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ABSTRACT

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to

convert chemical energy into electrical energy. This process can not only treat wastewater

but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like

anode potential and pH play important role in the MFC operation and the focus of this

dissertation are pH and potential control problems.

Most of the adaptive pH control solutions use signal-based-norms as cost functions,

but their strong dependency on excitation signal properties makes them sensitive to noise,

disturbances, and modeling errors. System-based-norm(H∞) cost functions provide a viable

alternative for the adaptation as they are less susceptible to the signal properties. Two

variants of adaptive pH control algorithms that use approximate H∞ frequency loop-shaping

(FLS) cost metrics are proposed in this dissertation.

A pH neutralization process with high retention time is studied using lab scale

experiments and the experimental setup is used as a basis to develop a first-principles

model. The analysis of such a model shows that only the gain of the process varies

significantly with operating conditions and with buffering capacity. Consequently, the

adaptation of the controller gain (single parameter) is sufficient to compensate for the

variation in process gain and the focus of the proposed algorithms is the adaptation of the

PI controller gain. Computer simulations and lab-scale experiments are used to study

tracking, disturbance rejection and adaptation performance of these algorithms under

different excitation conditions. Results show the proposed algorithm produces optimum

that is less dependent on the excitation as compared to a commonly used L2 cost function

based algorithm and tracks set-points reasonably well under practical conditions. The

proposed direct pH control algorithm is integrated with the combined activated sludge

anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its

performance.

Analytical grade potentiostats are commonly used in MFC potential control, but, their
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high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation

proposes an alternate low-cost(≈ $200) portable potentiostat solution. This potentiostat

is tested using a ferricyanide reactor and results show it produces performance close to an

analytical grade potentiostat.
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Chapter 1

INTRODUCTION

1.1 Microbial fuel cells

Global warming has become an existential crisis for humanity and the usage of fossil

fuel has accelerated this crisis. To solve this crisis it is important to decrease the carbon

footprint by moving away from fossil fuels to renewable energy sources. Different forms

of renewable energy sources like solar, wind and bio-energy fuels have been explored as a

potential replacement for fossil fuels. One such source is the organic waste like activated

sludge, black water(BW) and livestock manure. Anaerobic digestion is widely used to break

organic waste to produce CH4, that can be used to generate heat or electricity[43]. Microbial

fuel cells (MFC) are one such anaerobic digestion mechanism that converts bio-fuel(like

wastewater) into energy source.

In MFC, anaerobic digestion converts chemical energy present in the organic matter into

electric current with the help of microorganisms called anode-respiring bacteria (ARB)[36].

The ARB form a biofilm that enables electron transfer to the anode from organic materials,

such as glucose, ethanol, acetic acid, wastewater, animal wastes, and others during

oxidation. These electrons pass through an external circuit and at the cathode, they reduce

O2. The type of oxygen reduction reaction depends upon the cathode material and catalysts.

To maximize electricity production metal catalysts can be used, where 4e− reduction of O2

of produces H2O. However, metal catalysts are expensive. Alternatively, relatively less

expensive electrodes like carbon cathodes can be used to carry out 2e− reduction of O2 to

produce a useful byproduct H2O2.

O2 + 2e− + 2H+ → H2O2 (1.1)

This 2e− reaction produces less current as compared to 4e− however it requires relatively
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less expensive material and produces useful byproduct H2O2.

The strong oxidizing properties of H2O2 makes it a very useful chemical in the

wastewater treatment process as it is can be readily used in the tertiary treatment and

disinfection of the treated water. This property makes it a more useful MFC output in the

wastewater treatment process as compared to other outputs like electricity or H2 gas. Also,

this H2O2 production method is less toxic as compared to traditional H2O2 production

methods and it also saves chemical transportation costs.

There is a growing interest in the use of MFC with the domestic wastewater as a fuel.

This setup not only helps in the treatment of the wastewater but also produces electricity.

Papers [69][38],[37], [39] and [13] provide a good review on MFC with the wastewater as fuel.

Utilization of MFC in the production of hydrogen peroxide is discussed in [16][51][5][12][44]

and a schematic diagram of one such MFC with hydrogen peroxide production is shown in

Fig. 1.1.

Figure 1.1: Schematic diagram of an MFC for hydrogen peroxide generation

The oxidation reaction carried by ARB in an MFC produce current and releases [H+]

into the anode. This results in a decrease in the anode pH, which in turn inhibits the

performance of an MFC [60]. So to improve the efficiency of an MFC anode operation, it

is very important to control pH in the anode at the desired set-point. The effect of pH on
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an MFC operation and the desired optimal pH values are described in [49], [52], [40],[41]

and[48]. Similarly, electrode potentials also play an important role in the production of

hydrogen peroxide in an MFC [51]. This work focus on the study of pH and potential control

problems. Introduction of these control problems is discussed in the following sections.

1.2 pH control

The pH control plays an important role in various industrial processes. Some of its

applications include wastewater treatment, biotechnology processes, and electrochemical

cells. Because of its highly nonlinear nature and its dependence on exogenous signals (e.g.,

time-varying buffer concentrations), pH control of a wastewater treatment process is a

very challenging process control problem. These characteristics also make it a benchmark

problem to test nonlinear controllers [2].

