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ABSTRACT

This dissertation explores the impact of environmental dependent risk on disease

dynamics within a Lagrangian modeling perspective; where the identity (defined by

place of residency) of individuals is preserved throughout the epidemic process. In

Chapter Three, the impact of individuals who refuse to be vaccinated is explored.

MMR vaccination and birth rate data from the State of California are used to de-

termine the impact of the anti-vaccine movement on the dynamics of growth of the

anti-vaccine sub-population. Dissertation results suggest that under realistic Califor-

nia social dynamics scenarios, it is not possible to revert the influence of anti-vaccine

contagion. In Chapter Four, the dynamics of Zika virus are explored in two highly

distinct idealized environments defined by a parameter that models highly distinctive

levels of risk, the result of vector and host density and vector control measures. The

underlying assumption is that these two communities are intimately connected due

to economics with the impact of various patterns of mobility being incorporated via

the use of residency times. In short, a highly heterogeneous community is defined by

its risk of acquiring a Zika infection within one of two “spaces,” one lacking access to

health services or effective vector control policies (lack of resources or ignored due to

high levels of crime, or poverty, or both). Low risk regions are defined as those with

access to solid health facilities and where vector control measures are implemented

routinely. It was found that the better connected these communities are, the existence

of communities where mobility between risk regions is not hampered, lower the over-

all, two patch Zika prevalence. Chapter Five focuses on the dynamics of tuberculosis

(TB), a communicable disease, also on an idealized high-low risk set up. The impact

of mobility within these two highly distinct TB-risk environments on the dynamics

and control of this disease is systematically explored. It is found that collaboration

and mobility, under some circumstances, can reduce the overall TB burden.
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Chapter 1

COMPLEXITY OF INFECTIOUS DISEASES

The use of mathematical models in the study of disease dynamics have been use-

ful in estimating the course of recent epidemics. In essence, the usefulness of the

models is based on whether the models are able to incorporate key factors that ulti-

mately decided the course of the epidemic even when these are incorporated as mere

assumptions. For this, one can conclude that the ultimate goal of a mathematical

model should be to develop hypotheses about the communities affected rather than

to predict the outcome of an epidemic. The case of the 2009 N1H1 epidemic solely

depended in the realization that the contacts between individuals could be described

by a periodic function (Towers and Feng, 2009). In this case, hypothesizing a sec-

ondary wave of infection was invaluable, but a social or abiotic interpretation as the

cause of the second wave would have had a bigger impact for global public health.

Similarly, in the case of Ebola in West Africa, the early stages of the epidemic were

analyzed and resulted in a close estimate in the final epidemic size (Towers et al.,

2014). While this result was useful, their biggest contribution was their observations

in regards to the epidemic growth, it grew exponentially. This observation led to a

possible connection between the implementation of cordon sanitaire (a medieval con-

trol strategy) and the explosion of the epidemic in August 2014; corroborated by the

work in (Espinoza et al., 2016). These are only two recent examples in which models

served as a tool to identify the existence of ignored factors driving these outbreaks of

disease, but there are many more.

The complexity of infectious diseases combined with limited information about

their dynamics create a tremendous challenge on the effective use of mathematical
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models. In general, this complexity often arises from the impact of social and abiotic

factors. It is expected that social heterogeneity could have a direct impact in the risk

of infection, but since little is known, it is often ignored in mathematical models. In

the case of new diseases, in which little to none is known about their dynamics or

their long lasting consequences, it is paramount to determine important transmission

factors in order to create adequate time frames for the implementation of control

measures. In addition, exogenous factors like current conditions as well as social

behavior of the affected communities need to be taken in to account since they have the

potential to magnify the final size of the outbreak. Furthermore, an understanding of

the composition of the at-risk population should be the first priority since controlling a

disease outbreak depends mainly on their cooperation and secondly on the availability

of resources and infrastructure.

The aforementioned characteristics require a mathematical model where the incor-

poration of risk of infection heterogeneity is one of the main drivers of the dynamical

system. This heterogeneity can be expressed in many forms ranging from age struc-

ture to differences in vector-host ratios to more individualized forms, like for instance,

population adaptive behavior. All of which translate into a higher or lower expected

number of contacts per individual and are usually directly reflected in the basic re-

productive number; which gives us an early idea about the course of the outbreak.

In consequence, individuals might experience different levels of the risk of infection

based on factors predetermined by their community. In short, in order to identify the

main factors driving disease dynamics, the ideal approach is to have a clear under-

standing of key aspects of the at-risk population and the specific process of disease

transmission, that is, a clear understanding of biotic, abiotic and social factors. In

some cases, it is crucial to understand the ecosystem in which this population lives,

particularly when the disease studied involves zoonoses or vectors. A community
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with an abundance of reservoirs and vectors increases the exposure probability of

humans to reservoirs or vectors, and we can reasonably assume that individuals in

the community are more likely to have a higher number of zoonotic contacts than

average. Consequently, we expect such communities to have a higher risk of infection

and therefore their existence are a cause for public health concern.

It is clear that while abiotic and biotic factors determine the basic dynamics of

disease, social factors determine their spread. Most specifically, social factors influ-

ence the probability of contacts between susceptible and infectious individuals. In

particular, membership in social and ethnic groups that allow participation in social

activities and or associated ethnic customs used to be cultural barriers as a result

of distance, nowadays, easily broken by affordable travel. These factors in the ab-

sence of travel create a nonrandom mixing within these membership clusters, which

on their own, have many consequences on their epidemic spread ranging from time

of introduction to the severity of an epidemic (Sattenspiel and Dietz, 1995). Incor-

porating constant travel by tourist visiting these areas only increases the probability

of an effective contact and thus a greater and longer epidemic.

Today, it is difficult to find communities that are not interconnected, meaning

completely isolated. Hence, models that do not account for social and abiotic fac-

tors specific to the at-risk population are not likely to be useful in designing policies

that could help eradicate disease and most importantly prevent transmission. Like-

wise, policies that ignore these social and abiotic factors, or attributes of the at-risk

population, are unlikely to be effective. It should be clear that without a complete

description of the attributes of the community in question, it is almost impossible

to implement successful intervention programs that are capable of reducing transmis-

sion rates. Furthermore, failure to understand the attributes of the at-risk population

jeopardizes the success of intervention programs due to the fact that intervention pro-
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grams must educate both the at-risk population as well as their government officials

on the benefits, factors, and costs associated with population-based disease preven-

tion and control. Lastly, intervention programs must account for the risks that are

inherent with high levels of migration as well as with local and regional mobility

patterns between areas defined by risk heterogeneity.

Our ability to accurately interpret the social and abiotic factors, directly effect

the response time in the critically early stages of an epidemic. Consequently, the

development and implementation of interventions can greatly benefit in the form

of training and educational programs for governmental personnel in order to avoid

stigmatization and further marginalization of groups. A lack of an accurate analysis

is known to promote isolation, prevent integration, and reduce compliance (Gushulak

and MacPherson, 2000a), and as a result many experience some kind of discrimina-

tion. A situation that is not uncommon in today’s world where the role of dramatic

changes in initial conditions could easily be described by the displacement of large

groups of individuals, which cause catastrophes, conflicts, and generate new migra-

tion patterns in the process. Failure to adequately incorporate and address these

challenges may result in considerable delays and increase epidemic impact.

1.1 The Possible Role of Abiotic, Biotic, and Social Factors in the Spread of

Disease Epidemics.

Currently, disease outbreak analysis depends mainly on the dynamics of how a

pathogen affects humans directly. In particular, the main emphasis focuses on the

different kinds of transmission for such pathogen; it often relies on the interaction

among humans and in some cases between humans and animals (vectors). Nonethe-

less, many important factors are ignored and many of these factors have the potential

of magnifying disease proliferation and can lead to the regional endemicity of new
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diseases. According to the Centers for Disease Control and Prevention (CDC), it is

estimated that at least 6 out of every 10 infectious diseases in humans are zoonotic

(Centers for Disease Control and Prevention (b), 2016). Human interaction with

animals may consist of farming for food, interactions at zoos or fairs, family pets,

or in extreme cases, wild encounters; the latter usually as a result of deforestation

for construction purposes. Commonly, people acquire zoonotic diseases when coming

in contact with body fluids, get bitten, or by eating unsafe products from infected

animals.

Zoonotic infections are the origin of most established pathogens in humans, usually

transmitting rapidly in immunologically naive communities. Zoonotic infections are

a cause for concern due to their potential for devastating consequences, take for

instance the SARS epidemic in Canada, the 2009 N1H1 global epidemic and more

recently, the West Africa Ebola outbreak. Furthermore, spillover events could lead

to the adaptation of pathogens in humans and often making horizontal transmission

possible without the need for a reservoir. This shows the importance of monitoring

spillover diseases since repeated events could help the pathogen evolve from stage 1

(animal-animal) to stage 5 (human-human without the need of a reservoir), based on

the scale presented in (Wolfe et al., 2007). This is exactly what has been happening

with Ebola, human to human transmission has been growing and while it is considered

stage 4 since the epidemic still requires a reservoir, but Ebola was considered stage 3

in 2007 when (Wolfe et al., 2007) was published.

Zoonotic spillovers and their spread are a serious threat to global public health

since they are no longer confined to remote regions (Iacono et al., 2016). Again, the

case of Ebola in West Africa exemplifies this to perfection. During the last forty

years, there has been multiple outbreaks with none of them reaching 1000 cases until

the 2014 West Africa outbreak, in which over 28,000 people were infected and over
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11,000 died. Comparing the previous outbreaks with the latter, points to population

size and density as a potential factor for large outbreaks. In the past, Ebola was

confined only to humans, the population size was small, and the epidemic was termi-

nated locally; likely due to the high disease induced mortality rates as well as a very

limited pool of susceptible individuals. In a large and dense population, disease can

persist, travel to adjacent regions and eventually return once the susceptible popula-

tion gets replenished. Nonetheless, small populations also have the potential to host

persisting diseases as well. Small population with transmission between reservoirs

and humans, short immunity periods, and long infectious periods are among some of

the characteristics that will ensure a long disease outbreak (Wolfe et al., 2007).

Since most major epidemics involve abiotic, biotic, and social factors, it is im-

portant to have a rich understanding of the different biological, environmental, and

socio-economic factors responsible for spillovers and thus epidemic spread (Iacono

et al., 2016). Recent studies have been trying to explain the impact of these factors

on disease spread but unfortunately, most of them are arbitrary or specific to only a

single factor. Environmentally speaking, most studies focus on the impact that could

come as a consequence of climate change. In particular, for any zoonotic disease, the

growth rate of reservoirs is of great importance. A possible consequence of climate

change is the acceleration of biomass growth when temperatures rises; this could be

an explanation of why there are so many species living in the tropics. In particular, in

the case of vectors, which might be a factor that amplifies disease proliferation, their

natural life cycle is accelerated at the earlier stages, and their survival probability is

negatively affected. It would seem like climate change favors the shift rather than

the spread of epidemics. While the spread of the distribution of epidemics can be

attributed to social factors that increase disease sustainability, the abiotic factors like

climate change have the ability to increase the severity of diseases like malaria by
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increasing the length of the transmission season (Lafferty, 2009). When the acceler-

ated growth coincides with an epidemic, then the consequences could be catastrophic.

Keep in mind that seasonality could also be a factor, because, it doesn’t always de-

pend only on climate. Sometimes abundance doesn’t affect or amplify an epizootic,

particularly if there is none in the beginning; its magnitude will depend on how late in

the season it starts. Events like El Niño might have similar effects, since it promotes

growth in the mosquito population. In addition, the disease season might have an

earlier start reaching catastrophic proportions (Lafferty, 2009).

Furthermore, extinction or predator depletion promotes vector population growth.

In the case of mosquitoes, common ways of reaching predator depletion levels are

through drought or ecosystem degradation, often caused by humans. Once an ecosys-

tem has been damaged and mosquito predator numbers have been depleted, minimal

water accumulations are enough for mosquito eggs to hatch and larvae is free to

grow at a logistic rate without experiencing any harvesting and thus able to reach

a maximum population size. If abundance of mosquitoes and a mosquito-borne dis-

ease endemic to the region, and the lag is not long enough, then it will result in

a huge outbreak. This scenario could be the case of Malaria in Africa or Dengue

fever (DENV) in many places. At the same time, habitat destruction might be the

main factor responsible for the shifts in distribution of species (Lafferty, 2009). In

the case of vector borne diseases, it is capable of increasing the epidemic toll since

this exposes new populations with little resistance to these diseases and thus higher

mortality rates.

In the case of malaria, the latest increase on disease burden has been attributed

to new population mobility patterns, changes in agricultural practices, irrigation

schemes, dam construction, deforestation, weakening of public health systems, and

climate change (Sachs and Malaney, 2002). A small amount of empirical evidence
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suggests that nature is capable of delivering public health benefits. Bauch et. al using

a combination of of municipal-level data set on diseases that includes public health

services, conservation policies, climate factors, demographics and other drivers of land

use, were able to show a negative correlation in the frequencies between malaria and

other diseases with an area that is under strict environmental protection in the Brazil-

ian Amazon. Moreover, their results also suggest that malaria occurrences would be

reduced by expanding these strict environmental protected areas and incidence levels

could be reduced even further if the construction of roads and mining practices are

restricted (Bauch et al., 2015). This suggests that the implementation of ecological

conservation practices aimed at preserving the natural capital of these at-risk regions

can deliver co-benefits by increasing human health and therefore increasing human

capital (Bauch et al., 2015).

In many cases, it is known that diseases are able to create both a social and

an economic burden for the affected communities. Diseases like tuberculosis, HIV

and malaria are thought to have a direct impact on the economies of those countries

with heavy disease burden. Due to the high number of casualties they cause, it is

believed that the impact it creates in human capital is great enough to prevent eco-

nomic growth in the affected region. Furthermore, the effects of these diseases are

suspected to affect these countries by preventing population growth, work produc-

tivity and savings or investments as a result of medical costs. In many cases, child

nutrition plays a major role, as well as deaths caused by disease outbreaks since both

usually prevent labor productivity. While these direct consequences are important,

it is also imperative to think and explore the direct consequences that arise from

overcrowding in the context of disease incidence, prevalence and amplification. These

kind of conditions preventing economic growth are believed to create poverty traps.

Using deterministic models, it is believed to be impossible to escape poverty traps
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without substantial external changes impacting the existing conditions (Bonds et al.,

2010). On the other hand, the work of Plucinski et. al suggests that the efficient

implementation of control measures could create small changes in the probability of

leaving or escaping the poverty trap. These changes via externally enforced levels

of improved health or economic conditions will ultimately guarantee an escape from

poverty traps even when the control measure or safety net is within the basin of at-

traction of the poverty trap (Pluciński et al., 2011). This reinforces the importance

of understanding the attributes of the community in an attempt to analyze which

control measure, whether economic or medical, will have the most favorable impact

on a community.

Recently, control policies have been focusing on motivating people to take pre-

ventive measures. For instance, during the 2009 N1H1 epidemic, Mexican authorities

recommended people to stay in their homes for an entire week since it is known that

person to person contacts are the ones that drive human disease (Althaus and Schiller,

2009). Similarly, during the recent Zika virus (ZIKV) outbreak, people were recom-

mended to practice safe sex in order to prevent an elevated number of mycrocephaly

cases in the Americas. Lastly, in the southern United States, local governments were

authorized to pay residents $20 for testing themselves for TB, another $20 for re-

turning two days after for the test check up, $20 for keeping an appointment for a

chest X-ray if tested positive, and finally $100 for completing the treatment if they

had active TB (Blinder, 2016). It is believed that if people takes into account the

trade-offs that drive person to person contact, they will ultimately make good de-

cisions or adaptive decisions during active disease outbreaks. It is suggested that

human adaptive behavior could significantly change the course of ongoing epidemics

(Fenichel et al., 2011). This suggest that prevention measures could be paramount in

disease control as long as you have a well educated population in which the majority

9



of the individuals are able to assess contact trade-offs whether they are based on a

profit or a health perception, particularly during active disease outbreaks in or close

to endemic areas.

Generally, having a complete understanding about the emergence and re-emergence

of infectious disease should be a public health priority. Current, efforts to control and

eradicate disease need to focus on determining factors specific to the at-risk com-

munities and policies in place; if any,are they increasing the spread of disease? The

existence of these factors (social, abiotic, and biotic) and their impact on disease

dynamics needs to be addressed in the study of infectious diseases. Ignoring these

factors might be detrimental in the implementation of control measures because so-

cial and abiotic factors could become catalysts for biotic factors that ultimately may

magnify the proliferation of a disease. Ecological degradation could be an example

that is capable of directly promoting the spread of vector borne diseases like DENV

and Malaria. The combination of social, abiotic, and biotic knowledge helps deter-

mine the risk of infection as well as the risk of a spillover event. Unfortunately, due

to the complexity of these rare events it is hard to measure and forecast spillover

events. The need of a framework that incorporates abiotic, biotic, and social factors

with mathematical models would be of tremendous help in explaining the constant

emergence and reemergence of epizootics.

1.2 The Emergence and Reemergence of Arboviral Diseases

Arboviral diseases are those viruses that need a blood sucking arthropod (vector)

to complete their life cycle. Typically, arboviruses are zoonoses that depend on a

host (vertebrate) for replication and to reach ecosystem endemicity. The most im-

portant hosts or reservoirs are birds and rodents while the most important vectors are

mosquitoes and ticks. According to the International Catalog of Arboviruses, there
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are 537 registered viruses, of which about 214 are recognized as known or probable

arboviruses and about 134 have caused illness in humans (Gubler, 2002).

Between 1970 and 2000, we have witnessed the emergence of over 100 new viruses.

The majority of them are zoonoses that as a result of social and abiotic factors have

been able to jump species and infect humans. While few of these new pathogens are

arboviruses and all are considered unimportant for humans from a public health point

of view, the recent Zika virus (ZIKV) outbreak made us reconsider their importance.

Importance is determined by the level of viremia the pathogen is able to produce

in humans. Most arboviruses of importance belong to three families: Flaviviridae,

Togaviridae and Bunyaviridae (Gubler, 2002). During thesame period, the world has

witnessed the resurgence of arboviral diseases that were thought to be well under

control like Dengue fever (DENV), Chikungunya (CHIKV), West Nile Fever and

Yellow Fever. DENV and CHIKV produce high levels of viremia and in fact, DENV

is one of the few arboviruses that has completely adapted to humans and established

itself in those large tropical urban communities and no longer requires a sylvatic

reservoir (Gubler, 2002).

Global dispersal of arboviruses could be attributed to the evolution of factors

that support their expansion: anthropological behavior, commercial transportation,

and land-remediation (Liang et al., 2015). In addition, the huge variety of avail-

able arthropods helps arboviruses thrive in tropical environments. Furthermore, the

adaptability of arthropods to change their meal preferences when host populations

decrease is a cause for concern and something that needs to be incorporated into

the development of control strategies, otherwise vector expansion will remain a chal-

lenge for future generations. This ability to modify meal preferences promotes the

accelerated expansion and colonization of new ecosystems rich in biomass diversity,

like the tropics. Incidentally, arthropod and migratory reservoir abundance facili-
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tates arbovirus dispersion through large regions. Finally, this abundance of possible

vectors and reservoirs allows arboviruses to survive in the sylvatic environment even

when it seems to have run its epidemic course. Alternatively, some arboviruses can

also survive in unhatched eggs for months or even years. For these reasons, arbovirus

reemergence is very possible and at the same time these survival strategies and others

not mentioned here make arbovirus eradication practically impossible.

Hence, control measures that only focus on humans and domestic reservoirs are

not likely to completely eradicate arboviruses since they could stay in their sylvatic

environment and eventually reemerge once the human population is replenished. This

will happen when reservoir surveillance is low or lacking. In addition, implementing

vector control in sylvatic environments has to be environment friendly since vector

control could destroy the ecosystem and bring catastrophic reactions. Nonetheless,

in the case of DENV it helps to have control measures that control the population

of aedes aegypti in urban and semi-urban areas. Currently, the best strategy is to

reduce exposure to vectors but the development of vaccines, treatment, and educa-

tion campaigns are among the top suggestions for addressing the main objectives for

arboviruses control (see (Liang et al., 2015) for a list of strategies).

