related to the fact that parents

do not tend to move once their child is already enrolled in high school. Hence, I use

this assumption in the model since it significantly simplifies the model. However,

different realizations of initial conditions generate the sorting of people into different

environments in terms of parents’ skills, income and child’s skills, which is a key

mechanism to analyze children’s social interactions and the consequences of social

isolation in generating inequality in children’s outcomes. Perhaps, in an economy

where selection into environments is based on a family’s skills and income, children

raised in high-skilled and high-income families will tend to interact with peers also

raised in high-skilled and high-income families. The characterization of these social-

interaction patterns are due to the sorting into environments.

3.4.2 Skill Formation

At each period t, children’s skills (hi,t) evolve dynamically through a technology

of skill formation. The children’s skills in the next period are produced by the cur-

rent stock of children’s skills, parental investment, peer effects, school quality and

neighborhood quality. The first two inputs are generally considered in the literature

of child development (see for example Cunha and Heckman, 2007, 2008; Cunha et al.,

2010; Heckman and Masterov, 2007; Del Boca et al., 2014b, 2016). Here, peer effects

(H i,t) are captured by the average of peers’ skills:

H i,t =
1∑

j ∈Ne
Li,j,t

∑

j ∈Ne

Li,j,t · hj,t , (3.3)

where Li,j,t is an indicator function, which equals one if child i and child j are friends,

and zero otherwise. The formation of peer groups is endogenous in the model and is

defined by the decision of children (see next section).
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The choice of the average effect of peers’ skills approach is in line with previous

literature on peer effects and social networks, where the mean effect (unweighted or

weighted average) is considered a first-order approximation of the peers’ externality

(see Brock and Durlauf, 2001b,a, 2007; Blume et al., 2011, 2015; Calvó-Armengol

et al., 2009; Patacchini and Zenou, 2012; Patacchini et al., 2012). However, in this

framework, peer effects can be potentially highly non-linear, depending on the tech-

nology specification. 17 I allow the dynamics of children’s skills to be affected also by

the parental investments (Ii,t), some individual specific neighborhood/school effects

(Ai,d,s,t) and total factor productivity (TFP). The technology of skill formation which

defines children’s skills in the next period looks as follows:

hi,t+1 = hi,t
α1 ·

[
α2 (Ii,t)

α3 + (1− α2)
(
H i,t

) α3
]α4
α3 · Ai,d,s,t · exp(ξi,t+1) , (3.4)

where I assume that (α1,α2,α4) ∈ (0, 1) and α4 ∈ (−∞, 1]. The stochastic com-

ponent ξi,t+1 represents the production function shocks. It is unrealized at time t

and it affects children’s skill dynamics. It represents the variation of skills dynamics

unexplained by the specified technology in (3.4). I allow ξi,t+1 to be correlated with

the unobservable heterogeneity in the formation of peer groups process νi,j,t, which

represents the unexplained variation in friendship realizations between children from

the model in (3.5). Specifically, I define the shock for the formation of peer groups

to be νi,j,t = ν̃i,j,t + ζi,j,t, where ζi,j,t ∼ N(0, σ2
ζ ), and it is potentially correlated with

the production shock ξi,t+1. The correlation between production function shock ξi,t+1

and friendship shock νi,j,t effectively allow the possibility of selection into peer groups

on unobservables.

The specification in (3.4) allows parents and peers to vary from being perfect

17See Sacerdote (2001) for the importance of non-linearity in empirical analysis of peer effects
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complements to being perfect substitute inputs. Additionally, technology in (3.4) is

consistent with the idea of dynamic complementarity of skills evolution, where higher

skills today induce higher skills tomorrow (see Cunha and Heckman, 2007). Equation

(3.4) allows me to have a flexible specification for the analysis of peer effects in

children’s skills accumulation. The level of static complementarity/substitutability

between parents and peers is defined by α3, while the dynamic complementarity

between investment and future peers comes from the self-productivity of skills to

beget skills, i.e. the complementarity of future peers with future skills.

3.4.3 The Child’s Problem

At the beginning of every period t, each child i decides to become friends with

another child j, independently of their parents. I define the process of children’s net-

work formation as a function of the children’s skills, their exogenous characteristics

(Xi, Xj) and a vector of environment-specific characteristics (Oe) such as race compo-

sition and population size 18 The network-formation process takes place only within

the same environment, generating social isolation between children of different areas.

Empirically, this is consistent with the fact that I observe friendships only within the

same school. At the same time, within the same environment, the children’s meeting

process is “frictionless”, meaning that each child meets the other children in that

social context. However, friendships are endogenously formed by the joint decision of

children.

Following a similar specification as in Christakis et al. (2010), Goldsmith-Pinkham

and Imbens (2013) or Graham (2017), child i’s utility to become friends with child j

at time t is:

18Figure B.1 shows that the probability of forming a friendship is a function of the population
size of the school.
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uCi,j,t = δ1+δ2 lnhj,t + δ3Xj + δ4 ✶(Xi = Xj) + δ5 (lnhi,t − lnhj,t)
2+δ6Oe+δ7 t− νi,j,t ,

(3.5)

where νi,j,t is a utility shock for the formation of peer groups and δs are the

parameters associated with each variable affecting the friendship decision. This utility

function has a similar representation to the one used in the demand for products in

the literature of industrial organization, where individuals may have direct preferences

over the attributes of the potential partners. This part is captured by δ2 and δ3. The

difference from that literature comes from the other component of the utility function

δ4 ✶(Xi = Xj) + δ5 (lnhi,t − lnhj,t)
2, which captures the propensity of children to

interact with children who are alike both in terms of skills and other individual

characteristics. This phenomenon is called homophily bias in the network literature

(see Jackson, 2008; Christakis and Fowler, 2009). A specific age (t) effect in the

formation of peer groups is captured by δ7. Hence, each child i solves the following

problem for each potential future peer j at each period t:

V C(hi,t, Xi, hj,t, Xj, Oe) = max
{
0 , uCi,j,t

}
(3.6)

where I normalize to zero the value to have no friend. 19 Child i and child j become

friends if both children find the friendship beneficial, i.e.:

L∗i,j,t =





1 if uCi,j,t > 0 & uCj,i,t > 0

0 otherwise

. (3.7)

The model in (3.6) does not consider a potential decrease of marginal returns to

additional friendships as the number of friends increases. Perhaps an alternative way

19The underlying assumption is that the outside option is common for different types of children
and for different meetings.
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of modeling friendship formation could consider children with a limited endowment of

time who optimally allocate their time in interacting with other children. In this case,

the social interactions would be limited by this time constraint and children would

have to coordinate relative to their own time constraints. While the latter model

seems more realistic, the lack of data on time allocation between peers as well as

the additional computational burden in the model directed me to the model in (3.6).

Model (3.6) represents a simple and flexible way of capturing the endogeneity of peer

groups and the main driving forces affecting friendship formation. For convenience,

let us define W as the set of variables of the utility function in equation (3.5):

Wi,t =
[
1, hj,t, Xj, ✶(Xi = Xj), (lnhi,t − lnhj,t)

2 , Oe, t
]
.

The conditional probability for child i and child j to become friends, under the

independence assumption between utility shocks is then:

Pr(L∗i,j,t = 1) ≡ Pi,j,t (hi,t, Xi, hj,t, Xj, Oe) = Pr(νi,j,t ≤ W ′

i,tδ) · Pr(νj,i,t ≤ W ′

j,tδ)

(3.8)

where the probability of two children connecting together can be higher (lower) in

a case where the two children have the same characteristics (δ4). Also, if δ5 is negative,

a higher difference in skills will reduce the probability of the two children deciding to

connect, while a positive coefficient will increase it. In other words, the sign of the

coefficient will reflect a positive or negative assortative matching between children

with respect to their skill development. All children compute the utility of forming a

friendship with other children within the social network, and the entire social network

graph is determined. The set of probabilities between different children as in (3.8)

forms the probabilities of the possible networks in each environment e.
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In this framework, children do not directly make investments in themselves (e.g. a

study effort decision problem), which perhaps could depend on their own skills as well

as the effort their peers make. This hypothetical modeling choice would consider a

specific aspect of social interactions either emerging from a conformity effect or from

strategic complementarities in skill formation between children (see Blume et al.,

2015). In the next section, I will describe the technology of skill formation and

how children’s skills evolve over time. The dynamics of skills depend on both a

child’s own level of skills as well as the level of peers’ skills, capturing the potential

effects of studying effort, allowing for other more general peer effects and reducing

the computational burden of the model.

3.4.4 The Parenting Problem

Preferences

I assume that each parent in family i at any period t has preferences over their own

consumption (ci,t) and over the skills of their children (hi,t), while they do not receive

any direct utility from time spent with their children (Ii,t). I additionally assume

that preferences are stable over time. Parental investments are made dynamically to

foster children’s skills over time. This specification is in line with the recent literature

in child development (see Cunha, 2013b; Del Boca et al., 2014b, 2016; Mullins, 2016;

Gayle et al., 2015, 2016; Caucutt and Lochner, 2017). There is only one decision maker

regarding parental investments, as I assume that the mother–father interactions occur

at a prior stage . At any period, each parent is endowed with τ units of time and

decides how to allocate this endowment between working (τ−Ii,t) and parenting (Ii,t).

Finally, I assume that the utility function for parents i at period t is as follows:
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uP (ci,t, hi,t) =
c1−γ1i,t − 1

1− γ1
+ γ2

h1−γ3i,t − 1

1− γ3
, (3.9)

where γ2 ¿ 0. 20 The specification in (3.9) underlines the main parent’s trade-off:

the benefit of higher children’s skills at the cost of their own foregone consumption.

Another model choice I could use would be to define parental investments in terms

of the effort parents need to make in order to invest in their children’s skills, and the

associated utility cost of that effort. In this case, the trade-off would be between the

altruistic benefit of fostering children’s skills and the disutility of the required effort.

The two specifications are isomorphic. 21 Finally, family income is defined by the

mother’s labor and non-labor income. I assume that both the mother’s hourly wage

(wi,t) and non-labor income (yi,t) are a function of her skills (mi). The exact wage and

non-labor income specifications are described in Section 3.5, where the relationship

between a mother’s skills and her non-labor income aims to capture the potential

effect of her skills in assortative mating and family formation.

Terminal value

I assume that the parent’ s problem ends when children reach 16 years of age. This

assumption can be read as the fact that children leave the household at 16 years old or

that after that age parental investments become unproductive. I think of the child’s

final skills at 16 as an initial condition of another developmental process which I am

20Preferences over consumption or a child’s outcomes are logarithmic functions if, respectively, γ1
= 1 or γ3 = 1.

21 In this specification, I abstract from the labor–leisure decision margin. The main reasons are
related to the lack of data on Add Health about parent’s leisure choices, which would allow me
to identify the elasticity of leisure choice with respect to changes in peers’ skills. Additionally,
adding another endogenous variable to the model would increment its computational burden. For
this reason, my policy counterfactual experiments will only focus on policy-induced change in peers’
skills and the associated change in the return of parenting, while I will abstract from any welfare
analysis and/or changes in family resources, which would need additional important predictions on
the family time allocation between working, leisure and parenting
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not modeling here, such as finishing high school, starting a job or going to college.

Hence, I allow a possible change in parental preferences over the skills of the final

childhood period. I am defining the terminal value for the parent i with respect to

children’s skills as follows:

V P
4 (hi,4) = γ4 ·

h1−γ5i,4 − 1

1− γ5
, (3.10)

where both γ3 and γ4 are free parameters that potentially differ from the altruistic

parameter specified in (3.9).

The recursive representation of the parent’s problem

The two endogenous-state variables of the problem are, respectively, the child’s skills

(hi,t, individual-state variable) and peers’ skills (H i,t, aggregate-state variable). The

dynamics of the network state within each environment are taken as given from the

parent’ s perspective. Parents form expectations with respect to the next period’s

average skills of peers. Different types of peers in the next period affect the return of

investment in their offspring today through the dynamics of the child’s skills. Antic-

ipating the discussion on the equilibrium in Section 3.4.5, the consistency condition

in this economy is that the expectations about the next period’s peers’ skills will

be consistent with the transition probabilities generated by the endogenous network

formation from the child’s problem (see Section 3.4.3). 22 The parent’s problem can

be represented as follows:

V P
t (hi,t, H i,t) = max

Ii,t∈[0 , τ ]
uP (ci,t, hi,t) + β E

[
V P
t+1(hi,t+1, H i,t+1)

∣∣∣ hi,t
]

(3.11)

22The consistency condition between the individual behavior of parents and the aggregate distri-
bution of skills in the network is the analogue of the consistency condition used to solve recursive
competitive equilibrium in macroeconomic models with aggregate externalities.
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s.t. ci,t = (τ − Ii,t) · wi,t + yi,t

where β ∈ (0, 1) is the discount factor, while the consumption ci,t is a function of

earnings (through the labor supply τ − Ii,t) and the non-labor income yi,t. Parents

are uncertain about the production shock as well as their child’s peer group in the

next period, which will affect their future investment productivity. The law of motion

for the next period’s child’s skills (or technology) is defined in (3.4), while the law of

motion for peer effects (H i,t+1) is as follows:

Pr

(
H i,t+1 =

1∑
j ∈Ne

Li,j,t+1

∑

j ∈Ne

Li,j,t+1 · hj,t+1

)
=

Ne∏

i=1

π
Li,j,t+1

i,j,t+1 (1− πi,j,t+1)
1−Li,j,t+1

(3.12)

where Li,j,t is an indicator function equal to one if child i and child j are friends,

and zero otherwise. Given the conditional independence assumption about the for-

mation of peer groups, the stochastic law of motion in (3.12) represents the proba-

bility distribution of Ne independently and differently distributed Bernoulli random

variables (friendships), where πi,j,t+1 is the relative probability of that friendship hap-

pening.

3.4.5 Equilibrium of the Network Economy

In this section, I describe the equilibrium of the economy. For computational

reasons, I restrict my attention only to the (short-memory) Markovian equilibrium,

where the parent’s and child’s policy functions depend only on the current realization

of state variables during each period. Nevertheless, a desirable property of the Marko-

vian equilibrium is that, in this framework, it generates non-ergodic skill dynamics

(i.e. the property of skill formation depending on the history of developmental inputs

throughout childhood), a key mechanism in explaining diverging patterns in outcome
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inequality in children. In fact, as I will explain later in the policy analysis, moving

children at age 13 to a different environment predicts persistent effects in the dynam-

ics of children’s skills. Skills beget skills through many mechanisms: self-production,

better peers and higher investments.

Alternative classes of equilibrium concepts consist of longer-memory equilibria

where parents’ and children’s behavior is explained both by the realization of the

current states as well as by the equilibrium path history that led to that state. This

would lead to even stronger dynamic equilibrium spillover effects of skills, because it

would strengthen the role of social interactions in explaining children’s developmental

differences through the determinants of the equilibrium path of a child’s development.

Parents and children have two different and separate problems. In particular,

parents observe the current realization of their offspring’s peer groups and then form

expectations about the next period’s peer groups when deciding on today’s invest-

ment. Parents take as a given both the dynamics of network structure as well as

the distribution of children’s skills within the social network. At any point in time,

children decide about their friends, generating the network of friendships. Then, par-

ents decide how much time to invest in their offspring, forming expectations with

respect to the next period’s distribution of peers’ skills. Given that the next period’s

distribution of peers’ skills is an endogenous object in the model, the equilibrium

characterization will take into account the consistency condition between parents’

expectations and both skills and network equilibrium realizations.

Definition 3 A Markovian equilibrium of the network economy is a set of functions

{It(·), ✶t(·)}16t=13 such that:

1. 1∗(·) solves the child’s problem in (3.6), for every period t,

2. I ∗t (·) solves the parent’s problem in (3.11) , for every period t,
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3. The probability for the formation of peer groups is consistent with the skills

dynamics generated by the parental optimal behavior:

πi,j,t+1 = Pi,j,t+1 (h
∗

i,t+1, Xi, h
∗

j,t+1, Xj, Oe) for all i, j, t

where

h∗i,t+1 =

h∗i,t
α1 ·

[
α2 (I

∗

i,t(·)) α3 + (1− α2)

(
1∑

j ∈Ne
L∗i,j,t

∑

j ∈Ne

L∗i,j,t · h∗j,t

) α3
]α4
α3

·

Ai,d,s,t · exp(ξi,t+1),

for any production shock realization ξi,t+1.
23

Definition 3.4.5 provides that both parents and children maximize their utility

at each point in time. The last equilibrium condition, the consistency condition,

closes the model. In fact, condition (3) implies that the endogenous stochastic net-

work structure, which depends on the skill dynamics, is determined simultaneously

in equilibrium from both the parents’ and the children’s optimal behavior.

Theorem 4 In this economy, a Markovian equilibrium exists.

See proof in Appendix B.4.

Theorem 4 formalizes the existence of equilibrium of the model and is the theo-

retical base of the algorithm used in my simulation-based estimation procedure.

A common feature of any model of social interactions and spillover effects is the

potential existence of multiple equilibria. Multiplicity can arise from the presence of

23The same condition can be rewritten in terms of expected next period child’s skills

πi,j,t+1 =

∫
Pi,j,t+1 (h

∗
i,t+1, Xi, h

∗
j,t+1(ξi,t+1), Xj , Oe)dF (ξi,t+1) for all i, j, t ,

where F (ξi,t+1) is the distribution of the production shocks.
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“strong” peer externalities. In this framework, this translates into a strong comple-

mentarity between parental investments and peers’ skills, which is reflected directly

in a low value for the CES complementarity parameter α3. The possibility of multiple

equilibria creates a challenge for the use of standard econometric methods through

the presence of an indeterminacy condition in the map from the observed data to the

structural parameters. In this case, the estimation procedure would require imple-

menting additional steps to recover the parameters of the model.

Three possible solutions can be considered. First, a common approach in the

literature is to assume that the data is generated from a specific equilibrium selection.

Generally, the equilibrium selection rule considers the equilibrium with the highest

welfare amongst all the possible equilibria (see for example Lazzati, 2015; Fu and

Gregory, 2017).

A second approach consists of partially identifying the model. In this case, the

econometrician does not need to make any assumptions about the equilibrium selec-

tion. A set of moment inequalities arises from the different equilibria and can be used

to create bounds on the structural parameters of the model (using, for example, the

moment inequalities estimator in Chernozhukov et al., 2007; Andrews and Soares,

2010; Pakes et al., 2015)

A third approach, which is the one I use here, is to determine (if possible) which

specific parameter (or set of parameters) is responsible for the presence of multiple

equilibria, and for what specific threshold value of that parameter multiplicity arises.

In my model, the key parameter which determines whether the model generates

multiple equilibria is the CES parameter of complementarity between parental in-

vestments and peers’ skills (α3). A high level of complementarity between parents

and peers can generate multiplicity: within each environment, the parental decisions

of other parents affect the individual decisions of everybody else, creating possible
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extreme equilibria where no parents invest at all or all the parents invest the majority

of their time in child development. This statement on how peer externalities affect

parental investment decisions is a testable prediction. This means that the previous

empirical results in Section 3.3 can be considered as a pre-test for multiplicity in

this model. Specifically, the fact that by using within-school cross-sectional varia-

tion in peers’ skills I find a negative effect in parental investment decisions suggests

that the two inputs cannot be too complementary; to let the model reproduce that

cross-sectional negative relationship between investments and peers’ skills, the com-

plementarity between parents and peers should be less than in the Cobb–Douglas

case (so the CES parameter α3 should be bigger than 0). 24 Given this low level

of complementarity, I am going to implement a “guess and verify” method, in which

I assume that the equilibrium is locally unique for values of α3 ∈ (0, 1], and will

then computationally verify if the assumption is correct by implementing a monotone

method for equilibria computations. This method requires calculation of the two pos-

sible extremal equilibria of this economy using the algorithm in Topkis (1979), and

then simply comparing them. For the data-driven model’s parametrization of α3 ∈

(0, 1], I find no evidence of multiple equilibria.

3.5 Econometric Specification

3.5.1 The Latent Factor Models

In line with the recent literature on child development (see Cunha et al., 2010;

Agostinelli and Wiswall, 2016a; Attanasio et al., 2017a,b,c), I implement a dynamic

latent factor model to map the key unobserved variables of the model into data. The

24A recent work of Datta et al. (2017) shows that in a similar environment, a macro growth model
with externalities, the unique equilibrium is proved in a case where externality is not big, like in the
case of constant return to scale in the production technologies.
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factor model overcomes the main problem in the analysis of skill formation: mis-

measurement of skills and the arbitrariness of test-score scales relative to the scale

of skills. For both mothers’ and children’s skills, I follow the latent factor model

implemented in Agostinelli and Wiswall (2016a) as follows:

Zh
i,t,k = µht,k + λht,k · lnhi,t + ǫhi,t,k

Zm
i,k = µmt,k + λmk · lnmi + ǫmi,k (3.13)

The index k is for indexing each of the multiple measurements (proxies) Z for each

latent factor. Because the location and scale of skills can differ from the arbitrary

location and scale of the proxies I use, I implement the factor model in (3.13) with free

measurement parameters (µ and λ). Finally, the noises in (3.13) have a mean of zero in

any period and for any measure. 25 I assume the common independence conditions

about the measurement error to hold. These conditions include the independence

of measurement noises with both a child’s and mother’s latent skills and between

different measures of skills, as well as between different children and over time (for

more details, see Appendix B.3).

Mapping data to the distribution of latent investment is challenging due to the

nature of the proxies included in Add Health. Add Health asks children whether they

have been engaged in specific activities with their mothers in the last four weeks.

Examples of activities are “gone shopping,” “played a sport,” “gone to a movie,

play, museum, concert, or sports event” or “had a talk about a personal problem.”

Each question requires a “yes” or “no” answer, generating a set of binary proxies

for investments defined by ZI
i,k ∈ {0, 1}, where i and k indexes are relative to the

child and the specific question. These measures can be considered indicators as to

25Given the intercept µt,m, the assumption of a mean of zero ǫt,m errors is without loss of generality.
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whether parents spent some time with their children or not. Hence, each measure of

investment can be thought of as a Bernoulli random variable with probability pk(Ii,t),

a function of the latent investment. I adopt a similar approach as in Del Boca et al.

(2014b), and I consider a specific parametric distribution for pk(Ii,t), which is a Beta

distribution with parameters Beta(α + ZI
i,t,k , 1 + β - ZI

i,t,k).
26 I can now draw

pk from this distribution to recover, for each measure k, the latent distribution of

parental investments Fk(Ii,t). Let p̂i,t,k be the draw from the parametric distribution

for some observation i at time t, and I can impute the level of investment by inverting

the probability function at p̂i,t,k (assuming the inverse exists):

Iki,t = p−1k (p̂i,t,k). (3.14)

where α and β define the location and scale for the latent investments. 27 To

assure that imputed levels of investments are constrained between 0 and τ (the max

time in the model), I map each specific probability into the fraction of time spent

with children (
Ii,t
τ
). Each probability of observing a measure of investment equal to

one increases with respect to the fraction of parental investments (higher parental

investments lead to a higher probability of observing, in data, children involved in

activity “k” with their parents). Moreover, a desirable property for the probability

function is that limIi,t→0 pk(Ii,t) = 0, limIi,t→τ pk(Ii,t) = 1. This means that once the

fraction of invested time goes to zero or to one, the probability of observing a parent

involved in that specific activity goes to zero or to one. For all these reasons, I choose

the following simple functional form, which respects all the required properties:

26Del Boca et al. (2014b) use the same approach to address the issue of measuring continuous
skills with a discrete test score as well as the possibility of measurement error of the measured score.
Additionally, this method overcomes the problem of a measurement floor and ceiling of test scores

27In contrast to the skills case, latent time investments have a well-known location and scale,
which is in terms of time units or fractions of total time. I will measure this information by looking
at the time allocation of parents on the American Time Use Survey (ATUS).
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pk(Ii,t) =

(
Ii,t
τ

)λI
t,k

λIt,k > 0, (3.15)

where the parameter λIt,k is the loading factor for each activity m.

3.5.2 Parametric Assumptions of the Model

In this section, I illustrate the assumptions I am making in order to parametrically

estimate the model. I consider three different types of neighborhood quality according

to the income distribution in the data. For each school I have in Add Health, I

compute the within-school mean family income and then assign each family to the

low-, medium- or high-income neighborhood type according to the median school

income. 28 This distinction is made based on the terciles of income-distribution

(33th percentiles, between the 33th and 66th percentile and above the 66th percentile).

29 Families first draw their race (I allow race to be either black, Hispanic or other)

and their neighborhood type from a joint distribution P(d,r), which I directly estimate

from the data. 30 After race and neighborhood are drawn, I assume that the initial

distribution of a family’s log-skills (mother and child) are drawn from a conditional

bivariate distribution:

(lnhi,1, lnmi) ∼ N(ηr,d, Σr,d) (3.16)

where I allow mean and variance of latent skills to vary by race and neighbor-

hood. The specification allows me to have a flexible framework to capture potential

sorting of families within specific environments. Taking into consideration this kind

28The results do not change if I consider the median family income within the Census Tract where
families live

29For further details on the descriptive statistics for each of the neighborhood types, see Table
B.1.

30This empirical distribution represents the probability for each of the nine possible combinations
of race and neighborhoods and is directly observed and estimable from the data
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of assortative pattern is fundamental in order to properly identify the peer effects in

child development.

I also make some parametric assumptions about the measurement error equations

in (3.13). I assume that the measurement noises for each measure are mean-zero

normally distributed ǫk ∼ N(0,σ2
ǫ,k) for any measure k at any age t.

The TFP term in the technology of skill formation is composed of two parts:

neighborhood-quality effects and school-quality effects. For each neighborhood type

d, I assume there is a distribution of school-quality families drawn together with their

neighborhood realization: As ∼ N(ηs,d,σ
2
s,d). To generalize the school effects in skill

dynamics, the parametric functional form for the technology of skill formation I bring

to data is:

hi,t+1 = hi,t
α1 ·

[
α2 (Ii,t)

α3 + (1− α2)
(
H i,t

) α3
+ α5 A

α3
s

]α4
α3 · Ad,t · exp(ξi,t+1) ,

(3.17)

where the share parameter of As (α5) is normalized to 1 given that the variance

of the latent school fixed effects is a free parameter estimated directly in the data

(σ2
s,d). Technology in (3.17) generalizes the school effects to have individual specific

elasticities of skill production with respect to school quality. The environment-specific

TFP term is assumed to be a function of the neighborhood quality and child’s age as

follow: Ad,t = exp(γ0,tfp + γ1,tfp · d + γ2,tfp · t ). Additionally, I am assuming some

parametric form for both shocks of skill production and preference for children’s peer

groups. Production shocks are assumed to be mean-zero normally distributed ξi,t+1

∼ N(0,σ2
ξ ), while a child’s preference shocks for friendships, defined in eq. (3.5), are

distributed as a standard logistic . This implies that the probability that child i and

child j become friends at any time t is:
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Pi,j,t ≡ Pr(L∗i,j,t = 1) =
exp(W ′

i,tδ)

1 + exp(W ′

i,tδ)
·

exp(W ′

j,tδ)

1 + exp(W ′

j,tδ)
(3.18)

where Wi,t and Wj,t are the set of variables affecting the decision and are defined in

eq. (3.4.3), while δ are the common utility parameters.

Finally, I assume that both the mother’s hourly wage (wi,t) and non-labor income

(yi,t), at any period t, are defined as a function of the mother’s skills in a linear

fashion, as in the classic Mincer wage equation (see Mincer, 1958):




lnwi,t

ln yi,t


 =



κ1,0

κ2,0


 + lnmi ·



κ1,1

κ2,1


 +



ǫwi,t

ǫyi,t




where ǫwi,t and ǫ
y
i,t are measurement noises.

3.6 Identification of the Model

As explained above, both mother’s and child’s skills as well as parental investments

are assumed to be unobserved. With this in mind, the goal is to identify peer effects

on parental investment decisions and skill formation, dealing with the endogeneity of

the peers network formation. In this section I describe how I approach this task. The

identification of the wage and non-labor income process is standard: in both cases,

once the scale and location for the latent mother’s skills are identified (see Section

3.6.1), it is a simple linear errors-in-variables models. In the next sections, I focus

more on the more challenging part of the model for identification. I am following the

logical order from the model: (i) initial conditions; (ii) network formation process;

(iii) static and dynamic complementarity between parents and peers.
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3.6.1 Identification of the Initial Conditions

The main challenge in the identification of the family skills distribution comes from

the fact that skills are unobserved and they have not a natural scale and location.

Recalling that the initial conditions are assumed to be normally distributed,

(lnhi,1, lnmi) ∼ N ( ηr,d, Σr,d) ,

where ηr,d =



ηhr,d

ηmr,d


 and Σr,d =



σhr,d

2
σh,mr,d

σh,mr,d σmr,d
2


 are, respectively, the vector of

means and the variance–covariance matrix for skills for a specific neighborhood type

(d) and race (r). I normalize the scale and location of skills for a subgroup of the

population. Without loss of generality, I normalize the distribution of skills for white

(r=w) families living in the lowest-income neighborhood (d = 1) as follows:

Normalization 2 Initial period normalization:

• ηw,1 =




0

0




• Σw,1 =




1 σh,mw,1

σh,mw,1 1




Under normalization 2, I am able to identify the remaining measurement equation

parameters and the initial joint distribution of skills for each race and each neighbor-

hood type. The initial period loading factors (λ) and the location parameters (µ) are

identified as follows:
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[λh1,k, λ
m
k ] =

[
Cov(Zh

i,1,k, Z
h
i,1,j)

Cov(Zh
i,1,j, Z

h
i,1,1)

,
Cov(Zm

i,k, Z
m
i,j)

Cov(Zm
i,j, Z

m
i,1)

]
for k 6= j and for k, j 6= 1

(3.19)

[µh1,k, µ
m
1,k] =

[
E[Zh

i,1,k|r = w, d = 1], E[Zm
i,k|r = w, d = 1]

]
for all k. (3.20)

Using both (3.19) and (3.20), it is possible to identify the means and the variance-

covariance matrix of the latent skills for all the rest of race and neighborhood type

combinations in the following way:

ηr,d =

[
E[Zh

i,1,k|r, d]− µh1,k
λh1,k

,
E[Zm

i,k|r, d]− µmk
λmk

]
for all (r, d) 6= (w, 1) (3.21)

Σr,d =




Cov(Zh
i,1,k , Z

h
i,1,j |r, d)

λh1,k λ
h
1,j

Cov(Zh
i,1,k , Z

m
i,j |r, d)

λh1,k λ
m
j

Cov(Zh
i,1,k , Z

m
i,j |r, d)

λh1,k λ
m
j

Cov(Zm
i,k , Z

m
i,j |r, d)

λmk λmj




for all (r, d). (3.22)

Repeating the identification of mean and variance–covariance matrix for all the

neighborhood types, and for each race, I am able to identify the distribution of initial

conditions in the economy. 31 Finally, I identify the variance of the measurement

errors for each measure:

σ2
ǫm,k = V ar(Zm

i,k)− (λmk )
2V ar(lnmi)

σ2
ǫh,t,k = V ar(Zh

i,t,k)− (λht,k)
2V ar(lnhi,t) for all t (3.23)

where each variable on the right-hand side of the equations in (3.23) is already

identified. The repeated cross-sectional dimension of the Add Health data allows

31Notice that the identifying assumption here is that the measurement parameters are common
for all the children. This assumption is common in the literature of latent factor models.
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me to observe the same test score administered to children at different ages. Hence,

following the approach in Agostinelli and Wiswall (2016a), I assume the PPVT to be

an age-invariant measure – that is, the latent skills load into the PPVT in the same

manner through the ages of consideration (13 to 16). 32 As shown in Agostinelli

and Wiswall (2016a), this assumption is sufficient to identify an unknown TFP term

and an unknown return to scale in the CES technology case. 33

3.6.2 Identification of the Formation of Peer Groups

Using the measurement system defined in (3.13), I can rescale the observed mea-

sures for skills to be:

Z̃h
i,t,k ≡

Zh
i,t,k − µht,k
λht,k

= lnhi,t +
ǫhi,t,k
λht,k

(3.24)

where Z̃h
i,t,k represents a monotone transformation of raw test scores that permit

consideration of the data on a comparable scale as the latent skills. Each transformed

measure is composed by two elements: the factor and the noise. For this reason, in

order to use this information to identify the peer-group formations, we need to deal

with the presence of this measurement error. In particular, I exploit the identified

parametric distribution of the measurement errors to integrate out the noise from the

data.

Following the notation in (3.4.3), let us define W to be the set of variables of the

utility function of child i to become friends with child j as in equation (3.5) and W̃

to be the analogue measured in the data:

32Agostinelli and Wiswall (2016a) defines an age-invariant measure to be a repeated achievement
test, the assessment of which would not depend on a child’s age, but on their cognitive development

33 It also allows me to identify the measurement parameters for all remaining proxies for skills
through all the periods of the model
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Wi =
[
1, hj,t, rj, ✶(ri = rj), (hi,t − hj,t)

2 , Oe, t
]
,

W̃i(ǫ
h
i,t,k, ǫ

h
j,t,k) =


1, (Z̃h

j,t,k −
ǫhj,t,k
λhk

), rj, ✶(ri = rj),

(
(Z̃h

i,t,k −
ǫhi,t,k
λhk

)− (Z̃h
j,t,k −

ǫhj,t,k
λhk

)

)2

, Oe, t


 .

(3.25)

The conditional probability of child i and child j becoming friends, given their

skills and race, is as follows:

Pi,j,t = Pr(νi,j,t ≤ W ′

iδ) · Pr(νj,i,t ≤ W ′

jδ)

=

∫
Pr
(
νi,j,t ≤ W̃i(ǫ

h
i,t,k, ǫ

h
j,t,k)

′δ
)
· Pr

(
νj,i,t ≤ W̃j(ǫ

h
j,t,k, ǫ

h
i,t,k)

′δ
)
dΦ(ǫhi,t,k, ǫ

h
j,t,k; Σǫ,t)

(3.26)

where Φ(·; Σǫ,t) is the bivariate normal CDF of the measurement errors with zero

mean and a variance–covariance matrix Σǫ,t =



σ2
ǫh,t,k

0

0 σ2
ǫh,t,k


, which is already

identified in (3.23).

Equation (3.26) shows that I can identify the parameters of the model of peer-

group formation by mapping the noisy measures of children’s skills available in data to

information about the children’s latent skills and their effects on children’s friendship

decisions.