The nonlinear nature of the process implies that linear controllers are ineffective to

control pH over a wide range and the time-varying nature of certain problems make it futile

to control even around a given pH value [32][33]. There are different versions of nonlinear

controllers proposed, for example [20], [34], [1], [17] and [28], to name a few. However, it is

shown in [28] the nonlinear control algorithms fail to compensate the time-varying behavior

(buffering capacity) and thereby making adaptive control the best-suited solution.

Adaptive control is an extensively researched area and there are many adaptive control

schemes studied in the literature. Some of them are gain scheduling and multi-model

adaptive control [58][4][29][30][3], model reference adaptive control and indirect adaptive

control, e.g., [54], [31].

Different versions of adaptive control schemes have been proposed for pH control and

we briefly discuss the more relevant ones below. [19] considers the usage of gain-scheduling,

adaptive control for the bio-reactors, in which controllers are scheduled using pH and carbon

dioxide measurements. A nonlinear adaptive pH control method is described in [28], that

uses a nonlinear model of the process and estimate of the variation of buffer flow rate

from the online data to perform feedback linearization. [47] and [9] discuss the usage of
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indirect multi-model adaptive control and indirect adaptive schemes. These methods collect

plant input-output data during closed-loop operation, over an interval of the open-loop time

constant, to fit a linear model and use the linear model to update controller parameters.

An improved version of multi-model adaptive control for the noisy environment is presented

in [8]. All these versions either rely on a nonlinear model with a parameter estimator or a

local linear model estimated using online data. They all use some version of signal-based

adaptation cost metric derived from the online data for the estimation or selection of the

controller parameters and a general form of such metric can be written as follows

θ∗ = argmin
θ
J(C(θ);x) (1.2)

Where C(θ) denotes controller with parameters θ, x denotes measured signals and J(C(θ);x)

is the cost function used in the adaptation. Typical cost functions are the mean square

error or exponentially weighted mean square error, where the error represents the difference

between expected and actual(ex. predication error, control error etc.). Optimization of these

cost functions produce optimal performance if the signals are persistently exciting and there

is no noise or disturbances. However, perturbations such as sensor noise and disturbances

result in a cost function whose minimum can be significantly different depending on the

signals at hand (e.g., see [65]). In such a case, the result is often poor performance or

adaptation bursts since the parameter adaptation cannot keep up with the variation of

the disturbances. Furthermore, the worst-case performance depends on the parametric

uncertainty and the problem is not easily detected with a “noisy simulation”.

In an effort to design an adaptation cost functional that provides a better description of

our control objective, hence resulting in a weaker dependence on signal properties, we

propose the approximation of the norm of an error system(not signal). Our ultimate

objective is to achieve comparable performance to the off-line designs under reasonable

practical conditions. Although we cannot expect that such a goal is achievable without

some constraints, e.g., on excitation and operating conditions, we do allow for the possibility

of setting up monitoring conditions under which good performance can be expected, or,
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alternatively, conditions offering no guarantees and which may require the use of a “safe”

controller. A key instrument in our effort is the use of normalized metrics that describe the

gain of a suitable error operator, instead of the more customary signal errors that are often

used in adaptive control and that are prone to errors under weak excitation conditions. A

general description of one such cost functional can be broadly described as follows

θ∗ = argmin
θ

max
x

J(C(θ);x) (1.3)

The above structure allows us to describe cost functional in terms of the worst-case behavior

and the selection of the controller parameters that produces minimum worst-case behavior.

Motivated by the results of the H∞ robust control theory, we consider the decomposition

of the cost function in terms of the frequency components of the signal x:

θ∗ = argmin
θ

max
j
J(C(θ);xj) (1.4)

where now xj represents the energy of measured signals at different frequency directions

and J(·) is a system norm. The former can be achieved under a linearity assumption by

processing the input and output signals through a “filter bank” (FB), an example of which

is shown in Fig. 1.2. Thus, the proposed approach enables the approximation of a H∞

cost functional using a single data sequence. In this manner, the signal decomposition may

only approximate its frequency content, but it is exact at all times and does not suffer the

usual windowing effects of Fast Fourier transforms (FFT). On the other hand, a system

norm computation would require the normalization of the system output RMS power by

the corresponding input power, something that is achievable by requiring excitation that is

persistent and of sufficient magnitude. This is not a major problem as excitation is often

present in practical problems, or can be requested for short time periods, and can at least

be verified by a monitoring program before adapting the controller parameters. The same

monitoring logic can also limit the use of excitation directions to the ones that contain

sufficient excitation, e.g., through the use of an adaptation dead-zone. It is our view that

the critical part of the adaptive control is the ability of the adaptation to take advantage
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Figure 1.2: Bode diagram of a filter bank

of short or occasional excitation periods in the most efficient way, instead of attempting to

operate with the least assumptions but opening the door to undesirable nonlinear behavior

like bursting.