While there are many diseases that have reemerged during the last couple of years,

Dengue fever (DENV) exemplifies a case that requires a new modeling approach and

hence customized control strategies. Even though DENV is an old disease initially

spreading globally as a result of commercial shipping during the eighteenth and nine-

teenth centuries, and first became a major public health problem in most tropical

countries by the beginning of the 20th century, nowadays, it is still considered an

emergent disease. There are 4 different DENV serotypes (DEN-1, DEN-2, DEN-3,

and DEN-4) that have the same epidemiology. The dengue viruses are Flaviviruses

(family: Flaviviridae). During the 1950s and 1960s, DENV was controlled in most
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tropical countries (except in Southeast Asia) as a result of the efficient implementation

of control measures for malaria and yellow fever.

DENV or Dengue Hemorrhagic Fever (DHF) has once again become a major

public health problem. During the last part of the twentieth century, the American

tropics experienced a dramatic resurgence of DENV and the emergence of DHF.

DENV is one of the few arboviruses that has fully adapted to the human host and

their environment and no longer needs to maintain a sylvatic cycle, making DENV the

most important arboviral disease of humans. DENV maintains an endemic cycle (one

to four serotypes in the same human population) in large urban and suburban centers

throughout tropical and subtropical regions across Asia, Africa, Central America,

South America, and the Pacific where its principal vector, Aedes aegypti, thrives.

Due to its worldwide widespread, there are about 3 billion people at risk of a DENV

infection. It is estimated that each year there are at least 100 million DENV infections,

more than 250,000 cases of DHF and thousands of deaths. This goes without saying,

in many countries DHF is one of the leading causes of death in children.

Generally, DENV symptoms are mild and include fever, headache, eye pain, myal-

gia, arthralgia and rash and epidemics, while more severe diseases tend to cycle every

3 to 5 years. Nonetheless, during the 1950’s DENV began to show severe symptoms

characterized by defects in hemostasis and plasma leakage, which could lead to death

if not treated early. This new manifestation is known as the Dengue Hemorrhagic

Fever (DHF) and is one of the main reasons why DENV is a public health problem.

While current practices of dealing with DHF are to hospitalize individuals with early

signs, the lack of understanding about early determinants of DENV severity prevents

the implementation of an optimal cost-effective strategy. Hyperendemicity, the co-

circulation of various DENV serotypes, is the most common risk factor associated

with DHF in an area. While the factors responsible for hyperendemicity are not well
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understood, it is suspected that they are associated with the increased movement of

people between communities, existing levels of immunity to specific virus serotypes

in a given community, and genetic changes in circulating or introducing viruses.

Secondary DENV infections are more likely to produce DHF as a result of immune

enhancement. The binding of non-neutralizing antibodies from a previous DENV

infection with new infecting serotype facilitates the entry of virus to bearing cells.

This tends to increase the amounts of cells with antigen that could activate preexisting

DENV T lymphocytes from the primary DENV infection and ultimately lead to the

release of cytokines and other chemical mediators that could cause plasma leakage.

In addition, it is believed that certain pathological factors could play an important

role in the development of DHF, such factors include: risk factors (age, sex and

nutrition), population-specific genetic predisposition and increased immune response

due to a highly virulent genotype.

While there are no specific factors that could explain the sudden reemergence of

DENV during the waning years of the 20th century, there are certain trends that

could help us understand how particular factors could have contributed to its world-

wide proliferation. In particular, it is known that demographic and societal changes in

urban areas of the tropical developing world along with population movement within

these areas and the lack of mosquito control, tend to increase DENV disease incidence.

This change in epidemiology and reemergence of epidemic DENV are associated with

demographic and societal changes that occurred as a result of conflicts during the last

70 years. Without a doubt, World War II has been the most significant event that has

promoted the biggest population growth in this period. Consequently, this unprece-

dented growth has also driven urbanization factors that promoted mosquito growth

near human centers and hence DENV proliferation. Furthermore, transportation sys-

tems have also improved as a result of population growth directly impacting DENV
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distribution and transmission. Due to poor surveillance measures in place, modern

transportation facilitates the undetected introduction of new vectors and pathogens

into new geographic areas. The recent introductions of West Nile Virus in 1999 and

Zika Virus in 2014 to the western hemisphere corroborates the impact of transporta-

tion and the poor communication between public and animal health officials, which

leads to new pathogen discovery once a disease has been already established, making

it almost impossible to eliminate in some cases.

The complex dynamics of emergent and re-emergent diseases like DENV within

heterogeneous environments directly impacted by the effects of evolution, adaptive

human behaviors, and public health policies, highlight the need of mathematical

models to gain a better understanding of the transmission dynamics of arboviruses,

including the possible challenges that emerge in the context of sustainability and

human cooperation. Although there is a DENV vaccine which is currently being used

in many countries, DENV control still depends on prevention and vector control.

Unfortunately, there seems to be a complacency towards vector borne diseases to the

point that very few improvements or effective control measures have been developed

in the last couple of years. In addition, most countries have poor public health

infrastructure and disease surveillance needs to improve. Furthermore, if developing

countries have poor public infrastructure in regards to their dams, irrigation, sewer

and waste management systems, or if they have poor housing, and unreliable water

storage systems, it will be impossible to prevent the introduction and treatment of

new arboviral diseases.

It is crucial to know how these demographic and societal changes impact the use

of new control measures like vaccines and vector control. As a result, we will be using

mathematical models to explore how factors like mobility, population size and risk of

infection, which might be impacted by social factors, might impact the course of an
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outbreak.
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Chapter 2

MATHEMATICAL MODELS IN EPIDEMIOLOGY

The use of mathematical epidemiological models to study the evolution, dynamics,

and control of diseases has increased in the last century since the development of the

most celebrated epidemic model (SIR model) by Kermack and McKendrick in 1927.

While the iconic SIR model is useful, it also relies on many assumptions that are

questioned from time to time; take for instance population homogeneity. In addi-

tion, transmission depends completely on the intensity and frequency of encounters

(effective contacts) between susceptible and infected individuals. Nonetheless, its ap-

plicability to everyday problems along with the easy calculation of a reproduction

threshold (R0), makes it a powerful mechanism to create hypothesis that ultimately

could even change policies. R0 is the basic reproductive number or the average num-

ber of new infections an infectious individual causes during the average infectious

period in a completely susceptible population. Thus, an outbreak is possible when

R0 > 1 and the disease eventually collapses when R0 < 1. Due to its simplicity,

modifications of the SIR model has been used widely to explain social and natural

phenomena. Some examples include the study of the dynamics of antibiotic resistance

at the population level. In particular, persistence, evolution, and the expansion of re-

sistance to antibiotics are of great importance due to the limited number of antibiotic

drugs available. On the other hand, Michael Gladwell used the insights he had gained

from understanding the SIR model and applied them to explain crime epidemics in

a city. He saw crime as a contagion process and recognized the existence of a thresh-

old and significance of crossing this tipping point. The wide adaptability of the SIR

model along with the complexity of the problems at hand require a holistic approach
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and thus the collaboration of a multidisciplinary team is paramount in order to fully

address the problem in question.

2.1 Metapopulation Models

During the middle of the twentieth century, improvements in transportation, for

both leisure and commerce, made it possible for diseases to move from their endemic

regions and colonize new and completely susceptible regions in a rapid manner. As

a result, it is important to somehow incorporate travel when modeling epidemics;

depending on time scales and transmission dynamics of the disease. In particular, it

is essential to start modeling populations of populations (metapopulations) or patchy

environments with mobile individuals. These models are called metapopulation mod-

els which usually consist of a large system of nonlinear ordinary differential equations

with coupling interactions between patches (communities). The ideal scenario to

model the spread of a communicable disease would include all interacting patches

that could cause an infection. Many scenarios that incorporate the travel of indi-

viduals between communities could be found in (Arino et al., 2007; Arino and Van

Den Driessche, 2003; Arino and Van den Driessche, 2003; Arino and van den Driess-

che, 2006; Arino, 2009; Sattenspiel and Dietz, 1995; Allen et al., 2008; Hanski and

Gilpin, 1991).

Nonetheless, spatial heterogeneity along with different time scales require a model

approach in which infectious individuals are able to successfully infect susceptible

individuals from multiple patches, including their own. In (Sattenspiel and Dietz,

1995), an epidemic metapopulation model was used in which place of residence and

current location was tracked at any given time. It was assumed that, in a two patch

setting, Nij(t) represented the number of i-residents currently in j at time t in which

residents would travel at a per capita rate gi ≥ 0 and would return at the per capita
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rate rij ≥ 0 with r11 = r22 = 0. In essence, this scenario would be easily represented

in a directed graph and assumed to be strongly connected (significant travel rates).

Moreover, an infection process was added on top of the demography and a two patch

SIR model with constant population was formulated. In this case, it is assumed that

individuals on patch i on average have κi > 0 contacts and the proportion of effective

contacts is βikj > 0 in patch j for individuals from i being infected by infectious

individuals from k. In a strongly connected system at an equilibrium implies that

when one patch is at the disease free equilibrium (DFE), all patches are also at DFE.

Similarly, when one is at the endemic equilibrium (EE), all other patches are also at

EE. When not all patches are strongly connected, then only those that are strongly

connected would be at the same equilibrium. Interestingly, changes in the traveling

rates can reverse the stability of the DFE and EE (Arino and Van den Driessche,

2003, see Figure 3a). Meaning that traveling rates could have a big impact in the

course of a disease outbreak since they have the ability to stabilize and destabilize

the DFE.

While the model used in (Sattenspiel and Dietz, 1995) is a good way to model some

epidemics it is clear that for highly complex diseases like measles, simulations would

be challenging due to the amounts of required data, particularly, the way in which

the population gets structured. In addition, modeling diseases like SARS in which

infectious individuals also travel could be a great application but again a great deal of

data would be required, not to mention the difference of time scales between disease

dynamics and travel rates. However, insights from simple metapopulation models

could be of great benefit in the understanding of global disease spread. Nonetheless

spatial heterogeneity along with different time scales require a metapopulation model

approach in which infectious individuals are able to successfully infect susceptibles

from multiple patches without explicitly incorporating the movement of individuals
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nor the concept of contacts.

2.2 Lagrangian Models: A New Approach

In this dissertation, a new approach for modeling disease dynamics is used, at-

tempting to analyze the main factors driving disease spread. It is known that disease

spread is facilitated by human (or in some cases reservoir) travel. The proposed ap-

proach tries to incorporate social factors, or their consequences, that modify the av-

erage pathogen transmission rates of communities. In addition, it uses a Lagrangian

approach to keep track of individuals when they don’t spend all their time in one

particular community. Furthermore, population size heterogeneity is also considered

since overcrowding, in some cases like vector borne diseases, could accelerate the

spread of outbreaks.

This approach will ultimately require the use of social ecological tools, well known

in resource allocation, in order to incorporate the direct impact of social factors into

the transmission rates of individual communities. In particular, risk heterogeneity

is studied here by assuming that social factors like violence, poverty, and lack of

resources heavily burden a community, while good access to disease control measures,

health care facilities, and availability of resources to minimize local crime and violence

are the norm in one or more neighboring communities. Characteristics that are not

foreign to conflict zones and neighboring communities in most developing countries

heavily burdened by disease outbreaks.

2.2.1 Residence Times

In (Mossong et al., 2008), the authors suggest the need of analyzing the clus-

tering of individuals during the start of an epidemic. This is clearly what the new

modeling approach (Lagrangian approach) in mathematical epidemiology is trying to
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do. Nonetheless, even when more information about the different kinds of contacts

is known, there are scenarios in which counter intuitive results are obtained. One

would suggest that in a very congested area, TB would proliferate but this is not

always the case. It also seems as most infections are generated at home. This could

be because of our behavior towards strangers is more protective than towards our

own family members. Perhaps, because in a congested public area, such as a train,

we tend to modify our behavior to adhere to the norm or equilibrium established by

the majority. Meaning that, depending on the place we find ourselves, we will have

different behaviors and thus different risks of infections completely determined by the

overall behavior of that place (cluster or patch).

Since the concept of contacts or effective contacts during an epidemic outbreak

is somewhat ambiguous, in this section a different perspective will be used; one that

indirectly keeps track of individuals. In particular, the proportion of time in a given

unit (usually a day) an individual spends in a specific environment is explored. Due

to the heterogeneity found in neighboring communities or even neighborhoods sug-

gests the need to have a system that describes contagion depending on where an

individual spends his/her time. In this case, heterogeneity is expressed as the level

of risk of infection inherent to each environment or community. This method in-

corporates both the process of contagion while at the same time, it incorporates in

an indirect way the spread of disease between interconnected environments via the

visitation of individuals for leisure or work. At the same time it is assumed that

the initial conditions of each individual environment promotes disease transmission

heterogeneously. When considering epidemic models in a two environment (patches)

setting, it is usually assumed that one has a significantly higher risk of infection and

that individuals of both patches perform short term trips between the two patches

without loosing their identity. By quantifying the average time an individual spends
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in each patch (residence time) allows to indirectly track individuals, that is, following

a Lagrangian perspective as shown in Figure 2.1 (Bichara et al., 2015; Bichara and

Castillo-Chavez, 2016). Notice that most models that incorporate mobility use an

Eulerian perspective that describes migration between the patches.

Figure 2.1: Dispersal of Individuals via a Lagrangian Approach.

Assuming that residents from Patch i spend a proportion of their time in Patch j

(pij) and the rest of their time in their patch of origin, then for a two patch system

p11 + p12 = 1, p21 + p22 = 1.

Similarly, the risk of infection in Patch i is βi, and assuming that Patch 1 is the

riskiest then β1 > β2 (for a two patch system). Notice that in this case susceptible

individuals could get infected in either patch. In particular, susceptibles from Patch

1 present in Patch 1 (p11S1) could get infected from infectious individuals present in

Patch 1 from any of the other patches. Similarly, susceptibles from Patch 1 present in

Patch 2 (p12S1) could get infected from infectious individuals present in Patch 2 from

any of the other patches. Following the same construction, the number of infectives in

Patch 1 at a given time is determined by the sum of the infectives from both patches

at that specific time, that is:

p11I1(t) + p21I2(t),
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while the total number of individuals in Patch 1 is:

p11N1 + p21N2.

Thus the density of infected individuals in Patch 1 at time t, that is, the effective

infectious proportion in Patch 1 is:

p11I1(t) + p21I2(t)

p11N1 + p21N2

.

Hence, the rate of new infections of members of Patch 1 in Patch 1 is:

β1p11S1
p11I1(t) + p21I2(t)

p12N1 + p22N2

,

and the rate of new infections of members of Patch 1 in Patch 2 is:

β2p12S1
p12I1(t) + p22I2(t)

p11N1 + p21N2

.

Similarly, the rate of new infections for individuals from Patch 2 can be found. Notice

that the infectious in Patch i are only able to infect susceptible individuals present

in Patch i.

As expected, the calculation of the basic reproduction number (using the next

generation matrix approach as in (Van den Driessche and Watmough, 2002)) and the

final epidemic size are quite complicated. Nonetheless, the special case:

p11 = p22 = 1, p12 = p21 = 0,

in the absence of mobility is extremely useful, again for a two patch system. Modifying

the residence times for both patches would allow to estimate the effect of certain

mobility patterns or imposed travel restrictions, defined by all the residence times pij

from the system (mobility matrix P), on the final epidemic size.

While this approach helps incorporate some of the main types of heterogeneity

influencing the spread of disease, a more advanced mathematical background or data

availability is required in order to analyze more complex scenarios for instance, het-

erogeneity caused by the age of individuals.
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Chapter 3

ANTI-VACCINE MOVEMENT: A SOCIAL CONTAGION

Vaccines and their impact on morbidity and mortality rates from infectious diseases

are commonly considered one of the greatest public health success stories (Centers

for Disease Control and Prevention (g), 2011). Nonetheless, there has been a growing

anti-vaccine movement likely leading to a rise in incidence of highly preventable dis-

eases such as measles. Anti-vaccine dialogue is prevalent both in celebrity culture and

on the Internet. In this chapter, a compartmental model to study the anti-vaccine

movement as a social contagion was developed. The model is then fit to population,

birth rates, and vaccination rates data focusing on California, using time series data

covering 19 years starting in 1995. The best fit model has good agreement with the

data providing insight into the dynamics of the anti-vaccine movement.

3.1 Introduction

Infectious diseases have been a challenge for our society and a major factor shaping

the history of man (Black et al., 1977). According to the Centers for Disease Control

(CDC), vaccines and their impact on infection and morbidity/mortality rates from

infectious diseases can be considered one of the most significant public health suc-

cess stories. As discussed in (Centers for Disease Control and Prevention (g), 2011)

vaccination of each US birth cohort prevents “42,000 deaths and 20 million cases of

disease”.

Vaccination is one of the few cost-effective medical measures that result in popu-

lation level broad benefit across the multiple dimensions of the population spectrum.

Despite this, there is evidence in Western Europe, the United States, Japan, Aus-
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tralia, and other countries of a growing anti-vaccine movement. The media plays a

big role in the dissemination and sensationalization of vaccine objections, which is

known as the “anti-vaccine movement” and has had a demonstrable impact on vac-

cination policies and individual and community health. In addition, our society is

poorly educated on practical applications of risk and probability thus lacking the ex-

pertise and understanding that our individual choices can cause significant hardship

to the broader public (Poland and Jacobson, 2001).

Since the publication in 1998, of the now retracted paper by (Wakefield et al.,

1998), that connected a number of disorders, including potential increased occurrence

of autism, to Measles, Mumps, and Rubella (MMR) vaccine, there emerged an active

anti-vaccine movement in the United States and the United Kingdom (Chen and

DeStefano, 1998). At the current time, there are well over four hundred thousand

anti-vaccine internet sites from a single simple Google search. A telephone survey

was conducted in 2000 to a nationally representative sample of 1600 US parents of

children < 6 years old (Gellin et al., 2000). The results revealed that 1 in 4 parents

believed that a child’s immune system was ’weakened’ by too many vaccines. Twenty-

three percent believed that children got more immunizations than was good for their

health, and fifteen percent did not want their next child to get at least one of the

currently recommended vaccines.

Furthermore, internet usage statistics show approximately 84.9% of Americans

are online. An estimated 75% − 80% of users search for health information online

(Fox, 2008). Over half (52%) of users believe “almost all” or “most” information

on health websites is credible (Fox and Rainie, 2000). In fact, many parents who

exempt children from vaccination are more likely to have obtained information from

the internet and more likely to have used certain anti-vaccination websites (Salmon

et al., 2005). Many would argue that we have become an information society where
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information, accurate or inaccurate, is widely available, utilized, and promulgated

across the world via the internet. This plays into widespread feelings on the part of

many Americans who now view their government with various levels of mistrust (some

legitimate, some not) further fueling concerns over ’governmental’ recommendations

regarding vaccine use, and governmental assurances regarding vaccine safety (Poland

and Jacobson, 2001).

Unfortunately, parents who seek to delay or avoid routine vaccinations for their

children put their own children at risk and their actions contribute to herd immu-

nity failure even among highly vaccinated populations (Jacobson et al., 2007). This

movement has likely led to increase in cases of highly preventable diseases, including

record cases of measles in 2014 as reported by the Center for Disease Control and

Prevention. As of September 29, 2014, there have been 594 cases of measles, includ-

ing 18 outbreaks accounting for 89% of reported cases that year (Centers for Disease

Control and Prevention (f), 2014). Since 2001, this was the largest number of cases

by almost a factor of 3 as compared to any other year. The majority of the cases

have occurred in unvaccinated individuals.

The anti-vaccine movement has seen significant support from celebrities, who have

a disproportionate access to a public platform (as compared to an average individual

or parent). Recently, the news sources such as the New York Times have written

extensively on the topic, predominantly critically. A few examples are included in

(Shih, 2014; Norton, 2014; Chen, 2014).

