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ABSTRACT  

   

Technology advancements in diagnostic imaging, smart sensing, and health information 

systems have resulted in a data-rich environment in health care, which offers a great 

opportunity for Precision Medicine. The objective of my research is to develop data fusion 

and system informatics approaches for quality and performance improvement of health 

care. In my dissertation, I focus on three emerging problems in health care and develop 

novel statistical models and machine learning algorithms to tackle these problems from 

diagnosis to care to system-level decision-making.  

The first topic is diagnosis/subtyping of migraine to customize effective treatment to 

different subtypes of patients. Existing clinical definitions of subtypes use somewhat arbitrary 

boundaries primarily based on patient self-reported symptoms, which are subjective and error-

prone. My research develops a novel Multimodality Factor Mixture Model that discovers 

subtypes of migraine from multimodality imaging MRI data, which provides complementary 

accurate measurements of the disease. Patients in the different subtypes show significantly 

different clinical characteristics of the disease. Treatment tailored and optimized for patients 

of the same subtype paves the road toward Precision Medicine.  

The second topic focuses on coordinated patient care. Care coordination between nurses 

and with other health care team members is important for providing high-quality and efficient care 

to patients. The recently developed Nurse Care Coordination Instrument (NCCI) is the first of 

its kind that enables large-scale quantitative data to be collected. My research develops a novel 

Multi-response Multi-level Model (M3) that enables transfer learning in NCCI data fusion. 

M3 identifies key factors that contribute to improving care coordination, and facilitates the 
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design and optimization of nurses’ training, workload assignment, and practice environment, 

which leads to improved patient outcomes.  

The last topic is about system-level decision-making for Alzheimer’s disease early 

detection at the early stage of Mild Cognitive Impairment (MCI), by predicting each MCI 

patient’s risk of converting to AD using imaging and proteomic biomarkers.  My research 

proposes a systems engineering approach that integrates the multi-perspectives, including 

prediction accuracy, biomarker cost/availability, patient heterogeneity and diagnostic 

efficiency, and allows for system-wide optimized decision regarding the biomarker testing 

process for prediction of MCI conversion.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Technology advancements in diagnostic imaging, smart sensing, and health 

information systems have resulted in a data-rich environment in health care. It is now 

possible to track every piece of information related to a patient’s diagnosis, treatment, and 

care. This offers a great opportunity for Personalized Medicine (PM), i.e., to offer the right 

medical decision-making to the right person at the right time. On the other hand, the size 

and complexity of the data overwhelms the modeling capability of existing statistical 

methods.  

The objective of my research is to develop data fusion and system informatics 

approaches for quality and performance improvement of healthcare system from diagnosis 

to care to system-level decision-making. In my dissertation, I focus on three emerging 

problems in health care and develop novel statistical models driven by the unique data 

structure and objectives of the specific problem domains. The three topics are (I) 

multimodality imaging data fusion and novel latent variable models for subtype discovery 

of migraine, (II) multi-source multi-level system-wide data fusion and novel transfer 

learning models for improving nurse care coordination and patient outcomes, and (III) 

Systems engineering approach for biomarker testing process optimization and Alzheimer’s 

disease early intervention.  

The three topics cover a full spectrum of decision makings in health care ranging 

from diagnosis (I), to care (II), and to process optimization (III). The objective of my 

dissertation research is not only to provide solutions to each of the three individual 
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problems, but also to demonstrate that advanced statistical and machine learning 

development integrated with domain knowledge through collaboration with medical 

professionals shows great promise for tackling challenging issues at different levels of the 

complex health care system.  

1.2 Summary of Research Topics and State of the Art 

Topic (I): Multimodality imaging data fusion and novel latent variable models for 

subtype discovery of migraine. Migraine is a neurological disease that ranks in the top 20 of 

the world’s most disabling medical illnesses. Over 10% of the population suffers from 

migraine and nearly 1 in 4 U.S. households includes someone with migraine. Treatment of 

migraine has not achieved much success because of not being tailored to different subtypes 

of the disease. Current clinical definitions of subtypes use somewhat arbitrary boundaries 

primarily based on patient self-reported symptoms, which are subjective and error-prone. 

Diagnostic structural MRI provides complementary, accurate multimodality measurements 

of the disease (Nan et al., 2013; Ung et al., 2012; Sundermann et al., 2014; Schwedt et al., 

2015; Chong et al., 2016). However, the existing imaging-based migraine research is 

supervised, i.e., it aims to find structural imaging biomarkers to differentiate migraine from 

healthy controls. However, it is known that there is substantial heterogeneity among 

patients with migraine. Also, even for patients that are diagnosed as having migraine, the 

clinical diagnostic criteria are symptom-based and use somewhat arbitrary boundaries 

developed by expert consensus. As a result, it is possible that patients with different 

outcomes or prognostications are lumped together. This inability to delineate patient 

heterogeneity leaves clinicians with inadequate information for early determination of the 
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most appropriate, personalized treatment strategy (i.e. more aggressive therapy vs. 

conservative therapy), and prevents them from accurately predicting functional outcomes 

for individual patients. To address this limitation of the existing research, I propose a 

multimodality factor mixture model (MFMM) for migraine subtype discovery.   

Topic (II): Multi-source multi-level data fusion and novel statistical models for 

improving nurse care coordination. Care coordination has been found to be instrumental 

for decreasing adverse events, improving quality and efficiency of care, and enhancing 

patient satisfaction (McDonald et al., 2007; Sticker et al., 2009). In coordinating patient 

care within the hospital, staff nurses, as the patient’s “ever-present” health care team 

members, play a vital role. In “Keeping Patients Safe”, a recent report by the Institute of 

Medicine, the role of staff nurses in care coordination that promotes patient safety and 

quality outcomes was highlighted. Recent qualitative studies illuminated the considerable 

amount of time staff nurses spend coordinating patient care via a broad range of activities 

from admission to discharge (Hendrich et al., 2008; Lamb et al., 2008; Aiken et al., 2008; 

Friese, 2008; Kazanjian et al. 2005; Laschinger et al. 2006). However, little research is 

available to reveal the relationship between the care coordination activities conducted by 

nurses and their demographics and workload as well as the characteristics of their practice 

environment. Such research is important for nursing process improvement and designing 

of the best practices. The recently developed Nurse Care Coordination Instrument (NCCI) 

is the first of its kind that enables quantitative data to be collected to measure various 

aspects of nurse care coordination (Lamb et al., 2008). Driven by this new development, 

we propose a multi-response multilevel model with joint fixed effect selection and joint 
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random effect selection across multiple responses. The proposed model is a combination 

of conventional multilevel models and modern variable selection techniques. Various 

variable selection techniques have been proposed in recent years, including lasso 

(Tibshirani, 1996), group lasso (Yuan et al., 2006), CAP (Zhao et al., 2009), just to name 

a few.  However, these methods are for single-level predictors; there is much less research 

in the multilevel setting. There are a few existing efforts in introducing variable selection 

in the multilevel setting (Schelldorfer et al., 2011; Ibrahim et al., 2011; Bondell et al., 2010; 

Ahn et al., 2012). However, these methods are for a single response only. In all, there is a 

lack of research in multi-response multilevel models with variable selection in the existing 

literature, which motives my research development. 

Topic (III): Imaging biomarker testing process optimization for prognostics of 

Mild Cognitive Impairment (MCI) conversion to AD.  Important to early detection and 

prevention of AD is the use of biomarkers to precisely predict the conversion of MCI to 

AD within a clinical time of interest. According to the new diagnostic guidelines 

recommended by the National Institute on Aging and the Alzheimer’s Association (1), the 

important biomarkers include those measuring A𝛽 deposition in plagues and those linked 

to downstream neuronal degeneration or injury processes, such as the phosphorylated tau 

(p-tau) level in cerebrospinal fluid (CSF), mean cerebral metabolism on 18F 

fludeoxyglucose positron emission tomography (FDG-PET), and hippocampal volume on 

structural magnetic resonance imaging (MRI). There has been a vast amount of studies 

aiming at using biomarker data to predict the conversion of MCI patients to AD (Borroni 

et al., 2006; Davatzikos et al., 2011; Hinrichs et al., 2011; Jack et al., 2005; Llano et al., 
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2011; Misra et al., 2009; Stoub et al., 2004; Tondelli et al., 2012; Westman et al., 2011). A 

particular area of study with clear clinical relevance is to achieve this prediction 

using baseline biomarker measurements (Davatzikos et al., 2011; Hinrichs et al., 2011; 

Llano et al., 2011; Misra et al., 2009). Although using longitudinal repeated measurements 

of the same biomarkers has a potential to improve the prediction accuracy, this prolongs 

the diagnostic time span and makes clinical trials more time consuming and costly. In using 

baseline biomarkers to predict MCI conversion, most of the existing studies built statistical 

classification models that assign each MCI patient to be a converter or non-converter using 

a pre-trained model. The accuracy on large public datasets like the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) has been reported to be between 60-72%. The existing 

studies have several limitations, including unsatisfactory accuracy due to MCI 

heterogeneity, use of conventional classification models that require biomarkers to be 

measured all at once instead of sequentially and as-needed, and use of raw numerical 

measurement of the biomarkers instead of discretized levels that are more robust to 

measurement errors and provide convenience for clinical utilization. To tackle these 

limitations, we propose a novel sequence tree-based classifier (STC) for predicting the 

conversion of MCI to AD. 

1.3 Expected Original Contribution 

The expected original contributions include: 

 We propose a multimodality factor mixture model (MFMM) for migraine 

subtype discovery. MFMM adopts a latent variable formulation that assumes 

there are latent variables of a much lower dimension underlying the observed 
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features of each modality and joins the modality-wise latent variables in a 

unified framework for identifying the cluster structure of a patient cohort. 

MFMM employs a novel double- 𝐿21 -penalized likelihood formulation to 

achieve hierarchical selection of informative imaging modes and features. This 

formulation is proven to satisfy a Quadratic Majorization (QM) condition that 

allows for an efficient Group-wise Majorization Descent (GMD) algorithm to 

be developed for model estimation. Simulation studies are performed and show 

significantly better performance of MFMM than competing methods. MFMM 

is applied to migraine subtype discovery based on brain cortical area, cortical 

thickness, and volume measurements from structural magnetic resonance 

imaging (MRI). Two migraine subtypes are found, whose subjects significantly 

differ in clinical characteristics. This finding shows promise of using imaging 

data to help with patient stratification and with development of biomarkers for 

personalized management of migraine.  

 We propose a novel multi-response multilevel model with joint fixed effect 

selection and joint random effect selection across multiple responses to reveal 

the relationship between the care coordination activities conducted by nurses 

and their demographics and workload as well as the characteristics of their 

practice environment. This model is particularly suitable for modeling the 

unique data structure of the NCCI due to its ability of jointly modeling of 

multilevel predictors, including demographic and workload variables at the 

individual/nurse level and characteristics of the practice environment at the unit 
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level, and multiple response variables that measure the key components of nurse 

care coordination. We develop a Block Coordinate Descent (BCD) algorithm 

integrated with an Expectation-Maximization (EM) framework for model 

estimation, and perform theoretical analysis to reveal the reason why the 

proposed model is able to outperform the existing multilevel method that 

models each response variable in separation. Asymptotic properties of the 

proposed model are derived. Simulation studies are performed, showing that 

the proposed model outperforms competing methods. We apply the proposed 

model to a dataset collected across four U.S. hospitals using the NCCI. Our 

model achieves a significantly higher prediction accuracy compared with 

competing methods and also facilitates knowledge discovery. 

 We propose a novel sequence tree-based classifier (STC) for predicting the 

conversion of MCI to AD. Different from conventional classification models, 

STC achieves a sequential, as-needed use of biomarkers and a three-category 

classification (high-risk converter, low-risk converter, and inconclusive 

diagnosis) by finding an optimal sequence of biomarkers and two-sided cutoffs 

of each biomarker that satisfy pre-specified accuracy requirements while 

minimizing the proportion of inconclusive diagnosis. STC is also a personalized 

approach as it allows patient characteristic variables to be included to help 

identify patient-specific cutoffs for each biomarker. We apply STC to two 

important clinical applications using the data from the worldwide Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) project: prediction of MCI conversion 
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and patient selection for AD-related clinical trials. In the first application, STC 

achieves high prediction accuracy. It also allows multiple criteria, e.g., accuracy 

and efficiency, to be optimized using a Pareto optimal frontier. Compared with 

the conventional decision tree classifier, STC achieved higher PPV and NPV, 

saved biomarker testing costs and patient waiting time, facilitated timely 

medical decision making, and produced a model that is consistent with medical 

knowledge and biological principles and thus being clinically more trust-

worthy. In the other application, STC is able to identify a sub-cohort of MCI 

subjects with a high risk to convert to AD. The sub-cohort has a reasonable size 

appropriate for clinical trials.  

1.4 Dissertation Organization 

The proposed dissertation research will be presented in three chapters, followed by 

the conclusion in Chapter 5, as shown in Figure 1. Chapter 2 presents the development 

of topic (I): multimodality imaging data fusion and novel latent variable models for 

migraine subtype discovery. Chapter 3 presents the development of topic (II): multi-source 

multi-level data fusion and novel statistical models for improving nurse care coordination. 

Chapter 4 presents the development of topic (III): imaging biomarker testing process 

optimization for prognostics of MCI conversion to AD. Chapter 5 summarizes the 

dissertation with conclusion remarks and discussions on future work.  
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Figure 1 Dissertation framework 
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CHAPTER 2 

A MULTI-MODE FACTOR MIXTURE MODEL WITH HIERARCHICALLY-

STRUCTURED SPARSITY FOR IMAGING-BASED MIGRAINE SUBTYPE 

DISCOVERY 

2.1 Introduction 

Medical imaging technology has revolutionized health care over the past 30 years by 

greatly facilitating screening, early diagnosis, treatment planning, evaluation of response 

to therapy, and prognosis. That is why the New England Journal of Medicine ranked 

imaging as one of the top medical developments over the past 1,000 years. With the rapid 

advances in imaging technology, it is now possible to acquire imaging of different modes 

for the same patient. These modes consist of complementary information about the organ 

of interest, thus enabling better medical decision making.  

Medicine is experiencing a paradigm shift toward precision medicine (PM), a shift that 

facilitates individualized patient evaluation and administration of precise treatment to the 

right patient at the right time. Imaging data from multiple modes plays a pivotal role in PM. 

For PM to succeed, it is critically important that subtle differences amongst patients with a 

disease be identified, especially if those differences are associated with prognoses and 

treatment responses. Multi-mode imaging data are likely to contribute to this subgroup/ 

subtype discovery (Giardino et al. 2017).   

Subtypes exist for almost every complicated disease. Clinical definitions of subtypes 

are typically determined using somewhat arbitrary boundaries developed by expert 

consensus. These definitions, however, are generally inadequate for explaining the 
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considerable heterogeneity among patients in terms of prognosis and response to treatment. 

For example, migraine is a neurological disease that ranks in the top 20 of the world’s most 

disabling medical illnesses. Approximately 12% of the population suffers from migraine 

and nearly 1 in 4 U.S. households includes someone with migraine. The current clinical 

subtype classification of migraine is based on the International Classification of Headache 

Disorders 3 beta (ICHD-3 beta) criterion, according to which migraine is sub-classified 

into episodic vs. chronic migraine based on headache frequency and into migraine with 

aura vs. migraine without aura. Although this subtype classification can explain the patient 

heterogeneity to some extent, a large amount of the heterogeneity is left unexplainable, i.e., 

the patients within the same subtype can still have significantly different disease course, 

prognosis, and response to treatment. This is a strong indication that there may be 

undiscovered subtypes. Similar frustration exists for other diseases especially those that 

are either extremely fatal or currently lack effective disease management strategies for 

individual patients, such as Alzheimer’s disease (Komarova et al. 2011), Parkinson’s 

disease, (van Rooden et al. 2010), and Type-II diabetes (Li et al. 2015). If subtypes of these 

diseases could be more accurately identified, a focus on homogeneous groups would 

enhance the likelihood of success for understanding the underlying disease mechanisms 

and lead to tailored treatment strategies. This would pave the road toward PM in which 

medical care is designed to optimize diagnosis, prognosis and therapeutic benefit for each 

particular group of patients or even individual patients.  

The focus of this research is to develop a data-driven method for subtype identification 

using imaging data of multiple modes. A method like this belongs to the general category 



12 

 

of clustering or unsupervised learning methods in statistics. However, there are multifold 

challenges in developing a clustering method appropriate for our specific focus on multi-

mode data: 1) There can be quite a few modes of data used in a study and some of them 

may be uninformative to the differentiation of subtypes. These modes should be 

automatically selected out such that they will not mask the underlying clustering structure. 

We would like to point out that the proposed method can be easily extendable to including 

non-imaging data of different modes such as patient demographics, disease history, clinical 

symptoms, and genetic signatures. This would lead to a more comprehensive discovery of 

subtypes, but with a greater likelihood for including uninformative/noise modes. This 

makes the ability of mode selection critically important. 2) Within each mode, it is 

commonplace that there are many features and some of them may be uninformative to the 

differentiation of subtypes. These features should be selected out.  

To address these challenges, we propose a novel clustering method called Multi-mode 

Factor Mixture Model (MFMM) that enables an automatic, hierarchical selection of 

informative imaging modes and features. Here, “hierarchical selection” means that if a 

mode is uninformative, all the features it includes should be excluded; feature selection 

happens in the imaging modes that remain. This research contributes to both statistics and 

medicine: 

 Contribution to statistics: MFMM intersects with several existing research areas 

in statistics, such as sparse learning, model-based clustering, and factor models, but none 

of these areas has a method that is capable of clustering data from multiple modes with 

hierarchical mode and feature selection. In this sense, MFMM is the first of its kind. 
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Specifically, we propose a novel double-𝐿21-penalized likelihood formulation for MFMM 

to achieve mode and feature selection. We prove that this formulation satisfies a Quadratic 

Majorization (QM) condition such that an efficient Group-wise Majorization Descent 

(GMD) algorithm can be developed to estimate the MFMM, which greatly speeds up the 

Expectation-Maximization (EM) iterations.   

 Contribution to medicine: We applied MFMM to identification of potential 

subtypes of migraine by clustering subjects using their brain cortical area, cortical thickness, 

and volume measurements (treated as three modes) from structural Magnetic Resonance 

Imaging (MRI). Data were obtained from two medical institutions, Mayo Clinic at Arizona 

(MCA) and Washington University School of Medicine in St. Louis (WashU). MFMM 

found two clusters that are very well separated, indicating that subjects in the clusters have 

distinct imaging phenotypes. The imaging features selected by MFMM to produce the 

clustering result are well-documented in the literature to relate to migraine. Interestingly, 

we found that the two clusters also significantly differ in terms of clinical characteristics, 

with one cluster having more allodynia symptoms during migraine attacks, more migraine-

related disability, and a greater number of years with migraine. In essence, this study 

contributes to understanding of migraine heterogeneity from an imaging perspective. The 

finding that the identified imaging subtypes were associated with distinct clinical 

characteristics shows promise of using imaging subtypes to help stratify patients and to 

serve as biomarkers for personalized management of migraine.  
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The rest of this paper is organized as follows: Section 2.2 provides a literature review. 

Section 2.3 presents the development of MFMM. Section 2.4 shows simulation 

experiments. Section 2.5 presents the migraine application. Section 2.6 is conclusion.  

2.2 Literature Review 

The proposed method intersects with a number of existing research areas. Next, we 

will review them one by one and point out their limitations, which highlights the need for 

new methodological development.  

Sparse learning (SL): SL models (a.k.a. variable selection techniques) started to 

emerge a few decades ago, driven by the technological improvement on human genomic 

sequencing that produced high-dimensional genomic data, with the classic Least Absolute 

Shrinkage and Selection Operator (LASSO) model developed by Tibshirani in 1996 

(Tibshirani 1996). The basic idea of LASSO is a 𝐿1-penalized least squares method that 

results in the estimates of many irrelevant regression coefficients to be exactly zero. The 

following years have witnessed a booming development of SL models with different 

structural considerations or/and statistical properties, such as adaptive LASSO (Zou 2006), 

SCAD (Fan et al. 2001), elastic net (Zou et al 2005), group LASSO (Yuan et al. 2006), 

fused LASSO (Tibshirani et al. 2005), tree-guided LASSO (Kim et al. 2012), just to name 

a few. However, all these existing models are supervised learning methods, i.e., they aim 

to predict a response variable while our focus here on subtype discovery requires an 

unsupervised/clustering method.  

Model-based clustering (MBC): Clustering analysis is a classic research area in 

statistical modeling and machine learning. Clustering methods generally fall into two 
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categories: algorithm-based and model-based methods. The first category includes many 

methods such as hierarchical clustering, k-means, and more recently developed DBSCAN 

(Ram et al. 2010) and OPTICS (Ankerst et al. 1999) algorithms for big data. These 

algorithms are largely heuristic and not based on formal models. This is not necessarily a 

disadvantage since clustering, by nature, is exploratory. On the other hand, MBC methods 

are based on formal models, making it possible to study statistical properties and perform 

inferences (Melnykov et al. 2010). MBC methods assume that sample observations arise 

from a distribution that is a mixture of several components (i.e., the clusters) and each 

component can be described by a probability density function and has an associated 

probability or weight in the mixture. In principle, any probability model for the components 

can be adopted, while a multivariate Gaussian distribution is the most common.  

In recent years, sparse learning has been introduced into MBC. The basic idea of 

sparse MBC is to maximize the log-likelihood function of the mixture model subject to a 

penalty that is chosen to yield sparsity in the features. For example, Pan and Shen (Pan et 

al. 2007) assumed that the cluster-wise covariance matrix was diagonal and the same, and 

imposed a 𝐿1-penalty on the cluster-wise mean vectors. Xie et al. (Xie et al. 2008) proposed 

a more general approach that allowed for cluster-specific diagonal covariance matrices and 

penalized the variances together with the means.  Wang and Zhu (Wang et al. 2008) 

proposed two models that allowed for the cluster-specific mean parameters associated with 

the same feature to be penalized as a group. Raftery and Dean (Raftery et al. 2006) recast 

the feature selection problem as a model selection problem by comparing models 

containing nested subsets of features and making sure the nested models are sparse in 
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features. Witten and Tibshirani (Witten et al. 2010) developed a general framework for 

feature selection in MBC, and showed that k-means and hierarchical clustering can be 

represented as special cases of this framework with sparsity constraints. This work bridged 

algorithm-based and model-based clustering methods.  

For clustering of high-dimensional datasets, one approach is the above-reviewed 

sparse MBC. An alternative approach assumes that the observed high-dimensional features 

lie on a low-dimensional latent space, which is the idea of factor models. For clustering of 

imaging data, factor models are more appropriate than sparse MBC, because imaging 

features typically embrace a complex correlation structure, suggesting the existence of 

latent factors. For example, the imaging features used in our migraine application 

correspond to anatomically defined brain regions that are structurally and functionally 

related.  

Factor models: Earlier research adopts a two-step strategy in which a dimension 

reduction method such as Principal Component Analysis (PCA) and Correspondence 

Analysis (CA) is first used and clustering is then performed on the reduced space. However, 

treating dimension reduction and clustering as two separate steps may destroy the cluster 

structure in the data, as pointed out by Raftery (Raftery et al. 2006). More recent research 

developed the so-called factor mixture models (FMM). FMM is an extension of the classic 

factor analysis (FA). FA assumes that the sample observations are from a single 

distribution and aims at discovering the latent factors underlying the observed features. In 

contrast, FMM assumes that the factors are distributed as a mixture model and therefore 

represents a clustering approach. Different FMM models were developed based on 
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different assumptions on the mixture distribution (Lubke et al. 2005, Muthen et al. 2006, 

Montanari et al. 2010, Baek et al. 2010): Some assume only varying component means; 

some additionally assume the component covariance matrices to be different. Muthen and 

Lubke (Lubke et al. 2005) presented different strategies for integrating covariates in FMM 

with a notation that the heterogeneity in the observed features is caused by not only the 

factor mixture structure but also by covariates.  

FMM has been extensively used for subtype discovery of various diseases. For 

example, Lubke et al. (Lubke et al. 2007) used FMM to discover subtypes for Attention-

Deficit/Hyperactivity Disorder using behavioral data collected by a parent questionnaire. 

Rainbow et al. (Ho et al. 2014) applied FMM to find subtypes of breast cancer-related 

fatigue using fatigue symptom data. Pattyn et al. (Pattyn et al. 2015) used FMM to identify 

panic disorder subtypes on a broad range of anxiety symptoms. Litpon et al. (Lipton et al. 

2014) used FMM to identify migraine subtypes based on a broad collection of symptom 

measurements. However, the existing FMM models are essentially a single-mode approach, 

i.e., they forces all features to share the same latent factors even when the features are 

indeed from distinct modes (e.g., cortical area, thickness, and volume in the migraine 

application). This is not biologically valid and may lead to poor clustering performance 

because it destroys the inherent data structure. Also, the existing FMM does not have the 

ability for mode and feature selection. 

2.3 Development of MFMM 

2.3.1 MFMM Formulation  
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Consider 𝑀  modes of imaging data and let 𝒙𝑚  contain mean-centered features 

belonging to the 𝑚-th mode, 𝑚 = 1,… ,𝑀. Consider 𝒙𝑚 generated from low-dimensional 

factors 𝒇𝑚, i.e.,  

𝒙𝑚 = 𝐇𝑚𝒇𝑚 + 𝐁𝑚𝒛 + 𝜺𝑚                                           (2.1) 

𝒛 contains patient-specific covariates such as sex and age. 𝜺𝑚 contains random errors that 

follow a zero-mean Gaussian distribution with covariance matrix 𝚿𝑚 . 𝐇𝑚  and 𝐁𝑚  are 

coefficient matrices. In factor models, 𝐇𝑚 is also known as the loading matrix.  

Furthermore, let 𝒔 = (𝑠1, … , 𝑠𝐾)
𝑇 contain indicator variables for 𝐾 subtypes of a 

disease. 𝑠𝑘 = 1 if the patient has the 𝑘-th subtype and 0 otherwise. 𝒔 follows a multinomial 

distribution, i.e.,  

𝑓(𝒔) = 𝑓(𝑠1, … , 𝑠𝐾) =  ∏ (𝑤𝑘)
𝑠𝑘𝐾

𝑘=1 ,                             (2.2) 

where 𝑤𝑘 is the probability of the 𝑘-th subtype. 𝒔 is linked with the latent factors 𝒇𝑚 by 

𝒇𝑚  = 𝐀𝑚𝒔 + 𝝃𝑚.                                                  (2.3) 

𝐀𝑚is a coefficient matrix and 𝝃𝑚 contains random errors that follow a zero-mean Gaussian 

distribution with covariance matrix 𝚺𝑚. 𝐚𝑚,𝑘 is the 𝑘-th column of 𝐀𝑚, representing the 

mean value of 𝒇𝑚|𝑠𝑘 = 1. It is clear from (2.3) that the multiple imaging modes are 

coupled together through the shared latent subtype variables 𝒔.  

Put all the parameters into a set 𝚯 , i.e., 𝚯 = {{𝚯𝑚}𝑚=1
𝑀 , 𝒘} , where 𝚯𝑚 =

{𝐇𝑚, 𝐁𝑚, 𝐀𝑚, 𝚿𝑚, 𝚺𝑚} and 𝒘 = (𝑤1, … , 𝑤𝐾)
𝑇. We can write the complete log-likelihood 

function as: 

𝑙(𝚯) = ∑ {∑ 𝑙𝑜𝑔 (𝑓(𝒙𝑚,𝑖|𝒇𝑚,𝑖 , 𝒛𝑖; 𝚯))
𝑀
𝑚=1 +∑ 𝑙𝑜𝑔 (𝑓(𝒇𝑚,𝑖|𝒔𝑖; 𝚯))

𝑀
𝑚=1 + 𝑙𝑜𝑔(𝑓(𝒔𝑖; 𝚯))}

𝑁
𝑖=1 , (2.4) 
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where 𝑁  is the sample size; 𝒔  follows a multinomial distribution as shown in (2.2); 

𝒇𝑚,𝑖|𝒔𝑘,𝑖 = 1~𝑁(𝐚𝑚,𝑘 , 𝚺𝑚)  based on (2.3);  𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖~𝑁(𝐇𝑚𝒇𝑚,𝑖 + 𝐁𝑚𝒛𝑖, 𝚿𝑚) 

according to (2.1).  

Because (2.4) involves latent variables, we could use an EM algorithm to estimate 

the parameters. However, this approach does not consider that some modes or some 

features within a mode may be uninformative to the differentiation of subtypes. To help 

eliminate uninformative modes and features, we propose to add two 𝐿21-penalties to (2.4), 

which results in the following optimization problem: 

min 
𝚯
− 𝑙(𝚯) + 𝜆1∑ ∑ ‖𝐡𝑚

𝑗
‖
2

𝑃𝑚
𝑗=1

𝑀
𝑚=1 + 𝜆2∑ ‖𝐀𝑚‖2

𝑀
𝑚=1 .             (2.5) 

𝐡𝑚
𝑗

 is the 𝑗-the row of 𝐇𝑚. ‖∙‖2 is the 𝐿2-norm of a vector or matrix. 𝜆1 and 𝜆2 are penalty 

parameters. It is well-known that an 𝐿21-penalty is able to zero out all the coefficients 

within the ‖∙‖2 as a group (Yuan, M. et al. 2006). Because of this property, the proposed 

MFMM in (2.5) can eliminate uninformative features hierarchically. That is, MFMM uses 

∑ ‖𝐀𝑚‖2
𝑀
𝑚=1  to eliminate uninformative modes (i.e., features of an uninformative mode 

will be eliminated altogether), and uses ∑ ∑ ‖𝐡𝑚
𝑗
‖
2

𝑃𝑚
𝑗=1

𝑀
𝑚=1  to eliminate uninformative 

features within a mode. In this way, MFMM achieves both efficiency and flexibility. To 

see this more clearly, we can insert (2.3) into (2.1) and obtain the distribution of features 

𝒙𝑚 for the 𝑘-th subtype, i.e.,  

𝒙𝑚|𝑠𝑘 = 1~𝑁(𝐇𝑚𝐚𝑚,𝑘 + 𝐁𝑚𝒛,   𝐇𝑚𝚺𝑚𝐇𝑚
𝑇 +𝚿𝑚).                  (2.6) 

𝐚𝑚,𝑘 is the 𝑘-th column of 𝐀𝑚. (2.6) indicates that the distributions of 𝒙𝑚 for different 

subtypes differ in their means, because 𝐚𝑚,𝑘 is subtype-specific. If 𝐀𝑚 = 𝟎, i.e., 𝐚𝑚,𝑘 = 𝟎 
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for all subtypes, then the distribution of 𝒙𝑚 is the same regardless of the subtypes, i.e., all 

the features in 𝒙𝑚 are uninformative. Furthermore, given that 𝐀𝑚 ≠ 𝟎, if 𝐡𝑚
𝑗
= 𝟎, then the 

distribution of the 𝑗-th feature in 𝒙𝑚 is the same regardless of the subtypes, i.e., this feature 

is uninformative.  