Interest in multi-model adaptive control (MMAC) has gained traction significantly in

recent past. In this scheme, the controller used in the closed-loop system is selected from

a bank of controllers based on metrics derived from online data. In a brief review, the

theoretical framework of the data-driven MMAC algorithms seeking robust stability and

safe switching is discussed in [58], [10], [11], [53]. A multi-variable MMAC algorithm using

an estimator and a controller that can tolerate structural uncertainties is discussed in [59].

The application of MMAC in pH control is discussed in [9] and refinement of this algorithm

for a noisy environment is discussed in [8]. All these MMAC methods use error signals that

represent prediction or control error or their combination, to compute the metric used in

the controller switching and their cost functionals are signal-norms (L2 or L∞) of the error
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signals. This dissertation discusses the development of an alternative to the usual update

laws that is based on the approximation of system norms as cost functionals, instead of

signal norms.

Taking motivation form the above-described system norm metric (Eq. 1.4), H∞ metric

derived from the on-line data is used in the selection of the controller from a bank of

controllers Ci and it can be written in a general form as follows

C∗ = argmin
Ci

max
j
J(Ci;xj) (1.5)

where now xj represents the energy of measured signals at different frequency directions

and J(·) is a system norm. Frequency decomposition of signals can be done similar to the

Eq. 1.4 using filter banks.

The motivating application for this work is the development of adaptive pH control

algorithms that can be readily extended to pH control of microbial fuel cell (MFC) anode.

The experimental setup with high retention time and with variable buffer flow mimics

the MFC anode, therefore the adaptive control algorithms developed for this reactor can be

readily extended to the MFC anode case. In our recent papers [32] and [33], it was shown for

a given practical problem, essentially only the gain of the system changes with the operating

point and that nonlinear/adaptive control is necessary to control pH. One standard adaptive

control method used in the industry is gain-scheduling, in which controllers are scheduled

based on a measured signal. In the MFC problem, pH is the only available measurement but

the process gain depends also on the buffering capacity of the system. As a result, scheduling

based only on the pH measurement is not sufficient to compensate for time-variations in the

buffers. An example of such a gain-scheduling scheme failure using the model in Chapter 2

with variation in buffing capacity is shown in Fig. 1.3

Controllers with proportional-integral-derivative (PID) structure are commonly used

in the process control industry. PID tuning is a very well researched topic and some of

commonly used methods are discussed in [6] [7] [50]. There is a large number of publications

with PID tuning methods for a variety of academic and industrial applications. Some of
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(a)

(b)

Figure 1.3: Closed-loop results for gain scheduling controller (a)input-output plot (b)
controller gain plot. Here, there is a changing buffering capacity that causes the process
gain to increase without a reduction of the controller gain. The instability is due to the
discrete implementation of the high gain controller. This scenario is practically meaningful
since a conservative controller tuning to stabilize all possible plants would have very sluggish
response at the rest of the operating conditions.
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them use lower order approximation of plant model like [68] [21] and others solve PID

tuning as an optimization problem with a time or frequency domain performance measure

[27] [45]. Even though low dimensionality of the PID tuning makes it a tractable problem,

because of vast applications it is still a very actively researched field with a constant stream

of publications. For this work we have chosen PID tuning using frequency loop shaping

(FLS) as it is well defined in terms of robust control and also can be easily extended for the

online adaptation of PID parameters.

Over the past two decades, we have employed the FLS approach for PID controller

tuning with excellent results in a variety of practical problems. In a PID FLS parameter

tuning, control systems specifications are described in terms of a target loop and PID

parameters are tuned by minimizing a H∞ distance measure(RSC) between the actual and

the target loop. Examples of offline FLS PID tuning for continuous time systems using

this distance measure is described in [62] [23] [25][22] [24] and for discrete-time systems

is discussed in [56]. Computation of this distance measure using online data for the PID

parameter adaptation is described in [67] and for the performance monitoring is discussed

in [61]. The adaptive control algorithms described in this dissertation use RSC computed

from the online data to tune PI controller parameters used in pH control. Outline of pH

control part of this dissertation is described below.

First, the pH neutralization process used in the lab scale experiment is modeled using

reaction invariants and the model is analyzed thoroughly at different pH operating points

and including variation in the buffer flows. It is shown that only the gain of the process

changes significantly and it is only necessary to adapt the controller gain in order to

maintain good closed-loop performance throughout the entire operating range. Second, an

RSC-based direct adaptive control algorithm is proposed for pH control. Test results from

computer simulations and experimental evaluation under ”sufficiently excitating inputs”

are presented. Advantages of system-norm based adaptation over commonly used L2

signal based adaption is demonstrated for the pH control using results from the computer
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simulations. Third, a so-called “multi-model adaptive control” (MMAC) variant of the

adaptive controller is proposed. In this, the same RSC metric is optimized but the controller

is selected from a discrete set of controllers. The test results from computer simulations

indicate that reasonable and comparable performance is obtained, as long as the set of

controllers is sufficiently dense to contain an appropriate controller for all possible gains of

the plant. Fourth, application of the proposed pH control solution for a CASADM model

([70]) is carried out using computer simulations and it is shown pH control improves the

efficiency of the MFC operation. Finally, a summary of observations and concluding remarks

on the industrial implementation of adaptive pH control is presented.