3.6.3 Identifying Peer Effects in Child Development

Given the complexity of the above dynamic equilibrium model, it is important to

develop an easy intuition behind the source of variation which will lead to identifying

peer effects on child development. In particular, one helpful source of identifying

variation comes from the endogenous response of parental investments to peer quality,
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allowing us to infer the degrees of both static and dynamic complementarity between

parents and peers in producing a child’s skills. These parent response elasticities are

key for identification because they map directly into the deep structural parameters

of the technology of skill formation and are the key margin of interest for policy

predictions. The main object of interest for identification is the full joint distribution

of inputs of development Ψ(Ω)=
{{

I∗i,t, hi,t, H
∗

i,t

}
i

}
t
, where Ω is the set of structural

parameters left to identify, the peers’ skills spillover determined in the equilibrium

social network is defined as H
∗

i,t, and the star defines the equilibrium realization.

Static Complementarity

A useful set of moments to identify the static complementarity between parents and

peers in skill formation is the partial correlations of parental investments and peers’

skills. In fact, an intuitive prediction of my model is a positive (negative) cross-

sectional relationship between parental investments and peers in the presence of a

high degree of static complementarity (substitutability) between parents and peers

in child development. Once peer quality increases, the return on investing in child

development increases as well, making parents more productive in parenting. On

the other hand, parents have an incentive to decrease their costly investments once

an alternative substitute input (peers) increases. Hence, the static complementar-

ity/substitutability between parents and peers is identified by the cross-sectional

variation between investments and peers’ skills.

A specific but helpful representation of these moments is given by the linear re-

gression in (3.2), which provides useful information about the variation of investment

decisions with respect to the type of peers. Specifically, the coefficient β2, which

represents the effect of peers’ skills on investment decisions, is informative about the

degree of static complementarity/substitutability (α3) between parental investment
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and peers in the production of children’s skills.

Dynamic Complementarity

The dynamic complementarity between parents and peers is identified by looking

at the variation in parental investments induced by changed expectations for future

peers’ skills. For example, as a thought experiment, consider two children (and their

relative families) who are alike in all dimensions including their peer groups, but only

one of them is assigned permanently (treatment) to a different (better) peer group,

while the other child (control) has no change in peer composition. Given the perma-

nent nature of the experiment, the two parents now observe today’s peers and have

different expectations about tomorrow’s peers. Again, the model’s prediction is help-

ful in fixing ideas: an increased expectation of tomorrow’s peers’ skills would change

the return on today’s investments. Current investments would foster the child’s skills

of tomorrow, thus benefiting more from better future peers. Hence, the higher the dy-

namic complementarity, the higher the difference in parental investments induced by

the policy between the control and the treatment of children: the treatment induces

higher investments because of the effects of expectations of future peers.

My empirical identification strategy is based on the instrumental variable approach

explained in Section 3.3.4, which represents the quasi-experimental analogue of the

identifying variation considered in the above thought experiment. Specifically, in or-

der to estimate the causal effects of permanent peers changing investment decisions,

I use the random realization of different cohort composition of children within the

same school to analyze how permanent changes in peers affect parental investments.

The idea behind this identification strategy is simple. The cohort realization perma-

nently defines the choice set for the children’s network formation. Hence, different

cohort compositions shift parents’ expectations about future peer groups, allowing
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us to identify the causal effect of a permanent change in peer groups on investment

decisions (β2) and, consequently, the dynamic complementarity of investments and

peers. 34

3.7 Estimation

I implement a two-step estimation algorithm to alleviate the estimation burden of

this model. In the first step, I estimate the initial conditions, the wage and the family

income process, as well as the distribution of school quality for low/medium/high

neighborhood types. 35 , 36 The second step of estimation is focused on the rest of

the model: preferences, technology and parameters of the network formation. I use a

simulation-based estimation technique which allows me to simulate the distributions

of investments and skills over the entire childhood and replicate the statistics (M) I

observe in Add Health data. In greater detail, I simulate the equilibrium dynamics of

investments, skills and networks and use the realized simulated data set to compute

the analogous statistics (MS) observed in the data. Hence, the second-step estimator

is a simulated method of moments (SMM) estimator:

Ω̂ = argmin
Ω

(M −MS(Ω))W (M −MS(Ω)) (3.27)

where Ω is the set of structural parameters previously described andW represents

34This identification strategy does not require that friendships are only formed within a unique
cohort. It only requires that changes in cohort composition also change the peer-choice set between
cohorts. Empirically, most of the friendship nominations are within the same cohort.

35The school quality distributions are identified estimating the school fixed-effects distribution
from a value-added model of child development. This method is simple and alleviates the computa-
tional burden of estimating different school quality parameters in the second step of the estimation.
See Appendix B.5 for further details.

36Identification of latent skills requires at least three proxies for each latent variable. In the case
of a mother’s skills, Add Health provides only information about a mother’s years of education. I
use the NLSY79 sample to recover the loading factor and location parameter for this proxy.
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the weighting matrix. 37 In the estimation procedure, I set the weighting matrix to

be the inverse of the diagonal variance–covariance matrix of moments computed by

bootstrapping the data. The selected moments include: (i) first- and second-order

moments for the conditional distribution of skills by race and neighborhood type; (ii)

the set of auxiliary coefficients from the two auxiliary regressions in (3.2), as well

as auxiliary coefficients for the technology of skill formation (in an indirect inference

fashion); (iii) the set of moments about network formation, including the homophily

bias index for skills and race for each neighborhood type, which I described during

the previous empirical analysis in Section 3.3.3.

3.7.1 Structural Estimates

Network formation parameters

Table 3.3 shows estimates for the formation of peer groups. The unconditional effects

of age, race or skill level on the formation of peer groups are negligible (the uncon-

ditional numbers of friends by race and by skills are similar). Race and skills play a

role through homophily bias in friendship formation, affecting the composition (not

the quantity) of friends. Qualitatively, coefficients in Table 3.3 are consistent with

the empirical evidence of homophily bias both in race and in skills. Specifically, I find

that for any race, the fact that the other child is of the same race is highly predictive

about the friendship realization between the two children. The coefficients associated

with being of the same race are, respectively, 0.76, 0.70 and 0.60 for black, Hispanic

37The choice of the simulated method of moments with respect to a likelihood-based method is due
to three reasons: first of all, the SMM approach overcomes the additional source of computational
burden which arises from the multi-dimension integration problem associated with the maximum-
likelihood estimator of this model. Secondly, because of the data structure, I observe each child only
for two consecutive waves (with a temporal distance of one year) in Add Health, making the SMM
a more flexible estimator in combining the information of skills dynamics from the dataset. Finally,
the SMM does not require any assumption about the cross-sectional distribution of the children’s
skills over childhood.
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and white children. The higher coefficient is for black children. The probability for

the formation of peer groups depends on whether children have similar skills. In

particular, the higher the difference in children’s skills, the lower the probability of

the two children becoming friends, with a coefficient of -0.038. These homophily bias

effects get bigger in context with a lower fraction of minorities, which is shown by how

the two coefficients of homophily bias interact with the total fraction of black and

white children (0.042 and -0.063, respectively). I find that the correlation of unob-

servable heterogeneity in the formation of peer groups with the production shocks is

-0.40, while its standard deviation is 0.11. I do not find relevant effects of the specific

race or skills level in the probability level (only through homophily bias).

To better interpret the estimates, I plot the marginal probabilities of two children

becoming friends over the spectrum of children’s skills and for different races of chil-

dren living in the poorest environment (see Figure 3.4). For a black low-skilled child

(within the first quintile of skills distribution), the probability of becoming friends

with white children is four times lower than with a same-race counterpart. At the

same time, it is two times more likely for the same child to become friends with chil-

dren having similar skills than for children in the top decile of skills distribution. For

a white low-skilled child (within the first quintile of skills distribution), the racial gap

is lower (around 2.5 times), while the effect of skills is similar.

Technology parameters

Table 3.4 shows estimates for the technology of skill formation. I find a high degree of

static substitutability between parents and peers, with a complementarity parameter

(α3) of approximately 0.95 (and associated elasticity of substitution of 1
1−0.95

= 20). I

find a degree of self-productivity (α1), i.e. the ability of skills to beget skills, of 0.75.

This means that a 1% increase in current skills would predict an average of 0.75%
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. This result is qualitatively in line with the previous research on the estimation

of technology of skill formation (Cunha and Heckman, 2007, 2008; Cunha et al.,

2010; Agostinelli and Wiswall, 2016a). The magnitudes of the share parameters are

meaningless due to the different scale between peers’ skills (normalized at age 13

to have unit variance) and investments (in yearly hours). However, I find that the

estimated value of 0.009 implies that to completely offset a change of one standard

deviation in peers’ skills, parental investments need to change by approximately four

hours per week (for the mean parent). The return to scale of the combined parents–

peers inputs (α4) is 0.77, suggesting non-linear peer effects in skills dynamics even

when parents and peers are approximately perfect substitutes (linear). I find that

the total factor productivity is an increasing function of the neighborhood quality

(γ1,tfp=0.008) and of the age of children (γ2,tfp=0.030). The coefficients for school

quality represent each neighborhood-type mean and standard deviation of the school

fixed effects. I find that average school quality is increased by neighborhood type

(from -0.03 for low-income neighborhoods to 0.04 for high-income neighborhoods),

while the standard deviation is decreased (from 0.26 for low-income neighborhoods

to 0.18 for high-income neighborhoods). Finally, I find production shocks to be

important in explaining the total variation in skills dynamics, with a coefficient for

the standard deviation of shocks (σξ) of 0.70.

Preferences Parameters

Panel A in Table 3.5 shows estimates for preference parameters. I find both utility

for consumption and a child’s skills to be relatively concave, with a higher degree of

curvature for consumption relative to a child’s skills. I find a relatively high degree

of parental altruism towards a child’s skills: parents care about their child’s skills

through ages 13 to 15 almost as much as their own consumption, while they care
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twice as much about the final continuation value for their child relative to their own

current consumption. The last result underlines the importance of allowing for a

different parameterization for the final period preference, which, as explained above,

can capture a different developmental process for children, such as finishing high

school, starting a job or going to college.

Wage-Income Process and Initial Conditions

Panel B in Table 3.5 shows estimates for the wage and non-labor income process.

A mother’s skills are very predictive of both, suggesting an elasticity of 0.44 and

1.03 for wages and non-labor. Table 3.6 shows estimates for the initial conditions

by neighborhood type (low/medium/high family income). The normalized mean and

variance for a mother’s skills and a child’s initial skills are for white families living in

a low-income neighborhood (neighborhood 1). The other subpopulations’ means and

variances are relative to the normalized ones. I find that children from minorities start

with a lower mean of initial skills relative to their reference white children. White

children living in a higher family income neighborhood (neighborhoods 2 or 3) have

higher mean initial skills relative to white children in lower-income neighborhoods. I

find similar patterns in terms of mother’s skills.

3.7.2 Sample Fit

Table B.2 and Table B.3 report the sample fit for the auxiliary regressions of

investments and the dynamics of a child’s skills. The model is able to replicate

the empirical findings on parental investments and skill dynamics. Table B.2 also

reports the 95% confidence interval to show that the simulated coefficients are not

statistically different from the fitted coefficients. More importantly, Table B.2 shows

that the model is able to replicate the switch in sign in the peers’ skills, from the
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cross-sectional (negative) to the permanent (positive) variation in peers, through the

different degrees of static versus dynamic complementarity of parental investments

and peers’ skills in skill formation.

Table B.3 shows that the estimated model is able to fit the auxiliary coefficients

for the dynamic aspect of skill formation, suggesting that the estimated technology

of skill formation provides the proper marginal productivity for the developmental

inputs. The reported 95% confidence intervals suggest that the data and simulated

coefficients are not statistically different.

In terms of neighborhood effects on child development, the estimated model is able

to fit the differential patterns of skill formation between different neighborhoods and

for different races. Figures B.2-B.7 show the sample fit for the mean and standard

deviation of skills by age, race and for each of the three types of neighborhood I

consider (low/medium/high income).

Figures B.8-B.9 show the sample fit for the homophily bias index for skills and

race in different neighborhoods (low/medium/high income). Figure B.8 shows that

the model tracks the findings on the skills homophily bias in friendship formation.

The model replicates the fact that high-skilled children display a higher bias toward

children with similar skills.

Figure B.9 shows that the model is able to replicate the findings of homophily bias

by race in different neighborhoods. However, within the high-income neighborhood,

while the data indicate a fall in the homophily bias index for Hispanic children relative

to black children, the model indicates a common tendency of homophily bias between

the two races.
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3.8 The Exposure Effects of Environments on Child Development

In this section, I analyze the extent to which environments explain differences

in children’s final achievements. In order to calculate the treatment effect of better

environments, I simulate the counterfactual dynamics of skills as the outcome of being

moved to a different environment. I compute the treatment effect by simulating each

child in each different environment and school and at any age I consider in the model.

Within the estimated model, I can now calculate the treatment effect of moving

from any considered environment to any of the others. Specifically, consider the case

where a child i is permanently moved from a environment e to a environment e’ at

age m. The individual treatment effect in this case is:

TEi(e, e’,m) = y∗i (e, e’,m)− y∗i (e) (3.28)

where y∗i (e) represents the baseline child percentile in the skill distribution at age

16, while y∗i (e, e’,m) represents the child percentile in the skill distribution at age 16 if

the child is moved from her original environment e to a new environment e’ at age m.

To simplify the analysis and to have a comparable setting with the previous literature,

I first characterize environments by their mean percentiles of skills of permanently

based children at age 16 (ye). Second, I consider a specific parametric relationship

between a child’s outcome and the associated mean percentiles of children’s skills at

age 16 in each environment (ye):

y∗i = ψ0 + ψ1,m ye + ǫi (3.29)

where ye represents the associated mean percentile of children’s skills in environ-

ment e. In this case, ψ1,m represents the average treatment effect of being permanently

moved at age m from a environment e to a new environment e’ which has a mean of
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children’s skills at age 16 that is one percentile higher.

Finally, I can compute the exposure effects of environments, which represent the

effects on skill formation of an additional year in a environment with a mean of

children’s skills at age 16 that is one percentile higher. Following equation (3.29), the

exposure effects are simply ψ1,m - ψ1,m+1.

Figure 3.5 shows that environments have sizable effects on skill formation. Moving

a child at age 12 into a environment with a mean of children’s skills at age 16 that is

one percentile higher causes an increase of her skills by approximately 0.65 percentiles.

This effect declines by age. I find an exposure effect of 0.048, which means that the

outcomes of moved children converge to the outcomes of receiving children at a rate

of 4.8% per year of exposure. In other words, moving a child to a better environment

at 14 rather than at 13 years old causes the child to lose almost 5% of the benefit of

moving. The exposure effects imply approximately a 15% higher benefit from moving

to the same environment at 12 rather than at 15 years old. 38

3.8.1 Model Validation: Comparison with Exposure Effects in Chetty and Hendren

(2016a)

The specification in (3.29) allows me to compare my results with those in Chetty

and Hendren (2016a). The authors implement the same specification to analyze the

childhood exposure effects of environments for the United States. The authors con-

sider individual income percentiles at age 24 as their variables of interest. Still, my

results are comparable with those in Chetty and Hendren (2016a) under the reason-

able assumption that expected individual income is defined by any monotone rank-

38My model starts at age 13 when children draw their skills after the realization of the environment
where they live. In this exercise, when I move children at age 12, it means that I allow children to be
in the environment before they draw their skills. In contrast, when I move them at age 13, I let them
first draw their skills in the original environment and then move them into the new environment.
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preserving function of children’s skills (higher skills imply average higher individual

income). 39

Figure 3.5 shows that my model tracks the findings in Chetty and Hendren

(2016a), who find that an additional year of exposure to a environment with a mean

income of one percentile higher for permanently moved children increases a child’s

income later in life by approximately 0.04 percentiles. The authors also find exposure

effects to be stronger for families above the median income distribution. Table 3.7

shows the comparison of model predictions and their estimates with respect to family

income. The model’s predictions are in line with the heterogeneous exposure effects.

It is still an open question, however, as to which factors drive the exposure effects.

In the next section, I decompose the overall exposure effects into three classes of

environment-specific amenities: peers, school quality and environment quality.

3.8.2 Decomposition of Childhood Exposure Effects

One advantage of my structural model is that I can now decompose the previous

findings of exposure effects with respect to each of the components which characterized

an environment in my model: peers, school quality and environment quality.

With the estimated model, I can replicate the previous simulated experiment

of moving children within different scenarios to isolate the effects of each of the

previous inputs. I first move children and compute the treatment effect of moving

to different environments at different ages due exclusively to the associated change

of peers (keeping the previous level of both school and environment quality fixed).

Secondly, I compute the effect of moving children when the associated treatment is

39 I could also estimate a relationship between individual income at age 24 and children’s skills at
age 16 and then use this estimated function to predict individual income for the simulation exercise.
Any monotone relationship between these two variables would give me the same results in terms of
rank effects.

141



composed by both changes in peers and the new school quality (keeping the previous

level of environment quality fixed). Finally, I calculate the overall treatment effect of

moving at different ages associated with the new peers, the new school and the new

environment quality. In this way, I can ascertain the contribution of each component

to the overall effects of childhood exposure to environments.

Table 3.8 shows the decomposition of the overall effect. Peers alone account for

more than half of the childhood exposure effects, while school and environment qual-

ity account for the rest. This means that more than half of the effect of an additional

year in a environment with mean skills one percentile higher for permanently moved

children is caused by the child’s social interactions. Whether a child leaves a disad-

vantaged environment affects the quality of the child’s social interactions (in terms

of peers’ skills). The dynamic complementarity of skill formation causes this effect

to have a higher return earlier than later throughout adolescence. Each additional

year of adolescence spent in an environment with mean skills one percentile lower for

permanently moved children worsens the child’s skills at age 16 by 0.027 percentiles,

exclusively through social interactions. The exposure to the same social interactions

from age 12 to age 15 would cause a reduction of skills by approximately 0.08 per-

centiles.

The overall exposure effects are bigger for disadvantaged children, and in this

case, peer effects account for almost two-thirds. Children who have a low endowment

of skills and are from lower-income families are more likely to live in low-income

environments, where they have higher chances of interacting with low-skilled peers due

to the homophily bias effects in peer-group formation. This channel explains why this

group of children experiences the greatest benefit from leaving these disadvantaged

environments. The exposure effect in this case is approximately 0.05, and peers alone

account for up to 60% of this finding. For this specific subgroup of children from low-
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income families, each additional year of adolescence spent in an environment with

mean skills of one percentile lower for permanently moved children worsens a child’s

skills by around 0.034 percentiles at age 16, exclusively through social interactions.

Figure 3.6 shows graphically the same result for lower-skilled children.

These results suggest the importance of social interactions alone in explaining

the differences in developmental trajectories in children from different environments.

In the next section, I analyze the effects of policies that target disadvantaged chil-

dren and change the peers’ composition between different environments, for example,

policy that promote socioeconomic integration between environments or schools.

3.9 Policy Analysis

The decomposition of the exposure effects of environments suggests that more

than half of the effects come from peers and social interaction. This result calls for

policies which focus on changes in peers’ composition between different environments

to overcome the negative effects of growing up in disadvantaged environments. I

analyze how this kind of policy, if implemented on a large scale (i.e. when a siz-

able fraction of children are moved into a new environment), can generate important

equilibrium effects in skill dynamics through the changes in social interactions.

3.9.1 Large Scale Changes in Peers’ Composition

The estimated model reveals that skills dynamics depend on a peers’ composition

and associated children’s social interactions. In this section, I analyze the quanti-

tative equilibrium effects, created by policies that change cohort compositions into

different social contexts, on the dynamics of skills. Specifically, I want to understand

the implications of changes in cohort compositions within both receiving and sending

environments. In order to answer this question, I perform a simulated counterfactual
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analysis where I move disadvantaged children (and their parents), i.e. children with

low skill endowment at age 13 and living in a poor environment, into a high-income

environment. This policy has diverse effects on three subgroups of people: (i) par-

ents and children who are moved; (ii) parents and children who live in the receiving

(high-income) environment; (iii) parents and children who remain in the low-income

environment.

The simulated policy targets a specific group of disadvantaged children: children

who are within the first quartile of skills distribution at age 13 in the low-income

environment. More than 70% of these children are from a racial minority and their

initial (age 13) skills are, on average, about a standard deviation below the population

mean of log-skills at age 13. On the other hand, the racial composition of the receiving

environment is different: the racial minority makes up only 18% of the population.

On average, receiving children are 0.12 standard deviations above the population

mean of children’s log-skills at age 13. I consider the policy effects when the moved

children group is about 5% and 30% of the receiving cohort. These sizable changes

in cohort composition allows me to analyze the equilibrium effects of the policy. In

the last part of this section, I will discuss more in detail how the effects change as a

function of the fraction of moved children.

Table 3.9 shows the effects of the policy that moves the smaller fraction of chil-

dren (5% of the receiving population). Panel A reports the effects of the policy on

children’s skills for both the moved and receiving children. For each group, I report

the baseline as well as the counterfactual skill dynamics. To assess the importance

of equilibrium effects, I also report the counterfactual results without any dynamic

equilibrium effects (column called “No Equilibrium”). In this case, I just solve the

parent’s behavioral problem without considering any equilibrium feedback effects from

the endogenous response of other parents’ behavior after the policy change. The first

144



finding is that this policy has small effects for the receiving children, with a minimal

decrease in skills at age 16 of 3%. On the other hand, I find that moved children

increase their skills at age 16, on average, by 55% (0.4 of a standard deviation of

children’s skills at age 16). 40

Panel B in Table 3.10 shows the effects of the policy change on parental investment

decisions. I find that parents of moved children increase their investments overall,

fostering the effects of the policy on their own child’s skills dynamics. On the other

hand, parents of receiving children do not respond to changes in peer composition.

Table 3.10 displays the effects for the larger policy. Panel A in Table 3.10 reports

the effects of the policy on children’s skills also for the remained children. In this case,

the policy creates winners and losers: an average increase in skills at age 16 of 31%

and 23%, respectively, for moved and remaining children is associated with an average

decline of 15% in receiving children. An alternative interpretation of the results

is in terms of the standard deviation of skills distribution: I find that moved and

remaining children increase their log-skills on average by 0.22 and 0.17, respectively,

of a standard deviation of children’s log-skills at age 16, while, on average, log-skills

for receiving children decrease approximately by 0.10 of a standard deviation. The

results suggest that children who remained in the sending environment benefit from

the outflow of the most disadvantaged companions.

Panel B in Table 3.10 shows the effects of the policy change on parental investment

decisions. I find that parents of receiving children reduce their engagement with

children due to a lower expected level of peers’ skills. On the contrary, parents of

moved and remaining children increase their investments due to the policy (positive)

change in the expected future peers. Indeed, as suggested by the instrumental variable

results, a positive (negative) permanent change in peer composition induces a positive

40The national population’s standard deviation of children’s log-skills at age 16 is 1.37
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(negative) change in investments due to the dynamic complementarity. Figure 3.7

illustrates how the policy change has affected the equilibrium endogenous distribution

of peers’ skills and the relative parents’ expectations, causing parents with better

(worse) expectations to increase (decrease) their investments.

Finally, Table 3.9 and Table 3.10 underline the importance of accounting for equi-

librium effects in this type of policy analysis. I find that equilibrium feedback effects

tend to amplify the policy effects, and ignoring those would lead to biased policy

predictions for children’s final skills of approximately seven times smaller. Part of

this gap is due to the erroneous predictions for investment decisions: in the absence

of dynamic-equilibrium feedback effects, the static complementarity between parents

and peers dominates the dynamic effects of the policy. In this case, a positive (nega-

tive) change in peer composition induces a negative (positive) change in investments.

Heterogenous Effects

In this section, I analyze whether the larger counterfactual policy (when the moved

children group is 30% of the receiving cohort) generates heterogeneous effects between

children due to the new counterfactual social network. I focus my attention to the

two sources of potential homophily bias: skills and race. Figure 3.8 shows the return

of policy (treatment effect) in % of skills at age 16 for different children in terms

of their initial endowment of skills at age 13. The x-axis displays the percentiles of

initial skill endowment for each subgroup. I find that children with lower skills at

age 13 benefit the most when moved to a better environment. The treatment effect

for children in the first decile of skills within the group of moved children is between

32%-35% in skills at age 16 (approximately 0.25 of a standard deviation for log-skills

at age 16). This result is clear evidence of the role of segregated social interactions

in child development: in the absence of context-specific network formation, the CES
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technology in (3.4) would predict that return of policy would increase in a child’s

endowment. 41 However, a discontinuous policy-induced change in peers creates

higher benefits for children who are moved away from adverse social interactions. The

policy induces a lower return for children with better initial skills, with the bottom of

the effects of approximately 24% for children above the median of the moved group.

The heterogeneous effects in Figure 3.8 for receiving children reveal the importance

of the counterfactual endogenous network formation. I find that children in the lower

part of the skills distribution have the most sizable adverse effects within the group of

receiving children. The treatment effect in this case is -0.14 of a standard deviation

of log-skills at age 16. In fact, this group of children is the most exposed to social

interactions with the new potential peers. For the same reason as the counterfactual

change in social interactions, Figure 3.8 suggests that the policy return for children

in the sending (low-income) environment are higher for low-skilled children, with a

policy effect of approximately 0.20 of a standard deviation of log-skills at age 16 for

children in the first skill decile, in contrast with 0.13 of a standard deviation for

children in the highest decile.

Evidence from previous empirical studies indicates a potential racial difference in

peer effects in children, pointing out that peer effects seem to be stronger intra-race

and for minorities (see for example Hoxby, 2000; Angrist and Lang, 2004; Imberman

et al., 2012). 42 My quantitative exercise confirms the previous literature’s results.

Table 3.11 shows the decomposed results for receiving children by race. Children

from minority groups are most adversely affected by the policy, with a reduction of

41This is because of the assumed complementarity between a child’s endowment and other inputs:
∂2θt+1

∂θt∂Hi,t
≥ 0.

42Imberman et al. (2012) exploit the Katrina natural experiment to evaluate peer effects in receiv-
ing schools in Louisiana and Houston. The authors find negative peer effects on school attendance,
disciplinary infractions and math scores for black children, although the last effect is statistically
imprecise
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approximately 42% and 35% (-0.30 and -0.25 of a standard deviation) of log-skills

at age 16 for black and Hispanic children, respectively. On the other hand, I find

that the effects on white children are smaller, with a reduction of log-skills at age

16, on average, of approximately 11% (0.08 of a standard deviation). 43 Panel B

in Table 3.11 shows the counterfactual parental investment behavior. Again, groups

that are more exposed to the permanent change in cohort composition (through

homophily bias in social interactions) sizably reduce their parental involvement due

to the dynamic complementarity between their current choice and the expected future

peers.

The Scale Effects of Policy

During the previous policy analysis, I analyzed the effects of moving two different frac-

tions of disadvantaged children into a high-income environment: 5% and 30% of the

receiving population. Equilibrium effects on both receiving and sending environments

were quantitatively different. In this section, I analyze the different implications for

the same counterfactual policy as a function of different fractions of moved children.

Specifically defining the original moved group as the eligible children, I now compute

the equilibrium effects of the policy relative to the fraction of eligible children who

are actually moved.

Figure 3.9 reports the average effects on children’s log-skills at age 16 in the

counterfactual economy as a function of the fraction of eligible moved children (x-

axis) for the three subgroups of interest (moved, receiving and remaining children).

The first result is that both the moved and receiving children are better off if the

policy provides a relatively small group of moved children. For moved children, the

43The heterogeneous treatment effects by race for the smaller policy are qualitatively similar, see
Table B.4
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return of the policy rapidly drops as the fraction of eligible children rises in the new

environment. Moving 3% or 30% of children creates a difference of approximately 20%

in the final skills for moved children. This suggests that the probability of children

from the same original environment continuing to interact with each other in the new

social context is still high. For the receiving children, the decline is more gradual.

The total change between moving nobody versus moving 30% of eligible children

is approximately 15%, and it monotonically declines as more eligible children are

moved into the environment. The second result is that the remaining children gain

increasingly more out of the policy if the fraction of disadvantaged children who

are moved out from that environment increases. A gain of 40% is guaranteed for

remaining children if 30% of children are moved out from that environment. An

increased outflow of the most disadvantaged children from the sending environment

benefits children who remain, which is a result of the positive effects of the new peers’

skills.

3.9.2 The Persistent Effects of Social Environments on Skills Dynamics

The last quantitative analysis focuses on underlining the persistent effects on skill

dynamics of growing up in disadvantaged environments. To answer this question,

I perform a simulated counterfactual policy which targets the same disadvantaged

group of children as before, but now I boost their initial endowment at age 13 while

keeping them living in the low-income environment. I compare their dynamics of

skills throughout childhood with children with similar initial skills but living in better

environments.

Table 3.12 reports the counterfactual results. I find that living in different social

contexts permanently shapes the developmental trajectories of children. In partic-

ular, after starting from the same initial endowment, the dynamics of skills in the
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disadvantaged environment fail to keep up with the skills dynamics of children from

the high-income environment. The growth rate of skills is approximately 60% higher

for children in the higher-income environment during the age of 13–14 years, while

at the end, the two groups’ growth rates in skill converge. This leads to a total

difference, at age 16, of approximately 57% in final skills.

Social interactions and children’s skills composition play an important role in

explaining this result. First, children living in the low-income environment have,

on average, lower-skilled peers than children living in the high-income environment.

Secondly, the two different social contexts determine parents’ different expectations

about their child’s social interactions with peers, thus affecting their investment be-

havior.

Panel B in Table 3.12 shows that parents increase engagements with their off-

spring as the result of a higher initial skill endowment of their child. However, they

are far from the parental investment levels of parents in high-income environments.

The difference is approximately between 4 and 6 percentage points in terms of time

allocated to child development. Figure 3.10 shows that part of this investment gap

is due to differences in the expected peer effects throughout childhood. Hence, social

influences determine patterns of skill inequality and, again, one key mechanism is the

dynamic complementarity between parents and expected peers.

3.10 Conclusion

This paper studies the role of children’s social interactions in the dynamics of

children’s skills. I estimate a tractable dynamic equilibrium model of parental in-

vestment and endogenous formation of peer groups. The model is estimated using

information about friendships, children’s test scores and parental investments in the

National Longitudinal Study of Adolescent Health (Add Health). I exploit within
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school / across cohort variations in peers’ composition to identify the degree of com-

plementarity between parents and peers in producing a child’s skills. I find that

parents and peers are static substitutes and dynamic complementary inputs in child

development. After validating my estimated model using findings in Chetty and Hen-

dren (2016a) on environment exposure effects in children, I assess the importance of

social interactions in skills dynamics with various policies.

This article underlines three main points: (i) social interactions and social context

permanently shape the developmental trajectories of children; (ii) changing cohort

composition and the relative social interactions generates winners and losers and

the heterogeneous effects are due to the endogenous formation of new peers; (iii)

neglecting the dynamic equilibrium effects of skill formation and social interactions

would lead to biased predicted effects of policies.

I want to conclude this paper by considering an extension of this work. Specifically,

one potential type of parental investment can be the choice of neighborhood where the

family lives. In this case, parents have alternative margins in response to changes in

peer composition, and to a certain extent, they can also decide to change where they

live as a response to the previously considered policy. Modeling this second channel

is challenging, because now the environment composition is also endogenous, and it

becomes part of the equilibrium solution of the model. However, understanding the

extent to which neighborhood decisions are influenced by children’s social interactions

is an important question in considering the effects of socioeconomic segregation on

intergenerational mobility. Therefore, future work is needed.
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Table 3.1: Sample Statistics

Mean Standard

Deviation

(1) (2)

Child’s Age 15.65 1.74

Fraction black 0.16 0.37

Fraction hispanic 0.17 0.38

Fraction white 0.67 0.47

N of reported friends (In-School) 4.48 3.58

Measures for skills:

PPVT 64.26 11.14

English 2.83 0.98

Math 2.72 1.03

History 2.86 1.01

Science 2.82 1.01

Family’s characteristics:

Income ($ 1994) 42,844 27,724

Mother’s education 13.13 2.35

Measures for parental investments :

(activities in the last 4 weeks with mother)

Gone shopping 0.72 0.44

Played a sport 0.08 0.28

Gone to a religious service 0.38 0.49

Talked about someone you are dating 0.47 0.50

(or a party you went to )

Gone to a movie, play, museum, concert, or sports event 0.25 0.44

Had a talk about a personal problem you were having 0.39 0.49

Had a serious argument about your behavior 0.33 0.47

Talked about your school work or grades 0.63 0.48

Worked on a project for school 0.13 0.34

Talked about other things you are doing in school 0.54 0.50

Notes: This table reports the descriptive statistics for the sample I use in the estimation of

the model. The number of reported friends is the number of nominated friends during the

survey. The measures for parental investments are binary variables, which take value one if

the activity was done, zero otherwise.

Data source: National Longitudinal Survey of Adolescent Health (Add Health).
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Table 3.2: Parental Investments, Child’s and Peers’ Skills

Dependent Variable

Fraction (%) of Invested Parental Time

(1) (2)

Measurement Error Adjusted Measurement Error Adjusted

and

Instrumental Variables (IV)

Child Skills (Log) 2.660 2.120

(0.316) (0.668)

Peers’ Skills (Log) -1.441 0.720

(0.650) (0.354)

N of Children 14,267 14,267

Age Fixed Effects X X

School’s Fixed Effects X X

Panel B: First Stage

Z1,i,t (Minorities Children) -0.104

(0.052)

Z2,i,t (White Children) 0.082

(0.037)

F-Stat Excl. Instruments 11.78

P-value 0.000

Notes: This table shows estimates for both model 3.2 (column 1) and 3.2 (column 2). The dependent variable

is the fraction of invested parental time at age t and the covariates (log skills and log peers’ skills) are at

also at time t. All models also include controls for children’s race, mother’s skills and lagged family income.

Standard errors in parenthesis are computing using a cluster bootstrap. The first stage statistics in column

2 shows the coefficients (and standard errors in parenthesis) of both excluded instruments for the first stage

as well as the F-statistic of the joint null hypothesis that both coefficients are zero. Stock and Yogo provide

critical values to test weak IV condition based on the F-stat of excluded instruments. Those critical values

can be interpreted as a test with a 5 % significance level, of the hypothesis that the maximum relative bias

(with respect to the OLS estimates) is 10% or at least 15%. In this case, the Stock and Yogo critical values

for the F-stat of the excluded instruments are 19.93 (10%) and 11.59 (15%).

Data source: National Longitudinal Survey of Adolescent Health (Add Health).
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Table 3.3: Estimates for the Network Formation Model

Parameter Estimate S.E.