Finally, to ensure model identifiability, we impose the following constraints to the 

MFMM: 

𝐸(𝒇𝑚) = 𝟎  and (𝒇𝑚) = 𝐈 . 

𝐈 is an identify matrix of an appropriate size.  

2.3.2 MFMM Estimation by EM Integrated with an Efficient GMD Alogorithm 

2.3.2.1 The EM Framework  

Because MFMM involves latent variables, we can adopt the EM framework for 

model estimation. Let {𝐗𝑚}𝑚=1
𝑀  be a dataset for the features of 𝑀 modes. Let {𝐅𝑚}𝑚=1

𝑀  and 

𝐒 be the missing data for the latent factors and subtype indicators. Also let 𝑔(𝚯) denote the 

objective function in (2.5). In the E-step, we will need to derive the expectation of 𝑔(𝚯) 

with respect to the conditional distribution of {𝐅𝑚}𝑚=1
𝑀 , 𝐒 given {𝐗𝑚}𝑚=1

𝑀  and the current 

estimate �̃�, i.e.,  

{𝐅𝑚}𝑚=1
𝑀 ,𝐒 |{𝐗𝑚}𝑚=1

𝑀 ;�̃�(𝑔(𝚯))  

 = {∑ ∑ 𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;�̃�(− log 𝑓(𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖; 𝚯))
𝑀
𝑚=1

𝑁
𝑖=1 + 𝜆1∑ ∑ ‖𝐡𝑚

𝑗
‖
2

𝑃𝑚
𝑗=1

𝑀
𝑚=1 } +

      {∑ ∑ 𝐸𝒇𝑚,𝑖,𝒔𝑖|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log 𝑓(𝒇𝑚,𝑖|𝒔𝑖; 𝚯))
𝑀
𝑚=1

𝑁
𝑖=1 + 𝜆2∑ ‖𝐀𝑚‖2

𝑀
𝑚=1 } +

       ∑ 𝐸𝒔𝑖|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log 𝑓(𝒔𝑖; 𝚯))
𝑁
𝑖=1 .                                                                            (2.7) 
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Please see Appendix I for explicit forms of the expectations in (2.7) and detailed 

derivations to get them. In the M-step, we minimize (2.7) and obtain an updated estimate 

for 𝚯, i.e.,  

𝚯∗ = 𝑎𝑟𝑔min 
𝚯
𝐸{𝐅𝑚}𝑚=1𝑀 ,𝐒 |{𝐗𝑚}𝑚=1

𝑀 ;�̃�(𝑔(𝚯)).                         (2.8) 

The two steps will iterate until convergence. A nice property of MFMM is that it allows 

the optimization in (2.8) to be decomposed into separate sub-optimization problems each 

with a smaller set of parameters to estimate, i.e.,   

𝐇𝑚
∗ , 𝐁𝑚

∗ = argmin
𝐇𝑚,𝐁𝑚

∑ 𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;�̃�(− log 𝑓(𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖; 𝚯))
𝑁
𝑖=1 + 𝜆1∑ ‖𝐡𝑚

𝑗
‖
2

𝑃𝑚
𝑗=1 ,          (2.9) 

{𝐀𝑚
∗ }𝑚=1

𝑀 = argmin 
{𝐀𝑚}𝑚=1

𝑀
   ∑ ∑ 𝐸𝒇𝑚,𝑖,𝒔𝒊|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log𝑓(𝒇𝑚,𝑖|𝒔𝑖;𝚯))

𝑀
𝑚=1

𝑁
𝑖=1 + 𝜆2∑ ‖𝐀𝑚‖2

𝑀
𝑚=1 ,      (2.10) 

𝑤𝑘
∗ =

∑ 𝑓(𝑠𝑘,𝑖=1|𝒙1,𝑖,…,𝒙𝑀,𝑖;�̃�)
𝑁
𝑖=1

∑ ∑ 𝑓(𝑠𝑘,𝑖=1|𝒙1,𝑖,…,𝒙𝑀,𝑖;�̃�)
𝐾
𝑘=1

𝑁
𝑖=1

, 𝑘 = 1,… , 𝐾, 

𝚿𝑚
∗ = 𝑑𝑖𝑎𝑔 (

1

𝑁
(∑ (𝒙𝑚,𝑖 − 𝐁𝑚

∗ 𝒛𝑖)(𝒙𝑚,𝑖 − 𝐁𝑚
∗ 𝒛𝑖)

𝑇𝑁
𝑖=1 − (∑ (𝒙𝑚,𝑖 − 𝐁𝑚

∗ 𝒛𝑖)𝐸 ((𝒇𝑚,𝑖)
𝑇
|𝒙𝑚,𝑖; �̃�)

𝑁
𝑖=1 ) (𝐇𝑚

∗ )𝑇)),  

𝚺𝑚
∗ =

∑ ∑ 𝑓(𝑠𝑘,𝑖=1|𝒙1,𝑖,…,𝒙𝑀,𝑖;�̃�)(𝐸(𝒇𝑚,𝑖 (𝒇𝑚,𝑖)
𝑇
|𝒙1,𝑖,… , 𝒙𝑀,𝑖, 𝑠𝑘,𝑖 = 1; �̃�)−𝐚𝑚,𝑘∗ (𝐚𝑚,𝑘

∗ )
𝑇
)𝑁

𝑖=1
𝐾
𝑘=1

∑ 𝑓(𝑠𝑘,𝑖=1|𝒙1,𝑖,…,𝒙𝑀,𝑖;�̃�)
𝑁
𝑖=1

, 

 = 1,… ,𝑀. Except (2.9) and (2.10), all other parameters can be estimated analytically. 

Therefore, the key to speeding up the EM iterations is to develop an efficient algorithm to 

solve the optimization problems in (2.9) and (2.10).  

2.3.2.2 The GMD Algorithm 

The optimization problem in (2.9) or (2.10) involves an 𝐿21-penalty (a.k.a. group-

lasso penalty). Classic approaches for solving 𝐿21 -penalized optimization include the 

block-wise descent (BD) algorithm (Yuan et al. 2006), block coordinate gradient descent 

algorithm (BCGD) (Meier et al. 2008), and Nesterov’s method (Liu et al. 2009). However, 
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these approaches are computationally slow. Recently, Yang and Zou (Yang et al. 2015) 

developed an efficient GMD algorithm that is 5~10 times faster than the classic algorithms. 

To apply GMD, the optimization problem must satisfy a QM condition. In what follows, 

we will first present the definition of the QM condition, then prove that the optimization 

problems in (2.9) and (2.10) satisfy the QM condition, and finally derive the GMD 

algorithm used to solve (2.9) and (2.10).  

Definition 1 (QM condition): Let 𝐃  denote a dataset and 𝜷  denote 𝑝 -dimensional 

parameters to be estimated in a minimization problem. 𝜷  is partitioned into 𝐽  groups, 

𝜷
(1)
, … ,𝜷

(𝐽)
. The minimization takes the form of  

argmin
𝜷

𝐿(𝜷|𝐃) + 𝜆∑ ‖𝜷
(𝑗)
‖
2

𝐽
𝑗=1 .                                    (2.11)  

(2.11) satisfies the QM condition if and only if the following two assumptions hold: 

(i) 𝐿(𝜷|𝐃) is differentiable as a function of 𝜷, i.e., ∇𝐿(𝜷|𝐃) exists everywhere.  

(ii) There exists a 𝑝 × 𝑝 matrix 𝚲, which may only depend on the data 𝐃, such that 

for all 𝜷, 𝜷∗,   

𝐿(𝜷|𝐃) ≤ 𝐿(𝜷∗|𝐃) + (𝜷 − 𝜷∗)𝑇∇𝐿(𝜷∗|𝐃) +
1

2
(𝜷 − 𝜷∗)𝑇𝚲(𝜷 − 𝜷).  (2.12) 

Proposition 1: The minimization problem in (2.9) satisfies the QM condition.  

Proposition 2: The minimization problem in (2.10) satisfies the QM condition.  

Please see the proof of Proposition 1 in Appendix II. The proof of Proposition 2 

follows a similar idea so it is skipped due to space limit. Because the QM condition is 

satisfied, GMD can be used to solve (2.9) and (2.10). Next, we briefly describe the GMD 
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algorithm:  In step (𝜔 + 1) of the algorithm, we want to update the 𝑗-th group in 𝜷(𝜔) 

while keeping the other groups unchanged, i.e.  

𝜷(𝜔+1) − 𝜷(𝜔) = (0,…0, (𝜷(𝑗)
(𝜔+1)

− 𝜷(𝑗)
(𝜔)
)
𝑇

⏟              
𝑗−th group

, 0, … 0)

𝑇

. 

According to the QM condition in (ii), we can get following inequality:  

𝐿(𝜷(𝜔+1)|𝐃) ≤ 𝐿(𝜷(𝜔)|𝐃) + (𝜷(𝑗)
(𝜔+1)

− 𝜷(𝑗)
(𝜔)
)
𝑇

∇𝐿(𝑗) +
1

2
(𝜷(𝑗)

(𝜔+1)
− 𝜷(𝑗)

(𝜔)
)
𝑇

𝚲(𝒋) (𝜷(𝑗)
(𝜔+1)

− 𝜷(𝑗)
(𝜔)
), (2.13) 

where ∇𝐿(𝑗) and 𝚲(𝑗)  are sub-matrices of ∇𝐿(𝜷(𝜔)|𝐃) and 𝚲 only including the rows and 

columns corresponding to the 𝑗-th group. Furthermore, let 𝜏𝑗 be the largest eigenvalue of 

𝚲(𝑗) and set 𝜌𝑗 = (1 + 10
−6)𝜏𝑗. Then, (2.13) can be further relaxed as  

𝐿(𝜷(𝜔+1)|𝐃) ≤ 𝐿(𝜷(𝜔)|𝐃) + (𝜷(𝒋)
(𝜔+1)

− 𝜷(𝒋)
(𝜔)
)
𝑇

∇𝐿(𝑗) +
1

2
𝜌𝑗 (𝜷

(𝑗)(𝜔+1) − 𝜷(𝑗)
(𝜔)
)
𝑇

(𝜷(𝑗)
(𝜔+1)

− 𝜷(𝑗)
(𝜔)
), (2.14) 

where the inequality strictly holds unless 𝜷(𝑗)
(𝜔+1)

= 𝜷(𝑗)
(𝜔)

. Using (2.14), we can solve 

the optimization in (2.11) by solving 

argmin  
𝜷(𝑗)

(𝜔+1)
 𝐿(𝜷(𝜔)|𝐃) − (𝜷(𝑗)

(𝜔+1)
− 𝜷(𝑗)

(𝜔)
)
𝑇

∇𝐿(𝑗) −
1

2
𝜌𝑗 (𝜷

(𝑗)(𝜔+1) − 𝜷(𝑗)
(𝜔)
)
𝑇

(𝜷(𝑗)
(𝜔+1)

− 𝜷(𝑗)
(𝜔)
) +  𝜆 ‖𝜷(𝑗)

(𝜔)
‖
2
,  

(2.15) 

which has an analytical solution, i.e.,  

𝜷(𝑗)∗
(𝜔+1)

=
1

𝜌𝑗
(−∇𝐿(𝑗) + 𝜌𝑗𝜷

(𝑗)(𝜔)) (1 −
 𝜆

‖−∇𝐿(𝑗)+𝜌𝑗𝜷
(𝑗)
(𝜔)
‖
2

)

+

. (2.16) 

This greatly reduces the computational time for solving the optimization problem. Also, 

this algorithm is guaranteed to converge (proof is skipped).  

2.3.2.3 Model Selection 
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The numbers of subtypes and factors as well as the penalty parameters can be 

selected according to a model selection criterion that balances the model fit and complexity. 

The former is measured by the log-likelihood of the observed data, 𝑙, while the latter is 

given by the degree of freedom, 𝑑𝑓, that counts the number of non-zeros in the estimated 

parameters. There are various criteria to combine the fit and complexity in the literature, 

among which we found BIC works well in our simulation and real data experiments. BIC 

takes the form of −2𝑙 + 𝑙𝑜𝑔(𝑁) × 𝑑𝑓. Finally, once a model that minimizes the BIC has 

been identified, each subject/sample 𝑖 will be classified to a cluster for which the posterior 

probability of belonging to that cluster, i.e., 𝑃(𝑠𝑘,𝑖 = 1|𝒙1,𝑖, … , 𝒙𝑀,𝑖;𝚯
∗), is maximized.  

2.4 Simulation Studies 

We generate simulation data to assess the performance of MFMM and compare it 

with competing methods. Consider 120 subjects who have one of two subtypes for a disease. 

The probability of each subtype is 𝑤1 = 0.4 and 𝑤2 = 0.6. This means that among the 120 

patients, 48 have subtype 1 and 72 have subtype 2. Furthermore, suppose there are four 

imaging modes with two factors in each mode. In order to demonstrate the capability of 

MFMM in identifying informative or eliminating uninformative modes, we assume that 

the first two modes have a two-cluster structure corresponding to the two subtypes while 

the other two modes do not so they are uninformative modes. To accomplish this, we set 

the cluster-wise factor means of each mode according to Table 1. The factor means differ 

between two clusters in mode 1 and 2, but not in mode 3 and 4. We set the covariance 

matrices of the four modes according to (2.17), which do not differ between two clusters: 

𝚺1 = (
1 0.1
0.1 1

),  𝚺2 = (
1 0.1
0.1 1

), 𝚺3 = 𝐈, and 𝚺4 = 𝐈.                    (2.17) 
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Also, we consider three patient-specific covariates that are sampled from 𝑁(0,1). Once the 

data for the factors and covariates are generated from the aforementioned distributions, we 

proceed to generate the features using (2.1). The number of features is set to be 40 in each 

mode. In order to demonstrate the capability of MFMM in identifying informative or 

eliminating uninformative features within each mode, we assume that 10 features have a 

two-cluster structure corresponding to the two subtypes while the other 30 do not so they 

are uninformative features. To accomplish this, we set the coefficient matrices 𝐇𝑚 in (2.1) 

to be 

𝐇𝑚 = (
�̃�10×2
𝟎30×2

), 

with each element of �̃� generated as follows: Generate a number from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1, 1.5], 

which is used as the magnitude of the element. To decide the sign of the element, generate 

another number from 𝑁(0,1). If this number is greater than -0.5, create a positive sign; 

otherwise, create a negative sign. Finally, we sample the random errors 𝛆𝑚 in (2.1) from 

𝑁(𝟎, 0.1 × 𝐈).  

Table 1: Factor means of each cluster/subtype within each mode 

Modes Clusters/subtypes 

𝑘 = 1 𝑘 = 2 

𝑚 = 1 𝐚1,1 = (1,1)
𝑇 𝐚1,2 = (−1,−1)

𝑇 

𝑚 = 2 𝐚2,1 = (0.75,0.75)
𝑇 𝐚2,2 = (−0.75,−0.75)

𝑇 

𝑚 = 3 𝐚3,1 = (0,0)
𝑇 𝐚3,2 = (0,0)

𝑇 

𝑚 = 4 𝐚4,1 = (0,0)
𝑇 𝐚4,2 = (0,0)

𝑇 

 

MFMM is applied to the simulation data. The experiment is repeated for 20 times. 

The two informative modes are correctly selected in 18 out of the 20 experiments, resulting 
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in 90% accuracy for mode selection by MFMM. Furthermore, to evaluate the feature 

selection accuracy of MFMM within each mode, we compute the sensitivity (i.e., the 

percentage of features with truly non-zero coefficients that are selected) and specificity 

(i.e., the percentage of features with truly zero coefficients that are not selected) of each 

experiment. Table 2 shows the average and standard deviation of sensitivity and specificity 

over all the experiments for each mode. These results show that MFMM achieves high 

accuracies in mode and feature selection.  

Table 2: Sensitivity and specificity of feature selection by MFMM (average ± standard 

deviation over all experiments) 

 Mode 1 Mode 2 Mode 3 Mode 4 

Feature selection 

sensitivity (%) 

100 ± 0 100 ± 0 100 ± 0 100 ± 0 

Feature selection 

specificity (%) 

92.8 ± 5.1 95.2 ± 4.1 93.3 ± 5.4 93.8 ± 4.5 

 

Furthermore, we compare MFMM with several completing methods, which are 

methods people would typically adopt if MFMM were not available. One competing 

approach is to apply conventional FMM on one mode at a time; the other is to apply FMM 

on pooled features from all the modes. For a fair comparison with MFMM, we add feature 

selection to FMM using an 𝐿21-penality, calle gFMM hereafter, and use BIC to select the 

penalty parameter. Because the ultimate performance measure for a clustering algorithm is 

its accuracy in discovering the true clustering structure, we compare the clustering accuracy 
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of the competing methods with MFMM. Figure 2 shows the overall clustering accuracy of 

each method, defined as the percentage of subjects correctly classified to their ground-truth 

subtypes. For the first completing approach of applying gFMM on each mode alone, we 

only show the results of mode 1 and 2, because the accuracies of mode 3 and 4 (i.e., the 

uninformative modes) are poor. It can be seen that MFMM achieves an overall accuracy 

of 90.8% ± 10.7%, which is significantly higher than the competing methods in Figure 2 

whose accuracies are 66.4% ± 13.2%, 60% ± 0%, and 61.6% ± 7.3%, respectively (p 

values < 0.001).  

 

Figure 2: Clustering accuracy of MFMM in comparison with three competing methods 

2.5 Application in Migraine Subtype Discovery from Multi-mode Imaging Data 

2.5.1 Data Collection and Image Processing 

The data used for this application were obtained from MCA and WashU through our 

clinical collaborators. A total of 120 subjects were included in this analysis. Migraine was 

diagnosed in accordance with the diagnostic criteria defined by the International 

Classification of Headache Disorders (Tibshirani 1996). Data collected from all subjects 

included demographics such as age and sex, and clinical characteristics and symptoms 
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measured through a number of instruments such as Beck Depression Inventory (BDI), 

State-Trait Anxiety Inventory (STAI), Allodynia Symptom Checklist 12 (ASC-12), 

Migraine Disability Assessment (MIDAS), Hyperacusis Questionnaire, Photosensitivity 

Assessment Questionnaire, together with a few individually measured key symptom 

variables such as headache frequency, number of years with migraine, and aura status.  

Structural MRI data were obtained from two Siemens 3T MRI machines. Details of 

the MRI acquisition were described in prior publications (Schwedt et al. 2017, Schwedt et 

al. 2015). Using a cortical reconstruction and segmentation program in the FreeSurfer 

image analysis suite (version 5.3, http://www.surfer.nmr.mgh.harvard.edu/), cortical area, 

thickness, and volume measurements of 68 Region of Interests (ROIs) were extracted. In 

our study, cortical area, cortical thickness, and volume are treated as three modes. Within 

each mode, 34 features correspond to ROIs at the right brain hemisphere, while the other 

34 correspond to same-name ROIs at the left hemisphere. Our analysis found no difference 

in the clustering structure between using 68 features in each mode and using 34 by 

averaging the features at the left and right hemispheres corresponding to the same-name 

ROI. Therefore, we will only present the result for the latter situation in this paper.  

2.5.2 Data Augmentation with Nuisance Modes and Features 

A challenge in applying any clustering method to real data is that the ground-truth 

clustering structure is unknown. This prohibits rigorous performance assessment for the 

clustering result using accuracy metrics like what can be done in a simulation study. On 

the other hand, this is what makes a clustering method appealing because it can lead to new 

discovery to extend the boundary of the existing knowledge in a domain. In this paper, we 

http://www.surfer.nmr.mgh.harvard.edu/
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design our study in a way that allows for performance assessment. Specifically, we add 

artificially generated nuisance modes and features to the real modes and features, apply 

MFMM to the combined data, and examine if MFMM is able to identify the real modes 

and features. In a prior study (Schwedt et al. 2017), we applied a non-penalized version of 

MFMM to the same dataset and found all three modes and 34 features within each mode 

to be relevant to a two-cluster (subtype) structure. This result was validated with the 

medical knowledge of our clinical collaborators and the existing literature of migraine 

studies. Therefore, the three modes are treated as real modes and 34 features as real features 

in the present study.  

To add nuisance modes and features, we employ the following steps: First, we add 68 

nuisance features �̃�𝑚 to each real mode, which are generated by 

�̃�𝑚 = 𝟎68×1𝒇𝑚 + �̃�𝑚𝒛 + �̃�𝑚, 𝑚 = 1,2,3.                               (2.18) 

(2.18) takes the same form as (2.1) with 𝐇𝑚 = 𝟎68×1 because nuisance features are not 

supposed to have any clustering structure. To make the distribution of nuisance data as 

close as possible to the real data, we do not give the coefficient matrix �̃�𝑚 arbitrarily but 

sample each row of �̃�𝑚 with replacement from the rows of 𝐁𝑚. Although the true 𝐁𝑚 is 

unknown, we have a reliable estimate �̂�𝑚  from a previous study that applied a non-

penalized version of MFMM to the real dataset (Schwedt et al. 2017). Similarly, we sample 

�̃�𝑚  from 𝑁(𝟎, �̂�𝑚), where �̂�𝑚  is from the previous study. Furthermore, we add three 

nuisance modes each having 34+68=102 features that match the size of augmented real 

modes. The features in a nuisance mode are generated by 

�̃̃�𝑚 = �̃̃�𝑚�̃̃�𝑚 + �̃̃�𝑚𝒛 + �̃̃�𝑚, 𝑚 = 1,2,3,                                (2.19) 
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where each row of �̃̃�𝑚 is sampled with replacement from the rows of �̂�𝑚. Each of the first 

34 rows of �̃̃�𝑚 are sampled from the rows of �̂�𝑚 while the remaining 68 rows are all zeros. 

�̃̃�𝑚 is sampled from 𝑁(𝟎, �̂�𝑚). We sample �̃̃�𝑚 from 𝑁(0, 1) because nuisance modes are 

not supposed to have any clustering structure. Through this procedure, we create an 

augmented dataset of six modes (three real and three nuisance modes) and 102 features 

within each mode (34 real features in each real mode).  

2.5.3 Results from Application of MFMM  

We apply MFMM to the augmented data together with two patient-specific covariates, 

sex and age. All three real modes are correctly selected, resulting in 100% accuracy. Within 

the two real modes, the sensitivity and specificity of selecting out the real features is 100% 

and 96.6%, respectively. MFMM found two clusters/subtypes among the 120 subjects, 

each consisting of 53 and 67 subjects, respectively. Call these subtypes A and B hereafter. 

A total of seven factors (2, 3, 2 from cortical area, cortical thickness, and volume modes, 

respectively) are found to differentiate subtypes A and B. The correspondence between 

these factors and the imaging features is encoded in the estimated loading matrix �̂�𝑚 and 

is shown in Figure 3. A clear pattern is that the within each mode, loadings that reflect the 

contributions to the imaging features from one factor (i.e., bars of one color) are different 

from another factor (i.e., bars of another color). This indicates that there may be more than 

one biological underpinning underlying the observed imaging features, and thus supporting 

the validity of multiple factors found in each mode. Furthermore, we highlight the ROIs in 

each mode whose measurements most contribute to differentiation of the two subtypes in 
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Figure 4. These ROIs are those whose loading magnitudes are greater than the 80-th 

percentile of all the loadings estimated by the MFMM.  

 

Figure 3: Estimated loadings (y axis) that show the contribution of factors to original 

features (x axis) for (a) area, (b) thickness, and (c) volume. Loadings whose magnitudes 

are less than the 80-th percentile of all loadings are suppressed and represented by short 

bars for better visualization. 
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Figure 4: The ROIs whose (a) area, (b) thickness, or (c) volume measurements most 

contribute to differentiation of the two subtypes are color-highlighted on a 3-D reading of 

the brain. 

Next, we would like to see how well subjects with subtype A and B are separated in 

terms of the seven factors. Since it is impossible to visualize the separation on a seven-

dimensional space, we choose to visualize it mode by mode. Figure 5(a)-(c) plot the 

subjects in terms of the two, three, and two factors within area, thickness, and volume 

modes, respectively. Figure 5(d) plots the posterior probability of each subject being 

subtype B, which reflects the joint effect of the seven factors in separating subjects with 
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the two subtypes. These results demonstrate that all the factors in each mode and all three 

modes contribute to the subtype separation. Also, the two clusters are separated very well, 

as the vast majority of the subjects in each cluster have a high posterior probability of being 

in the cluster they are assigned to, as shown in Figure 5(d).  

 

Figure 5: Separation of subjects with subtype A (red) and B (blue) in terms of the 

factors in each mode and the posterior probability of cluster membership. 

Finally, we would like to see how the two imaging-defined subtypes differ in clinical 

characteristics and symptoms. We focus on a panel of variables including the number of 

headache days per month, number of years with migraine, aura status, MIDAS score, STAI 

score, BDI score, allodynia during and between migraine attacks, hyperacusis, and 
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photophobia. We perform hypothesis testing to compare subtypes A and B in terms of each 

variable. Three variables are found to have statistically significant subtype difference: 

migraine subjects with subtype A have a greater number of years with migraine (p value = 

0.01), more migraine-related disability as measured by the MIDAS score (p value = 0.04), 

and greater symptoms of allodynia during migraine attacks (p value = 0.03).  

2.5.4 Discussion on Medical Implications 

The main finding of this application was identification of two clusters (i.e., subtype A 

and B) of the study cohort based on structural MRI measurements of brain cortical area, 

cortical thickness, and volume. The two clusters significantly differ in a number of clinical 

characteristics including the number of years with migraine, allodynia during migraine 

attacks, and migraine-related disability. These clinical variables have been previously 

reported to relate to brain imaging findings in migraine. For example, a number of studies 

have shown that the number of years with migraine is associated with brain structure and 

function (Chong et al. 2016, Chong et al. 2015, Jin et al. 2013). In general, the longer a 

person has had migraine and the more attacks they have had, the greater the brain 

differences. Allodynia symptom severity was measured using the ASC-12, a questionnaire 

that collects information about cutaneous allodynia – the sensation of pain to normally non-

noxious stimulation of the skin (Lipton et al. 2008). Several imaging studies have 

demonstrated associations between brain structure and function with symptoms of 

allodynia (Moulton et al. 2008, Schwedt et al. 2014, Chong et al. 2016, Russo et al. 2016). 

Disability could be a marker for the severity of migraine symptoms as well as the person’s 

ability to cope with their migraine symptoms [Ford et al. 2008]. Migraine severity and 
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coping mechanisms could both associate with measures of brain structure and function. 

The structural measurements that differentiated the two clusters in this study were of brain 

regions that have previously been shown to be aberrant in migraine and/or in individuals 

who have allodynia. (Schwedt et al. 2014, Russo et al. 2016, Schwedt et al. 2015, 

Hadjikhani et al. 2013, Russo et al. 2012, Schwedt et al. 2014, Schwedt et al. 2015, Liu et 

al. 2012, Zhao et al. 2013, Mickleborough et al. 2016, Schmitz et al. 2008). Of note, the 

clusters did not differ for headache frequency or aura status – characteristics that are 

currently used to subtype migraine in the ICHD 3 beta. Further investigations are needed 

to determine if brain imaging based subtyping of migraine is superior to current 

classification in regards to prognosticating outcomes, predicting development of co-

morbidities, and predicting treatment responses, which important components of precision 

medicine. 

2.6 Conclusion 

In this paper, we proposed a new method, MFMM, for clustering multi-mode image 

data to enable subtype identification. MFMM employed a double-𝐿21-penalized likelihood 

formulation to enable imaging mode and feature selection. We developed an efficient GMD 

algorithm embedded in the EM framework to estimate the model parameters. We 

performed simulation experiments to compare MFMM with competing methods and found 

significantly better performance of MFMM in terms of mode selection accuracy, feature 

selection accuracy, and clustering accuracy. We applied MFMM to migraine subtype 

discovery based on brain cortical area, cortical thickness, and volume measurements from 

MRI. Two clusters/subtypes were found and well separated using a total of seven factors. 



36 

 

Subjects in the two clusters had significant different clinical characteristics. Findings from 

this study showed promise for imaging-based subtyping of migraine and patient 

stratification toward PM. 

There are a number of extensions for the current study. In terms of statistical 

modeling, MFMM could be extended to include mixed-type features. In terms of migraine, 

functional imaging data such as fMRI could be combined with the currently used structural 

MRI for subtype identification on a broader range of structural and functional 

measurements. Also, MFMM and its extensions can be applied to subtype discovery of 

other diseases.   
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CHAPTER 3 

A MULTI-RESPONSE MULTILEVEL MODEL WITH APPLICATION IN NURSE 

CARE COORDINATION 

3.1 Introduction 

Due to the increasing prevalence of chronic illnesses and aging of our society, 

patients hospitalized for acute care episodes nowadays are likely to have at least one 

chronic illness (Anderson, 2007; Boltz et al., 2008). This has created a tremendous new 

challenge for the already-heavily-burdened health care system: treating and caring for the 

acute episode of a patient who has chronic comorbidities is complex, requiring well-

planned interventions and involving numerous providers. To tackle this challenge, care 

coordination has been recommended as one fundamental approach (Institute for Healthcare 

Improvement, 2004; MedPac, 2007) and effective care coordination has been found to 

decrease adverse events, improve quality and efficiency of care, and enhance patient 

satisfaction (McDonald et al., 2007; Sticker et al., 2009). In coordinating patient care 

within the hospital, staff nurses, as the patient’s “ever-present” health care team members, 

play a vital role. In “Keeping Patients Safe”, a recent report by the Institute of Medicine, 

the role of staff nurses in care coordination that promotes patient safety and quality 

outcomes was highlighted. Recent qualitative studies illuminated the considerable amount 

of time staff nurses spend coordinating patient care via a broad range of activities from 

admission to discharge (Hendrich et al., 2008; Lamb et al., 2008; Aiken et al., 2008; Friese, 

2008; Kazanjian et al. 2005; Laschinger et al. 2006). 
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Until recently, study of staff nurse care coordination was hampered by the lack of 

an operational definition of staff nurse care coordination and the absence of tools to 

measure the process. In a recent project sponsored by the Robert Wood Johnson 

Foundation, Lamb (one of the co-authors of this paper) and her team developed, for the 

first time, an operational definition for staff nurse care coordination through systematic 

analysis of extensive observations and interviews of staff nurses and members of their 

nursing and interdisciplinary teams. The definition of nurse care coordination, according 

to Lamb et al. (2008), is “the actions initiated by nurses with patients, families, and/or 

members of their health care team to manage and correct the sequence, timing, and/or 

effectiveness of patient care from hospital admission to discharge”. Based on this definition, 

Lamb further identified six categories of staff nurse care coordination activities: 

“organizing”, “checking”, “mobilizing”, “exchanging”, “assisting”, and “backfilling”, 

referred to as “o”, “c”, “m”, “e”, “a”, and “b” in this paper. Detailed definitions of the six 

categories can be found in Appendix A.1. Furthermore, Lamb led the design and validation 

of an instrument called the Nurse Care Coordination Instrument (NCCI) that allows for 

quantitative data to be collected to measure the coordination activities. This effort provided 

groundwork for advancing the understanding and improvement of nurse care coordination 

in the hospital.  