1.3 Potential control

The anode potential plays an important role in the operation of an MFC [16] [51]

and a potentiostat is a device that helps in controlling electrode potentials at their

desired values. Commercially available analytical grade potentiostats are expensive with

the cost of one unit around $6000. Analytical grade potentiostats are widely used in

research labs and offer excellent control performance, which is often an “overkill” for an

industrial application. They are rarely used in the field because the practical limitations

on performance (noise, disturbances) do not justify their high cost and large size. In the

recent past, some researchers have proposed low-cost potentiostat alternatives [15] and

[46]. These potentiostats use op-amps to drive potentials of the cell and use analog to

digital (A/D) and digital to analog (D/A) channels of an embedded microcontroller to

measure or to adjust set-points. Some drawbacks of these potentiostat designs are their

low current rating and low measured signal accuracy. In this work, we developed a low-cost

potentiostat solution that can deliver high current and can read electrode potentials with

higher accuracy as compared to other low-cost solutions. We tested our potentiostat and

compared it against an analytical grade potentiostat (BioLogic Science Instruments-VMP3).

It is shown the proposed potentiostat results in a performance comparable to BioLogic

Science Instruments-VMP3 potentiostat. It is further tested with a 1 ohm resistor and it is
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shown potentiostat follows voltage set-points with a current delivery of 1 amp. Construction

and implementation details of this potentiostat along with results from experimental testing

are presented in Chapter 7.
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Chapter 2

ANALYSIS OF PH NEUTRALIZATION PROCESS

This chapter focuses on the construction of a first-principles model(mass balance and charge

balance) of the pH neutralization process that represents the lab experimental setup. It also

presents an analysis of this model, where the nonlinear model is linearized around different

operating points(pH) and for variations in buffering capacity.

2.1 Reaction Invariant Model

Figure 2.1: Schematic diagram of pH neutralization process CSTR

Consider a 500mL-continuous stirred tank reactor (CSTR) with inlet streams of strong

acid (1M HCl), weak acid 1( 100mM H2CO3), weak acid 2 (100mM H3PO4 ) and strong

base (1M NaOH) and q1,q2,q3 and q4 being their flow rates respectively. The schematic

12



diagram of the reactor is shown in Fig. 2.1 . The combination of strong acid, weak acid 1

and weak acid 2 simulates a waste water and flow rate of the strong base is manipulated

to control the pH of the liquid in the reactor. A variation of the buffering capacity of the

wastewater is simulated by varying flow rates of the weak acids. The volume of the liquid

in the reactor and its temperature are kept constant. The pH of the liquid in the reactor

is measured directly by a pH probe inserted into the reactor. It is assumed that perfect

mixing occurs in the reactor and ions are completely soluble. The goal of pH control is to

regulate pH of the liquid in the reactor by manipulating the base flow rate. The reaction

invariant model is developed using reaction invariants of the reversible reaction components

The reversible reactions in the CSTR are listed below

H2CO3 ↔ H+ +HCO−3 (2.1)

HCO−3 ↔ H+ + CO2−
3 (2.2)

H3PO4 ↔ H+ +H2PO
−
4 (2.3)

H2PO
−
4 ↔ H+ +HPO2−

4 (2.4)

HPO2−
4 ↔ H+ + PO3−

4 (2.5)

H2O ↔ H+ +OH− (2.6)

Reaction constants of the above reversible reactions are stated below

Ka1 =
[HCO−3 ][H+]

[H2CO3]
(2.7)

Ka2 =
[CO2−

3 ][H+]

[HCO−3 ]
(2.8)

Ka3 =
[H2PO

−
4 ][H+]

[H3PO4]
(2.9)

Ka4 =
[HPO2−

4 ][H+]

[H2PO
−
4 ]

(2.10)

Ka5 =
[PO3−

4 ][H+]

[HPO2−
4 ]

(2.11)

Kw = [H+][OH−] (2.12)

13



The pH of the solution is the negative logarithm of the hydrogen ion concentration:

pH = −log10([H+]) (2.13)

The chemical equilibrium is modeled based on the concept of reaction invariants [26]

[42][28]. Three reaction invariants (Wa is a charge-related quantity, Wb refers to the

concentration of carbonate ions and, Wc refers to the concentration of phosphate ions)

are involved for each stream (i = 1 to 4) in this system. The analytic expressions of the

reaction invariants are listed below

Wai = [H+]i − [OH−]i − [HCO−3 ]− 2[CO2−
3 ]

−[H2PO
−
4 ]− 2[HPO2−

4 ]− 3[PO3−
4 ] (2.14)

Wbi = [H2CO3] + [HCO−3 ] + [CO2−
3 ] (2.15)

Wci = [H3PO4] + [H2PO
−
4 ] + [HPO2−

4 ]

+[PO3−
4 ] (2.16)

The relationship between hydrogen ion concentration and reaction invariants is given as

follows:

Wci

Ka3
[H+]

+ 2Ka3Ka4
[H+]2

+ 3Ka3Ka4Ka5
[H+]3

1 + Ka3
[H+]

+ Ka3Ka4
[H+]2

+ Ka3Ka4Ka5
[H+]3

+Wbi

Ka1
[H+]