While the anti-vaccine movement has been studied in the medical and social sci-

ence community (Poland and Jacobson, 2001; Kata, 2010) and in context of the logical

flaws in arguments against vaccines (Jacobson et al., 2007), there has not been pre-

vious work done on the anti-vaccine movement as a social contagion. On the other

hand, epidemiological models have been applied to spread of other ideas (Feynman
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diagrams) as in (Bettencourt et al., 2006) giving indication that the approach would

be potentially applicable in this case.

Of particular interest in this context is that the spread of the social construct

leads to literal epidemics, potentially elucidating the interactions between social and

disease mechanisms. In this analysis, the anti-vaccine movement is treated as a con-

tagious disease. Specifically, the interest lies in identifying recovery rates and trans-

mission rates. This type of information could be beneficial to public health officials

in understanding the nature of the anti-vaccine movement, potentially allowing for

optimization and targeting of information campaigns.

Here, the analysis of vaccination trends in California, United States and the fit

of a compartmental model to the vaccination data is presented. Leveraging birth

rate information, the goal is to study whether spread of the anti-vaccine movement

can be detected and modeled in vaccination rates for MMR: Measles, Mumps, and

Rubella vaccine over the course of 19 years starting in 1995. The State of California

was chosen as the focus of the analysis due to significant measles activity in the state

as indicated in (California Department of Public Health, 2014). Preliminary analysis

indicates that there doesn’t appear to be an epidemic-like behavior in the data. One

possibility to explain this outcome is that we are at the peak of the anti-vaccine

“epidemic” and the current record number of cases of measles in 2014 will serve as a

negative feedback mechanism for the trend.

3.2 Methodology

3.2.1 Data

As discussed above, while the model is for a social process, it will leverage mea-

surable outcomes of the social process. Specifically, by using the data on vaccination
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rates and birth rates. The incidence of new cases, will be estimated by multiplying

the (1-vaccination rate) by the birth rate. For this analysis, it was also decided to

focus specifically on the state of California, as the California data on birthrates is

more extensive (covering more years) than national US birthrate data. Additionally,

since there has been population growth but effectively constant number of births,

population data was also included in the analysis in order to fit birth and death

rates.

Specific data sources are described below.

Immunization Rates

www.cdc.gov/vaccines/imz-managers/coverage/imz-coverage.html: This website pro-

vides immunization rates for Children, Teens, and Adults for the United States as a

whole and by state (and by vaccine type). This study will focus on the “Children

Only” data. The data is available by year from 2013 back to 1995. An example

data table from 2013 is found by navigating from the website above to “Children

Only” to “Tables” on the 2013 line to the pdf of the table. In California, in 2013, the

vaccination rate is 90.7 ± 5.3 (as can be read from the table). This study will focus

its analysis on the vaccination rate. This will serve as the incidence data to fit the

model (from this data, specifically, MMR vaccination rate, and the birth rate, will

serve to estimate the number of unvaccinated children). As the data is provided by

state, California data will be used.

Births Data

This website has California birth rates going back to 1960.

www.cdph.ca.gov/data/statistics/Pages/StatewideBirthStatisticalDataTables.aspx

This particular table:
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www.cdph.ca.gov/data/statistics/Documents/VSC-2011-0201.pdf

provides birthrates from 2011 to 1960. For example, in 2011, there were 509,979 live

births in CA.

The model will be set to 1994-2013 time interval, estimating births in 2012 and

2013 based on birthrate scaling from 1960-2011. The time interval of 1 year will be

used with potential interpolation of 6 months to create more data points.

The time series of the vaccination data is presented in Figure 3.2. Birth rates

for 2012 and 2013 were estimated by computing averages of previous years’ birthrate

data. The count data was derived by multiplying vaccination rates by the birthrate.

In the model fitting methodology as described later, the S and I compartments are

treated separately from the KS and the KI compartments.

Population Data

www.calrecycle.ca.gov/lgcentral/goalmeasure/disposalrate/Graphs/PopEmploy.html

This website provides California time series data. In addition to the population data,

to fit fractions of the population that are children the time series data in the following

link that provides information on number of children under the age of 18 was used:

www.kidsdata.org/topic/32/childpopulation/table#fmt=139&tf=79&sort

ColumnId=0&sortType=asc.

3.2.2 Model

Population model

To model the vital dynamics of the population a compartmental population model

with two age groups, kids (K) and adults (A), and birth rate µ, where kids are defined

to be 18 years and younger was used. As shown in Figure 3.1, the number of births in

California has remained approximately constant for several years, but the population
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Figure 3.1: Time Series of the Population Data Including Children and Adult Pop-
ulations in a given Year.

size is growing. This indicates that the birth rate of the adults must be falling in

time. This effect was then approximated using a linear formulation of the birth rate,

µ = µ0 + µ1t, where t is the time, in years, relative to January 1, 1995.

The equations for the model are:

dK/dt = (µ0 + µ1t)A− ωK

dA/dt = ωK − δA, (3.1)

where ω is the rate at which children mature to the adult compartment, and δ is the

net rate at which individuals leave the adult compartment, through the processes of
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Figure 3.2: Time Series of the Data Including Population of Vaccinated and Unvac-
cinated Children in a given Year.

emigration/immigration or death. The death rate of children was ignored. The total

population size is N = K + A.

The parameters of this model (µ0, µ1, ω, and δ) are fit to the time series of

California population data for kids and adults.

Anti-vaccine contagion model

To model the social contagion of anti-vaccination ideology, a four compartment conta-

gion model was employed, with adults divided into vaccinators and anti-vaccinators.

Vaccinators were considered to be susceptible to be infected with the ideology of the

anti-vaccination movement. These two types of adults will be refere as AS and AI ,
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for the vaccinators and anti-vaccinators, respectively. Children of these two groups

are KS and KI , respectively.

The model equations are:

dKS

dt
= (µ0 + µ1t)AS − ωKS

dKI

dt
= (µ0 + µ1t)AI − ωKI

dAS
dt

= ωKS − βASAI/(AS +AI)− δAS + γAI

dAI
dt

= ωKI + βASAI/(AS +AI)− δAI − γAI , (3.2)

where β is the transmission rate of anti-vaccination ideology from the AI class to

the AS class, and γ is the rate at which anti-vaccinators “recover” from their ideology

and become vaccinators. All other parameters related to the population dynamics

are as described in the previous section.

The model parameters β and γ are fit to the time series of data on the number of

vaccinated and unvaccinated children in California. The initial fractions of vaccinated

kids, fKS
, and adults who vaccinate, fAS

, at time t = 0 is also estimated.

3.2.3 Estimation of Model Parameters

To estimate the parameters of the population and contagion model that optimally

describe the associated data samples, the parameters of the models were randomly

sampled from broad uniform distributions, and calculate the Pearson χ2 goodness-

of-fit statistic comparing the model to the data sample. The uniform distribution

sampling range is chosen to be large enough to ultimately include the parameter

optimal value and at least a ±5 standard deviation range about that value. This

procedure is repeated one million times for each sample with the use of NSF XSEDE

high-throughput computing resources in order to determine the parameter hypotheses
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Figure 3.3: KSI Model where the Flow γ from Ai to As is Zero.

that minimize the Pearson χ2 goodness-of-fit statistic. To determine the parameter

95% confidence intervals, the Pearson χ2 statistic is corrected for over-dispersion using

(McCullagh et al., 1973).

3.3 Results

The parameter fitting procedure was performed in two tiers. The parameter hy-

potheses for the population parameters (µ0, µ1, ω, δ) in the 95% confidence interval

are presented in Figure 3.4. The parameter hypotheses for the anti-vaccine and ini-

tial condition parameters (β, fKs, fS) in the 95% confidence interval are presented in

Figure 3.5. The best fit parameters values along with the 95% confidence interval

for each fitted parameter are in Table 3.1

3.4 Discussion

In this analysis, a compartmental model of the anti-vaccine movement was devel-

oped. To account for the variability in birth rates over the temporal window under

consideration, 7 parameters were fitted. The recovery parameter (γ) was identified
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Table 3.1: KSI Model Best Fit Parameters.

Parameter Value 95% Confidence Interval

µ0 0.0235 [0.0216, 0.0250]

µ1 -0.0003 [-0.0005, -0.0002]

δ 0.0104 [0.0070, 0.0130]

ω 0.0821 [0.0668, 0.0964]

β 0.1295 [0.0404, 0.1609]

γ 0 not fitted

fKs 0.9958 [0.5599, 1]

fS 0.9098 [0.8870, 0.9310]

Dispersion-corrected Pearson chi-squared
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Figure 3.4: Population Parameters and Overlay of Best Fit Model (Log Scale) on
the Data.
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Figure 3.5: Anti-vaccine Parameters and Overlay of Best Fit Model (Log Scale) on
the Data.

to be 0 in early experiments and as illustrated in Figure 3.5. This, in itself, is an

interesting outcome of the analysis, as it appears that once an individual is infected

with the anti-vaccine philosophy, there is no recovery. Therefore, it is likely valuable

to focus the public health and vaccine information campaigns on susceptible pop-

ulations (as opposed to infected) to minimize the number of individuals that move

between those classes.

Almost all of the parameters fitted (µ0, µ1, δ, ω, β, fS) had very narrow ranges in

the 95% confidence interval, indicating a rather good fit to the existing data. Fitting

of fKs (the initial fraction of children vaccinated), on the other hand, did not produce

a close fit. The best fit model, however, is produced with the parameter hypothesis

of almost 1 (100% of children are initially vaccinated). This is consistent with the

fact that much of the anti-vaccination trend has been attributed to the retracted

Wakefield paper which was published in 1998.

Generally, the data and the resulting model do not have the shape of an epidemic,
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and yet, the occurrence of measles has been rising. This is potentially due to such

phenomena as herd immunity, where just a small fraction of anti-vaccinators (which

could remain constant) lead to outbreaks of the disease. One other hypothesis that

may explain this data is that we have reached the peak of the anti-vaccine epidemic

and the trend is now beginning to reverse. The reversal of the trend is not at the

moment observed in the data, but may be apparent with analysis covering more recent

years (once the data becomes available).

As potential future work, a vector model of infection where the vector could be

the prevalence of celebrity advocacy for the anti-vaccine movement or anti-vaccine

websites may be considered. At writing, it is not clear that data sets that would

support such analysis exist.

3.5 Conclusion

In order to provide insight into the anti-vaccine social movement, parameters for

a compartmentalized model were defined and fitted. In this research, the social con-

tagion was modeled leveraging measurable outcomes (specifically, vaccination rates).

This is the first analysis of its kind and the best fit model is indeed a good fit to

the data. This analysis can be used to inform public health officials on the dynamics

of the anti-vaccine movement and allow optimization of resources. In future work,

it may be worthwhile to consider other factors - such as celebrity advocacy for the

anti-vaccine movement and the fear inflicted by websites or social media using a

vector-based approach.
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Chapter 4

THE ROLE OF SHORT-TERM DISPERSAL AND SOCIAL INSECURITY ON

THE TRANSMISSION DYNAMICS OF ZIKA VIRUS IN AN EXTREME

IDEALIZED ENVIRONMENT: THE CASE OF ZIKA VIRUS IN EL SALVADOR.

Background During the last months of 2015, Zika virus (ZIKV) reached El Salvador.

The first case of Zika virus infection was reported in November 2015, an event followed

by an explosive outbreak that generated over 6000 suspected cases by January 2016.

National agencies promptly began the implementation of known control measures like

vector control and recommending the use of repellents. Further, in response to the

alarming and growing number of microcephaly cases in Brazil, the importance of safe

sex and avoiding pregnancies for a period of two years was stressed.

Methods The goal of this study is to explore the role of short-term mobility within

communities characterized by extreme poverty, crime, and violence. Specifically, the

role of short-term mobility between two idealized interconnected, highly distinct com-

munities is explored in the context of ZIKV outbreaks, in which mobility patterns are

affected by social factors inherent to each community. In order to highlight the possi-

ble effects that short-term mobility might have on the dynamics of a ZIKV outbreak,

a Lagrangian modeling approach within a two-patch setting within highly distinct en-

vironments is used. Moreover, the overall goal is to understand how mobility might

reduce the overall number of cases, not just in the most affluent areas but every-

where. Outcomes depend on existing mobility patterns, levels of disease risk, and the

ability of federal or state public health services to invest and effectively implement in

resource limited areas, particularly in those where violence is systemic.

Results The results, via simulations, of highly polarized and simplified scenarios
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are used to assess the role of mobility. Observing the results, it was evident that

matching observed patterns of ZIKV outbreaks could not be captured without in-

corporating increasing levels of heterogeneity, particularly those associated with the

vector populations.

Conclusions As a result, short-term mobility along with elevated violence rates,

that somehow have a negative impact on the ability for health crews to establish

effective vector control measures (in certain communities), leads to the existence of

disease sources (under certain mobility patterns) and to the literal waste of resources

allocated to vector control efforts, if these are not implemented in the entire region in

a reasonable way. Without loss of generality, similar results during a Dengue fever and

Chikungunya outbreak are expected. Moreover, the number of highly heterogeneous

environments (patches), as well as, the variations on patch connectivity structure

required to match ZIKV patterns could not be met within the highly aggregated

two-patch model used in the simulations.

4.1 Introduction

Zika virus (ZIKV), an emerging vector-borne disease closely related to yellow fever,

dengue and West Nile (Hayes et al., 2009), has taken the Americas by storm. ZIKV is

a flavivirus, transmitted primarily by female Aedes aegypti mosquitoes, which is also

a competent vector in the transmission of dengue and chikungunya. According to the

(Centers for Disease Control and Prevention (n), 2016), as of February 9, 2016, ZIKV

cases had been reported throughout the Caribbean, Mexico and South America with

the exception of Chile, Uruguay, Argentina, Paraguay and Peru. As of September

23, 2016, only Canada, Chile and Uruguay haven’t confirmed autochthonous, vector-

borne transmission of Zika virus disease (Centers for Disease Control and Prevention

(i), 2016; Pan American Health Organization, 2017). In fact, several states within
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the United States had also reported ZIKV cases(Petersen, 2016) and while ZIKV was

expected to be managed effectively within the USA, the possibility of localized ZIKV

outbreaks couldn’t be ruled out since there were many areas in which capable vectors

were endemic.

While phylogenetic analyses have revealed the existence of two main virus lin-

eages (African and Asian) (Faye et al., 2014; Haddow et al., 2012), no concise clinical

differences have been identified between infections with different strains. Nonethe-

less, it is important to note that most African samples come from a rhesus sentinel

in Uganda during primate and mosquito surveillance efforts aimed at assessing Yel-

low Fever trends in 1947, when ZIKV was first discovered (Dick et al., 1952). It is

believed that the African lineage has circulated primarily in wild primates and ar-

boreal mosquitoes, such as Aedes africanus, within a narrow equatorial belt running

across Africa and into Asia. Spillover events to humans have rarely occurred, or not

recorded, even in areas found to be highly enzootic (Fauci and Morens, 2016; Musso

et al., 2015). The Asian lineage, seems to have originated from the adaptation of the

virus as it successfully invaded a different vector, Aedes aegypti, a vector capable of

infecting human populations rather effectively due to its adaptability to urban and

semi-urban environments, (Fauci and Morens, 2016; Haddow et al., 2012).

While ZIKV was first found in 1947, the first human infection was reported in

Nigeria in 1954 (Macnamara, 1954). It is believed that the first time ZIKV moved

out of Africa and Asia was during the 2007 outbreak in Yap Island in the Federated

States of Micronesia (Duffy et al., 2009); followed by an even larger outbreak in

French Polynesia in 2013-2014 (Cao-Lormeau and Musso, 2014); then reaching New

Caledonia, the Cook Islands and Eastern Islands (Musso et al., 2014). Decades old

data, from African researchers, support the possibility that ZIKV spread might have

been facilitated by prior chikungunya outbreaks (Fauci and Morens, 2016). A pattern
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seen once again in 2013 when chikungunya spread from west to east and then followed

by ZIKV outbreaks (Fauci and Morens, 2016).

In early 2015, ZIKV was detected in Brazil and phylogenetic analyses placed the

Brazilian strains within the Asian lineage (Zanluca et al., 2015); the same strain de-

tected during the 2013-2014 French Polynesian outbreak (Cao-Lormeau et al., 2014).

Since the first detection of ZIKV in Brazil, we have seen an explosive outbreak quickly

reached Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Paraguay, Suri-

name, and Venezuela (Centers for Disease Control and Prevention (l), 2016). Fur-

thermore, within few months from the first case in Brazil, several Central America

countries have been invaded by ZIKV, including Costa Rica, El Salvador, Guatemala,

Honduras, Nicaragua, and Panama (Centers for Disease Control and Prevention (m),

2016). As of September 23, 2016, all of the nations in the Americas have experience

active ZIKV outbreaks with the exception of Canada, Chile, and Uruguay(Centers for

Disease Control and Prevention (i), 2016; Pan American Health Organization, 2017).

This rapid geographic expansion of ZIKV led the World Health Organization (WHO)

to declare it an international public health emergency (World Health Organization

(b), 2016).

It has been estimated that about 4 out of 5 ZIKV infections are asymptomatic

(Centers for Disease Control and Prevention (i), 2016; Duffy et al., 2009), some-

thing common among vector born diseases spread by Aedes aegypti mosquitoes.

ZIKV clinical manifestations include, arthralgia, particularly swelling, mild fever,

lymphadenopathy, skin rash, headaches, retro orbital pain, and conjunctivitis, which

normally last for 2-7 days (Centers for Disease Control and Prevention (i), 2016;

World Health Organization (b), 2016; Zanluca et al., 2015). It is important to note

that many of these symptoms are also associated with Dengue infections. These sim-

ilarities, could cause high levels of uncertainty in the efforts to asses the total number
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of patients infected with ZIKV. As a result of these sources of mis-identification, it

is believed that the total ZIKV burden may be higher than what it has been re-

ported (Fauci and Morens, 2016; Salvador and Fujita, 2015). Moreover, co-infection

with other diseases like dengue are not uncommon and as a result ZIKV diagno-

sis is difficult (Dupont-Rouzeyrol et al., 2015). Nonetheless, scientists from Arizona

State University and Harvard University have created a diagnostic tool, similar to

a pregnancy test, capable of given a quick, effective, simple and inexpensive way of

diagnosing ZIKV infections (Harvard Gazette, 2016; The Biodesign Institute, 2016),

and a powerful tool that could be used to prevent the uncontrolled spread of ZIKV

countries with limited resources.

Since, ZIKV infections have been linked with neurological (microcephaly) and

auto-immune (Guillain-Barré syndrome) complications, the lack of an approved vac-

cine is a concern. In addition, evidence supports sexual transmission, a new transmis-

sion pathway for a vector born disease (Centers for Disease Control and Prevention

(k), 2016; World Health Organization (b), 2016). Preventive education on ZIKV

transmission modes are essential in order to halt its spread at the regional, national

and global levels. Basic control measures are limited to vector control, including the

use of insect repellents, the use of protection while engaged in sexual activity and sex

abstinence (Centers for Disease Control and Prevention (k), 2016).

Furthermore, resource limited and poor nations face additional challenges that

make the use of standard efforts and approaches aimed at controlling vector borne

diseases ineffective. These challenges are often driven by social factors that cause

extreme variations in the levels of public safety, gang violence and conflict. Ignoring

these factors affecting the weakest communities, promotes the global spread of dis-

eases and poses a serious threat to global health [see (Patterson-Lomba et al., 2016;

Espinoza et al., 2016; Perrings et al., 2014; Castillo-Chavez et al., 2015; Patterson-
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Lomba et al., 2015; Zhao et al., 2014; Chowell et al., 2015)]. The importance of

focusing on the weakest links of global transmission networks becomes obvious when

analyzing the levels of violence in Latin America and the Caribbean, housing 9%

of the global population but accounting for 33% of the world’s homicides (Jaitman,

2015). In this study, the impact associated with restrictions to public safety, which

affect mobility and subsequently the local risk of infection, might have on the dynam-

ics of ZIKV transmission and control are analyzed. The long-term goal is to limit the

role violence and conflict play on the overall health patterns of individuals living in

the Caribbean, particularly in El Salvador.