Capitalizing on the newly developed NCCI, we present a study in this paper that 

aims to examine and reveal how nurses’ care coordination is related to their practice 

environment, demographics, and workload. To achieve this goal, a multilevel model 

(Demidenko 2013) is a natural choice for analyzing the NCCI data, because the predictors 
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in the data come from two levels: demographic and workload variables at the 

individual/nurse level and characteristics of the practice environment at the 

organizational/unit level. However, simply adopting the existing multilevel model would 

not suffice. There are a number of challenges inspiring new model development in this 

paper. First, nurse care coordinate is not a univariate concept but includes multiple 

categories describing the multi-faceted coordination activities, such as “m”, “e”, and “a”. 

This results in multiple response variables to be modeled simultaneously. Simply applying 

the existing multilevel model to each response separately overlooks the correlation between 

the multiple responses. This correlation inherently exists and could be strong in our 

problem domain because prior research has found that nurses who engage more in one type 

of care coordination activities tend to engage more in another type of activities (Duva, 

2010). From the point of view of statistical modeling, joint modeling of multiple responses 

allows for the multiple models to borrow strength from each other and mitigates sample 

size limitation. Second, considering that the statistical model should be ultimately helpful 

for guiding the improvement and best practices of nurse care coordination, the model 

should be able to identify a small number of significant predictors out of the originally 

included predictors, many of which could be noise or have only a small effect on the 

responses. This provides convenience for practical implementation of the modeling results. 

Furthermore, with similar prediction accuracy, a model that uses the same subset of 

predictors to predict the multiple responses is more desirable than a model that uses 

different subsets of predictors to predict different responses. The former model typically 

requires a smaller number of total predictors to be measured in order to predict the multiple 
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responses, thus saving cost and effort for data acquisition. Also, if the predictors can be 

confirmed to causally affect the response variables of care coordination, the former model 

means a potential saving in the cost of intervention by adjusting fewer predictors to 

improve multiple aspects of the care coordination.   

To address the aforementioned challenges in modeling the NCCI data, we propose 

a multi-response multilevel model that uses two adaptive 𝑙21-penalties to enable joint fixed 

effect selection and joint random effect selection across multiple responses. To our best 

knowledge, such a model is not available in the existing literature. The contribution of this 

research is two-fold: To the field of statistical modeling, we propose a new formulation for 

a multi-response multilevel model driven by a newly emerged problem in the health care 

system, develop an efficient Block Coordinate Descent (BCD) algorithm integrated with 

an Expectation-Maximization (EM) framework for model estimation, perform theoretical 

analysis to reveal the insight as to how the proposed method “joins” the estimation of the 

model for each response variable together and the benefit of such a joint estimation, and 

demonstrate asymptotic properties. To the field of nursing research, our study is the first-

of-its-kind that elucidates the quantitative relationship between nurses’ practice 

environment, demographics, and workload and their multi-faceted care coordination 

activities. We anticipate that the knowledge and insights generated from our study could 

facilitate the design and optimization of nurses’ workload and practice environment, which 

leads to better care coordination and eventually better patient outcomes.  

The rest of the paper is organized as follows: Section 3.2 reviews the existing 

research related to the proposed statistical model; Section 3.3 presents the model 
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formulation; Section 3.4 presents the estimation algorithm; Section 3.5 investigates 

asymptotic properties; Section 3.6 presents simulation studies; Section 3.7 presents the 

application; Section 3.8 concludes the chapter.  

3.2 Literature Review 

The proposed model is a combination of conventional multilevel models and 

modern variable selection techniques. Conventional multilevel models have been 

extensively discussed in numerous papers and books, which do not include “variable 

selection” in their formulations. Variable selection techniques are modern statistical 

modeling and machine learning developments that were driven by the emergence of high-

dimensional datasets in various domains. The basic idea of variable selection is to add 

penalties to the regression coefficients in order to shrink the estimates for the regression 

coefficients of insignificant predictors to be exactly zero. Various forms of penalties have 

been proposed, which can model different structures of the predictors and/or have different 

statistical properties. The classic lasso model was proposed as a penalized least squares 

method with an 𝑙1-penalty that resulted in the estimates of some regression coefficients to 

be exactly zero (Tibshirani, 1996). Fan et al. (2001) conjectured the asymptotic 

inconsistency of lasso and proposed an SCAD penalty that enjoyed the oracle properties. 

Zhao et al. (2006) further discussed the consistency of lasso and proved an almost sufficient 

and necessary condition for lasso to select the true model. Zou (2006) proposed an adaptive 

lasso model that applied adaptive weights to the 𝑙1-penalty and proved the oracle properties 

of this model. To handle data with grouped predictors, Yuan et al. (2006) proposed a group 

lasso model capable of selecting a sparse set of groups by imposing an 𝑙1-penalty on the 
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regression coefficients of predictors from each group. Zou et al. (2005) proposed an elastic 

net model that encouraged a grouping effect among strongly correlated predictors. As an 

integration of some existing methods and bootstrap, random lasso was proposed to alleviate 

some of the limitations of lasso, elastic net, and related methods (Wang et al., 2011). A 

hierarchical lasso was proposed to not only remove unimportant groups of predictors but 

also select important predictors within a group (Zhou and Zhu, 2010). To achieve grouped 

and hierarchical variable selection, a Composite Absolute Penalties (CAP) family was 

proposed to add side information to boost the estimation of a regression or classification 

model (Zhao et al. 2009). In addition to frequentist methods, Bayesian methods for variable 

selection were also developed. George et al. (1997) discussed and compared a variety of 

approaches for Bayesian variable selection. Fahrmeir et al. (2010) provided a unified view 

between Bayesian methods and penalized frequentist methods for variable selection. Note 

that the review in this section by no means provides a complete list of existing variable 

selection approaches. However, a vast majority of the existing approaches including all the 

aforementioned ones are for single-level predictors; there is much less research in the 

multilevel setting.  

Among the few existing efforts in introducing variable selection in the multilevel 

setting, Schelldorfer et al. (2011) proposed a method that adds an 𝑙1-penalty to the fixed 

effects. This achieves variable selection on fixed effects alone, but not on random effects. 

A significant difficulty in variable selection on random effects is that, not like fixed effects 

that are characterized by regression coefficients, random effects are characterized by a 

covariance matrix, 𝚿. Therefore, variable selection on random effects will have to be done 
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through penalizing the covariance matrix, which is not straightforward.  To achieve this, 

Ibrahim et al. (2011) proposed a Cholesky decomposition on 𝚿, i.e., 𝚿 = 𝚲𝚲𝑇, where 𝚲 

is a lower triangular matrix. Then, the elements in each row of 𝚲 are penalized as a group. 

If some rows of 𝚲 are estimated to be zero, this will result in some rows and columns of 𝚿 

to be zero, which has an effect of removing the random effects corresponding to these 

rows/columns. Bondell et al. (2010) proposed a modified Cholesky decomposition to 

decompose 𝚿 into a lower triangular matrix, 𝚪, whose diagonal elements are all ones and 

a diagonal matrix 𝐃 , i.e., 𝚿 = 𝐃𝚪(𝐃𝚪)𝑇 . Then, an adaptive 𝑙1 -penalty is put on the 

diagonal elements of 𝐃 to shrink some elements to be zero, which has an effect of removing 

the rows/columns of 𝚿 corresponding to these elements and thereby excluding the random 

effects corresponding to the removed rows/columns. Ahn et al. (2012) proposed a moment-

based loss function for estimating the covariance matrix of random effects. Then, two types 

of penalties including a hard threshsholding operator and a sandwich-type soft thresholding 

penalty are imposed to achieve variable selection of random effects. However, all these 

existing methods are for a single response only.  
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3.3 A Multi-response Multilevel Model with Joint Fixed Effect Selection and Joint 

Random Effect Selection 

Figure 6: Data structure targeted by the proposed model 

It is evident from the literature review that little work has been done on multi-

response multilevel models with variable selection in both fixed and random effects. 

However, such a model is needed for properly modeling the NCCI data. This motivates our 

new model development. Our proposed model is aimed for a nested multilevel multi-

response data structure as depicted in Figure 6. First, 𝑦𝑖𝑗𝑠 is related to 𝒛𝑖𝑗  by a linear model, 

i.e., 𝑦𝑖𝑗𝑠 = 𝜶𝑖𝑠
𝑇 𝒛𝑖𝑗 + 휀𝑖𝑗𝑠. This is called a level-one model, which characterizes how nurses’ 

demographics and workload impact their care coordination. Then, this impact, reflected by 

𝜶𝑖𝑠, is related to 𝒙𝑖 by a level-two model, i.e., 𝜶𝑖𝑠 = 𝐁𝑠𝒙𝑖 + 𝒆𝑖𝑠. This model characterizes 

how units’ organizational characteristics affect the relationship between nurses’ 

demographics/workload and their coordination. Combining level-one and level-two 

models, we can get 

𝑦𝑖𝑗𝑠 = 𝒙𝑖
𝑇𝐁𝑠

𝑇𝒛𝑖𝑗 + 𝒆𝑖𝑠
𝑇 𝒛𝑖𝑗 + 휀𝑖𝑗𝑠,     (3.1) 
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where 𝒆𝑖𝑠~𝑁(𝟎, 𝜎𝑠
2𝚿𝑠)  and 휀𝑖𝑗𝑠~𝑁(0, 𝜎𝑠

2)  are between-unit and within-unit random 

errors. 𝐁𝑠 and 𝒆𝑖𝑠  are known as fixed and random effects, respectively.  Apply a modified 

Cholesky decomposition (Chen and Dunson, 2003) to the covariance matrix of the random 

effects, i.e., 𝚿𝑠 = 𝐃𝑠𝚪𝑠(𝐃𝑠𝚪𝑠)
𝑇, where 𝐃𝑠 is a diagonal matrix and 𝚪𝑠 is a lower triangular 

matrix. Then, the random effects can be re-parameterized as 𝒆𝑖𝑠 = 𝐃𝑠𝚪𝑠�̃�𝑖𝑠 , where 

�̃�𝑖𝑠~ N(𝟎, 𝜎𝑠
2𝐈). For the ease of subsequent discussion, we also re-parameterize the fixed 

effects as 𝒙𝑖
𝑇𝐁𝑠

𝑇𝒛𝑖𝑗 = 𝜷𝑠
𝑇𝒘𝑖𝑗 , where 𝒘𝑖𝑗  is a vector that concatenates 𝒙𝑖 , 𝒛𝑖𝑗 , and the 

interactions between them, and 𝜷𝑠  is a vector consisting of the elements of 𝐁𝑠 . 

Considering these re-parameterizations, (3.1) becomes  

𝑦𝑖𝑗𝑠 = 𝜷𝑠
𝑇𝒘𝑖𝑗 + (𝐃𝑠𝚪𝑠�̃�𝑖𝑠)

T𝒛𝑖𝑗 + 휀𝑖𝑗𝑠,   (3.2) 

Stacking up the data of all the nurse within the 𝑖 -th unit, we can get 𝒚𝑖𝑠 = 𝐖𝑖𝜷𝑠 +

𝒁𝑖(𝐈 ⊗ 𝐃𝑠)(𝐈 ⊗ 𝚪𝑠)�̃�𝑠 + 𝜺𝑖𝑠, which corresponds to the grey blocks in Figure 7. Further 

stacking up the data of all the units as illustrated in Figure 7, we can get 

  𝒚𝑠 = 𝐖𝜷𝑠 + 𝐙(𝐈⊗ 𝐃𝑠)(𝐈⊗ 𝚪𝑠)�̃�𝑠 + 𝜺𝑠.        (3.3) 

The parameters to be estimated for the model in (3.3) can be put into a vector 𝝓𝑠 =

(𝜷𝑠
𝑇 , 𝒅𝑠

𝑇 , 𝜸𝑠
𝑇)𝑇, where 𝒅𝑠 is a vector consisting of the diagonal elements of 𝐃𝑠 and 𝜸𝑠 is a 

vector consisting of the elements in 𝚪𝑠. Considering all the responses, the total parameters 

to be estimated are 𝝓 = (𝝓1
𝑇 , … ,𝝓𝕊

𝑇)𝑇. 



46 

 

 

Figure 7: A graph illustration for the model in (3.3) 

According to (3.3), 𝒚𝑠  follows a normal distribution with a mean 𝐖𝜷𝑠  and a 

covariance matrix �̃�𝑠 = 𝐷𝑖𝑎𝑔(𝐕1𝑠, … , 𝐕𝑖𝑠, … , 𝐕𝑁𝑠), where 𝐕𝑖𝑠 = 𝜎𝑠
2(𝐙𝑖𝐃𝑠𝚪𝑠𝚪𝑠

𝑇𝐃𝑠
𝑇𝐙𝑖

𝑇 +

𝐈). Then, dropping constants, the log-likelihood function of the parameter set 𝝓 can be 

written as: 

𝑙(𝝓|{𝒚𝑠}𝑠=1
𝕊 ) = −

𝟏

𝟐
∑ {𝑙𝑜𝑔⌊�̃�𝑠⌋ + (𝒚𝑠 −𝐖𝜷𝑠)

𝑇�̃�𝑠
−1
(𝒚𝑠 −𝐖𝜷𝑠)}

𝕊
𝑠=1 .    (3.4) 

Furthermore, by treating the random effects in �̃�𝑠 as observed data and dropping constants, 

we can write the complete-data log-likelihood function as 

 𝑙(𝝓|{𝒚𝑠}𝑠=1
𝕊 , {�̃�𝑠}𝑠=1

𝕊 ) = −
∑ 𝑛𝑖
𝑁
𝑖=1 +𝑁ℚ

2
∑ 𝑙𝑜𝑔 𝜎𝑠

2𝕊
𝑠=1 −

1

2
∑

1

𝜎𝑠
2 (
‖𝒚𝑠 − 𝐙(𝐈 ⊗ 𝐃𝑠)(𝐈 ⊗ 𝚪𝑠)�̃�𝑠 −𝐖𝜷𝑠‖

2

+�̃�𝑠
𝑇 �̃�𝑠

)𝕊
𝑠=1 .   (3.5)                    

Let ℙ and ℚ denote the dimensions of the fixed and random effects, respectively. 

To enable joint variable selection in fixed effects across all the responses, we impose an 

𝑙21 -penalty on 𝜷𝑠 , i.e., ∑ √∑ 𝛽𝑝𝑠
2𝕊

𝑠=1  ℙ
𝑝=1 . This 𝑙21 -penalty allows for the fixed effects 

corresponding to the same predictor across all the responses to be selected as a group, i.e., 

these fixed effects are either all kept in or dropped out of the model. To achieve the same 
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purpose for random effects, we impose another 𝑙21-penalty on 𝐝s, i.e., ∑ √∑ 𝑑𝑞𝑠2
𝕊
𝑠=1  ℚ

𝑞=1 . 

The consequence of this 𝑙21-penalty is that if the 𝑑𝑞𝑠’s corresponding to a predictor across 

all the responses (e.g., the 𝑑𝑞′1, … , 𝑑𝑞′𝕊 corresponding to the 𝑞′-th predictor across all the 

responses) are zero, then the 𝑞′-th row and 𝑞′-th column of 𝚿1, … ,𝚿𝕊 are automatically 

zero by definition of the modified Cholesky decomposition. As a result, the random effects 

corresponding to the 𝑞′-th predictor across all the responses are dropped out of the model 

as a group. Furthermore, we want to have adaptive weights to penalize different 

coefficients and thus using an adaptive 𝑙21-penalty in the form of ∑ √∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 and 

∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝕊
𝑠=1  ℚ

𝑞=1 , where 𝛽𝑝𝑠 is an adaptive weight for 𝛽𝑝𝑠 and �̃�𝑞𝑠 is an adaptive weight 

for 𝑑𝑞𝑠. The purpose is to have a large amount of shrinkage for zero coefficients and a 

smaller amount of shrinkage for nonzero coefficients, thus achieving improved estimator 

efficiency and variable selection properties. With all these considerations, we define an 

adaptive 𝑙21-penalized complete-data log-likelihood criterion as follows: 

      𝑓(𝝓|{𝒚𝑠}𝑠=1
𝕊 , {�̃�𝑠}𝑠=1

𝕊 ) =  −𝑙(𝝓|{𝒚𝑠}𝑠=1
𝕊 , {�̃�𝑠}𝑠=1

𝕊 ) + 𝜆1∑ √∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 + 𝜆2∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝕊
𝑠=1  

ℚ
𝑞=1 .     (3.6) 

λ1 and λ2 are regularization parameters for the fixed and random effects, respectively. In 

the next section, we present model estimation based on (3.6).  

3.4 Model Estimation by EM Integrated with a BCD Optimization Algorithm 

The proposed adaptive 𝑙21-penalized complete-data log-likelihood function in (3.6) 

involves unobserved variables, �̃�𝑠. This makes the EM algorithm a proper choice for model 
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estimation. EM is a general method for finding the maximum likelihood estimate of model 

parameters from data with missing values (Dempster et al., 1977). It has also been used 

when optimizing the likelihood function is intractable analytically but is possible if some 

quantities in the likelihood function can be assumed known. These quantities are treated as 

missing/unobserved data in EM. EM works by iteratively conducting two steps. The E-step 

is to find the expectation of the complete-data log-likelihood with respect to the unobserved 

data given the observed data and the current parameter estimates. The M-step is to find 

parameter estimates that maximize the expectation in the E-step. The two steps are repeated 

until convergence. The EM framework has a nice property that it is guaranteed to converge 

to a local maximum of the likelihood function (Wu, 1983).  

The challenges in using the general EM framework in specific model estimation 

are to derive the expectation specific to that model formulation in the E-step and to develop 

an efficient optimization algorithm in the M-step. In what follows, we will discuss the two 

steps specific to our problem setting in (3.6):   

In the E-step at the ω-th iteration, our goal is to compute the expectation of the 

criterion in (3.6) with respect to the conditional distribution of {�̃�𝑠}𝑠=1
𝕊  given {𝒚𝑠}𝑠=1

𝕊  and 

the current estimate for 𝝓, 𝝓(𝜔) . It can be derived that this conditional distribution is 

normal with a mean and a covariance matrix given by (please see the derivation in 

Appendix A.2): 

�̂�𝑠
(𝜔) = (�̃�𝑠

𝑇(𝜔) �̃�𝑠
(𝜔)𝐙𝑇𝐙�̃�𝑠

(𝜔)�̃�𝑠
(𝜔) + 𝐈)−1(𝐙�̃�𝑠

(𝜔)�̃�𝑠
(𝜔))𝑇(𝒚𝑠 −𝐖 𝜷𝑠

(𝜔) ),  (3.7) 

𝐔𝑠
(ω)

= 𝜎𝑠
2(𝜔) (�̃�𝑠

𝑇(𝜔) �̃�𝑠
(𝜔)𝐙𝑇𝐙�̃�𝑠

(𝜔)�̃�𝑠
(𝜔) + 𝐈)−1,    (3.8) 

respectively. Here, �̃�𝑠
(ω) = 𝐈⊗ 𝐃𝑠

(ω)
, �̃�s

(ω) = 𝐈⊗ 𝚪𝑠
(ω)

, and the 𝜎𝑠
2(𝜔) in (3.8) is given by  
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𝜎𝑠
2(𝜔) =

(𝒚𝑠−𝐖𝜷𝒔
(𝜔)
 )
𝑇
(𝐙�̃�𝑠

𝑇(𝜔) 
�̃�𝑠
(𝜔)
𝐙𝑇𝐙�̃�𝑠

(𝜔)
�̃�𝑠
(𝜔)
𝐙𝑇+𝑰)−1×(𝒚𝑠−𝐖 𝜷𝒔

(𝜔)
)

∑ n𝑖
𝑁
𝑖=1

.   (3.9) 

Then, the expectation of the criterion in (3.6) can be obtained as:  

𝑔(𝝓|𝝓(𝜔)) =

 ∑
1

2𝜎𝑠
2(𝜔)
 𝕊

𝑠=1 ([
𝜷𝑠
𝒅𝑠
]
𝑇

[
𝐖𝑇𝐖 𝐖𝑇𝐙 𝐷𝑖𝑎𝑔(�̃�𝑠�̂�𝑠

(𝜔)
)(𝟏𝑁⊗  𝐈)

 (𝟏𝑁⊗  𝐈)𝑇𝐷𝑖𝑎𝑔(�̃�𝑠�̂�𝑠
(𝜔)
)𝐙𝑇𝐖 (𝟏𝑁⊗  𝐈)𝑇(𝐑 °  �̃�𝑠𝐆𝑠

(𝜔)
�̃�𝑠
𝑇) (𝟏𝑁⊗  𝐈)

] [
𝜷𝑠
𝒅𝑠
] −

2 𝒚𝒔
𝑻 [𝐖 𝐙 𝐷𝑖𝑎𝑔(�̃�𝑠�̂�𝑠

(𝜔)
)(𝟏𝑁⊗  𝐈)] [

𝜷𝑠
𝒅𝑠
]) + 𝜆1∑ √∑ (

𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝑆
𝑠=1  𝑃

𝑝=1 + 𝜆2∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝑆
𝑠=1  𝑄

𝑞=1 ,   (3.10) 

where �̃�𝑠 = 𝐈⊗ 𝚪𝑠 , 𝟏N is a 𝑁 × 1 vector of ones, 𝐷𝑖𝑎𝑔(�̃�𝑠�̂�𝑠
(𝜔)
) is a diagonal matrix 

whose diagonal elements being �̃�𝑠�̂�𝑠
(𝜔)

, 𝐑 = 𝐙𝑇𝐙 , �̂�𝑠
(𝜔)

= E(�̃�𝑠�̃�𝑠
𝑇) = 𝐔𝑠

(ω)
+ �̂�𝑠

(𝜔)
�̂�𝑠
𝑇(𝜔) 

. 

“ ° ” represents the Hadamard product operator. 

In the M-step, our goal is to minimize 𝑔(𝝓|𝝓(𝜔)) with respect to 𝝓. Recall that 𝝓 

includes 𝜷𝑠 , 𝒅𝑠 , and 𝚪𝑠 , 𝑠 = 1, . . , 𝕊 . Therefore, the optimization of 𝑔(𝝓|𝝓(𝜔))  with 

respect to 𝝓  can be done by iterating between two sub-optimizations: One sub-

optimization is to minimize 𝑔(𝝓|𝝓(𝜔)) with respect to 𝚪𝑠 , treating (𝜷𝑠
𝑇 , 𝒅𝑠

𝑇)𝑇  as given. 

This sub-optimization has a closed-form solution. The other sub-optimization is to 

minimize 𝑔(𝝓|𝝓(𝜔))  with respect to (𝜷𝑠
𝑇 , 𝒅𝑠

𝑇)𝑇 , treating 𝚪𝑠  as given. This sub-

optimization takes the following form: 

                 𝑚𝑖𝑛{𝜷𝑠}𝑠=1𝕊 ,{𝒅𝑠}𝑠=1
𝕊    

{
 
 

 
 ∑

1

2𝜎𝑠
2(𝜔)
 𝕊

𝑠=1 ([
𝜷𝑠
𝒅𝑠
]
𝑇

𝐀𝑠 [
𝜷𝑠
𝒅𝑠
] − 2 𝒃𝒔

𝑻 [
𝜷𝑠
𝒅𝑠
] ) + 

𝜆1∑ √∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 + 𝜆2∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝕊
𝑠=1

ℚ
𝑞=1

}
 
 

 
 

,   (3.11)      

where 𝐀𝑠  and 𝒃𝑠
𝑇  are known and their forms can be obtained by comparing (3.11) and 

(3.10). To solve the optimization problem in (3.11), we note that (3.11) is a convex 
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optimization whose non-smooth parts, i.e., the adaptive 𝑙21-norms, are separable. This 

property motivates us to develop a BCD algorithm that is guaranteed to converge to a 

global minimum. Next, we describe the proposed BCD algorithm: 

Each “coordinate” in the BCD algorithm corresponds to a fixed or random effect, 

so there are ℙ + ℚ coordinates. BCD cycles through the coordinates until convergence. In 

what follows, we will discuss one cycle of BCD that estimates the 𝑝-th fixed effect. Other 

cycles that estimates the other fixed effects and the random effects share a similar 

procedure. Specifically, in the cycle that estimates the 𝑝 -th fixed effect, 𝜷𝑝 =

(𝛽𝑝1, … , 𝛽𝑝𝕊) is the parameter to be estimated, whereas all other fixed effects and all 

random effects are treated as known. Considering this, the optimization in (3.11) can be 

written as: 

𝑚𝑖𝑛𝜷𝑝  ∑
1

2𝜎𝑠
2(𝜔)
 𝕊

𝑠=1 (
[�̂�1𝑠  ⋯ �̂�𝑝−1,𝑠 𝛽𝑝𝑠 �̂�𝑝+1,𝑠  ⋯ �̂�𝑃𝑠 �̂�𝑠

𝑇]𝐀𝑠[�̂�1𝑠  ⋯ �̂�𝑝−1,𝑠 𝛽𝑝𝑠 �̂�𝑝+1,𝑠  ⋯ �̂�𝑃𝑠 �̂�𝑠
𝑇]
𝑇

−2 𝒃𝑠
𝑇[�̂�1𝑠  ⋯ �̂�𝑝−1,𝑠 𝛽𝑝𝑠 �̂�𝑝+1,𝑠  ⋯ �̂�𝑃𝑠 �̂�𝑠

𝑇]𝑇
) +

 𝜆1√∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1 .           (3.12) 

Denote the objective function in (3.12) by 𝑔(𝜷𝑝) and optimal solution by 𝜷𝒑∗, i.e., 𝜷𝒑∗ =

𝑎𝑟𝑔𝑚𝑖𝑛𝜷𝑝  𝑔(𝜷
𝑝) . The subgradients of 𝑔(𝜷𝑝) are 𝜕𝑔(𝜷𝑝) = [𝑙𝑝1, … , 𝑙𝑝𝕊]

𝑇 + 𝜆1𝒌𝑝 , where 

𝑙𝑝𝑠 =
1

𝜎𝑠
2(𝜔)

(𝐀𝑠
𝑝[�̂�1𝑠  ⋯ �̂�𝑝−1,𝑠 𝛽𝑝𝑠 �̂�𝑝+1,𝑠  ⋯ �̂�ℙ𝑠 �̂�𝑠

𝑇]
𝑇
− 𝑏𝑝𝑠), 𝑠 = 1,… , 𝕊.  𝐀𝑠

𝑝
 is the 𝑝-th 

row of 𝐀𝑠  and 𝑏𝑝𝑠  is the 𝑝-th element of 𝒃𝑠
𝑇 . Furthermore, the necessary and sufficient 

condition for 𝜷𝒑∗ to be zero is that the equations [𝑙𝑝1, … , 𝑙𝑝𝕊]
𝑇 + 𝜆1𝒌𝑝 = 𝟎 have a solution 

with 𝒌𝑝 ∈ {(
𝑡𝑝1

�̃�𝑝1
, … ,

𝑡𝑝𝕊

�̃�𝑝𝕊
)
𝑇

|  (𝑡𝑝1, … , 𝑡𝑝𝕊) ≜ 𝒕𝑝, ||𝒕𝑝||2 ≤ 1} , where 𝑙𝑝𝑠 =
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1

𝜎𝑠
2(𝜔)

(𝐀𝑠
𝑝
[�̂�1𝑠  ⋯ �̂�𝑝−1,𝑠 0 �̂�𝑝+1,𝑠  ⋯ �̂�ℙ𝑠 �̂�𝑠

𝑇]
𝑇
− 𝑏𝑝𝑠) . One equivalent criterion for 𝜷𝒑

∗
 to 

be zero is ‖(𝑙𝑝1 × 𝛽𝑝1, … , 𝑙𝑝𝕊 × 𝛽𝑝𝕊)‖2
≤ 𝜆1. If this criterion is not satisfied, we minimize 

(3.12) by a one-dimensional search over 𝜷𝑝 = (𝛽𝑝1, … , 𝛽𝑝𝕊)  as follows: Focus on the 

step in the search that estimates 𝛽𝑝𝑠 while treating other elements in 𝜷𝑝 as known. Then, 

(3.12) becomes an optimization problem with respect to 𝛽𝑝𝑠, i.e.,  

                                𝑚𝑖𝑛𝛽𝑝𝑠  {ℎ(𝛽𝑝𝑠) + 𝜆1√(
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

+ 𝑐−𝑝𝑠2 }.                       (3.13) 

ℎ(𝛽𝑝𝑠) is a quadratic convex function of 𝛽𝑝𝑠, i.e.,  

                                           ℎ(𝛽𝑝𝑠)  =
{𝐀𝑠}𝑝𝑝

2

𝜎𝑠
2(𝜔)

 𝛽𝑝𝑠
2 + 2𝑙𝑝𝑠 𝛽𝑝𝑠,                                     (3.14) 

where {𝐀𝑠}𝑝𝑝  is the 𝑝-th diagonal element of 𝐀𝑠 . 𝑐−𝑝𝑠
2  is the sum of squared adaptive 

estimates for the elements in 𝜷𝑝 except 𝛽𝑝𝑠, i.e.,  

                          𝑐−𝑝𝑠
2 = (

�̂�𝑝1

�̃�𝑝1
)
2

+⋯+ (
�̂�𝑝,𝑠−1

�̃�𝑝,𝑠−1
)
2

+ (
�̂�𝑝,𝑠+1

�̃�𝑝,𝑠+1
)
2

+⋯+ (
�̂�𝑝,𝕊

�̃�𝑝,𝕊
)
2

.              (3.15) 

So 𝑐−𝑝𝑠
2  is a non-negative known constant at this step. The solution to the optimization in 

(3.13) is motivated by the following proposition (proof of the proposition is not shown due 

to space limit): 

Proposition 2.2.1: Let 𝛽𝑝𝑠
0  be the minimizer of (3.14), i.e., 𝛽𝑝𝑠

0 = −
𝑙𝑝𝑠

{𝐀𝑠}𝑝𝑝
2
𝜎𝑠
2(𝜔)⁄

. A 

sufficient and necessary condition for 𝛽𝑝𝑠
∗  to be the solution to (3.13) is: 

                           𝛽𝑝𝑠
∗ = 𝑠𝑖𝑔𝑛(𝛽𝑝𝑠

0 ) (|𝛽𝑝𝑠
0 | −

𝜆1

2|�̃�𝑝𝑠|{𝐀𝑠}𝑝𝑝
2
𝜎𝑠
2(𝜔)⁄
)

+

, if 𝑐−𝑝𝑠
2 = 0           (3.16) 
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                                             𝛽𝑝𝑠
∗ + 𝜆1

𝛽𝑝𝑠
∗

√𝛽𝑝𝑠
∗ 2

+𝑐−𝑝𝑠
2
= 𝛽𝑝𝑠

0 ,                if 𝑐−𝑝𝑠
2 ≠ 0            (3.17) 

Based on Proposition 2.2.1, to solve (3.13), we can apply a simple soft-thresholding 

rule to 𝛽𝑝𝑠
0  if 𝑐−𝑝𝑠

2 = 0; otherwise, the solution that satisfies the equation in (3.17) will have 

to be obtained numerically (no close-form exists). This completes our discussion on the 

parameter estimation. Interested readers can find the pseudo code of our EM and BCD 

algorithms in Supplementary Material.  