+ 2∗Ka1Ka2
[H+]2

1 + Ka1
[H+]

+ Ka1Ka2
[H+]2

+Wai +
Kw

[H+]
− [H+] = 0 (2.17)

A dynamic model for the pH neutralization process can be derived from the component

material balance for the reaction invariants (Wa5, Wb5 and Wc5) and the algebraic equation

relating the pH and reaction invariants. The nonlinear process model can be described by

mass- and charge-balance equations (Eq. 2.18 - 2.20) and algebraic equations (Eq. 2.17
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Table 2.1: Model parameters

Symbol Value Symbol Value

Ka1 4.47× 10−7 Wa3 −0.181M

Ka2 5.62× 10−11 Wa4 −1M

Ka3 0.0072 Wb1 0M

Ka4 1.6982× 10−7 Wb2 0.1M

Ka5 2.6915× 10−12 Wb3 0M

q1 2.45ml/min Wb4 0M

q2 2.45ml/min Wc1 0M

q3 2.4051ml/min Wc2 0M

q4 2.4051ml/min Wc3 0.1M

Wa1 1M Wc4 0M

Wa2 −0.1M V 500 ml

and Eq.2.13 ).

dWa5

dt
=

1

V
[q1(Wa1 −Wa5) + q2(Wa2 −Wa5)

+q3(Wa3 −Wa5) + +q4(Wa4 −Wa5)] (2.18)

dWb5

dt
=

1

V
[q1(Wb1 −Wb5) + q2(Wb2 −Wb5)

+q3(Wb3 −Wb5) + +q4(Wb4 −Wb5)] (2.19)

dWc5

dt
=

1

V
[q1(Wc1 −Wc5) + q2(Wc2 −Wc5)

+q3(Wc3 −Wc5) + +q4(Wc4 −Wc5)] (2.20)

Nominal operating conditions of the plant are listed in Table 2.1 and a delay of 10

seconds is introduced to account for transportation and sensor quantization. In lab setup,

a peristaltic pump is used to pump base into the reactor and its flow rate is controlled by

varying voltage across the control terminal. The pump is interfaced with the microcontroller

using a digital to analog converter (DAC). The DAC converts digital signal between

1-4095(12-bit resolution) from the microcontroller to 0-5V signal. The relation between
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the base stream flow rate and DAC value is described by the following equation.

Baseflow(mL/min) = 7.45× DACV alue

4095
(2.21)

Hereafter, plant input means DAC value and plant output means the pH of the liquid in

the reactor. Analysis of this model for pH control is discussed in the next section.

2.2 Analysis of reaction invariant model

To analyze the nonlinear model for pH control it is linearized at different operating

pH set points and buffer flow combinations. Various buffer flow rate combinations used to

simulate variation in buffering capacity are listed below.

� Case 1: q2 = 2.5mL/min and q3 = 2.5mL/min

� Case 2: q2 = 0mL/min and q3 = 2.5mL/min

� Case 3: q2 = 2.5mlL/min and q3 = 0mL/min

� Case 4: q2 = 0mL/min and q3 = 0mL/min

Titration curves of all above-listed cases are shown in Fig. 2.2 and it can be seen from

these plots titration curve becomes steep with the decrease in the buffer. For example

titration curve for Case 4 is steeper than titration curve for Case 1. This variation in the

steepness is significant with the change in the buffer flow, which results in the variation in

the gain of the system.

The nonlinear system described in Eq. 2.20 is not completely observable (similar to the

nonlinear model described in [28]). When we linearize the nonlinear model the minimal

realization is just a first order, to which we add a delay to represent computer sampling

and sensor delay and the apparent delay in the pump response. The transfer function of

the linearized plants can be represented in a generalized form as below

P (s) =
Kg

τs+ 1
e(−s/6) (2.22)
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Figure 2.2: Titration curves of all buffer flow cases

where Kg is the gain and τ is the time constant of the linearized plant, respectively. The

values of the gain of the linearized plant for all cases are listed in Table 2.2 and the values

of the time constants are listed in the Table 2.3. The gain of linearized plants is shown in

Fig. 2.3 and the time constant is shown in Fig. 2.4, visualizing their variation with pH and

buffering capacity.

The gain values of the linearized plants are directly related to the slope of the titration

curve. It can be seen from Table 2.2 and Fig. 2.3, that the gain of the linearized plant is a

function of the operating pH and the buffering capacity of the liquid in the reactor. The gain

variation with respect to operating pH and buffering capacity is large as expected from the

titration curve plots. On the other hand, the time constant of the plant is directly related

to the retention time. The variation in the time constant is minimal as compared to the

process gain and the minimum time constant of all linearizations is 47 min. Consequently,

for a controller design with the specification of settling time of 10 min or lower, the variation

in the time constant has little impact on the loop performance and can be neglected in the

formulation of the adaptive control problem.