4.2 Single Patch Model

A simplified vector-borne transmission model is used as a building block for the

derivation of highly simplified two-patch scenarios. A two-patch models is then used

to explore the role of residence times and risk of infection (possibly defined by under-

lying levels of violence or a lack of a health-medical infrastructure or a combination

of both) on the dynamics of ZIKV. The general version of an n-patch framework and

its analysis can be found in (Bichara and Castillo-Chavez, 2016) and similar studies

can be found in (Espinoza et al., 2016; Moreno et al., 2017a).

Patch heterogeneity is incorporated by the assumption that, while the first patch

experiences low levels of security, making it difficult to carry out sustainable vector

control efforts, the second patch is considered to be safe with access to reasonable

health services on demand. In other words, a highly bi-modal situation, an idealized

situation, that does not capture the levels of complexity and heterogeneity experienced

in conflict or crime ridden communities.

Hence, the simulations are based on highly idealized exploratory settings that

might lead to realistic conclusions when these models are parameterized using “re-
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alistic” parameter estimates. While highly detailed models require huge amounts of

data including information that needs to be collected or measured within accepted

protocols, the proper parametrization of these detailed models may require detailed

accounts of the individuals involved. An example is the work done by the EpiSims

project (Stroud et al., 2007) that used individuals’ daily mobility activities to model

spread of disease in the city of Seattle. The kind of worthwhile and far reaching

project this paper aims to motivate in the context of the interconnection of commu-

nities where violence and health disparities are the norm.

In this study, it is assumed that there are two patches with contrasting risks of

infection (high and low risk). Each patch is made up of individuals experiencing the

same degree of risk of infection throughout the patch, risk is an inherent function of

the patch. Consequently, all individuals while in Patch 1 will be experiencing high

risk of infection, while those in Patch 2 will be experiencing low risk. In short, the

movement of individuals as a consequence of daily activities could alter the proportion

of the time each individual spends on a given patch. The longer an individual stays

in Patch 1, the more likely it is to become infected. The level of patch-specific risk

to infection in this study is captured by the parameter β̂i, i = 1, 2. More specifically,

β̂1 � β̂2. This assumption models, in a rather simplistic way, the health disparities

that could be addressed within highly polarized settings. In short, this is a first effort

aimed at exploring the role of risk and mobility on the dynamics of ZIKV in a world

where two highly-distinct mobile communities co-exist. The case of Johannesburg

and Soweto in South Africa, or North and South Bogota in Colombia, or Rio de

Janeiro and adjacent favelas in Brazil, or gang-controlled and gang-free areas within

San Salvador, are but some of the unfortunately large number of pockets dominated

by conflict or high crime within urban centers around world. The short time scale

dynamics of individuals (daily mobility as they go to work or carry out on other
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activities including attendance to schools and universities) in both patches are incor-

porated within this model with the analysis (numerical simulations) carried out over

the duration of a single outbreak.

4.2.1 The Aedes Aegypti Mosquito Feeding Habits

ZIKV transmission is the result of a bite from an infected female mosquito of the

genus Aedes (subgenus Stegomyia) (Engelthaler et al., 1997; WHO (a), 2017). The

most predominant and at the same time the most effective ZIKV vector is Aedes

aegypti. However, the Asian tiger mosquito, Aedes albopictus, is also able to transmit

ZIKV (WHO (a), 2017). In addition, their ability to breed in small amounts of

still water, as small as a bottle cap, and egg resistance to long periods of drought

(as long as one year) makes them ideal for an environment with excess trash and

decaying infrastructure, usually found around large urban centers. Consequently,

unplanned rapid urbanization or poorly planned urbanization has the potential to

provide abundant nesting grounds for mosquitoes and when combined with rapid

human population growth, it increases the average number of encounters between

humans and mosquitoes. Not to mention that in some regions, abiotic factors support

the Aedes aegypti breeding cycle throughout the entire year.

While female Aedes aegypti mosquitoes consume plant carbohydrates for energy

and maintenance reserves, blood meals are required in order to provide enough nutri-

ents to complete the vitellogenesis process during each gonotrophic cycle (Scott and

Takken, 2012). Female Aedes aegypti mosquitoes are diurnal and usually prefer to

have multiple blood meals during every gonotrophic cycle. In addition, Aedes aegypti

exhibits a preference for human blood and will not feed on sugar when human blood

meals are available. Studies show that in some cases over 90% of the blood meals

come from humans (Scott and Takken, 2012). A behavior that seems to improve the
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nutritional aspects of survival and it is even suggested as an adaptation to optimize

fitness (Scott and Takken, 2012). Furthermore, Aedes aegypti are considered efficient

vectors since they are easily disturbed while feeding leading to multiple bites from

multiple hosts to complete one blood meal (Jansen and Beebe, 2010). Meaning that

entire families could get infected by a single mosquito in a period of 2 days. More-

over, their preference for human hosts has led DENV (another disease transmitted

by this mosquito) to no longer require a sylvatic cycle and easily achieve endemicity

in these environments. Mosquitoes are capable of transmitting the virus from one

person to the next if it bites a susceptible individual immediately after biting and

acquiring the virus from an infected individual (or within one day before the onset of

symptoms). Otherwise, it takes between 4 to 15 days for the virus to replicate in the

mosquito’s salivary glands and become infectious for the rest of its life (Towers et al.,

2016). ZIKV infection doesn’t have an adverse impact on mosquitoes. On average,

Aedes aegypti mosquitoes live for 21 days but their life span ranges from two to three

weeks in the wild and up to 65 days in a laboratory setting. In addition, while it is

known that ZIKV could be transmitted vertically in mosquitoes (Ciota et al., 2017)

and humans, in this study the focus will be on direct transmission. Finally, since

mosquitoes are restricted to a short range of travel, ZIKV spread depends mostly on

human mobility patterns. Meaning that, highly mobile populations living in regions

undergoing active ZIKV outbreaks are highly likely to be the main drivers of ZIKV

spread.

4.2.2 Force of Infection and Model

One of the most important factors of the vector borne model is to determine an

appropriate force of infection for both hosts and vectors. In particular, it is important

to have a sense of the process and how both host and vectors get infected. It is
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clear that female vectors require of a blood meal in order to lay eggs and reproduce.

Then, the force of infection is determined by the product of: average number of

meals a mosquito has during a day; the average proportion of meals that comes

from a human host; the average number of bites it requires to complete a meal; the

proportion of female mosquitoes to hosts; the probability of infection per bite; the

number of susceptibles; and the proportion of infected mosquitoes (see Table 4.1 for

parameter values).

Table 4.1: Force of Infection Parameters

Symbol Description Value Units Reference

m Blood meals 0.76 meal
day∗mosquito (Scott and Takken, 2012)

ρ Prop. human meals 0.9 human (Scott and Takken, 2012)

α Bites 1− 5 bites
meal

(Scott and Takken, 2012)

fv Prop. Female vectors 0.5 – –

βhv Prob. of Infection [0, 1] 1
bite

–

Notice that in this model b = mραfv ranging from 0.34 to 1.71, similar to the

range used in (Maxian et al., 2017). It is worth to mention that a study conducted

on the susceptibility of Italian Aedes aegypti suggests that the probability of infection

from an infected meal to mosquitoes is βhv = 26% (Di Luca et al., 2016).

As a result, the ZIKV dynamics single patch model involves hosts and vectors

populations of size Nh and Nv, respectively. Both populations are then subdivided

into sub-populations defined by ZIKV epidemiological states. The transmission pro-

cess is then modeled as the result of the interactions of these sub-populations. On

that account, the host population is subdivided into susceptible Sh, latent Eh, infec-

tious asymptomatic Ih,a, infectious symptomatic Ih,s and recovered Rh individuals.

Similarly, Sv, Ev and Iv denote the susceptible, latent and infectious mosquito sub-
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populations, respectively. Since the focus is on the study of disease dynamics over

a single outbreak, hosts’ demographics are neglected, while it is assumed that the

vector’s demographics do not change, meaning that, the per capita birth and death

mosquito rates are the same. Since recent reports (Centers for Disease Control and

Prevention (i), 2016; Duffy et al., 2009) suggest the presence of large numbers of

asymptomatic ZIKV infectious individuals, two classes of infectious Ih,a and Ih,s, that

is, asymptomatic and symptomatic infectious individuals will be considered. More-

over, due to the lack of knowledge regarding the dynamics of ZIKV transmission, it

is assumed that Ih,a and Ih,s individuals are equally infectious. These assumptions

support the reduction of the model to a single infectious class Ih = Ih,a+Ih,s, nonethe-

less, both infectious classes will be used as it may be desirable to keep track of both

types and the overall burden of ZIKV. These assumptions might not be too bad given

the current knowledge of ZIKV epidemiology and the fact that ZIKV infections, in

general, are not severe. Meaning, that voluntary self-reporting are expected to be

low. Furthermore, given that the infectious process of ZIKV is somewhat similar

to that of dengue, parameters estimated in dengue transmission studies within El

Salvador were used through out this study. In addition, ZIKV basic reproduction

number estimates are taken from outbreak data collected in Barranquilla Colombia

(Towers et al., 2016). Furthermore, selected parameters ranges used in this study

benefited from prior estimates using data from the 2013-2014 French Polynesia out-

break (Kucharski et al., 2016), some of the best available at the time. The dynamics

of the prototypic single patch system, single outbreak, can be modeled using the fol-

lowing standard nonlinear system of eight differential equations representing each of

the epidemiological stages of ZIKV (Brauer et al., 2012):
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Ṡh = −bβvhSh IvNh

Ėh = bβvhSh
Iv
Nh
− νhEh

İh,s = (1− q)νhEh − γhIh,s

İh,a = qνhEh − γhIh,a

Ṙh = γh(Ih,s + Ih,a)

Ṡv = µvNv − bβhvSv Ih,s+Ih,a
Nh

− µvSv

Ėv = bβhvSv
Ih,s+Ih,a

Nh
− (µv + νv)Ev

İv = νvEv − µvIv

(4.1)

The parameters of Model 4.1 are collected and described in Table 4.2, while the

model flow diagram is presented in Fig 4.1.

Table 4.2: Description of the Parameters Used in System (4.1).

Parameter Description Value

βvh Infectiousness of human to mosquitoes 0.26

βhv Infectiousness of mosquitoes to humans 0.5

bi Biting rate in Patch i 0.8

νh Humans’ incubation rate 1
7

q Fraction of latent becoming asymptomatic and infectious 0.1218

γi Recovery rate in Patch i 1
5

pij Proportion of time residents of Patch i spend in Patch j [0, 1]

µv Vectors’ natural mortality rate 1
13

νv Vectors’ incubation rate 1
9.5
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Figure 4.1: Flow Diagram of Model (4.1)

The basic reproduction number for this prototypic model, that is, the average

number of secondary infections generated by a typical infectious individual in a com-

pletely susceptible population or where nobody has experienced a ZIKV-infection is

computed by taking S(0) = Nh in Model (4.1). The basic reproduction number is

given by

R2
0 =

b2Nvβvhβhvνv[(1− q)γh + qγh]

Nhγ2
hµv(µv + νv)

:= R2
0,s +R2

0,a. (4.2)

R0 =

√
Nvb2βvhβhvνv

Nhγhµv(νv + µv).

Notice that the reduced form corresponds to the basic reproduction number when the

two classes of infective are combined, that is, Ih = Ih,a + Ih,s.
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The dynamics of the single patch model are well known. In short, an R0 < 1

indicates that an epidemic is unable to develop and the proportion of introduced

infected individuals decrease, while an R0 > 1 indicates that the infected host popu-

lation grows, and an outbreak takes place since the number of cases from the second

generation exceeds the initial size of the introduced infected population at time t = 0.

Finally, when R0 > 1, the population of infected individuals eventually decreases and

the disease dies out since it is only modeling a single outbreak.
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Figure 4.2: Basic Reproductive Number as a Function of the Vector-Host Ratio;
Biting Rate.

4.3 Basic Reproductive Number Sensitivity Analysis

Partial rank correlation coefficients (PRCCs) for the aggregate R0 and each of

the input parameters were produced from a single replication with 1,000,000 runs

to graphically evaluate the monotonicity between a given input parameter and the

aggregate R0 using the distributions from Table 4.3 (see figures 4.3 and 4.4). The

corresponding value of these PRCCs corresponds to the level of statistical influence
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the associated input parameter has on the variability of the aggregate R0 due to its

own estimation uncertainty. PRCCs are statistically significant when |PRCC| > 0.5.

The larger the magnitude of the PRCC, the more significant the parameter is in

generating uncertainty or variability in R0. The sign of the PRCC indicates whether

an increase in a parameter will lead to a higher R0 or lower R0.

Table 4.3: Parameters Used for the Sensitivity Analysis of Formula (4.2).

Parameter Description Distribution

βvh Infectiousness of human to vectors U(0, 1)

βhv Infectiousness of vector to humans U(0, 1)

bi Biting rate in Patch i U(0, 2.5)

γi Recovery rate in Patch i U(3, 7)

Nhi Humans in Patch i U(103, 104)

Nvi Vectors in Patch i U(104, 105)

µv Vectors’ natural mortality rate U(6, 21)

νv Vectors’ incubation rate U(4, 15)

Clearly, uncertainty or variability in b; βvh; βhv; and Nv positively influence the

magnitude of the R0 and consequently the infectious class, while Nh influences the

magnitude of theR0 negatively (see Figure 4.3). As expected, variability in the biting

rate has the highest impact on the R0 (see Figure 4.2).
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Figure 4.3: Partial Rank Correlation Coefficients For The Basic Reproductive Num-
ber and Each Input Parameter Variables.

Similarly, uncertainty or variability in b; βvh; βhv; and Λ positively influence the

magnitude of the R0 and consequently the infectious class when Λ = Nv

Nh
. Once again,

variability in the biting rate has the highest impact on the R0, but notice that in this

case there are no parameters that would influence the magnitude of the R0 negatively

(see Figure 4.4).
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Nh
.

Consequently, using a Latin Hypercube sampling design and applying sensitivity

analysis techniques, the variability ofR0 and thus the transmission dynamics of ZIKV

depicted in Model (4.1) were explored. Applying these techniques made it possible

to evaluate the sensitivity of the R0 estimate with respect to each of the parameter

values from Table 4.3 and to determine which parameters have the greatest influence

on the variability ofR0. In particular, those that would create the worst case scenarios

during a ZIKV outbreak.

In the next section, a two patch model using the Lagrangian approach specified

in (Bichara and Castillo-Chavez, 2016; Bichara et al., 2015) is introduced with indi-

viduals from Patch i (i = 1, 2) maintaining their residency status regardless of the
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proportion of time they spend in other patches as a result of their daily mobility pat-

terns across distinct interconnected patches; an assumption captured with the use of a

residence time matrix (P). A matrix, where each entry pij models the average (in this

study, fixed) proportion of time, a typical resident spends on his/her own patch or as

a visitor to another patch per unit of time (pi1 + pi2 = 1). Hence, at any given time

t, the effective population size in each patch accounts for both; patch residents and

patch visitors. Moreover, the effective population size does not necessarily matches

that given by the total number of patch residents. Simulations are then conducted

using parameters specific to El Salvador, as well as the most recent estimates of R0

for ZIKV in an attempt to explore the consequences of mobility (described by the

matrix P) and the impact that the differences in risk (captured on the assumption

β̂1 � β̂2) have on the transmission dynamics of ZIKV.

4.4 Residence Times and Two-Patch Models

The role of mobility between two communities, within the same city, living under

dramatically distinct health, economic, social, and security settings is explored using

a model as simple as possible, that is, a model that only considers two patches [prior

modeling efforts that didn’t account for the effective population size but that incor-

porated specific controls include, Lee and Castillo-Chavez (2015)]. It is assumed that

Patch 2 has access to working health facilities, crime rate is low, adequate human and

financial resources and adequate public health policies in place. On the other hand,

Patch 1 lacks nearly everything and crime is high. Within this highly simplified set-

tings, the differences in risk naturally need to be incorporated. In the case of ZIKV,

risk of infection depends on host vector ratios, biting rates, the level of access and

ability to buy repellents and nets, the regularity of visits by vector control crews, and

more. These differences are captured by just postulating highly distinct transmission
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rates; that is, to study the dynamics of host mobility in highly distinct environments,

with risk being captured by one single parameter, the transmission rate, β̂. As a

result of the previously stated assumptions, β̂1 � β̂2 where β̂i now defines the risk of

infection in Patch i, i = 1, 2 [Patch 1 (high risk) and Patch 2 (low risk)].

As discussed in the previous sections, the host populations are stratified by epi-

demiological classes and now indexed by the patch of residency. More specifically,

Sh,i, Eh,i, Ih,a,i, Ih,s,i and Rh,i denote the susceptible, latent, infectious asymptomatic,

infectious symptomatic and recovered host populations in patch i, i = 1, 2. Similarly,

Sv,i, Ev,i and Iv,i denote the susceptible, latent and infectious mosquito populations

in patch i; i = 1, 2. As before, Nh,i and Nv,i denote the host population size and

total vector population, respectively (in patch i; i = 1, 2). In this study, the vec-

tor is assumed to be incapable of moving between patches; a reasonable assumption

in the case of Aedes aegypti, under the appropriate spatial scale. The two-patch

model-parameters are also collected in Table 4.2 with the flow diagram (Fig 4.1),

single-patch dynamics model, capturing the situation when residents and visitors do

not move; that is, when the 2× 2 residence times matrix P entries correspond to the

case in which p11 = p22 = 1.

4.4.1 Two Patch Model

The Lagrangian framework, in the context of vector born and communicable dis-

eases, is described in (Bichara and Castillo-Chavez, 2016; Bichara et al., 2016, 2015).

The application of this framework within a two patch model setting, where vectors are

incapable of moving across patches, leads to the following set of nonlinear differential

equations:
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Ṡh,i = −βvhSh,i
∑2

j=1 bjpij
Iv,j

p1jNh,1+p2jNh,2

Ėh,i = βvhSh,i
∑2

j=1 bjpij
Iv,j

p1jNh,1+p2jNh,2
− νh,iEh,i

İh,s,i = (1− q)νh,iEh,i − γh,sIh,s,i

İh,a,i = qνh,iEh,i − γh,aIh,a,i

Ṙh,i = γh,sIh,s,i + γh,aIh,a,i

Ṡv,i = µvNv,i − biβhvSv,i
∑2

j=1 pji(Ih,s,j+Ih,a,j)∑2
k=1 pkiNh,k

− µvSv,i

Ėv,i = biβhvSv,i

∑2
j=1 pji(Ih,s,j+Ih,a,j)∑2

k=1 pkiNh,k
− (µv + νv)Ev,i

İv,i = νvEv,i − µvIv,i

(4.3)

where P = (pij) and pi,j represent the residence time that an individual from Patch i

spends in Patch j; i, j = 1, 2.

The basic reproduction number of this model is the largest eigenvalue of the

matrix,

M1 =

 m11 m12

m21 m22


where

m11 =
p2

11Nv,1Nh,1b
2
1βvhβhvνv + p2

21Nv,1Nh,2b
2
1βvhβhvνv

(p11Nh,1 + p21Nh,2)2γhµv(νv + µv)

=

(
p2

11Nh,1 + p2
21Nh,2

(p11Nh,1 + p21Nh,2)2

)(
Nv,1b

2
1βvhβhvνv

γhµv(νv + µv)

)
,

m12 =
p11p12Nv,1Nh,1b1b2βvhβhvνv + p21p22Nv,1Nh,2b1b2βvhβhvνv

(p11Nh,1 + p21Nh,2)(p12Nh,1 + p22Nh,2)γhµv(νv + µv)

=

(
p11p12Nh,1 + p21p22Nh,2

(p11Nh,1 + p21Nh,2)(p12Nh,1 + p22Nh,2)

)(
Nv,1b1b2βvhβhvνv
γhµv(νv + µv)

)
,

m21 =
p11p12Nv,2Nh,1b1b2βvhβhvνv + p21p22Nv,2Nh,2b1b2βvhβhvνv

(p11Nh,1 + p21Nh,2)(p12Nh,1 + p22Nh,2)γhµv(νv + µv)

=

(
p11p12Nh,1 + p21p22Nh,2

(p11Nh,1 + p21Nh,2)(p12Nh,1 + p22Nh,2)

)(
Nv,2b1b2βvhβhvνv
γhµv(νv + µv)

)
.
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m22 =
p2

12Nv,2Nh,1b
2
2βvhβhvνv + p2

22Nv,2Nh,2b
2
2βvhβhvνv

(p12Nh,1 + p22Nh,2)2γhµv(νv + µv)

=

(
p2

12Nh,1 + p2
22Nh,2

(p12Nh,1 + p22Nh,2)2

)(
Nv,2b

2
2βvhβhvνv

γhµv(νv + µv)

)
.