Furthermore, we would like to examine the parameter estimation process described 

previously and reveal the insight as to how the proposed method “joins” the estimation of 

the model for each response variable together and the benefit of such a joint estimation. As 

a matter of fact, Proposition 2.2.1 reveals how the estimation for one response is joined 

with other responses. Specifically, (3.17) shows that the estimate for an effect in the 𝑠-th 

response, i.e., 𝛽𝑝𝑠
∗ , is related to 𝑐−𝑝𝑠

2 , which is a sum of squares of the same effects in other 

responses. Corollary 2.2.1 further shows that the relationship is monotonic, i.e., the larger 

the 𝑐−𝑝𝑠
2 , the smaller the shrinkage on 𝛽𝑝𝑠

∗ . This is indeed an advantage of the proposed 

method: Consider the situation when a predictor has a non-trivial fixed or random effect 

on all the responses, but the effects on some responses are small. If each response was 

modelled separately, these small-effects would be easily missed. In contrast, the proposed 

method is able to borrow strength from other responses with larger effects to help identify 

the small effects.  
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Corollary 2.2.1: Let 𝑐−𝑝𝑠,1
2  and 𝑐−𝑝𝑠,2

2  be two values for 𝑐−𝑝𝑠
2 . Let 𝛽𝑝𝑠,1

∗  and 𝛽𝑝𝑠,2
∗  be the 

𝛽𝑝𝑠
∗  that satisfies (3.17) corresponding to 𝑐−𝑝𝑠,1

2  and 𝑐−𝑝𝑠,2
2 , respectively. If  𝑐−𝑝𝑠,1

2 < 𝑐−𝑝𝑠,2
2 , 

then  
|𝛽𝑝𝑠,1
∗ |

|𝛽𝑝𝑠
0 |
<
|𝛽𝑝𝑠,2
∗ |

|𝛽𝑝𝑠
0 |

. 

Finally in this section, we discuss the choice of tuning parameters. There are two 

tuning parameters in the proposed method, i.e., λ1 and λ2 corresponding to the fixed and 

random effects, respectively.  The previously presented EM and BCD algorithms apply to 

a given pair of (𝜆1, 𝜆2). To find the best pair, a common practice is to choose one that 

minimizes a certain model selection criterion such as BIC, AIC, and cross-validated 

prediction errors. We propose a BIC-type criterion and found it to work well in simulation 

studies and the application. For a given pair of (𝜆1, 𝜆2), the criterion takes the following 

format: 

                       𝐵𝐼𝐶(𝜆1, 𝜆2) = −𝟐(𝑙(�̂�|{𝒚𝑠}𝑠=1
𝕊 )) + 𝑙𝑜𝑔(∑ 𝑛𝑖

𝑁
𝑖=1 ) ×  𝑑𝑓(𝜆1, 𝜆2),     (3.18) 

where 𝑙(�̂�|{𝒚𝑠}𝑠=1
𝕊 ) is the log-likelihood function defined in (3.4) when the parameters in 

𝝓 take their estimated values and 𝑑𝑓(𝜆1, 𝜆2) is the number of non-zero fixed and random 

effects in �̂�. The pair of (𝜆1, 𝜆2) that minimizes this criterion is used to produce the final 

parameter estimation. 

3.5 Asymptotic Properties 

Having presented the formulation and estimation for the proposed model in 

Sections 3 and 4, respectively, we further study the asymptotic properties of the model in 

this section. First, we define some new notations. Let 𝑄{(𝝓𝑠)𝑠=1
𝕊 } be the adaptive 𝑙21-

penalized log-likelihood function, i.e., 
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𝑄({𝝓𝑠}𝑠=1
𝕊 ) = 𝑙({𝝓𝑠}𝑠=1

𝕊 ) − 𝜆𝑁1∑ √∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 − 𝜆𝑁2∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝕊
𝑠=1  ℚ

𝑞=1 .   (3.19) 

𝑙{(𝝓𝑠)𝑠=1
𝕊 } is the log-likelihood function defined in (3.4).  

Let �̃�𝑠  be the true value for 𝝓𝑠 . �̃�𝑠 = (�̃�𝑠1
𝑇 , �̃�𝑠2

𝑇 )𝑇 . �̃�𝑠1
𝑇 = (�̃�𝑠1

𝑇 , �̃�𝑠1
𝑇 , �̃�𝑠1

𝑇 )𝑇  is a 

vector whose elements are non-zero. Without loss of generality, assume that the first ℙ′ 

elements of  𝜷𝑠
𝑇 are non-zero, which are stored in �̃�𝑠1

𝑇 , and the first ℚ′ elements of 𝒅𝑠
𝑇 are 

non-zero, which are stored in �̃�𝑠1
𝑇 . Let |�̃�𝑠1| denote the dimension of �̃�𝑠1

𝑇 . So the dimension 

of �̃�𝑠1
𝑇  is ℙ′ +ℚ′ + |�̃�𝑠1|. �̃�𝑠2

𝑇 = (�̃�𝑠2
𝑇 , �̃�𝑠2

𝑇 , �̃�𝑠2
𝑇 )𝑇 consists the remaining elements of �̃�𝑠, 

i.e.,  �̃�𝑠2
𝑇 = 𝟎. Put the �̃�𝑠1

𝑇 , 𝑠 = 1,… , 𝕊, into one vector, i.e., �̃�1 = (�̃�11
𝑇 , … , �̃�𝕊1

𝑇 )
𝑇
, and 

the �̃�𝑠2
𝑇 , 𝑠 = 1,… , 𝕊, into another vector, i.e., �̃�2 = (�̃�12

𝑇 , … , �̃�𝕊2
𝑇 )

𝑇
. Let �̃� = (

�̃�1

�̃�2
).  

Following the same decomposition as �̃�𝑠, let 𝝓𝑠 = (𝝓𝑠1
𝑇 , 𝝓𝑠2

𝑇 )𝑇. Similarly, define 

𝝓1 = (𝝓11
𝑇 , … , 𝝓𝕊1

𝑇 )𝑇 , 𝝓2 = (𝝓12
𝑇 , … , 𝝓𝕊2

𝑇 )𝑇 , and 𝝓 = (
𝝓1

𝝓2
) . Let 𝑄 {(𝝓

1

𝟎
)}  denote the 

𝑄({𝝓𝑠}𝑠=1
𝕊 ) in (3.19) with 𝝓2 = 𝟎. According to the sequence of 𝝓 = (

𝝓1

𝝓2
), we rearrange 

𝐖𝑠 ,  𝐙𝑠  , and �̃�𝑠  to be 𝐖𝑠(1) , 𝐙𝑠(1)  and �̃�𝑠(1)  = 𝐙𝑠(1)(𝐈 ⊗ 𝐃𝑠(1))(𝐈 ⊗ 𝚪𝑠(1))(𝐈 ⊗

 𝚪𝑠(1))
𝑇
(𝐈 ⊗ 𝐃𝑠(1))

𝑇
𝐙𝑠(1)

𝑇 + 𝐈. (3.19) can be written as the following equation. 

𝑄({𝝓𝑠}𝑠=1
𝕊 ) = ∑ 𝑙(𝝓𝑠)

𝕊
𝑠=1 − 𝜆𝑁1∑ √∑ (

𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 − 𝜆𝑁2 ∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  

ℚ
𝑞=1 ,         (3.20) 

where 𝑙(𝝓𝑠) = −
𝟏

𝟐
{𝑙𝑜𝑔⌊�̃�𝑠(1)⌋ + (𝒚𝑠 −𝐖(1)𝜷𝑠(1))

𝑇
�̃�𝑠(1)

−1
(𝒚𝑠 −𝐖(1)𝜷𝑠(1))}. 
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The following Theorems hold under common regularity conditions. Theorems and 

1 and 2 together show that the proposed method can identify the true model with probably 

tending to one. Theorem 2.3 indicates that the estimator in the proposed method enjoys the 

oracle property. Proofs of the Theorems can be found in Supplementary Material.  

Theorem 2.2.1: If  
𝜆𝑁1

√𝑁
⟶ 0 and 

𝜆𝑁2

√𝑁
⟶ 0 , then there exists a local maximizer �̂� = (�̂�

1

𝟎
) 

of 𝑄 {(𝝓
1

𝟎
)} such that �̂�1 is √𝑁 consistent for �̃�1. 

Theorem 2.2: If 𝜆𝑁1⟶∞ and 𝜆𝑁2⟶∞ , then with probability tending to one for any 

given 𝝓1satisfying ‖𝝓1 − �̃�1‖ ≤
𝐶

√𝑁
 and some constant 𝐶 > 0 , 

𝑄 {(𝝓
1

𝟎
)} =   𝑄 {(

𝝓1

𝝓2
)}

‖𝝓2‖≤
𝐶

√𝑁

𝑚𝑎𝑥        . 

Theorem 2.3: If 𝜆𝑁1⟶∞ , 𝜆𝑁2⟶∞ , 
𝜆𝑁1

√𝑁
⟶ 0 and 

𝜆𝑁2

√𝑁
⟶ 0 , then 

√𝑁 𝐼(�̃�1) ((�̂�1 − �̃�1) + 𝐼(�̃�1)−1(𝒗1
𝑇 ,⋯ , 𝒗𝕊

𝑇)𝑇) ⟶𝑑 𝑁(0, 𝐼(�̃�
1)), 

where  

𝒗𝑠 =

(

  
 
𝜆𝑁1

𝑁
×

𝛽1𝑠

|�̃�1𝑠|
2

√∑ (
𝛽1𝑠

�̃�1𝑠

)

2

𝕊
𝑠=1

, … ,
𝜆𝑁1

𝑁
×

𝛽
ℙ′𝑠

|�̃�
ℙ′𝑠

|
2

√∑ (
𝛽
ℙ′𝑠

�̃�
ℙ′𝑠

)

2

𝕊
𝑠=1

,
𝜆𝑁2

𝑁
×

𝑑1𝑠

|�̃�𝑠 |
2

√∑ (
𝑑1𝑠

�̃�1𝑠

)

2

𝕊
𝑠=1

, … ,
𝜆𝑁2

𝑁
×

𝑑
ℚ′𝑠

|�̃�
ℚ′𝑠

|
2

√∑ (
𝑑
ℚ′𝑠

�̃�
ℚ′𝑠

)

2

𝕊
𝑠=1

, 0, … ,0 

)

  
 

𝑇

,  

𝑠 = 1,…  , 𝕊. The number of zeros at the end of 𝒗𝑠 is |�̃�𝑠1|. 𝐼(�̃�
1) is the Fisher 

Information with 𝝓2 = 𝟎.  

3.6 Simulation Studies 

  In this section, we present the performance of our proposed method. For each 

simulation setting, we report the True Positive Rate (TPR), True Negative Rate (TNR), and 
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accuracy for the fixed effect identification, and those for the random effect identification, 

under the optimal λ1 and λ2 chosen by the BIC criterion in (3.18). The TPR measures the 

proportion of identified non-zero fixed (random) effects that are truly non-zero. The TNR 

measures the proportion of identified zero fixed (random) effects that are truly zero. The 

accuracy measures the proportion of fixed (random) effects that are correctly identified. 

For comparison, we also fit a multilevel model with an adaptive 𝑙1 -penalty for each 

response variable separately and use a BIC criterion to choose the tuning parameter for the 

adaptive 𝑙1-penalty. This is the method proposed by Bondell et al. (2010), and is referred 

to as the “competing method” in the rest of this paper.  

3.6.1 Study for the Impact of Effect Size, Sample Size, and Sample Distribution on 

Performance 

We conduct four experiments, in all of which there are three response variables. 

For each response, we consider the multilevel model to consist of ten and four fixed and 

random effects, respectively. Because both the proposed and competing methods enable 

variable selection, we set three out of the ten fixed effects and three out of the four random 

effects to be non-zero. Furthermore, to induce correlation between the models of the three 

responses, we set the same fixed and random effects to be non-zero across all the responses.  

In the first experiment, we set the fixed effects for the three responses to be 𝛃1 =

(0.1,1,1,0, … ,0)𝑇 , 𝛃2 = (1,0.1,1,0, … ,0)
𝑇 , and 𝛃3 = (1,1,0.1,0,… ,0)

𝑇 , and the random 

effects to be 𝐝1 = (1,1,0.3,0)
𝑇 , 𝐝2 = (1,0.3,1,0)

𝑇 , 𝐝3 = (1,1,1,0)
𝑇, 𝚪s = 𝐈, and σs

2 = 1 

for s = 1,2,3. The sample sizes are set to be 𝑁 = 30 units and 𝑛𝑖 = 5 individuals per unit. 

Furthermore, for each unit 𝑖, the data of predictors corresponding to the fixed effects, i.e., 
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𝐖𝑖, are generated as follows: To account for the possible correlation structure among the 

predictors, we first generate a random matrix of size 𝑛𝑖 × ℙ = 5 × 10, whose elements are 

independently sampled from a 𝑁(0,1) distribution. Denote this random matrix by 𝐕𝑖. Then, 

let 𝐖𝑖,𝑝 =
𝐕𝑖,𝑝+𝐕𝑖,ℙ+1

√2
, 𝑝 = 1, … , ℙ. 𝐖𝑖,𝑝 and 𝐕𝑖,𝑝 are the 𝑝–th column of matrix 𝐖𝑖 and 𝐕𝑖. , 

respectively. This idea of generating corrected predictors has also been adopted by a few 

other papers (Yuan et al, 2006). Furthermore, we generate the data of predictors 

corresponding to the random effects, i.e., 𝐙𝑖, by setting 𝐙𝑖 = (𝟏𝑛𝑖 ,𝐖𝑖,1,𝐖𝑖,2,𝐖𝑖,3). Finally, 

the data for each response variable are generated according to (3.3). We apply the proposed 

and competing methods to the data. Table 3 summarizes the result based on 200 simulation 

runs. Both methods have high TNRs. The proposed method also has high TPRs, while the 

TPRs for the competing method are significantly lower. This is because the competing 

method fails to identify the small fixed and random effects of 0.1 and 0.32, while the 

proposed method is able to do so due to its ability of performing a joint estimation across 

all the responses.   

Table 3: Comparison between the proposed and competing methods (𝑁 = 30, 𝑛𝑖 = 5, 

𝐝3 = (1,1,1,0)
𝑇): average (standard deviation) of TPR/TNR/accuracy  

 Fixed effect identification Random effect identification 

TPR  TNR Accuracy TPR TNR Accuracy 

Proposed method  

 

99.4% 

(2.4%) 

99.0%  

(4.1%) 

99.1%  

(3.0%) 

96.0%  

(8.5%) 

98.9%  

(7.4%) 

96.7%  

(6.5%) 

Competing method  

 

69.3%  

(5.8%) 

96.2%  

(3.8%) 

88.2%  

(2.9%) 

75.0%  

(8.8%) 

99.4%  

(4.3%) 

81.1%  

(6.7%) 

 

The second experiment aims to evaluate the performance with a greater number of 

small random effects. To this end, we modify the setting of the first experiment by changing 
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𝐝3 = (1,1,1,0)
𝑇 to 𝐝3 = (1,0.3,0.3,0)

𝑇. Table 4 reports the performance. Compared with 

Table 3, we can see that the TPR of random effect identification for the competing method 

is deteriorated significantly, while this performance of the proposed method remains high.  

Table 4: Comparison between the proposed and competing methods (𝑁 = 30, 𝑛𝑖 = 5, 

𝐝3 = (1,0.3,0.3,0)
𝑇): average (standard deviation) of TPR/TNR/accuracy  

 Fixed effect identification Random effect identification 

TPR  TNR Accuracy TPR TNR Accuracy 

Proposed 

method  

 

99.6% 

(2.0%) 

99.1%  

(4.3%) 

99.3%  

(3.1%) 

90.8%  

(14.2%) 

99.7%  

(3.0%) 

93.1%  

(10.8%) 

Competing 

method  

 

69.8%  

(5.9%) 

96.2%  

(4.1%) 

88.3%  

(3.5%) 

59.6%  

(7.2%) 

99.5%  

(4.2%) 

69.6%  

(5.5%) 

 

The third experiment aims to show the sample size impact. We keep the setting of 

the second experiment but increase the unit sample size from 𝑛𝑖 = 5 to 𝑛𝑖 = 10. Table 5 

reports the performance. Compared with Table 4, we observe that doubling the sample size 

increases the average and decreases the standard deviation of the TPR for random effect 

identification by the proposed method.  This performance improvement is less obvious by 

the competing method.      

Table 5: Comparison between the proposed and competing methods (𝑁 = 30, 𝑛𝑖 = 10, 

𝐝3 = (1,0.3,0.3,0)
𝑇): average (standard deviation) of TPR/TNR/accuracy  

 Fixed effect identification Random effect identification 

TPR  TNR Accuracy TPR TNR Accuracy 

Proposed 

method  

 

99.4% 

(2.4%) 

100%  

(0.0%) 

99.8%  

(0.7%) 

97.4%  

(5.0%) 

98.7%  

(8.1%) 

97.7%  

(4.7%) 

Competing 

method  

 

70.3%  

(5.7%) 

97.3%  

(3.3%) 

89.2%  

(2.9%) 

62.5%  

(7.8%) 

99.3%  

(4.7%) 

71.7%  

(5.9%) 
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In the fourth experiment, noting that the total sample size is a product of the number 

of units and the unit sample size, i.e., 𝑁 × 𝑛𝑖, we would like to study the impact of the 

sample distribution between 𝑁 and 𝑛𝑖 on the performance. To this end, we keep the setting 

of the second experiment, which has a total sample size of 𝑁 × 𝑛𝑖 = 30 × 5 = 150, but 

re-distribute the samples to have 𝑁 = 15 and 𝑛𝑖 = 10. Table 6 reports the performance. 

Compared with Table 4, we observe that the sample re-distribution does not change the 

performance of both methods. Therefore, it is more likely that the performance of the 

methods is affected by the total sample size.  

Table 6: Comparison between the proposed and competing methods (𝑁 = 15, 𝑛𝑖 = 10, 

𝐝3 = (1,0.3,0.3,0)
𝑇): average (standard deviation) of TPR/TNR/accuracy  

 Fixed effect identification Random effect identification 

TPR  TNR Accuracy TPR TNR Accuracy 

Proposed 

method  

 

99.6% 

(2.0%) 

99.8%  

(1.9%) 

99.7%  

(1.4%) 

90.9%  

(16.5%) 

99.4%  

(4.3%) 

93.0%  

(12.3%) 

Competing 

method  

 

70.1%  

(5.2%) 

97.2%  

(3.6%) 

89.1%  

(3.0%) 

60.3%  

(7.8%) 

98.3%  

(7.4%) 

69.8%  

(6.1%) 

 

3.6.2 Study for the Impact of the Number of Response Variables 2.1 Introduction 

All the experiments in the previous section have three response variables. The focus 

of this section is to study performance with respect to different numbers of response 

variables. We consider scenarios with two, five, and eight responses, in all of which there 

are six fixed effects (two being non-zero) and three random effects (two being non-zero). 

Specifically, the first scenario has the fixed effects for the two responses as 𝛃1 =

(0.1,1,0, … ,0)𝑇and 𝛃2 = (−1,0.1,0, … ,0)
𝑇 , and random effects as 𝐝1 = (1,0.3,0)

𝑇  and 
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𝐝2 = (1,0.3,0)
𝑇. The second scenario has the same fixed and random effects for the first 

two responses as the first scenario, and 𝛃3 = (0.5,1,0, … ,0)
𝑇, 𝛃4 = (−1,1,0,… ,0)

𝑇, 𝛃5 =

(1,0.5,0, … ,0)𝑇 , 𝐝3 = (1,1,0)
𝑇 , 𝐝4 = (1,0.8,0)

𝑇 , and 𝐝5 = (1,1,0)
𝑇 for the remaining 

three responses. The third scenario has the same fixed and random effects for the first five 

responses as the second scenario, and 𝛃6 = 𝛃3, 𝛃7 = 𝛃4, 𝛃8 = 𝛃5, 𝐝6 = 𝐝3, 𝐝7 = 𝐝4, and 

8 = 𝐝5 for the remaining three responses. The sample sizes are set to be 𝑁 = 20 units 

and 𝑛𝑖 = 5 individuals per unit. Note that we purposely choose a small sample size so that 

the performance in the two-response scenario is not good. This would allow us to see if 

adding more responses could remedy the sample size shortage. Under these settings, the 

data is generated in the same way as Section 6.1. Table 7 summarizes the results. With two 

responses, the TPR for random effect identification by the proposed method is low 

(53.8% ± 0.12% ). This is significantly improved by having five responses (90% ±

0.17%, 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.0001), which is further improved by having eight responses ((94.7% ±

0.1%, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.015). There is no significant difference in the TPR for fixed effect 

identification across the three scenarios. However, this does not mean that having more 

responses would not improve the TPR for fixed effects. It is simply because the TPR with 

two responses is already very high, leaving little room to demonstrating improvement. In 

contrast, the competing method has low TPR for both random and fixed effects, and adding 

more responses does not help. Furthermore, in terms of TNR, both methods perform well 

across all three scenarios with the proposed method having slightly higher TNR for fixed 

effects.  
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Table 7: Comparison between the proposed and competing method with varying numbers 

of responses 

Number of 

responses 

Fixed effect identification Random effect identification 

TPR  TNR Accuracy TPR TNR Accuracy 

 

2 

Proposed 

method  

100% 

(0.0%) 

98.8%  

(0.06%) 

99.2%  

(0.04%) 

53.8%  

(0.12%) 

100%  

(0.0%) 

69.2%  

(0.08%) 

Competing 

method  

60%  

(0.15%) 

94.4%  

(0.09%) 

82.9%  

(0.08%) 

53.8%  

(0.09%) 

100%  

(0.0%) 

69.2%  

(0.06%) 

 

5 

Proposed 

method  

98.8% 

(0.06%) 

100%  

(0.0%) 

99.6%  

(0.02%) 

90%  

(0.17%) 

100%  

(0.0%) 

93.3%  

(0.11%) 

Competing 

method  

61.2%  

(0.13%) 

93.8%  

(0.09%) 

82.9%  

(0.07%) 

51.3%  

(0.06%) 

100%  

(0.0%) 

67.5%  

(0.04%) 

 

8 

Proposed 

method  

98.7% 

(0.06%) 

98.7%  

(0.06%) 

98.7%  

(0.04%) 

94.7%  

(0.1%) 

97.4%  

(0.1%) 

95.6%  

(0.09%) 

Competing 

method  

57.9%  

(0.15%) 

93.4%  

(0.08%) 

81.6%  

(0.08%) 

56.6%  

(0.1%) 

100%  

(0.0%) 

71.1%  

(0.08%) 

 

3.6.3 BIC vs. AIC  

While BIC has been used for choosing the tuning parameters in previous simulation 

studies, it is of interest to study if other criteria such as AIC may offer some advantage. To 

this end, we repeat the experiments in Section 6.2 but selecting the tuning parameters of 

the proposed and competing methods using AIC. The results are shown in Table 8. 

Compared with Table 7, we can see that AIC has significantly lower TNR than BIC in both 

the proposed and competing methods, while the TPR performances of the two criteria are 

similar. Also, the standard deviations of TPR and TNR under AIC are much higher than 

BIC, indicating a less stable performance of AIC. While several previous studies have 

suggested advantages of AIC over BIC (Burnham & Anderson, 2002; 2004; Yang, 2005), 

these studies did not specifically compare the two criteria for multilevel models. Our 

experiments, on the other hand, empirically demonstrate better performance of BIC for 
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multilevel models. Theoretical explanation behind this empirical observation is left for 

future research.   

Table 8: Results of the experiments in Section 6.2 using AIC for tuning parameter 

selection 

Number of 

responses 

Fixed effect identification Random effect identification 

TPR TNR Accuracy TPR TNR Accuracy 

 

2 

Proposed 

method 

100% 

(0.0%) 

71.3% 

(0.45%) 

80.8% 

(0.3%) 

58.8% 

(0.19%) 

97.5% 

(0.11%) 

71.7% 

(0.11%) 

Competing 

method 

66.3% 

(0.15%) 

80.6% 

(0.15%) 

75.8% 

(0.13%) 

62.5% 

(0.15%) 

100% 

(0.0%) 

75% 

(0.1%) 

 

5 

Proposed 

method 

98.8% 

(0.06%) 

76.3% 

(0.35%) 

83.8% 

(0.23%) 

95% 

(0.13%) 

77.5% 

(0.41%) 

89.2% 

(0.17%) 

Competing 

method 

66.3% 

(0.12%) 

83.8% 

(0.12%) 

77.9% 

(0.09%) 

57.5% 

(0.12%) 

97.5% 

(0.11%) 

70.8% 

(0.07%) 

 

8 

Proposed 

method 

98.7% 

(0.06%) 

90.8% 

(0.24%) 

93.4% 

(0.16%) 

94.7% 

(0.1%) 

79% 

(0.3%) 

89.5% 

(0.14%) 

Competing 

method 

61.8% 

(0.19%) 

82.9% 

(0.15%) 

75.9% 

(0.13%) 

67.1% 

(0.19%) 

97.4% 

(0.11%) 

77.2% 

(0.13%) 

 

3.7 Application in Nurse Care Coordination 

We apply the proposed method to a dataset created using the NCCI (Duva, 2010; 

Shuai et al, 2014). The dataset includes 614 nurses from 32 medical-surgical units of four 

hospitals in the metro Atlanta area. These data are used in this paper with permission. Three 

categories of variables are measured in the dataset, as shown in Table 9. The first category 

consists of nurse care coordination activities belonging to six constructs, “m”, “e”, “a”, “b”, 

“o”, and “c”. For example, “I initiate actions to get my nursing team members to do what 

is needed to keep my patients on their plan” is an activity belonging to “m”. “I 

communicate information to my interdisciplinary team members they need to know to 

carry out their patient care activities or to make changes in their plan of care” is an activity 
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belonging to “e”. “I ask my nursing team members to assist me with my patient activities 

when I am tied up with one or more of my patients” is an activity belonging to “a”. “I 

prompt my interdisciplinary team to do the work they are responsible for so I can get my 

own work done and keep patients on their plan of care” is an activity belonging to “b”. “I 

organize the supplies that I need to be able to keep the care of my patients on track” is an 

activity belonging to “o”. “I perform my patient assessments so that they will be useful to 

everyone on the team” is an activity belonging to “c”. A total of 45 activities were measured 

in the form of 45 questions asked to the nurses in a questionnaire. The answer to each 

question is a five-point likert-type scale with higher scores representing greater amounts of 

the corresponding activity. The correspondence between each question and the latent 

construct is known by the design of the NCCI. To get a measurement for each construct, 

we average the scores of the corresponding questions. The second category of variables in 

the dataset are nurse demographic and workload variables, and three of them are included 

in this study as shown in Table 9. The third category consists of organizational 

characteristic variables of nurses’ practice environment, i.e., their units. Seven variables 

are included, which measure the availability of certain infrastructure, technology, and 

policies that may potentially facilitate nurse care coordination.  
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Table 9: Description of the NCCI data 

 

 

Next, we discuss roles of the variables in the proposed model. Among the six 

constructs, “m”, “e”, “a”, and “b” measure the inter-dependent activities among nurses, i.e., 

their coordination, while “o” and “c” measure their independent activities that are 

instrumental to their coordination. We focus on three out of the four inter-dependent 

constructs, “m”, “e”, and “a”, because there has been some controversy over whether “b” 

plays a positive or negative role in care coordination (Duva, 2010). Among “m”, “e”, and 

“a”, “m” is treated as one response variable. Originally, we tried making “e” and “a” two 

other response variables, but the result was not as good as combining them into one 

response variable. This is an interesting finding: On the one hand, “a” and “e” are different 

in the sense that the former concerns coordination between nurses while the latter concerns 

coordination initiated by nurses but with other professionals in the patient care team. On 

the other hand, the fact that combining “e” and “a” gives better model performance is an 

indication that there might be a higher-level abstraction making “e” and “a” more similar 

Category Variable Value Level

Mobilizing (m) numerical nurse

Exchanging (e) numerical nurse

Assisting (a) numerical nurse

Backfilling (b) numerical nurse

Organizing (o) numerical nurse

Checking (c) numerical nurse

Years of being a registered nurse numerical nurse

Length of shift numerical nurse

Shift that worked on (day/night) binary nurse

Availability of policy that addresses physician response time to nurse calls binary unit

Availability of on-side representative from nursing homes binary unit

Availability of assistance with discharge planning binary unit

Availability of clinical nurse specialists binary unit

Availability of nurse case manager binary unit

Availability of nursing team walk-around to discuss ongoing patient care binary unit

Availability of team meetings to discuss binary unit

Nurse care 

coordination

Demographics 

and workload

Organizational 

characteristics
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to each other in terms of characterizing care coordination than to other constructs like “m”. 

Pending further investigation, we focus on presenting the results of modeling two response 

variables in this paper, i.e., “m” and combined “e/a”. Furthermore, we include demographic 

and workload variables as well as “o” and “c” as individual-level predictors, and 

organizational characteristics as unit-level predictors.  

We apply the proposed method to link the predictors with the two responses, “m” 

and “e/a”. Two tuning parameters λ1  and λ2  are chosen by BIC. The responses and 

predictors are standardized, so that the fixed effects do not include an intercept but the 

random effects still do. In Table 10 under “Proposed method”, we show the estimated fixed 

effects and the variances of the estimated covariance matrix of random effects. Several 

observations can be drawn: 1) Same effects are found to be zero (non-zero) in both 

responses, although the magnitudes of non-zero effects are somewhat different. This is 

expected because of the use of an adaptive 𝑙21-penalty in our method. 2) “O” and “c” are 

found to have non-zero fixed effects among the five individual-level predictors. This makes 

sense because independent nurse care activities like “c” and “o” form the basis for nurses 

to perform interdependent coordination activities. The positive signs of the effects of “c” 

and “o” suggest that such independent activities have a positive impact on interdependent 

coordination activities. 3) Among the seven unit-level predictors, “the availability of 

assistance with discharge planning in the unit” is found to have a non-zero fixed effect. 