Constant (δ1) -0.246 0.0172

Child‘s Log-Skills (δ2) 0.088 0.0048

Black (δ3,1) 0.075 0.0023

Hispanic (δ3,2) -0.005 0.0001

Both Black (δ4,1) 0.763 0.0317

Both Hispanic (δ4,2) 0.701 0.0298

Both White (δ4,3) 0.559 0.0475

Distance in Children‘s Skills (δ5) -0.038 0.0014

N of Children (Hundreds, δ6,1) -0.890 0.0003

N of Children Squared (Hundreds, δ6,2) 0.001 0.0000

Distance in Children‘s Skills · %White (δ6,3) - 0.063 0.0032

Distance in Children‘s Skills · %Black (δ6,4) 0.042 0.0025

Age (δ7) -0.050 0.0010

Additional Unobserved Heterogeneity (ζi,j,t)

Correlation with Skill Shocks -0.404 0.0212

Standard Deviation 0.110 0.0095

Notes: This table shows the structural estimates for the child’s utility for

friendships in Equation (3.5). The child’s utility shock is defined as νi,j,t =

ν̃i,j,t + ζi,j,t, where ζi,j,t and is correlated with the production function shock

(ξi,t). The last part of the table shows the estimated correlation and standard

deviation σζ . The standard errors are computed using a cluster bootstrap.
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Table 3.4: Estimates for the Technology of Skill Formation

Parameter Estimate S.E.

Child‘s Skills (α1) 0.744 0.0682

Investments (Yearly Hours, α2) 0.009 0.0014

Elasticity Investment vs Peers (α3) 0.944 0.0270

Return to Scale (α4) 0.767 0.0283

Std of Shocks (σξ) 0.700 0.0461

Panel B: TFP

Constant (γ0,tfp) -1.329 0.1256

Neighborhood Quality (γ1,tfp) 0.008 0.0003

Age Trend (γ2,tfp) 0.030 0.0008

Panel C: School-Quality Effects

Low Income Neighborhood

Mean (ηs,1) -0.033 0.0350

Standard Deviation (σs,1) 0.262 0.0264

Medium Income Neighborhood

Mean (ηs,2) 0.006 0.0277

Standard Deviation (σs,2) 0.244 0.0278

High Income Neighborhood

Mean (ηs,3) 0.041 0.0318

Standard Deviation (σs,3) 0.188 0.0249

Notes: This table shows the estimates for the technology of children

skill formation in Equation (3.17). Panel B reports the parameter

estimates for the neighborhood-specific TFP defined in Section 3.5.2.

Panel C reports the mean and standard deviation of school-quality

for each neighborhood type. The standard errors are computed using

a cluster bootstrap.
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Table 3.5: Estimates for the Preferences and Income Variables

Parameter Estimate S.E.

Panel A: Auxiliary Coefficients for Investments

Curvature on consumption (γ1) 0.786 0.0046

Weight on Child‘s Skills (γ2) 0.901 0.0030

Weight on Final Child‘s Skills (γ4) 2.475 0.2455

Curvature on Child‘s Skills (γ3) 0.562 0.0256

Curvature on Final Child‘s Skills (γ5) 0.465 0.0011

Panel B: Parameters of Labor and Non-Labor Income

Constant (Wage, κ1,0) 2.750 0.0067

Mother‘s Skills (Wage, κ1,1) 0.438 0.0048

Constant (Non-Labor Income, κ2,0) 9.992 0.0174

Mother‘s Skills (Non-Labor Income, κ2,1) 1.033 0.0113

Notes: Panel A shows the estimates for the utility parameters in Equation

(3.9). Panel B reports the estimates for the wage and income process de-

scribed in Section 3.5.2. The standard errors are computed using a cluster

bootstrap.
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Table 3.6: Estimates for Initial Conditions

Panel A: Mean Initial Child‘s and Mother‘s Skills

Neighborhood 1 Neighborhood 2 Neighborhood 3

Child Mother Child Mother Child Mother

Black -0.47 -0.07 -0.40 0.36 -0.30 0.44

(0.08) (0.15) (0.27) (0.25) (0.29) (0.20)

Hispanic -0.49 -0.93 -0.48 -0.77 -0.34 -0.36

(0.11) (0.19) (0.26) (0.19) (0.25) (0.19)

White 0.00 0.00 0.02 0.26 0.22 0.58

(-) (-) (0.24) (0.18) (0.24) (0.19)

Panel B: Variance-Covariance Initial Child‘s and Mother‘s Skills

Neighborhood 1 Neighborhood 2 Neighborhood 3

Child Mother Child Mother Child Mother

0.65 0.87 0.89

(0.05) (0.08) (0.15)

Black 0.20 0.61 0.31 0.67 0.30 0.64

(0.08) (0.14) (0.09) (0.17) (0.16) (0.14)

0.84 1.10 0.78

(0.09) (0.10) (0.12)

Hispanic 0.22 1.59 0.26 1.58 0.28 1.33

(0.08) (0.32) (0.08) (0.35) (0.10) (0.34)

1.00 1.09 0.99

(-) (0.09) (0.13)

White 0.48 1.00 0.37 0.74 0.36 0.78

(0.07) (-) (0.04) (0.19) (0.06) (0.17)

Notes: This table shows the estimates of initial conditions parameters by neighborhood-

quality type (low-medium-high income) and race as described in Equation (3.16). The

standard errors are computed using a cluster bootstrap.
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Table 3.7: Model Validation from Exposure Effects in Children from Chetty and

Hendren (2016a)

Panel A: Exposure Effects

Baseline

Chetty-Hendren Model

Neighborhood Exposure Effect 0.044 0.048

(0.008)

Panel B: Exposure Effects by Parental Income

Below Above

Median Median

Income Income

Chetty-Hendren Model Chetty-Hendren Model

Neighborhood Exposure Effect 0.031 0.023 0.047 0.047

(0.003) (0.003)

Notes: This table shows the comparison between model’s predictions and findings in Chetty and

Hendren (2016a) about the childhood exposure effects (baseline and heterogeneous effects by family

income).
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Table 3.8: Decomposition of Exposure Effects: Peers, School Quality and Neighbor-

hood Quality

Panel A: Baseline Decomposition

Baseline Decomposition

Overall Peers Peers + Peers +

School Quality School Quality +

Neighborhood Quality

Exposure Effect 0.048 0.027 0.038 0.048

(Percent) (+55.58%) (+23.81%) (+20.60%)

Panel B: Decomposition for Disadvantaged Children

Baseline Decomposition

Overall Peers Peers + Peers +

School Quality School Quality +

Neighborhood Quality

Low Family Income 0.056 0.034 0.046 0.056

(Percent) (+61.49%) (+20.13%) (+18.38%)

Low Skills 0.054 0.030 0.042 0.054

(Percent) (+56.40%) (+22.54%) (+21.05%)

Notes: This table shows the decomposition of childhood exposure effects in Chetty and Hendren (2016a)

by: peers, school and neighborhood quality. Panel B shows the decomposition for disadvantaged children

(both in terms of family income and child’s skills).
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Table 3.9: Counterfactual Effects on Skills and Investments (moved children are 5%

of the receiving cohort)

Panel A: Effects on Children‘s Log-Skills (Mean)

Moved Children Receiving Children

Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual

(Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium)

Age 13 -0.94 -0.94 -0.94 Age 13 0.12 0.12 0.12

Age 14 -0.43 -0.23 -0.38 Age 14 0.87 0.85 0.87

Age 15 0.12 0.48 0.23 Age 15 1.55 1.52 1.55

Age 16 0.45 1.00 0.76 Age 16 2.12 2.09 2.11

Panel B: Effects on Parent‘s Investment Decision (Mean)

Moved Children Receiving Children

Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual

(Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium)

Age 13 17.73 22.16 17.22 Age 13 26.75 26.34 26.86

Age 14 17.50 21.32 16.33 Age 14 26.63 26.37 26.97

Age 15 10.83 10.48 9.18 Age 15 22.99 23.07 23.26

Notes: This table shows the counterfactual policy effects for moved and receiving when a fraction of moved children (5%

of the receiving population) are moved into a high-income environment. For each subgroup, I compare the baseline results

with the policy predictions (equilibrium effects). I also compute the predicted policy effects without equilibrium effects. The

latter one is the predicted policy effects if I ignore equilibrium adjustments after the policy implementations. Panel B focus

on the investments decisions for moved and receiving children. For each subgroup, I compare the mean predicted parental

investments in the baseline case with the equilibrium and no-equilibrium effects.
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Table 3.10: Counterfactual Effects on Skills and Investments (moved children are 30% of the receiving cohort)

Panel A: Effects on Children‘s Log-Skills (Mean)

Moved Children Receiving Children Remained Children

Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual

(Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium)

Age 13 -1.00 -1.00 -1.00 Age 13 0.12 0.12 0.12 Age 13 -0.05 -0.05 -0.05

Age 14 -0.37 -0.28 -0.33 Age 14 0.87 0.80 0.87 Age 14 0.42 0.52 0.43

Age 15 0.24 0.40 0.34 Age 15 1.55 1.43 1.55 Age 15 0.87 1.05 0.88

Age 16 0.53 0.84 0.80 Age 16 2.12 1.97 2.11 Age 16 1.26 1.49 1.29

Panel B: Effects on Parent‘s Investment Decision (Mean)

Moved Children Receiving Children Remained Children

Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual Baseline Counterfactual Counterfactual

(Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium) (Equilibrium) (No Equilibrium)

Age 13 17.89 19.52 17.89 Age 13 26.75 24.74 27.22 Age 13 18.57 21.00 18.04

Age 14 18.00 18.62 17.15 Age 14 26.63 24.84 27.72 Age 14 18.84 21.16 18.16

Age 15 11.77 11.35 10.98 Age 15 22.99 22.82 23.92 Age 15 18.11 18.69 17.53

Notes: This table shows the counterfactual policy effects for moved and receiving when a fraction of moved children (30% of the receiving population) are moved into a high-income

environment. For each subgroup, I compare the baseline results with the policy predictions (equilibrium effects). I also compute the predicted policy effects without equilibrium effects. The

latter one is the predicted policy effects if I ignore equilibrium adjustments after the policy implementations. Panel B focus on the investments decisions for moved, receiving and remained

children. For each subgroup, I compare the mean predicted parental investments in the baseline case with the equilibrium and no-equilibrium effects.
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Table 3.11: Counterfactual Effects on Receiving Children by Race (moved children

are 30% of the receiving cohort)

Panel A: Effects on Children‘s Log-Skills (Mean)

Black Hispanic White

Baseline Counterfactual Baseline Counterfactual Baseline Counterfactual

(Equilibrium) (Equilibrium) (Equilibrium)

Age 13 -0.30 -0.30 Age 13 -0.34 -0.34 Age 13 0.22 0.22

Age 14 0.28 0.08 Age 14 0.45 0.30 Age 14 0.97 0.93

Age 15 0.96 0.61 Age 15 1.08 0.81 Age 15 1.66 1.58

Age 16 1.49 1.07 Age 16 1.59 1.24 Age 16 2.24 2.13

Panel B: Effects on Parent‘s Investment Decision (Mean)

Black Hispanic White

Baseline Counterfactual Baseline Counterfactual Baseline Counterfactual

(Equilibrium) (Equilibrium) (Equilibrium)

Age 13 20.09 15.30 Age 13 21.97 17.72 Age 13 27.92 26.41

Age 14 18.85 14.46 Age 14 20.67 16.62 Age 14 28.02 26.72

Age 15 16.32 14.97 Age 15 16.69 14.99 Age 15 24.29 24.40

Notes: This table shows the counterfactual policy effects for receiving children (by race) when a fraction of moved children (30% of the

receiving population) are moved into a high-income environment. For each subgroup, I compare the baseline results in skills and parental

investments (Panel B) with the equilibrium counterfactual predictions.
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Table 3.12: Counterfactual Effects on Skills and Investments of Earlier Interventions

Panel A: Effects on Children‘s Log-Skills (Mean)

Baseline Counterfactual Similar Children in Richer Environment

Age 13 -1.00 0.46 0.46

Age 14 -0.37 0.85 1.09

Age 15 0.24 1.31 1.74

Age 16 0.53 1.73 2.31

Panel B: Effects on Parent‘s Investment Decision (Mean)

Baseline Counterfactual Similar Children in Richer Environment

Age 13 17.89 20.82 26.47

Age 14 18.01 20.76 26.20

Age 15 11.77 20.24 24.85

Notes: This table shows the counterfactual policy effects of fostering initial skills (age 13) in

skill formation and parental investments (Panel B) for disadvantaged children. Column 1 and

2 report the baseline and counterfactual predictions. Column 3 reports the dynamics of skills

and parental investments for children with same mean initial skills at age 13 but who are living

in the high-income environment.
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Figure 3.1: Homophily in Network Formation by Race

Notes: This figure displays analysis on network formation using the homophily index

(see Coleman (1958)). In detail, letting fx,s be the average fraction of friends who

are of the same race x at school s and qx,s to be the total fraction of children of race

x in a given school s, the homophily-bias index looks as HBIx,s =
fx,s
qx,s

.

164



Figure 3.2: Homophily in Network Formation by Skills

Notes: This figure displays analysis on network formation using the homophily index (see Coleman (1958)). In detail,

letting fx,s be the average fraction of friends who are of similar skills level x at school s and qx,s to be the total fraction

of similar children with skills level x in a given school s, the homophily-bias index looks as HBIx,s =
fx,s
qx,s

.
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Figure 3.3: First Stage Graphs
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(a) First instrument: Fraction of Minority Children
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(b) Second instrument: Fraction of White Children

Notes: This figure shows graphically the first stage effects of the instrumental variables. Both graphs show the within-school variation

of IV (x-axis) and the peers’ skills (y-axes). Solid lines represents a linear regression of peer’s skills on each of the two instrumental

variables, after controlling for school fixed effects and all the covariates in Table 3.2. Dashed lines show 90% confidence intervals. The

plotted values on the background show the overall variation of both instrumental variables (top and bottom 1% excluded).
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Figure 3.4: The Probability Two Children Become Friends by Skills and Race

(a) Low Skill (First Quartile) Black Children (b) Low Skill (First Quartile) White Children

This figure displays the probability that two children become friends by children skills and race. Figure (a) shows the marginal probability for

a black child with low skills (in the first quartile of skill distribution at age 14) to become friends with different children over the spectrum of

skills and for different races. Figure (b) shows the same graph but for a white child with low skills (in the first quartile of skill distribution at

age 14).
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Figure 3.5: Model Validation from Exposure Effects in Children from Chetty and

Hendren (2016a)

Notes: This figure displays the comparison between model’s predictions and findings

in Chetty and Hendren (2016a) about childhood exposure effects.
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Figure 3.6: Decomposition Exposure Effects for Disadvantaged Children

Notes: This figure displays the graphical decomposition for disadvantaged children of

childhood exposure effects by: peers, school and neighborhood quality.
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Figure 3.7: Peers’ Skills Distribution (Baseline vs Counterfactual Economy)

Notes: This figure shows the equilibrium distribution of peers’ skills for moved and receiving children by age, before and after the policy is

implemented. Parent’s expectations about future peers’ skills are based on the above distributions. The policy moved a fraction of disadvantaged

children into a high-income environment (approximately 30% of the population of the receiving cohort).
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Figure 3.8: Treatment Effect by Skills (Moved-Receiving-Remained Children)

Notes: This figure shows the heterogeneous treatment effects on child’s age 16 skills by initial (age 13) child’s skills percentile for moved,

receiving and remained children. The policy moved a fraction of disadvantaged children into a high-income environment (approximately 30%

of the population of the receiving cohort).
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Figure 3.9: Treatment Effect by Fraction of Moved Eligible Children (Moved-Receiving-Remained Children)

Notes: This figure shows the effect of the size of moved children for the policy returns for moved, receiving and remained children. Eligible

children live in low-income environments and are below first quartile of age 13 skill distribution.
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Figure 3.10: Peers’ Skills Distribution (Low-Income vs High-Income)

Notes: This figure shows the equilibrium distribution of peers’ skills for the children who received the initial boost of skills but still live in the

low-income environment and their similar counterpart living in high-income environment. Parent’s expectations about future peers’ skills are

based on the above distributions.
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Chapter 4

CHILD DEVELOPMENT, FAMILY INCOME AND MATERNAL LABOR

SUPPLY (WITH GIUSEPPE SORRENTI)

4.1 Introduction

Poverty represents one of the major threats to child development. In 2015, about

15 million children in the United States (21 percent of all children) were living in fam-

ilies with incomes below the federal poverty threshold (National Center for Children

in Poverty, 2015). What effect does growing up in a disadvantaged family have on

a child’s achievements, and how can living conditions be improved to promote child

development?

Support programs such as the Earned Income Tax Credit (EITC), the Food Stamp

Program, and the Child Tax Credit attempt to reduce family poverty and especially

that experienced by children. Many of these programs (e.g. the EITC) provide cash

transfers on the condition that the recipient works (conditional cash transfers). Such

conditions might shape child development by introducing a trade-off between the

income effect, due to a surge in family income, and the substitution effect, due possibly

to parental labor supply responses and a decrease in time parents spend with their

child.

The arising trade-off poses an important question: is the change in family income

more important than time spent with parents in shaping child development? In this

study we answer this question by appraising the contemporaneous effect of changes in

family income and maternal labor supply on cognitive and behavioral development of

children. We implement an instrumental variable (IV) approach exploiting changes
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in the EITC benefits over time and shocks in the local labor demand as instruments

for family income and maternal labor supply. In this sense, we bridge the gap be-

tween the literature dealing with the estimate of the effect of family income on child

development and the literature on the effect of maternal labor supply and child-with-

parents time. Moreover, we provide important insights on what policies can foster

maternal employment and child development contemporaneously.

Family income is an important predictor of a child’s success and future oppor-

tunities. Figure 4.1 shows the wide dispersion in children’s achievements by family

income. Both cognitive (Panel A) and behavioral (Panel B) development measures

exhibit a steep income gradient, with high-achieving children placed in the top deciles

of the after-tax family income distribution. The impact of family income on child de-

velopment has been widely debated by economists. Previous studies such as Duncan

et al. (2011), Levy and Duncan (1999), and Blau (1999) have found a positive relation

between family economic conditions during childhood and child achievements. More

recently, works such as Løken et al. (2012) and Dahl and Lochner (2012b) employ

instrumental variable techniques to confirm this positive effect in Norway and in the

U.S., respectively.

In addition to studies regarding the income effect, a vast body of economic litera-

ture associates maternal labor supply during childhood with possible negative effects

on child development and future opportunities (Baum, 2003; Ruhm, 2004; Bernal,

2008; Carneiro and Rodriguez, 2009; Bernal and Keane, 2011; Hsin and Felfe, 2014;

Carneiro et al., 2015; Del Bono et al., 2016; Fort et al., 2017). As examples, according

to Bernal and Keane (2011) each year of child care (versus maternal time input) be-

fore age 6 decreases test scores by 2.1 percent (0.11 standard deviations). Similarly,

Carneiro et al. (2015) estimate that the probability of dropping out of high school

decreases by 2 percent and wages increase by 5 percent at age 30 with the more time
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mothers spend with their children in the first months of life.

This paper reconciles these strands of the literature. For most families, an increase

in income is due to an increase in maternal labor supply. In this case, a surge

in monetary resources is associated with a potential decline in the time the mother

spends with her offspring. To understand the possible trade-off between family income

and maternal labor supply, we build upon the empirical model in Dahl and Lochner

(2012b) by considering not only the role of family income but also the role of maternal

hours worked in shaping child development. 1 The work by Dahl and Lochner

(2012b) exploits quasi-experimental variation in the EITC to analyze the causal effect

of family income on child achievement. However, the EITC is designed to incentivize

individuals (including mothers) to work. 2 Mothers, and especially single mothers,

are usually the main target group of these welfare programs and are most responsive

to incentives (Meyer, 2002; Blundell and Hoynes, 2004; Blundell et al., 2016). This

affects the maternal allocation of time between working and parenting, with potential

effects on children’s test scores. More precisely, endogenous labor supply responses

affect child development through two channels. An increase in maternal hours worked

generates an income effect, with additional resources coming from a boost in labor

income. At the same time, changes in maternal hours worked can also generate

a substitution effect, with changes in the time that mothers allocate to child care

(Heckman and Mosso, 2014a; Del Boca et al., 2014a). Moreover, this paper is related

to previous works that consider the effect of time and monetary resources on children

by estimating a structural model of household choices and child development (see Del

1Dahl and Lochner (2017), after the analysis by Lundstrom (2017), adjust for a coding error in
their previous work in the creation of the after-tax total family income. The results of the original
and reviewed studies are similar.

2Hotz and Scholz (2003) and Nichols and Rothstein (2016) summarize theoretical and empirical
findings about the effect of the EITC on maternal labor supply. Blundell et al. (2016) analyze the
case of the U.K. and find substantial elasticities for women’s labor supply (in particular for the
group of single mothers).
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Boca et al., 2014a; Mullins, 2016).

An additional contribution of our study relates to the broad definition used for

child development. While many works (see Dahl and Lochner, 2012b; Del Boca et al.,

2014a) exclusively focus on test scores for cognitive achievements, we extend the anal-

ysis to proxies for child noncognitive development. 3 As stated by Heckman and

Rubinstein (2001), standard test scores only capture some of the multiple skills de-

termining individual success and well-being. Moreover, early childhood interventions

that boost personal traits such as self-discipline or motivation are usually deemed as

extremely effective (Heckman, 2000). Socio-emotional skills are often more predictive

of later-life success than cognitive skills. 4

Our empirical analysis is based on the National Longitudinal Study of Youth 1979

(NLSY79) data set matched with its Children (NLSY79-C) section. This combined

data set provides longitudinal information about measures of child development, fam-

ily income, and hours worked by the mother. At the same time, the longitudinal

structure allows us to account for individual unobserved heterogeneity through child

fixed effects. Cognitive development is measured through children’s achievements on

the Peabody Individual Achievement Test (PIAT), a set of tests assessing proficiency

in mathematics and reading. To study noncognitive development, we take advantage

of the Behavior Problems Index (BPI). This comprehensive index is comprised of

several different indicators for behavior such as aggressiveness or hyperactivity that

are likely to shape children’s future life opportunities.

Given the strong interdependence between maternal labor supply and family in-

3We also explore features related to early childhood development (1–7 years old).

4For example, data from the Perry Preschool Program, a high-quality U.S. preschool education
program, suggest that increased academic motivation generates 30 percent of the effects on achieve-
ment and 40 percent on employment for females. Reduced externalizing behavior decreases lifetime
violent crime by 65 percent, lifetime arrests by 40 percent, and unemployment by 20 percent. Visit
heckmanequation.org/resource/early-childhood-education-quality-and-access-pay-off/ for a discus-
sion of these results.
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come, there is no suitable identifying source of variation that is likely to exclusively

affect one variable of interest. Hence, in order to identify the single causal effect of

either family income or maternal labor supply on child development, it is necessary

to allow for the endogeneity of both inputs. To deal with this challenge, we exploit

two instrumental variables. The first instrument is based on the longitudinal changes

in monetary benefits of the EITC, one of the largest U.S. federal income support

programs. This variation provides us with exogenous changes in family resources to

allocate in child development. At the same time, only working people are eligible for

EITC benefits, creating incentives for mothers to work. The second instrument is

constructed by using longitudinal shocks in the local labor market demand. Shifts in

local demand for labor affect equilibrium prices (wages) and, subsequently, the family

income resources and the equilibrium labor quantity. 5

Our instrumental variable analysis suggests different results for cognitive and be-

havioral development. An additional $1,000 in family income improves cognitive

development by 4.4 percent of a standard deviation. 6 The same income change has

no effect on child behavioral development. An additional $1,000 improves behavioral

development by 1.3 percent of a standard deviation, and the result is not statistically

significant.

We find that the income effect is counterbalanced by a negative effect of hours

worked by the mother on child development. An increase in maternal labor supply of

100 hours per year causes a statistically significant decrease in both child cognitive

5We provide evidence throughout the paper that both identifying sources of variation do not con-
found other contemporaneous state-specific factors, like state-specific trends in children’s achieve-
ments or changes in the per-pupil financial resources of schools in different states. Moreover, in the
spirit of Goldsmith-Pinkham et al. (2017), we assess the validity of our labor demand shock instru-
ment by formally testing for any parallel pre-trends between the instrument and child development.
We reject the hypothesis of the existence of any pre-trends.

6This result is in line with the findings of Dahl and Lochner (2012b) and Dahl and Lochner
(2017).
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and behavioral development by approximately -6 percent and -5 percent of a standard

deviation. The strong negative impact of the number of hours worked by the mother,

both in terms of cognitive test scores and behavioral problems, encourages the debate

in a new dimension: how to address concerns about the effect of maternal employment

on child development.

We attempt to answer this question in the last part of our study. By using the

time diary component of the American Time Use Survey (ATUS), we illustrate the

mechanism underlying the negative impact of hours worked by the mother on child

development. Similar to Sayer et al. (2004), Guryan et al. (2008), and Fox et al.

(2013), we find that working mothers, conditional on income, invest less time in their

children. As a consequence, labor market conditions play a role in shaping the effect

of labor supply on child development.

We focus on the role of wages and show that, according to our results, an after-

tax hourly wage up to $13.50 makes the substitution effect (less maternal time with

the child) dominant over the income effect (higher earnings). With higher earnings,

families face the option of substituting their decreased time investment with better

and more productive alternatives (e.g. nonparental care, additional schooling, youth

clubs, music activities, etc.).

We look for possible heterogeneous effects in different subgroups in order to high-

light the potential importance of alternative inputs in the child development process.

Behavioral development does not display evidence of heterogeneous impacts of income

or hours worked by the mother. On the contrary, the negative effect of hours worked

by the mother on cognitive development only appears in less educated, low-skilled, or

single mothers. More educated and high-skilled mothers are likely to access to better

nonparental child care options. Moreover, the differences in the labor supply effect

can be reconciled with heterogeneous preferences for child care activities, generating
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different patterns of time allocation between working, child care, and leisure time

(Guryan et al., 2008).

We further investigate these channels by comparing the investment in the child by

maternal employment status and family income. The Child Development Supplement

(CDS) of the Panel Study of Income Dynamics (PSID) collects detailed information

about a wide set of children’s activities and parental investment for a representative

sample of U.S. families. Results obtained with this data set highlight some evidence

of differential investments as a response to the maternal employment status when

low-income families are compared to high-income families.

Policymakers might obtain several suggestions from our results. First, by showing

the trade-off between the income and substitution effect in terms of child development,

this work speaks to the growing body of literature about the effect of conditional

versus unconditional cash transfers. Many income subsidies worldwide base monetary

transfers on work requirements. In this context, only looking at the effect of income

on child development might lead to biased policy predictions. Our results support

the idea that policies aimed at fostering maternal labor supply can be beneficial to

child development if integrated with specific consideration about a minimum wage

or the taxation of family income. Alternatively, policies that encourage maternal

employment in low-income families should also consider how to guarantee alternative

sources of child care to support child development.

The remainder of the paper is structured as follows. Section 4.2 introduces the

empirical model and the identification strategy. The data used for the analysis are

presented in Section 4.3, while the results are described in Section 4.4. Section 4.5

sheds light on the mechanism underlying the main findings of the work. Section 4.6

concludes.
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4.2 Methodology

4.2.1 Empirical Model

Child inputs strongly affect individual development and future opportunities. Our

empirical model aims to capture the impact of family income and maternal hours

worked on child development. We build upon the empirical model considered in Dahl

and Lochner (2012b) by including the hours worked by the mother as an additional

explanatory variable for child achievement. Specifically, our child outcome equation

takes the following form:

yi,t = β0 + α0 t+ α1 Ii,t + α2 Li,t + x′i β1,t + x′i,t β2 + ηi + ǫi,t , (4.1)

where yi,t represents the child’s outcome in period t. 7 In our empirical analysis,

we focus specifically on both child cognitive and behavioral development. Ii,t and Li,t

reflect the after-tax total family income and the maternal labor supply (hours worked)

at time t. xi and xi,t represent exogenous observed family i fix and time-varying

characteristics. ηi reflects unobserved family specific heterogeneity (which can capture

any permanent unobserved family factor as well as child unobserved ability). We

allow for an age-trend effect in children’s outcomes (α0). Finally, we define ǫi,t as the

additional time-varying unobserved heterogeneity in the child’s outcome, which may

include unobserved child developmental shocks. Taking first differences to eliminate

family fixed effects leads to the following empirical specification:

∆yi,t = α0 + α1∆Ii,t + α2∆Li,t + x′iβ1 +∆x′i,tβ2 +∆ǫi,t , (4.2)

where β1 = β1,t+1 − β1,t allows us to control for differential growth in children’s out-

comes by observable characteristics (e.g. gender, age, race, etc.). 8 Equation (4.2)

7We consider periods to be the child’s age, and we use these two concepts interchangeably.

8The alternative, more general approach is to allow for a semiparametric model of differential
age effects of observable characteristics on outcome growth by age.
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constitutes the baseline empirical model of this study, while α1 and α2 are the param-

eters identifying the income and maternal labor supply effect on child achievement.

The coefficient α1 expresses the effect of changes in family income on changes in child

achievement, while α2 captures the mother’s labor supply effect on changes in child

achievement.

To recover the parameters in equation (4.2) and to deal with the endogeneity

of both family income and maternal hours worked, we implement an IV estimation

strategy. Children from disadvantaged backgrounds are likely to experience contex-

tual conditions affecting their development in the presence of substantial positive

income shocks. Similarly, changes in maternal labor supply are likely to be linked

to other unobservable characteristics affecting child development. Our IV approach

tackles the endogeneity issues by exploiting two sources of exogenous longitudinal

variation: (i) changes in the EITC benefits, one of the largest federal income support

programs; and (ii) shocks in the local labor market demand.

4.2.2 Instrumental Variables

The identification of equation (4.2) is particularly challenging due to the endogene-

ity of both family income and maternal labor supply. Changes in family resources and

intra-family labor market decisions can be correlated with family-specific unobserved

permanent shocks, which threatens the validity of a standard OLS approach. We deal

with this issue by implementing an IV approach based on two instruments: longitudi-

nal changes in the EITC schedule, and longitudinal variation in labor demand shocks

measured as geographical changes in sectoral compositions of local economies. The

identification of the parameters in our linear specification in equation (4.2) requires

two necessary conditions for the instruments: relevance and exogeneity. Here, we de-

scribe in detail the two instrumental variables. The discussion about the relevance of
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the instruments is postponed to Section 4.4.1, in which the results are presented.

Longitudinal Changes in EITC Benefits

When the EITC was introduced in 1975, it was a modest program that aimed to im-

prove economic and social conditions of low-income families with dependent children.

After its introduction, the EITC was progressively expanded (e.g. in 1986, 1990, 1993,

etc.) to become the largest cash transfer program for low-income families with de-

pendent children (Eissa and Liebman, 1996). In 2013, the total federal EITC reached

$63 billion shared by 27 million individuals. In 2015, the program was responsible for

lifting about 6.5 million people out of poverty, including 3.3 million children (Center

on Budget and Policy Priorities, 2016).

The credit is conditioned on three eligibility criteria: (i) the taxpayer needs to

report a positive earned income; (ii) the adjusted gross income and earned income

must be below a certain year-specific threshold; and (iii) the taxpayer needs to have at

least one qualifying child. 9 Therefore, the EITC’s primary incentive is to increase

the labor supply (Nichols and Rothstein, 2016). The provision of work incentives

is typical of many welfare programs, and as shown in Blundell et al. (2016) in the

U.K., mothers, and especially single mothers, are usually the most responsive target

to these incentives.

As shown in Figure 4.2, the EITC income thresholds and benefits have changed

over time. We plot the different amounts of received transfers conditional on after-tax

family income, keeping all the family characteristics (e.g. marital status, number of

dependent children, etc.) fixed. Focusing on a single year, it is possible to observe the

structure of the EITC program and, specifically, the three phases that characterize

the program. In the phase-in, the credit is a pure earnings subsidy. This is followed by

9A few exceptions to the last criterion were introduced in 1994.
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a flat phase after which the credit starts to gradually phase-out. Individual incentives

and behaviors regarding labor supply may differ according to the family structure and

the position on the schedule. In particular, mothers who fall into the phase-out part

of the schedule may have incentive to reduce their hours worked. However, Meyer

(2002) provides evidence, at least for single mothers, that the past expansions in the

EITC schedules did not show this type of response.

Figure 4.2 shows the EITC federal schedule expansions over time. Families with

an after-tax income of around $15,000 received a transfer of around $1,000 in 1987

or 1989. The same families received an amount that was 400 percent higher (around

$4,000) in 1999. We exploit this variation of the EITC schedules over time to predict

changes in family income and changes in maternal labor supply.

We start by showing the premise underlying the EITC’s effects on our variables

of interest. EITC benefits affect family income in two ways: (i) directly through the

tax credit transfer; and (ii) indirectly through labor supply responses. Consider the

following after-tax total family income (Ii,t) decomposition:

Ii,t = wi,t · Li,t(EITCi,t) + Ĩi,t︸ ︷︷ ︸
Ipre−taxi,t

+EITCi,t(I
pre−tax
i,t )− τi,t(I

pre−tax
i,t ) , (4.3)

where Ipre−taxi,t represents the pre-tax family income, composed of the mother’s pre-

tax earnings (wi,t · Li,t(·)) and other sources of income (Ĩi,t). EITCi,t(·) and τi,t(·)

represent respectively the EITC schedule and income tax schedule as a function of

pre-tax family income.

The IV strategy is based on changes in the EITC schedules over time. However,

directly using changes in received EITC benefits would make the instrument invalid

as a change in the transfer that families receive is a function of both policy changes

in the EITC schedules and the endogenous response in family income. Indeed, family

income endogenously changes in response to several factors such as individual labor
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supply choices, changes in marital status or household structure, etc.

To exploit only policy changes in the EITC schedules, we construct the instru-

mental variable as in Dahl and Lochner (2012b). We calculate the change in EITC

benefits due to changes in the EITC schedules over time based on the predicted fam-

ily income change that would have happened in any case, keeping fixed the family

structure and characteristics to avoid possible endogenous changes in family compo-

sition and characteristics. In this way, our instrumental variable captures only the

longitudinal variation in monetary benefits due to the changes in EITC schedules.

Specifically, our instrument takes the form:

∆EITCIV
i,t (Ipre−taxi,t−1 ) = EITCi,t(Ê

[
Ipre−taxi,t |Ipre−taxi,t−1

]
)− EITCi,t−1(I

pre−tax
i,t−1 ) , (4.4)

where Ê
[
Ipre−taxi,t |Ipre−taxi,t−1

]
represents the predicted family income as a function of

lagged pre-tax income. We follow Dahl and Lochner (2012b), and we use a fifth

order polynomial of past income together with an indicator for positive lagged pre-

tax income to predict current pre-tax income. For each family, the predicted changes

over time in the benefits in equation (4.4) are now only a function of changes in

schedules.