Specifically,

R2
0 =

1

2

(
m11 +m22 +

√
(m11 −m22)2 − 4m12m21

)
.

If the two patches are isolated, a case that allows us to estimate the impact ZIKV

transmission has in each patch when each community deals with ZIKV independently,

the local basic reproduction number is R0 = max{R0i}, i = 1, 2, where,

R0i =

√
Nv,ib2

iβvhβhvνv
Nh,iγhµv(νv + µv)

that is, the expression found in Formula (4.2), where risk disparity in a patch is

represented by the inequality β̂1 � β̂2, which turns out to be directly proportional

to the local basic reproduction numbers (R0i) in the absence of mobility (decoupled

patches). Changes in the entries of the coupling matrix P, would naturally have an

impact in the overall (two-patch) ZIKV dynamics. Consequently, the global basic

reproduction number, the final epidemic size, and the ZIKV levels of infection within

each patch depend on P. Results are then collected from a series of observations based

on the simulation of extreme scenarios designed to explore the role that mobility (P),

variations in the patch inherent risk (R0i), and population density have on ZIKV dy-

namic in each patch. While one can argue that the use of an extreme and simplistic

set up is unlikely to yield a broad characterization of the role of mobility, variations

in risk and host density on ZIKV outbreaks within heterogeneous populations, sim-

ulation results highlight nevertheless, the impact that mobility patterns shaped by

economic necessity for survival has on ZIKV outbreaks; or the impact of high levels

of crime and the restrictions that it imposes on vector borne control interventions

(San Salvador, Rio de Janeiro, and others) have on ZIKV outbreaks. Consequently,
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it is expected that the collaboration and sharing of health and security resources be-

tween resource-rich and resource-limited adjacent communities can make a difference

whenever there is an agreement on the trade-offs between public good and individual

safety.

4.5 Results

The use of a restricted bi-modal set-up, described in the previous section, is used

to highlight the impact of risk and mobility under a few selected, non exhaustive,

scenarios. As specified, Patch 1 experiences high levels of crime, poverty, and lack

of resources, while Patch 2 has access to vector control measures, health care facili-

ties, and resources to minimize local crime and violence; scenarios motivated by the

dynamics of disease in conflict zones and highly disadvantaged neighborhoods.

Since it is assumed that the risk of infection is associated with high levels of social

inequalities that could include high violence levels, it makes sense to assume that

since individuals experience a higher risk of ZIKV infection in Patch 1 then mobility

from Patch 2 to Patch 1 is expected to be unappealing. It is expected that typical

Patch 2 residents spend (on average) a reduced amount of time, per unit of time,

in Patch 1. Consequently, Patch 2 parameters are selected in such a way that the

dynamics of ZIKV within Patch 2 cannot be supported, in the absence of mobility

between Patch 1 and Patch 2. Thus, the local basic reproductive number for Patch

2 is less than one, namely, R02 = 0.9. In addition, mobility is modeled under the

residence times matrix P with entries given initially by, p21 = 0.10 and p12 = 0. In

particular, using the results from the sensitivity analysis the study will focus on the

case scenarios described in Table 4.4.
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Table 4.4: Definitions and Scenarios for ZIKV
Nomenclature

Risk
Interpreted based on levels of prevention (biting rate)

or mosquito abundance (vector-host ratio)

High-risk patch

Defined either by low prevention that leads to high biting rate

(i.e., high b which leads to high corresponding R0) and/or

by high vector-host ratio (i.e., high Λ = Nv
Nh

)

Enhanced socio-economic

conditions

(reducing health disparity)

Defined by better health-care infrastructure which is incorporated

by high prevalence of a disease (i.e., high I(0)/N)

Mobility
Captured by average residence times of an individual

in different patches (i.e., by using P matrix)

Scenarios (assume high-risk and diminished socio-economic conditions in

Patch 1 as compared to Patch 2)

Scenario 1 b1 > b2, Λ1 = Λ2︸ ︷︷ ︸
high risk

;
I1(0)

N1
>
I2(0)

N2
;︸ ︷︷ ︸

socio-economic conditions

vary p12 when p21 ≈ 0.1︸ ︷︷ ︸
mobility

Scenario 2 b1 = b2, Λ1 > Λ2︸ ︷︷ ︸
high risk

;
I1(0)

N1
>
I2(0)

N2
;︸ ︷︷ ︸

socio-economic conditions

vary p12 when p21 ≈ 0.1︸ ︷︷ ︸
mobility

Scenario 3 b1 > b2, Λ1 > Λ2︸ ︷︷ ︸
high risk

;
I1(0)

N1
>
I2(0)

N2
;︸ ︷︷ ︸

socio-economic conditions

vary p12 when p21 ≈ 0.1︸ ︷︷ ︸
mobility

In particular, two cases are explored: (i) A “worst case” scenario where control

measures are hardly implemented due to crime, conflict or other factors on Patch 1.

As a consequence, Patch 1 is considered a place where the risk of acquiring a ZIKV

infection is high and thus it is assumed that R01 = 2. (ii) On the other hand, the

“best case” scenario corresponds to the case when Patch 1 can implement some control

measures with some degree of effectiveness and, consequently Patch 1 experiences a

reduction in the risk of infection, namely, R01 = 1.52. The patch specific basic

reproductive number (R0i) values used are in range with those previously estimated

for ZIKV outbreaks in French Polynesia (Kucharski et al., 2016) and in Colombia

(Towers et al., 2016). Simulations are seeded by introducing an asymptomatic infected

individual in Patch 1 under the assumption that both the host and vector populations

are fully susceptible in both patches.
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4.5.1 Risk Defined by Poor Bite Prevention.

Considering the “best case” scenario under the assumption that the population

in both patches is the same. Figure 4.5 shows that while some mobility values can

increase the final Patch 1 epidemic size, the maximum epidemic size only reaches

around 80% of the population when mobility is close to p12 = 0.20 . Finally, observa-

tions from the simulations suggest the existence of a mobility threshold from which

the final epidemic sizes in Patch 1 benefits.
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Figure 4.5: Scenario One: Patch Incidence and Final Size Proportions for p21 = 0.10,
p12 = 0, 0.2, 0.4 and 0.6 for Best Case.

Figure 4.6 shows the incidence and final ZIKV epidemic size under the “worst

case” scenario, defined by elevated risk and a basic reproduction number of R01 = 2.
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Figure 4.6 shows that around p12 = 0.2, the final number of infected residents in

Patch 1 is larger to the number of infections caused by the baseline scenario when

p12 = 0, but only for long outbreaks. As expected, the worst case scenario drives

ZIKV infections in almost 96% of the population in Patch 1, an unrealistic value.

Nonetheless, most p12 values show a beneficial reduction in the final Patch 1 epidemic

size.
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Figure 4.6: Scenario One: Patch Incidence and Final Size Proportions for p21 = 0.10,
p12 = 0, 0.2, 0.4 and 0.6 for Worst Case.

Figure 4.6 highlights the case when the final Patch 2 epidemic size grows as mobil-

ity from Patch 1 increases, when compared with the baseline case (no mobility from

Patch 1). In addition, reductions in the final Patch 1 epidemic size for some mobility

values accompanied by increments in the final epidemic size in Patch 2 are observed.
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Figure 4.7: Scenario One: Final Sizes for Worst Case (Top) and Best Case (Bottom).

The results of simulations collected in Figures 4.5 and Figure 4.6 show similar

final size epidemic curves for both cases. However, it is important to mention that

while Patch 1 experiences some benefits from most mobility patterns, the increments

on the total final epidemic size in Patch 2 are greater. Thus while mobility may

provide benefits within Patch 1 (under the above assumptions) the fact remains that
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it does it at a cost to Patch 2. In short, it is also observed that the final epidemic

size per patch does not respond linearly to changes in mobility even when only p12 is

increased (see Figure 4.7).

The Role of Risk Heterogeneity in the Dynamics of Zika Virus Transmis-

sion

Moreover, the results presented thus far only provide partial information of the total

impact that short term mobility might have on the transmission dynamics of ZIKV.

The impact of risk heterogeneity on ZIKV dynamics within the overall two-patch

system requires the numerical estimation of the global reproduction number as a

function of the mobility matrix P. By fixing the mobility from Patch 2 to Patch 1,

the simulations focused only on the impact of changes in mobility from Patch 1 to

Patch 2.

Using the previously defined scenarios (R01 = 1.52, 2), simulations are carried

out, again assuming equal population sizes (N1 = N2). However, when looking at the

impact of changes in risk on Patch 2 (R02 = 0.9, 0.8, 0.7, 0.6, and 0.5), simulations

identify a growing final epidemic size as risk in Patch 2 increases for all residence times

in the “worst case” and for the most realistic residency times in the “best case.”

Specifically, Figure 4.8 captures the overall reductions on the global reproductive

number (risk) for all residence times, while identifying the existence of a residence

time interval for which mobility is beneficial (in some cases), decreasing the total

size of the outbreak in the two patch system, when compared to the baseline case

(p12 = 0). An expected outcome as a result of the myriad of assumptions that

have been incorporated, namely, the restrictions placed on population density; the

population in Patch 1 is the same as that in Patch 2.
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Figure 4.8: Scenario One: Total Final Size and Global Basic Reproductive
Number Through Mobility Values When p21 = 0.10, R02 Varies and R01 =
1.52 (Top); 2 (Bottom).

The Role of Population Size Heterogeneity in the Dynamics of Zika Virus

Transmission.

The role of population density on the total final epidemic size and global basic re-

productive number are now explored using the two scenarios previously defined, but

now under the assumption that patch densities (population sizes) are different. More

specifically, when N1 = N2, 5N2, 10N2 and when N2 = 5N1, 10N1. Figure 4.9 shows

that difference in population sizes do matter. Specifically, it is observed that (under
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the densities selected) great density differences translate into higher final epidemic

sizes when the high risk patch is denser.
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Figure 4.9: Scenario One: Total Final Size and Global Basic Reproductive Number
Through Mobility Values When p21 = 0.10 Population Size Varies, R02 = 0.9, and
R01 = 1.52 (Top); 2 (Bottom).

In the “worst case” scenario, infecting over 90% of the population is possible for

some population densities. In addition, it is also observed that despite increases in the

total final epidemic size, as mobility changes, the global R0 decrease monotonically,

for most residence times, but only falls below unity when the safe population is much
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greater. A sensible degree of magnification on the spread of the disease is observed

as residence times change, whenever the differences between N1 and N2 are not too

extreme. In fact, it is possible for mobility to be beneficial in the control of ZIKV

under the above simplistic extreme scenarios. Nonetheless, simulations continue to

show that under the prescribed conditions and assumptions, model generated ZIKV

outbreaks remain unrealistically high.

For the two epidemiological scenarios R01 = 2 and R01 = 1.52, Tables 4.5 and 4.6

provide a summary of the average proportion of infected for low (p12 = 0.01− 0.33),

intermediate (p12 = 0.34−0.66) and high mobility (p12 = 0.67−0.99) when p21 = 0.10.

The role of population scaling (N1 = N2/10, N2/5, N2, 5N2 and 10N2 when the largest

population is 10000) is once again explored.

Table 4.5: Scenario One: Final Size (Patch 1, Patch 2), R01 = 2, R02 = 0.9 and
p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.3799, 0.1669) (0.1383, 0.0736) (0.0309, 0.0248) 0.9857

N1 = N2/5 (0.8125, 0.4068) (0.7341, 0.4324) (0.5011, 0.4362) 1.0775

N1 = N2 (0.9572, 0.5419) (0.9513, 0.6141) (0.8651, 0.8064) 1.4954

N1 = 5N2 (0.9713, 0.5215) (0.9706, 0.5886) (0.9461, 0.8626) 1.8457

N1 = 10N2 (0.9726, 0.4905) (0.9722, 0.5659) (0.9598, 0.8654) 1.9173
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Table 4.6: Scenario One: Final Size (Patch 1, Patch 2), R01 = 1.52, R02 = 0.9 and
p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.0045, 0.0020) (0.0036, 0.0018) (0.0026, 0.0014) 0.9289

N1 = N2/5 (0.1766, 0.0746) (0.0687, 0.0364) (0.0139, 0.0023) 0.9643

N1 = N2 (0.7913, 0.3846) (0.7806, 0.4321) (0.6465, 0.5783) 1.1853

N1 = 5N2 (0.8472, 0.3796) (0.8470, 0.4093) (0.7965, 0.6948) 1.4141

N1 = 10N2 (0.8518, 0.3493) (0.8513, 0.3809) (0.8214, 0.7028) 1.4630

Figure 4.10: Scenario One: Effect of Mobility and Population Size Proportions on
the Global Basic Reproductive Number R0 When R02 = 0.9, and R01 = 1.52.

However, potential changes in mobility patterns that host populations may cause

or experience in response to ZIKV dynamics are being completely ignored when a

mobility matrix P with constant entries pij is used. Nonetheless, the qualitative

response of the final epidemic size within Patch 1 is qualitatively similar in both, the
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worst and best case scenarios: increasing at first (for low mobility values), decreasing

after a certain threshold and then eventually crossing down the baseline case, under

some mobility regimes. Moreover, while the qualitative behavior of the final epidemic

size in Patch 2 grows monotonically as mobility increases, reductions in risk and

density yield significant benefits in terms of the total ZIKV burden even under such

restrictive conditions and assumptions (see Figure 4.10).

4.5.2 Risk Defined by Poor Vector Control.

Similarly, the “best case” scenario presented in Figure 4.11 shows that while some

mobility values can increase the final Patch 1 epidemic size, simulations suggest the

existence of a mobility threshold from which the final epidemic size in Patch 1 benefits.
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Figure 4.11: Scenario Two: Patch Incidence and Final Size Proportions for p21 =
0.10, p12 = 0, 0.2, 0.4 and 0.6 for Best Case.

Moreover, the ”worst case” presented in Figure 4.12 shows that while mobility

benefits the overall burden in Patch 1, increases in the total number of infections is

the norm in Patch 2. The results suggest that the overall burden increases since, the

negative impact in Patch 2 is greater than the benefits from Patch 1 (populations are

assumed to be the same size).
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Figure 4.12: Scenario Two: Patch Incidence and Final Size Proportions for p21 =
0.10, p12 = 0, 0.2, 0.4 and 0.6 for Worst Case.

The results depicted in Figure 4.13 suggest that for most p12 mobility levels, the

cumulative final ZIKV epidemic size supports monotonic growth in the total number

of infected individuals.
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Figure 4.13: Scenario Two Final Sizes for Worst (Top) and Best (Bottom) Cases.
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The Role of Risk Heterogeneity in the Dynamics of Zika Virus Transmis-

sion
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Figure 4.14: Scenario Two: Total Final Size and Global Basic Reproductive
Number Through Mobility Values When p21 = 0.10, R02 Varies and R01 =
1.52 (Top); 2 (Bottom).

Once again, when looking at the impact of changes in risk on Patch 2 (R02 =

0.9, 0.8, 0.7, 0.6, and 0.5), simulations identify a growing final epidemic size as risk

increases, for all residence times in the “worst case” and most realistic residency

times in the “best case.” However, if the conditions in the safe patch (Patch 2) are
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improved then short term mobility has a positive impact on the final size for certain

mobility patterns. An expected outcome, but the impact is not enough to control the

ZIKV outbreak when both patches have the same population size (see Figure 4.14 ).

The Role of Population Size Heterogeneity in the Dynamics of Zika Virus

Transmission.

Now, the role of population density on the total final epidemic size and global basic

reproductive number are explored. Using the two scenarios previously defined, and

the following population sizes: N1 = N2, 5N2, 10N2 and N2 = 5N1, 10N1. Figure

4.15 shows that difference in population sizes do matter. Specifically, it is observed

that (under the densities selected) great density differences translate into higher final

epidemic sizes when the high risk patch is denser.

Once again, infecting over 90% of the population is possible for some population

densities under the “worst case” scenario. Similarly, despite increases in the total

final epidemic size, the global R0 decrease monotonically for most residence times,

but only falls below unity when the safe population is much greater. Nonetheless,

simulations continue to show that under the prescribed conditions and assumptions,

model generated ZIKV outbreaks remain unrealistically high.
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Figure 4.15: Scenario Two: Total Final Size and Global Basic Reproductive Number
Through Mobility Values When p21 = 0.10, Population Size Varies, R02 = 0.9, and
R01 = 1.52 (Top); 2 (Bottom).

Similarly, for the two epidemiological scenarios R01 = 2 and R01 = 1.52, Tables

4.7 and 4.8 provide a summary of the average proportion of infected for low (p12 =

0.01 − 0.33), intermediate (p12 = 0.34 − 0.66) and high mobility (p12 = 0.67 − 0.99)

when p21 = 0.10. The role of population scaling (N1 = N2/10, N2/5, N2, 5N2 and
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10N2 when the largest population is 10000) is also explored.

Table 4.7: Scenario Two: Final Size (Patch 1, Patch 2), R01 = 2, R02 = 0.9 and
p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.3759, 0.1645) (0.1372, 0.0730) (0.0308, 0.0247) 0.9857

N1 = N2/5 (0.8062, 0.3986) (0.7272, 0.4250) (0.4934, 0.4286) 1.0775

N1 = N2 (0.9525, 0.5260) (0.9461, 0.5990) (0.8568, 0.7959) 1.4954

N1 = 5N2 (0.9673, 0.5048) (0.9666, 0.5729) (0.9403, 0.8538) 1.8457

N1 = 10N2 (0.9687, 0.4744) (0.9682, 0.5509) (0.9549, 0.8569) 1.9173

Table 4.8: Scenario Two: Final Size (Patch 1, Patch 2), R01 = 1.52, R02 = 0.9 and
p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.0045, 0.0020) (0.0036, 0.0018) (0.0026, 0.0014) 0.9289

N1 = N2/5 (0.1748, 0.0737) (0.0683, 0.0362) (0.0139, 0.0109) 0.9643

N1 = N2 (0.7808, 0.3740) (0.7701, 0.4213) (0.6361, 0.5679) 1.1853

N1 = 5N2 (0.8362, 0.3675) (0.8359, 0.3969) (0.7844, 0.6834) 1.4141

N1 = 10N2 (0.8407, 0.3378) (0.8401, 0.3691) (0.8093, 0.6915) 1.4630
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Figure 4.16: Scenario Two: Effect of Mobility and Population Size Proportions on
the Global Basic Reproductive Number R0 When R02 = 0.9, and R01 = 1.52.

Consequently, the qualitative response of the final epidemic size within Patch 1 is

qualitatively similar in both, the worst and best case scenarios. Moreover, reductions

in risk and density do yield significant benefits in terms of the total ZIKV burden

even under such restrictive conditions and assumptions (see Figure 4.16).

4.5.3 Risk Defined by Poor Bite Prevention and Poor Vector Control.

Figure 4.17 (top), shows the incidence and final ZIKV epidemic size when Patch 1

is under the “worst case scenario,” defined by elevated risk and a basic reproduction

number of R01 = 2. Figure 4.17 shows that around p12 = 0.2, the final number of

infected residents in Patch 1 starts to decrease from the number of infections caused

by the baseline scenario whenp12 = 0.
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Figure 4.17: Scenario Three: Patch Incidence and Final Size Proportions for p21 =
0.10, p12 = 0, 0.2, 0.4 and 0.6 for Worst Case.