The positive sign of this effect suggests that providing assistance with discharge planning 

in a unit helps create a positive practice environment for the nurses in the unit to conduct 

care coordination.  4) Among the random effects, “o” is found to be non-zero in addition 
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to the intercept. This reinforces the important role of independent nurse care activities on 

care coordination especially “o”.  

Table 10: Estimated fixed effect regression coefficients and random effect 

variances by the proposed and competing methods

 

For comparison, we also apply the competing method to model each response 

variable separately. The result is presented in Table 10 under “Competing method”. The 

competing method also finds “o” and “c” to have non-zero fixed effects for the two 

responses, but two additional non-zero fixed effects for the response “e/a”. Furthermore, 

the competing method finds three unit-level predictors to have non-zero fixed effects, 

including the predictor of “the availability of assistance with discharge planning in the unit” 

that is also found by the proposed method, for the response “m”. However, all unit-level 

predictors for the response “e/a” are found to have zero fixed effects. Lastly, although the 

competing method also finds “o” to have a non-zero random effect, it finds more non-zero 

Mobilizing (Y1) Exchanging/assisting (Y2) Mobilizing (Y1) Exchanging/assisting (Y2)

Years of being a registered nurse 0 0 0 0.020765

Length of shift 0 0 0 0

Shift that worked on (day/night) 0 0 0 -0.016058

Checking 0.22067 0.31566 0.21781 0.30974

Organizing 0.11321 0.23374 0.11869 0.25483

Availability of policy that addresses 

physician response time to nurse calls 0 0 0.029156 0

Availability of on-site representative 

from nursing homes 0 0 0.0099464 0

Availability of assistance with discharge 

planning 0.029396 0.0010848 0.07649 0

Availability of clinical nurse specialists 0 0 0 0

Availability of nurse case manager 0 0 0 0

Availability of nursing team walk-around 

rounds to discuss onging patient care 0 0 0 0

Availability of team meetings to discuss 0 0 0 0

Intercept 0.38389 0.15508 0.42642 0.16398

Years of being a registered nurse 0 0 0.012954 0

Length of shift 0 0 -1.83E-05 -0.028343

Shift that worked on (day/night) 0 0 0 2.54E-05

Checking 0 0 0 0

Organizing 3.34E-05 7.98E-05 6.22E-05 7.03E-05

Fixed 

Effects

Random 

Effects

Proposed method Competing method



67 

 

random effects for the two responses than the proposed method. In summary, the proposed 

method finds 10 non-zero fixed and random effects, whereas the competing method finds 

17.  

Finally, we would like to compare the prediction performances of the two methods. 

A common metric is the average Mean Squared Prediction Error (MSPE), MSPE̅̅ ̅̅ ̅̅ ̅̅ , through 

a 𝐾-fold Cross Validation (CV). Because both our proposed method and the competing 

method are multilevel models, the generic CV procedure needs some modification. 

Specifically, the 𝐾-fold division is done within each unit, i.e., the samples within each of 

the 32 units are divided into 𝐾 folds. Then, the samples of 𝐾 − 1 folds within each unit are 

pooled together and used for training. Furthermore, the trained model is applied to the 

pooled remaining one fold from each unit to compute a MSPE. This modified CV 

procedure is to make sure that the training model includes at least some samples from each 

unit. We apply this modified CV procedure to the proposed and competing methods. 

Noting that the results could vary depending on the number of folds in the CV, we vary 𝐾 

from 2 to 8. Also noting that the results could vary even with a fixed 𝐾 because of the 

randomness of the CV partition, we run the CV partition three times for each fixed 𝐾. This 

procedure results in 8 × 3 = 24 pairs of MSPE̅̅ ̅̅ ̅̅ ̅̅  to compare the proposed and competing 

methods. We count the proportion of times the proposed method has a lower MSPE̅̅ ̅̅ ̅̅ ̅̅  than 

the competing method and conduct hypothesis testing for this proportion. The hypothesis 

testing yields a p value of 0.037, indicating that the proposed method has a significantly 

smaller MSPE̅̅ ̅̅ ̅̅ ̅̅ . A smaller prediction error provides evidence to support the appropriateness 

of the joint modelling of two responses by the proposed method.  
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3.8 Conclusion 

In this paper, we developed a multi-response multilevel model to characterize the 

relationship between nurse care coordination and nurses’ practice environment, 

demographics, and workload. Our model development was driven by the recently available 

NCCI that was the first of its kind allowing quantitative data to be collected to measure 

nurse care coordination, and was further driven by the unique data structure that required 

a joint modeling of multiple response variables in relation to predictors at two levels (unit 

level and individual/nurse level). Our model development included a unique formulation 

that used two adaptive 𝑙21-penalties to enable joint fixed effect selection and joint random 

effect selection across the multiple responses, and an efficient BCD algorithm integrated 

with an EM framework for parameter estimation. We performed theoretical analysis to 

reveal that the reason for the proposed method to outperform a separate modeling of each 

response was the consideration of a sum of squares of the effects in all other responses 

when estimating the effect in one response. In this way, the estimate was less shrunk, 

leading to better identification of small non-zero effects. We conducted simulation studies, 

which demonstrated that the proposed method achieved high TFRs and TNRs for both 

fixed and random effect identification, and the TFRs of our method were consistently 

higher than the competing method that modelled each response variable separately, 

especially when the non-zero effects were small. Our simulation studies also revealed the 

sample size and sample distribution influences on the proposed method in comparison with 

the competing method. We applied our method to the dataset created using the NCCI to 

model the relationship between two response variables measuring nurse care coordination 
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and five level-one predictors characterizing nurses’ demographics and workload and seven 

level-two predictors characterizing the practice environment of the nurses’ residing units. 

Our method achieved a significantly higher prediction accuracy on the two response 

variables compared with the competing method. Our method also identified a significantly 

smaller number of predictors to have non-zero effects than the competing method and these 

predictors were shared by the two responses. A model that requires fewer predictors 

without sacrificing the prediction accuracy and that is able to use the same subset of 

predictors to predict multiple response variables is desirable in practice. This means a 

greater saving in the effort and cost for data acquisition, and a potential saving in the cost 

of intervention if the significant predictors can be confirmed to “causally” affect the 

response variables of care coordination. In particular, our result showed that two 

independent nurse care activities, “c” and “o”, and one unit characteristic, “the availability 

of assistance with discharge planning in the unit”, had a significant positive relation to care 

coordination.  

We would like to point out several limitations of the study in this paper, which also 

open opportunities for future research. First, although our study identified three significant 

predictors for nurse care coordination, the causality between them and care coordination is 

yet to be established. Finding not only predictors but also causal factors that influence care 

coordination is important for designing improvement strategies and the best practices. 

Second, we cannot rule out the possibility that the predictors not selected by our method 

may have a non-zero effect on the responses. They are just not as significant as the 

predictors that were selected under the limited and specific samples in our dataset. More 
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data, especially data across hospitals at different geographical locations beyond the Atlanta 

area, are needed to validate and generalize the current findings. Third, our model 

formulation allows a selection of the same subset of predictors across all responses, which 

is a strength and a restriction. An immediate future extension of our model is to adopt a 

different choice for the penalties to allow for both joint variable selection across the 

responses and unique variable section within each response, such as the sparse group lasso 

penalty (Simon et al. 2013).  

The long-term goal of this research is to inform interventions to improve staff nurse 

care coordination within hospital units that would in turn lead to improved patient 

outcomes, e.g., shorter length of stay, few medication errors, less likelihood for re-

admission, and greater satisfaction. Achieving this goal is important to the current health 

care system because many hospitalized patients nowadays have multiple co-existing 

chronic illnesses demanding a great amount of coordinated care within the health care team 

especially the nurses who are the patients’ “ever-present” care professionals. Without 

effective nurse care coordination, these patients would be at an elevated risk for poor 

outcomes, which not only decrease their quality of life but also result in unnecessary costs 

to the health care system.  
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CHAPTER 4 

A SEQUENTIAL TREE-BASED CLASSIFICATION FOR PERSONALIZED 

BIOMARKER TESTING OF ALZHEIMER’S DISEASE RISK 

4.1 Introduction 

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease of the brain 

characterized by debilitating impairment in daily activities and cognitive decline. More 

than five million people in the U.S. currently have AD, and the number is expected to 

increase to 16 million by 2050. The direct health care cost is over $200 billion per year and 

projected to reach $1.2 trillion by 2050. Recent clinical trials designed to treat AD at the 

mild-to-moderate dementia phase have been largely unsuccessful. There is a growing 

consensus that treatment should target the disease in its early phases before irreversible 

brain damage occurs. Mild cognitive impairment (MCI) is a prodromal phase of AD at 

which patients experience cognitive decline but have not developed dementia. Treatment 

at the MCI phase could potentially delay the progression to AD or even prevent the patient 

from developing AD, and therefore has considerable interest. 

Important to early detection and prevention of AD is the use of biomarkers to 

precisely predict the conversion of MCI to AD within a clinical time of interest. According 

to the new diagnostic guidelines recommended by the National Institute on Aging and the 

Alzheimer’s Association [Albert et al. 2011], the important biomarkers include those 

measuring Aβ deposition in plagues and those linked to downstream neuronal degeneration 

or injury processes, such as the phosphorylated tau (p-tau) level in cerebrospinal fluid 
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(CSF), mean cerebral metabolism on 18F fludeoxyglucose positron emission tomography 

(FDG-PET), and hippocampal volume on structural magnetic resonance imaging (MRI).  

There has been a vast amount of studies aiming at using biomarker data to predict 

the conversion of MCI patients to AD (Barnes et al. 2014, Cui et al. 2011, Heister et al. 

2011, Hinrichs et al. 2011, Jack et al. 2010, Risacher et al. 2009, Wee et al. 2013, Ye et al. 

2012, Yu et al. 2012, Zhang et al. 2012, Zhang et al. 2012). A particular area of study with 

clear clinical relevance is to achieve this prediction using baseline biomarker 

measurements (Barnes et al. 2014, Cui et al. 2011, Heister et al. 2011, Hinrichs et al. 2011, 

Jack et al. 2010, Risacher et al. 2009, Wee et al. 2013, Ye et al. 2012, Yu et al. 2012, Zhang 

et al. 2012, Zhang et al. 2012)Although using longitudinal repeated measurements of the 

same biomarkers has a potential to improve the prediction accuracy, this prolongs the 

diagnostic time span and makes clinical trials more time consuming and costly. In using 

baseline biomarkers to predict MCI conversion, most of the existing studies built statistical 

classification models that assign each MCI patient to be a converter or non-converter using 

a pre-trained model. The accuracy on large public datasets like the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) has been reported to be between 60-72%. The existing 

research has a few limitations: 

First, the prediction accuracy is unsatisfactory. This can be attributed to the 

heterogeneity of MCI patients. That is, there may be subgroups across which different 

biomarkers or different combinations of biomarkers are useful for predicting conversion to 

AD. MCI heterogeneity is a known challenge in AD studies and has been reported in many 

papers (Cerami et al. 2015, Yu et al. 2012). A recent study using the comprehensive dataset 
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collected through the worldwide ADNI project revealed that there is little agreement in 

using different biomarkers for predicting the conversion of MCI to AD, such as the p-tau 

level in CSF, mean cerebral metabolism on FDG-PET, and hippocampal volume on MRI. 

Conflicting predictions by the different biomarkers happen in roughly every third MCI 

patient (Alexopoulos et al. 2014). This provides strong evidence that MCI is a 

heterogeneous group and that the existing research of “one-model-fits-all (OMFA)” is 

unlikely to work well. Here, OMFA means building one classification model, which 

assumes the same multivariate association of biomarkers with conversion/non-conversion, 

across all the MCI patients. 

Second, the existing research is bounded by an inherent limitation of conventional 

classification models that require the biomarkers to be measured all at once. This is because 

a conventional classification model takes the form of 𝑌 = 𝑓(𝑋1, … , 𝑋𝑝), where 𝑋1, … , 𝑋𝑝 

are biomarkers and 𝑌 is a binary variable of conversion or. non-conversion. When using 

this model to predict an MCI patient, data on all the biomarkers included in the model, i.e. 

𝑋1, … , 𝑋𝑝 , must be available. Otherwise, the model cannot be applied. Almost all the 

commonly used classification models have this limitation, such as logistic regression, 

discriminate analysis, support vector machine, and artificial neural network. However, 

requiring biomarkers to be available all at once at the time of making a prediction/diagnosis 

does not reflect the reality of clinical practices in which biomarkers are typically measured 

sequentially. That is, the most predictive biomarker is first tested for a patient. If the result 

is conclusive, e.g., the patient is predicted to be a converter or non-converter with a high 

confidence, no other biomarkers need to be tested. Otherwise, if the result from the first 
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biomarker is inconclusive, an additional biomarker may be tested. More biomarkers may 

be added until a conclusive diagnosis is reached. It is also possible that no conclusive 

diagnosis can be reached even with all the biomarkers having been tested, which is 

common for early stages of a disease. If this happens, the patient will be asked to come 

back to re-test during a follow up visit.  

Lastly, in most existing research that uses biomarkers to predict MCI conversion, 

biomarkers are treated as numerical variables. Although the raw biomarker measurement 

is on a numerical scale, clinical interpretation is typically based on a cutoff that 

dichotomizes the biomarker into “positive” and “negative”. For example, 1.21, 3260 𝑚𝑚3, 

and 23 pg/mL are the currently used clinical cutoffs for the mean cerebral metabolism on 

FDG-PET, hippocampal volume on MRI, and p-tau level in CSF, respectively (Jack et al. 

2008, Kim et al. 2011). Both approaches have limitations: Using the raw, numerical 

measurement of biomarkers is clinically inconvenient. Also, there may be measurement 

errors associated with the testing instrument and bias due to patient’s health condition and 

exposure to environmental factors that potentially confound with the target disease. This 

makes the use of raw biomarker measurement a less robust approach. On the other hand, 

using a single cutoff as in the current clinical practice is an over-simplification by ignoring 

the quantitative relationship between biomarker values and disease risks. Between using 

the numerical measurement and a single cutoff, a “middle” approach that uses more 

discretized levels of a biomarker may be more appropriate.  

To overcome the aforementioned limitations of the existing research, we propose a 

sequential tree-based classifier (STC) for predicting MCI patients’ risks of converting to 
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AD in this paper. Compared with conventional classification models, STC does not require 

all the biomarkers be available for every patient at the time of the prediction, but 

sequentially adds biomarkers only when necessary. Another difference is that not like 

conventional classification models that enforce a binary decision (conversion vs. non-

conversion) for each patient, STC classifies patients into three categories: a clinically-

defined high-risk (HR) category, a clinically-defined low-risk (LR) category, and an 

inconclusive category. The HR and LR categories includes MCI patients that will convert 

to AD within a clinical time of interest with a high and a low probability, e.g., 80% and 

20%, respectively. HR patients need immediate medical attention. LR patients can be 

cleared of the disease or put on long-term observation. Patients falling into the inconclusive 

category at the baseline may be asked for a re-test in a follow up visit. In essence, STC 

achieves the sequential, as-needed use of biomarkers and the three-category classification 

by finding an optimal sequence of biomarkers and two-sided cutoffs of each biomarker that 

satisfy the HR and LR requirement while minimizing the proportion of MCI patients 

classified as inconclusive. Also, STC is personalized because it allows patient-specific 

information such as age, gender, education level, and genotyping to be included to help 

identify patient-specific cutoffs for each biomarker. Additionally, STC is flexible in the 

sense that it can be developed depending on the available biomarkers in a clinic. Each clinic 

has a different level of resources, which may limit its biomarker testing capability. A model 

has limited use if it has to assume the same biomarkers to be tested across different clinics. 

Finally, we would like to stress that STC approaches the challenge of low accuracy in 

predicting MCI conversion, which is faced by the existing research, from a different angle. 
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That is, a target prediction accuracy is first defined, which is reflected by HR and LR, and 

it is then used by STC for identifying groups of patients for which this accuracy can be 

reached. This capability has tremendous value for disease management and patient 

selection in clinical trials.  

We apply STC to two important clinical applications using the ADNI data. One is 

to predict/classify MCI patients into HR, LR, or inconclusive categories so that appropriate 

medical decisions can be made for each patient. The other application is to help patient 

selection in clinical trials, i.e., identify a sub-cohort of MCI patients with a HR of 

converting to AD, as these patients are more likely to benefit from the intervention being 

tested. The remaining of this paper is organized as follows: Section 4.2 provides a literature 

review of the statistical methods used for prediction of MCI conversion to AD.  Section 

4.3 presents the formulation, estimation, and algorithm of the proposed STC model. 

Section 4.4 presents the application. Section 5 concludes the chapter.  

4.2 Literature Review 

One of the most prominent findings on AD is that AD patients have significant 

hippocampal atrophy that can be seen on an MRI scan. Because of this, abundant research 

has been devoted to using MRI imaging data for prediction of MCI conversion to AD. 

Risacher et al. (Risacher et al. 2009) analyzed MRI data using voxel-based morphometry 

and automated parcellation methods,  and identified the degree of neurodegeneration in 

medial temporal structures as the best antecedent MRI marker of imminent conversion, 

with decreased hippocampal volume being the most robust. Zhang et al. (Zhang et al., 2012) 

applied a logistic regression model on MRI imaging, and found that combining a medical 
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temporal lobe atrophy scale (MTAS) and a brain atrophy and lesion index (BALI) results 

in an improved predictive accuracy for MCI conversion. Wee et al. (Wee et al. 2013) 

proposed a novel approach to extract correlative morphological information from MRI, and 

demonstrated that combining this information with the conventional ROI-based 

information via multi-kernel support vector machines improves the prediction of MCI 

conversion.  

Due to the complicated nature of MCI, it has been acknowledged that using MRI 

data alone may not suffice. As a result, abundant research has been done to integrate MRI 

with other data sources such as CSF measurement, cognitive test scores, and functional 

imaging like FDG-PET. Barnes et al., (Barnes et al. 2014) proposed a point-based risk 

score for prediction of MCI conversion, which combines MRI hippocampal subcortical 

volume and middle temporal cortical thinning together with the scores from several 

cognitive test instruments.  Heister et al. (Heister et al. 2011) used a cox proportional hazard 

model to predict MCI conversion, which integrated medial temporal atrophy measured by 

MRI, CSF biomarker levels, and the degree of learning impairment measured by the Rey 

Auditory Verbal Learning Test. Jack et al. (Jack et al. 2010) proposed to integrate 

hippocampal volumes on MRI with CSF Aβ42 levels and Pittsburgh compound B PET 

measures in prediction of time-to-conversion from MCI to AD. Ye et al., (Ye et al.  2012) 

proposed a sparse learning model that integrated 15 features from MRI scans, cognitive 

measures, and APOE genotype.  

Because multi-source data have been used in prediction of MCI conversion, there 

is a growing interest to evaluate which source carries the most weight. Toward this end, a 
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number of comparative studies have been performed. Landau et al. (Landau et al, 2010) 

compared APOE ϵ4 allele frequency, CSF measurement, FDG-PET, hippocampal volume 

on MRI, and episodic memory performance at baseline. Their result showed that FDG-

PET and episodic memory best predicted MCI conversion to AD. Cui et al. (Cui et al. 2011) 

compared MRI morphometry features, CSF measurement, and neuropsychological and 

functional measures (NMs). Their result showed that NMs outperformed CSF and MRI 

features. Yu et al., (Yu et al. 2012) compared MRI, FDG-PET, and CSF measurement, and 

found that MRI measures had the best predictive power. Overall, the existing comparative 

studies reached inconsistent conclusions regarding the relative importance of different data 

sources. The inconsistency might be caused by the difference in the subject pools included 

in each study and in the statistical methods used for the data analysis. Another possible 

reason may be the inherent heterogeneity of the MCI population. However, almost all the 

studies reached the same conclusion that integrating multi-source information yields a 

significantly better accuracy than using a single data source alone.  

In additional to the aforementioned studies using baseline data, longitudinal data 

has also been used for MCI prediction. Zhang et al. (Zhang et al. 2012) developed a 

longitudinal feature selection method to jointly select brain regions across multiple time 

points and proposed a multi-kernel support vector machine for MCI prediction based on 

MRI, FDG-PET and cognitive scores. Misra et al. (Misra et al. 2009) investigated baseline 

and longitudinal patterns of brain atrophy in MCI patients, and found MCI converters 

displayed significantly lower volume in a number of white matter and grey matter regions. 
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Hinrichs et al. (Hinrichs et al. 2011) developed predictive markers for MCI conversion 

using a multi-kernel learning (MKL) framework.      

4.3 Proposed method – a sequential tree-based classifier (STC) 

4.3.1 Formulation of STC 

Suppose there are 𝑝  biomarkers 𝐗  = {𝑋1, … , 𝑋𝑝} , 𝑞  patient characteristic 

variables/risk factors 𝐙 ={𝑍1, … , 𝑍𝑞}, and a binary diagnostic outcome 𝑌. For example, in 

diagnosing/predicting the conversion of MCI to AD, commonly used biomarkers include 

the p-tau level in CSF, mean cerebral metabolism on FDG-PET, and hippocampal volume 

on MRI, referred to as P-tau, FDG-PET, and MRI hereafter. Risk factors may include age, 

education level, and status of APOE e4 gene (Landau et al. 2012). 𝑌 = 1 if an MCI patient 

converts to AD within a clinical time of interest and 𝑌 = 0 otherwise. Our objective is to 

find a testing sequence for the biomarkers as well as a lower and an upper cutoff value for 

each biomarker adjusted for patient difference in terms of the risk factors, in order to 

classify patients into a HR, a LR, or an inconclusive category.  

First, we focus on a less complicated problem in which the sequence of biomarkers 

is given. Without loss of generality, assume the sequence to be 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑝. Also 

assume a positive correlation between each biomarker and the disease risk, i.e., a higher 

value of a biomarker means a higher risk of the disease. Although negative correlations 

exist for some biomarkers, we can always turn the correlations into positive by 

transforming the biomarkers. This assumption was made for simplicity of the subsequent 

discussion. We would like to sequentially find two cutoffs for each biomarker. That is, we 

would like to first find a lower and an upper cutoff for 𝑋1 , 𝑙1(𝐙) and 𝑢1(𝐙), that are 
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functions of the risk factors 𝐙, such that a patient will have a HR of having the disease if 

𝑋1 ≥ 𝑢1(𝐙), a LR if 𝑋1 ≤ 𝑙1(𝐙), and be inconclusive otherwise. HR and LR patients will 

need no more biomarker testing. Inconclusive patients will be further tested for the second 

biomarker 𝑋2. Therefore, we will need to find a lower and an upper cutoffs for 𝑋2, 𝑙2(𝐙) 

and 𝑢2(𝐙), such that an inconclusive patient from the previous biomarker testing will have 

a HR of having the disease if 𝑋2 ≥ 𝑢2(𝐙), a LR if 𝑋2 ≤ 𝑙2(𝐙), and continuously be 

inconclusive otherwise. The inconclusive patients at the current step will be further tested 

for 𝑋3. This process will continue until all the biomarkers have been tested.  

In a mathematically rigorous way, we can formulate the 𝑖-th step of the above 

process as follows: Let 𝐷𝑖−1 be the cohort of inconclusive patients from the previous step. 

The goal of the 𝑖-th step is to find 𝑙𝑖(𝐙) and 𝑢𝑖(𝐙) for 𝑋𝑖 that:  

min
𝑙𝑖(𝐙),𝑢𝑖(𝐙)

𝑝( 𝑙𝑖(𝐙) ≤ 𝑋𝑖  ≤ 𝑢𝑖(𝐙)|𝐷𝑖−1)                                    (4.1) 

s.t.    𝑝(𝑌 = 1|𝑋𝑖  ≥ 𝑢𝑖(𝐙), 𝐙, 𝐷𝑖−1) ≥ 𝑟ℎ, 

                                𝑝(𝑌 = 1|𝑋𝑖  ≤ 𝑙𝑖(𝐙), 𝐙, 𝐷𝑖−1) ≤ 𝑟𝑙 .                                  (4.2) 

The objective function is to minimize the proportion of inconclusive patients. This is 

important to patients by reducing the need and the associated cost and waiting time for 

another biomarker testing before a conclusive diagnosis can be made. It is also important 

to the clinic by reducing the overall cost including the labor and resource spent on the 

diagnosis. 𝑟ℎ  and 𝑟𝑙  are clinically-defined HR and LR thresholds, respectively, and are 

typically known to specific applications. For example, in diagnosis, 𝑟ℎ is typically 80-85% 

and 𝑟𝑙  10-20%. 𝑟ℎ  is not necessarily equal to 1 − 𝑟𝑙 . Proposition 1 shows that the 

optimization problem in (4.1) is equivalent to two simpler sub-optimization problems.  
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Proposition 1: Let 𝑙𝑖(𝐙) and �̃�𝑖(𝐙) denote the optimal solutions to (4.1). Let 𝑙𝑖
∗(𝐙) and 

𝑢𝑖
∗(𝐙) be the optimal solutions to the optimization problems in (4.2) and (4.3), respectively.  

                     𝑙𝑖
∗(𝐙) = {

max
𝑙𝑖(𝐙)

𝑙𝑖(𝐙)

𝑠. 𝑡.   𝑝(𝑌 = 1|𝑋𝑖  ≤ 𝑙𝑖(𝐙), 𝐙, 𝐷𝑖−1) ≤ 𝑟𝑙  
.                                 (4.3) 

                   𝑢𝑖
∗(𝐙) = {

min
𝑢𝑖(𝐙)

𝑢𝑖(𝐙)

𝑠. 𝑡.   𝑝(𝑌 = 1|𝑋𝑖  ≥ 𝑢𝑖(𝐙), 𝐙, 𝐷𝑖−1) ≥ 𝑟ℎ 
.                                (4.4) 

Then, 𝑙𝑖
∗(𝐙) = 𝑙𝑖(𝐙) and 𝑢𝑖

∗(𝐙) = �̃�𝑖(𝐙). (Proof skipped.) 

Proposition 1 implies that 𝑙𝑖
∗(𝐙) can be obtained by first finding the feasible region of 𝑙𝑖(𝐙), 

following which the 𝑙𝑖
∗(𝐙) can be naturally obtained by using the maximum value in that 

region. The same implication applies to 𝑢𝑖
∗(𝐙).  

Furthermore, to facilitate identification of the feasible region for 𝑢𝑖(𝐙), we apply 

Bayes’ rule to the constraints in (4.4) and (4.3) and get   

            
1−𝜑𝑋𝑖|𝑌=1,𝐙=𝐳

(𝑢𝑖(𝐙))  

1−𝜑𝑋𝑖|𝑌=0,𝐙=𝐳
(𝑢𝑖(𝐙))  

≥
𝑟ℎ

1−𝑟ℎ
×
1−𝜋(𝐙)

𝜋(𝐙)
, and                                   (4.5) 

                         
𝜑𝑋𝑖|𝑌=1,𝐙=𝐳

(𝑙𝑖(𝐙)) 

𝜑𝑋𝑖|𝑌=0,𝐙=𝐳
(𝑙𝑖(𝐙))

≤
𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
,                                                (4.6) 

respectively. 𝐷𝑖−1 was dropped for notation simplicity. 𝜑𝑋𝑖|𝑌,𝐙(𝑥) denotes the cumulative 

distribution function (CDF) of 𝑋𝑖  given 𝑌  and 𝐙. 𝜋(𝐙) = 𝑝(𝑌 = 1|𝐙) is the prior of 𝑌 

before the biomarker 𝑋𝑖 is tested. In (4.5) and (4.6), 𝑟ℎ and 𝑟𝑙 are given constants. 𝜋(𝐙) can 

be known from population statistics, i.e., the probability for people with a certain 

demographic profile (e.g., female, older than 65, and APOE e4 carrier) to have the disease. 

Therefore, the key to identifying the feasible regions of 𝑙𝑖(𝐙) and 𝑢𝑖(𝐙) is to know the 

distribution of 𝑋𝑖|𝑌, 𝐙. Because biomarkers are typically measured on a continuous scale, 
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we assume a Gaussian distribution for 𝑋𝑖|𝑌, 𝐙. Note that even though the distribution of a 

biomarker may not be strictly Gaussian, we can apply Box-Cox transformation (Box et al. 

1964) to make it approximately Gaussian. Under the Gaussian distribution, we can further 

link 𝑋𝑖 and 𝑌, 𝐙 by a linear model, i.e.,  

                                   𝑋𝑖 = 𝛽0,𝑖 + 𝛽𝑦,𝑖𝑌 + 𝛃𝑧,𝑖
𝑇 𝐙 + 휀𝑖,                                       (4.7) 

where 휀𝑖~𝑁(0, 𝜎𝑖
2). Then, 𝜑𝑋𝑖|𝑌,𝐙(𝑥) becomes Φ(

𝑥−(𝛽0,𝑖+𝛽𝑦,𝑖𝑌+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
), where Φ(∙) is the 

CDF of 𝑁(0, 1) . Inserting this into (4.5) and (4.6) and further into the optimization 

problems in (4.2) and (4.3), we get: 

          𝑙𝑖
∗(𝐙) =

{
 
 

 
 

max
𝑙𝑖(𝐙)

𝑙𝑖(𝐙)

𝑠. 𝑡.   
Φ(

𝑙𝑖(𝐙)−(𝛽0,𝑖+𝛽𝑦,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
) 

Φ(
𝑙𝑖(𝐙)−(𝛽0,𝑖+𝛃𝑧,𝑖

𝑇 𝐙)

𝜎𝑖
)

≤
𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
 
.                                       (4.8) 

          𝑢𝑖
∗(𝐙) =

{
 
 

 
 

min
𝑢𝑖(𝐙)

𝑢𝑖(𝐙)

𝑠. 𝑡.   
1−Φ(

𝑢𝑖(𝐙)−(𝛽0,𝑖+𝛽𝑦,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
)

1−Φ(
𝑢𝑖(𝐙)−(𝛽0,𝑖+𝛃𝑧,𝑖

𝑇 𝐙)

𝜎𝑖
)

≥
𝑟ℎ

1−𝑟ℎ
×
1−𝜋(𝐙)

𝜋(𝐙)
 
.                                 (4.9) 

Next, we present an important property of the solutions to the optimization 

problems in (4.8) and (4.9) in Propositions 2 and 3, respectively. The proof for Proposition 

2 is given in the Appendix. The proof for Proposition 3 is similar and therefore not provided.  

Proposition 2: The solution to (4.8) exists and is unique. When 
𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
∈ (0,1), 

𝑙𝑖
∗(𝐙) is the feasible solution at which the equality of the constraint is achieved. When 

𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
≥ 1, 𝑙𝑖

∗(𝐙) = ∞.  
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Proposition 3: The solution to (4.9) exists and is unique. When 
𝑟ℎ

1−𝑟ℎ
×
1−𝜋(𝐙)

𝜋(𝐙)
> 1, 𝑢𝑖

∗(𝐙) 

is the feasible solution at which the equality of the constraint is achieved. When 
𝑟ℎ

1−𝑟ℎ
×

1−𝜋(𝐙)

𝜋(𝐙)
∈ (0,1], 𝑢𝑖

∗(𝐙) = −∞.    