This expectation is also supported by the comparison of the transfer functions of the
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Table 2.2: Gain Kg of the linearized plants

Gain

pH Case 1 Case 2 Case 3 Case 4

3.0 0.0193 0.0213 0.0994 0.1526

4.0 0.1282 0.1636 0.4123 1.5210

5.0 0.0498 0.1610 0.0704 35.9761

6.0 0.0103 0.0263 0.0128 69.6918

7.0 0.0075 0.0138 0.0174 69.7730

8.0 0.0392 0.0545 0.1095 69.6889

9.0 0.0484 0.3299 0.0564 35.9785

10. 0.0115 0.0994 0.0105 1.5188

11.0 0.0069 0.0170 0.0191 0.1468

12.0 0.0044 0.0084 0.0098 0.0098

Table 2.3: Time constants τ of the linearized plant

Time Constant

pH Case 1 Case 2 Case 3 Case 4

3.0 53.1465 67.9129 71.0399 102.1428

4.0 52.9397 67.6015 70.9637 102.0510

5.0 52.8431 67.5333 70.8576 102.0418

6.0 52.2959 67.2452 70.1771 102.0409

7.0 50.9721 66.1652 68.9114 102.0408

8.0 50.3507 65.4839 68.5080 102.0407

9.0 50.2038 65.3668 68.3452 102.0398

10.0 49.7766 65.2938 67.6048 102.0306

11.0 48.9110 64.8451 66.4113 101.9388

12.0 47.7088 63.2002 65.5113 101.0275
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Figure 2.3: pH vs gain plot

linearized models with gain normalization at low frequency and at high frequency, as shown

in Fig. 2.5 and Fig. 2.6. Thus, we expect that the adaptation of the controller gain alone

will be sufficient to compensate for the significant gain variation of the plant, as long as

the loop bandwidth (or crossover frequency) is clearly above or clearly below the retention

dynamics (corner frequencies).
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Figure 2.4: pH vs time constant

Figure 2.5: Bode magnitude plots of low frequency normalized plants (G(s)
G(0)); Other than

the corner frequencies, all plants can be made to look similar at low frequency by scalar
scaling
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Figure 2.6: Bode magnitude plots of high frequency normalized plants ( G(s)
|G(j0.6)|); Other

than the corner frequencies, all plants can be made to look similar around an intended
crossover frequency by scalar scaling. We conclude that simple gain adaptation is feasible,
either for low or high frequency bandwidths.
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Chapter 3

DIRECT CONTROLLER GAIN ADAPTATION FOR PH CONTROL

3.1 Direct adaptive pH Control algorithm

In this section we summarize the formulation of controller gain adaptation as an

approximate H∞ loop shaping problem [67] and discuss the necessary modifications for

the practical implementation of this algorithm in the pH control problem. For the tuning

of the PID parameters, we adopt the frequency loop shaping (FLS) approach, with an RSC

metric described in [23].

Proportional integral derivative (PID) controllers are commonly used algorithms in the

process industry. PID tuning is a very well researched topic and some of the commonly used

methods are discussed in [6] [7] [50] and one such method is frequency loop shaping(FLS).

In FLS, closed-loop design specifications are specified in terms of a target open-loop transfer

function and PID parameters are obtained by minimizing the distance between the target

loop and the actual open-loop transfer function. A weighted H∞ norm called robust stability

condition(RSC) metric provides a good measure of the distance between the actual and the

target loop. Derivation of the RSC using the small gain theorem is discussed in Appendix

A.

In a brief overview, in FLS the controller design specifications are expressed in terms of

a target loop transfer function and PID parameters are obtained by minimizing the distance

between the target loop and the actual open-loop transfer function. More specifically, letting

G be the plant and C the controller, the FLS objective is to minimize the distance between

the loop transfer function GC and the target loop L. A frequency-weighted version of

this distance is obtained by the application of the small gain theorem, yielding the robust

stability condition (RSC)

‖S(GC − L)‖∞ < 1 (3.1)

22



Where S = 1/(1 + L) is the target sensitivity. The left-hand side of Eq. 3.1 can be

interpreted as a particular closed-loop-relevant distance between the nominal and actual

loops and ‖S(CG − L)‖∞ is the FLS optimization objective. A desirable feature of this

RSC metric is that it is normalized such that a value less than 1 guarantees closed-loop

stability. Furthermore, while it is not explicitly a robust performance metric, small values

of the RSC (e.g., 0.1-0.2) indicate a close matching between the nominal and the actual

loop sensitivities.

Consider, next, a parameterization of the PID controller as

C(s) = Kp +
Ki

s
+

Kds

(τs+ 1)
(3.2)

where Kp, Ki, Kd are the proportional, the integral and the derivative gains, respectively,

and τ is the time constant of the filter used in the implementation of derivative control

and its value is chosen a priori. For this PID parameterization, the RSC minimization

problem is convex, and, in fact, linear in the parameters. Expression of the FLS as an RSC

minimization of L∞ for the PID tuning is given below.

θ∗ = argmin
θ∈M
||S(GC(θ)− L)||∞ (3.3)

where θ represents PID parameters(Kp,Ki,Kd) and M is a constraint parameter set.

Clearly, the target loop L selection is an important component of FLS tuning and

it should not violate the performance limitations imposed by right half-plane zeros

and poles. It should also be reasonable to be approximated by a limited degree of

freedom PID controller. Controller design methods like linear quadratic regular (LQR)

or Glover–McFarlane H∞ loop shaping [18] can be used to design higher order controllers

for given specifications like bandwidth and the target loop can be constructed using this

higher order controller and the plant transfer function. In this way, we can automate target

selection process and when used in FLS, it approximates higher-order controller with a

lower order PID controller.