This worst case scenario for Patch 1 takes place when only Patch 2 residents

are mobile, driving ZIKV infections in almost 96% of the population in Patch 1, an

unrealistic value. Nonetheless, simulated p12 values greater than 0.2 show a beneficial

reduction in the final Patch 1 epidemic size, reaching infection levels below the baseline

case; a clear benefit of mobility.

Figure 4.17 highlights the case when the final Patch 2 epidemic size grows as mo-
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bility from Patch 1 increases, when compared with the baseline case (no mobility from

Patch 1). In addition, reductions in the final Patch 1 epidemic size for some mobility

values accompanied by increments in the final Patch 2 epidemic size are observed.

Again, when compared to the baseline case (no mobility from Patch 1). However,

while mobility may provide benefits within Patch 1 (under the above assumptions)

the fact remains that it does it at a cost to Patch 2. In short, it is also observed that

the final epidemic size per patch does not respond linearly to changes in mobility even

when only the mobility p12 is increased (see Figures 4.17 and 4.18).

Consider now the “best case” scenario, when the basic reproductive number is

R01 = 1.52 and once again under the assumption that the population in Patch 1 is

the same as that in Patch 2. The results of simulations collected in Figure 4.18 show

similar final size epidemic curves to those generated in the previous case (the “worst

case” scenario for Patch 1). While some mobility values can increase the final Patch 1

epidemic size, the maximum epidemic size only reaches around 80% of the population

when mobility is close to p12 = 0.20. Again, an unrealistic level, even when it was

lower than in the “worst’ case scenario as expected. Finally, once again observations

from the simulations suggest the existence of a mobility threshold from which the

final epidemic sizes in Patch 1 benefits.
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Figure 4.18: Scenario Three: Patch Incidence and Final Size Proportions for p21 =
0.10, p12 = 0, 0.2, 0.4 and 0.6 for Best Case.

The results depicted in Figure 4.18 suggest that under all p12 mobility levels, Patch

2 final ZIKV epidemic size supports monotonic growth in the total number of infected

individuals. Moreover, the results presented thus far only provide partial information

of the total impact that short term mobility might have on the transmission dynamics

79



of ZIKV. An expected outcome as a result of the myriad of assumptions that have

been incorporated, namely, the restrictions placed on population density; the popu-

lation in Patch 1 is the same as that in Patch 2. By fixing the mobility from Patch 2

to that of Patch 1, the simulations focused only on the impact of changes in mobility

from Patch 1 to Patch 2. Further, potential changes in mobility patterns that host

populations may cause or experience in response to ZIKV dynamics are being com-

pletely ignored when a mobility matrix P with constant entries pij is used. However,

even under such specific restrictions and assumptions, the qualitative response of the

final epidemic size within Patch 1 is qualitatively similar in both, the worst and best

case scenarios: increasing at first (for low mobility values), decreasing after a certain

threshold and then eventually crossing down the baseline case, under some mobility

regimes. Furthermore, the qualitative behavior of the final epidemic size in Patch 2

grows monotonically as mobility increases (see Figure 4.19).
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The Role of Risk Heterogeneity in the Dynamics of Zika Virus Transmis-

sion.

The impact of risk heterogeneity on ZIKV dynamics within the overall two-patch

system is explored, an analysis that requires the numerical estimation of the global

reproduction number as a function of the mobility matrix P. Using the previously

defined scenarios (R01 = 1.52, 2), simulations are carried out, again assuming equal

population sizes (N1 = N2). However, when looking at the impact of changes in risk on

Patch 2 (R02 = 0.5, 0.6, 0.7, 0.8, 0.9), simulations identify a growing epidemic in Patch

2 as risk increases with the overall community experiencing nonlinear changes in risk

as residency times change from the baseline scenario given by p12 = 0. Specifically,

Figure 4.20 captures the overall reductions on the global reproductive number (risk)

for all residence times, while identifying the existence of a residence time interval for

which mobility is beneficial, decreasing the total size of the outbreak in the two patch

system, when compared to the baseline case (p12 = 0).
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Figure 4.20: Scenario Three: Total Final Size and Global Basic Reproduc-
tive Number Through Mobility Values When p21 = 0.10, R02 Varies and R01 =
1.52 (Top); 2 (Bottom).

In the case when mobility from Patch 1 is halted (p12 = 0), the final epidemic size

increases as R0i (risk) increases. While simulations suggest that mobility can slow

down the speed of the outbreak (smaller global R0), simulation also re-affirm the

obvious; the existence of a high risk, mobile and well connected patch, can serve as

a disease source or an outbreak magnifier; a situation that has been explored within

an n-patch system under various connective schemes (Bichara et al., 2015; Castillo-
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Chavez et al., 2016). Moreover, it is observed that the global reproductive number R0

experiences reductions for almost all mobility values. Nonetheless, R0 never drops

below unity for the two-patch scenarios selected in this study. Hence, under such

assumptions and scenarios, it is seen that the use of fixed mobility patterns make

the eliminating ZIKV extremely difficult, if not impossible, under the two scenarios.

Figure 4.20 provides an example that highlights the relationship between the global

reproductive number and the corresponding final epidemic size.

The Role of Population Size Heterogeneity in the Dynamics of Zika Virus

Transmission.

The role of population density on the total final epidemic size and global basic re-

productive number are now explored using the two scenarios previously defined, but

now under the assumption that patch densities (population sizes) are different. More

specifically, when N1 = N2, 5N2, 10N2 and N2 = 5N1, 10N1.

It is observed that difference in population sizes do matter. Specifically, it is

observed that (under the densities selected) great density differences translate into

higher final epidemic sizes. In the “worst case” scenario, infecting 90% of the pop-

ulation is possible for some global reproductive numbers exhibiting certain mobility

patterns (see Figure 4.21). It is observed that despite increases in the total final

epidemic size, as mobility changes, the global R0 decrease monotonically, for most

residence times, but never falling below unity. A sensible degree of magnification on

the spread of the disease is observed as residence times change, whenever the differ-

ences between N1 and N2 are not too extreme. In fact, it is possible for mobility to

be beneficial in the control of ZIKV under the above simplistic extreme scenarios.

Nonetheless, simulations continue to show that under the prescribed conditions and

assumptions, model generated ZIKV outbreaks remain unrealistically high.
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Figure 4.21: Scenario Three: Total Final Size and Global Basic Reproductive Num-
ber Through Mobility Values When p21 = 0.10, Population Size Varies, R02 = 0.9,
and R01 = 1.52 (Top); 2 (Bottom).

Furthermore, the simulations show a minimum global reproductive number when

p12 ≈ 0.90. Figure 4.21 also shows that larger high risk population (N1 >> N2)

exhibit a greater total final epidemic size when individuals from Patch 1 spend more

than half of their time in Patch 2 (see also Figure 4.22).

For the two epidemiological scenariosR01 = 2 andR01 = 1.52, Tables 4.9 and 4.10
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provide a summary of the average proportion of infected for low (p12 = 0.01− 0.33),

intermediate (p12 = 0.34−0.66) and high mobility (p12 = 0.67−0.99) when p21 = 0.10.

The role of population scaling (N1 = N2/10, N2/5, N2, 5N2 and 10N2 when the largest

population is 10000) is also explored.

Table 4.9: Scenario Three: Final Size (Patch 1, Patch 2), R01 = 2, R02 = 0.9 and
p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.3819, 0.1678) (0.1387, 0.0738) (0.0309, 0.0248) 0.9857

N1 = N2/5 (0.8167, 0.4097) (0.7376, 0.4349) (0.5036, 0.4385) 1.0775

N1 = N2 (0.9609, 0.5487) (0.9550, 0.6213) (0.8701, 0.8124) 1.4954

N1 = 5N2 (0.9746, 0.5296) (0.9739, 0.5985) (0.9506, 0.8692) 1.8457

N1 = 10N2 (0.9757, 0.4989) (0.9753, 0.5766) (0.9638, 0.8722) 1.9173

Table 4.10: Scenario Three: Final Size (Patch 1, Patch 2), R01 = 1.52, R02 = 0.9
and p21 = 0.10.

N2 Low Mobility Intermediate Mobility High Mobility Min R0

N1 = N2/10 (0.0045, 0.0020) (0.0036, 0.0018) (0.0026, 0.0014) 0.9289

N1 = N2/5 (0.1773, 0.0748) (0.0688, 0.0364) (0.0139, 0.0109) 0.9643

N1 = N2 (0.7959, 0.3875) (0.7847, 0.4352) (0.6499, 0.5816) 1.1853

N1 = 5N2 (0.8522, 0.3832) (0.8519, 0.4137) (0.8017, 0.6996) 1.4141

N1 = 10N2 (0.8568, 0.3529) (0.8563, 0.3855) (0.8267, 0.7077) 1.4630
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Figure 4.22: Scenario Three: Effect of Mobility and Population Size Proportions on
the Global Basic Reproductive Number R0 When R02 = 0.9, and R01 = 1.52.

The results collected suggest that short-term mobility plays an important role in

ZIKV dynamics, under a system involving two highly heterogeneous patches. Simula-

tions also suggest that, even though mobility can reduce the global basic reproductive

number, in most cases it is not enough to eliminate an outbreak or make a significant

difference under the scenarios explored.

4.6 Conclusions and Discussion.

This study focuses on the dynamics of a single outbreak, albeit the modeling

framework can be used to study long-term dynamics when the mobility patterns can

be captured effectively by P. A two-patch model where host-mobility is modeled

using a Lagrangian approach is used to help understand the role of host-movement

on the transmission dynamics of ZIKV. The patches were defined to be as distinct

as they could be, hoping that simulations, in this simplified system, could capture

some insight on the transmission dynamics of ZIKV in the presence of extreme health
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disparities within neighboring communities or within urban centers. This framework

can be used to study the dynamics of vector born diseases within a collection of

neighboring communities or neighborhoods experiencing multiple levels of health dis-

parities and diverse connectivity mobility structures (Bichara and Castillo-Chavez,

2016). The study of the role of mobility at larger scales can be best captured using

question-specific related models that account for the possibility of long-term mobility

(see for example (Herrera-Valdez et al., 2011; Chowell et al., 2003b; Baroyan et al.,

1971; Rvachev and Longini Jr, 1985; Elveback et al., 1976; Banks and Castillo-Chavez,

2003; Khan et al., 2009)).

Although the goal is not to fit specific outbreaks or specific situations, recently

published parameter ranges were used since framing the system within the range of

ZIKV accepted parameters helps highlight the impact that mobility may have within

two highly distinct (bi-modal) communities in a more realistic way. The incorporation

of a Lagrangian modeling approach to study epidemic outbreaks makes it possible to

use measurable parameters like risk (β̂), which affect individuals differently depending

on the patch-residency times their mobility patterns (residency times).

As a result, the impact of ZIKV can be assessed locally (at the patch level) or

globally (regional level, in this case two patch system). System risk assessment was

carried out via the computation of the system R0, which must be carried out via

the numerical solution of a system of nonlinear equations. Specifically, changes on

the system R0 were computed (with respect to residency times) and compared to

the local R0i in the absence of mobility. Further, the mobility-dependent system

final epidemic sizes were computed via simulations. These final sizes helped asses the

impact of mobility (and risk) locally and globally, within the two selected scenarios,

(R01 = 1.52 and R01 = 2). As expected, the impact of mobility on the final epidemic

size depends on the local risk of infection and population size. Moreover, it was
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also determined that there are certain cases in which mobility could be detrimental,

highlighting the necessity to reduce health disparities in vulnerable communities. In

fact, mobility from high to low risk patches can reduce or increase the total final

epidemic size; mobility could be used as a strategy to ameliorate the impact of ZIKV

outbreaks.

The challenges posed by policies that may be beneficial to the system but detri-

mental are also explored within this two-patch system. Situations where the total

final epidemic size increased as R02 increased and situations where the total final

epidemic size decreased under low mobility values when R02 ∼ 1 were documented.

Population density does make a difference and examples when R02 < 1 with mobil-

ity incapable of reducing the total final epidemic size under no differences in patch

density (here measured by total population size in each patch, both assumed to have

roughly the same area) were also identified. Differences in population density were

also shown to be capable of generating reductions on the total final epidemic size

within some mobility regimes.

The highly simplified two-patch model used seem to have shed some light on the

role of mobility on the spread of ZIKV in areas where huge differences in the availabil-

ity of public health programs and services,–the result of endemic crime, generalized

violence and neglect– exist. Model simulations also seemed to have shed some light

on the potential relevance of the factors not accounted for. The value of the use of

single patch-specific risk parameters (β̂) has strengths and limitations. It is impor-

tant to notice that the model used did not account explicitly for changes in the levels

of infection within the vector population nor does it account for impact of substantial

differences in patch vector population sizes. The simplified model fails to account

for the responses to outbreaks by patch residents as individuals may alter mobility

patterns, use more protective clothing, and respond individually and independently
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of official control programs in response to dramatic increases on vector population or

a surge in cases. Clearly, the use of two patches and assumptions do limit the out-

comes that such a system can support. Communities can’t, in general, be modeled

under a highly differentiated two-tier system and in the case of ZIKV, the possibility

of vertical transmission in humans and vectors as well as sexually-transmitted ZIV

can’t be completely neglected (Brauer et al., 2016). The introduction of changes in

behavior in response to individuals’ assessment of the levels of risk infection over time

needs to be addressed (Castillo-Chavez et al., 2016); a challenge that has yet to be

met to the satisfaction of the scientific community involved in the study of epidemio-

logical processes as complex adaptive systems (see for example (Perrings et al., 2014;

Fenichel et al., 2011; Morin et al., 2013)).

The limitations of the role of technology in the absence of the public health in-

frastructure –there is no silver bullet– has been recently addressed in the context of

Ebola (Chowell et al., 2015; Yong et al., 2016) with applications of the Lagrangian

approach as presented here in the context of communicable and vector born diseases,

including dengue, tuberculosis and Ebola, in settings where health disparities are per-

vasive (Espinoza et al., 2016; Moreno et al., 2017a; Bichara et al., 2016). Further, the

use of simplified models, quite often tends to over-estimate the impact of an outbreak

[see (Nishiura et al., 2009, 2011)] and the model and scenarios used highlight the

limitations on the use of simplified settings when the goal is to capture or mimic the

dynamics of specific systems–not the goal of this study.

Certainly, the use of dramatic measures to limit the spread of diseases like SARS,

Influenza or Ebola ((Chowell et al., 2003a; Herrera-Valdez et al., 2011; Chowell et al.,

2015)), as well as the rise of vector born diseases like Dengue and Zika are not un-

common, and the dramatic implications that some measures have had on local and

global economies. The question remains, what can we do to mitigate or limit the
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spread of disease, particularly emergent diseases without disrupting central compo-

nents? Discussions on these issues are recurrent (Fenichel et al., 2011; Morin et al.,

2013), most intensely in the context of SARS, Influenza, Ebola and Zika, in the last

decade or so. The vulnerability of world societies is directly linked to the lack of

action in addressing the challenges faced by the weakest links in the system must

be accepted and acted on by the world community. We need global investments in

communities and nations where health disparities and lack of resources are the norm.

We must invest in research and surveillance within clearly identified world hot spots,

where the emergence of new disease are most likely to emerge, and we must do so

with the involvement, at all levels, of the affected communities (Perrings et al., 2014;

Castillo-Chavez et al., 2015).
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Chapter 5

THE ROLE OF MOBILITY AND HEALTH DISPARITIES ON THE

TRANSMISSION DYNAMICS OF TUBERCULOSIS.

Background The transmission dynamics of Tuberculosis (TB) not only involves mul-

tiple transmission methods but also requires of the incorporation of complex epidemi-

ological and socio-economical interactions between individuals living in highly distinct

regional conditions. The different levels of the methods of transmission (exogenous

reinfection and first time infection) within high-incidence settings may influence the

impact of control programs on TB prevalence.

Methods The goal of this study is to improve the basic understanding of TB dy-

namics via scenarios, within simplified, two patch, risk-defined interconnected envi-

ronments in the presence of short term mobility and variations in reinfection and

infection rates. Using a modeling framework that captures the average proportion

of time spent in places of residency, work or business the role of individuals’ ‘daily’

dynamics within and between TB-risk environments (patches) was estimated. As a

direct result, the effective population size of Patch i at time t must account for both

visitor and residents of Patch i, at time t.

Results The impact that the distribution of individuals’ residence times has on the

effective population size and ultimately on TB transmission and control in different

patches are studied using selected scenarios where risk is defined by the estimated or

perceived first time infection and/or exogenous re-infection rates.

Conclusions The results suggest that allowing infected individuals to move from high

to low TB prevalence areas (where the sharing of treatment and isolation facilities is

possible) may lead to a reduction in the total TB prevalence in the overall (two-patch)
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population under certain conditions.

5.1 Background

Tuberculosis (TB), a communicable disease caused by the bacteria Mycobacterium

tuberculosis, remains among one of the leading causes of death in the world. Accord-

ing to the 2014 World Health Organization’s (WHO) TB report, 9.6 million people

developed symptomatic TB infections and 1.5 million TB-associated deaths (World

Health Organization, 2015). Despite advances in TB research and the existence of

treatment and vaccine, it is estimated that one-third of the world population serves

as TB reservoirs. The majority of these TB reservoirs (latently infected individuals)

live in developing countries where exposure to multiple TB risk factors is common.

More specifically, individuals living in rural areas (mainly in developing countries) and

below the poverty line, disproportionately contribute to the documented TB burden

(Legesse et al., 2010; Ahn et al., 2005); or are exposed to a higher risk of infection.

Recent data analysis has suggested a strong association between poverty and TB in

economically underprivileged countries (Bhatt et al., 2010). Vulnerable groups are at

greater risk of TB infection compared with the general population because of poor

urbanization, overcrowding and substandard living. In addition, poor working con-

ditions, poor nutrition, inter-current diseases, and migration from (or to) higher-risk

patches are also associated with higher risk of acquiring TB (Ahn et al., 2005). Fur-

thermore, the overall worldwide TB-burden continues to rise as the world population

continues to grow rapidly (Lawn and Zumla, 2011), even when the worldwide TB

incidence rates seemed to have peaked in 2004. The study of (Gomes et al., 2012)

suggest that TB-reinfection rates (reinfection after successful treatment), are higher

than TB infection rates (among those with no prior TB-experience). In their study,

they propose two mechanisms to maintain high TB prevalence: (i) past infections
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increase susceptibility to reinfection (ii) differences in susceptibility to infection con-

tribute to increased re-infection rates among the treated; something that needs to

be supported by data. Consequently, (Gomes et al., 2012) noted that, the rates of

reinfection are higher at the population level than at the individual level. Addition-

ally, inappropriate treatment and the use of poor quality drugs in recent years have

led to wild and antibiotic resistant strains contributing to the already high TB-active

incidence and making TB a major global health threat.

Population level studies require the use of metapopulation models that account

for population aggregation at a given patch. Metapopulation type transmission mod-

els offer a powerful set up for the study of TB dynamics and the effectiveness of

population-level TB interventions like treatment, movement restrictions, and local

control measures [see (Castillo Chávez et al., 2000)]. Similarly, (Tanaka et al., 2014)

and (Allen et al., 2009) present models aimed at exploring the impact of immigration

in mobile populations within an n-patch system with risk heterogeneity. However,

these models made use of an Eulerian approach where the concepts of residence times

and effective population size were not incorporated; in short this approach does not

allow for the identification (of the place of residency) of treated or quarantined in-

dividuals as well as the impact of the effective population size on the transmission

dynamics. Prior TB-related studies have estimated incidence growth, explored the

impact of TB interventions and the impact of exogenous reinfection, however, move-

ment of individuals that keep track of place of residency have been in general ignored

[see (Castillo Chávez et al., 2000)]. Moreover, limited studies have considered mod-

els incorporating movement via mass transportation within a Lagrangian approach

based on budgeting contacts as a function of residency times [see (Castillo Chávez

et al., 2000)], taking into account the impact of sudden blips of immigration (Tewa

et al., 2012; Liu et al., 2012; Zhou et al., 2008; Brauer and van den Driessche, 2001;
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Shim, 2006), co-infections, specially with HIV (Kapitanov, 2015; Nthiiri et al., 2015;

Bhunu et al., 2009; Bowong and Kurths, 2010; Hohmann and Voss-Böhme, 2013;

Roeger et al., 2009), relapse (Gomes et al., 2012; Millet et al., 2013; Marx et al.,

2014; Luzze et al., 2013; Tiemersma et al., 2011), antibiotic, drug, and ultra-drug

resistance (Okuonghae, 2013; Ozcaglar et al., 2012; Bhunu, 2011; Lipsitch and Levin,

1998; Agusto and Adekunle, 2014; Cohen et al., 2009) or TB re-activation and pro-

gression (Feng et al., 2000; Cohen et al., 2007; Zheng et al., 2014a), which may be

central to TB re-emergence. In addition, models assuming negligible immigration

might not capture the real TB dynamics in certain populations where high levels of

diversity are caused by immigration (Ozcaglar et al., 2012).