However, there is a possible concern underlying the definition of the instrumental

variable in equation (4.4). In a cross-sectional perspective, differences in imputed

changes in EITC benefits are explained by the previous period’s pre-tax family income

(Ipre−taxi,t ), as well as the predicted family income change (Ê
[
∆Ipre−taxi,t |Ipre−taxi,t−1

]
). We

take into account this concern by introducing a control function for family income

(Φ(Ipre−taxi,t−1 )) and augmenting our model specification as follows:

∆yi,t = α0 + α1∆Ii,t + α2∆Li,t + x′iβ1 +∆x′i,tβ2 + Φ(Ipre−taxi,t−1 ) + ∆ǫi,t . (4.5)

With the inclusion of the income control function in the model, the validity of our

first instrument relies on the assumption that no unobserved heterogeneity potentially
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correlated with lagged pre-tax family income is left. This condition translates into

the following mean independence condition:

E(∆ǫi,t|∆EITCi,t (Ipre−taxi,t−1 )) = 0 , (4.6)

where ∆ǫi,t represents the error term in equation (4.5). In other words, condition (4.6)

assumes that our control function captures the true relationship between the expected

unobserved heterogeneity and lagged pre-tax income. To fulfill this requirement, we

introduce a generalization of the control function in Dahl and Lochner (2012b) and

we exploit a flexible Taylor expansion of Φ(·) about the point of predicted income for

a fixed EITC schedule change:

Φ(Ipre−taxi,t−1 ) ≈ Φ
(
Ê

[
Ipre−taxi,t |Ipre−taxi,t−1

])

+
k∑

n=1

Φ(n)
(
Ê

[
Ipre−taxi,t |Ipre−taxi,t−1

])

n!
·
(
Ê

[
Ipre−taxi,t |Ipre−taxi,t−1

]
− Ipre−taxi,t−1

)n
.

(4.7)

The control function in equation (4.7) reconciles with the one implemented in Dahl

and Lochner (2012b) in the limited cases in which they assume the control function

to have the same functional form used to estimate the predicted family income (n = 0

order of approximation and Φ(Ipre−taxi,t−1 ) = Ê
[
Ipre−taxi,t |Ipre−taxi,t−1

]
).

Finally, we discuss a further possible threat related to the use of the EITC in-

strument. EITC changes may induce different responses in maternal labor supply

for particular subpopulations. This can potentially compromise the monotonicity

assumption of the instrument, which allows us to interpret the IV results as the

local average treatment effect (see Imbens and Angrist, 1994). Monotonicity is an

untestable assumption, but we focus on specific subgroups of our sample that have

potentially different labor supply responses to EITC changes. Specifically, we sepa-

rately focus on heterogeneous responses to the EITC with respect to lagged maternal
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employment status. 10 No evidence of possible nonmonotone responses to EITC

changes arise in our framework, and all the results remain unchanged. At least in

the above-considered dimension, our empirical strategy seems robust to potential

heterogeneous responses in EITC changes.

Labor Demand Shocks

We use as a second instrument the spatial differential effects of long-term aggregate

trends on local labor markets. Different local labor markets are characterized by

different economic sectoral compositions, inducing different expositions to aggregate

structural changes in the economy. Ideally, we would identify differences in exogenous

labor demand changes, unrelated to the supply side, that shift the equilibrium of lo-

cal labor market outcomes. We then could use this variation to predict changes in

family income and mother’s labor supply. Following the approach first developed by

Bartik (1991) and used in many previous empirical works (see for example Blanchard

and Katz, 1992; Autor and Duggan, 2003; Luttmer, 2005; Aizer, 2010; Notowidigdo,

2011; Bertrand et al., 2015; Diamond, 2016; Charles et al., 2015, 2017), we construct

an empirical analogue of the above-mentioned thought experiment by considering the

cross-state differences in industrial composition and aggregate growth in the employ-

ment level.

We exploit heterogeneous labor demand shocks for women by state and educa-

tional attainment. We define a group (or cell) “se” as the aggregation index for

people living in a state s with a level of education e. For each variation unit se,

we create labor demand shocks as national changes in industry-specific employment

rates weighted by the industry female employment share at the baseline year. For our

10Dahl and Lochner (2017) use a similar approach and allow for different effects for EITC changes
relative to the mother’s employment status.
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empirical analysis, we fix the baseline year at 1980, as our empirical analysis focuses

on the period from 1988 to 2000 (see Section 4.3 for more details). 11

Any observation i that belongs to the specific cell se is matched with the following

instrumental variable value:

LabDemShocksIVi,t =
∑

ind

(lnEind,−s,t − lnEind,−s,1980)
Eind,se,1980
Ese,1980

, (4.8)

where (lnEind,−s,t − lnEind,−s,1980) is (approximately) the percentage change in the

aggregate employment rate in industry ind relative to 1980. To calculate this statistic

for each state s, we consider all states except state s to avoid possible concerns of

endogeneity (Goldsmith-Pinkham et al., 2017).
Eind,se,1980
Ese,1980

represents the 1980 female

employment share of industry ind for a specific education group e in state s. The

instrumental variable constructed in equation (4.8) can be interpreted as the average

long-term growth in employment rates by state and educational achievement.

Figure 4.3 graphically shows the variation of labor demand we exploit. For the

sake of clarity, we report only the first (1988) and the last year (2000) covered by

our sample and two levels of educational attainment (high school dropout and college

graduate). However, in the empirical analysis, we construct the instrumental variable

for all years of our analysis and for four types of educational levels: high school

dropout, completed high school, some college, and completed college.

Figure 4.3 displays extensive changes in the employment rate over time and be-

tween different states. First, low- and high-educated mothers display opposite dy-

namics in employment rates. High school dropouts experience an overall decline in

employment rate, with an average change of -0.34 percent from 1988 to 2000. On the

contrary, the employment rate for college graduates increased by 0.40 percent from

1988 to 2000. Second, changes in employment rates from 1980 to 2000 are hetero-

11Moreover, we choose the 1980 as the baseline year instead of an earlier decade as the earlier
versions of census data sets are only 1 percent samples instead of 5 percent samples.
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geneous among states, with a standard deviation of 0.55 percent for low educated

and 0.15 percent for highly educated women. The greatest declines in high school

dropouts between 1988 to 2000 are shown in North Carolina, South Carolina, and

Rhode Island, with a decline of -1.96, -1.80, and -1.68 percent, respectively. The

greatest increases in employment rates for college graduate women are displayed in

the District of Columbia, New York, and Massachusetts, with an increase of 1.41,

0.95, and 0.93 percent, respectively.

Conditional Independence. A recent paper by Goldsmith-Pinkham et al. (2017) shows

that exploiting the labor demand shocks in equation (4.8) “is equivalent to using local

industry shares as instruments, with variation in the common industry component

of growth only contributing to instrument relevance.” Hence, we can define our

identifying assumption as the mean independence of the change in developmental,

unobserved shocks (∆ǫi,t) from 1988–2000 and the employment shares during 1980

for each state and education level:

E(∆ǫi,t|LabDemShocksIVi,t ) = 0 . (4.9)

The condition in equation (4.9) does not state that cross-sectional differences in

children’s unobserved skills from 1988–2000 are uncorrelated with the state-specific

employment shares in 1980. This last statement would be difficult to defend because

of unobserved specific differences between states, which would directly affect the level

of skills (e.g. school-quality differences) and would be potentially correlated with the

industrial composition of that state. Instead, our conditional independence condition

points toward the dynamic aspect of child development, assuming that the unobserved

changes in children’s skills during 1988–2000 are uncorrelated with the state-specific

industrial compositions in the U.S. in 1980.

To deal with some potential concerns underlying the condition in equation (4.9),
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we introduce an augmented specification of the model in equation (4.1) with potential

state-specific trends in children’s skills formation. In this way, we control for potential

unobserved changes in state-specific factors that can affect the change in children’s

skills and, at the same time, can be confounding with the variation in local labor

demand shocks (i.e. state-specific trends in school quality). All the results remain

unaffected by the inclusion of state trends. 12

Finally, following the suggestion in Goldsmith-Pinkham et al. (2017), we assess

whether any parallel pre-trends between our instrumental variable and child de-

velopment could jeopardize the validity of our identification strategy. Specifically,

Goldsmith-Pinkham et al. (2017) recommend testing whether future values of the

instrumental variable are predictive for the current second stage residuals. We do not

find evidence of pre-trends.

Exclusion Restriction. The conditional independence is sufficient to interpret as

causal the reduced form effect of labor demand shocks on child achievement. How-

ever, we need the exclusion restriction to hold in order to interpret our IV estimates

as the causal effect of family income and labor supply. The exclusion restriction re-

quires labor demand shocks to affect children’s outcomes through either changes in

after-tax family income or changes in maternal labor supply, and not directly in any

other way.

One concern potentially undermining the exclusion restriction relates to the fact

that local labor demand shocks might affect employment and the allocated resources

in the education industry. We address this concern in Section 4.4.1 by showing that

baseline results do not change if we augment the model with the change in per-pupil

total revenues and per-pupil total current expenditures by state and over time. This

evidence suggests that our instrument does not affect children’s achievement through

12See Section 4.4.1 for the analysis.
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changes in the education system.

4.2.3 The Two-Stage Least Squares Estimator

We aim to estimate the causal impact of family income and maternal labor supply

on measures for child development (y). We analyze child development by focusing on

proxies for both cognitive and noncognitive development. Specifically, we exploit (i)

individual scores in a combined math-reading standardized test as a proxy for chil-

dren’s cognitive development; and (ii) a standardized index for children’s behavioral

problems. 13 As discussed, we use longitudinal changes in the EITC schedule and

longitudinal variation in labor demand shocks, measured as geographical changes in

sectoral compositions of local economies, as instruments for family income and hours

worked by the mother.

In this framework, for each of the endogenous variables ∆W ∈ {∆I,∆L} (changes

in income or changes in hours worked by the mother), we estimate the following first

stage:

∆Wi,t = γ0+γ1∆EITC
IV
i,t +γ2LabDemShocks

IV
i,t +x

′

iγ3+∆x′i,tγ4+Φ(Ipre−taxi,t−1 )+∆ui,t ,

(4.10)

where i represents the child and t the time period. ∆EITCIV
i,t is the change, with

respect to the previous period, in the EITC schedule experienced by children i.

LabDemShocksIVi,t stays for labor demand shocks at time t (with respect to the base-

line year 1980) experienced by children i in state s and with maternal education

background e. To allow for differential growth rates in test scores in children with

different (observable) characteristics, the vector Xit contains variables for children’s

gender, age, race, and number of siblings. The same vector also contains the third

order polynomial control function for income previously discussed in Section 4.2.2.

13We carefully introduce all details about the two outcomes of interest in the next section.
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∆ui,t defines the error term (in difference). The second stage is:

∆yi,t = α0 + α1∆̂Ii,t + α2∆̂Li,t + x′iβ1 +∆x′i,tβ2 + Φ(Ipre−taxi,t−1 ) + ∆ǫi,t , (4.11)

where ∆̂Ii,t and ∆̂Li,t are the predicted changes in family after-tax income and hours

worked by the mother obtained through the first stage estimates.

4.3 Data

The baseline empirical analysis exploits three different data sets: the National

Longitudinal Study of Youth 1979 (NLSY79), the Current Population Survey (CPS),

and the 1980 Census Integrated Public Use Microdata Series (IPUMS). While we

could estimate the model using information only from the NLSY79, two potential

concerns arise. First, the detailed level of heterogeneity in the construction of the

labor demand shocks could suffer from small cell problems with the NLSY79 data.

Second, this sample may not necessarily be informative of labor market conditions

in later years at national or regional levels, as the NLSY79 is representative of U.S.

Americans between 14 and 21 years of age in 1979. Therefore, we use the U.S. 1980

Census Data to calculate the employment share for each industry and group se at

the baseline year (1980) and the longitudinal dimension of the CPS to compute the

industry-specific changes in employment rates.

The National Longitudinal Study of Youth 1979 (and Children). Information about

children and their families is obtained by matching the information of the mothers in

the original National Longitudinal Study of Youth 1979 (NLSY79) to the additional

children’s survey (NLSY79-C). This matched data set (C-NLSY) results from a survey

conducted every 2 years from 1986 to 2014. The sample selection rule adopted is

simple; observational units are the children with information about the two main

outcomes of interest, namely cognitive and behavioral development. Because the
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children are surveyed every two years, our empirical analysis of the model in equation

(4.2) is based on 2-year changes (differences). In view of the above, our results should

be interpreted as the effects of biennial changes in family income and maternal labor

supply on biennial changes in children’s cognitive and behavioral development.

Cognitive development is measured through achievements in math and reading

activities. Specifically, we exploit the Peabody Individual Achievement Test (PIAT),

a set of tests assessing proficiency in mathematics (math), oral reading and word

recognition (reading recognition), and the ability to derive meaning from printed

words (reading comprehension). We standardized each of the three test scores to

obtain a measure with a mean of zero and a standard deviation of one. 14 We repeat

the same procedure to compute an aggregate measure of math-reading achievement

as the average of the three standardized single test scores.

The second outcome of interest is the Behavior Problems Index (BPI) score used as

a proxy for children’s noncognitive development. The BPI was created by Nicholas Zill

and James Peterson to measure the frequency, range, and type of childhood behavior

problems for children age four and older (Peterson and Zill, 1986). In the C-NLSY

data set, five indicators for behavioral problems are collected: antisocial behavior,

anxious behavior, headstrong behavior, hyperactive behavior, and peer conflicts be-

havior. Each index is transformed to obtain a positive scale so that higher values

correspond to fewer behavioral problems. Hence, a higher index score corresponds to

a higher-achieving (in terms of behavior) child. We standardize each single index to

obtain a measure with a mean of zero and a standard deviation equal to 1. 15 We

compute a comprehensive index, which is the mean of the five single indexes.

14This standardization is made on the random sample of test takers. Obviously, for several reasons
based on the sample selection rule adopted in our framework, not all these observations are part of
the estimation sample.

15This standardization is made on the random sample of individuals reporting BPI indexes.
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Information about child achievement and demographics is matched with family

and mothers’ information such as family income, marital status, education level, etc.

We exclude from the analysis children whose mothers changed marital status in two

consecutive periods. We want to avoid exploiting changes in family income that are

due to changes in the presence of a husband in the family. We also restrict the analysis

to the period between 1988 and 2000 for two main reasons: (i) to avoid mixing EITC

changes with large changes in the U.S. tax system such as the Tax Reform Act of 1986

and the two tax cuts of 2001 and 2003; and (ii) to avoid confounding the aggregate

effects of the great recession after 2007.

Finally, we use information about family income and the procedure introduced in

Section 4.2.2 to compute both the after-tax family income and the federal EITC for

each family and period by using the TAXSIM program by Daniel Feenberg and the

National Bureau of Economic Research. 16

The Current Population Survey (CPS). The CPS data set is representative of the U.S.

civilian non-institutional population. We use an integrated version of the CPS from

Integrated Public Use Microdata Series (IPUMS). This data set allows us to collect

data about the yearly female employment rate for each cell se previously described

in Section 4.2.2.

1980 Census Integrated Public Use Microdata Series (IPUMS). We use the 1980 U.S.

Census data from IPUMS to construct in the most precise way the employment

shares for the baseline year (1980) by industry, state, and education level. Census

data contain enough observations to calculate the mean employment rate for each cell

defined as the combination of industry, state of residence, and education level, and

to deal with possible small cell problems.

16TAXSIM is an ongoing project of Dan Feenberg of the NBER and his collaborators. It allows
one to calculate “federal and state income tax liabilities from survey data.” See Feenberg and Coutts
(1993) for further details.
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Table 4.1 reports the descriptive statistics for the two main samples used in the

baseline analysis, one for cognitive development as measured by the combined math-

reading standardized test score, and one for the analysis of the BPI used as a proxy

for noncognitive development. The two samples have similar characteristics.

The average performance on the math test is slightly more than 40 (out of 100)

points, between 44 and 47 (out of 100 points) for the reading recognition test, and

between 40 and 43 (out of 100 points) for reading comprehension. The average BPI is

3.2 for both samples. 17 The average family in the sample reports an after-tax income

of around $38,000 (median=$31,000), while mothers spend on average around 1,200

hours per year working. Children are assessed biennially with PIAT tests and BPI

tests starting at ages 5 and 4, respectively, until they reach the age of 18. Children

in our estimating sample are, on average, approximately 10 years old. The sample is

perfectly balanced in terms of gender, while it overrepresents ethnic minorities such

as blacks (32–34 percent) and Hispanics (20 percent). Only 9 percent of the sample

consists of an only child, 37–38 percent have one sibling, and 53–54 percent have

two or more siblings. About 65 percent of mothers are married in both estimating

samples. Finally, few mothers (8 percent) are college graduates; 71 percent have at

most a high school diploma.

17Table 4.1 also shows the values for the single five components of the BPI score.
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4.4 Baseline Results

4.4.1 The Effect of Family Income and Maternal Labor Supply on Child

Development

First Stage Estimates

Table 4.2 illustrates the first stage results for both the math-reading test score

(columns 1–2) and the BPI score (columns 3–4). 18 All the models, at both the first

and second stages, are estimated by clustering standard errors at the family level to

allow for serial correlation of the error term over time and between siblings.

The diagnostic tests for the first stage (bottom part of the table) suggest that

the instruments work well in our specification for both the math-reading and the

behavioral analysis. Neither under- nor weak identification seem to constitute a

threat to our estimates.

We start by analyzing the first stage for family income. In terms of coefficients

estimates, changes in the EITC schedule generate a positive effect on family income

(columns 1 and 3). A $1,000 change in the schedule induces a $1,026 increase in

after-tax family income when math-reading test score is analyzed and $1,101 when

behavioral problems are considered. Our point estimates for the effect of changes in

the EITC on family income are comparable with respect to those estimated by Dahl

and Lochner (2017) and Lundstrom (2017).

Additionally, shocks in the labor demand positively affect family income. Indeed,

a shift in the labor demand directly affects worker compensation and family resources.

We find that an increase by 1 percent in the employment rate relative to 1980 predicts

an increase of $1,659 (math-reading first stage) or $2,067 (BPI first stage) in after-tax

18For the sake of brevity, we report here only a subset of the first stage coefficients. Table C.1
reports the entire set of first stage coefficients for individual characteristics.
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family income.

In columns (2) and (4) of Table 4.2 we present the first stage of hours worked by

the mother. In our sample, the EITC schedule changes induce, on average, positive

shifts in the maternal labor supply. The overall positive effect is generated from

several different effects such as the differential impact on the extensive versus intensive

margin or the differential effect for different subgroups of the population (Eissa and

Liebman, 1996; Hoynes and Essa, 1996). A $1,000 change in the EITC schedule

explains an average increase of around 150 hours worked per year by mothers. The

effect is similar for the math-reading sample (column 2) and the BPI sample (column

4). This effect is aligned with the findings in the EITC literature summarized in

Nichols and Rothstein (2016): while earlier estimates indicated that the main effect

of the EITC on labor supply was in terms of extensive margins, more recent studies

have found evidence of nonzero, although small, intensive margin effects.

The second instrument labor demand shocks induce changes in hours worked. We

find that a 1 percent change in the employment rate relative to 1980 induces a change

of around 32 (24) hours worked per year by the mother. This means that, for the

average mother who works 1,258 hours per year (see Table 4.1), a 1 percent change

in the employment rate in her local labor market causes an increase of approximately

1.83 percent of her labor supply. The evidence from the first stage suggests that,

in our sample, labor demand shocks affect both family income and maternal labor

supply, although in the last case, the coefficient is only weakly significant. 19

Two potential concerns need to be discussed in this framework. First, we neglect

possible labor supply responses by the spouse, in the case of married couples, induced

by EITC changes and shocks in the labor demand. The EITC literature previously

19The coefficient is significant at the 10 percent level in the math-reading sample, while it is
statistically insignificant in the BPI sample.

197



estimated small changes for the male labor supply caused by EITC changes (Hotz

and Scholz, 2003; Nichols and Rothstein, 2016). However, equation (4.2) includes

this endogenous reaction as part of the error term, potentially jeopardizing our iden-

tification strategy. We analyze whether the instruments are predictive of changes in

the spouse labor supply to test this hypothesis. We estimate our baseline first stage

specification with changes in the spouse labor supply as dependent variable. Table

C.2 reports the results. Neither changes in the EITC nor labor demand shocks in the

women’s labor market significantly predict changes in the spouse labor supply.

A second hypothetical concern relates to the possible existence of state-specific

trends in children’s skills formation that might constitute a threat to the exclusion

restrictions. The conditional independence of the instrument based on labor demand

shocks requires that unobserved changes in children’s skills from 1988–2000 are not

correlated with the state-specific industrial compositions in the U.S. in 1980. We

estimate a model that augments the baseline with the inclusion of a full set of state

fixed effects to capture state trends over time. 20 First stage diagnostic tests (see

Table C.5) are improved when state fixed effects are also included in the baseline

model. First stage coefficients remain almost unaltered in this new setting. This

suggest that, even controlling for state trends in children’s skill formation, our results

do not change. 21

20The state-specific trends in model (4.1) become state fixed effects in our main specification (4.5).
To see this point, consider our initial specification

yi,t = β0 + α0,s t+ α1 Ii,t + α2 Li,t + x′i β1,t + x′i,t β2 + ηi + ǫi,t ,

where α0,s is the coefficient for the state-specific trend. Taking the differences, we have

∆yi,t = α0,s + α1∆Ii,t + α2∆Li,t + x′iβ1 +∆x′i,tβ2 +∆ǫi,t ,

where α0,s is the state fixed effect in the difference model.

21We show below that second stage estimates are also unaffected by the inclusion of state trends
over time.
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Second Stage Estimates

Cognitive Development. We start by analyzing children’s cognitive development as

measured by the math-reading test score. Table 4.3 reports second stage estimates

for the effect of family income and maternal hours worked. 22 Ordinary least

squares (OLS) estimates in column (1) suggest a weak and positive effect (0.1 percent

of a standard deviation) of income on children’s achievement, while the effect of

hours worked is zero. These estimates suffer from various forms of bias. Unobserved

dynamics in the quality of child care and family circumstances can correlate with

the effect of family income and maternal hours worked on children’s development.

Furthermore, measurement error is likely to affect both the measures for income and

for hours worked, generating potential attenuation bias for both estimates. Finally,

Løken et al. (2012) show that, even in the absence of endogeneity, the OLS and IV

estimands can be substantially different due to differential weighting of the marginal

effects.

Instrumental variable estimates in column (2) address these concerns by correct-

ing the endogeneity of family income and maternal hours worked. Family income

positively affects child cognitive achievement. A $1,000 increase in family after-tax

income, ceteris paribus, generates an increase of 4.4 percent of a standard deviation in

the math-reading test score. This result, although a different estimation framework,

is aligned with Dahl and Lochner (2017). 23

Maternal hours worked induce a significant negative effect on children’s perfor-

mance. A 100-hour per year increase in maternal work, ceteris paribus, leads to a 6

percent of a standard deviation decrease in children’s math-reading test score. The

22The full set of coefficients, including those for individual characteristics, is reported in Table
C.3.

23This consideration also applies in the case of OLS estimates.
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size of the effect is comparable with previous findings. Bernal (2008) finds that the

mother’s working full-time and using child care for 1 year is associated with a 1.8

percent reduction in the child’s test score (0.13 standard deviations). Bernal and

Keane (2011) estimate a 2.1 percent decrease in test score as response to one year of

child care instead of (single) mother care.

This finding is important when it comes to analyzing the overall effect of changes

in labor earnings on child development. Indeed, policies that foster maternal labor

supply, like income transfers based on employment-status criteria, generate two op-

posing effects: a positive income effect and a possible substitution effect induced by

parental hours worked. In the next sections, we carefully analyze the drivers of the

negative effect of hours worked on child development. The aim is to provide insights

on how to design policies and interventions that contemporaneously foster maternal

employment and child development. To anticipate the intuition, the effect of hours

worked is driven by changes in parental inputs and in the quality of alternative sources

of child care. Moreover, the wage rate plays a role in determining whether the income

effect dominates the substitution effect of hours worked. Indeed, the wage paid shapes

the marginal contribution of maternal hours worked in fostering family income.

Behavioral Development. Table 4.4 shows the analysis of behavioral development as

measured by the BPI score. 24 OLS estimates display a close-to-zero effect of family

income and a negative (-0.1 percent of a standard deviation), statistically insignificant

effect of hours worked. IV estimates in column (2) suggest that the coefficient for

family income is positive (1.3 percent of a standard deviation), although smaller than

the one for cognitive development, and statistically insignificant. This result seems to

suggest a differential impact of family income on the accumulation process of cognitive

and noncognitive skills. While changes in family income considerably affect cognitive

24Table C.4 shows the full set of coefficients, including the ones for individual characteristics.
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development, noncognitive development appears less sensitive (at least in the short

term) to shocks in family income.

On the other hand, the effect of labor supply on noncognitive development fairly

mimics the one for cognitive development. Maternal hours worked negatively affect

child behavioral development. A 100-hour per year increase of maternal work causes

a 5.2 percent of a standard deviation decrease in behavioral development.

The importance of accounting for the contemporaneous effects of family income

and maternal labor supply on child development emerges with the analysis of the two

factors in isolation. The analysis of family income without consideration of possible

endogenous changes in labor supply creates a risk of underestimating the pure income

effect on child development. At the same time, the analysis of labor supply without

accounting for the induced income effect underestimates the (negative) effect of labor

supply on child development.

Table 4.5 shows the results of the analysis. In column (1), we use our identification

strategy to estimate the effect of family income in isolation on children’s cognitive de-

velopment. The point estimate suggests an income effect of 1.7 percent of a standard

deviation. 25 In terms of comparison with the baseline model of our study (column

3), the lower point estimate for the effect of family income in column (1) is hardly

surprising. The coefficient for family income captures both the positive income effect

on child development and the negative effect induced by one of the main determinants

25Dahl and Lochner (2017) find that the effect of an additional $1,000 of family income induces
children’s cognitive development to increase by 4.1 percent of a standard deviation. We replicate
their empirical model with our estimating sample, and we find a comparable income effect of 2.5
percent of a standard deviation. We interpret the differences in estimates as the result of differences
in the compliers’ groups, as a result of different sample selection criteria. In fact, Dahl and Lochner
(2017) trim the data according to whether families have a relatively large change in after-tax family
income between two years (see the Online Appendix for specific details). These sample selection
criteria are reasonable and well-motivated in the paper, given the authors’ interest in analyzing the
effect of marginal changes in family resources on child development. However, in our case, sizable
changes in family income can be due to changes in the extensive margin of maternal labor supply.
The latter represents a valuable identifying source of variation of the causal effect of maternal hours
worked on child development if the extensive margin shifts are induced by our instrumental variables.
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of positive income shocks, namely increases in individual labor supply. Behavioral

development (columns 4 and 6) displays the same pattern. The coefficient for family

income becomes considerably smaller in size, -0.3 versus 1.3 percent of a standard

deviation, in the model using only family income as the endogenous regressor. The

previous explanation for cognitive development also applies to this case.

Columns (2) and (5) focus on maternal hours worked in isolation. Coefficients

display a smaller effect of maternal labor supply both for cognitive and behavioral

development when compared to the reference baseline models in columns (3) and (6),

respectively. For cognitive development, the effect switches from -2.1 to -6 percent

of a standard deviation. For behavioral development, the change moves from -4 to

-5.2 percent of a standard deviation. These changes confirm that the coefficient for

maternal labor supply, when analyzed in isolation, captures both the labor supply

effect and the positive income effect induced by increases in individual labor supply.

Given the strong interdependence between maternal labor supply and family in-

come, there is no suitable identifying source of variation that is likely to exclusively

affect one variable of interest. Hence, as shown above, in order to identify the single

causal effect of either family income or maternal labor supply on child development,

it is necessary to allow for the endogeneity of both inputs.

We will now discuss some potential threats to our IV framework validity. As in-

troduced, the possible existence of state-specific trends in children’s skill formation

might undermine our exclusion restrictions. We take into account this potential con-

cern by augmenting the model with state-specific trends in children’s skills formation.

Such inclusion does not affect the results. 26 Table C.5 shows that point estimates

for the effect of changes in family income and hours worked are almost unchanged

26See Section 4.4.1 for the first stage analysis of this model with state-specific trends in children’s
skills formation.
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with respect to the models without state fixed effects. The replication of all the other

analyses of the study including state fixed effects does not remarkably alter any of

the results. 27 For this reason, we have decided to report in Table C.5 the baseline

estimates obtained by including state fixed effects in the model, while in the rest of

the work we report results without controlling for state fixed effects.

The exclusion from the set of regressors of variables capturing school financial and

economic resources might bias our results by violating the exclusion restriction for

the labor demand shocks instrument (see discussion in Section 4.2.2). In Table C.6,

we deal with this potential concern by including changes over time of school finances

and economic resources at the state level, therefore testing whether these variables

were part of the error term of the model.

We use data about school resources from the CDD National Public Education

Financial Survey, and we focus attention on two different measures. 28 First,

we collect data on total revenues per pupil, measured as the total revenues from

all sources divided by the fall membership. Second, we collect the total current

expenditure per pupil, defined as the total current expenditure for public elementary

and secondary education divided by the fall membership. We augment the baseline

model by adding both variables expressed in difference with respect to the previous

period.

Results highlight two main patterns. On the one hand, neither changes over time

in revenues nor expenditures are statistically significant predictors of child cognitive

and behavioral development. On the other hand, point estimates for both family

income and hours worked by the mother are unchanged with respect to the specifi-

27Results are available upon request.

28The CDD National Public Education Financial Survey has a primary purpose of making available
to the public an annual state-level collection of revenues and expenditures for public education for
students in prekindergarten through grade 12.
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cations without controls for school financial and economic resources. Also first stage

diagnostic tests, as shown by the tests in the bottom part of the table, are unaffected

in this new model specification.

The work by Goldsmith-Pinkham et al. (2017) points out that, in general, la-

bor demand shocks can include pre-trends that can indirectly affect the dependent

variable, which may jeopardize the validity of our identification strategy. To test

this hypothesis, Goldsmith-Pinkham et al. (2017) recommend testing whether future

values of the instrumental variable are predictive for current second stage residuals.

Table C.7 shows the hypothesis testing for the presence of pre-trends. We test for pre-

trends with different specifications with different lagged variables, up to a maximum

of 6 lagged years (3 model-periods as observations are collected every 2 years). We

do not find evidence of pre-trends. In all cases, future labor demand shocks are not

predictive of past child test scores. The only exception appears for the most adjacent

case of the 1-period lag for cognitive measures. However, by extending the analysis

to 2 periods or 3 periods of lagged variables, any relationship between future labor

demand shocks and cognitive test scores arises.

Furthermore, as the instrument for labor demand shocks is state-specific, we ad-

dress the potential concern due to possible endogenous household changes in state of

residence from one period to another. In our sample, a very small fraction of families

change their state of residence in two following periods. 29 To be conservative, we

replicate our baseline analysis and restrict the sample to those households maintain-

ing the same state of residence across two consecutive periods. The analysis in Table

C.8 does not pinpoint any significant effect on results.

29In our estimation samples, there are 581 (math-reading sample) and 690 (BPI sample) cases
of mothers who changed their state of residence during the two-year intervals when test scores and
behavioral indexes are measured. In both cases, it represents approximately 5 percent of the entire
sample.
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Finally, tax reforms may have heterogeneous effects within groups (Hoynes and

Essa, 1996). Because of the structure of the EITC benefits, mothers who are working

and fall into the phase-out section of the schedule may have incentive to reduce their

hours worked, compromising the monotonicity assumption of the EITC instrument.

This assumption is needed to interpret our IV results as the local average treatment

effect (see Imbens and Angrist, 1994). Even if monotonicity is untestable, we consider

the potential heterogeneous effects induced by the change in the EITC for employed

versus non-employed mothers. 30

Table 4.6 shows the results. First stage estimates do not provide any evidence of

failure of the monotonicity assumption. The effect of changes in the EITC schedule

on family income is positive both for employed and non-employed mothers. Shocks

in the labor demand display a similar coefficient with respect to the one of the base-

line analysis. Changes over time in the EITC benefits also positively affect maternal

labor supply. Second stage results are similar to the ones in the baseline analysis.

The effect of family income on the math-reading test score is positive and strongly

significant, while maternal hours worked negatively affect the child’s cognitive devel-

opment. Additionally, the analysis of behavioral development (column 2) conveys the

same message as the one in the baseline analysis of BPI.

In sum, this analysis shows that, at least in the above-considered dimension, we

cannot reject the monotonicity assumption. Moreover, our results are not affected by

using possible heterogeneous responses to changes in the EITC schedule as possible

instruments for family income and maternal hours worked.

30Information about employment status refers to the previous period to mitigate possible endo-
geneity concerns.
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Decomposition of the Overall Effects

We focus here on the analysis of each single component of our aggregate measures

for cognitive and behavioral development. Such decomposition is important as it

allows us to understand whether the overall effect shown in the baseline analysis is

general or is driven by some specific measures for children’s achievements. Table 4.7

reports the decomposition of the combined math-reading test score in its three single

components: math, reading recognition, and reading comprehension. The three tests

in isolation confirm the existence of a positive and significant effect of family income

on test performance counterbalanced by a negative impact of hours worked by the

mother. The income effect appears slightly smaller in size (2.9 and 3 percent of a

standard deviation) for math and reading comprehension (columns 1 and 3) when

compared to reading recognition (column 2). In terms of hours worked, the effect is

particularly sizable for reading recognition (-7 percent of a standard deviation) and

reading comprehension (-4.9 percent of a standard deviation), while it is smaller for

math (-3.6 percent of a standard deviation).

This evidence is suggestive of possible channels underlying the effect of maternal

hours worked. At least two mechanisms potentially explain the results: (i) an endoge-

nous reallocation of maternal time that values more schooling activities rather than

reading; and (ii) a productivity gap of maternal time between math and reading.

We replicate the same decomposition analysis for indexes for behavioral devel-

opment (Table 4.8). We analyze the following five components: antisocial behavior,

anxious behavior, headstrong behavior, hyperactive behavior, and peer conflicts be-

havior. With the exception of hyperactive behavior (column 4), behavioral problems

are not affected by family income. On the contrary, hours worked display a nega-

tive and significant (with the exception of anxious behavior in column 2) effect on
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behavioral problems, with point estimates bounded between -3.6 and -4.8 percent of

a standard deviation.

The analysis of single behavioral indexes suggests similar insights with respect

to the aggregate BPI index. Family income seems to play a very marginal role in

shaping, at least in the short term, children’s behavioral problems. Concurrently,

the time spent with the mother is a relevant input in terms of children’s behavioral

development.

4.4.2 Early Childhood Development

Until this point we have considered measures for cognitive performance and be-

havioral problems for children older than 5 and 4 years old, respectively. We now

extend the analysis to early childhood development. The C-NLSY data set contains

information about temperament measures collected between ages 1–7. We focus our

attention on three specific measures collected for children in this age range: compli-

ance, insecure attachment, and sociability. 31 As for BPI, these measures are also

expressed on a positive scale, meaning that higher values correspond to fewer tem-

perament problems. We standardize each of the three measures to make an index

with a zero mean and a unitary standard deviation. Because compliance and inse-

cure attachment are collected for children in the same age range, we also construct

an aggregate average index of the two.