4.3.2 Model Estimation for STC 

Proposition 2 sheds some light on how to find the lower cutoff of the biomarker, 

𝑙𝑖
∗(𝐙) . Before the patient takes the biomarker testing, his/her 

𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
 will be 

computed. If it is greater than or equal to one, the lower cutoff of the biomarker for this 

patient is infinity. This means that the patient can be considered LR regardless of the 

biomarker value. In other words, this patient does not need to be tested for the biomarker. 

Such situations rarely happen in practice, except for people with extremely high resistance 

to a certain disease, e.g., people carrying some genes that are disease-protective. In most 

cases, people coming to a clinic for diagnosis of a disease usually bear a fairly extensive 

amount of suspicion or risk for the disease. Therefore, we focus on the condition when 

𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
∈ (0,1). Then, the problem becomes finding the 𝑙𝑖(𝐙) satisfying the equality 

of  

           
Φ(

𝑙𝑖(𝐙)−(𝛽0,𝑖+𝛽𝑦,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
) 

Φ(
𝑙𝑖(𝐙)−(𝛽0,𝑖+𝛃𝑧,𝑖

𝑇 𝐙)

𝜎𝑖
)

=
𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
.                                                  (4.10) 

Unfortunately, this problem does not have an analytical solution. To solve it, we may adopt 

one of two approaches: a numerical approach that finds the 𝑙𝑖(𝐙) satisfying (4.10) for any 

given 𝐙 . This approach can achieve any required precision for the solution, but is 
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computationally intensive. An alternative approach is to use an approximation for Φ(𝑥) 

proposed by (Bowling et al., 2009), i.e.,  

                   Φ(𝑥) ≈
1

1+𝑒𝑥𝑝(−1.702𝑥)
.                                                                  (4.11) 

By substituting (4.11) into (4.10), 𝑙𝑖
∗(𝐙) can be solved analytically as 

        𝑙𝑖
∗(𝐙) = −

𝜎𝑖

1.702
𝑙𝑛 (

1−
𝑟ℎ
1−𝑟ℎ

×
1−𝜋(𝐙)

𝜋(𝐙)

𝑟ℎ
1−𝑟ℎ

×
1−𝜋(𝐙)

𝜋(𝐙)
𝑒𝑥𝑝(1.702

(𝛽0,𝑖+𝛽𝑦,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
)−𝑒𝑥𝑝(1.702

(𝛽0,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
)

).     (4.12) 

Likewise, proposition 3 sheds some light on how to find the higher cutoff of the 

biomarker, i.e., 𝑢𝑖
∗(𝐙). Following similar reasoning and using the approximation in (4.11), 

𝑢𝑖
∗(𝐙) can be solved analytically as 

         𝑢𝑖
∗(𝐙) =

𝜎𝑖

1.702
𝑙𝑛 (

1−
𝑟ℎ
1−𝑟ℎ

×
1−𝜋(𝐙)

𝜋(𝐙)

𝑟ℎ
1−𝑟ℎ

×
1−𝜋(𝐙)

𝜋(𝐙)
𝑒𝑥𝑝(1.702

(𝛽0,𝑖+𝛽𝑦,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
)−𝑒𝑥𝑝(1.702

(𝛽0,𝑖+𝛃𝑧,𝑖
𝑇 𝐙)

𝜎𝑖
)

).        (4.13)      

Finally, we would like to point out that the 𝛽0,𝑖, 𝛽𝑦,𝑖, 𝛃𝑧,𝑖, and 𝜎𝑖 in (4.12) and (4.13) 

are unknown but can be estimated from a training dataset. For example, under the linear 

model in (4.7), 𝛽0,𝑖 , 𝛽𝑦,𝑖 , 𝛃𝑧,𝑖 , and 𝜎𝑖  can be estimated by an maximum likelihood 

estimation (MLE). If 𝐙 is high-dimensional, variable selection techniques may be adopted 

to select a small subset of 𝐙 that have non-zero coefficients, such as the well-known lasso 

model (Wee et al. 2013), followed by an MLE on the non-zero coefficients. However, 

regardless of the estimation method, there is sampling uncertainty in the estimated 𝛽0,𝑖, 

𝛽𝑦,𝑖, 𝛃𝑧,𝑖, and 𝜎𝑖 due to the finite sample size of the training dataset, which will further 

introduce uncertainty into 𝑢𝑖
∗(𝐙) and 𝑙𝑖

∗(𝐙). To better account for the sampling uncertainty, 

we use Monte Carlo simulation to generate an empirical sampling distribution for �̂�𝑖
∗(𝐙) 
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and 𝑙𝑖
∗(𝐙), respectively, and then use the empirical means as the solutions to (4.13) and 

(4.12). This approach is found to be more robust to sampling uncertainty and have better 

accuracy in our case studies. Specifically, the empirical sampling distribution for �̂�𝑖
∗(𝐙) is 

generated as follows (a similar procedure can be used for 𝑙𝑖
∗(𝐙)): Let 𝛽0,𝑖, 𝛽𝑦,𝑖, �̃�𝑧,𝑖, and �̃�𝑖 

be the estimated model parameters from the training dataset through MLE. We use Monte 

Carlo simulation to generate 𝑁 samples from the following empirical distributions: 

(

 
 
�̂�0,𝑖
(𝑡)

�̂�𝑦,𝑖
(𝑡)

�̂�𝑧,𝑖
(𝑡)

)

 
 
~𝑁

(

 
 
(

𝛽0,𝑖

𝛽𝑦,𝑖

�̃�𝑧,𝑖

) , �̃�𝑖
2((𝟏 𝐲 𝐳)𝑇(𝟏 𝐲 𝐳))

−1
(𝟏 𝐲 𝐳)𝑇𝐱𝑖

)

 
 

,     (4.14)                     

�̂�𝑖
2(𝑡)
~
(𝐱𝑖−(�̃�0,𝑖+�̃�𝑦,𝑖𝐲+�̃�𝑧,𝑖

𝑇 𝐳))
𝑇
(𝐱𝑖−(�̃�0,𝑖+�̃�𝑦,𝑖𝐲+�̃�𝑧,𝑖

𝑇 𝐳))

𝜒𝑛−𝑝
2 ,                              (4.15) 

𝑡 = 1,… ,𝑁. 𝐱𝑖, 𝐲, and 𝐳 are training data for 𝑛 patients. 𝟏 is a 𝑛 × 1 vector of ones. 𝑝 is 

the column dimension of the predictor matrix (𝟏 𝐲 𝐳). Then, each sample generated 

from (4.14) and (4.15), i.e., �̂�0,𝑖
(𝑡)

, �̂�𝑦,𝑖
(𝑡)

, �̂�𝑧,𝑖
(𝑡)

, and �̂�𝑖
2(𝑡)

, is inserted into (4.13) to obtain 

�̂�𝑖
∗(𝐙)(𝑡). The average, �̅̂�𝑖

∗(𝐙) =
∑ 𝑢𝑖

∗(𝐙)(𝑡)𝑁
𝑡=1

𝑁
, is used as the final solution to (4.13).  

4.3.3 Algorithm for STC 

Section 3.1 and 3.2 assumed that the biomarker sequence is known and the 

discussion was focused on the 𝑖-th step (i.e., the 𝑖-th biomarker) of the modeling building 

process of the STC. In this section, we present the full algorithm. The input to the algorithm 

includes a specification on the biomarkers that are allowed to be used in a clinic. This may 

be clinic-specific depending on availability and resource constraints. The input also 

includes a training and a validation set on the biomarkers 𝐗 , patient characteristic 
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variables/risk factors 𝐙, and the diagnostic outcome 𝑌, the HR and LR thresholds, 𝑟ℎ and 

𝑟𝑙, and the prior, 𝜋(𝐙). Suppose 𝑝 biomarkers are available. Then, the objective or output 

of the algorithm is to find an optimal sequence of the biomarkers with cutoffs for each 

biomarker, 𝑢𝑖
∗(𝐙) and 𝑙𝑖

∗(𝐙), 𝑖 = 1, … , 𝑝. Since the number of biomarkers for a particular 

disease is usually small, we will perform an exhaustive search over all possible sequences. 

We will report three metrics computed on the validation set for comparing the sequences: 

positive prediction value (PPV), negative prediction value (NPV), and the percentage of 

patients classified as inconclusive. The first two metrics reflect the accuracy, where PPV 

measures the proportion of patients classified as HR that are true converters and NPV 

measures the proportion of patients classified as LR that are true non-converters. The last 

metric reflects the efficiency: the lower the inconclusive percentage, the more efficient the 

biomarker sequence.  

Specifically, given that 𝑝  biomarkers are available in a clinic, our algorithm 

performs three major steps for each of 𝑝! possible biomarker sequences. Without loss of 

generality, denote each sequence by 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑝.  

Step 1 (initialization): Initialize the algorithm by having  𝑖 ← 1 and putting the entire 

training set into 𝐷𝑖−1.   

Step 2 (sequential estimation)  

Sub-step 2.1 (identification of the cutoffs for 𝑿𝒊): Fit a linear model as (4.7) for 

𝑋𝑖 using the training data in 𝐷𝑖−1, and obtain estimates for the model coefficients, 

𝛽0,𝑖, 𝛽𝑦,𝑖, �̃�𝑧,𝑖, and �̃�𝑖. Check the normality assumption of the model and apply box-

cox transformation to 𝑋𝑖 if needed. Use the estimated model coefficients to obtain 
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𝑁 Monte Carlo samples �̂�0,𝑖
(𝑡)

, �̂�𝑦,𝑖
(𝑡)

, �̂�𝑧,𝑖
(𝑡)

, and �̂�𝑖
2(𝑡)

, 𝑡 = 1,… ,𝑁. Insert each sample 

into (4.13) and (4.12) and obtain sample realizations for the cutoffs, i.e., �̂�𝑖
∗(𝐙)(𝑡) 

and 𝑙𝑖
∗(𝐙)(𝑡) , 𝑡 = 1,… ,𝑁 . Use the sample averages, �̅̂�𝑖

∗(𝐙)  and 𝑙 ̅𝑖
∗(𝐙) , as the 

estimated cutoffs for 𝑋𝑖.  

Sub-step 2.2 (subsetting of the training set): Apply the estimated cutoffs in sub-

step 2.1 to the patients in 𝐷𝑖−1 and only keep patients with 𝑙 ̅𝑖
∗(𝐙) < 𝑋𝑖 < �̅̂�𝑖

∗(𝐙) in 

the training set. Denote the current training set by 𝐷𝑖. 

Sub-step 2.3 (continuation or stopping): Move onto the next biomarker by having  

𝑖 ← 𝑖 + 1 and going to sub-step 2.1, until 𝑖 + 1 = 𝑝. 

Step 3 (evaluation): Apply the estimated cutoffs for each biomarker, i.e.,  �̅̂�𝑖
∗(𝐙) and 𝑙 ̅𝑖

∗(𝐙), 

𝑖 = 1, … , 𝑝, to the validation set and compute PPV, NPV, and the percentage of patients 

classified as inconclusive.  

This three-step algorithm will be applied to each of the 𝑝!  possible biomarker 

sequences.  These sequences will then be compared in terms of the diagnostic accuracy 

(PPV and NPV) and efficiency (percentage of inconclusive patients) evaluated on the 

validation set. Because multiple metrics are used in the comparison, an integrated metric 

may be used to help select the optimal sequence. Alternatively, a Pareto optimal frontier 

may be provided to practitioners to show the tradeoffs between multiple Pareto optimal 

solutions/sequences.    

4.3.4 Extension to non-Gaussian biomarkers 

When the biomarkers do not follow Gaussian distributions, one approach is to apply 

Box-Cox transformation to make them approximately Gaussian, which was mentioned in 
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Section 3.1. An alternative approach is to deal with the non-Gaussian distributions directly. 

Specifically, instead of linking the biomarker 𝑋𝑖 with 𝑌, 𝐙 by a linear model as in (4.7), we 

can use a Generalized Linear Model (GLM), i.e.,  

𝐸(𝑋𝑖) = 𝑔
−1(𝛽0,𝑖 + 𝛽𝑦,𝑖𝑌 + 𝛃𝑧,𝑖

𝑇 𝐙),                                               (4.16) 

where 𝑔(∙) is an appropriate link function depending on the distribution of the biomarker. 

Consequently, (4.8) and (4.9) change to 

𝑙𝑖
∗(𝐙) = {

max
𝑙𝑖(𝐙)

𝑙𝑖(𝐙)

𝑠. 𝑡.   
𝜑𝑋𝑖|𝑌=1,𝐙=𝐳

(𝑙𝑖(𝐙)) 

𝜑𝑋𝑖|𝑌=0,𝐙=𝐳
(𝑙𝑖(𝐙))

≤
𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
 
,                                        (4.17) 

𝑢𝑖
∗(𝐙) = {

min
𝑢𝑖(𝐙)

𝑢𝑖(𝐙)

𝑠. 𝑡.   
1−𝜑𝑋𝑖|𝑌=1,𝐙=𝐳

(𝑢𝑖(𝐙))  

1−𝜑𝑋𝑖|𝑌=0,𝐙=𝐳
(𝑢𝑖(𝐙))  

≥
𝑟ℎ

1−𝑟ℎ
×
1−𝜋(𝐙)

𝜋(𝐙)
 
.                                  (4.18) 

𝜑𝑋𝑖|𝑌,𝐙(𝑥) is the CDF of 𝑋𝑖 given 𝑌 and 𝐙, which can be specificed according to the GLM 

in (4.16). 𝜑𝑋𝑖|𝑌,𝐙(𝑥)  is not Gaussian, so the approximation in (4.11) cannot be used. 

Consequently, (4.17) and (4.18) cannot be solved analytically but by a numerical search, 

which is computationally more intensive. The modified STC algorithm is the following: 

Step 1 (initialization): Initialize the algorithm by having  𝑖 ← 1 and putting the entire 

training set into 𝐷𝑖−1.   

Step 2 (sequential estimation)  

Sub-step 2.1 (identification of the cutoffs for 𝑔(𝐸(𝑿𝑖))): Fit a GLM as (4.16) 

using the training data in 𝐷𝑖−1, and obtain estimates for the model coefficients, 𝛽0,𝑖, 

𝛽𝑦,𝑖, and �̃�𝑧,𝑖. In order to solve the optimization problems in (4.17), we can start 

from a small 𝑙𝑖(𝐙) for which the constraint holds, and increase 𝑙𝑖(𝐙) in small steps 
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until the constraint is violated. The last value of 𝑙𝑖(𝐙)  before the constrain is 

violated is the optimal solution 𝑙𝑖
∗(𝐙). Likewise, we can obtain the optimal solution 

𝑢𝑖
∗(𝐙) in (4.18).  

Sub-step 2.2 (subsetting of the training set): Apply the estimated cutoffs in sub-

step 2.1 to the patients in 𝐷𝑖−1 and only keep patients with 𝑙𝑖
∗(𝐙) < 𝑔(𝐸(𝑿𝑖)) <

𝑢𝑖
∗(𝐙) in the training set. Denote the current training set by 𝐷𝑖. 

Sub-step 2.3 (continuation or stopping): Move onto the next biomarker by having  

𝑖 ← 𝑖 + 1 and going to sub-step 2.1, until 𝑖 + 1 = 𝑝. 

Step 3 (evaluation): Apply the estimated cutoffs for each biomarker, i.e.,  𝑢𝑖
∗(𝐙) and 𝑙𝑖

∗(𝐙), 

𝑖 = 1, … , 𝑝, to the validation set and compute PPV, NPV, and the percentage of patients 

classified as inconclusive. 

4.4 Case studies in prediction of MCI conversion to AD 

In this section, we present two clinical applications using the proposed STC: Sub-

section 4.1 presents an application in clinical diagnosis, i.e., prediction/classification of 

MCI patients into HR, LR, or inconclusive categories so that appropriate medical decisions 

can be made for each patient. Sub-section 4.1 presents another application of using STC to 

help patient selection in clinical trials. As mentioned in Introduction, there has been a 

growing consensus in the medical society that treatment of AD should target on its early 

phases before irreversible brain damage occurs. MCI is such an early phase and therefore 

has been targeted by drug companies to develop treatment for slowing down or even 

stopping the progression to AD. However, it is well-known that MCI patients are 

heterogeneous and not all of them will eventually develop AD.  To be able to appropriately 
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assess the efficacy of an AD-defeating drug, it is important to identify a sub-cohort of MCI 

patients with a HR of converting to AD and enter these patients into the drug trial. This 

important task is known as patient selection in clinical trials and can be accomplished with 

the help of STC.  

The data used in this section was obtained from the ADNI database (http:// 

adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies, and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal of 

ADNI has been to test whether MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. Determination of sensitive and specific markers of very early AD progression is 

intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator 

of this initiative is Michael W.Weiner, MD, VA Medical Center and University of 

California-San Francisco. ADNI is the result of efforts of many co-investigators from a 

broad range of academic institutions and private corporations, and subjects have been 

recruited from over 50 sites across the US and Canada. The initial goal of ADNI was to 

recruit 800 adults, ages 55 to 90, to participate in the research, approximately 200 

cognitively normal older individuals to be followed for 3 years, 400 people with MCI to 

be followed for at least 3 years, and 200 people with early AD to be followed for 2 years. 

For up-to-date information, see http://www.adni-info.org/. 

http://www.adni-info.org/
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Specifically, our study includes 187 MCI patients included in the ADNI database 

who have complete data on three biomarkers, P-tau, FDG-PET, and Hippo, at their baseline 

visits, patient-specific variables/risk factors such as age, gender, education level, APOE e4 

status, and cognitive test scores, as well as conversion vs. non-conversion to AD at the end 

of their clinical follow-up time periods. A detailed description of the data is shown in Table 

11.  

Table 11: Description of the data 

Variable Non-Converters Converters 

Sample size 87 100 

Gender: female  % 59.8 58 

Age: ave. (std.) 73.1 (7.3) 73.6 (7.6) 

Education years: ave. (std.) 16.6 (2.6) 16.3 (2.7) 

APOE e4 status: carriers % 41.4 68 

Mini-mental State Examination score: ave. (std.) 27.9 (1.6) 26.7 (1.7) 

P-tau, 𝑝𝑔/𝑚𝐿: ave. (std.) 35.8 (22.8) 50.6 (25.1) 

FDG-PET, relative counts: ave. (std.) 1.25 (0.13) 1.16 (0.11) 

Hippo, 𝑚𝑚3: ave. (std.) 3449 (551) 3067 (497) 

 

Standardized biomarker acquisition and performance methods of ADNI are 

described at www.loni.ucla.edu/ADNI. Protocols of image and CSF analyses are reported 

in detail elsewhere (Jack et al. 2010, Jagust et al. 2009, Kim et al. 2011, Landau et al. 2010). 

In brief, the mean FDG count per subject (i.e., biomarker “FDG-PET”) was extracted from 

a composite region of interest on the basis of the AD-typical hypometabolic pattern (Jack 

et al. 2008, Kim et al. 2011). Hippocampal volumes (i.e., biomarker “Hippo”) were 

extracted from structural MRI scans (1.5 T) using the FreeSurfer software 
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http://surfer.nmr.mgh.harvard.edu (Kim et al. 2011). Peptide concentrations (i.e., 

biomarker “P-tau”) were measured in CSF using aliquots obtained from the same vial at 

the same thaw (Jagust et al. 2010).  

4.4.1 Clinical diagnosis of MCI conversion to AD 

4.4.1.1 Diagnosis of MCI conversion to AD with three biomarkers 

  

Figure 8: QQ plots for biomarkers after Box-Cox transformation in the sequence 

“P-tau->FDG-PET->Hippo” 

We first focus on a scenario that all three biomarkers, P-tau, FDG-PET, and Hippo, 

are available in the clinic. Then, the goal is to find an optimal sequence of the biomarkers 

with cutoffs for each biomarker, i.e., 𝑢𝑖
∗(𝐙) and 𝑙𝑖

∗(𝐙) , 𝑖 = 1,2,3 . Among known risk 

factors such as age, gender, education level, and APOE e4 status, only age is found to be 

significant in this dataset. Therefore, 𝐙 includes age. The HR and LR thresholds are set to 

be 𝑟ℎ = 0.8 and 𝑟𝑙 = 0.2, which are common choices in clinical diagnosis. Also, a uniform 

prior is adopted, i.e., 𝜋(𝐙) = 0.5. Three biomarkers compose 3! = 6 possible sequences. 

For each sequence, we apply the algorithm in Section 3.3 with a minor modification of 

using cross validation (CV) instead of arbitrarily splitting the entire dataset into a training 

and a validation set. The CV-based PPV, NPV, and percentage of inconclusive patients for 
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each sequence are summarized in Table 12. Box-Cox transformation on the biomarkers is 

used and the transformed biomarkers in each sequence follow Gaussian distributions. For 

example, Figure 8 shows the QQ plot of each transformed biomarker in the sequence “P-

tau->FDG-PET->Hippo”, which demonstrates clear normality.    

Table 12: CV-based PPV, NPV, and percentage of inconclusive patients for all 

possible sequences of three biomarkers using STC 

Sequence of biomarkers PPV NPV % inconclusive patients 

P-tau->FDG-PET->Hippo 74% 81% 59% 

FDG-PET->P-tau->Hippo 70% 74% 52% 

P-tau->Hippo->FDG-PET 71% 78% 56% 

Hippo->P-tau->FDG-PET 73% 78% 52% 

FDG-PET->Hippo->P-tau 72% 77% 58% 

Hippo->FDG-PET->P-tau 72% 77% 63% 

 

A clear trend of the results in Table 12 is that the NPVs are higher than PPVs 

regardless of the sequence of biomarkers. This suggests that the three biomarkers have a 

better capability for identifying non-converters than converters. Another observation is that 

the PPVs are lower than the HR threshold 𝑟ℎ = 0.8. This is reasonable because 𝑟ℎ = 0.8 is 

set for model training and the PPVs are computed based on CV which reflect the accuracy 

of the trained model applied to unseen data. The fact that the PPVs are only slightly lower 

than 0.8 implies that STC has good generalization capability. Likewise, the NPVs are only 

slightly lower than or almost equal to 1 − 𝑟𝑙 = 0.8 , which also indicates good 

generalization capability of STC. Last but not least, we observe that over half of the MCI 

patients in the dataset are found to be inconclusive no matter which sequence of the 
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biomarkers is used. This is expected because this study only uses baseline biomarker 

measurements to predict the conversion of MCI to AD. Use of baseline biomarkers for the 

prediction has clear clinical benefits as it enables early decision making for patients 

classified as HR and LR converters. On the other hand, it is highly likely that a conclusive 

classification is not possible for some MCI patients using baseline biomarker 

measurements alone. These patients need to be followed up and kept tracked of for the 

changes in their biomarker measurements over time before a conclusive prediction can be 

reached.  

To select an optimal biomarker sequence among the six possible ones in Table 12, 

we need to make a tradeoff between accuracy (measured by PPV and NPV) and efficiency 

(measured by the percentage of inconclusive patients) because no sequence optimizes the 

two criteria simultaneously. If accuracy is the primary consideration, the sequence “P-

tau->FDG-PET->Hippo” should be selected because it has the highest PPV (74%) and 

NPV (81%). This sequence, on the other hand, classifies 59% of MCI patients as 

inconclusive, which makes it the second least efficient sequence among the six. If 

efficiency is the primary consideration, the sequence  “Hippo->P-tau->FDG-PET” should 

be selected as it has the lowest percentage of inconclusive patients (52%), although its 

accuracy is sub-optimal.  

A commonly used approach in optimization when multiple criteria need to be 

optimized is to examine the Pareto optimal frontier. Figure 9 shows the Pareto optimal 

frontier for the six biomarker sequences. The vertical axis “efficiency” is defined as 1 −

percentage of inconclusive patients or the percentage of patients classified as HR or LR  
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Figure 9: Efficiency vs. accuracy of six possible sequences given all three 

biomarkers. Sequences in red are on the Pareto optimal frontier.  

by STC. The horizontal axis “accuracy” is defined as a weighted average of PPV and NPV, 

where the weights are proportions of samples classified as HR and LR, respectively. Each 

sequence is represented by a dot. Two dots in red are sequences on the Pareto optimal 

frontier. In particular, the sequence “P-tau->FDG-PET->Hippo” optimizes the accuracy 

criterion while “Hippo->P-tau->FDG-PET” optimizes the efficiency.  

 

(a) 
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Cutoffs as functions of age 

Cutoffs at 

median age 
𝑙1
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−0.01 × 𝑙𝑛 (

1
3
× 𝑒(16.83−0.04×𝑎𝑔𝑒) −

4
3
× 𝑒(15.43−0.04×𝑎𝑔𝑒)) + 1)

−0.04
) 

19.4 

𝑢1
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (0.01 × 𝑙𝑛 (−

4
3
× 𝑒(16.83−0.04×𝑎𝑔𝑒) +

1
3
× 𝑒(15.43−0.04×𝑎𝑔𝑒)) + 1)

−0.04
) 

68.4 

𝑙2
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (0.01 × 𝑙𝑛 (−

4
3
× 𝑒(−3.87+0.02×𝑎𝑔𝑒) +

1
3
× 𝑒(−5.24+0.02×𝑎𝑔𝑒)) + 1)

0.15
) 

1.054 

2
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−0.01 × 𝑙𝑛 (

1
3
× 𝑒(−3.87+0.02×𝑎𝑔𝑒) −

4
3
× 𝑒(−5.24+0.02×𝑎𝑔𝑒)) + 1)

0.15
) 

1.360 

𝑙3
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (80.17 × 𝑙𝑛 (−

4
3
× 𝑒(−20.42+0.11×𝑎𝑔𝑒) +

1
3
× 𝑒(−21.70+0.11×𝑎𝑔𝑒)) + 1)

0.86
) 

2471.8 

𝑢3
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−80.17 × 𝑙𝑛 (

1
3
× 𝑒(−20.42+0.11×𝑎𝑔𝑒) −

4
3
× 𝑒(−21.70+0.11×𝑎𝑔𝑒)) + 1)

0.86
) 

3976.2 

(b) 

Figure 10: Cutoffs found by STC for biomarker sequence “P-tau->FDG-

PET->Hippo” represented by (a) a tree-like plot in which green/red/grey circles represent 

LR/HR/inconclusive categories and sizes of the circles are in proportion to the sample 

size of each branch. (b) Cutoffs of each biomarker as functions of “age” 

Next, we would like to show the cutoffs of each biomarker found by STC. We 

choose to show these for the sequence “P-tau->FDG-PET->Hippo” as an example using a 

tree-like plot in Figure 10. Specifically, In Figure 10(a), branches in green/red represent 

HR/LR converters classified by STC. The branch in grey represents the inconclusive 

category. Sizes of the branches/circles are in proportion to the sample sizes of the branches. 
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A clear observation is that less samples are classified as HR and LR as the tree goes deeper. 

This is a result from the sequential nature of STC, i.e., a later biomarker needs to classify 

samples that are failed to be classified (i.e., the inconclusive samples) by a previous 

biomarker so it has a “tougher” mission to accomplish. Figure 10(b) shows the cutoffs as 

functions of “age” using the approximations in (4.13) and (4.15). Values of the cutoffs at 

the median age of the dataset are also provided for illustration purposes.  

 

Figure 11: Efficiency vs. accuracy of six possible sequences given two out of 

three biomarkers. Sequences in red are on the Pareto optimal frontier. Each ellipse 

highlights two sequences with the same pair of biomarkers but in different orders. 

Moreover, we would like to point out that the findings from STC can help not only 

clinical diagnosis but also knowledge discovery such as discovering disease sub-types. 

Using the tree in Figure 10 as an example, there seem to exist three distinct sub-types of 

HR converters, i.e., the sub-types of P-tau-abnormality (P-tau ≥ 𝑢1
∗(𝑎𝑔𝑒)), FDG-PET-

abnormality (P-tau < 𝑢1
∗(𝑎𝑔𝑒) & FDG-PET ≤ 𝑙2

∗(𝑎𝑔𝑒)), and Hippo-abnormality (P-tau <

𝑢1
∗(𝑎𝑔𝑒) & FDG-PET > 𝑙2

∗(𝑎𝑔𝑒) & Hippo ≤ 𝑙3
∗(𝑎𝑔𝑒)). Indeed, there has been medical 
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evidence that the three biomarkers track distinct aspects of the AD pathophysiological 

process (Jack et al. 2010). That is, FDG-PET, as a measure for AD-related glucose 

hypometabolism, reflects reduction in synaptic density/activity and phenomena of 

diaschisis, Hippos, as a measure for hippocampal atrophy, reflects neural loss, while P-tau 

reflects intracellular hyperphosphorylation of tau. STC allows for a finer distinction of HR 

converters into different sub-types according to specific biomarker abnormality, which 

may lead to more targeted and effective treatment. Likewise, STC can help discover sub-

types of LR converters. This would facilitate the study of different pathophysiological 

mechanisms that lead to disease protection or resistance.  

4.4.1.2 Diagnosis of MCI conversion to AD with two biomarkers – a limited-resource 

scenario 

Next, we present the results of STC in a “limited-resource” scenario, e.g., when 

only two out of the three biomarkers are available. This situation is common in many clinics. 

We use the same setting as the previously-presented three-biomarker scenario, i.e., 𝑟ℎ =

0.8 , 𝑟𝑙 = 0.2 , 𝜋(𝐙) = 0.5 , and 𝐙 = {𝑎𝑔𝑒} . Two biomarkers compose six possible 

sequences. For each sequence, we apply the algorithm in Section 3.3 and compute the CV-

based PPV, NPV, and percentage of inconclusive patients. Figure 10 shows the Pareto 

optimal frontier for the six sequences, in which efficiency and accuracy are defined in the 

same way as Figure 9. The sequence “Hippo->P-tau” optimizes the accuracy criterion 

while “FDG-PET->P-tau” optimizes the efficiency. Furthermore, each ellipse includes two 

sequences with the same pair of biomarkers but in different orders. If a clinic only has the 

resource for testing two specific biomarkers, we can compare the two dots/sequences 
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within the same ellipse and select an order of the two biomarkers that is more appropriate 

in terms of efficiency or/and accuracy. For example, if a clinic only has FDG-PET and 

Hippos, we can compare the two dots within the middle ellipse. The dot at the upper-right 

corner corresponds to the sequence “Hippo->FDG-PET” and is clearly better because it 

has better efficiency and accuracy. 