Since research aimed at increasing the understanding of TB transmission dynamics

explicitly incorporating heterogeneous TB-risk environments is limited, the goal of

this study is to increase the basic understanding of the impact residence times and

population sizes, across distinct risk environments have on the transmission dynamics

of TB; when risk is defined in terms of new infections and/or exogenous re-infection

rates. Here, residence time is defined as the average proportion of time an individual

spends daily in a given environment. In particular, the following questions were

addressed:

• How does mobility changes TB prevalence via the trade-off between exogenous

and direct first time infection rates?,

• How differences in TB prevalence and population sizes can influence the impact

of mobility on the total number of infections? and

• Which transmission method, direct first time infection or exogenous re-infection,

is capable of sustaining higher TB prevalence?
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5.2 Methods: TB Dynamic Modeling Framework

A model for the transmission dynamics of TB in two interacting populations

identified by their place of residence was considered. First, a single patch model was

introduced and then a Lagrangian approach via the explicit use of residence time in

order to capture the interacting dynamics of a two patch system was incorporated.

The two-patch residence time model is used to address the role of movement (implicit)

and patch-risk on TB dynamics. Relevant definitions and case studies scenarios ex-

plored in this study are collected in Table 5.1.

Table 5.1: Definitions and Scenarios for TB
Nomenclature

Risk
Interpreted based on levels of infection rate, prevalence,

or average contacts (via population size)

High-risk patch

Defined either by high direct first time infection rate (i.e., high β

which leads to high corresponding R0) or by high exogenous

re-infection rate (i.e., high δ)

Enhanced socio-economic

conditions

(reducing health disparity)

Defined by better healthcare infrastructure which is incorporated

by high prevalence of a disease (i.e., high I(0)/N) in a large

population (i.e., large N)

Mobility
Captured by average residence times of an individual

in different patches (i.e., by using P matrix)

Scenarios (assume high-risk and diminished socio-economic conditions in

Patch 1 as compared to Patch 2)

Scenario 1 β1 > β2, δ1 = δ2︸ ︷︷ ︸
high risk

;
I1(0)

N1
>
I2(0)

N2
, N1 > N2;︸ ︷︷ ︸

socio-economic conditions

vary p12 when p21 ≈ 0︸ ︷︷ ︸
mobility

Scenario 2 β1 = β2, δ1 > δ2︸ ︷︷ ︸
high risk

;
I1(0)

N1
>
I2(0)

N2
, N1 > N2;︸ ︷︷ ︸

socio-economic conditions

vary p12 when p21 ≈ 0︸ ︷︷ ︸
mobility

5.2.1 A Simple Single Patch TB Model with Homogenous Mixing

The transmission dynamics of TB in homogeneously mixed population is repre-

sented by a system of three differential equations describing the TB contagion pro-
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cess. The population is divided into three sub-populations each corresponding to

an epidemiological state of the TB contagion process: susceptible individuals (S),

noninfectious infected or latent individuals (L), and actively infectious individuals

(I).

The model considers three contagion pathways: direct progression (fast dynamics),

endogenous reactivation (slow progression, often years after infection) and exogenous

reinfection. A susceptible individual (S) may get infected through contacts with

actively infectious individuals (I), proceeding to either the noninfectious latent class

(L) with probability q or to the actively infectious (I) state with probability (1− q)

where q ∈ [0, 1]. Meaning that the fraction (1− q) denotes the proportion of recently

infected individuals experiencing fast progression and move directly into the infectious

stage (I). On the other hand, reactivation from a longstanding latent infections is

modeled by the transition of individuals from the noninfectious to the infectious state

via endogenous reactivation at the per capita rate γ, or via exogenous reinfection at

the per capita rate δ. Finally, infectious individuals are treated at the per capita rate

ρ moving to the non-infectious infected category L as total mycobacterium elimination

in the human body is assumed to be not possible.

The model assumes the following conditions: (1) the population is constant; (2)

TB-induced deaths are negligible and hence ignored; (3) only a fraction of individuals

are infectious; (4) individuals may recover from an active infection without treatment

moving back to the latent class; (5) latent individuals may relapse and develop active

TB or remain in this class until death due to natural causes (not TB). The flow dia-

gram associated with the transmission dynamics of the TB model used can be found

in Figure 5.1.
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Figure 5.1: Flow Diagram for the Single Patch Three Compartment TB Model:
Susceptible (S), Infected Latent (L) and Infectious (I).

This model follows the structure used in (Feng et al., 2000; Mccluskey, 2006;

Zheng et al., 2014b) where all three contagion pathways are considered: exogenous

reinfection, fast and slow progression. Similarly, the basic reproduction number as

well as the conditions for the existence and stability equilibria (disease free and en-

demic steady states) are highlighted in (Feng et al., 2000; Mccluskey, 2006; Zheng

et al., 2014b). The basic reproduction number for the model represented in Figure

5.1 is given by the algebraic expression

R0 =
β(γ + (1− q)µ)

µ(µ+ ρ+ γ)
(?)

The basic reproduction number (R0) gives the average number of secondary in-

fections generated by a typically infected individual in a population of susceptible

individuals. In ?, it was noticed that in a completely susceptible population there

are only two pathways; slow and fast progression. In addition, in the case were

exogenous reinfection is a pathway to TB contagion and excluding fast progression
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(meaning that q = 1 and δ > 0), it is known that the model can support two stable

equilibria simultaneously (backward bifurcation) (Feng et al., 2000). In consequence,

the role of TB could be closely linked not only to the basic reproductive number (R0),

but also to the initial conditions.

5.2.2 A Two-patch TB Model with Heterogeneity in Population Through

Residence Times

Using the transmission dynamics outlined above and depicted in Figure 5.1, a

two-patch model is now build, under a residency-time matrix P.

Let N1, N2 be the host population of Patch 1 and 2, respectively and pij be

the proportion of time an individual from Patch i spends on average in Patch j.

Consequently, individuals from Patch 1 spend on average, the proportion p11 of their

time in Patch 1 and the proportion p12 of their time in Patch 2 (p11 + p12 = 1).

Similarly, residents of Patch 2 spend p22 of their time in Patch 2 and p21 = 1 − p22

in Patch 1. Hence, without a loss of generality, at any given time t in Patch 1,

the effective population in Patch 1 is p11N1 + p21N2, while the effective population

of Patch 2 at time t is p12N1 + p22N2. Again, susceptible individuals from Patch 1

(S1) may become infected in Patch 1 (p11S1) or in Patch 2 (p12S2). Similarly, using

this Lagrangian approach that provides an implicit way to capture the movement of

individuals, the effective proportion of infectious individuals in Patch 1 at time t is

p11I1 + p21I2

p11N1 + p21N2

.
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Figure 5.2: Schematic Description of the Lagrangian Approach Between Two
Patches.

Hence, the transmission dynamics between infectious and susceptible residents

from Patch 1 are given by

Ṡ1 = µ1N1 − β1p11S1
p11I1 + p21I2

p11N1 + p21N2

− β2p12S1
p12I1 + p22I2

p12N1 + p22N2

− µ1S1. (5.1)

Subsequently, the latency dynamics among residents from Patch 1 are,

L̇1 = qβ1p11S1
p11I1 + p21I2

p11N1 + p21N2

+ qβ2p12S1
p12I1 + p22I2

p12N1 + p22N2

− δ1p11L1
p11I1 + p21I2

p11N1 + p21N2

− δ2p12L1
p12I1 + p22I2

p12N1 + p22N2

− (γ1 + µ1)L1 + ρ1I1. (5.2)

Finally, the dynamics in which residents from Patch 1 reach the infectious state are

İ1 = (1− q)β1p11S1
p11I1 + p21I2

p11N1 + p21N2

+ (1− q)β2p12S1
p12I1 + p22I2

p12N1 + p22N2

+ δ1p11L1
p11I1 + p21I2

p11N1 + p21N2

+ δ2p12L1
p12I1 + p22I2

p12N1 + p22N2

+ γ1L1 − (µ1 + ρ1)I1. (5.3)

Using (5.1), (5.2),(5.3), that describe TB dynamics in one patch, the transmission

dynamics for a two patch system are given by the following System ( i = 1, 2):
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Ṡi = µiNi −

∑2
j=1 βjpijSi

∑2
k=1 pkjIk∑2
k=1 pkjNk

− µiSi,

L̇i = q
∑2

j=1 βjpijSi
∑2

k=1 pkjIk∑2
k=1 pkjNk

−
∑2

j=1 δjpijLi
∑2

k=1 pkjIk∑2
k=1 pkjNk

− (γi + µi)Li + ρiIi,

İi = (1− q)
∑2

j=1 βjpijSi
∑2

k=1 pkjIk∑2
k=1 pkjNk

+
∑2

j=1 δjpijLi
∑2

k=1 pkjIk∑2
k=1 pkjNk

+ γiLi − (µi + ρi)Ii.

(5.4)

Notice that the total population of Patch i, i = 1, 2 could be also represented by

Ni = Si + Li + Ii. Moreover, System (5.4) has the same qualitative dynamics as the

following reduced system, since the total population is constant: L̇i = q
∑2

j=1 βjpij(Ni − Li − Ii)
∑2

k=1 pkjIk∑2
k=1 pkjNk

−
∑2

j=1 δjpijLi

∑2
k=1 pkjIk∑2
k=1 pkjNk

− (γi + µi)Li + ρiIi,

İi =
∑2

j=1 pij
(
(1− q)βj(Ni − Li − Ii) + δjLi

) ∑2
k=1 pkjIk∑2
k=1 pkjNk

+ γiLi − (µi + ρi)Ii.

(5.5)

A schematic description of the two-patch dynamical model is provided in Figure 5.2

and the description of the parameters used as well as estimates from previous studies

can be found in Table 5.2.

Table 5.2: Description of the Parameters Used in System (5.5)

Parameters Description Ranges(units)

βi Susceptibility to TB invasion in Patch i 0.01 - 0.0192 (y−1)

δi Susceptibility to exogenous TB progression in Patch i 0.0026 - 0.0053 (y−1)

µi Natural birth and death (per capita) 0.0104 - 0.0143 (y−1)

ρ Relapse (per capita) 0.0010 - 0.0083(y−1)

γi Activation from latency in Patch i (per capita) 0.0017 - 0.0036 (y−1)

q Proportion of individuals that develop latent TB 0.9 (dimensionless)

pij Proportion of time that residents of Patch i spend in Patch j Varies (dimensionless)

For parameter ranges, see (Cohen et al., 2007; Blower et al., 1995; Gomes et al.,

2004; Okuonghae, 2013; Dowdy et al., 2012; Langley et al., 2014) .
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5.3 Results

5.3.1 Model Analysis

The disease-free equilibrium of System (5.5) is located at the origin of the positive

orthant R4
+, that is E0 = 0R4

+
. The basic reproduction number (R0) of System (5.5) is

computed following the next generation method described in (Van den Driessche and

Watmough, 2002; Diekmann et al., 1990). System (5.5) was then decomposed into

two vectors: the “new infection” vector, denoted by F , and the “transition” vector,

denoted by V . Hence,



L̇1

L̇2

Ė1

Ė2


= F + V

=



q
∑2

j=1 βjp1j(N1 − L1 − I1)
∑2

k=1 pkjIk∑2
k=1 pkjNk

q
∑2

j=1 βjp2j(N2 − L2 − I2)
∑2

k=1 pkjIk∑2
k=1 pkjNk

(1− q)
∑2

j=1 βjp1j(N1 − L1 − I1)
∑2

k=1 pkjIk∑2
k=1 pkjNk

(1− q)
∑2

j=1 βjp2j(N2 − L2 − I2)
∑2

k=1 pkjIk∑2
k=1 pkjNk


+

+



−
∑2

j=1 δjp1jL1

∑2
k=1 pkjIk∑2
k=1 pkjNk

− (γ1 + µ1)L1 + ρ1I1

−
∑2

j=1 δjp2jL2

∑2
k=1 pkjIk∑2
k=1 pkjNk

− (γ2 + µ2)L2 + ρ2I2∑2
j=1 p1jδjL1

∑2
k=1 pkjIk∑2
k=1 pkjNk

+ γL1 − (µ1 + ρ1)I1∑2
j=1 p2jδjL2

∑2
k=1 pkjIk∑2
k=1 pkjNk

+ γL2 − (µ2 + ρ2)I2


The rationale behind the presence of nonlinear terms, which represent the infec-

tiousness progression of latent by the interaction with infectious individuals, in the

“transition” vector (V) is that these terms do not, technically, represent “new infec-

tions”. Letting F and V be the Jacobian matrices of F and V respectively, evaluated
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at the disease free equilibrium E0, then the basic reproduction number is the spectral

radius of the next generation matrix −FV −1 (Van den Driessche and Watmough,

2002; Diekmann et al., 1990). Hence, R0 = ρ(−FV −1) where

−FV −1 =



qγ1k11 qγ2k12 q(µ1 + γ1)k11 q(µ2 + γ2)k21

qγ1k21 qγ2k22 q(µ1 + γ1)k21 q(µ2 + γ2)k22

(1− q)γ1k11 (1− q)γ2k12 (1− q)(µ1 + γ1)k11 (1− q)(µ2 + γ2)k12

(1− q)γ1k21 (1− q)γ2k22 (1− q)(µ1 + γ1)k21 (1− q)(µ2 + γ2)k22


where

k11 =

(
β1p

2
11N1

p11N1 + p21N2

+
β2p

2
12N1

p12N1 + p22N2

)
1

µ1(γ1 + µ1 + ρ1)

=

(
β1p

2
11N1

p11N1 + p21N2

+
β2p

2
12N1

p12N1 + p22N2

)
R01

β1(γ1 + (1− q)µ1)
,

k12 =

(
β1p11p21N1

p11N1 + p21N2

+
β2p12p22N1

p12N1 + p22N2

)
1

µ2(γ2 + µ2 + ρ2)

=

(
β1p11p21N1

p11N1 + p21N2

+
β2p12p22N1

p12N1 + p22N2

)
R02

β2(γ2 + (1− q)µ2)
,

k21 =

(
β1p11p21N2

p11N1 + p21N2

+
β2p12p22N2

p12N1 + p22N2

)
1

µ1(γ1 + µ1 + ρ1)

=

(
β1p11p21N2

p11N1 + p21N2

+
β2p12p22N2

p12N1 + p22N2

)
R01

β1(γ1 + (1− q)µ1)
,

and

k22 =

(
β1p

2
21N2

p11N1 + p21N2

+
β2p

2
22N2

p12N1 + p22N2

)
1

µ2(γ2 + µ2 + ρ2)

=

(
β1p

2
21N2

p11N1 + p21N2

+
β2p

2
22N2

p12N1 + p22N2

)
R02

β2(γ2 + (1− q)µ2)
.

Note that R0 = f(P,R01,R02) where R01 and R02 are the basic reproductive

numbers of patch 1 and 2, respectively, when there is no movement (p11 = 1 =
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p22). Recall that P = (pij)1≤i,j≤2 is the residence times matrix of the model and

corresponding expressions for R01 and R02 are given by the algebraic expression (?).

The analysis from Model (5.5) suggests a sharp threshold (that is, the disease

dies out from both patches if R0 ≤ 1 or persists in both patches otherwise), when

q = 1 and δ = 0 (i.e., in the absence of fast progression and exogenous infections)

since the corresponding residence times matrix is irreducible. (See (Bichara et al.,

2015; Bichara and Castillo-Chavez, 2016; Bichara et al., 2016) for the mathematical

proofs). By assuming q = 1 through out this study and δ > 0, numerical simulations

suggest complex dynamics (i.e., multiple non-trivial equilibria) for the system.

Figure 5.3: Dynamics of Infectious and Latent When the Two Patches Are Strongly
Connected and R0 > 1.

Figure 5.3 highlights this robustness. Using four different sets of initial conditions,

the trajectories of latently infected individuals (Figure 5.3 left) and actively-infected

individuals (Figure 5.3 right) converge towards the endemic state as time progresses.

On the other hand, the case when R0 ≤ 1, leads to the eventual elimination of the

disease from both patches regardless of the initial conditions as shown in Figure 5.4.
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Figure 5.4: The Infectious and Latent Populations in the Two Patches Converge to
Zero for Four Different Initial Conditions When R0 ≤ 1.

Assuming Patch 1 is high risk (R0 > 1) and the connectivity between the two

patches is not strong (p21 ≈ 0 and p12 ≈ 0), then the disease will persist in both

patches, even though the number of latently-infected and actively-infectious individ-

uals in Patch 2 is small (See Figure 5.5).

Figure 5.5: Dynamics of Two Weakly Connected Patches When R0 > 1 Reach an
Endemic Level but Patch 2 Approaches a Lower Level of Endemicity (R01 = 1.4150
and R02 = 0.1417) If Completely Isolated.

The effects of the residence times matrix P = (pij)1≤i,j≤2 on the basic reproduction

number R0(P) and, consequently on the disease dynamics, are highlighted in Figure

5.6 and Figure 5.7. Notice that the basic reproduction number is a decreasing function

of the residence time of high risk residents (Patch 1) in the low risk environment
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(Patch 2), in this case p12. This reduction is capable to ultimately drive the basic

reproduction number to a value less than one and consequently drive the latent and

infected populations, under such mobility schedules, to zero in both patches (See

Figure 5.6 and Figure 5.7).

Figure 5.6: Effects of the Residence Time Matrix on the Basic Reproduction Number
and the Disease Dynamics of the Latent Class.

Figure 5.7: Effects of the Residence Time Matrix on the Basic Reproduction Number
and the Disease Dynamics of the Infected Class.

Now, the role of mobility, risk and health disparities on TB prevalence levels in a

two patch setting need to be addressed. In the next section, the role of the parameters

representing mobility, risk and health disparities, on the dynamics of TB are explored.
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5.3.2 The Role of Risk and Mobility on TB Prevalence.

Now, the dynamics of tuberculosis within a two-patch setting, described in Model

(5.5), under various residence times schemes, are highlighted via numerical experi-

ments. These numerical experiments were carried out using the two-patch Lagrangian

modeling framework on pre-constructed scenarios. In particular, it is assumed that

one of the two regions (say, Patch 1) has high TB prevalence and consequently has

a higher risk of infection. While the scenarios simulated might be representative of

certain regions, this study does not model specific cities or regions. See Table 5.1 for

nomenclature and scenarios explored in this section.

The interconnection of individuals between the two idealized highly heterogeneous

patches demands that individuals from Patch 1 travel to the “safer” Patch 2 driven by

social factors like work, school or for other social activities. Likewise, it is assumed

that the same socio-economic factors prevents individuals from the safer patch to

travel and hence, the proportion of time that Patch 2-residents spend in Patch 1 is

negligible.

In this study “high risk” is defined based on the probability of developing active

TB (risk of infection) using two drivers. In section 5.3.2, the high risk patch is

defined by having an elevated direct first time transmission rate (β1 > β2 and δ1 =

δ2). Subsequently, in section 5.3.2 , the high risk patch is characterized by a higher

exogenous reinfection rate (δ1 > δ2 and β1 = β2). In addition, in an attempt to gain

a better understanding about the role of mobility, different scenarios with population

size heterogeneity among the two patches are explored. These scenarios are build up

by varying the population ratio (N1/N2). Particularly, it is assumed that Patch 1 is

the denser patch, as a result of social factors, while Patch 2 is assumed to be less

dense, more specifically, 1
2
N1 and 1

4
N1. In consequence, rates associated with the risk
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of infection are higher in Patch 1 when compared to the corresponding rates in Patch

2.