The offline FLS algorithm for PID tuning can be formulated as a RSC minimization

problem [62] [23]. The quality of the controller design can be assessed by looking at the
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optimal RSC value if the value is less than 1 then the stability of the closed-loop system is

guaranteed and lower values of optimal RSC implies the actual loop-performance closer to

the target. The convergence of the FLS method to reasonable PID tunings, as compared

to standard methods in the literature, e.g., [6] [7] [50], has been established in [23].

An extension of the offline FLS tuning to an online and adaptive implementation has

been introduced in the paper[67], while the applicability and usage of the RSC metric in

the performance monitoring of industrial process controllers has been discussed in [61]. The

main idea in these applications was the estimation of the RSC values of Eq. 3.3 using plant

input-output data. Letting (u, y) be the input-output pair of the plant and e be the error

signal defined as e = S(CG−L)u, invoking the fact that y = Gu, we obtain e = SCy−Tu.

Thus, the RSC can be expressed in terms of input-output data as follows

RSC = ||S(GC − L)||∞ = sup
||u||6=0

||e||2
||u||2

(3.4)

where T = LS is target complementary sensitivity. The estimation of the RSC value in Eq.

3.4 can be approximated by the decomposition of the error signal e and the plant input u

into frequency components by using two filter banks (FB) of band-pass filters Fi:

RSC ≈ max
i

||SCFiy − TFiu||2
||Fiu||2

To improve the computational properties of the RSC estimate, we can further write

an upper bound of the RSC in terms of the exponentially weighted norm ||x||2,δ =

{
∫∞
−∞ e

2δt|x|2(t)dt}
1
2 , δ > 0, for which it follows that

RSC ≤ max
i

||SCFiy − TFiu||2,δ
||Fiu||2,δ

(3.5)

This approximation is similar to an FFT decomposition of the signal when the filter

bank is composed of sharp bandpass filters. On the other hand, it does not suffer from

the circular convolution problems of the FFT and is “exact” for a linear plant describing

the input-output relationship (u, y). The significance of this observation is that the setup

of the problem allows for the possibility of convergence of the adaptation to the matching
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solution. In the ideal case of a linear plant controllable by a PI controller, this convergence

can be achieved essentially irrespective of the data length or its frequency content. One

can, therefore, expect the convergence of the tuning to a reasonably close value under small

perturbations, resulting in a robust controller that can be easily quantified. Of course, the

issue of persistence of excitation remains, as with any adaptive controller, which in our case

we address by means of an external supervisory loop and an appropriate definition of the

performance limitations.

We should also notice at this point that the computation of the fractions in Eq. 3.5

require that the denominators do not vanish, that is, the signal u is persistently exciting

and wide-band. This assumption can be relaxed by allowing the combination of groups of

filter outputs so that their total energy is bounded away from zero.

Finally, an advantage of the expression given by Eq. 3.5 is that the ratio of the

exponentially weighted norms can be computed as the ratio of the respective squared signals,

filtered by 1/(s+2δ), and as such, it does not diverge for large intervals and does not require

periodic resetting.

Next, and according to our model analysis, the process dynamics (pole, delay) change

very little with the operating conditions and only gain of the system changes significantly.

This observation enables us to restrict adaptation to a single parameter(controller gain)

without sacrificing performance. For gain adaption, the PI controller can be expressed as

follows

C(s) = K
(s+ a)

s
= KC̃ (3.6)

with the zero “a” estimated and fixed based on the preliminary data. The FLS tuning

objective now is to determine the controller gain (K) so that open loop transfer function

CG is close to target L in a weighted L∞ sense. The FLS tuning from Eq. 3.3 now becomes

K∗ = arg min
K∈M

||S(GKC̃ − L)||∞ (3.7)

where S = (1 + L)−1 is the target Sensitivity and M is the set of controller gain values,

i.e., the closed interval M = [Kmin,Kmax], where Kmin is the minimum controller gain and
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Kmax is the maximum controller gain. Block diagram of this controller is shown in Fig. 3.1

Figure 3.1: Block diagram of the closed-loop system with direct adaptive pH controller

For its online implementation, Eq. 3.7 is approximated by the minimization of the RSC

estimate as described by means of a filter bank {Fi}i to generate a decomposition of the

input and output signals and is given below.