Table 4.9 illustrates the analysis of the effect of family income and maternal hours

worked on early childhood development. We estimate each model as in the baseline

analysis. Despite the lower level of precision due to the reduced sample size, point

estimates show a similar pattern to the one identified in the main analysis on older

31The NLSY79 contains other measures for child development in this age range. However, these are
the only measures repeated over time, which therefore allow a dynamic analysis in first differences.
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children.

The coefficient for family income is always positive and similar in size to that of the

baseline model for the math-reading test score. For example, a $1,000 change in family

income explains a (statistically insignificant) increase of 4.6 percent of a standard

deviation in the compliance score (column 1). At the same time, the coefficients for

maternal hours worked are negative, with a range between -1.0 (sociability, column

4) and -5.3 (compliance and insecure attachment, column 3) percent of a standard

deviation. These magnitudes are similar to those found with respect to cognitive and

behavioral development.

The analysis of early childhood provides supportive evidence that at this devel-

opmental stage there might also be a contemporaneous effect of family income and

maternal hours worked on child development. The pattern seems to mimic the one

identified for cognitive and behavioral development. Due to the limited sample size,

the effects on early childhood development are not precise and require further analysis

to infer more conclusive insights.

4.5 Hours Worked and Child Development: To the Roots of the Result

In this section we study the mechanisms behind the negative impact of mater-

nal hours worked on child development. This understanding is crucial for designing

policies that contemporaneously foster maternal employment and child development.

4.5.1 Time Investment in the Child

Parental inputs determine child development (Cunha and Heckman, 2008; Cunha

et al., 2010; Del Boca et al., 2014a; Heckman and Mosso, 2014a; Agostinelli and

Wiswall, 2016a). The choice to increase maternal labor supply may generate a dis-

placement effect in terms of maternal investment in the formation of children’s skills.
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It is then important to establish whether maternal hours worked affect parental in-

vestment in the child. 32

Time diary data allow us to observe maternal response in terms of time investment

in the child as a result of her labor supply. We combine data from the American Time

Use Survey (ATUS) and the American Heritage Time Use Survey (AHTUS), which

provide information about the amount of time people spend doing various activities,

such as paid work, child care, volunteering, and socializing. 33 For similarities with

our estimating sample in the C-NLSY, we focus our attention on households with at

least one child in the same age range of the baseline analysis in the period 1985–2003.

34

We collect all the information about family income, hours worked by the mother,

education of the mother, household composition (e.g. single-head household, number

of children, etc.), child’s age, and four measures of parental investment in child de-

velopment. The available measures for parental investment are physical child care,

helping with homework, reading and playing with the child, and a residual category

containing other forms of child care. We also construct an aggregate measure that

is the sum of the four mentioned child care activities. All the measures for time

investment are expressed in hours per week.

Figure 4.4 shows the estimates of the five regressions of each time investment mea-

sure on family income and maternal hours worked plus a set of controls for mother’s

age, household composition, number of siblings, child’s age, and year fixed effects.

Each panel of the figure represents the regression coefficient, together with its 95

32The mother, as a response to an increase of hours worked, may decide to decrease parental inputs
and child investment or to decrease leisure activities to try to keep the amount of time devoted to
the child fixed.

33See www.ipums.org/timeuse.shtml for further details.

34Our sample selection is based on the availability of the surveys. We start with the 1985 AHTUS.
We use the 2003 ATUS to increase the sample size of the analysis.
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percent confidence interval, for maternal hours worked (Panel A) or family income

(Panel B) on each measure for time investment in child care activities. 35

As shown in Panel A, maternal hours worked are negatively correlated with

parental time investment in all five considered activities. As an example, an in-

crease of 1 hour worked per week predicts a 4-minute decline per week in child care

time (total child care). In other words, the result is equivalent to an average decrease

in child care of approximately 2 hours per week if the mother starts working full time

(from 0 to 35 hours per week).

Panel B reports the results for family income obtained from the same models. All

the coefficients are close to zero and statistically insignificant. In our sample, higher

family income does not correlate with changes in parental time investment in the

child. These results only suggest general insights; they do not deal with factors such

as the quality of time parents spend with their children. Section 4.5.4 discusses that.

4.5.2 Income versus the Substitution Effect: The Role of Wages

We exploit the results of the main analysis to explain the drivers behind the av-

erage negative impact of maternal hours worked on child development. An increase

in maternal hours worked generates an income effect (higher earnings) and a substi-

tution effect (displacement of maternal time) (Heckman and Mosso, 2014a; Del Boca

et al., 2014a).

Given the specification in equation (4.1), the causal effect of maternal hours

worked on child achievement can be deconstructed in these two mechanisms as follows:

∂E [yi,t|Li,t]
∂Li,t

≡ α1 ·
∂E [Ii,t|Li,t]

∂Li,t︸ ︷︷ ︸
Income Effect

+ α2︸︷︷︸
Substitution Effect

. (4.12)

35It is important to recall that although the effect of maternal hours worked and family income
are displayed in different panels, their coefficients are contemporaneously estimated with the same
regression. Appendix Table C.9 shows the regression results.
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By decomposing the total family income in the mother’s after-tax earnings (wi,t ·

Li,t) where wi,t represents the wage, and any other source of income (Ĩi,t), we can

rewrite equation (4.12) as: 36

∂E [yi,t|Li,t]
∂Li,t

≡ α1 ·


wi,t +

∂E
[
Ĩi,t|Li,t

]

∂Li,t


+ α2 . (4.13)

Equation (4.13) conveys a clear message: the effect of hours worked on children’s

achievement is ambiguous in sign and heterogeneous within the population. Given a

wage rate wi,t, the total effect in equation (4.13) depends on the relative magnitude

of the income effect (α1) in contrast to the substitution effect (α2). Additionally,

the income effect depends on the specific wage rate wi,t, suggesting heterogeneous

effects of maternal hours worked on children’s outcomes. We investigate heterogeneity

according to mother and child characteristics in the next section, while here we focus

the attention on the role played by wages.

The effect of hours worked by the mother strictly depends on factors such as labor

market conditions. The recognition of sufficiently high wages potentially overcomes

the substitution effect induced by decreased maternal time invested in child develop-

ment. This is likely driven by the fact that the mother might be able to substitute

her own input by purchasing higher quality alternative sources of child care (e.g.

nonparental care, additional school, youth clubs, sport and music activities, etc.).

Figure 4.5 graphically shows the importance of the paid wage by exploiting our

baseline results for the effect of maternal hours worked on child development. 37 The

analysis assumes that other sources of income do not respond to changes in maternal

36This is the case when the mother is already working (Li,t > 0). For the extensive margin case,

the causal effect is
E[yi,t|Li,t]
∂Li,t

= α1 ·
(
w∗i,t +

∂E[Ĩi,t|Li,t]
∂Li,t

)
+α2, where w

∗
i,t is the counterfactual wage

she would receive once she works.

37The figure is based on the estimates in Table 4.3, column (2). As we do not find a significant
income effect for behavioral development, we base this analysis exclusively on cognitive development.
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labor supply, and the income effect is determined only by changes in earnings. The

figure shows the heterogeneous effect of maternal hours worked on children’s cog-

nitive development with respect to maternal hourly wage. The intersection of the

solid line (effect of hours worked) with the dashed horizontal line representing a zero

net income-substitution effect, highlights that up to a corresponded wage of around

$13.50 per hour, the effect induced by the extra labor income (income effect) is not

enough to compensate for the loss in child development induced by decreased mater-

nal input (substitution effect). For wages higher than $13.50 per hour, the income

effect dominates the substitution effect.

In the background of Figure 4.5, we plot the wage distribution for both single and

married mothers in our NLSY79 estimation sample, which provides an intuition on

the determinants of the negative effect of maternal hours worked on child cognitive

development. The biggest fractions of the wage distributions are located below the

wage threshold corresponding to a zero or positive effect of maternal labor supply on

child achievements. These results call for a policy discussion regarding the importance

of labor market conditions and opportunities especially when it comes to women and,

specifically, mothers. Moreover, such findings should spark a discussion on fiscal

reforms and the minimum wage.

4.5.3 Heterogeneous Effects of Maternal Hours Worked

In this section we replicate the baseline analysis by focusing on various subpop-

ulations of interest. The aim is to understand whether the negative effect of hours

worked on child development might be driven by differences in the quality of the

alternative child care inputs used in substitution of maternal inputs or by other child

characteristics such as race or age. Bernal and Keane (2011) show that informal care

(grandparents, siblings, etc.) has adverse effects on child development as measured
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through test scores, and that more than 75 percent of single mothers use informal

care. Mothers with a higher educational level or with higher skills are likely to use

higher quality alternative inputs for their children, therefore possibly mitigating the

negative impact induced by their increase in individual labor supply.

The analysis is based on five different sources of heterogeneity: maternal educa-

tional level, the Armed Forces Qualification Test (AFQT) as a proxy for maternal

skills, maternal marital status, child’s race, and child’s age. 38 We compare mater-

nal educational levels by dividing the sample in two groups: mothers with at most

a completed high school degree (Low education) and mothers with some college ed-

ucation or more (High education). In terms of maternal skills, we separate mothers

according to the median value of the AFQT test by labeling the ones with lower-than-

the-median AFQT as Low AFQT, and those with higher-than-the-median AFQT as

High AFQT. We analyze marital status by comparing married mothers with unmar-

ried mothers. To take into account the possible differential effects of hours worked

for minority populations, we also compare the white population with the black and

Hispanic populations. Finally, the effect induced by maternal labor supply might

be larger when the child is younger and needs more supervision and parental care.

We look at potentially heterogeneous impacts of family income and maternal hours

worked on child development according to child’s age by dividing the sample into

children under and over 12 years old. 39

Table 4.10 reports estimates by subpopulations according to mother’s education

38The Armed Forces Qualification Test (AFQT) was derived from the Army General Classification
Test in 1950, and it is widely recognized as a reliable measure of mental ability. The AFQT score
is not available for all the observations in the sample. Therefore, the sample size for this analysis is
slightly reduced with respect to the one in the baseline models.

39To assess the importance of the heterogeneous treatment effects in our estimating sample, we
decompose our predicted exogenous changes in our two endogenous variables in a two-stage least
squares fashion, where we allow the second stage coefficients for income and hours worked to vary
by mother’s level of education, AFQT, marital status, child’s race, and child’s age. We implement
a family-level clustered bootstrap procedure (100 repetitions) to adjust standard errors.
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(Panel A), AFQT score (Panel B), and marital status (Panel C). Column (1) displays

the analysis of the combined math-reading test score. The differential impact of

family income appears negligible. Coefficients are similar across subgroups for all

sources of heterogeneity. 40

The impact of maternal hours worked is indeed characterized by high heterogene-

ity. Considering maternal education as a source of heterogeneity, the negative effect

of hours worked shown in the baseline analysis seems to be driven by the subgroup of

mothers with a low educational level. For this group of mothers, an increase of 100

hours worked per year explains a decrease in standardized test scores by 5.8 percent

of a standard deviation. The effect for the more educated counterpart is zero. The

analysis of maternal skills and marital status unveils similar heterogeneous patterns.

Maternal hours worked do not affect child cognitive development when mothers have

high AFQT, while the effect of hours worked is negative and significant (-6.4 per-

cent of a standard deviation) for low-AFQT mothers. Concerning marital status,

the coefficient for hours worked is significant and negative (-6.9 percent of a stan-

dard deviation) for unmarried mothers, while the effect of maternal labor supply is

statistically insignificant for married mothers.

The presented heterogeneous analysis suggests that parents from more advantaged

backgrounds and with more resources, proxied by education, skills level, and marital

status, might employ high-quality alternative inputs for the child when there is an

increase in individual labor supply. Alternatively, they are able to more productively

substitute the quantity of time with the quality of time devoted to their children.

The heterogeneous impact of maternal labor supply on child development is not

confirmed for behavioral development (Table 4.10, column 2).The effect of family in-

40A small but more pronounced difference appears for marital status, with unmarried mothers
displaying a slightly larger effect than married mothers.
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come and hours worked is similar across groups. More precisely, any differential im-

pact of maternal hours worked across subpopulations is detected neither for mother’s

education (Panel A), nor for mother’s AFQT (Panel B), nor marital status (Panel

C). These results suggest potentially different mechanisms underlying the cognitive

and behavioral skill production functions. In particular, it is easier to substitute for

parental time with activities related to cognitive development but more difficult to

substitute for parental time with activities related to a child’s behavioral development.

Further research on this point is needed.

Table 4.11 extends the analysis to child characteristics. In terms of cognitive de-

velopment (column 1), the analysis by race (Panel A) displays similar effects (around

4.6 percent of standard deviation) of family income across subgroups. We find a neg-

ative effect of maternal hours worked for both the subgroups of white and black or

Hispanic. Although the point estimates across race subgroups are not significantly

different, it is interesting to notice that the point estimate is larger in magnitude (-6.9

percent of a standard deviation) for black or Hispanic children than for white children

(-4.7 percent of a standard deviation). Also the analysis by age (Panel B) highlights

an interesting pattern. While the effect of family income is similar across age groups,

the impact of maternal hours worked is more relevant for younger children (<12 years

old). Relatively younger children report a statistically significant negative effect of

maternal labor supply (-7.6 percent of a standard deviation), while the same coeffi-

cient is statistically insignificant and smaller (-5.3 percent of a standard deviation)

for relatively older children. The evidence of heterogeneous impact by age suggests

that the importance of parental input and investment in shaping child development

is confirmed in all stages of childhood, although it seems to be dominant when the

child is relatively younger.

When behavioral development is considered, child characteristics do not display
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heterogeneous patterns (Table 4.11, column 2). In general, the income effect is always

statistically insignificant and similar across subpopulations. The effect of maternal

hours worked is indeed negative and strongly significant for all the subpopulations of

interest.

4.5.4 Employment, Child’s Activities, and Quality of Child Care

Section 4.5.1 shows that maternal hours worked are negatively correlated with

parental investment in child care. We analyze whether maternal employment status

and family income play a role in explaining differences in the type and quality of

investments. In particular, we investigate to what extent our heterogeneous results of

maternal hours worked in Section 4.5.3 might depend on the quality of alternatives

sources of child care.

We draw on data from the Child Development Supplement (CDS), a research

component of the Panel Study of Income Dynamics (PSID), to analyze investment in

child development. 41 In 1997, the PSID complemented its main data collection with

additional information on 0-12 years old children and their parents. The aim was to

provide researchers with a comprehensive, nationally representative, and longitudinal

data set of children and their families with which to study the process of early human

capital formation. We focus on the 1997 wave of the CDS (CDS-I) as it contains a

wide set of information about parental investment in the child, child’s activities, and

time diary data for 3,563 children from 2,394 families.

Table 4.12 shows the analysis of a set of proxies for parental investment in child

development. We compare values across four different subgroups of households:

41The PSID is a longitudinal study of a representative sample of U.S. individuals and the families
in which they reside. Since 1968, the PSID has collected data on family composition changes,
housing and food expenditures, marriage and fertility histories, employment, income, time spent
on housework, health, consumption, wealth, and more. See psidonline.isr.umich.edu for further
information about the data set.
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low-income and non-employed mother (LI,NE), low-income and employed mother

(LI,E), high-income and non-employed mother (HI,NE), and high-income and em-

ployed mother (HI,E). This comparison allows us to disentangle: (i) differences in

maternal investment and child’s activities according to family income level, and (ii)

the difference in investment and child’s activities between employed and non-employed

mothers conditional on family income. Low- and high- income families are defined

according to the median value for family income in the CDS-I sample ($35,000).

The employment status refers to the year 1997. The table reports average values

for the four subgroups (columns 1–4), together with the difference between employed

and non-employed mothers conditional on income group (columns 5 and 7), and its

statistical significance (columns 6 and 8). 42

Panel A of the table depicts proxies for parenting styles. Behavior such as encour-

aging child’s hobbies, showing physical affection, attending parenting classes, having

the child cared for by others, or the use of rules to discipline the child display a sim-

ilar pattern. Both low- and high- income families report insignificant changes across

employment status (column 1(3) versus column 2(4)) or the change is similar across

income groups (column 5 versus column 7).

On the other hand, diverging patterns arise in terms of monitoring activities per-

petrated by parents. Low-income families put into practice more monitoring when the

mother is employed. For example, employed mothers report higher levels of control

over child’s companions (+3 percent), activities after school (+6 percent), and home-

work time (+8 percent) when compared to the non-employed counterpart. Mothers

with high incomes behave in the opposite way. In this case, we observe a decrease in

42Unless differently specified (e.g. in the case of a time diary), all variables in the table are
constructed as dummy variables. The questionnaire contemplates “Yes/No” answers (e.g. encourage
hobbies) for some of the investments or activities, while in other cases, a more detailed list of options
is available (e.g. “Very likely”, “Somewhat likely”, “Not sure how likely”, “Somewhat unlikely”, “Not
at all likely”). Appendix C.2 explains variable definitions and construction in detail.
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investment for employed mothers (-11, -13, and -10 percent, respectively).

Panel B focuses on investment in their child’s scholastic performance by parents.

We observe a diverging pattern across income groups when we analyze activities such

as contacting the faculty, keeping a closer eye on the child’s activities, lecturing the

child, encouraging the child to work harder, and helping the child with schoolwork.

Results in column (6) highlight that any significant change is detected for low-income

mothers. These mothers do not react differently to possible poor scholastic perfor-

mance when they are employed as opposed to when they are not employed. Mothers

from high-income families behave differently. They increase contact and discussion

with faculty by around 7 percent (p-val=0.01) relative to non-employed mothers.

They lecture their child more (+6 percent, p-val=0.04), and they prompt the child

to work harder more often (+7 percent, p-val=0.04).

In Panel C, we analyze family environment scales to describe the environment to

which each child is exposed. Scales are obtained as the combination of information

collected in the data set (e.g. parental reaction to child’s behavior, ways of showing

physical affection to the child, etc.). 43 Four different scales are available: the

general home scale, the cognitive stimulation scale, the emotional support scale, and

the parental warmth scale. High-income families outperform low-income families.

Concerning the maternal employment status, we find that the presence of employed

mothers is almost always correlated with an increase in home scales. The increase is

similar across income groups, although slightly larger in size for low-income families.

Finally, in Panel D of the table we use time diary data to study differences in the

daily activities of the child. School attendance is similar across income groups. In

general, children from families with non-employed mothers attend less school (around

43Refer to psidonline.isr.umich.edu and to the CDS-I User Guide Supplement for additional infor-
mation about the construction of family environment scales.
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12,000 seconds per day) than children with employed mothers (around 16,000 seconds

per day). If the average school quality differs across income groups (e.g. high-income

mothers living in better neighborhoods with high quality schools, etc.) this might

produce a differential effect related to maternal employment.

We then focus on activities usually considered as potentially detrimental for child

development. 44 Time spent watching television highlights an interesting pattern:

in both income groups, children with employed mothers tend, or at least declare, to

watch less television. This is probably due to a lower amount of time spent at home.

However, while the average decrease in television watching in low-income families

is 221 seconds per day, the same decrease is double for children from high-income

families (522 seconds per day). 45 Similarly, maternal employment is correlated with

an increase in the time spent playing electronic games exclusively for the subgroup

of children from low-income families. Indeed, the employed versus non-employed

differential is sizable (+172 seconds per day, p-val=0.10) for children from low-income

families, while it is close to zero and statistically insignificant (+27 seconds per day,

p-val=0.73) for children from high-income families.

Educational activities, such as art and sculpture, highlight an opposite income-

related pattern. Children from high-income families do not display any significant

change due to maternal employment status (-30 seconds per day, p-val=0.56), while a

significant decrease arises for low-income families when employed and non-employed

mothers are compared (-119 seconds per day, p-val=0.01). The change in time devoted

to reading and looking at books is similar across employment statuses for both income

groups. Children from low-income families tend to increase the time devoted to visits

to other persons as a response to maternal employment relatively more than children

44A consistent fraction of individuals in the sample report zero seconds for such activities; this
explains the apparently low average values displayed in the table.

45These values are statistically insignificant for both income groups.
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from high-income families.

The evidence in this section suggests potential differential patterns in the qual-

ity of investment in child development for employed and non-employed mothers

across income groups. Employed, high-income mothers tend to substantially de-

crease their control over their child’s activities (when compared to their high-income,

non-employed counterpart), unless they become aware of their child’s poor academic

performance. Low-income mothers behave in the opposite way by increasing control

as a response to employment (lower trust in the alternative inputs used). Moreover,

children from low-income families seem to engage more with respect to their wealthier

counterparts in activities potentially detrimental for their development as a response

to maternal employment. These results might help explain the overall effect of ma-

ternal hours worked on child development and the stronger impact of labor supply

(on cognitive development) for mothers from low socio-economic backgrounds.

4.6 Conclusion

This paper unveils the contemporaneous effect family income and maternal hours

worked have in shaping child development. We combine the analysis of cognitive and

noncognitive development. We exploit children’s performance on standardized tests

to measure cognitive development. We use indicators of behavioral problems to gauge

noncognitive development.

We find that family income has a sizable and positive effect on cognitive de-

velopment, while the income effect is negligible (although positive) on behavioral

development. The effect of maternal hours worked is the same across outcomes. On

average, hours worked by the mother negatively affect both cognitive and behavioral

development.

We shed light on the mechanism behind the negative effect of maternal hours
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worked on child development. Working mothers invest less time in child care. As

a consequence, the choice of alternative sources of child care becomes crucial; this

choice is likely to be affected by economic factors. We decompose the overall effect of

maternal hours worked on child development into an income effect (higher earnings)

and a substitution effect (less maternal time). We find that the substitution effect

tends to dominate the income effect when the after-tax hourly wage is less than $13.50

per hour. With higher earnings, families are able to substitute their decreased time

investment with better and more productive alternatives. In line with this explana-

tion, we show that the average effect (on cognitive development) is mainly driven by

low-income, less-educated families and that the employment effect on investment in

the child differs according to family income.

Several policy suggestions derive from our results. The trade-off between the in-

come and substitution effect in terms of child development encourages a debate about

the effect of conditional versus unconditional cash transfers. Income subsidies that

provide monetary transfers based on work requirements might produce heterogeneous

impacts in terms of child development. Our analysis confirms that policies aimed at

fostering maternal labor supply benefit child development when considered in con-

junction with well-researched policies concerning the optimal level of family income

taxation or the optimal minimum wage. Alternatively, policies that encourage ma-

ternal employment in low-income families should also guarantee alternative sources

of child care to support child development.
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Figure 4.1: Children’s Outcomes by After-Tax Family Income Deciles
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Notes: This figure shows the average cognitive and behavioral outcomes of children by after-tax family income deciles. For cognitive measures

we consider the average standardized PIAT score between the math, reading recognition, and reading comprehension indexes. The behavioral

measure is the average of the standardized Behavior Problems Index (BPI). The after-tax family income is calculated using the TAXSIM

program. Source: C-NLSY.
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Figure 4.2: The EITC Expansion
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Notes: This figure shows the changes in the federal EITC schedule for families with two children.

The after-tax family income is in real (2000) dollars. We calculate the EITC benefits over time using

the TAXSIM program.
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Figure 4.3: Labor Demand Shocks

Panel A: High School Dropouts, 1988
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Notes: This figure shows the variation in labor demand shocks between states and over time for less educated (school dropouts) and highly

educated (college graduates) women. Panels A–B show the variation of labor demand shocks for the less educated group. Panels C–D show

the variation of labor demand shocks for the highly educated group. Sources: CPS and Census 1980.
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Figure 4.4: Time Allocated to Child Care, Mother’s Hours Worked, and Family Income
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Notes: This figure shows the effect of hours worked and family income on time (hours per week) allocated to child care activities. Panel A

displays the regression coefficients (with a 95% confidence interval) for the effect of hours worked on each measure for time investment in child

care activities. Panel B displays the regression coefficients (with a 95% confidence interval) for the effect of family income on each measure for

time investment in child care activities. See text for further details. Sources: ATUS and AHTUS.
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Figure 4.5: The Effect of Maternal Labor Supply on Child Achievement
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Notes: This figure shows the causal effect of maternal hours worked on child achievement as a

function of mothers’ hourly wage rate (green line). The plotted values in the background show

the empirical distributions of real hourly wages ($2000) for single and married mothers (top 5% ex-

cluded). The solid line represents the overall effect of maternal labor supply (income and substitution

effects) based on our baseline results in Table 4.3, column (2).
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Table 4.1: Summary Statistics

Combined Math-Reading Behavior Problems Index

Mean St.Dev. Mean St.Dev.

(1) (2) (3) (4)

Math 43.62 13.55 40.54 15.28

Reading recognition 47.29 16.05 43.98 17.57

Reading comprehension 42.60 13.70 40.02 14.97

Behavior Problems Index 3.22 1.13 3.23 1.13

Antisocial 4.49 1.59 4.50 1.59

Anxious 3.29 1.47 3.32 1.47

Headstrong 2.64 1.67 2.64 1.67

Hyperactive 3.23 1.60 3.20 1.60

Peer conflicts 2.49 0.84 2.49 0.84

Family income 37,775 30,132 38,463 30,701

Hours worked (Y) 1,258 986 1,234 982

Age 10.69 2.31 10.11 2.57

Male 0.50 0.50 0.50 0.50

White 0.46 0.50 0.48 0.50

Black 0.34 0.47 0.32 0.47

Hispanic 0.20 0.40 0.20 0.40

No siblings 0.09 0.28 0.09 0.29

One sibling 0.37 0.48 0.38 0.49

Two or more siblings 0.54 0.50 0.53 0.50

Mother’s marital status:

Married 0.63 0.48 0.65 0.48

Mother’s education:

High school dropout 0.22 0.41 0.21 0.40

High school graduate 0.49 0.50 0.50 0.50

Some college 0.21 0.41 0.21 0.41

Graduated college 0.08 0.27 0.08 0.28

Observations 12,288 13,777

Notes: This table shows the summary statistics of our estimating samples. Columns (1) and (2)

refer to the estimating sample for the analysis of child cognitive development (combined Math-

Reading test score). Columns (3) and (4) consider the estimating sample for the analysis of child

behavioral development (Behavior Problems Index, BPI). Income is after-tax income and it is

measured in year 2000 dollars. Hours worked are yearly hours. Source: C-NLSY
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Table 4.2: First Stage Estimates

Combined Math-Reading Behavior Problems Index

∆Income ∆Hours Worked ∆Income ∆Hours Worked

(1) (2) (3) (4)

∆EITC 1.026** 1.481*** 1.101** 1.488***

(0.488) (0.282) (0.482) (0.280)

LabDemShocks 1.659*** 0.322* 2.067*** 0.245

(0.395) (0.186) (0.405) (0.178)

SW Chi-sq. (Under id) 13.21 14.40 21.89 20.57

P-value 0.00 0.00 0.00 0.00

SW F (Weak id) 13.19 14.38 21.86 20.54

P-value 0.00 0.00 0.00 0.00

KP (Weak id) 6.42 6.42 10.43 10.43

Observations 12,288 12,288 13,777 13,777

Notes: This table shows the estimates for both our first stage models. Dependent variable: ∆Income

(columns 1 and 3), and ∆Hours worked (columns 2 and 4). Columns (1) and (2) refer to the esti-

mating sample for the analysis of child cognitive development (combined Math-Reading test score).

Columns (3) and (4) consider the estimating sample for the analysis of child behavioral development

(Behavior Problems Index, BPI). For each analysis, the two endogenous variables are: changes in

income (∆Income) and changes in maternal hours worked (∆Hours). The two instrumental variables

are: changes in EITC benefits (∆EITC) and labor demand shocks (LabDemShocks). Income and

the EITC are measured in $1,000 of year 2000 dollars. Hours worked are yearly hours and expressed

in hundreds. All models include a third order Taylor polynomial expansion of predicted income as a

control function (see equation 4.7). All models also include controls for child’s age, gender, race, and

number of siblings. Standard errors are clustered at the family level and reported in parentheses. *,

**, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 4.3: Income, Hours Worked, and Child Test Scores

Combined Math-Reading

OLS IV

(1) (2)

∆Income 0.001* 0.044***

(0.000) (0.015)

∆Hours worked 0.000 -0.060**

(0.001) (0.024)

Observations 12,288 12,288

Notes: This table shows the estimates for our analysis

of child cognitive development. Dependent variable:

Combined Math-Reading test score. Column (1) re-

ports the OLS estimates. Column (2) shows the IV es-

timates. The two instrumental variables are: changes

in EITC benefits (∆EITC) and labor demand shocks

(LabDemShocks). Income is measured in $1,000 of

year 2000 dollars. Hours worked are yearly hours and

expressed in hundreds. All models include a third or-

der Taylor polynomial expansion of predicted income

as a control function (see equation 4.7). All models

also include controls for child’s age, gender, race, and

number of siblings. Standard errors are clustered at

the family level and reported in parentheses. *, **,

*** indicate statistical significance at the 10%, 5%,

and 1% level, respectively.
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Table 4.4: Income, Hours Worked, and Child Behavior

Behavior Problems Index

OLS IV

(1) (2)

∆Income 0.000 0.013

(0.000) (0.009)

∆Hours worked -0.001 -0.052**

(0.001) (0.022)

Observations 13,777 13,777

Notes: This table shows the estimates for our analysis

of child behavioral development. Dependent variable:

Behavior Problems Index (BPI). Column (1) reports

the OLS estimates. Column (2) shows the IV esti-

mates. The two instrumental variables are: changes

in EITC benefits (∆EITC) and labor demand shocks

(LabDemShocks). Income is measured in $1,000 of

year 2000 dollars. Hours worked are yearly hours and

expressed in hundreds. All models include a third or-

der Taylor polynomial expansion of predicted income

as a control function (see equation 4.7). All models

also include controls for child’s age, gender, race, and

number of siblings. Standard errors are clustered at

the family level and reported in parentheses. *, **,

*** indicate statistical significance at the 10%, 5%,

and 1% level, respectively.
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Table 4.5: The Effect of Family Income and Hours Worked in Isolation

Combined Math-Reading Behavior Problems Index

IV IV IV IV IV IV

(1) (2) (3) (4) (5) (6)

∆Income 0.017** 0.044*** -0.003 0.013

(0.007) (0.015) (0.007) (0.009)

∆Hours worked -0.021* -0.060** -0.040** -0.052**

(0.011) (0.024) (0.018) (0.022)

First Stage Tests (Income/Hours):

SW Chi-sq. (Under id) 19.37 29.19 13.21/14.40 27.68 29.09 21.89/20.57

P-value 0.00 0.00 0.00/0.00 0.00 0.00 0.00/0.00

SW F (Weak id) 9.67 14.57 13.19/14.38 13.82 14.53 21.86/20.54

P-value 0.00 0.00 0.00/0.00 0.00 0.00 0.00/0.00

KP (Weak id) 9.67 14.57 6.42 13.82 14.53 10.43

Observations 12,288 12,288 12,288 13,777 13,777 13,777

Notes: This table shows the estimates for our analysis of child cognitive development (columns 1–3) and

child behavioral development (columns 4–6). Dependent variable: Combined Math-Reading test score

(columns 1–3), and Behavior Problems Index (BPI) (columns 4–6). Columns (1) and (4) show the impact

of family income in isolation. Columns (2) and (5) show the impact of maternal hours worked in isolation.

Columns (3) and (6) show the contemporaneous impact of family income and maternal hours worked.

All estimates are IV estimates. For comparison purposes, the coefficient for the effect of family income

estimated in Dahl and Lochner (2017) is equal to 0.041. See their work for further details. In columns (1)

to (6), the two instrumental variables are: changes in EITC benefits (∆EITC) and labor demand shocks

(LabDemShocks). Income is measured in $1,000 of year 2000 dollars. Hours worked are yearly hours and

expressed in hundreds. All models in columns (1) to (6) include a third order Taylor polynomial expansion of

predicted income as a control function (see equation 4.7). The same models also include controls for child’s

age, gender, race, and number of siblings. Standard errors are clustered at the family level and reported in

parentheses. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 4.6: Heterogeneous Effect of EITC Changes: Mother’s Employ-

ment

Combined Behavior

Math-Reading Problems Index

IV IV

(1) (2)

∆Income 0.032*** 0.002

(0.009) (0.008)

∆Hours worked -0.039*** -0.028**

(0.011) (0.013)

First Stage Coefficients:

∆Income:

∆EITC*Employed(t−1) 1.557** 1.744***

(0.640) (0.638)

∆EITC*Non-Employed(t−1) 0.637 0.614

(0.504) (0.512)

LabDemShocks 1.613*** 2.009***

(0.395) (0.404)

∆Hours worked:

∆EITC*Employed(t−1) 0.544 0.553

(0.365) (0.355)

∆EITC*Non-Employed(t−1) 2.166*** 2.194***

(0.294) (0.298)

LabDemShocks 0.403** 0.330*

(0.189) (0.181)

First Stage Tests (Income/Hours):

SW Chi-sq. (Under id) 21.47/62.24 30.61/63.37

P-value 0.00/0.00 0.00/0.00

SW F (Weak id) 10.71/31.07 15.28/31.64

P-value 0.00/0.00 0.00/0.00

KP (Weak id) 7.06 10.05

Observations 12,288 13,777

Notes: This table shows the IV estimates for our robustness analysis. Dependent

variable: Combined Math-Reading test score (column 1), and Behavior Problems

Index (BPI) (column 2). First stage estimates are obtained by interacting the EITC

instrument with the mother’s lagged employment status. Income is measured in

$1,000 of year 2000 dollars. Hours worked are yearly hours and expressed in hundreds.