4.4.1.3 Comparison between STC and decision tree 

Finally, we compare STC with the conventional decision tree. Specifically, we 

apply the C4.5 algorithm in the Weka software (Hall et al. 2009) to the same dataset as that 

used by STC. Because STC uses age in addition to three biomarkers, we include the same 

variables in C4.5 for a fair comparison. Parameters of C4.5 are tuned to optimize the CV 

accuracy. Figure 11 shows the decision tree generated by C4.5.  Compared with the tree 

generated by STC in Figure 10, we can obtain the following observations: Both methods 

find P-tau as the first biomarker to be used for the classification. This suggests that P-tau 

may be more informative than the other two biomarkers. The differences between the two 

methods are summarized as follows: 1) The CV-based PPV and NPV of the decision tree 

are 68% and 69%, respectively, which are significantly lower than the PPV (74%) and 

NPV (81%) of the optimal sequence found by STC. This is because the decision tree, by 

design, must assign a class membership to every sample, even when a sample does not 

have a significantly higher probability of belonging to one class than the other. This leads 

to potentially large classification errors. In contrast, STC only classifies samples with a HR 

or LR of conversion while putting samples with only a mild risk in either direction (i.e., a 

risk between LR and HR) in an inconclusive category. From a disease management point 
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of view, STC is more appropriate by allowing HR patients to receive immediate medical 

attention, LR patients to be put on long-term observation, and patients in between to be 

followed up to track the changes in their disease risks. 2)  According to the decision tree in 

Figure 11, no patients can be classified using a single biomarker. In contrast, according to 

the tree in Figure 10 produced by STC, 52.3% of the patients classified as HR and LR only 

need to be tested by P-tau. In this sense, STC means less diagnostic costs, less patient 

waiting time, and more timely medical decision making. 3) The decision tree in Figure 11 

is somewhat counter-intuitive. Biomarkers are expected to have a monotonic relationship 

with the risk of disease. For example, a higher P-tau, lower FDG-PET, or lower Hippo 

indicates a higher risk of AD pathology. However, there are several branches in Figure 11 

whose biomarker ranges are contrary to this expectation. For instance, the top-right green 

circle represents non-converters whose classification rule is P-tau> 28.5 and FDG-PET>

1.19 . This higher value range for P-tau is expected to indicate a higher risk of AD 

pathology. From a clinical utilization’s point of view, clinicians would be very reluctant to 

adopt such a model as the decision tree in Figure 11 regardless of the accuracy, because 

the model is against their medical knowledge and thus being difficult to understand and 

trust. In essence, decision tree is a pure data-driven model that does not integrate medical 

knowledge and biological principles into its model building process. In contrast, STC, by 

its unique design, honors the monotonic relationship between a biomarker and disease risk, 

and therefore is able to provide a model with good interpretability and clinical utility.    
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Figure 12: Decision tree generated by C4.5. Green/red circles represent non-

convert/converter categories and sizes of the circles are in proportion to the sample size 

of each branch. 

4.4.2 Selection of HR converters for clinical trials 

Here, our objective is to identify a sub-cohort of MCI patients with a HR of 

converting to AD and enter these patients into a drug trial. This objective is different from 

clinical diagnosis as presented in sub-section 4.1 in the sense that we only care about 

maximizing PPV, as opposed to accuracy that includes both PPV and NPV, and 

maximizing the number/proportion of patients classified as HR, as opposed to efficiency 

that includes patients classified as HR or LR.  To serve this objective, we modify the STC 

algorithm by treating 𝑟𝑙 as a tuning parameter ranging from 0.05 to 0.5 in increment of 0.05. 

We adopt the same setting as that in sub-section 4.1, i.e., 𝑟ℎ = 0.8, 𝜋(𝐙) = 0.5, and 𝐙 =

{𝑔𝑒}. Figure 12 shows the Pareto optimal frontier for the biomarker sequences, in which 

each dot represents a sequence at a specific 𝑟ℎ (a total of 6 sequences × 10 𝑟ℎ values = 60 

dots). On the frontier, the sequence “Hippo->P-tau->FDG-PET” at 𝑟𝑙 = 0.35 is probably 



102 

 

the one achieving the best tradeoff between the CV-based PPV (87%) and number of HR 

patients (30), and therefore recommended as the biomarker testing sequence used for HR 

converter patient selection in AD-related clinical trials. Finally, Figure 13 shows the cutoffs 

of each biomarker for the sequence “Hippo->P-tau->FDG-PET” at 𝑟𝑙 = 0.35 found by 

STC.  

 

Figure 13: Number of HR patients vs. PPV of six possible sequences given all 

three biomarkers at 𝑟𝑙 ranging from 0.05 to 0.5 in increment of 0.05. Sequences in red are 

on the Pareto optimal frontier.  

 

(a) 
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Cutoffs as functions of age 

Cutoffs at 

median age 
𝑙1
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (209.97 × 𝑙𝑛 (−

4
3
× 𝑒(−19.80+0.11×𝑎𝑔𝑒) +

1
3
× 𝑒(−21.12+0.11×𝑎𝑔𝑒)) + 1)

0.97
) 

2613.8 

𝑢1
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−209.97 × 𝑙𝑛 (

7
5
× 𝑒(−19.80+0.11×𝑎𝑔𝑒) −

13
5
× 𝑒(−21.12+0.11×𝑎𝑔𝑒)) + 1)

0.97
) 

3470.1 

𝑙2
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−0.01 × 𝑙𝑛 (

7
5
× 𝑒(16.28−0.03×𝑎𝑔𝑒) −

13
5
× 𝑒(15.13−0.03×𝑎𝑔𝑒)) + 1)

−0.04
) 

29.7 

𝑢2
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (0.01 × 𝑙𝑛 (−

4
3
× 𝑒(16.28−0.03×𝑎𝑔𝑒) +

1
3
× 𝑒(15.13−0.03×𝑎𝑔𝑒)) + 1)

−0.04
) 

91.5 

𝑙3
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (0.01 × 𝑙𝑛 (−

4
3
× 𝑒(−0.85−0.03×𝑎𝑔𝑒) +

1
3
× 𝑒(−1.86−0.03×𝑎𝑔𝑒)) + 1)

0.19
) 

0.992 

3
∗(𝑎𝑔𝑒)

= 𝑒𝑥𝑝 (
𝑙𝑜𝑔 (−0.01 × 𝑙𝑛 (

7
5
× 𝑒(−0.85−0.03×𝑎𝑔𝑒) −

13
5
× 𝑒(−1.86−0.03×𝑎𝑔𝑒)) + 1)

0.19
) 

1.261 

(b) 

Figure 14: Cutoffs found by STC for biomarker sequence “Hippo->P-tau->FDG-

PET” represented by (a) a tree-like plot in which green/red/grey circles represent 

LR/HR/inconclusive categories and sizes of the circles are in proportion to the sample 

size of each branch. (b) Cutoffs of each biomarker as functions of “age” 

4.5 Conclusion 

In this paper, we developed a STC for predicting the conversion of MCI to AD. 

The uniqueness of the STC is to find an optimal testing sequence of the biomarkers and 

two-sided cutoffs of each biomarker that satisfy pre-specified accuracy requirements while 

minimizing the proportion of inconclusive diagnosis. The cutoffs can be customized for 
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each individual patient by taking into account patient demographic and genetic variables 

that are potential risk factors for AD. We formulated STC into an optimization problem 

and performed theoretical analysis to prove the existence and uniqueness of the solution to 

STC. Then, we proposed two approaches for estimating the cutoffs of the biomarkers, 

including a numerical approach and an approximate-analytical approach, with 

consideration of sampling uncertainty. Next, we presented the full algorithm integrating 

the estimation approaches for the cutoffs with a search of the optimal sequence. Finally, 

we presented two applications of STC using the ADNI data. In the first application, we 

used STC to identify an optimal sequence of three and two biomarkers (as an example of 

a resource-limited situation) and the associated cutoffs for classifying MCI patients into 

HR converters, LR converters, or the inconclusive category. The CV-based PPV and NPV 

of the optimal sequence are close to the pre-specified HR and LR thresholds that reflected 

the expected accuracy. STC also allowed multiple criteria, e.g., accuracy and efficiency, to 

be optimized using a Pareto optimal frontier. The results also helped identify subtypes 

within HR converters. Compared with the conventional decision tree classifier, STC 

achieved higher PPV and NPV, saved biomarker testing costs and patient waiting time, 

facilitated timely medical decision making, and produced a model that is consistent with 

medical knowledge and biological principles and thus being clinically more trust-worthy. 

In the other application, we used STC to identify a sub-cohort of MCI patients with a HR 

of converting to AD. With a slight modification of the STC algorithm, we were able to 

identify such a sub-cohort with a high CV-based PPV (87%) and a reasonable size 

appropriate for clinical trials.   
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Finally, we would like to point out that STC is applicable to other disease diagnosis 

for which multiple biomarkers need to be tested, such as the Parkinson’s disease and cancer. 

The key benefit of STC is to allow physicians to test the biomarkers sequentially with a 

known sequence optimized for each patient’s demographic profile, and on an as-needed 

basis. This would save the diagnostic time – a benefit to the patient, and the resources – a 

benefit to the health care provider. We plan to explore the application of STC to other 

diseases in future work.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

There are rich data available in today’s healthcare systems due to technology advancements, 

such as diagnostic imaging, smart sensing, and health information systems, which offers a 

great opportunity of Precision Medicine. My research focus on developing data fusion and 

system informatics approaches for quality and performance improvement of healthcare 

systems from diagnosis to care to system-level decision-making. In my dissertation, I focus 

on three emerging problems in healthcare and develop novel statistical models and machine 

learning algorithms. In collaboration with healthcare domain experts, my research has 

explored a few healthcare domains, including imaging-based disease diagnosis, 

coordinated patient care, and system-level medical decision-making.  

For disease diagnosis/subtyping, I proposed a new method, MFMM, for clustering 

multi-mode image data to discover migraine subtypes. MFMM employed a double-𝐿21-

penalized likelihood formulation to enable hierarchical selection of imaging modes and 

features. We applied MFMM to migraine subtype discovery based on brain cortical area, 

cortical thickness, and volume measurements from MRI. Two clusters/subtypes were 

found and well separated using a total of seven factors. Subjects in the two clusters had 

significantly different clinical characteristics. Findings from this study showed promise for 

imaging-based subtyping of migraine and patient stratification toward Precision Medicine. 

In my future research, MFMM could be extended to include mixed-type features, and even 

applied to subtype discovery of other diseases.   
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For coordinated patient care, I developed a Multi-response Multi-level Model to 

fuse NCCI data and reveal how care coordination activities conducted by nurses are related to 

their demographics, workload, and characteristics of their practice environment. The long-

term goal of this research is to inform interventions to improve staff nurse care coordination 

within hospital units that would in turn lead to improved patient outcomes, e.g., shorter 

length of stay, few medication errors, less likelihood for re-admission, and greater 

satisfaction.  

There are many opportunities in healthcare systems for data science research, and 

as industrial engineer, I would like to consider medical problems from a system level and 

involve multi-perspectives, such as accuracy, efficiency, safety and quality, to develop novel 

systems engineering approaches and support system-level decision-making in healthcare.   
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Appendix A-I: Deriving the expectations in (2.7) 

(A-I.1) Deriving 𝐸𝒇𝑚,𝑖,𝒔𝑖|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log 𝑓(𝒇𝑚,𝑖|𝒔𝑖; 𝚯)).  

According to (2.3), the distribution of 𝒇𝑚,𝑖| 𝑠𝑘,𝑖 = 1;𝚯 is 𝑁(𝐚𝑚,𝑘, 𝚺𝑚). Inserting 

the probability density function of this distribution into the above expectation and ignoring 

constants, we can get 

∑

{
 
 

 
 

1

2
𝑙𝑜𝑔|𝚺𝑚| +

1

2
(𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�) − 𝐚𝑚,𝑘)

𝑇
𝚺𝑚
−1(𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�) − 𝐚𝑚,𝑘) +

1

2
𝑡𝑟 (𝚺𝑚

−1𝐸(𝒇𝑚,𝑖𝒇𝑚.𝑖
𝑇 |𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�)) }

 
 

 
 

𝐾

𝑘=1
  

𝑓(𝑠𝑘,𝑖 = 1|𝒙1,𝑖, … , 𝒙𝑀,𝑖,; �̃�).                                                                                         (A-1)             

The distribution of 𝒇𝑚,𝑖|𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�  is 𝑁(�̃�𝑚𝑘(𝒙𝑚,𝑖), �̃�𝑚𝑘) , where �̃�𝑚𝑘(𝒙𝑚,𝑖) =

�̃�𝑚𝑘(�̃�𝑚
𝑇 �̃�𝑚

−1𝒙𝑚,𝑖 + �̃�𝑚
−1�̃�𝑚,𝑘)  and �̃�𝑚𝑘 = (�̃�𝑚

𝑇 �̃�𝑚
−1�̃�𝑚 + �̃�𝑚

−1)
−1
.  Therefore, 

𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�) = �̃�𝑚𝑘(𝒙𝑚,𝑖)  and 𝐸(𝒇𝑚,𝑖𝒇𝑚.𝑖
𝑇 |𝒙𝑚,𝑖, 𝑠𝑘,𝑖 = 1; �̃�) = �̃�𝑚𝑘 −

�̃�𝑚𝑘(𝒙𝑚,𝑖)
𝑇
�̃�𝑚𝑘(𝒙𝑚,𝑖) in (A-1). Finally, to derive the 𝑓(𝑠𝑘,𝑖 = 1|𝒙1,𝑖, … , 𝒙𝑀,𝑖,; �̃�) in (A-

1), we can use the Bayes’ theorem and get    

𝑓(𝑠𝑘,𝑖 = 1|𝒙1,𝑖, … , 𝒙𝑀,𝑖,; �̃�) =
�̃�𝑘 ∏ 𝑓(𝒙𝑚,𝑖|𝑠𝑘,𝑖=1;�̃�)

𝑀
𝑚=1

∑ �̃�𝑘 ∏ 𝑓(𝒙𝑚,𝑖|𝑠𝑘,𝑖=1;�̃�)
𝑀
𝑚=1

𝐾
𝑘=1

, 

where 𝒙𝑚,𝑖|𝑠𝑘,𝑖 = 1; �̃�~𝑁(�̃�𝑚�̃�𝑚,𝑘 + �̃�𝑚𝒛𝑖 , �̃�𝑚�̃�𝑚�̃�𝑚
𝑇 + �̃�𝑚 ).                 

(A-I.2) Deriving 𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;�̃�(− log 𝑓(𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖; 𝚯)).  

According to (2.1), the distribution of 𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖; 𝚯 is 𝑁(𝐇𝑚𝒇𝑚,𝑖 + 𝐁𝑚𝒛𝑖 , 𝚿𝑚). 

Inserting the probability density function of this distribution into the above expectation and 

ignoring constants, we can get 
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1

2
𝑙𝑜𝑔|𝚿𝑚| +

1

2
(𝒙𝑚,𝑖 − 𝐇𝑚𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; �̃�) − 𝐁𝑚𝒛𝑖 )

𝑇
𝚿𝑚
−1(𝒙𝑚,𝑖 − 𝐇𝑚𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; �̃�) − 𝐁𝑚𝒛𝑖 ) +

1

2
𝑡𝑟 (𝐇𝑚

𝑇𝚿𝑚
−1𝐇𝑚 (𝐸(𝒇𝑚,𝑖𝒇𝑚.𝑖

𝑇 |𝒙𝑚,𝑖; �̃�) − 𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; �̃�)𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; �̃�)
𝑇
))

     

(A-2) 

Using the result in (A-I.1), we can get 𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; �̃�) = ∑ �̃�𝑚𝑘(𝒙𝑚,𝑖)
𝐾
𝑘=1 𝑓(𝑠𝑘,𝑖 =

1|𝒙𝑚,𝑖; �̃�) , and 𝐸(𝒇𝑚,𝑖𝒇𝑚.𝑖
𝑇 |𝒙𝑚,𝑖; �̃�) = ∑ (�̃�𝑚𝑘 − �̃�𝑚𝑘(𝒙𝑚,𝑖)

𝑇
�̃�𝑚𝑘(𝒙𝑚,𝑖))

𝐾
𝑘=1 𝑓(𝑠𝑘,𝑖 =

1|𝒙𝑚,𝑖; 𝚯
(𝜔)) in (A-2).  

(A-I.3) Deriving 𝐸𝒔𝒊|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log 𝑓(𝒔𝑖; 𝚯)).  

According to (2.2), log 𝑓(𝒔𝑖; 𝚯) = ∑ 𝑠𝑘,𝑖𝑙𝑜𝑔(𝑤𝑘)
𝐾
𝑘=1 . Inserting it into the above 

expectation, we can get 𝐸𝒔𝒊|𝒙1,𝑖,…,𝒙𝑀,𝑖 ;�̃�(− log 𝑓(𝒔𝑖; 𝚯)) = −∑ 𝑙𝑜𝑔(𝑤𝑘)
𝐾
𝑘=1 𝑓(𝑠𝑘,𝑖 =

1|𝒙1,𝑖, … , 𝒙𝑀,𝑖; �̃�) .      Δ 

Appendix A-II: Proof of Proposition 1 

We first need to write the minimization problem in (2.9) into the form of (2.11). 

This can be achieved by making 𝐽 = 𝑃𝑚, 𝜷(𝑗) = 𝐡𝑚
𝑗

, and  

𝐿(𝜷|𝐃) = ∑ 𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;�̃�(− log 𝑓(𝒙𝑚,𝑖|𝒇𝑚,𝑖, 𝒛𝑖; 𝚯))
𝑁
𝑖=1 .               (A-3) 

Since the QM condition requires 𝐿(𝜷|𝐃) satisfying two assumption, we will need to write 

𝐿(𝜷|𝐃) into a format that facilitates checking of the assumptions. Through some derivation 

and dropping the terms not involving 𝜷, we can write 𝐿(𝜷|𝐃) as  

𝐿(𝜷|𝐃) = 𝜷𝑇(∑ 𝐂𝑚𝑖
𝑁
𝑖=1 )𝜷 − 2(∑ 𝒃𝑚,𝑖

𝑇𝑁
𝑖=1 )𝜷                           (A-4) 
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where 𝐂𝑚𝑖 =
1

2
𝑡𝑟(𝜳𝑚

−1) [(𝟏𝑃𝑀×𝑃𝑀⊗ (𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;𝜣(𝜔)(𝒇𝑚,𝑖))
𝑇

)

𝑇

(𝟏𝑃𝑀×𝑃𝑀⊗

(𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;𝜣(𝜔)(𝒇𝑚,𝑖))
𝑇

) + (𝟏𝑃𝑚
𝑇 ⨂𝟏𝑟𝑚

𝑇 )(𝟏𝑃𝑚
𝑇 ⨂𝟏𝑟𝑚

𝑇 )
𝑇
𝑡𝑟 (𝐸 (𝒇𝑚,𝑖(𝒇𝑚,𝑖)

𝑇
|𝒙𝑚,𝑖; 𝜣

(𝜔)) −

𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; 𝜣
(𝜔))𝐸(𝒇𝑚,𝑖|𝒙𝑚,𝑖; 𝜣

(𝜔))
𝑇
)]  and 𝒃𝑚,𝑖

𝑇 =
1

2
𝑡𝑟(𝜳𝑚

−1)𝒙𝑚,𝑖
𝑇 (𝟏𝑃𝑀×𝑃𝑀 ⊗

(𝐸𝒇𝑚,𝑖|𝒙𝑚,𝑖;𝜣(𝜔)(𝒇𝑚,𝑖))
𝑇

).  

Next, we will prove (A-4) satisfy the two assumptions required by the QM condition: 

(i) It is straightforward to get ∇𝐿(𝜷|𝐃) = 2(∑ 𝐂𝑚𝑖
𝑁
𝑖=1 𝜷 − ∑ 𝒃𝑚,𝑖

𝑇𝑁
𝑖=1 ), which exist 

everywhere. 

(ii) To prove this assumption, we define a function 𝑙(𝑡) = 𝐿(𝜷∗ + 𝑡(𝜷 − 𝜷∗)|𝐃). By 

the mean value theorem, there exists 𝑎 ∈ (0, 1) such that 

𝑙(1) = 𝑙(0) + 𝑙′(𝑎)= 𝑙(0) + 𝑙′(0) + (𝑙′(𝑎) − 𝑙′(0)).           (A-5) 

Using the 𝐿(𝜷|𝐃) in (A-4), we can get 

𝑙′(0) = 2(𝜷 − 𝜷∗)𝑇(∑ 𝐂𝑚𝑖
𝑁
𝑖=1 𝜷∗ −∑ 𝒃𝑚,𝑖

𝑇𝑁
𝑖=1 ) = (𝜷 − 𝜷∗)𝑇∇𝐿(𝜷∗|𝐃),    (A-6) 

and 

𝑙′(𝑎) − 𝑙′(0) = 2𝑎(𝜷 − 𝜷∗)𝑇 ∑ 𝐂𝑚𝑖
𝑁
𝑖=1 (𝜷 − 𝜷∗) =

1

2
(𝜷 − 𝜷∗)𝑇(4𝑎 ∙ ∑ 𝐂𝑚𝑖

𝑁
𝑖=1 )(𝜷 −

𝜷∗)  ≤ (𝜷 − 𝜷∗)𝑇(4 ∙ ∑ 𝐂𝑚𝑖
𝑁
𝑖=1 )(𝜷 − 𝜷∗).                                                                    (A-7) 

Substituting (A-6) and (A-7) into (A-5), we have 

𝑙(1) ≤ 𝑙(0) + (𝜷 − 𝜷∗)𝑇∇𝐿(𝜷∗|𝐃) +
1

2
(𝜷 − 𝜷∗)𝑇(4 ∙ ∑ 𝐂𝑚𝑖

𝑁
𝑖=1 )(𝜷 − 𝜷∗). 
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Noting that 𝑙(1) = 𝐿(𝜷|𝐃) , 𝑙(0) = 𝐿(𝜷∗|𝐃), and let 𝚲 = 4 ∙ ∑ 𝐂𝑚𝑖
𝑁
𝑖=1 , we proved the 

second assumption of the QM condition, i.e., (3.12), holds for our problem.                     Δ 
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APPENDIX B 

SUPPLEMETNAL MATERIALS FOR CHAPTER 3 
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Appendix B-I: Pseudo code for the EM and BCD algorithms for parameter estimation. 

 
Figure B1: An EM framework for estimating the proposed model in (3.6) 

 

Input: data of predictors, 𝐖, 𝐙; data of 𝕊 response variables, {𝒚𝑠}𝑠=1
𝕊 ; regularization 

parameters, 𝜆1, 𝜆2; adaptive weights 𝛽𝑝𝑠, �̃�𝑞𝑠, 𝑝 = 1, … , ℙ, 𝑞 = 1, … , ℚ, 𝑠 =

1, … , 𝕊. 

Initialize:  

𝜷𝑠
(0) 

, 𝒅𝑠
(0) 

, 𝚪s
(0) 

by fitting a multilevel model for each response separately,  

𝑠 = 1,… , 𝕊. 

𝜔 ← 0. 

Iterate until convergence: 

E-step: compute �̂�𝑠
(𝜔) 

, 𝐔s
(ω)

, 𝜎𝑠
2(𝜔) using (10), (11), and (12), respectively. 

M-step: alternate between following two sub-steps to get 𝜷𝑠
(𝜔+1) 

, 𝒅𝑠
(𝜔+1) 

, 

𝚪s
(ω+1) 

. 

(i) Solve 𝚪s
(ω+1) 

analytically, given 𝜷𝑠
(𝜔) 

, 𝒅𝑠
(𝜔) 

 

(ii) Solve 𝜷𝑠
(𝜔+1) 

, 𝒅𝑠
(𝜔+1) 

 using the BCD algorithm in Figure 3, given 

𝚪s
(ω+1) 

 

ω ← ω + 1. 

Output: estimates for 𝜷𝑠
 , 𝒅𝑠

 , 𝚪s
 , 𝜎𝑠

2, 𝑠 = 1, … , 𝕊. 
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Figure B2: A BCD algorithm for solving the optimization in (3.12) 

 

Appendix B-II: Proof of Theorem 1 

We will show the existence of a local maximizer of 𝑄({𝝓𝑠}𝑠=1
𝕊 )  in the 

neighborhood of the true value �̃�1. To achieve this purpose, we show that for an arbitrary 

positive 휀, there exits a sufficiently large non-zero constant C such that for a sufficiently 

large N,  

                𝑃 {
𝑠𝑢𝑝

‖𝑢‖ = 𝐶  𝑄 (
�̃�1 +

𝑢

√𝑁

𝟎
) < 𝑄 (�̃�

1

𝟎
)} ≥ 1 −  휀.      

 (B-1) 

Note that  

Input: regularization parameters, 𝜆1, 𝜆2; current estimates for 𝜎𝑠
2, 𝐀𝑠, 𝒃𝑠

𝑇, 𝑠 = 1, … , 𝕊; 

adaptive weights 𝛽𝑝𝑠, �̃�𝑞𝑠, 𝑝 = 1, … , ℙ, 𝑞 = 1, … , ℚ, 𝑠 = 1,… , 𝕊. 

Iterate until convergence: 

At each iteration, update ℙ + ℚ coordinates one-by-one (let �̂�𝑠
 , �̂�𝑠

  denote the 

estimates obtained in the previous iteration):   

Update the p-th fixed effect: 

𝑙𝑝𝑠 ←
1

σs
2 (𝐀s

p
[�̂�1𝑠 ⋯ �̂�𝑝−1,𝑠 0 �̂�𝑝+1,𝑠 ⋯ �̂�ℙ𝑠 �̂�𝑠

𝑇]𝑇 − 𝑏𝑝𝑠), 𝑠 =

1, … , 𝕊 

If ‖(𝑙𝑝1 × 𝛽𝑝1, … , 𝑙𝑝𝕊 × 𝛽𝑝𝕊)‖2
≤ λ1 

𝜷𝒑 ← 𝟎 

Else 

Do a one-dimensional search over 𝜷𝑝 = (𝛽𝑝1, … , 𝛽𝑝𝕊) as follows: 

If �̂�𝑝1, … , �̂�𝑝,𝑠−1, �̂�𝑝,𝑠+1, … , �̂�𝑝,𝕊 are all zeros and |𝑙𝑝𝑠 × 𝛽𝑝𝑠| ≤ 𝜆1 

𝛽𝑝𝑠 ← 0  

Else if �̂�𝑝1, … , �̂�𝑝,𝑠−1, �̂�𝑝,𝑠+1, … , �̂�𝑝,𝕊 are not all zeros and 𝑙𝑝𝑠 = 0 

𝛽𝑝𝑠 ← 0  

Else 

Use standard software to solve the minimization problem with respect to 

𝛽𝑝𝑠 

End if 

End if 

Update the q-th random effect in a similar way.  

Output: estimates for 𝜷𝑠
 , 𝒅𝑠

 , 𝑠 = 1,… , 𝕊. 
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𝐷𝑚(𝑢) =  𝑄 (
�̃�1 +

𝑢

√𝑁

𝟎
) − 𝑄 (�̃�

1

𝟎
) = ∑ {𝑙 (�̃�𝑠1

𝑇 +
𝑢𝑠

√𝑁
) −𝑆

𝑠=1

𝑙(�̃�𝑠1
𝑇 )} −𝜆𝑁1(∑ √∑ (

𝛽𝑝𝑠(1)+
𝑢 𝑝𝑠

√𝑁

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 − ∑ √∑ (
𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 ) −

𝜆𝑁2(∑ √∑ (
𝑑𝑞𝑠(1)+

𝑢 𝑞𝑠

√𝑁

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 − ∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 ). 

Using a Taylor series expansion, we have 

𝐷𝑚(𝑢) =∑ {
1

√𝑁
(∇𝑙(�̃�𝑠1))

𝑇

𝑢𝑠 +
1

2𝑁
𝑢𝑠
𝑇[∇2𝑙(�̃�𝑠1)]𝑢𝑠}

𝑆

𝑠=1
 

−𝜆𝑁1(∑ √∑ (
𝛽𝑝𝑠(1)+

𝑢 𝑝𝑠

√𝑁

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 −∑ √∑ (
𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 ) −

𝜆𝑁2(∑ √∑ (
𝑑𝑞𝑠(1)+

𝑢 𝑞𝑠

√𝑁

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 − ∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 ).      (B-2)  

Under common regularity conditions, the remainder term vanishes. For the first partial 

derivatives of 𝑙(𝝓𝑠1), ∇𝑙(𝝓𝑠1), the e-th partial derivative for each corresponding 𝜷𝑠(1) , 

𝒅𝑠(1), and 𝜸𝑠(1) satisfies 

𝐸 {
𝜕

𝜕𝛽𝑒𝑠(1)
𝑙(𝝓𝑠1)} = 𝐸[𝐖(1)𝑒

𝑇 �̃�𝑠(1)
−1  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))]|𝝓𝑠1=�̃�𝑠1 = 0,  

𝐸 {
𝜕

𝜕𝑑𝑒𝑠(1)
𝑙(𝝓𝑠1)}

= 𝐸 [
1

2
[−𝑇𝑟(�̃�𝑠(1)

−1 𝐒𝑠(1)
𝑒 )

+  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))
𝑇
(�̃�𝑠(1)

−1 𝐒𝑠(1)
𝑒 �̃�𝑠(1)

−1 )(𝒚𝑠 −𝐖(1)𝜷𝑠(1))]] |𝝓𝑠1=�̃�𝑠1 = 0, 
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𝐸 {
𝜕

𝜕𝛾𝑒𝑠(1)
𝑙(𝝓𝑠1)} = 𝐸 [

1

2
[−𝑇𝑟(�̃�𝑠(1)

−1 𝐓𝑠(1)
𝑒 ) +  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))

𝑇
(�̃�𝑠(1)

−1 𝐓𝑠(1)
𝑒 �̃�𝑠(1)

−1 )(𝒚𝑠 −

𝐖(1)𝜷𝑠(1))]] |𝝓𝑠1=�̃�𝑠1 = 0, 

where 𝐖(1)𝑒 corresponds to the e-th column of stacked matrix 𝐖(1) , and 𝐒𝑠(1)
𝑒  and 𝐓𝑠(1)

𝑒  

are block diagonal matrices of the partial derivatives of �̃�𝑠(1) and are given by 

𝐒𝑠(1)
𝑒 = 𝐙𝑠(1) {

𝜕

𝜕𝑑𝑒𝑠(1)
((𝐈 ⊗ 𝐃𝑠(1))(𝐈 ⊗ 𝚪𝑠(1))(𝐈 ⊗ 𝚪𝑠(1))

𝑇
(𝐈 ⊗ 𝐃𝑠(1))

𝑇
)} 𝐙𝑠(1)

𝑇  and  

𝐓𝑠(1)
𝑒 = 𝐙𝑠(1)(𝐈 ⊗ 𝐃𝑠(1)) {

𝜕

𝜕𝛾𝑒𝑠(1)
((𝐈 ⊗ 𝚪𝑠(1))(𝐈 ⊗ 𝚪𝑠(1))

𝑇
)} (𝐈 ⊗ 𝐃𝑠(1))

𝑇
𝐙𝑠(1)
𝑇 . 