The role of risk as defined by direct first time transmission rates

In this subsection, the impact of heterogeneity on direct first time transmission rates

between patches are explored. Assuming Patch 1 has a higher risk of infection (β1 >

β2 so that R01 > 1), while Patch 2, in the absence of visitors would be unable to

sustain an epidemic (R02 < 1). Furthermore, the effect of different population ratios

(N1/N2) is also included and explored.
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Figure 5.8: Effect of Mobility for p12 = 0%, 3%, 6% and 9%, When Risk is Defined by
Direct First Time Transmission Rates 0.13 = β1 > β2 = 0.07 (R01 = 1.5, R02 = 0.8)
and δ1 = δ2 = 0.0026.

Figure 5.8 shows similar but contrasting effects on patch prevalence when different

residency times (mobility schemes) are explored (0% 3%, 6% and 9%). While Fig-

ure 5.8 shows the existence of mobility values (p12), capable of reducing the overall
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prevalence of the two patch system, it is important to notice the existence of mobility

patterns that would have a detrimental impact on the overall prevalence of the sys-

tem. Furthermore, it is observed that population densities just like residence times

have a noticeable effect on disease prevalence.

Interestingly, these results suggest that if individuals from Patch 1 increase their

residence time in Patch 2 (p12), this behavior would reduce TB prevalence in Patch

1, whiled increasing it in Patch 2. However, the number of total infected individuals

from both patches experiences a global beneficial effect for certain mobility patterns.

Figure 5.9, provides a better representation of mobility values (p12) and their im-

pact on TB prevalence at both the patch and at the system level. At the individual

patch level, similar trends as in Figure 5.8 are observed, but in this case the existence

of a threshold value can be observed for prevalence in terms of p12 (see red and yellow

curves in Figure 5.9), for which mobility is always beneficial. As a result, this suggests

that completely cordoning off infected regions may not be an effective control measure

for TB. On the other hand, as long as mobility between high risk and low-risk regions

is maintained above the critical value, mobility might become an important factor in

the control of TB.
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Figure 5.9: Effect of Mobility When Risk Is Defined by Direct First Time Trans-
mission Rates 0.13 = β1 > β2 = 0.07 (R01 = 1.5, R02 = 0.8) and δ1 = δ2 = 0.0026.
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Furthermore, it is suggested that when the riskier patch has the bigger population

size, the impact of mobility may turn out to be beneficial; results suggest that the

higher the ratio between population sizes, the higher the range of beneficial “traveling”

times (p12).

The impact of risk as defined by exogenous reinfection rates

Similarly, focusing on the impact exogenous reinfection has on the transmission dy-

namics of TB it is assumed that direct first time transmission rates are the same in

both patches (β1 = β2). In addition, it is assumed the disease has reached an endemic

state in both patches (R01 > 1 and R02 > 1). However, once again, Patch 1 remains

the riskier and consequently the exogenous reinfection rate in Patch 1 is higher than

that of Patch 2 (δ1 > δ2).
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Figure 5.10: Effect of Mobility for p12 = 0%, 20%, 40% and 60%, When Risk
Is Defined by the Exogenous Reinfection Rates 0.0053 = δ1 > δ2 = 0.0026 and
β1 = β2 = 0.1 (R01 = R02 = 1.155).
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As in the previous case, prevalence levels in Patch 1 are reduced by mobility (p12),

while prevalence in Patch 2 increase. Nevertheless, this prevalence reduction in Patch

1 is noticeable greater than the prevalence increment in Patch 2 for most mobility

values p12. Once again, Figure 5.10 suggests the existence of a threshold for which

mobility has a beneficial impact on the entire system. Furthermore, the effect of

population density once again could have a favorable impact on the total prevalence.

Figure 5.11 shows the mobility threshold and how it is impacted by population

density suggesting that mobility between two patches undergoing TB outbreaks with

high density heterogeneity (in which the riskier patch is denser) would result in lower

TB prevalence levels for the overall system.
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Figure 5.11: Effect of Mobility When Risk Is Defined by the Exogenous Reinfection
Rates 0.0053 = δ1 > δ2 = 0.0026 and β1 = β2 = 0.1 (R01 = R02 = 1.155).

Within this framework, parameters and scenarios, the simulations presented in

this section suggest that direct first time transmission plays a central role on TB

dynamics when mobility is considered. Although exogenous reinfection also reduces

the overall prevalence when mobility is incorporate, its not as important as the impact

generated by direct first time transmission.
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Figure 5.12: Effect of Mobility and Population Size Proportions on the Global Basic
Reproductive Number R0 When 0.13 = β1 > β2 = 0.07 and δ1 = δ2 = 0.0026.

Finally, Figure 5.12 depicts the relationship between population densities and

mobility (p12) with respect to the basic reproductive number R0. Notice that only

the first case was explored (direct first time transmission heterogeneity) suggesting

that mobility could indeed be an effective control measure capable of eliminating an

regional (active) TB outbreak.

5.4 Discussion

According to the World Health Organization (WHO) (World Health Organization,

2015), in 2014, 80% of reported TB cases occurred in 22 countries (all developing

countries). Efforts to control TB have been successful in many regions of the globe

and yet, 1.5 million people die annually. In consequence, TB, faithful to its history,

still poses one of the greatest challenges to global health (Daniel, 2006) and a threat
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to humanity. Recent reports suggest that established TB control measures have not

been adequately implemented, particularly in sub-Saharan countries (Andrews et al.,

2013; Chatterjee and Pramanik, 2015), one of the few regions heavily burdened by

TB. Even though rates have decreased in Brazil, relapse has become more important

than reinfection (de Oliveira et al., 2013; Luzze et al., 2013). Similarly, in Cape

Town, South Africa, a study (Verver et al., 2005) showed that in high incidence areas,

individuals who have received successful TB treatment and are no longer infectious are

at the highest risk of developing TB instead of being the most protected, suggesting

the existence of ignored mechanisms that might be driving the TB contagion (possibly

socio-economic factors).

The main focus of this study was on the role of ‘daily’ mobility within high and

low-risk areas, as well as, the potential impact of short-term mobility on TB dynamics

and control. A situation that is common in regions experiencing extreme levels of

social, economic and health disparities. Using a simplified framework, a two-patch

system, that captures, in a rather ‘dramatic’ way the dynamics between two close and

yet, distinct worlds (the world of the haves and the have nots) suggests the existence

of possible mechanisms, driven by social and economical factors, impacting disease

spread. Moreover, it is important to mention that since the main objective of this

study was to stress the impact of disparities, as a consequence, the highlighted results

(via the simulation) come from simplified extreme scenarios.

As expected, the model analysis suggests that the dynamics of TB depend on the

basic reproduction number (R0), which in turn is the function of model parameters

that includes the direct first transmission rate for a single patch system and residence

times for a two patch system. The simulations of specific extreme scenarios suggest

that short term mobility between heterogeneous patches does not always contributes

to overall increases in TB prevalence, to the contrary, in some cases it could be a
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solution. The results show that when risk is considered only in terms of exogenous

reinfection, the global TB prevalence remains almost unchanged, compared to the ef-

fect of direct first transmission. In the case of a high risk direct first time transmission,

it is observed that mobile populations may pose detrimental effects on the prevalence

levels in both environments (patches) under certain mobility patterns. Simulations

show that when individuals from the risky population spend on average less than 25%

of their time in the safer patch the overall prevalence reaches its maximum. However,

if they spend more (p12 > 25%), the overall prevalence decreases. Further, in the

absence of exogenous reinfections, the model is robust and exhibits a sharp thresh-

old; the disease dies out or persists based on whether or not the basic R0 is below

or above unity, respectively. Although, the role of exogenous reinfection seems not

that relevant on overall prevalence when mobility is included, the fact remains that

such mode of transmission increases the risk that come from large displacement of

individuals, due to catastrophes or conflict, to TB-free areas.

Hence, policies that do not account for population heterogeneity and regional-

and community-specific factors are unlikely to be effective. It is clear that without

a basic understanding of the attributes of the communities in question, it is almost

impossible to successfully implement intervention programs capable of lowering rein-

fection rates for multiple pathways while at the same time maintain a low number of

drug resistant cases. It is paramount for intervention programs to educate the affected

populations and their government officials on the benefits, factors, and cost associated

with population-based TB prevention and control programs in order to make them

sustainable in the long run. At the same time, intervention must account for the

risks inherent with high levels of migration as well as with local and regional mobility

patterns between areas defined by high heterogeneity in TB risk and prevalence.

The ability to interpret information regarding the local origin of mobile individuals
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accurately, would facilitate prompt responses in the face of initiation of an epidemic

or ideally help in the creation of a disease resilient community. In addition, during the

development and implementation of training and educational programs the necessity

to avoid stigmatizing and further marginalization of groups that may have already

experienced some kind of discrimination is essential, since it prevents integration,

reduces compliance and promotes isolation (Gushulak and MacPherson, 2000b). A

situation that cannot be ignored in today’s world where millions of refugees have been

dislocated and generated new migration patterns, as a result of armed conflicts. Fail-

ure to adequately incorporate and address these challenges may result in considerable

delays and consequently promotes the emergence of new diseases and the reemergence

of disease thought to be under control. As noted in (Feng et al., 2000), ignoring fac-

tors like exogenous reinfections, that is, establishing policies that focus exclusively on

the reproductive number R0, would amount to ignoring the role of dramatic changes

in initial conditions, now more common than before, due to the displacement of large

groups of individuals, the result of catastrophes and conflict.

5.5 Conclusions

This modeling study highlights critical social behaviors mechanisms that can fa-

cilitate or eliminate Tuberculosis infection in vulnerable populations. In particular,

it highlights the importance that factors like mobility, density and dominant modes

of transmission play an important role in the contagion process of Tuberculosis. The

results suggest that allowing infected individuals to move from high to low TB preva-

lence areas (where the sharing of treatment and isolation facilities is possible) may

lead to a reduction in the total TB prevalence in the overall (two-patch) population

under certain conditions. More specifically, an increase in mobility between the two

distinct risks regions produces a reduction on TB prevalence in the high risk patch
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(and a slightly increase in the low risk patch), while decreasing the total number

of infected individuals in both patches. Furthermore, when population size hetero-

geneity between patch 1 and patch 2 is large (N1 >> N2), mobility to the low risk

patch might provide global benefits in terms of low overall prevalence. Moreover,

the higher the ratio in population sizes between distinct risk patches, the larger the

benefit (under the same “traveling” pattern).

Finally, direct first time transmission seems to play a central role on TB dynamics

when mobility is incorporated. Nonetheless, mobility also reduces the overall preva-

lence, when exogenous reinfection is the dominant transmission pathway, however,

its impact on the prevalence is relatively small compared to the impact of direct first

time transmission.
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Chapter 6

DISCUSSION

Disease outbreaks, ranking from locally restricted to global pandemics, have been

reshaping the course of human society, even before humans became the dominant

species in this planet (Moodie, 1918). Due to their unquantifiable impact on both

economic and human capital, events such the black plague, the 1918 Spanish Flu

pandemic, and the recent Ebola outbreak are a few of the most devastating events in

history; based on their elevated numbers of disease induced deaths. Nonetheless, there

are many other events that without a doubt have been affecting specific communities

for decades and even centuries. Everything would point that seasonal epidemics in

a way are more impactful; due to the constant shock that they provide to already

burdened communities. Recent research points to the possible creation of poverty

traps as a result of these disease shocks. (Bonds et al., 2010) used a deterministic

approach in which they are able to analyze the impact of these outbreaks in the

economy of the region. Their results suggest that once a community fells into a

poverty tramp, the constant shocks of disease outbreaks make it almost impossible

to escape. Making disease burden one of the most complex and thus intractable

problems today.

As stated by (Perrings, 1991),

Many of the most intractable environmental problems are those in which

the use of environmental resources in novel ways has effects that are highly

uncertain in both their spread and duration. The greater the uncertainty

of the effects of technologically innovative use of the environmental re-
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sources, the greater is the difficulty in evaluating associated environmen-

tal damage or the marginal social cost. The wider and more durable the

environmental effects of economic activities are, the less is the scope of a

market solution involving the allocation of property rights. Problems of

uncertain environmental effects that may be global in spread or may en-

dure for generations require responses that go beyond existing evaluation

techniques.

It seems as if whenever a new solution is developed, the precautionary principle is not

taken into account. In essence, sequential decision making under uncertainty, usually

takes a cautious approach at first but then it may be relaxed as data sets are enriched

by experience; even when the probability of distant but potentially catastrophic dam-

age is admitted, but thought to be very low.

Similarly, Simon Levin in his address as the 2004 recipient of the Heineken award,

mentions social norms as a possible source of uncertainty not only in the use of

resources but in the way groups behave,

“A great challenge before us is thus to understand the dynamics of social

norms, how they arise, how they spread, how they are sustained and how

they change. Models of these dynamics have many of the same features

as models of epidemic spread, no great surprise, since many aspects of

culture have the characteristics of being social diseases. 1998 Heineken

award winner Paul Ehrlich and I have been directing our collective ener-

gies to this problem, convinced that it is as important to understand the

dynamics of the social systems in which we live as it is to understand the

ecological systems themselves. Understanding the links between individ-

ual behavior and societal consequences, and characterizing the networks
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of interaction and influence, create the potential to change the reward

structures so that the social costs of individual actions are brought down

to the level of individual payoffs. It is a daunting task, both because of

the amount we still must learn, and because of the ethical dilemmas that

are implicit in any form of social engineering. But it is a task from which

we cannot shrink, lest we squander the last of our diminishing resources.”

Consequently, any planning for enhancing community disease response, regardless

of the context, depends greatly in a highly heterogeneous process determined by the

involvement of individuals of such communities at all levels. It is clear that their

response to epidemic events do change the impact it has on the community and pub-

lic health infrastructure, as well as, its resources aimed at controlling such epidemic

events. Therefore, the development of disease resilience communities requires a col-

laborative and transparent process in which the tools for achieving disease resilience

are easily available for the individuals at the lower and most affected levels. In this

way, policies aimed at improving disease resilience can be customized to include in-

terventions that could impact the underlying vulnerability drivers specific to a region

or community.

In the case of many infectious diseases, the global aim at urbanization has in

part collaborated with the explosion of outbreaks across the globe. In consequence,

the need to have responsible urbanization, improved infrastructure, and appropriate

planning is essential in these urban areas. In addition, efficient policies that can take

into account a prompt response to disease shocks and incorporate the corresponding

health care infrastructure are desperately needed. Furthermore, the attributes of

the community associated with factors that could improve sanitation are likely to

be influential in reducing disease vulnerability dynamics of the community. Keep

in mind that these factors could include hard, soft infrastructure and environmental
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management.

Stages or components of disease vulnerability in a given community or the risk

of infection inherent to its inhabitants needs to be determined in the nearby future.

Some of the community components believed to be important are:

• Livelihood: inherent risk associated with existing abiotic and biotic factors. In

the case of vector borne diseases, this could be the impact caused by location

and the ability of the vectors and disease to efficiently complete their live cycle.

• Well-being: baseline statistics like nutrition, physical and mental health levels.

In the case of TB, nutrition seems to be an important once since this could cause

a negative impact in the immune response and thus facilitates progression from

latent to active TB.

• Self-protection: community self organization to prevent infections. This could

be measured as locally organized cleaning campaigns targeting nesting sites,

as well as the use of repellents and bed nets in the case of many vector borne

diseases.

• Social Protection: corresponding violence levels and local perception of safety

in each community.

• Governance: implementation and efficacy of control measures and the mainte-

nance of hard public health infrastructure.

While these are some factors that might have a direct impact on the risk of

infection, there are others that need to be investigated and then incorporated to the

Lagrangian modeling framework and estimate a more realistic impact of factors like

short-term mobility, the existing of contrasting risk communities, immunity or more

specific cross immunity from past outbreaks, and population size on past and recent
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epidemic outbreaks. At the same time, we are left puzzled by the methodology needed

in order to quantify the impact of these mechanisms or factors. How do we assess the

risk of infection in a given community? What kind of data do we need? What would

be some setbacks from this methods? Most importantly, what will be the impact of

these results? Would they be used as a reactionary policy or a preventive one?

In conclusion, as it was mentioned in (Moreno et al., 2017b), surveillance measures

must be improved...

Certainly, the use of dramatic measures to limit the spread of diseases like

SARS, Influenza or Ebola [(Chowell et al., 2003a; Herrera-Valdez et al.,

2011; Chowell et al., 2015)], as well as the rise of vector born diseases like

Dengue and Zika are not uncommon, and the dramatic implications that

some measures have had on local and global economies. The question

remains, what can we do to mitigate or limit the spread of disease, par-

ticularly emergent diseases without disrupting central components? Dis-

cussions on these issues are recurrent (Fenichel et al., 2011; Morin et al.,

2013), most intensely in the context of SARS, Influenza, Ebola and Zika,

in the last decade or so. The vulnerability of world societies is directly

linked to the lack of action in addressing the challenges faced by the weak-

est links in the system must be accepted and acted on by the world com-

munity. We need global investments in communities and nations where

health disparities and lack of resources are the norm. We must invest in

research and surveillance within clearly identified world hot spots, where

the emergence of new disease are most likely to emerge, and we must do so

with the involvement, at all levels, of the affected communities (Perrings

et al., 2014; Castillo-Chavez et al., 2015).
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Chapter 7

CONCLUSION

While this study focuses on the dynamics of a single outbreak, the modeling frame-

work can be used to study long-term dynamics when the mobility patterns can be

captured effectively by P. A two-patch model where host-mobility is modeled us-

ing a Lagrangian approach is used to help understand the role of host-movement

on the transmission dynamics of ZIKV and TB. The patches were defined to be as

distinct as they could be, hoping that simulations, in this simplified system, could

capture some insight on the transmission dynamics of ZIKV and TB in the pres-

ence of extreme health disparities within neighboring communities or within urban

centers. This framework can be used to study the dynamics of vector born diseases

within a collection of neighboring communities or neighborhoods experiencing multi-

ple levels of health disparities and diverse connectivity mobility structures (Bichara

and Castillo-Chavez, 2016). The study of the role of mobility at larger scales can be

best captured using question-specific related models that account for the possibility

of long-term mobility (see for example (Herrera-Valdez et al., 2011; Chowell et al.,

2003b; Baroyan et al., 1971; Rvachev and Longini Jr, 1985; Elveback et al., 1976;

Banks and Castillo-Chavez, 2003; Khan et al., 2009)).

The incorporation of a Lagrangian modeling approach to study epidemic outbreaks

makes it possible to use measurable parameters like risk of infection (β̂), which affect

individuals differently depending on patch-residency and mobility patterns (residency

times). As expected, the impact of mobility on the final epidemic size depends on

the local risk of infection and population size. Moreover, it was also determined
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that there are certain cases in which mobility could be detrimental, highlighting the

necessity to reduce health disparities in vulnerable communities. On the other hand,

mobility from high to low risk patches can reduce or increase the total final epidemic

size; under such conditions, mobility could be used as a strategy to ameliorate the

impact of disease outbreaks. Furthermore, population size matters; differences in

population density (size) were also shown to be capable of generating reductions on

the total final epidemic size within some mobility regimes. Nonetheless, examples

when R0i < 1 with mobility incapable of reducing the total final epidemic size under

no differences in patch density (here measured by total population size in each patch,

both assumed to have roughly the same area) were also identified.

In this dissertation, the role of heterogeneity as captured in a Lagrangian setting

was explored. While this modeling perspective simplifies the modeling of communi-

cable and vector born diseases, it is not sufficient to divide a population in just two

groups (high and low risk), in order to capture the levels of heterogeneity observed

in real societies. There is indeed a gradient of risks that must be considered, but

the question then becomes: how many levels will be enough? A question that has

no simple answers albeit the right level of aggregation to capture the dynamics of

realistic systems must be addressed when the goal is to implement policies generated

by these models in realistic settings.
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