All models include a third order Taylor polynomial expansion of predicted income

as a control function (see equation 4.7). All models also include controls for child’s

age, gender, race, and number of siblings. Standard errors are clustered at the family

level and reported in parentheses. *, **, *** indicate statistical significance at the

10%, 5%, and 1% level, respectively.
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Table 4.7: Single Test Scores

Reading Reading

Math Recognition Comprehension

IV IV IV

(1) (2) (3)

∆Income 0.029** 0.055*** 0.030**

(0.012) (0.018) (0.013)

∆Hours worked -0.036* -0.070** -0.049**

(0.021) (0.029) (0.022)

Observations 12,288 12,288 12,288

Notes: This table shows the IV estimates for each single PIAT test

score. Dependent variable: Math test score (column 1), Reading Recog-

nition test score (column 2), and Reading Comprehension test score

(column 3). The two instrumental variables are: changes in EITC ben-

efits (∆EITC) and labor demand shocks (LabDemShocks). Income

is measured in $1,000 of year 2000 dollars. Hours worked are yearly

hours and expressed in hundreds. All models include a third order

Taylor polynomial expansion of predicted income as a control function

(see equation 4.7). All models also include controls for child’s age, gen-

der, race, and number of siblings. Standard errors are clustered at the

family level and reported in parentheses. *, **, *** indicate statistical

significance at the 10%, 5%, and 1% level, respectively.
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Table 4.8: Single Behavior Problems Index

Peer

Antisocial Anxious Headstrong Hyperactive Conflicts

IV IV IV IV IV

(1) (2) (3) (4) (5)

∆Income 0.012 -0.007 0.015 0.020** 0.009

(0.009) (0.009) (0.009) (0.009) (0.010)

∆Hours worked -0.048** -0.027 -0.046** -0.036* -0.041*

(0.022) (0.019) (0.021) (0.021) (0.025)

Observations 13,777 13,777 13,777 13,777 13,777

Notes: This table shows the IV estimates for each single BPI score. Dependent

variable: Antisocial behavior (column 1), Anxious behavior (column 2), Headstrong

behavior (column 3), Hyperactive behavior (column 4), and Peer Conflicts behavior

(column 5). The two instrumental variables are: changes in EITC benefits (∆EITC)

and labor demand shocks (LabDemShocks). Income is measured in $1,000 of year

2000 dollars. Hours worked are yearly hours and expressed in hundreds. All models

include a third order Taylor polynomial expansion of predicted income as a control

function (see equation 4.7). All models also include controls for child’s age, gender,

race, and number of siblings. Standard errors are clustered at the family level and

reported in parentheses. *, **, *** indicate statistical significance at the 10%, 5%,

and 1% level, respectively.
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Table 4.9: Income, Hours Worked, and Early Childhood Develop-

ment

Insecure Compliance and

Compliance Attachment Ins.Attach. Sociability

IV IV IV IV

(1) (2) (3) (4)

∆Income 0.046 0.020 0.046 0.011

(0.031) (0.022) (0.029) (0.020)

∆Hours worked -0.039 -0.044 -0.053 -0.010

(0.043) (0.034) (0.039) (0.045)

Age range 1–7 1–7 1–7 2–7

Observations 4,807 4,884 4,656 2,969

Notes: This table shows the IV estimates for our analysis of early childhood

temperament development. Dependent variable: Compliance score (column 1),

Insecure Attachment score (column 2), Combined Compliance and Insecure At-

tachment score (column 3), and Sociability score (column 4). The two instru-

mental variables are: changes in EITC benefits (∆EITC) and labor demand

shocks (LabDemShocks). Income is measured in $1,000 of year 2000 dollars.

Hours worked are yearly hours and expressed in hundreds. All models include a

third order Taylor polynomial expansion of predicted income as a control func-

tion (see equation 4.7). All models also include controls for child’s age, gender,

race, and number of siblings. Standard errors are clustered at the family level

and reported in parentheses. *, **, *** indicate statistical significance at the

10%, 5%, and 1% level, respectively.
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Table 4.10: Heterogeneous Effects: Mother Characteris-

tics

Combined Behavior

Math-Reading Problems Index

IV IV

(1) (2)

Panel A: Mother’s Education

∆Income*HS or less 0.031** 0.012

(0.015) (0.010)

∆Income*Some college or more 0.030** 0.013

(0.016) (0.011)

∆Hours worked*HS or less -0.058** -0.054**

(0.024) (0.021)

∆Hours worked*Some college or more 0.001 -0.049**

(0.028) (0.024)

Observations 12,288 13,777

Panel B: Mother’s AFQT

∆Income*Low AFQT 0.030** 0.016

(0.015) (0.010)

∆Income*High AFQT 0.033** 0.018*

(0.016) (0.010)

∆Hours worked*Low AFQT -0.064** -0.052**

(0.025) (0.022)

∆Hours worked*High AFQT 0.001 -0.073***

(0.028) (0.023)

Observations 11,939 13,348

Panel C: Mother’s Marital Status

∆Income*Married 0.038** 0.016

(0.016) (0.010)

∆Income*Unmarried 0.044*** 0.013

(0.017) (0.011)

∆Hours worked*Married -0.010 -0.065**

(0.030) (0.029)

∆Hours worked*Unmarried -0.069** -0.052**

(0.028) (0.022)

Observations 12,288 13,777

Notes: This table shows the IV heterogeneous effects of income

and maternal hours worked on child development. Dependent vari-

able: Combined Math-Reading test score (column 1), and Behavior

Problems Index (BPI) (column 2). We divide mothers according

to: (i) Panel A: educational attainments (high school (HS) diploma

or less vs. some college or more); (ii) Panel B: AFTQ score (below

or above the median); and (iii) Panel C: marital status (married vs.

unmarried). The two instrumental variables are: changes in EITC

benefits (∆EITC) and labor demand shocks (LabDemShocks). In-

come is measured in $1,000 of year 2000 dollars. Hours worked are

yearly hours and expressed in hundreds. All models include a third

order Taylor polynomial expansion of predicted income as a con-

trol function (see equation 4.7). All models also include controls

for child’s age, gender, race, and number of siblings. Standard

errors are obtained through a family-level clustered bootstrap pro-

cedure based on 100 repetitions and reported in parentheses. *, **,

*** indicate statistical significance at the 10%, 5%, and 1% level,

respectively.
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Table 4.11: Heterogeneous Effects: Child Characteristics

Combined Behavior

Math-Reading Problems Index

IV IV

(1) (2)

Panel A: Child’s Race

∆Income*Black or Hispanic 0.046** 0.014

(0.018) (0.009)

∆Income*White 0.047** 0.015

(0.019) (0.010)

∆Hours worked*Black or Hispanic -0.069** -0.050**

(0.031) (0.023)

∆Hours worked*White -0.047 -0.068***

(0.032) (0.022)

Observations 12,288 13,777

Panel B: Child’s Age

∆Income*Below 12 0.048** 0.012

(0.019) (0.009)

∆Income*Above 12 0.049** 0.015

(0.020) (0.010)

∆Hours worked*Below 12 -0.076** -0.055**

(0.031) (0.023)

∆Hours worked*Above 12 -0.053 -0.055**

(0.033) (0.022)

Observations 12,288 13,777

Notes: This table shows the IV heterogeneous effects of income and ma-

ternal hours worked on child development. Dependent variable: Com-

bined Math-Reading test score (column 1), and Behavior Problems Index

(BPI) (column 2). We divide children according to: (i) Panel A: race

(white vs. black or Hispanic); and (ii) Panel B: age (below 12 years old

vs. above 12 years old). The two instrumental variables are: changes in

EITC benefits (∆EITC) and labor demand shocks (LabDemShocks). In-

come is measured in $1,000 of year 2000 dollars. Hours worked are yearly

hours and expressed in hundreds. All models include a third order Tay-

lor polynomial expansion of predicted income as a control function (see

equation 4.7). All models also include controls for child’s age, gender,

race, and number of siblings. Standard errors are obtained through a

family-level clustered bootstrap procedure based on 100 repetitions and

reported in parentheses. *, **, *** indicate statistical significance at the

10%, 5%, and 1% level, respectively.
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Table 4.12: Maternal Employment Status, Investment in the Child, and Child’s Activities

(LI,E)- (HI,E)-

(LI,NE) (LI,E) (HI,NE) (HI,E) (LI,NE) p-val (HI,NE) p-val

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Parenting

Encourage hobbies 0.92 0.91 0.96 0.94 -0.01 0.64 -0.01 0.38

Phys. affection (times past week) 8.43 9.51 15.55 13.98 1.07 0.16 -1.57 0.36

Parenting class pre-birth 0.15 0.14 0.20 0.18 -0.02 0.36 -0.03 0.18

Parenting class 0.24 0.20 0.31 0.26 -0.04 0.06 -0.05 0.03

Never cared by others 0.57 0.24 0.45 0.15 -0.33 0.00 -0.30 0.00

Use of rules 0.58 0.51 0.54 0.50 -0.07 0.02 -0.04 0.19

Control who the child is with 0.55 0.58 0.59 0.47 0.03 0.32 -0.11 0.00

Control activities after school 0.60 0.66 0.70 0.57 0.06 0.08 -0.13 0.00

Set homework time 0.70 0.78 0.82 0.72 0.08 0.01 -0.10 0.00

Panel B: Reaction to Poor Scholastic Performance

Contact faculty (≥ 6 y.o.) 0.84 0.82 0.81 0.88 -0.02 0.47 0.07 0.01

Closer eye on activities 0.84 0.84 0.89 0.88 0.00 0.84 -0.01 0.80

Lecture a child 0.80 0.81 0.74 0.80 0.01 0.80 0.06 0.04

Tell child to work harder 0.81 0.80 0.66 0.73 -0.01 0.84 0.07 0.04

Help with schoolwork 0.80 0.82 0.75 0.76 0.02 0.39 0.01 0.78

Panel C: Family Environment Scales

Full home 17.39 18.10 19.90 20.18 0.71 0.00 0.28 0.13

Cognitive stimulation 8.67 9.24 10.04 10.13 0.57 0.00 0.09 0.44

Emotional support 8.72 8.86 9.86 10.05 0.15 0.14 0.19 0.09

Parental warmth 4.46 4.47 4.59 4.48 0.01 0.67 -0.11 0.00

Panel D: Time Diaries (in seconds per day)

School 12,161 16,323 12,745 16,743 4,162 0.00 3,998 0.00

TV 6,492 6,271 5,769 5,247 -221 0.49 -522 0.12

Electronic games 365 538 335 361 172 0.10 27 0.73

Art, sculpture 242 123 244 214 -119 0.01 -30 0.56

Books 248 238 350 337 -10 0.83 -13 0.81

Books (≥ 4 y.o.) 280 248 332 334 -32 0.59 2 0.97

Visiting others, socializing 409 526 261 288 117 0.40 28 0.76

Notes: This table shows several measures for investment in the child development process using the CDS supple-

ment of the PSID data set. All measures refer to children aged 0–12 in 1997. LI means low family income (below

$35,000), HI means high family income (above $35,000). NE means that the mother is non-employed in 1997, E

means that the mother is employed in 1997. All the variables (if not differently specified) excepted time diaries

are indicator variables. Time diaries variables (Panel D) are expressed in seconds per day and refer to weekdays

only.
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Chapter 5

CONCLUSIONS

Chapter 2 develops new identification concepts and associated estimators for the

process of skill development in children. One of the key empirical challenges in this

context is that the various measures of children’s skills are in general imperfect and

arbitrarily located and scaled. We introduce the concept of known location and scale

production technologies, which are the type of technologies actually estimated in

many previous papers, and show that for these technologies, standard measurement

assumptions non-parametrically identify the production technology, up to the nor-

malization of initial period skills. Importantly, we show non-parametric identification

for these cases without re-normalizing latent skills each period which can bias the

production technology. For production functions which do not have a known location

or scale, additional assumptions are necessary, and we provide empirically grounded

assumptions which are sufficient for identification of these more general technologies.

Our paper provides the first analysis of these crucial identification tradeoffs, and

hopefully will serve as a useful guide for future work.

Based on our identification results, we develop a robust method of moments es-

timator and show that it can be implemented using a sequential algorithm. Our

estimator does not require strong assumptions about the marginal distribution of

measurement errors or the latent factors. We estimate the skill production process

using data for the United States and a flexible parametric model of skill develop-

ment allowing for non-constant returns to scale, dynamics in TFP, and for parental

investment to endogenously depend on unobserved children’s skills.

Our empirical results show a pattern of rapid skill development from age 5 to 14.
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We find that as children age, not only does their mean skill level increase, but the level

of skill inequality also increases. Our parameter estimates reveal that investments

are more productive at early ages and in particular for disadvantaged children. Our

findings of a positive return to income transfers at early ages, especially for poorer

households, is largely consistent with prior evidence of a positive effect of income on

a number of child outcomes (see Dahl and Lochner, 2012a; Loken et al., 2012) using

different sources of identification. Our results suggest that family income is a better

“target” than initial children’s skills for children’s skills. Lastly, our finding that that

the estimated policy effects would be substantially smaller if one estimated a restricted

technology or ignored measurement error demonstrates the critical importance of

allowing for general technologies and correcting estimates for measurement error.

Chapter 3 studies the role of children’s social interactions in the dynamics of chil-

dren’s skills. I estimate a tractable dynamic equilibrium model of parental investment

and endogenous formation of peer groups. The model is estimated using information

about friendships, children’s test scores and parental investments in the National Lon-

gitudinal Study of Adolescent Health (Add Health). I exploit within school / across

cohort variations in peers’ composition to identify the degree of complementarity be-

tween parents and peers in producing a child’s skills. I find that parents and peers

are static substitutes and dynamic complementary inputs in child development. After

validating my estimated model using findings in Chetty and Hendren (2016a) on en-

vironment exposure effects in children, I assess the importance of social interactions

in skills dynamics with various policies.

This article underlines three main points: (i) social interactions and social context

permanently shape the developmental trajectories of children; (ii) changing cohort

composition and the relative social interactions generates winners and losers and

the heterogeneous effects are due to the endogenous formation of new peers; (iii)
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neglecting the dynamic equilibrium effects of skill formation and social interactions

would lead to biased predicted effects of policies.

I want to conclude this paper by considering an extension of this work. Specifically,

one potential type of parental investment can be the choice of neighborhood where the

family lives. In this case, parents have alternative margins in response to changes in

peer composition, and to a certain extent, they can also decide to change where they

live as a response to the previously considered policy. Modeling this second channel

is challenging, because now the environment composition is also endogenous, and it

becomes part of the equilibrium solution of the model. However, understanding the

extent to which neighborhood decisions are influenced by children’s social interactions

is an important question in considering the effects of socioeconomic segregation on

intergenerational mobility. Therefore, future work is needed.

Chapter 4 unveils the contemporaneous effect family income and maternal hours

worked have in shaping child development. We combine the analysis of cognitive and

noncognitive development. We exploit children’s performance on standardized tests

to measure cognitive development. We use indicators of behavioral problems to gauge

noncognitive development.

We find that family income has a sizable and positive effect on cognitive de-

velopment, while the income effect is negligible (although positive) on behavioral

development. The effect of maternal hours worked is the same across outcomes. On

average, hours worked by the mother negatively affect both cognitive and behavioral

development.

We shed light on the mechanism behind the negative effect of maternal hours

worked on child development. Working mothers invest less time in child care. As

a consequence, the choice of alternative sources of child care becomes crucial; this

choice is likely to be affected by economic factors. We decompose the overall effect of
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maternal hours worked on child development into an income effect (higher earnings)

and a substitution effect (less maternal time). We find that the substitution effect

tends to dominate the income effect when the after-tax hourly wage is less than $13.50

per hour. With higher earnings, families are able to substitute their decreased time

investment with better and more productive alternatives. In line with this explana-

tion, we show that the average effect (on cognitive development) is mainly driven by

low-income, less-educated families and that the employment effect on investment in

the child differs according to family income.

Several policy suggestions derive from our results. The trade-off between the in-

come and substitution effect in terms of child development encourages a debate about

the effect of conditional versus unconditional cash transfers. Income subsidies that

provide monetary transfers based on work requirements might produce heterogeneous

impacts in terms of child development. Our analysis confirms that policies aimed at

fostering maternal labor supply benefit child development when considered in con-

junction with well-researched policies concerning the optimal level of family income

taxation or the optimal minimum wage. Alternatively, policies that encourage ma-

ternal employment in low-income families should also guarantee alternative sources

of child care to support child development.
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Calvó-Armengol, A., E. Patacchini and Y. Zenou, “Peer effects and social networks
in education”, Review of Economic Studies 76, 4, 1239–1267 (2009).

Card, D. and L. Giuliano, “Can tracking raise the test scores of high-ability minority
students?”, American Economic Review 106, 10, 2783–2816 (2016).

Carneiro, P., K. T. Hansen and J. J. Heckman, “Estimating distributions of treatment
effects with an application to the returns to schooling and measurement of the
effects of uncertainty on college”, International Economic Review (2003).

Carneiro, P., K. V. Løken and K. G. Salvanes, “A Flying Start? Maternity Leave
Benefits and Long-Run Outcomes of Children”, Journal of Political Economy 123,
2, 365–412 (2015).

Carneiro, P. and M. Rodriguez, “Evaluating the Effect of Maternal Time on Child
Development Using the Generalized Propensity Score. Working Paper”, (2009).

Carrell, S. E., M. Hoekstra and E. Kuka, “The long-run effects of disruptive peers”,
NBER Working Paper n. 22042 (2016).

Carrell, S. E., B. I. Sacerdote and J. E. West, “From natural variation to optimal
policy? The importance of endogenous peer group formation”, Econometrica 81,
3 (2013).

245



Caucutt, E. M. and L. Lochner, “Early and late human capital investments, borrowing
constraints, and the family”, (2017).

Caucutt, E. M., L. Lochner and Y. Park, “Correlation, consumption, confusion, or
constraints: Why do poor children perform so poorly?”, NBER Working Papers ,
21023 (2015).

Center on Budget and Policy Priorities, Policy Basics: The Earned Income Tax Credit
(Washington DC: Center on Budget and Policy Priorities, 2016).

Chamberlain, G., “Education, income, and ability revisited”, Journal of Econometrics
pp. 241–257 (1977a).

Chamberlain, G., “An instrumental variable interpretation of identification in vari-
ance components and mimic models”, in Paul Taubman, ed., Kinometrics: De-
terminants of Socio-Economic SuccessWithin and Between Families (Amsterdam:
North-Holland) (1977b).

Chamberlain, G. and Z. Griliches, “Unobservables with a variance-components struc-
ture: Ability, schooling, and the economic success of brothers”, International Eco-
nomic Review 16, 422–449 (1975).

Chandrasekhar, A. G. and R. Lewis, “Econometrics of sampled networks”, (2016).

Charles, K., E. Hurst and M. Notowidigdo, “Housing Booms and Busts, Labor Market
Opportunities, and College Attendance. NBER Working Paper n. 21587”, (2015).

Charles, K., E. Hurst and M. Notowidigdo, “Housing Booms, Manufacturing Decline,
and Labor Market Outcomes”, The Economic Journal , forthcoming (2017).

Chernozhukov, V., H. Hong and E. Tamer, “Estimation and confidence regions for
parameter sets in econometric models”, Econometrica 75, 5, 1243–1284 (2007).

Chetty, R. and N. Hendren, “The impacts of neighborhoods on intergenerational
mobility I: Childhood exposure effects”, (2016a).

Chetty, R. and N. Hendren, “The impacts of neighborhoods on intergenerational
mobility II: County-level estimates”, (2016b).

Chetty, R., N. Hendren and L. Katz, “The effects of exposure to better neighborhoods
on children: New evidence from the moving to opportunity project”, American
Economic Review 106, 4 (2016a).

Chetty, R., N. Hendren, F. Lin, J. Majerovitz and B. Scuderi, “Childhood envi-
ronment and gender gaps in adulthood”, American Economic Review Papers and
Proceedings (2016b).

Christakis, N. A. and J. H. Fowler, “Connected: The surprising power of our social
networks and how they shape our lives”, Little, Brown and Company (2009).

246



Christakis, N. A., J. H. Fowler, G. W. Imbens and K. Kalyanaraman, “An empirical
model for strategic network formation”, NBER Working Paper n. 16039 (2010).

Coleman, J. S., “Relational analysis: the study of social organizations with survey
methods”, Hum Organ 17, 28–36 (1958).

Cunha, F., “Investments in children when markets are incomplete”, Working Paper
(2013a).

Cunha, F., “Investments in children when markets are incomplete”, (2013b).

Cunha, F., I. Elo and J. Culhane, “Eliciting maternal expectations about the tech-
nology of cognitive skill formation”, NBER working paper , 19144 (2013).

Cunha, F. and J. Heckman, “The technology of skill formation”, American Economic
Review 97, 2, 31–47 (2007).

Cunha, F. and J. J. Heckman, “Formulating, identifying, and estimating the tech-
nology for the formation of skills”, Journal of Human Resources 43, 4, 738–782
(2008).

Cunha, F., J. J. Heckman and S. M. Schennach, “Estimating the technology of cog-
nitive and noncognitive skill formation”, Econometrica 78, 3, 883–931 (2010).

Currarini, S., M. O. Jackson and P. Pin, “Identifying the roles of race-based choice and
chance in high school friendship network formation”, Proceedings of the National
Academy of Sciences 107, 11 (2010).

Dahl, G. B. and L. Lochner, “The impact of family income on child achievement:
Evidence from the earned income tax credit”, American Economic Review 102, 5,
1927–1956 (2012a).

Dahl, G. B. and L. Lochner, “The Impact of Family Income on Child Achievement:
Evidence from the Earned Income Tax Credit”, American Economic Review 102,
5, 1927–1956 (2012b).

Dahl, G. B. and L. Lochner, “The Impact of Family Income on Child Achievement:
Evidence from Changes in the Earned Income Tax Credit: Reply”, American Eco-
nomic Review 107, 2, 629–631 (2017).

Datta, M., K. Reffett and L. Wozny, “Comparing recursive equilibria in economies
with dynamic complementarities and indeterminacy”, Economic Theory Forth-
coming (2017).

De Giorgi, G., M. Pellizzari and S. Redaelli, “Identification of social interactions
through partially overlapping peer groups”, American Economics Journal: Applied
Economics 2, 2, 241–275 (2010).

Del Boca, D., C. Flinn and M. Wiswall, “Household Choices and Child Development”,
The Review of Economic Studies 81, 1, 137–185 (2014a).

247



Del Boca, D., C. Flinn and M. Wiswall, “Household choices and child development”,
Review of Economic Studies 81, 1, 137–185 (2014b).

Del Boca, D., C. Flinn and M. Wiswall, “Transfers to households with children and
child development”, Economic Journal Forthcoming (2016).

Del Bono, E., M. Francesconi, Y. Kelly and A. Sacker, “Early Maternal Time In-
vestment and Early Child Outcomes”, The Economic Journal 126, 596, F96–F135,
URL http://dx.doi.org/10.1111/ecoj.12342 (2016).

Diamond, R., “The Determinants and Welfare Implications of US Workers’ Diverging
Location Choices by Skill: 1980–2000”, American Economic Review 106, 3, 479–
524 (2016).

Duncan, G., P. Morris and C. Rodrigues, “Does money really matter? estimating
impacts of family income on young children’s achievement with data from random-
assignment experiments”, Dev Psychol 47, 5, 1263–1279 (2011).

Dutta, B., S. Ghosal and D. Ray, “Farsighted network formation”, Journal of Eco-
nomic Theory 122, 2, 143–164 (2005).

Eissa, N. and J. B. Liebman, “Labor Supply Response to the Earned Income Tax
Credit”, The Quarterly Journal of Economics 111, 2, 605–637 (1996).

Feenberg, D. and E. Coutts, “An Introduction to the TAXSIM Model”, Journal of
Policy Analysis and Management 12, 1, 189–194 (1993).

Fort, M., A. Ichino and G. Zanella, “The Cognitive Cost of Daycare 0-2 for Children
in Advantaged Families. Working Paper”, (2017).

Fox, L., W. J. Han, C. Ruhm and J. Waldfogel, “Time for Children: Trends in the
Employment Patterns of Parents, 1967–2009”, Demography 50, 1, 25–49 (2013).

Fu, C. and J. Gregory, “Estimation of an equilibrium model with externalities: Com-
bining the strengths of structural models and quasi experiments”, (2017).

Fu, C. and N. Mehat, “Ability tracking, school and parental effort, and student
achievement: A structural model and estimation”, Working Paper (2016).

Gayle, G.-L., L. Golan and A. M. Soytas, “What accounts for the racial gap in time
allocation and intergenerational transmission of human capital?”, (2015).

Gayle, G.-L., L. Golan and A. M. Soytas, “What is the source of the intergenerational
correlation in earnings?”, (2016).

Goldberger, A. S., “Structural equation methods in the social sciences”, Econometrica
40, 979–1001 (1972).

Goldsmith-Pinkham, P. and G. W. Imbens, “Social Networks and the Identification
of Peer Effects”, Journal of Business & Economic Statistics 31, 3, 253–264 (2013).

248



Goldsmith-Pinkham, P., I. Sorkin and H. Swift, “Bartik Instruments: What, When,
Why, and How. Working Paper”, (2017).

Graham, B. S., “Homophily and transitivity in dynamic network formation”, (2016).

Graham, B. S., “An econometric model of network formation with degree heterogene-
ity”, Econometrica 85, 4, 1033–1063 (2017).

Griffith, A., “How many friends do you have? An empirical investigation into
censoring−induced bias in social network data”, (2017).

Guryan, J., E. Hurst and M. Kearney, “Parental Education and Parental Time with
Children”, Journal of Economic Perspectives 22, 3, 23–46 (2008).

Halpern, C. T., “Smarter teens delay sexual contacts”, PPFY (Pregnancy Prevention
for Youth) Network Newsletter 3, 4–5 (2000).

Hanushek, E. A., J. F. Kain, J. M. Markman and S. G. Rivkin, “Does peer abil-
ity affect student achievement?”, Journal of Applied Econometrics 18, 5, 527–544
(2003).

Heckman, J. and S. Mosso, “The Economics of Human Development and Social Mo-
bility”, Annual Review of Economics 6, 689–733 (2014a).

Heckman, J. J., “Policies to Foster Human Capital”, Research in Economics
54, 1, 3–56, URL http://www.sciencedirect.com/science/article/pii/
S1090944399902259 (2000).

Heckman, J. J. and D. V. Masterov, “The productivity argument for investing in
young children”, Review of Agricultural Economics 29, 3, 446–493 (2007).

Heckman, J. J. and S. Mosso, “The economics of human development and social
mobility”, NBER Working Paper , 19925 (2014b).

Heckman, J. J. and Y. Rubinstein, “The Importance of Noncognitive Skills: Lessons
from the GED Testing Program”, American Economic Review 91, 2, 145–149, URL
http://www.aeaweb.org/articles?id=10.1257/aer.91.2.145 (2001).

Hotz, V. J. and J. K. Scholz, “The Earned Income Tax Credit”, in “Means-Tested
Transfer Programs in the United States, Volume I”, edited by R. A. Moffitt (Uni-
versity of Chicago Press, 2003).

Hoxby, C., “Peer effects in the classroom: Learning from gender and race variation”,
NBER Working Paper n. 7867 (2000).

Hoynes, H. and N. Essa, “The Hours of Work Response of Married Couples: Taxes and
the Earned Income Tax Credit”, in “Tax Policy and Labor Market Performance”,
edited by J. Agell and P. B. Sorensen (MIT Press, 1996).

Hsin, A. and C. Felfe, “When Does Time Matter? Maternal Employment, Chil-
dren’s Time With Parents, and Child Development”, Demography 51, 5, 1867–1894
(2014).

249



Imbens, G. W. and J. D. Angrist, “Identification and Estimation of Local Average
Treatment Effects”, Econometrica 62, 2, 467–475 (1994).

Imberman, S. A., A. D. Kugler and B. I. Sacerdote, “Katrina’s children: Evidence on
the structure of peer effects from hurricane evacuees”, American Economic Review
102, 5, 2048–2082 (2012).

Jackson, M. O., Social and Economic Networks (Princeton University Press, 2008).

Jackson, M. O. and A. Wolinsky, “A strategic model of social and economic networks”,
Journal of Economic Theory 71, 1, 44–74 (1996).
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A.1 Proofs

A.1.1 Proof of Lemma 1

Proof. First, we note that with Zt,m, Gt(θt, It), µt,m and λt,m known, we then identify
the distribution of the measurement error, given

ϕ ǫt,m

λt,m

(x) =
ϕZ̃t,m(x)

ϕln θt,m(x)

Given the one-to-one mapping between characteristic functions and distributions,
we identify the marginal density of ǫt,m

λt,m
. Since λt,m is known, we also identify the

marginal density of ǫt,m, Fǫt,m(ǫ).
Next, consider the following conditional expectation:

E(Zt+1,m| ln θt = a, ln It = ℓ) = µt+1 + λt,mE(ln θt+1| ln θt = a, ln It = ℓ)

+E(ǫt+1,m| ln θt = a, ln It = ℓ)

where E(ǫt+1,m| ln θt = a, ln It = ℓ) = 0 given Assumption 1 (ǫt+1,m independent of
ln θt and ln It).

Iterating expectations and substituting for ln θt = Zt,m−µt,m−ǫt,m
λt,m

, we have the

following:

E(Zt+1,m| ln θt = a, ln It = ℓ) =

∫
E(Zt+1,m|

Zt,m − µt,m − ǫ

λt,m
= a, ln It = ℓ, ǫ)dFǫt,m(ǫ)

Again applying Assumption 1 (ǫt,m independent of Zt+1,m), we have

=

∫
E(Zt+1,m|

Zt,m − µt,m − ǫ

λt,m
= a, ln It = ℓ)dFǫt,m(ǫ)

Re-writing again, we have

=

∫
E(Zt+1,m|Zt,m = λt,ma+ µt,m + ǫ, ln It = ℓ)dFǫt,m(ǫ)

=

∫
E(Zt+1,m|Zt,m = b(ǫ), ln It = ℓ)dFǫt,m(ǫ)

Note that for each realization of ǫt,m = ǫ, we have Zt,m = b(ǫ), where b(ǫ) is
known given µt,m, λt,m, and a are known. We identify the conditional expectation
E(Zt+1,m|Zt,m = b(ǫ), ln It = ℓ) from the observed distribution of Zt+1,m and Zt,m
measures. Because the distribution of measurement errors Fǫt,m(ǫ) is identified, we
identify E(Zt+1,m| ln θt = a, ln It = ℓ).
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Example 4 Consider the case where ǫt,m ∼ N(0, σ2
t,m) ∀t. We identify σ2

t,m from

V (Zt,m) = λ2t,mV (ln θt) + V (ǫt,m) since we have already identified V (ln θt) and λt,m.
The idea of the proof of Lemma 1 is that the value of the current latent skills (ln θt =
a) comes both from observable measure (Zt,m) and unobservable measurement error
(ǫt,m). Since we identify the distribution of the unobservable, we are able to integrate
out each possible realization of that unobservable random variable. Indeed, if ǫ takes
value 0, because we are fixing ln θt to be equal to a, this implies that Zt,m would equal:

Zt,m = λt,m · a+ µt,m = b(0)

where both λt,m and µt,m are known. Hence weight E(Zt+1,m|Zt,m = b(0), ln It = ℓ)
with the likelihood of the event that ǫ takes the value of zero. Because ǫt,m ∼ N(0, σ2

t,m),
we have that the marginal density of the measurement error is

fǫt,m(ǫ) =
1

σt,m
√
2π
e
−

ǫ2

2σ2
t,m

and
∫
E(Zt+1,m|Zt,m = b(ǫ), ln It = ℓ) fǫt,m(ǫ)d ǫ

Because ǫt,m is a continuous random variable, we integrate over all the values to find
E(Zt+1,m| ln θt = a, ln It = ℓ). This approach would be similar in the case where
investment is also a latent variable. In this case, we would integrate over the support
of the measurement error terms of both variables. by Fǫt,m(ǫ) = pr(ǫt,m ≤ ǫ). Define

Z̃t,m = ln θt+
ǫt,m
λt,m

and its characteristic function ϕZ̃t,m(x) = E

[
e
ix
(
Zt,m−µt,m

λt,m

)]
. Define

ϕln θt(x) = E
[
eix ln θt

]
to be the characteristic function of ln θt. Given the independence

between ǫt,m and ln θt (Assumption 1), we can rewrite the characteristic function for
ǫt,m
λt,m

to be:
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A.1.2 Proof of Theorem 1
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Proof.
Given Gt(θt, It) and the measurement parameters for period t, µt,m and λt,m, are

known, we use Lemma 1 to identify E(ln θt+1| ln θt = a, ln It = ℓ) from E(Zt+1,m| ln θt =
a, ln It = ℓ) for any a ∈ R and ℓ ∈ R. We then use the following transformation:

E(Zt+1,m| ln θ = a1, ln It = ℓ1)− E(Zt+1,m| ln θ = a2, ln It = ℓ2)

E(Zt+1,m| ln θ = a3, ln It = ℓ3)− E(Zt+1,m| ln θ = a2, ln It = ℓ2)
=

ln ft(e
a1 , eℓ1)− ln ft(e

a2 , eℓ2)

ln ft(ea3 , eℓ3)− ln ft(ea2 , eℓ2)

Because the function ft satisfies the known location and scale definition, then
for the points (a2, ℓ2) and (a3, ℓ3) the function evaluated at those points, ft(e

a2 , eℓ2)
and ft(e

a3 , eℓ3), where ft(e
a2 , eℓ2) 6= ft(e

a3 , eℓ3), is known. Call these known points,
ft(e

a2 , eℓ2) = α2 and ft(e
a3 , eℓ3) = α3.

E(Zt+1,m| ln θt = a1, ln It = ℓ1)− E(Zt+1,m| ln θt = a2, ln It = ℓ2)

E(Zt+1,m| ln θt = a3, ln It = ℓ3)− E(Zt+1,m| ln θt = a2, ln It = ℓ2)
=

ln ft(e
a1 , eℓ1)− α2

α3 − α2

We identify the function ln ft(θt, It) over its support by varying a1 ∈ R and ℓ1 ∈ R.
We cannot of course use this transformation to identify the function at the point
(a2, ℓ2), but the function evaluated at this point ft(e

a2 , eℓ2) is already known by Def-
inition 1.
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A.1.3 Derivation of Example with CES Technology (Example 2)
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∆1 =
ln f0(a1, 0)− ln f0(1, 1)

ln f0(e1, e1)− ln f0(1, 1)

∆1 =
ln(γ0 a1)− 0

ln(e1)− 0

∆1 =
ln(γ0 a1)

1

e∆1 = γ0 a1

γ0 =
e∆1

a1

Once we have γ0, we can use the same ratio as before taking a1 6= {0, 1}, a3 6= 0,
ℓ1 = 1, a2 = a4 = ℓ2 = ℓ4=1 and taking the limit ℓ3 → 0 we have:

∆2 =
ln f0(a1, 1)− ln f0(1, 1)

ln f0(a3, 0)− ln f0(1, 1)

∆2 =
ln f0(a1, 1)− 0

ln f0(a3, 0)− 0

∆2 =
ln f0(a1, 1)

ln f0(a3, 0)

∆2 =
ln(γ0 a

φ0
1 + 1− γ0)

ln(γ0 a3)

ln(γ0 a3)∆2 = ln(γ0 a
φ0
1 + 1− γ0)

(γ0 a3)
∆2 = γ0 a

φ0
1 + 1− γ0

(a1)
φ0 =

(γ0 a3)
∆2 − 1 + γ0
γ0

φ0 ln(a1) = ln

(
(γ0 a3)

∆2 − 1 + γ0
γ0

)

φ0 =
ln

(
(γ0 a3)∆2−1+γ0

γ0

)

ln(a1)
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A.1.4 Technologies and Output Elasticities
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One rationale for the choice of a technology specification with non-constant returns
to scale is the flexibility this specification offers with respect to the implied output
elasticity. We consider the output elasticity with respect to investment defined as

ǫI ≡
∂ ln θt+1

∂ ln It

This elasticity is key to quantifying the effects of policy interventions.
In the general CES case, with technology given by

θt+1 =
[
γtθ

φt
t + (1− γt)I

φt
t

]ψt
φt ,

the output elasticity is given by

ǫI =
ψt
φt

[
γθφtt + (1− γt)I

φt
t

]ψt
φt
−1

φ(1− γt)I
φt−1
t · It

[
γtθ

φt
t + (1− γt)I

φt
t

]ψt
φt

=
ψt(1− γt)I

φt
t

γtθ
φt
t + (1− γt)I

φt
t

∈ [0,∞)

In the special case of constant returns to scale (CRS), ψt = 1, and ǫI ∈ (0, 1). CRS
implies this elasticity is bounded from above by 1. The general, non-constant returns
to scale, case allows a larger than unit elastic response.