For total number of response 0 ≤ 𝑆 < ∞, we have 

1

√𝑁
∑ [𝐖(1)𝑒

𝑇 �̃�𝑠(1)
−1  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))]

𝑆

𝑠=1
|𝝓𝑠1=�̃�𝑠1 = 𝑶𝑝(1) 

1

√𝑁
∑ [

1

2
[−𝑇𝑟(�̃�𝑠(1)

−1 𝐒𝑠(1)
𝑒 ) +  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))

𝑇
(�̃�𝑠(1)

−1 𝐒𝑠(1)
𝑒 �̃�𝑠(1)

−1 )(𝒚𝑠 −𝐖(1)𝜷𝑠(1))]]
𝑆
𝑠=1 |𝝓𝑠1=�̃�𝑠1 = 𝑶𝑝(1)  

1

√𝑁
∑ [

1

2
[−𝑇𝑟(�̃�𝑠(1)

−1 𝐓𝑠(1)
𝑒 ) +  (𝒚𝑠 −𝐖(1)𝜷𝑠(1))

𝑇
(�̃�𝑠(1)

−1 𝐓𝑠(1)
𝑒 �̃�𝑠(1)

−1 )(𝒚𝑠 −𝐖(1)𝜷𝑠(1))]]
𝑆
𝑠=1 |𝝓𝑠1=�̃�𝑠1 = 𝑶𝑝(1).       

(B-3) 

Also,  

1

𝑁
∑ ∇2𝑙(�̃�𝑠1)
𝑆
𝑠=1 ⟶𝑝−∑ 𝐼(�̃�𝑠1)

𝑆
𝑠=1 ,                             (B-4)  

where 𝐼(�̃�𝑠1) is the Fisher information evaluated at �̃�𝑠1.  

Substituting (S-3) and (S-4) into (S-2), we have  

𝐷𝑚(𝑢) =∑ {𝑶𝑝(1)𝑢𝑠 −
1

2
𝑢𝑠
𝑇[𝐼(�̃�𝑠1) + 𝑜𝑝(1)]𝑢𝑠}

𝑆

𝑠=1
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−𝜆𝑁1(∑ √∑ (
𝛽𝑝𝑠(1)+

𝑢 𝑝𝑠

√𝑁

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 −∑ √∑ (
𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 ) −

𝜆𝑁2(∑ √∑ (
𝑑𝑞𝑠(1)+

𝑢 𝑞𝑠

√𝑁

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 − ∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 ). 

For the penalty term, if 
𝜆𝑁1

√𝑁
⟶ 0 and 

𝜆𝑁2

√𝑁
⟶ 0 as 𝑁 ⟶ ∞,  

𝜆𝑁1(∑ √∑ (
𝛽𝑝𝑠(1)+

𝑢 𝑝𝑠

√𝑁

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 − ∑ √∑ (
𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 )⟶𝑝 0, and 

𝜆𝑁2(∑ √∑ (
𝑑𝑞𝑠(1)+

𝑢 𝑞𝑠

√𝑁

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 − ∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 )⟶𝑝 0. 

For 𝐷𝑚(𝑢), under regularity conditions, 𝐼(�̃�𝑠1) is finite and positive definite, hence the 

second term dominates the first term and the penalty term uniformly in ‖𝑢‖ = 𝐶 for a 

sufficiently large number C. Hence, there exists a local maximum in the ball 

{(
�̃�1 +

𝑢

√𝑁

𝟎
) | ‖𝑢‖ ≤ 𝐶} with probability 1 −  휀, and hence there exists a local maximizer 

�̂� = (�̂�
1

𝟎
) of �̃� = (�̃�

1

𝟎
) such that ‖�̂�1 − �̃�1‖ = 𝑶𝑝(

1

√𝑁
).               Δ 

Appendix B-III: Proof of Theorem 2 

To be clear, let’s fix the notation first. For the parameter of response s, 𝝓𝑠 =

(𝝓𝑠1
𝑇 , 𝝓𝑠2

𝑇 )𝑇, the sum of lengths corresponding to each parameter is 𝑘𝑠 = 𝑘𝑠1 + 𝑘𝑠2 =

𝑘𝛽 + 𝑘𝑑 + 𝑘𝛾 = 𝑘𝛽1 + 𝑘𝑑1 + 𝑘𝛾1 + 𝑘𝛽2 + 𝑘𝑑2 + 𝑘𝛾2  .  
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To prove theorem 2, it’s sufficient to show that with probability tending to 1 as 

𝑁 ⟶ ∞, for any 𝝓1 satisfying ‖𝝓1 − �̃�1‖ ≤
𝐶

√𝑁
 and for some small 휀𝑁 =

𝐶

√𝑁
  and for 

each 𝑒𝑠 = (𝑘𝑠1 + 1),⋯ , (𝑘𝑠1 + 𝑘𝑠2), we have 

                        
𝜕

𝜕𝜙𝑒𝑠
𝑄 (
𝝓1

𝝓2
) < 0, for 0 < 𝜙𝑒𝑠 < 휀𝑁 , 

                         
𝜕

𝜕𝜙𝑒𝑠
𝑄 (
𝝓1

𝝓2
) > 0, for −휀𝑁 < 𝜙𝑒𝑠 < 0.                              (B-5)   

Note that  

𝜕

𝜕𝜙𝑒𝑠
𝑄 (
𝝓1

𝝓2
) =

𝜕

𝜕𝜙𝑒𝑠
 𝑙(𝝓𝑠) −

𝜕

𝜕𝜙𝑒𝑠
(

 𝜆𝑁1∑√∑(
𝛽𝑝𝑠

𝛽𝑝𝑠
)

2𝕊

𝑠=1

 

ℙ

𝑝=1

+ 𝜆𝑁2∑√∑(
𝑑𝑞𝑠

�̃�𝑞𝑠
)

2𝕊

𝑠=1

 

ℚ

𝑞=1
)

 . 

Using Taylor expansion about 
𝜕

𝜕𝜙𝑒𝑠
 𝑙(𝝓𝑠), we have  

𝜕

𝜕𝜙𝑒𝑠
𝑄 (
𝝓1

𝝓2
) =

𝜕

𝜕𝜙𝑒𝑠
 𝑙(�̃�𝑠1) − ∑

𝜕2

𝜕𝜙𝑒𝑠𝜕𝜙𝑓𝑠

𝑘𝑠
𝑓𝑠=1

𝑙(�̃�𝑠1)(𝜙𝑓𝑠 − �̃�𝑓𝑠 ) +

1

2
∑ ∑ ∑

𝜕3

𝜕𝜙𝑒𝑠𝜕𝜙𝑓𝑠𝜕𝜙𝑔𝑠

𝑘𝑠
𝑔𝑠=1

𝑘𝑠
𝑓𝑠=1

𝑁
𝑖=1 𝑙𝑖(𝝓𝑠1

∗ )(𝜙𝑓𝑠 − �̃�𝑓𝑠 )(𝜙𝑔𝑠 − �̃�𝑔𝑠) −

𝜕

𝜕𝜙𝑒𝑠
(𝜆𝑁1∑ √∑ (

𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 + 𝜆𝑁2∑ √∑ (
𝑑𝑞𝑠

�̃�𝑞𝑠
)
2

𝕊
𝑠=1  ℚ

𝑞=1 ),                                       (B-6)    

  

where 𝝓𝑠1
∗  lies between �̃�𝑠1 and 𝝓𝑠1.  

In the proof of Theorem 1, the first order partial derivative for the  𝑒𝑠
𝑡ℎterm of 

𝛽𝑠(1) and 𝑑𝑠(1) is  

𝜕

𝜕𝛽𝑒𝑠(1)
𝑙 (�̃�𝑠1) = 𝐖(1)𝑒𝑠

𝑇 �̃̃�𝑠(1)
−1  (𝒚𝑠 −𝐖(1)�̃�𝑠(1)). 
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𝜕

𝜕𝑑𝑒𝑠(1)
𝑙 (�̃�𝑠1) = 0, 

respectively. The second order derivatives are 

1

𝑁
∇2𝑙(𝝓𝑠)|𝝓𝑠=�̃�𝑠 ⟶𝑝− 𝐼(𝝓𝑠)|𝝓𝑠=�̃�𝑠 =

1

𝑁
𝐸(∇2𝑙(𝝓𝑠))|𝝓𝑠=�̃�𝑠, 

where 𝐸(∇2𝑙(𝝓𝑠)) is given as  

𝐸(∇2𝑙(𝝓𝑠)) = 𝐸

[
 
 
 
𝐿
𝜷𝑠(1)𝜷𝑠(1)

𝐿
𝜷𝑠(1)𝒅𝑠(1)

𝐿
𝜷𝑠(1)𝜸𝑠(1)

𝐿
𝜷𝑠(1)𝒅𝑠(1)

𝐿
𝒅𝑠(1)𝒅𝑠(1)

𝐿
𝒅𝑠(1)𝜸𝑠(1)

𝐿
𝜷𝑠(1)𝜸𝑠(1)

𝐿
𝒅𝑠(1)𝜸𝑠(1)

𝐿
𝜸𝑠(1)𝜸𝑠(1)]

 
 
 

 , 

where {𝐿
𝜷𝑠(1)𝜷𝑠(1)

} = −𝐖(1)
𝑇 �̃�𝑠(1)

−1
 𝐖(1), and  𝐸 {𝐿

𝜷𝑠(1)𝒅𝑠(1)
} and 𝐸 {𝐿

𝜷𝑠(1)𝜸𝑠(1)
} have the 𝑒𝑠

𝑡ℎ 

column being 

𝐸 {𝐿
𝜷𝑠(1)𝒅𝑠(1)

}
𝑒𝑠

= −𝐸 [𝐖(1)𝑒𝑠
𝑇 (�̃�𝑠(1)

−1
𝐒𝑠(1)
𝑒𝑠 �̃�𝑠(1)

−1
)(𝒚

𝑠
− 𝐖(1)𝜷𝑠(1))] |𝝓𝑠=�̃�𝑠 = 0,  

𝐸 {𝐿
𝜷𝑠(1)𝜸𝑠(1)

}
𝑒𝑠

= −𝐸 [𝐖(1)𝑒𝑠
𝑇 (�̃�𝑠(1)

−1
𝐓𝑠(1)
𝑒𝑠 �̃�𝑠(1)

−1
)(𝒚

𝑠
− 𝐖(1)𝜷𝑠(1))] |𝝓𝑠=�̃�𝑠 = 0 , 

respectively.   

Considering 𝜙𝑒𝑠 = 𝛽𝑒𝑠(1), the expansion given in (B-6) yields 
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1

√𝑁

𝜕

𝜕𝛽𝑒𝑠(1)
𝑄 {(

𝝓1

𝝓2
)}

=
1

√𝑁
(𝑶𝑝(√𝑁) −∑ {−𝐖(1)𝑒𝑠

𝑇
�̃�𝑠(1)
−1

𝐖(1)𝑓𝑠 + 𝑜𝑝
(1)}

𝑘𝛽

𝑓𝑠=1
(𝛽𝑓𝑠 − 𝛽𝑓𝑠)

−∑ 𝑜𝑝(1)(𝑑𝑓𝑠 − �̃�𝑓𝑠)
𝑘𝛽+𝑘𝑑

𝑓𝑠=𝑘𝛽+1
−∑ 𝑜𝑝(1)(𝛾𝑓𝑠 − �̃�𝑓𝑠)

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑓𝑠=𝑘𝛽+𝑘𝑑+1

+∑ ∑ ∑ 𝐖(1)𝑖,𝑓𝑠
𝑇 (�̃�𝑠(1)𝑖∗

−1 𝐒𝑠(1)𝑖
𝑔𝑠

 �̃�𝑠(1)𝑖∗
−1 )𝐖(1)𝑖,𝑔𝑠(𝛽𝑓𝑠

𝑘𝛽+𝑘𝑑

𝑔𝑠=𝑘𝛽+1

𝑘𝛽

𝑓𝑠=1

𝑁

𝑖=1

− 𝛽𝑓𝑠)(𝑑𝑔𝑠 − �̃�𝑔𝑠)

+∑ ∑ ∑ 𝐖(1)𝑖,𝑓𝑠
𝑇 (�̃�𝑠(1)𝑖∗

−1 𝐓𝑠(1)𝑖
𝑔𝑠

 �̃�𝑠(1)𝑖∗
−1 )𝐖(1)𝑖,𝑔𝑠(𝛽𝑓𝑠

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑔𝑠=𝑘𝛽+𝑘𝑑+1

𝑘𝛽

𝑓𝑠=1

𝑁

𝑖=1

− 𝛽𝑓𝑠)(𝛾𝑔𝑠 − �̃�𝑔𝑠)

+
1

2
∑ ∑ ∑ 𝐖(1)𝑖,𝑒𝑠

𝑇
𝜕2�̃�𝑠(1)𝑖∗

−1

𝜕𝑑𝑓𝑠 𝜕𝑑𝑔𝑠
(𝒚

𝑖𝑠
− 𝐖(1)𝜷𝑠(1)∗)(𝑑𝑓𝑠

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑔𝑠=𝑘𝛽+𝑘𝑑+1

𝑘𝛽+𝑘𝑑

𝑓𝑠=𝑘𝛽+1

𝑁

𝑖=1

− �̃�𝑓𝑠)(𝛾𝑔𝑠 − �̃�𝑔𝑠)

+
1

2
∑ ∑ ∑ 𝐖(1)𝑖,𝑒𝑠

𝑇
𝜕2�̃�𝑠(1)𝑖∗

−1

𝜕𝛾𝑓𝑠 𝜕𝛾𝑔𝑠
(𝒚

𝑖𝑠

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑔𝑠=𝑘𝛽+𝑘𝑑+1

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑓𝑠=𝑘𝛽+𝑘𝑑+1

𝑁

𝑖=1

− 𝐖𝑖(1)𝜷𝑠(1)∗)(𝛾𝑓𝑠 − �̃�𝑓𝑠)(𝛾𝑔𝑠 − �̃�𝑔𝑠)

+∑ ∑ ∑ 𝐖(1)𝑖,𝑒𝑠
𝑇

𝜕2�̃�𝑠(1)𝑖∗
−1

𝜕𝑑𝑓𝑠 𝜕𝛾𝑔𝑠
(𝒚

𝑖𝑠
− 𝐖𝑖(1)𝜷𝑠(1)∗)(𝑑𝑓𝑠

𝑘𝛽+𝑘𝑑+𝑘𝛾

𝑔𝑠=𝑘𝛽+𝑘𝑑+1

𝑘𝛽+𝑘𝑑

𝑓𝑠=𝑘𝛽+1

𝑁

𝑖=1

− �̃�𝑓𝑠)(𝛾𝑔𝑠 − �̃�𝑔𝑠)) −
𝜕

𝜕𝛽𝑒𝑠(1)
(

 𝜆𝑁1∑√∑(
𝛽𝑝𝑠

𝛽𝑝𝑠
)

2𝕊

𝑠=1

 

ℙ

𝑝=1
)

 , 

where ‖𝝓∗ − �̃�‖ ≤ ‖𝝓 − �̃�‖. Since ‖𝝓 − �̃�‖ ≤
𝐶

√𝑁
,   
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1

√𝑁

𝜕

𝜕𝛽𝑒𝑠(1)
𝑄 {(

𝝓1

𝝓2
)} = 𝑶𝑝(1) −

1

√𝑁

𝜕

𝜕𝛽𝑒𝑠(1)
(𝜆𝑁1∑ √∑ (

𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 ). 

Considering the last term,  

1

√𝑁

𝜕

𝜕𝛽𝑒𝑠(1)
(𝜆𝑁1∑ √∑ (

𝛽𝑝𝑠

�̃�𝑝𝑠
)
2

𝕊
𝑠=1  ℙ

𝑝=1 ) =

{
  
 

  
 𝜆𝑁1

𝑠𝑖𝑔𝑛(𝛽𝑝𝑒𝑠)

√𝑁|�̃�𝑝𝑒𝑠|
𝑖𝑓 ∑ (

𝛽
𝑝𝑠′

�̃�
𝑝𝑠′
)

2

= 0𝑠′≠𝑒𝑠
 

𝜆𝑁1

𝛽𝑝𝑒𝑠

�̃�𝑝𝑒𝑠

2

√𝑁√∑ (
𝛽𝑝𝑠

�̃�𝑝𝑠
)

2

𝕊
𝑠=1

𝑖𝑓 ∑ (
𝛽
𝑝𝑠′

�̃�
𝑝𝑠′
)

2

≠ 0𝑠′≠𝑒𝑠

. 

In either case, the sign of  
1

√𝑁

𝜕

𝜕𝛽𝑒𝑠(1)
𝑄 {(

𝝓1

𝝓2
)} is determined by that of 𝛽𝑒𝑠(1). Similarly, 

the sign of  
1

√𝑁

𝜕

𝜕𝑑𝑒𝑠(1)
𝑄 {(

𝝓1

𝝓2
)} is also determined by that of 𝑑𝑒𝑠(1). (B-5) is proved.                

Δ 

Appendix B-IV: Proof of Theorem 3 

From Theorem 1, we proved that there exists a local maximizer �̂� = (�̂�
1

𝟎
) of 

�̃� = (�̃�
1

𝟎
) such that ‖�̂�1 − �̃�1‖

𝐹
= 𝑶𝑝(

1

√𝑁
) and the local maximizer satisfies the set of 

penalized likelihood equation 

𝜕𝝓1
𝑄(𝝓)|

𝝓=(�̂�
1

𝟎
)
 = 

𝜕

𝜕𝝓1
{∑ 𝑙(𝝓𝑠)

𝕊
𝑠=1 }|

𝝓=(�̂�
1

𝟎
)
−

𝜕

𝜕𝝓1
{𝜆𝑁1∑ √∑ (

𝛽𝑝𝑠(1)

�̃�𝑝𝑠(1)
)

2

𝕊
𝑠=1  ℙ

𝑝=1 +

𝜆𝑁2∑ √∑ (
𝑑𝑞𝑠(1)

�̃�𝑞𝑠(1)
)

2

𝕊
𝑠=1  ℚ

𝑞=1 } |
𝝓=(�̂�

1

𝟎
)
= 0 . 

Using the Taylor series expansion and multiplying through by 
1

𝑁
, we have 
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1

𝑁
(∇𝑙(�̃�11)

𝑇
,⋯ , ∇𝑙(�̃�𝑆1)

𝑇
)
𝑇

− ((𝐼(�̃�11)(�̂�11 − �̃�11))
𝑇
,⋯ , (𝐼(�̃�𝑆1)(�̂�𝑆1 −

�̃�𝑆1))
𝑇
)
𝑇

− (𝒗1
𝑇 ,⋯ , 𝒗𝕊

𝑇)𝑇 = 0   

√𝑁((𝐼(�̃�11)(�̂�11 − �̃�11))
𝑇
,⋯ , (𝐼(�̃�𝑆1)(�̂�𝑆1 − �̃�𝑆1))

𝑇

+ (𝒗1
𝑇 ,⋯ , 𝒗𝕊

𝑇))

𝑇

=

√𝑁{𝐼(�̃�1)(�̂�1 − �̃�1) + (𝒗1
𝑇 , ⋯ , 𝒗𝕊

𝑇)𝑇} =
1

√𝑁
(∇𝑙(�̃�11)

𝑇
,⋯ , ∇𝑙(�̃�𝑆1)

𝑇
)
𝑇

  

Because of the proof of Theorem 1, it follows from the multivariate central limit theorem 

that 

1

√𝑁
(∇𝑙(�̃�11)

𝑇
, ⋯ , ∇𝑙(�̃�𝑆1)

𝑇
)
𝑇

⟶𝑑 𝑁(0, 𝐼(�̃�
1)) , where 𝐼(�̃�1) =

𝑑𝑖𝑎𝑔(𝐼(�̃�11),⋯ , 𝐼(�̃�𝑆1)).  

Therefore,  

√𝑁{𝐼(�̃�1)(�̂�1 − �̃�1) + (𝒗1
𝑇 , ⋯ , 𝒗𝕊

𝑇)𝑇} ⟶𝑑 𝑁(0, 𝐼(�̃�
1)) 

which can be written as 

                     √𝑁 𝐼(�̃�1) ((�̂�1 − �̃�1) + 𝐼(�̃�1)−1(𝒗1
𝑇 ,⋯ , 𝒗𝕊

𝑇)𝑇) ⟶𝑑 𝑁(0, 𝐼(�̃�
1)) .         Δ 

Appendix B-V: Definitions of “organizing”, “checking”, “mobilizing”, “exchanging”, 

“assisting”, and “backfilling” in the NCCI 

“Organizing” is creating a structure that allows care coordination to be carried out 

in a safe and timely way. “Checking” is evaluating accuracy, timeliness, and completion 

of steps required in the sequence to carry out care coordination processes. “Mobilizing” is 

directly and indirectly getting others take actions for which they are accountable and are 

required to carry out care coordination processes. “Exchanging” is giving and receiving 
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information needed to carry out care coordination processes. “Assisting” is getting or 

giving help to carry out one or more steps in care coordination process that a nurse would 

ordinarily do themselves. “Backfilling” is doing the work of other members of the care 

team for which they were responsible but did not do to carry out care coordination 

processes.  

Appendix B-VI: The derivation for obtaining (3.7), (3.8), and (3.9) 

p(�̃�𝑠|𝒚𝑠, 𝝓𝑠
(𝜔)) =

p(𝒚𝑠, �̃�𝑠|𝝓𝑠
(𝜔)

)

p(𝒚𝑠|𝝓𝑠
(𝜔)

)
. Taking logarithm for both sides,  

        𝑙𝑜𝑔 p(�̃�𝑠|𝒚𝑠; 𝝓𝑠
(𝜔)) = 𝑙𝑜𝑔 p(𝒚𝑠, �̃�𝑠|𝝓𝑠

(𝜔)) − 𝑙𝑜𝑔 p(𝒚𝑠|𝝓𝑠
(𝜔)).                (B-7) 

According to (3.5), 

𝑙𝑜𝑔 p(𝒚𝑠, �̃�𝑠|𝝓𝑠
(𝜔)) = −

∑ n𝑖
𝑁
𝑖=1 +𝑁𝑄

2
𝑙𝑜𝑔(2𝜋) −

∑ n𝑖
𝑁
𝑖=1 +𝑁𝑄

2
log (𝜎𝑠

2(𝜔)) −
1

2𝜎𝑠
2(𝜔)

(‖𝒚𝑠 −

𝐙�̃�𝑠
(𝜔)�̃�𝑠

(𝜔)�̃�𝑠 −𝐖𝜷𝒔
(ω)‖

2

+ �̃�𝑠
𝑇�̃�𝑠).                                                                               (B-8)                                                                                   

Furthermore, we can get:  

𝑜𝑔 p(𝒚𝑠|𝝓𝑠
(𝜔)) = −

∑ n𝑖
𝑁
𝑖=1

2
log(2𝜋) −

1

2
log(|�̃�𝑠|) −

1

2
(𝒚𝑠 −𝐖𝜷𝑠

(ω))
𝑇

�̃�𝑠
−1(𝒚𝑠 −𝐖𝜷𝑠

(ω)),      

                        (B-9) 

where �̃�𝑠 = 𝐷𝑖𝑎𝑔(𝐕s1, … , 𝐕sN)  and 𝐕𝑖 = 𝜎𝑠
2(𝜔)(𝐙𝑖 𝐃𝑠

(𝜔)𝚪𝑠
(𝜔)𝚪𝑠

𝑇(𝜔)𝐃𝑠
(𝜔)𝐙𝑖

𝑇 + 𝐈) , 𝑖 =

1, … , 𝑁.  

Inserting (B-8) and (B-9) into (B-7), we can get 

𝑙𝑜𝑔 p(�̃�𝑠|𝒚𝑠; 𝝓𝑠
(𝜔))  
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= −
∑ n𝑖
𝑁
𝑖=1 +𝑁𝑄

2
log(2𝜋) −

∑ n𝑖
𝑁
𝑖=1 +𝑁𝑄

2
log (𝜎𝑠

2(𝜔)) −
1

2𝜎𝑠
2(𝜔)

(‖𝒚𝑠 − 𝐙�̃�𝑠
(𝜔)
�̃�𝑠
(𝜔)
�̃�𝑠 −

𝐖𝜷𝒔
(ω)‖

2

+ �̃�𝑠
𝑇�̃�𝑠) +

∑ n𝑖
𝑁
𝑖=1

2
log(2𝜋) +

1

2
log(|�̃�𝑠|) +

1

2
(𝒚𝑠 −𝐖𝜷𝑠

(ω))
𝑇

�̃�𝑠
−1(𝒚𝑠 −

𝐖𝜷𝑠
(ω))  

= −
𝑁𝑄

2
log(2𝜋) −

1

2
log (|𝐔𝑠

(ω)|) −
1

2
(�̃�𝑠 − �̂�𝑠

(𝜔) )𝑇𝐔𝑠
(ω)−1

(�̃�𝑠 − �̂�𝑠
(𝜔) ) ,                    (B-10)                          

where �̂�𝑠
(𝜔) 

and 𝐔𝑠
(ω)

 follow the definition in (7) and (8).  The form of (S-10) means that 

�̃�𝑠|𝒚𝑠, 𝝓
(𝜔)~𝑁(�̂�𝑠

(𝜔)  , 𝐔𝑠
(ω)
).  

Furthermore, by (3.4),  

𝑙(𝝓(𝜔)|{𝒚𝑠}𝑠=1
𝕊 ) = −

1

2
∑ {𝑙𝑜𝑔 ⌊�̃�𝑠

(𝜔)
⌋ + (𝒚𝑠 −𝐖𝜷𝒔

(𝜔))
𝑇

�̃�𝑠
(𝜔)−1

(𝒚𝑠 −𝐖𝜷𝒔
(𝜔))}𝕊

𝑠=1  ,      

(B-11) 

where �̃�𝑠
(𝜔)

= 𝐷𝑖𝑎𝑔(𝐕𝑠1
(𝜔), … , 𝐕𝑠𝑁

(𝜔))  and 𝐕𝑠𝑖
(𝜔) =

𝜎𝑠
2(𝜔)(𝐙𝑖 𝐃𝑠

(𝜔)𝚪𝑠
(𝜔)𝚪𝑠

𝑇(𝜔)𝐃𝑠
(𝜔)𝐙𝑖

𝑇 + 𝐈) , 𝑖 = 1, … ,𝑁 . Taking derivative of (B-11) with 

respect to 𝜎𝑠
2(𝜔), 

       
𝜕𝑙(𝝓(𝜔)|{𝒚𝑠}𝑠=1

𝕊 )

𝜕𝜎𝑠
2(𝜔)

=−
1

2
{
∑ n𝑖
𝑁
𝑖=1

𝜎𝑠
2(𝜔)

−
(𝒚𝑠−𝐖𝜷𝑠

(𝜔)
)
𝑇
(𝐙�̃�𝑠

(𝜔)
�̃�𝑠
(𝜔)
�̃�𝑠
(𝜔)𝑇

�̃�𝑠
(𝜔)𝑇

𝐙𝑇)
−1

(𝒚𝑠−𝐖𝜷𝑠
(𝜔)
)

𝜎𝑠
4(𝜔)

}. (B-12)                

Making (B-12) equal to zero and solving for 𝜎𝑠
2(𝜔), we can get (3.9).                                    Δ                                  
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APPENDIX C 

SUPPLEMETNAL MATERIALS FOR CHAPTER 4 
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Appendix C-I: Proof of Proposition 2 

Proof: Let =
𝑙𝑖(𝐙)−(𝛽0,𝑖+𝛃𝑧,𝑖

𝑇 𝐙)

𝜎𝑖
 , 𝛿 =

𝛽𝑦,𝑖

𝜎𝑖
, 𝑟(𝑥) =

Φ(𝑥−𝛿)

Φ(𝑥)
, and 𝑟0 =

𝑟𝑙

1−𝑟𝑙
×
1−𝜋(𝐙)

𝜋(𝐙)
. Then, the 

constraint in (4.8) becomes 𝑟(𝑥) ≤ 𝑟0. Here, 𝛿 > 0 because 𝛽𝑦,𝑖 represents the increase in 

the biomarker value as 𝑌 changes from 0 (non-diseased) to 1 (diseased). Recall that we 

made an assumption earlier on that there is a positive correlation between each biomarker 

and the disease risk, which suggests that 𝛽𝑦,𝑖 > 0. Also, 𝑟0 > 0 by definition. 

Next, we will show that 𝑟(𝑥) is strictly monotonically increasing from 0 to 1 as 𝑥 

increases from −∞ to +∞. When 𝑥 → +∞, we have  

lim
𝑥→+∞

𝑟(𝑥) =  
lim
𝑥→+∞

Φ(𝑥−𝛿)

lim
𝑥→+∞

Φ(𝑥)
=
1

1
= 1. 

When  𝑥 → −∞, using L’Hospital’s Rule, we have  

lim
𝑥→−∞

𝑟(𝑥) = lim
𝑥→−∞

Φ(𝑥−𝛿)

Φ(𝑥)
 = lim

𝑥→−∞

∫
1

√2𝜋
𝑒
−
𝑡2

2 𝑑𝑡
𝑥−𝛿
−∞

∫
1

√2𝜋
𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞

= lim
𝑥→−∞

1

√2𝜋
𝑒
−
(𝑥−𝛿)2

2

1

√2𝜋
𝑒
−
𝑥2

2

=

lim
𝑥→−∞

𝑒𝛿𝑥−
𝛿2

2 = 0.  

For finite 𝑥, 𝑟(𝑥) is strictly monotonically increasing because 

𝑑 𝑟(𝑥)

𝑑𝑥
= 𝑑(

∫
1

√2𝜋
𝑒
−
𝑡2

2 𝑑𝑡
𝑥−𝛿
−∞

∫
1

√2𝜋
𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞

) 𝑑𝑥⁄ =
𝑒
−
(𝑥−𝛿)2

2 ×∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞ −𝑒

−
𝑥2

2 ×∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥−𝛿
−∞

(∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞ )

2   

=
𝑒
−
𝑥2

2 ×∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
𝑥−𝛿

(∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞

)

2 +
𝑒
(−
𝛿2

2
+𝑥𝛿)

×∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞

(∫ 𝑒
−
𝑡2

2 𝑑𝑡
𝑥
−∞

)

2 > 0.  

Hence, when 0 < 𝑟0 < 1, the feasible region of 𝑥 is (−∞, 𝑥0], where 𝑥0 satisfies 

𝑟(𝑥0) = 𝑟0. Because 𝑟(𝑥) strictly monotonically increases with respect to 𝑥, the maximum 



137 

 

𝑟(𝑥) is achieved at 𝑥0 and this solution is unique. When 𝑟0 ≥ 1, the feasible region of 𝑥 is 

[−∞,+∞]. The maximum 𝑟(𝑥) is achieved at +∞ and this solution is unique.                    Δ 

 

 

 

 