Similarly, the general translog technology,

ln θt+1 = α1t ln θt + α2t ln It + α3t ln θt ln It

with elasticity

ǫI = α1t + α3t ln θt

also allows general higher than unit elastic elasticities.
The main insight we want to underline is that the CES technology with constant

return to scale restricts the output elasticity to be between 0 and 1: a one percent
change in investment leads to a less than one percent change in next period skills.
This prediction is independent of data, hence it can potentially be very restrictive in
the context of child development and skills formation.
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A.2 Additional Tables and Figures
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A.2.1 Additional Tables for Model 1 Corrected for Measurement Error
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Table A.1: Estimates for Income Process

Constant 0.377
( 0.013)

Log Family Income t-1 0.753
( 0.008)

Variance Innovation 0.579
( 0.008)

Notes: This table shows the estimates for the income process. The dependent variable
is log family income at time t. Log Family Income t − 1 is log family income two
years prior. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure A.1: Distribution of Elasticity of Next Period Skills with respect to Investment
by Age

Notes: This figure shows the box plot for the elasticity of next period skills with
respect to investment by different ages in the estimated Model 1 controlling for mea-
surement error. The box plot is constructed as follow: the ”central box” represents
the central 50% of the data. Its lower and upper boundary lines are at the 25th and
75th quantile of the data. The central line indicates the median of the data while
the two extreme lines (the top and the bottom ones) represents the 5th and 95th

percentiles.
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Figure A.2: Distribution of Technology Return to Scale by Age

Notes: This figure shows the box plot for the technology return to scale by different
ages in the estimated Model 1 controlling for measurement error. The box plot is
constructed as follow: the ”central box” represents the central 50% of the data. Its
lower and upper boundary lines are at the 25th and 75th quantile of the data. The
central line indicates the median of the data while the two extreme lines (the top and
the bottom ones) represents the 5th and 95th percentiles.
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A.2.2 Descriptive Statistics
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Table A.2: Children’s Skills Measures

Measures Range Values Age Range Scoring Order

(The Peabody Individual Achievement Test):
Math 0-84 5-14 Positive
Recognition 0-84 5-14 Positive
Comprehensive 0-84 5-14 Positive

Notes: This table shows the features of children cognitive measures. The first column
indicate each type of children skills measure we use to estimate our model. The second
column shows the minimum and maximum value that each measure takes. The third
column shows the minimum and maximum children age at which each measure is
available. The last column indicates whether the measure is ordered positively (the
higher score tend to reveal higher skills) or negatively (the lower score tend to reveal
higher skills).
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Table A.3: Mothers Cognitive Skills Measures

Measures Range Values Scoring Order

Arithmetics 0-30 Positive
Word Knowledge 0-35 Positive
Paragraph Composition 0-15 Positive
Numeric Operations 0-50 Positive
Coding Speed 0-84 Positive
Math Knowledge 0-25 Positive

Notes: This table shows the features of mother cognitive measures. The first column
indicate each type of mother cognitive skills measure we use to estimate our model.
The second column shows the minimum and maximum value that each measure takes.
The last column indicates whether the measure is ordered positively (the higher score
tend to reveal higher skills) or negatively (the lower score tend to reveal higher skills).
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Table A.4: Mothers Noncognitive Skills Measures

Type of variables Range Values Label Scoring Order

Mother Noncognitive Measures

(Rosenberg indexes):
I am a person of worth

1-4

1= Strongly agree

Negative
I have a number of good qualities 2= Agree
I am able to do things as well as most other people 3=Disagree
I take a positive attitude toward myself 4=Strongly disagree

I am inclined to feel that I am a failure

1-4 Positive
I felt I do not have much to be proud of 1= Strongly agree
I wish I could have more respect for myself 2= Agree
I certainly feel useless at times 3=Disagree
At times I think I am no good at all 4=Strongly disagree

(Rotter Indexes):

Rotter 1 ( Life is in control or not) 1-4

1= In Control and closer to my opinion

Negative2= In control but slightly closer to my opinion
3= Not in control but slightly closer to my opinion
4= Not in control and closer to my opinion

Rotter 2 (Plans work vs Matter of Luck) 1-4

1= Plans work and closer to my opinion

Negative
2= Plans work but slightly closer to my opinion
3= Matter of Luck but slightly closer to my opinion
4= Matter of Luck and closer to my opinion

Rotter 3 (Luck not a factor vs Flip a coin) 1-4

1= Luck not a factor and closer to my opinion

Negative
2=Luck not a factor but slightly closer to my opinion
3= Flip a coin but slightly closer to my opinion
4= Flip a coin and closer to my opinion

Rotter 4 (Luck big role vs Luck no role) 1-4

1= Luck big role and closer to my opinion

Positive
2=Luck big role but slightly closer to my opinion
3= Luck no role but slightly closer to my opinion
4= Luck no role and closer to my opinion

Notes: This table shows the features of mother noncognitive measures. The first
column indicate each type of mother cognitive skills measure we use to estimate
our model. The second column shows the minimum and maximum value that each
measure takes. The third column shows the type of answers associated with each
measure value. The last column indicates whether the measure is ordered positively
(the higher score tend to reveal higher skills) or negatively (the lower score tend to
reveal higher skills).
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Table A.5: Descriptive Statistics about Children’s Cognitive Skills Measures

Number
of

Measures Mean Std Min Max Values

Age 5-6

PIAT Math 11.858 4.278 0.000 37.000 32.000
PIAT Recognition 12.864 5.048 0.000 57.000 35.000
PIAT Comprehensive 12.770 4.930 0.000 49.000 35.000

Age 7-8

PIAT Math 23.016 8.681 0.000 74.000 58.000
PIAT Recognition 25.748 8.774 0.000 80.000 67.000
PIAT Comprehensive 24.099 8.142 0.000 69.000 60.000

Age 9-10

PIAT Math 38.720 10.832 0.000 84.000 71.000
PIAT Recognition 40.825 11.487 0.000 84.000 76.000
PIAT Comprehensive 37.540 10.231 0.000 78.000 64.000

Age 11-12

PIAT Math 48.184 10.543 0.000 84.000 78.000
PIAT Recognition 51.079 13.278 0.000 84.000 74.000
PIAT Comprehensive 45.732 11.272 0.000 84.000 72.000

Age 13-14

PIAT Math 53.767 11.387 0.000 84.000 78.000
PIAT Recognition 58.670 14.262 0.000 84.000 74.000
PIAT Comprehensive 51.015 12.229 0.000 84.000 74.000

Notes: This table shows main sample statistics of children cognitive skills measures
by children age.

271



Table A.6: Descriptive Statistics of Mother Cognitive and Noncognitive Skills Mea-
sures

Mother Cognitive Skills
Number

of
Measures Mean Std Min Max Values

Mom‘s Arithmetic Reasoning Test Score 13.946 6.603 0.000 30.000 31.000

Mom‘s Word Knowledge Test Score 21.773 8.562 0.000 35.000 36.000

Mom‘s Paragraph Composition Test Score 9.620 3.778 0.000 15.000 16.000

Mom‘s Numerical Operations Test Score 31.044 11.831 0.000 50.000 51.000

Mom‘s Coding Speed Test Score 42.953 17.468 0.000 84.000 85.000

Mom‘s Mathematical Knowledge Test Score 10.853 5.867 0.000 25.000 26.000

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 0.549 0.000 3.000 4.000

Mom‘s Self-Esteem: ” I have good qualities” 2.338 0.539 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I am a failure” 3.379 0.618 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 0.567 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 0.669 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 0.619 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 0.817 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 0.770 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 0.802 1.000 4.000 4.000

Mom‘s Rotter Score:”I have no control” 2.863 1.058 1.000 4.000 4.000

Mom‘s Rotter Score: ”I make no plans for the future” 2.386 1.192 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck is big factor in life” 3.205 0.856 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.594 1.024 1.000 4.000 4.000

Notes: This table shows main sample statistics of mother cognitive skills measures.
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Figure A.3: Descriptive Statistics: Mean of PIATs over the Childhood

Notes: This figure shows the mean Piat Math, Recognition and Comprehensive test
scores by age. The x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8,
and so on.
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A.2.3 Measurement Parameter Estimates
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Table A.7: Measurement Parameter Estimates for Children’s Cognitive Measures

Measures µ λ Signal Noise

Age 5-6

PIAT Math 11.858 1.000 0.270 0.730
PIAT Recognition 12.864 2.238 0.972 0.028
PIAT Comprehensive 12.770 2.159 0.948 0.052

Age 7-8

PIAT Math 11.858 1.000 0.757 0.243
PIAT Recognition 15.592 0.906 0.608 0.392
PIAT Comprehensive 15.014 0.802 0.554 0.446

Age 9-10

PIAT Math 11.858 1.000 0.779 0.221
PIAT Recognition 10.297 1.136 0.894 0.106
PIAT Comprehensive 12.273 0.936 0.765 0.235

Age 11-12

PIAT Math 11.858 1.000 0.803 0.197
PIAT Recognition 2.107 1.347 0.918 0.082
PIAT Comprehensive 6.129 1.089 0.833 0.167

Age 13-14

PIAT Math 11.858 1.000 0.927 0.073
PIAT Recognition 8.556 1.195 0.845 0.155
PIAT Comprehensive 9.041 1.002 0.806 0.194

Notes: This table shows the measurement error parameters and associated statistics
for children cognitive measures. The first two columns shows the measurement pa-
rameters (µ and λ) while the last two columns shows the signal and noise variance
decomposition for the children cognitive measures.
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Table A.8: Measurement Parameter Estimates for Mother Cognitive and Noncogni-
tive Measures

Mother Cognitive Skills
Measures µ λ Signal Noise

Mom‘s Arithmetic Reasoning Test Score 13.946 1.000 0.692 0.308

Mom‘s Word Knowledge Test Score 21.773 1.345 0.745 0.255

Mom‘s Paragraph Composition Test Score 9.620 0.584 0.722 0.278

Mom‘s Numerical Operations Test Score 31.044 1.720 0.638 0.362

Mom‘s Coding Speed Test Score 42.953 2.308 0.527 0.473

Mom‘s Mathematical Knowledge Test Score 10.853 0.854 0.639 0.361

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 1.000 0.152 0.848

Mom‘s Self-Esteem: ” I have good qualities” 2.338 1.263 0.252 0.748

Mom‘s Self-Esteem: ”I am a failure” 3.379 1.612 0.311 0.689

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 1.127 0.181 0.819

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 1.746 0.312 0.688

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 1.474 0.260 0.740

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 2.080 0.297 0.703

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 1.861 0.268 0.732

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 2.096 0.313 0.687

Mom‘s Rotter Score:”I have no control” 2.461 1.000 0.092 0.908

Mom‘s Rotter Score: ”I make no plans for the future” 2.338 1.263 0.140 0.860

Mom‘s Rotter Score: ”Luck is big factor in life” 3.379 1.612 0.118 0.882

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.291 1.127 0.044 0.956

Notes: This table shows the measurement error parameters and associated statistics
for mother cognitive and noncognitive measures. The first two columns shows the
measurement parameters (µ and λ) while the last two columns shows the signal and
noise variance decomposition for the mother measures.
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A.2.4 Estimates and Results for Model 2 with Measurement Error Corrected
Estimator
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Table A.9: Estimates for Investment (Model 2)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.069 0.068 0.065
( 0.059) ( 0.021) ( 0.029) ( 0.030)

Log Mother Cognitive Skills 0.071 0.004 0.011 -0.005
( 0.022) ( 0.009) ( 0.014) ( 0.012)

Log Mother Noncognitive Skills 0.359 0.711 0.660 0.678
( 0.131) ( 0.059) ( 0.084) ( 0.084)

Log Family Income 0.341 0.217 0.261 0.262
( 0.076) ( 0.054) ( 0.072) ( 0.082)

Variance Shocks 1.186 0.969 0.831 1.028
( 0.232) ( 0.134) ( 0.211) ( 0.259)

Notes: This table shows the measurement error corrected estimates for the invest-
ment equation for Model 2. Each column shows the coefficients of the investment
equation at the given ages. The dependent variable is investment in period t which is
determined by the covariates at time t . For example, the first column shows the coef-
ficients at age 5-6 for parental investments and child’s skill and family income at age
5-6 as well. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure A.4: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6
on completed months of schooling by the percentile of initial (age 5-6) family income
for the estimated Model 2, controlling for measurement error. Each income category
is defined as the people contained between nth and the n − 1th of the percentiles of
the income distribution. For example, Income category 10 in the graph means the
people who belong between the 9th and 10th percentile of the income distribution. In
the estimated income distribution for our sample, income categories 10, 50, and 90
contain families with about $14,000, $45,000, and $145,000 of annual family income.
This figure also plots the average effect over the income distribution.
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A.2.5 Estimates and Results without Measurement Error Correction (Model 1 and
Model 2)
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Table A.10: Estimates for Investment (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.083 0.032 0.024 0.015 0.083 0.045 0.030 0.014
( 0.023) ( 0.009) ( 0.009) ( 0.007) ( 0.023) ( 0.012) ( 0.011) ( 0.007)

Log Mother Cognitive Skills 0.082 0.010 0.010 -0.002 0.082 0.010 0.010 -0.002
( 0.019) ( 0.011) ( 0.014) ( 0.011) ( 0.019) ( 0.011) ( 0.014) ( 0.011)

Log Mother Noncognitive Skills 0.248 0.454 0.442 0.553 0.248 0.448 0.440 0.553
( 0.093) ( 0.073) ( 0.098) ( 0.074) ( 0.093) ( 0.073) ( 0.098) ( 0.074)

Log Family Income 0.587 0.504 0.524 0.434 0.587 0.498 0.521 0.435
( 0.074) ( 0.070) ( 0.095) ( 0.077) ( 0.074) ( 0.069) ( 0.095) ( 0.078)

Variance Shocks 1.635 1.522 1.537 1.535 1.635 1.504 1.529 1.537
( 0.224) ( 0.172) ( 0.364) ( 0.327) ( 0.224) ( 0.168) ( 0.360) ( 0.329)

Notes: This table shows the estimates (not corrected for measurement error) for
the investment equation for both Model 1 and Model 2. Each column shows the
coefficients of the investment equation at the given ages. The dependent variable is
investment in period t which is determined by the covariates at time t . For example,
the first column shows the coefficients at age 5-6 for parental investments and child’s
skill and family income at age 5-6 as well. Standard errors in parenthesis are computed
using a cluster bootstrap.
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Table A.11: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2(
Free Return to Scale Technology

and TFP Dynamics

) (
Restricted Return to Scale Technology

and No TFP Dynamics

)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.875 0.771 0.669 0.770 0.625 0.868 0.897 0.880
( 0.057) ( 0.022) ( 0.017) ( 0.018) ( 0.047) ( 0.039) ( 0.039) ( 0.052)

Log Investment 0.518 0.069 0.042 0.325 0.370 0.125 0.101 0.127
( 0.089) ( 0.066) ( 0.061) ( 0.099) ( 0.045) ( 0.038) ( 0.039) ( 0.052)

( Log Skills * 0.006 0.007 0.002 -0.006 0.005 0.008 0.002 -0.007
Log Investment ) ( 0.012) ( 0.003) ( 0.002) ( 0.002) ( 0.009) ( 0.004) ( 0.002) ( 0.003)

Return to scale 1.399 0.846 0.713 1.089 1.000 1.000 1.000 1.000
( 0.098) ( 0.072) ( 0.063) ( 0.096) (-) (-) (-) (-)

Variance shocks 7.490 7.673 6.716 7.382 5.354 6.155 7.211 9.092
( 0.127) ( 0.145) ( 0.192) ( 0.220) ( 0.386) ( 0.565) ( 0.769) ( 0.980)

Log TFP 12.789 18.491 18.477 14.011 0.000 0.000 0.000 0.000
( 0.215) ( 0.299) ( 0.444) ( 0.690) (-) (-) (-) (-)

Notes: This table shows the estimates (not corrected for measurement error) for the
technology of skills formation and the technology return to scale (i.e. the sum of the
share parameters for each input) for not measurement error corrected estimates of
both Model 1 and Model 2. Each column shows the coefficients of the technology of
skills formations at the given age. The dependent variable is log skills in the next
period t+1 while the covariates (inputs) are at time t. For example, the first column
shows the coefficients for the skills inputs at age 5-6 which lead to log skills at age
7-8. Standard errors in parenthesis are computed using a cluster bootstrap.
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Figure A.5: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 1 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 1, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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Figure A.6: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 2 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age
5-6 on completed months of schooling by the percentile of initial (age 5-6) family
income for the estimated Model 2, not controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of
the percentiles of the income distribution. For example, Income category 10 in the
graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories
10, 50, and 90 contain families with about $14,000, $45,000, and $145,000 of annual
family income. This figure also plots the average effect over the income distribution.
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A.2.6 Skills measures in CNLSY79
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Measures for Cognitive Skills

• Peabody Picture Vocabulary Test

The Peabody Picture Vocabulary Test, revised edition (PPVT-R) ”measures
an individual’s receptive (hearing) vocabulary for Standard American English
and provides, at the same time, a quick estimate of verbal ability or scholastic
aptitude” (see Dunn and Dunn, 1981). The PPVT was designed for use with
individuals aged 2 to 40 years. The English language version of the PPVT-
R consists of 175 vocabulary items of generally increasing difficulty. The child
listens to a word uttered by the interviewer and then selects one of four pictures
that best describes the word’s meaning. The PPVT-R has been administered,
with some exceptions, to NLSY79 children between the ages of 3-18 years of
age until 1994, when children 15 and older moved into the Young Adult survey.
In the current survey round, the PPVT was administered to children aged 4-5
and 10-11 years of age, as well as to some children with no previous valid PPVT
score.

The first item, or starting point, is determined based on the child’s PPVT age.
Starting at an age-specific level of difficulty is intended to reduce the number
of items that are too easy or too difficult, in order to minimize boredom or
frustration. The suggested starting points for each age can be found in the
PPVT manual (see Dunn and Dunn, 1981).

Testing begins with the starting point and proceeds forward until the child
makes an incorrect response. If the child has made 8 or more correct responses
before the first error, a “basal” is established. The basal is defined as the last
item in the highest series of 8 consecutive correct answers. Once the basal is
established, testing proceeds forwards, until the child makes six errors in eight
consecutive items. If, however, the child gives an incorrect response before
8 consecutive correct answers have been made, testing proceeds backwards,
beginning at the item just before the starting point, until 8 consecutive correct
responses have been made. If a child does not make eight consecutive responses
even after administering all of the items, he or she is given a basal of one. If
a child has more than one series of 8 consecutive correct answers, the highest
basal is used to compute the raw score.

A “ceiling” is established when a child incorrectly identifies six of eight con-
secutive items. The ceiling is defined as the last item in the lowest series of
eight consecutive items with six incorrect responses. If more than one ceiling is
identified, the lowest ceiling is used to compute the raw score. The assessment
is complete once both a basal and a ceiling have been established. The ceiling
is set to 175 if the child never makes six errors in eight consecutive items.

A child’s raw score is the number of correct answers below the ceiling. Note
that all answers below the highest basal are counted as correct, even if the child
answered some of these items incorrectly. The raw score can be calculated by
subtracting the number of errors between the highest basal and lowest ceiling
from the item number of the lowest ceiling.

• The Peabody Individual Achievement Test (PIAT): Math
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The PIAT Mathematics assessment protocol used in the field is described in
the documentation for the Child Supplement (available on the Questionnaires
page). This subscale measures a child’s attainment in mathematics as taught
in mainstream education. It consists of 84 multiple-choice items of increasing
difficulty. It begins with such early skills as recognizing numerals and progresses
to measuring advanced concepts in geometry and trigonometry. The child looks
at each problem on an easel page and then chooses an answer by pointing to or
naming one of four answer options.

Administration of this assessment is relatively straightforward. Children enter
the assessment at an age-appropriate item (although this is not essential to
the scoring) and establish a ”basal” by attaining five consecutive correct re-
sponses. If no basal is achieved then a basal of ”1” is assigned (see PPVT).
A ”ceiling” is reached when five of seven items are answered incorrectly. The
non-normalized raw score is equivalent to the ceiling item minus the number of
incorrect responses between the basal and the ceiling scores.

• The Peabody Individual Achievement Test (PIAT): Reading Recog-
nition

The Peabody Individual Achievement Test (PIAT) Reading Recognition sub-
test, one of five in the PIAT series, measures word recognition and pronuncia-
tion ability, essential components of reading achievement. Children read a word
silently, then say it aloud. PIAT Reading Recognition contains 84 items, each
with four options, which increase in difficulty from preschool to high school lev-
els. Skills assessed include matching letters, naming names, and reading single
words aloud.

The only difference in the implementation procedures between the PIAT Math-
ematics and PIAT Reading Recognition assessments is that the entry point into
the Reading Recognition assessment is based on the child’s score in the Mathe-
matics assessment, although entering at the correct point is not essential to the
scoring.

The scoring decisions and procedures are identical to those described for the
PIAT Mathematics assessment.

• The Peabody Individual Achievement Test (PIAT): Reading Com-
prehension

The Peabody Individual Achievement Test (PIAT) Reading Comprehension
subtest measures a child’s ability to derive meaning from sentences that are
read silently. For each of 66 items of increasing difficulty, the child silently
reads a sentence once and then selects one of four pictures that best portrays
the meaning of the sentence.

Children who score less than 19 on Reading Recognition are assigned their
Reading Recognition score as their Reading Comprehension score. If they score
at least 19 on the Reading Recognition assessment, their Reading Recognition
score determines the entry point to Reading Comprehension. Entering at the
correct location is, however, not essential to the scoring.
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Basals and ceilings on PIAT Reading Comprehension and an overall nonnormed
raw score are determined in a manner identical to the other PIAT procedures.
The only difference is that children for whom a basal could not be computed
(but who otherwise completed the comprehension assessment) are automati-
cally assigned a basal of 19. Administration instructions can be found in the
assessment section of the Child Supplement.
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A.3 Alternative Measures
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One of the characteristics of the data used to study child development is the rich
variety skill measures. The previous sections considered identification where the skill
measures are in a “raw” form: each measure is a linear function of the latent log
skill. This measurement system, while commonly assumed in the prior literature, is
in some respects a “best case.”

In this section, we consider alternative forms of measures and re-examine whether
we can identify the same types of production technologies using these alternative
measures. We consider four classes of measures which are frequently encountered
empirically: (i) age-standardized measures where the raw measures are transformed
ex post to have mean 0 and standard deviation 1 for the sample at hand; (ii) relative
measures where the measures reflect not the level of a child’s skill but the child’s skill
relative to the population mean; (iii) ordinal measures which provide a discrete rank-
ing of children’s skills; and iv) censored measures where the measures are truncated
with a “floor” (finite minimum value) and/or a “ceiling” (finite maximum value). For
each type of measure, we discuss which of our prior identification results still hold, if
any, and what auxiliary assumptions would be sufficient to restore our identification
results.
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A.3.1 Age-Standardized Measures
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Age-standardized measures are defined as the following transformation of raw
measures Zt,m:

ZS
t,m =

Zt,m − E(Zt,m)

V (Zt,m)1/2
. (A.1)

By construction, these measures are mean 0 and standard deviation 1 for all child
ages.

Our main identification result using standardized measures (Theorem 1) continues
to hold if the technology of skill formation has known scale and location functions
(KLS, Definition 1). To show this, we can re-write the standardized measures as a
linear function of the latent variable:

ZS
t,m = µSt,m + λSt,m ln θt + ǫSt,m

where the measurement parameters and measurement error are

µSt,m = −λSt,m(V (ln θt)) · E(ln θt)

λSt,m =
λt,m

V (Zt,m)1/2
=

λt,m
(λ2t,mV (ln θt) + V (ǫt))1/2

ǫSt,m =
ǫt,m

V (Zt,m)1/2
=

ǫt,m
(λ2t,mV (ln θt) + V (ǫt))1/2

These expressions show that the standardized measurement parameters are linear

functions of the underlying moments of the latent skill distribution. 1 The reason for

the invariance of our identification result to the use of standardized or raw measures

is that any measurement parameters are “transformed away” as shown in Lemma 1.

More generally, identification of the KLS production technologies is invariant to any

increasing linear transformation of the original raw measures, say Z ′t,m = a + bZt,m

for a ∈ R and b ∈ R+. 2

However, the use of age-standardized measures may not be cost free in the sense

that age-standardized measures, which are constructed to be age-stationary in their

1It is important to recognize that the use of standardized measures does not necessarily imply
that any particular restriction on the underlying latent variables such as E(ln θt) = 0 or V (ln θt) = 1.
The standardizations are necessarily in terms of the observed measures, not the unobserved latent
variables.

2One caveat deserves mention. Recall that because the initial conditions are normalized to a
particular measure, using standardized rather than raw measures can affect the normalized location
and scale of the latent skills, and in general affect the values of the production parameters which
are identified up to the normalized initial period measure.
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first and second moments, contain no information about skill dynamics in these mo-

ments. For example, standardizing age-invariant measures, as defined in the previous

section, so that the mean and variance of these measures is equal at all ages, would

essentially “throw away” information regarding the average skill development of chil-

dren across ages. This loss of information prevents the identification of the broader

classes of technology of skills formation discussed above, the unknown Total Factor

Productivity (TFP) functions (as in equation 14) or unknown scale functions (as in

equation 15).

To see this point, recall that the identification of TFP or scaling parameter are

based on additional information of the dynamics of measurement parameters. In

the case of raw measures, those parameters are fully free parameters. On the other

hand, when we use standardized measures, the new measurement parameters (µSt,m

and λSt,m) are no longer free parameters but functions of the moments of the latent

distribution. Hence, restricting the dynamics of the measurement parameters in this

case (imposing Assumption 2 and Assumption 3) is equivalent to restricting the dy-

namics of the latent skills, and can restrict the possible classes of technologies. While

age-standardizing measures may provide some descriptive value, in the context of

identifying dynamic production technologies, there is simply no point to transform-

ing the measures in this way and throwing away potentially important identifying

information.
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A.3.2 Relative Measures
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Some of the proxies used to measure children outcomes come from surveys where

observers (often mothers, fathers, or other caregivers) provide assessments of the

child. It can be plausible then that these observers are actually evaluating the child

with respect to their perceptions of the average in the population. We call this type

of measure a relative measures. In this case, these measures can be written as:

ZR
t,m = µRt,m + λRt,m(ln θt − E(ln θt)) + ǫRt,m. (A.2)

where (ln θt−E(ln θt) is the latent variable being measured by ZR
t,m, which we model

as the deviation of the actual level of the child’s skill ln θt relative to the mean value in

the population E(ln θt). Relative measures are not ordinal ranking measures (which

we discuss below) but a continuous measure of skills relative to the population mean.

As with the age-standardized measures, the relative measures are an increasing linear

function of the underlying latent variable, and therefore the main identification result

in Theorem 1 continues to hold as the measurement parameters are “transformed

away.”
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A.3.3 Ordinal Measures
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We define ordinal measures the measures which are based on children rankings:

this child has higher skills than another child. Let’s assume that we observe in data

children’s skill rank. Let Zt = {1, 2, . . . , J} be the child’s human capital rank, with 1

highest level, and J lowest level. The observer (or us forming ranks from test scores)

forms rank according to this ordinal model:

ZO
t,m =





J if λOt,m ln θt + ǫOt,m < κJ,t,m

J − 1 if κJ,t,m < λOt,m ln θt + ǫOt,m < κJ−1,t,m
...

2 if κ3,t,m < λOt,m ln θt + ǫOt,m < κ2,t,m

1 if λOt,m ln θt + ǫOt,m > κ2,t,m

(A.3)

where the κ2, . . . , κJ , with κ2 > κ3, . . . , κJ , are measurement parameters which pro-

vide the mapping from latent skills ln θt and measurement error ǫOt,m to the observed

ordinal ranking values ZO
t,m. The probability a child is ranked first (j = 1) is then

pr(ZO
t,m = 1) = pr(λOt,m ln θt + ǫOt,m > κ2,t,m)

= Fǫ(λ
O
t,m ln θt − κ2,t,m)

where Fǫ is the distribution function for the measurement error ǫOt,m.

With ordinal ranking measures the non-parametric identification result no longer

holds. There is no longer a one-to-one mapping between a child’s latent skills θt

and expected measures, as multiple values of θt are consistent with a child having a

certain rank. Without additional assumptions beyond Assumption 1 (independence

of measures), ordinal measures of skills do not allow non-parametric identification of

the continuous skill production function.

If the researcher were to assume a particular known distribution for the measure-

ment errors Fǫ, then under this assumption for an ordinal measure of t + 1 skills we
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would have:

F−1ǫ (pr(ZO
t+1,m = 1| ln θt, ln It)) = λt+1,mft(It, θt)− κ2,t+1,m

where pr(ZO
t+1,m = 1| ln θt, ln It) is the probability the child receives rank 1 at age t+1

given inputs θt, It at age t. This expression shows that with a known distribution for

measurement errors, we can then apply Theorem 1 to identify a KLS technology

ft(It, θt) up to this assumed distribution.
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A.3.4 Censored Measures
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Censored measures are defined as

ZC
t,m =





Z if Zt,m ≥ Z

Zt,m if Z < Zt,m < Z

Z if Zt,m < Z

(A.4)

where Zt,m = µt,m + λt,m ln θt + ǫt,m is the “latent” measure, and Z (“ceiling”) and

Z (“floor”), with Z > Z, are the truncation points. Censoring occurs, for example,

when a test score used as the measure has a maximum score (answering all questions

correctly) and a minimum score (say answering none of the questions correctly). In

practice, researchers can ascertain whether censoring is an important issue empirically

by investigating what proportion of the sample actually has measured skills at the

floor or ceiling points of the measure. Because censored measures do not have full

support, the non-parametric identification result of Theorem 1 appears no longer to

hold. As with the ordinal measures, auxiliary assumptions could be used to achieve

identification up these additional assumptions (for a complete analyze of the problem,

see Wang et al. 2009, Koedel and Betts, 2010)
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A.4 Monte Carlo Exercise for Model 1 and Measurement Error Correction
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We implement a Monte Carlo exercise to examine the properties of our estimator.

The true data generating process is assumed to be the estimated (measurement error

corrected) Model 1 with some additional parametric assumptions about the measure-

ment error process. In order to simulate the dataset, we use the both the estimated

measurement parameters and the joint distribution of children skills and investments.

In addition, we assume that all the measurement noises are Normally distributed. 3

We generate a simulated longitudinal dataset of 10,000 children ranging from age

5-6 to age 13-14. In particular, the Monte Carlo analysis is performed estimating the

model on 200 simulated data sets. In the following tables we show the mean estimates

over the 200 estimates of the coefficients.

We focus only on estimates of skills technology, investment process and children’s

skills measurement parameters. Tables A.12-A.14 show true and mean estimated

parameters. Overall, the estimator is able to recover the true parameters with minimal

bias.

3We assume that the standard deviation of the error terms for all the skills measures are 0.5
(children and mothers) while we fix to 0.1 the standard deviation of the error terms for all the
investment measures.
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Table A.12: Monte Carlo Estimates for Investment Process

True Parameters Monte Carlo Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018 0.249 0.026 0.020 0.018

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005 0.077 0.002 0.008 -0.011

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712 0.322 0.748 0.700 0.700

Log Family Income 0.341 0.227 0.274 0.275 0.352 0.224 0.272 0.292

Variance Shocks 1.186 1.019 0.868 1.087 1.263 0.993 0.827 1.103

Notes: This table shows the both the true estimates (reported also in Table 3) and

the mean Monte Carlo estimates for the investment equation. Each column shows the

coefficients of the investment equation at the given ages. The dependent variable is

investment in period t which is determined by the covariates at time t . For example,

the first column shows the coefficients at age 5-6 for parental investments and child’s

skill and family income at age 5-6 as well.
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Table A.13: Monte Carlo Estimates for Skill Technology

True Parameters Monte Carlo Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 1.955 1.091 0.897 1.071

Log Investment 0.799 0.695 0.713 0.252 0.759 0.700 0.839 0.502

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.092 -0.005 -0.005 -0.002

Log Investment )

Return to scale 2.660 1.776 1.606 1.320 2.623 1.786 1.731 1.571

Variance shocks 5.612 4.519 3.585 4.019 5.613 4.520 3.586 4.018

Log TFP 13.067 14.747 11.881 2.927 13.060 14.689 11.801 2.594

Notes: This table shows the both the true estimates (reported also in Table 4) and

the mean Monte Carlo estimates for the technology of skills formation. Each column

shows the coefficients of the technology of skills formations at the given age. The

dependent variable is log skills in the next period t+1 while the covariates (inputs)

are at time t. For example, the first column shows the coefficients for the skills inputs

at age 5-6 which lead to log skills at age 7-8.
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Table A.14: Monte Carlo Estimates for Measurement Parameters

True Constant (µ) Monte Carlo Constant (µ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858

PIAT Recognition 12.864 15.592 10.297 2.107 8.556 12.864 15.592 10.298 2.110 8.555

PIAT Comprehensive 12.770 15.014 12.273 6.129 9.041 12.770 15.013 12.270 6.132 9.040

True Factor Loadings (λ) Monte Carlo Factor Loadings (λ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PIAT Recognition 2.238 0.906 1.136 1.347 1.195 2.238 0.905 1.136 1.347 1.196

PIAT Comprehensive 2.159 0.802 0.936 1.089 1.002 2.159 0.802 0.936 1.089 1.002

Notes: This table shows the both the true estimates (reported also in Table A.7) and

the mean Monte Carlo estimates for the measurement parameters of children skills

measures equation. Each column shows the parameters at the given ages for each

test score.
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Chapter B

SUPPLEMENTARY MATERIAL FOR CHAPTER 2
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B.1 Data Appendix

The Add Health database was designed to study the impact of the social envi-

ronment (i.e. friends, family, neighborhood and school) on adolescents’ behavior in

the United States of America. Add Health’s original sample comprises students of

132 representative schools in the United States. There are 90,118 students, rang-

ing between grades 7 and 12 in the 1994–1995 school year (Wave I). A subsample

of students (20,745) was selected for an additional home interview (in-home). The

home interview includes new questions for the children and a questionnaire for one

of their parents. Information related to school quality and area of residence makes

the data set attractive. Those surveyed were interviewed again in 1995–96 (Wave

II), 2001–2002 (Wave III), and 2007–2008 (Wave IV). The data set includes specific

information on family background, students’ school grades and their scores in the

Add Health Picture Vocabulary Test (AHPVT – a revised version of the Peabody

Picture Vocabulary Test [PPVT]), as well as information about children’s peers.

A main source of information which makes the Add Health data set particularly

attractive for achieving the objective of this project is the friendship nomination.

During the first two waves, children were asked, both during the in-home and in-

school interviews, to nominate their best five male and best five female friends. This

detailed information helped me to reconstruct the structure of friendship for every

child in the sample by simply matching their identifier.
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B.1.1 Measures for Children’s Skills and Parental Investments
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The Peabody Picture Vocabulary Test (PPVT) was developed in 1959 as a test

of receptive vocabulary and is oriented to give an estimation of verbal ability and

school aptitude. More generally, it intends to provide a measure of intelligence. The

test is age standardized, and performance does not depend on the reading ability of

the test-taker. The test-giver reads a word, and the test-taker selects the image she

thinks best fits the meaning of the word from among four simple illustrations.

In the Add Health dataset, a computerized and shorter version of the Peabody

Picture Vocabulary Test, the AHPVT, has been implemented. The AHPVT includes

half of the questions of the original PPVT (every other item in the original sequence

was selected for use). Add Health provides two versions of the AHPVT: raw and

standardized test scores. The standardized version has a mean of 100 and a standard

deviation of 15 and is standardized by age (for further technical details about the

AHPVT, see Halpern, 2000).

Add Health provides information about the AHPVT test scores for Waves I, III

and IV. During Wave I, respondents are between 11 and 21 years old. I consider this

piece of information as one of the measures of children’s latent skills. Additionally, I

consider children’s grades at school for both Wave I and Wave II. Analyzing all these

multiple measurements, I am able to combine both the cross-sectional as well as the

longitudinal information about child development.

During the in-home interview in Wave I and Wave II, children provided infor-

mation about activities they had engaged in with their parents during the previous

four weeks. These activities include: going shopping, sport activities, going to a

movie/museum/concert or sport event, talking about personal problems or school, or

working on a project for school. There are a total of nine activities each child can

do with their parents. These types of activities provide information about the level

of parental engagement with their child. During Wave I, a parent, preferably the
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resident mother, of each adolescent respondent was interviewed (in-home interview).

The parent questionnaire included a question about the achieved level of education for

the respondent, which is considered as one proxy for the mother’s skills. During the

same survey, the respondent provided information about total family income during

the previous calendar year.
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B.2 Additional Figures and Tables

311



Figure B.1: Probability of the Friendships and School’s Size

Notes: This figure shows the probability, for each school, that a child becomes friend

with another child as function of school’s size.
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Figure B.2: Mean of Children Skills by Race (Low-Income Neighborhood)

Notes: This figure shows the sample fit for the mean of children’s skills for low-quality (low-income) neighborhood by

race.
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Figure B.3: Mean of Children Skills by Race (Medium-Income Neighborhood)

Notes: This figure shows the sample fit for the mean of children’s skills for medium-quality (medium-income) neighborhood

by race.
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Figure B.4: Mean of Children Skills by Race (High-Income Neighborhood)

Notes: This figure shows the sample fit for the mean of children’s skills for high-quality (high-income) neighborhood by

race.
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Figure B.5: Standard Deviation of Children Skills by Race (Low-Income Neighborhood)

Notes: This figure shows the sample fit for the standard deviation of children’s skills for low-quality (low-income) neigh-

borhood by race.
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Figure B.6: Standard Deviation of Children Skills by Race (Medium-Income Neighborhood)

Notes: This figure shows the sample fit for the standard deviation of children’s skills for medium-quality (medium-income)

neighborhood by race.
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Figure B.7: Standard Deviation of Children Skills by Race (High-Income Neighborhood)

Notes: This figure shows the sample fit for the standard deviation of children’s skills for high-quality (high-income)

neighborhood by race.
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Figure B.8: Index for Skills Homophily by Neighborhoods

Notes: This figure shows the sample fit for the homophily index for skills by by neighborhood-quality type (low-median-

high income).
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Figure B.9: Index for Race Homophily by Neighborhoods

Notes: This figure shows the sample fit for the homophily index for race by by neighborhood-quality type (low-median-high

income).
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Table B.1: Sample Statistics by Neighborhood Types

Neighborhood’s Type (1) (2) (3)

Panel A: Fraction of Families by Race

Fraction Black (%) 31.74 14.00 5.36

Fraction Hispanic (%) 26.77 14.50 10.86

Fraction White (%) 41.50 71.50 83.78

Panel B: Family Income (in 1994 $)

Mean Family Income

Family Income 29,637 43,458 57,512

Mean Family Income by Race

Black Family 26,917 41,778 46,592

Hispanic Family 26,167 33,749 49,940

White Family 34,046 45,632 59,224

Panel C: Children PPVT Achievements

Mean PPVT by Race

Black Children 57.02 62.37 64.39

Hispanic Children 58.06 60.33 64.51

White Children 63.87 66.46 69.98

PPVT Gaps between Neighborhoods

Black Children 66 (% SD) 18 (% SD) -

Hispanic Children 58 (% SD) 37 (% SD) -

White Children 55 (% SD) 32 (% SD) -

PPVT Gaps within Neighborhoods

Black Children 61 (% SD) 37 (% SD) 50(% SD)

Hispanic Children 52 (% SD) 55 (% SD) 49(% SD)

White Children - - -

Notes: This table reports descriptive statistics by by neighborhood-

quality type (low-medium-high income).
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Table B.2: Sample Fit for Auxiliary Coefficients (Investments)

Dependent Variable

Fraction (%) of Invested Parental Time

Measurement Error Adjusted Measurement Error Adjusted Measurement Error Adjusted Measurement Error Adjusted

and and

Instrumental Variables (IV) Instrumental Variables (IV)

Data Model

Child Skills (Log) 2.660 2.120 2.152 3.124

(0.316) (0.668)

[2.041,3.280] [0.810,3.430]

Peers’ Skills (Log) -1.441 0.720 -1.272 0.895

(0.650) (0.354)

[-2.715,-0.167] [0.026,1.414]

First Stage First Stage

Z1,i,t (Minorities Children) -0.104 -0.127

(0.052)

[-0.206,-0.002]

Z2,i,t (White Children) 0.082 0.105

(0.037)

[0.009,0.155]

Notes: This table shows the sample fit for auxiliary regression coefficients for models in (3.2). Columns 1 and 2 shows the same estimated coefficients as in Table 3.2.

Both standard errors in parenthesis and the 95% confidence interval in square brackets are computed using a cluster bootstrap.

Data source: National Longitudinal Survey of Adolescent Health (Add Health).
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Table B.3: Sample Fit for Auxiliary Coeffi-

cients (Dynamics of Skills)

Data Model

Investments (Log) 0.408 0.343

(0.197)

[0.021,0.794]

Child‘s Skills (Log) 0.750 0.760

(0.238)

[0.283,1.216]

Peer‘s Skills (Log) 0.366 0.167

(0.167)

[0.038,0.693]

Notes: This table shows the sample fit for auxiliary

regression coefficients of the auxiliary model for the

dynamics of children’s skills. The dependent variable

is the next period (t+1) child’s log-skills. The covari-

ates in the table are: log-investments, current child’s

log-skills, current peers’ log-skills. The regression also

include as controls: age fixed effects, race, last period

family’s income, mother’s skills, school’s fixed effects.

Both standard errors in parenthesis and the 95% con-

fidence interval in square brackets are computed using

a cluster bootstrap.

Data source: National Longitudinal Survey of Ado-

lescent Health (Add Health).
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Table B.4: Counterfactual Effects on Receiving Children by Race (moved children are 5% of the receiving cohort)

Panel A: Effects on Children‘s Log-Skills (Mean)

Black Hispanic White

Baseline Counterfactual Baseline Counterfactual Baseline Counterfactual

(Equilibrium) (Equilibrium) (Equilibrium)

Age 13 -0.30 -0.30 Age 13 -0.34 -0.34 Age 13 0.22 0.22

Age 14 0.28 0.23 Age 14 0.45 0.41 Age 14 0.97 0.96

Age 15 0.96 0.87 Age 15 1.08 1.03 Age 15 1.66 1.64

Age 16 1.49 1.39 Age 16 1.59 1.53 Age 16 2.24 2.21

Panel B: Effects on Parent‘s Investment Decision (Mean)

Black Hispanic White

Baseline Counterfactual Baseline Counterfactual Baseline Counterfactual

(Equilibrium) (Equilibrium) (Equilibrium)

Age 13 20.09 19.01 Age 13 21.97 20.71 Age 13 27.92 27.67

Age 14 18.85 17.94 Age 14 20.67 20.25 Age 14 28.02 27.85

Age 15 16.32 16.36 Age 15 16.69 16.63 Age 15 24.29 24.37

Notes: This table shows the counterfactual policy effects for receiving children (by race) when a fraction of moved children (5% of the

receiving population) are moved into a high-income environment. For each subgroup, I compare the baseline results in skills and parental

investments (Panel B) with the equilibrium counterfactual predictions.

324



B.3 The Latent Factor Models
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I consider the following latent factor model for either the child’s skills (hi,t) or the

mother’s skills (mi):

Zh
i,t,k = µht,k + λht,k · lnhi,t + ǫhi,t,k

Zm
i,k = µmt,k + λmk · lnmi + ǫmi,k (B.1)

where µs and λs are, respectively, the location and scale (or loading factor) parameters

for each considered measure k at any age t for each child i. The distribution of the

latent factors is identified by exploiting multiple measures in the data. One commonly

used condition for identification is the independence of the joint distribution of latent

variables and measurement errors.

Assumption 4 Measurement model assumptions:

(i) ǫhi,t,k ⊥ ǫhi,t,k′ and ǫ
m
i,k ⊥ ǫmi,k′ for all t and k 6= k′

(ii) ǫhi,t,k ⊥ ǫhi,t′,k′ and ǫ
m
i,k ⊥ ǫmi,k′ for all t 6= t′ and all k and k′

(iii) ǫhi,t,k ⊥ hi,t′ and ǫ
m
i,k ⊥ mi for all t and t′ and all k

(iv) ǫhi,t,k ⊥ ǫhj,t,k and ǫmi,k ⊥ ǫmj,k for all k and for any family j different from family

i

(v) ǫhi,t,k , ǫmi,k ⊥ Xi, for all t and all k

Assumption 4 (i) is that measurement errors are independent contemporaneously

across measures. Assumption 4 (ii) is that measurement errors are independent over

time. Assumption 4 (iii) is that measurement errors in any period are independent

of the latent variables in any period. Assumption 4 (iv) that measurement errors

are independent between observations. Finally, assumption 4 (v) assures that errors

in measuring skills are independent of the observable characteristics of children and
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mothers. While these assumptions are strong, they are common in the current liter-

ature (see Cunha et al., 2010; Agostinelli and Wiswall, 2016a). Assumptions (i)–(v),

together with the specification in (B.1), guarantee the non-parametric identification

of the latent distribution. However, in this work, I consider a parametric model of skill

formation, hence each of the conditions in (i)–(v) can be relaxed to statements about

the zero correlation between the considered variables, instead of the full independence

conditions.

327



B.4 Proof of Theorem 4
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In this proof, I consider the two-period case. The four-period case follows by

the induction hypothesis. The proof is based on backward induction. The goal is

to show that for each period t, I can compute the policy functions for both parents

and children that solve the fixed point associated to the equilibrium conditions in

(3.4.5). For the purpose of exposition, I employ only the endogenous state variables

of the problem (h, H) and define the technology of skill formation in (3.4) as f(·).
1 Finally, the proof is executed for the case of log utility (γ3 = γ5 = 1) and perfect

substitution between parents and peers (α4 = 1). This parametric case is the harder

case to prove an existence of a fixed point through Tarski’s fixed point theorem, and

this is because of the non-trivial preservation of monotonicity and supermodularity

in the value function. Any other case where either utility function is more convex or

the technology provides higher complementarity between endogenous inputs follows

by construction. Hence, by proving that this case admits a fixed point, I prove that

a fixed point exists for any other admissible parameterization of the model .

• Last period case (t = T ):

During the last period, children decide their own peer-solving problem (3.6)

based on their current level of skills. Parents observe the realization of their

child’s network formation and then make their last investment decision. No

equilibrium conditions here are necessary, since during the next period, no chil-

dren’s network is formed. In other words, during the last period, the equilibrium

policy functions to solve the two (parent’s and child’s) decision problems. The

associated last period value function for parent i is:

1For clarity and without loss of generality, I ignore all the exogenous variables which are irrelevant
for the equilibrium analysis, such as the mother’s skills and the family’s characteristics.
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V P
T (hi,T , H i,T ) =

((
τ − I∗T (hi,T , H i,T )

)
· wi,T + yi,T

)γ1
+ (γ2 + α1) log(hi,T )

+ β γ4log
(
α3I

∗

T (hi,T , H i,T ) + (1− α3)H i,T

)
(B.2)

Lemma 2 The value function V P
T (hi,T , H i,T ) is monotone, increasing in both

arguments and supermodular.

Proof: It is easy to show that the policy function is monotone in both dimen-

sions (monotone increasing in the first argument and decreasing in the second

argument). Hence, the value function clearly has monotone increasing in the

first argument. Additionally, because of the homothetic preferences, the overall

peer effects H on children’s skills is positive, e.g., the change (decrease) of the

policy function due to higher H does not dominate the initial change in H. 2

Hence, the value function is also increasing with the peer effects. To show that

the value is supermodular, consider the derivative of V P
T with respect to hi,T :

∂V P
T (hi,T , H i,T )

∂hi,T
≡ γ2 + α1

hi,T
(B.3)

where equation (B.3) is derived applying the principle of optimality. Given equa-

tion (B.3) is independent of Hi,T , it follows trivially that V P
T is supermodular

in (hi,T , H i,T ).

• First period case (t = T − 1):

In order to solve the parent’s problem and child’s problem differently (remember

that parents take a child’s decision regarding the next period’s network forma-

tion as a given), let us define h̃i,t+1 as the skills that children care about once

2This can be proved through the comparative statics of the problem, using the concavity of utility
over consumption and children’s skills.
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they decide upon their friends in the next period. Parents take h̃i,t+1 as a given

– that is, they think the process of the formation of peer groups is independent

of their investment decisions. In this case, the parent’s problem is:

V P
T−1(hi,T−1, H i,T−1 ; h̃i,T ) =

max
Ii,T−1∈[0 , τ ]

((τ − Ii,T−1) · wi,T−1 + yi,T−1)
γ1 + γ2 hi,T−1+

β E

[
V P
T

(
hi,T (Ii,T−1) , H i,T (h̃i,T )

) ∣∣∣∣h̃i,T
]

(B.4)

where H i,T (h̃i,T ) is the stochastic mapping about the next period’s peer effects

H i,T given h̃i,T . Given the empirical evidence on children’s social interactions,

I consider the case when this mapping is stochastically ordered in h̃i,T ,

E

[
H i,T (h̃i,T )

∣∣∣∣h̃i,T
]
≤ E

[
H i,T (h̃i,T ’)

∣∣∣∣h̃i,T ’
]

if h̃i,T < h̃i,T ’,

which means that the higher the child’s skills, the higher the probability of

becoming friends with higher-skilled children. The fix-point problem here comes

from the equilibrium consistency conditions, which require that the endogenous

network formation is consistent with the parental decisions about the child’s

development. In other words, in the equilibrium path, I am imposing that the

optimal level of children’s skills decided by the parents are the same level of

skills governing the network-formation decision

h̃i,T = h∗i,T .

To show that this fix point has a solution, I am applying standard results in

the dynamic lattice programming literature.
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Lemma 3 Under Lemma 2, there exists a policy function IT−1(·) which solves

the equilibrium fix-point problem in (B.4).

Proof: This result follows directly from Tarski’s fixed point theorem. The con-

tinuation value is both increasing and supermodular in the two endogenous vari-

ables (individual endogenous children’s skills and peers’ skills). The stochastic

process governing the network formation stochastically ascends with respect to

the children’s skills, and the choice set is a complete lattice.

The Markovian equilibrium of the model is defined as the sequence of the policy

functions solves each of the two periods’ equilibrium problems.
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B.5 Indirect Inference

333



Part of the selected moments in the estimation procedure includes coefficients of

auxiliary regressions. In particular, I consider separate auxiliary models to analyze the

parental investments and the dynamics of skills. The first set of coefficients consider

parental investments as the dependent variable in the following linear regression

Ii,s,t = β0 + β1 lnhi,s,t + β2 lnH i,s,t +X ′

iβ3 + βs + ui,s,t , (B.5)

where Ii,s,t is the parental investment (as fraction of time) for parent of child i, in

school s when she is t years old, which is recovered through a latent factor model

(see Section 3.5.1) using data on parental engagement described in previous section.

The child’s skills are defined as hi,s,t , while H i,s,t is the mean of her peers’ skills. Xi

is a vector of child and parents’ exogenous characteristics, which includes race, age

fixed-effects, lagged family income and mother’s skills. Finally, βs is the school fixed

effects. The coefficients of interests are related to how parental investments respond

to changes in child skills (β1) and peers’ skills (β2). In the estimation procedure, I

include as targeted moments the parameters in (B.5), for both the school fixed-effects

estimator, as well as for the IV estimator explained in Section 3.3.4.

Additionally, I consider an auxiliary model of skill dynamics, where the next period

skills are the dependent variable of the following regression

lnhi,s,t+1 = βh0 + βh1 lnhi,s,t + βh2 lnH i,s,t + βh3 ln Ii,s,t +X ′

iβ
h
4 + βhs + uhi,s,t , (B.6)

where (βh0 , β
h
1 , β

h
2 , β

h
3 ) are the specific auxiliary parameters I selected as targeting

moments for estimation. They represent respectively the elasticity of the next period

skills with respect to the stock of current skills, the peers’ skills and the parental

investments. Xi is a vector of child and parents’ exogenous characteristics, which
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includes race, age fixed-effects, lagged family income and mother’s skills. Finally, βs

is the school fixed effects. The estimated distribution of school fixed-effects are used

in the estimation as the school quality distributions in the model.
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Chapter C

SUPPLEMENTARY MATERIAL FOR CHAPTER 3
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C.1 Additional Tables
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Table C.1: First Stage Estimates – Full Set of Individual Controls

Combined Math-Reading Behavior Problems Index

∆Income ∆Hours Worked ∆Income ∆Hours Worked

(1) (2) (3) (4)

∆EITC 1.026** 1.481*** 1.101** 1.488***

(0.488) (0.282) (0.482) (0.280)

LabDemShocks 1.659*** 0.322* 2.067*** 0.245

(0.395) (0.186) (0.405) (0.178)

Male 0.185 -0.006 0.134 -0.012

(0.279) (0.119) (0.288) (0.110)

Age -0.155** -0.007 -0.109** -0.020

(0.064) (0.028) (0.052) (0.024)

No siblings 0.053 0.024 -0.181 0.045

(0.533) (0.240) (0.481) (0.212)

Two or more sibling 0.079 -0.070 0.128 0.021

(0.397) (0.163) (0.406) (0.152)

Black -2.728*** -0.441** -2.624*** -0.393**

(0.447) (0.180) (0.417) (0.171)

Hispanic -2.087*** -0.342* -1.782*** -0.312*

(0.525) (0.205) (0.522) (0.189)

SW Chi-sq. (Under id) 13.21 14.40 21.89 20.57

P-value 0.00 0.00 0.00 0.00

SW F (Weak id) 13.19 14.38 21.86 20.54

P-value 0.00 0.00 0.00 0.00

KP (Weak id) 6.42 6.42 10.43 10.43

Observations 12,288 12,288 13,777 13,777

Notes: This table shows the estimates for both our first stage models. Dependent variable: ∆

Income (columns 1 and 3), and ∆Hours worked (columns 2 and 4). Columns (1) and (2) refer to the

estimating sample used for the analysis of child cognitive development (combined Math-Reading test

score). Columns (3) and (4) consider the estimating sample used for the analysis of child behavioral

development (Behavior Problems Index, BPI). For each analysis, the two endogenous variables are:

changes in income (∆Income) and changes in maternal hours worked (∆Hours). The two instrumental

variables are: changes in EITC benefits (∆EITC) and labor demand shocks (LabDemShocks). Income

and the EITC are measured in $1,000 of year 2000 dollars. Hours worked are yearly hours and expressed

in hundreds. All models include a third order Taylor polynomial expansion of predicted income as a

control function (see equation 4.7). One sibling is the reference category for child’s number of siblings.

White is the reference category for child’s race. Standard errors are clustered at the family level and

reported in parentheses. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level,

respectively.
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Table C.2: Changes in EITC Schedule, Labor Demand Shocks, and Spouse Labor

Supply

Combined Math-Reading Behavior Problems Index

∆Hours Worked Spouse ∆Hours Worked Spouse

(1) (2)

∆EITC 0.402 0.788

(0.661) (0.644)

LabDemShocks 0.166 0.098

(0.204) (0.192)

Observations 7,726 8,845

Notes: This table shows the estimates for our analysis of changes in spouse labor

supply. Dependent variable: ∆Hours worked by the spouse. Column (1) refers to

the estimating sample used for the analysis of child cognitive development (combined

Math-Reading test score). Column (2) considers the estimating sample used for the

analysis of child behavioral development (Behavior Problems Index, BPI). The two

instrumental variables are: changes in EITC benefits (∆EITC) and labor demand

shocks (LabDemShocks). Income and the EITC are measured in $1,000 of year 2000

dollars. Hours worked by the spouse are yearly hours and expressed in hundreds. All

models include a third order Taylor polynomial expansion of predicted income as a

control function (see equation 4.7). All models also include controls for child’s age,

gender, race, and number of siblings. Standard errors are clustered at the family level

and reported in parentheses. *, **, *** indicate statistical significance at the 10%, 5%,

and 1% level, respectively.
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Table C.3: Income, Hours Worked, and Child Test

Scores – Full Set of Individual Controls

Combined Math-Reading

OLS IV

(1) (2)

∆Income 0.001* 0.044***

(0.000) (0.015)

∆Hours worked 0.000 -0.060**

(0.001) (0.024)

Male 0.024** 0.017

(0.010) (0.017)

Age 0.001 0.008*

(0.003) (0.005)

No siblings -0.001 -0.006

(0.020) (0.032)

Two or more sibling -0.026** -0.028

(0.012) (0.022)

Black -0.156*** -0.057

(0.014) (0.041)

Hispanic -0.076*** -0.009

(0.016) (0.035)

Observations 12,288 12,288

Notes: This table shows the estimates for our analysis of

child cognitive development. Dependent variable: Com-

bined Math-Reading test score. Column (1) reports the

OLS estimates. Column (2) shows the IV estimates. The

two instrumental variables are: changes in EITC benefits

(∆EITC) and labor demand shocks (LabDemShocks). In-

come is measured in $1,000 of year 2000 dollars. Hours

worked are yearly hours and expressed in hundreds. All

models include a third order Taylor polynomial expansion

of predicted income as a control function (see equation 4.7).

One sibling is the reference category for child’s number of

siblings. White is the reference category for child’s race.

Standard errors are clustered at the family level and re-

ported in parentheses. *, **, *** indicate statistical signif-

icance at the 10%, 5%, and 1% level, respectively.
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Table C.4: Income, Hours Worked, and Child Be-

havior – Full Set of Individual Controls

Behavior Problems Index

OLS IV

(1) (2)

∆Income 0.000 0.013

(0.000) (0.009)

∆Hours worked -0.001 -0.052**

(0.001) (0.022)

Male -0.016 -0.018

(0.011) (0.013)

Age 0.010*** 0.011***

(0.003) (0.003)

No siblings 0.026 0.027

(0.020) (0.023)

Two or more sibling 0.002 0.005

(0.013) (0.015)

Black -0.008 0.010

(0.015) (0.028)

Hispanic 0.023 0.031

(0.016) (0.022)

Observations 13,777 13,777

Notes: This table shows the estimates for our analysis of

child behavioral development. Dependent variable: Behav-

ior Problems Index (BPI). Column (1) reports the OLS esti-

mates. Column (2) shows the IV estimates. The two instru-

mental variables are: changes in EITC benefits (∆EITC)

and labor demand shocks (LabDemShocks). Income is

measured in $1,000 of year 2000 dollars. Hours worked are

yearly hours and expressed in hundreds. All models include

a third order Taylor polynomial expansion of predicted in-

come as a control function (see equation 4.7). One sibling is

the reference category for child’s number of siblings. White

is the reference category for child’s race. Standard errors

are clustered at the family level and reported in parenthe-

ses. *, **, *** indicate statistical significance at the 10%,

5%, and 1% level, respectively.
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Table C.5: Baseline Estimates with State Trends

Combined Math-Reading Behavior Problems Index

OLS IV OLS IV

(1) (2) (3) (4)

∆Income 0.001* 0.041*** 0.000 0.008

(0.000) (0.010) (0.000) (0.006)

∆Hours worked 0.000 -0.056** -0.001 -0.049**

(0.001) (0.022) (0.001) (0.020)

First Stage Tests (Income/Hours):

SW Chi-sq. (Under id) 23.54/19.32 40.98/25.72

P-value 0.00/0.00 0.00/0.00

SW F (Weak id) 23.41/19.21 40.77/25.60

P-value 0.00/0.00 0.00/0.00

KP (Weak id) 10.30 15.38

Observations 12,288 12,288 13,777 13,777

Notes: This table shows the estimates for the analysis of cognitive and behavioral development

with a state fixed effects specification. Dependent variable: Combined Math-Reading test

score (columns 1–2), and Behavior Problems Index (BPI) (columns 3–4). Income and EITC

are measured in $1,000 of year 2000 dollars. Hours worked are yearly hours and expressed in

hundreds. All models include state fixed effects and a third order Taylor polynomial expansion

of predicted income as a control function (see equation 4.7). All models also include state fixed

effects, as well as controls for child’s age, gender, race, and number of siblings. Standard errors

are clustered at the family level and reported in parentheses. *, **, *** indicate statistical

significance at the 10%, 5%, and 1% level, respectively.
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Table C.6: Baseline Estimates with Controls for School Financial and Economic

Resources

Combined Math-Reading Behavior Problems Index

OLS IV OLS IV

(1) (2) (3) (4)

∆Income 0.001* 0.042*** 0.000 0.012

(0.000) (0.014) (0.000) (0.009)

∆Hours worked 0.000 -0.057** -0.001 -0.051**

(0.001) (0.023) (0.001) (0.022)

∆Total revenues (per pupil) 0.003 -0.002 0.002 0.006

(0.012) (0.020) (0.013) (0.015)

∆Total public expenditure (per pupil) 0.012 -0.016 0.021 -0.006

(0.022) (0.044) (0.023) (0.032)

First Stage Tests (Income/Hours):

SW Chi-sq. (Under id) 14.58/15.60 23.45/21.03

P-value 0.00/0.00 0.00/0.00

SW F (Weak id) 14.56/15.58 23.41/21.00

P-value 0.00/0.00 0.00/0.00

KP (Weak id) 7.08 11.05

Observations 12,255 12,255 13,735 13,735

Notes: This table shows the estimates for the analysis of cognitive and behavioral development

when we control for per-pupil school resources by state. Dependent variable: Combined Math-

Reading test score (columns 1–2), and Behavior Problems Index (BPI) (columns 3–4). Family

income, the EITC, the total revenues per pupil, and the total expenditure per pupil are measured

in $1,000 of year 2000 dollars. Hours worked are yearly hours and expressed in hundreds. The

total revenues per pupil are the total revenues from all sources divided by the fall membership

as reported in the state finance file. The total current expenditure per pupil is the total current

expenditure for public elementary and secondary education divided by the fall membership as

reported in the state financial file. Data about revenues and expenditures are from the CDD Na-

tional Public Education Financial Survey. All models also include controls for child’s age, gender,

race, and number of siblings. Standard errors are clustered at the family level and reported in

parentheses. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Table C.7: Common Pre-trends between La-

bor Demand Shocks and Child Development

Combined Behavior

Math-Reading Problems Index

(1) (2)

LabDemShocks (t+ 1)

F-stat. 6.11 0.12

P-value 0.01 0.73

LabDemShocks (t+ 2)

F-stat. 0.70 0.38

P-value 0.40 0.54

LabDemShocks (t+ 3)

F-stat. 1.35 0.61

P-value 0.25 0.43

LabDemShocks (t+ 1),(t+ 2)

F-stat. 0.47 0.23

P-value 0.63 0.80

LabDemShocks (t+ 1),(t+ 2),(t+ 3)

F-stat. 0.81 1.50

P-value 0.49 0.21

Notes: This table is based on the analysis of the

effect of future labor demand shocks on current

cognitive and behavioral development. The table

shows the F-statistic and the relative significance of

the coefficients for future labor demand shocks. In

cases with multiple variables for future labor demand

shocks, we jointly test the significance of labor de-

mand shocks. Dependent variable: Combined Math-

Reading test score (column 1), and Behavior Prob-

lems Index (BPI) (column 3). Each specification con-

tains controls for EITC benefits (∆EITC) and labor

demand shocks (LabDemShocks). In addition, each

model also contains variables for future labor demand

shocks as explained in each panel header. All models

include a third order Taylor polynomial expansion of

predicted income as a control function (see equation

4.7). All models also include controls for child’s age,

gender, race, and number of siblings. Standard er-

rors are clustered at the family level and reported

in parentheses. *, **, *** indicate statistical signifi-

cance at the 10%, 5%, and 1% level, respectively.

344



Table C.8: Baseline Estimates Excluding Movers Across States

Combined Math-Reading Behavior Problems Index

OLS IV OLS IV

(1) (2) (3) (4)

∆Income 0.001** 0.052*** 0.000 0.010

(0.000) (0.020) (0.000) (0.010)

∆Hours worked 0.000 -0.069** -0.000 -0.053**

(0.001) (0.030) (0.001) (0.024)

Observations 11,707 11,707 13,087 13,087

Notes: This table shows the estimates for the analysis of cognitive and behavioral

development once we exclude observations with changes in state of residence in two

consecutive periods. Dependent variable: Combined Math-Reading test score (columns

1–2), and Behavior Problems Index (BPI) (columns 3–4). Income and EITC are mea-

sured in $1,000 of year 2000 dollars. Hours worked are yearly hours and expressed in

hundreds. All models include a third order Taylor polynomial expansion of predicted

income as a control function (see equation 4.7). All models also include controls for

child’s age, gender, race, and number of siblings. Standard errors are clustered at the

family level and reported in parentheses. *, **, *** indicate statistical significance at

the 10%, 5%, and 1% level, respectively.
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Table C.9: Time Allocation to Child Care, Mother’s Hours Worked, and Family

Income

Physical Help with Read & Other Total

Child Care Homework Play Child Care Child Care

(1) (2) (3) (4) (5)

Income -0.001 0.003 -0.001 0.002 0.002

(0.002) (0.002) (0.003) (0.004) (0.006)

Hours worked (per week) -0.007** -0.014*** -0.011*** -0.028*** -0.060***

(0.003) (0.003) (0.004) (0.005) (0.008)

Observations 3,183 3,183 3,183 3,183 3,183

Notes: This table shows the OLS estimates for the analysis of parental time investment in the child using

data from the American Time Use Survey (ATUS) and the American Heritage Time Use Survey (AHTUS).

Dependent variable: Physical Child Care (column 1), Help with Homework (column 2), Read and Play

(column 3), Other Child Care (column 4), and Total Child Care (column 5). Time investment is measured in

hours per week. Income is measured in $1,000 of year 2003 dollars. Hours worked are weekly hours worked.

All models include controls for single-head household, mother’s age, child’s age, mother’s education, number

of siblings. All models also include year fixed effects. Standard errors are in parentheses. *, **, *** indicate

statistical significance at the 10%, 5%, and 1% level, respectively.
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C.2 The Child Development Supplement
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In Table C.10 we show the variables construction process used to analyze the

Child Development Supplement (CDS). We focus on the first wave of the CDS, the

so-called CDS-I, collected in 1997.
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Table C.10: CDS – Variables Construction

Original Variable

Original Definition Answers Definition

(1) (2) (3)

Encourage hobbies Family encourages hobbies Yes, No Yes=1

Physical affection Shown physical affection 1-350 1-350

(times past week)

Parenting class pre-birth Take parenting classes Yes, No Yes=1

before child’s birth

Parenting class Never take parenting Yes, No No=1

classes

Never cared by others Child’s age when 0-10 Never=1

first cared by others

Use of rules Family with lots of rules Lots, Not many Lots=1

or not very many rules

How often...

Control who the child is with Control which children your N, S, SM, O, VO O, VO=1

child spend time with

Control activities after school Control how child spends N, S, SM, O, VO O, VO=1

time after school

Set homework time Set a time for homework N, S, SM, O, VO O, VO=1

Reaction to grades lower than expected:

Contact faculty Contact teacher/principal U, SU, NS, SL, L SL, L=1

Closer eye on activities Closer eye on child’s U, SU, NS, SL, L L=1

activities

Lecture a child Lecture the child U, SU, NS, SL, L SL, L=1

Tell child to work harder Tell the child to spend U, SU, NS, SL, L L=1

more time on homework

Help with schoolwork Increase time helping U, SU, NS, SL, L L=1

the child with schoolwork

Full home Full home scale 7-27 7-27

Cognitive stimulation Cognitive stimulation 2-14 2-14

subscale

Emotional support Emotional support 2-14 2-14

subscale

Parental warmth Parental warmth 1-5 1-5

subscale

Time diaries (in seconds)

School Student, attending classes 0-86,400 0-86,400

TV TV use 0-86,400 0-86,400

Electronic games Electronic video games use 0-86,400 0-86,400

Art, sculpture Art, arts and crafts, 0-86,400 0-86,400

Books Reading or looking at books 0-86,400 0-86,400

Visiting others, socializing Socializing with people 0-86,400 0-86,400

outside own household

Note: This table shows variable definitions from the CDS-I data set used in Section 4.5.4. In the table the

following abbreviations are used: (i) N: Never, S: Seldom, SM: Sometimes, O: Often, VO: Very often; (ii)

U: Not at all likely, SU: Somewhat unlikely, NS: Not sure how likely, SL: Somewhat likely, L: likely. Refer

to the text and the CDS-I User Guide Supplement for further details about the original and the constructed

variables.
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