K = arg min
K∈M

max
i

||KSC̃Fiy − TFiu)||2,δ
||Fiu||2,δ

(3.8)

The optimization problem in Eq. 3.8 is solved iteratively by computing the following at

each time step k:

min
K∈M

max
i

Ji,k
mi,k

(3.9)

Ji,k(Kk) =

k∑
n=0

λk−n|zi,n − wTi,nKk|2

mi,k+1 = λmk + |[Fiu]k+1|2

where zi,n = [TFiu]n, wi,n = [SC̃Fiy]n and λ is forgetting factor, corresponding to the
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discretized, exponentially weighted norm (2, δ) of Eq. 3.8. There are many optimization

solvers readily available to solve the above optimization problem, one such solver is described

in [67] and a brief summary of that solver is described below

Ĵi,k+1 = λJi,k+1(Kk) + (zi,k+1 − wi,k+1Kk)
2

Ji,k+1(∆Kk+1) = Ĵi,k+1 − Si,k+1∆Kk+1 +
1

2
Pi,k+1∆K

2
k+1

Ri,k+1 = λRi,k + 2zi,kwi,k

Pi,k+1 = λPi,k + 2w2
i,k

Si,k+1 = λRi,k − Pi,k+1Kk

where Ĵi,k+1 is a prior partial cost, Ji,k+1(∆Kk+1) is a partial cost functional at the

time instance k + 1 parameterized using ∆Kk+1 = Kk+1 −Kk. −S and P are the gradient

and the Hessian of the functional J . A descent direction is computed using the following

equation.

∆K̂∗k+1 =

∑
i∈I

Si,k+1

mi,k+1∑
i∈I

Pi,k+1

mi,k+1

∆K∗k+1 = ProjM (∆K̂∗k+1) (3.10)

Where ProjM is the projection of K̂∗k+1 into the set M . The set I consists of all indices

of prior partial costs that are ’close’ to the maximum prior partial cost and is defined as

follows.

I = {i ∈ I|Ĵi,k+1 > 0.9(max
j
Ĵj,k+1)}

To find a parameter update, the following line search algorithm is solved using the descent

direction ∆K∗k+1

α∗ = arg min
α∈[0,1]

max
i

Ji,k+1(Kk + α∆K∗k+1)

mi,k
(3.11)

Controller gain parameter is updated using the optimum α∗ ∆Kk+1 = Kk + α∗∆K∗k+1 .
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For our problem here, we can further refine the algorithm in order to improve the

speed of convergence and, thus, the transient performance, but including “sanity checks” to

ensure the reliability of the estimates. Notice that, since we only estimate one parameter,

the “theoretical” persistent excitation suggests that even a constant nonzero signal would

be sufficient. However, this is misleading because it does not provide information on the

linearized system around the intended crossover frequency. The latter is the required

information for the selection of an acceptable controller and the RSC estimate is essentially

the means to assess the reliability of the estimate for the desired closed-loop control. The

refinements of the generic algorithm described in [67], specialized for pH control are listed

below:

� For faster convergence, the covariance P associated with Eq. 3.9 is reset periodically

if one of the following conditions is met.

– If the set-point variation exceeds a threshold.

– If the time elapsed since the last reset exceeds a threshold.

– If there is a significant change in the pH reading (accounting for disturbances).

� The value of the covariance P depends on the level of excitation and represents

confidence in the parameter estimate. The estimated parameter is accepted as an

update in the controller only if the value of the sum of squares of P for the entire

filter bank exceeds a threshold (determined indirectly by the level of noise and model

variability).

� To avoid excessive bias in the parameter estimate, the plant input-output pair used in

the adaptation algorithm is filtered using a band pass filter that attenuates frequencies

of these signals outside the frequency range of interest.

� For this particular problem we perform adaptation under persistence of excitation and,

therefore adaptation drifts can only occur under large perturbations. Nevertheless,

the use of a dead-zone is always recommended in applications to avoid excessive
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adaptation. It is interesting to observe here that a dead-zone threshold δdzn on the

H∞ norm of the loop mismatch error can be introduced by modifying the optimization

cost in Eq. 3.9 as max [0, (Ji,k/mi,k)− δdzn]. Since the cost is normalized as an RSC,

one can even choose a priori the dead-zone level to a value of the tolerable error, e.g.,

0.1.

We should point out that our intent is to design a controller that performs well under

reasonable practical conditions, even at the expense of using considerable prior knowledge of

the process and having increased design complexity. Furthermore, recognizing that there is

always a possibility of failure in an industrial environment, we include monitoring conditions

and tests to quantify the confidence in the controller tuning and enable the use of high-level

monitoring schemes.

This refined algorithm was tested using the lab-scale experimental setup, described in

the next section.

3.2 Experimental evaluation of the direct adaptive pH controller

In this section, we discuss the experimental evaluation of the proposed direct adaptive

pH control algorithm. The experimental setup used is described in Chapter 2 and the

block diagram of the lab setup is shown in Fig. 3.2. Our laboratory experimental setup

used two peristaltic pumps, Pump1 is used to control flow rates of the acid, the buffer

stream1 and the buffer stream2 and peristaltic Pump2 is used to control the base flow

rate. Since we want to control pH of the liquid in the reactor by adjusting the flow

rate of base flow Pump2 and the pH sensor are interfaced with Microcontroller1(where

control algorithm is implemented). The pH sensor used in this experimental setup has a

quantization of 0.04 pH and the sampling time of 1 second. Flow rates of Pump2 are

controlled by varying analog voltage across its control terminal and to interface this pump

with the Microcontroller1 a MCP4725 12-bit digital to analog(DAC) converter is used.

Microcontroller1 communicates with the DAC using I2C protocol and communicates

with the pH sensor using UART serial. This experimental setup uses two Arduino
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Figure 3.2: Block diagram of the lab-scale pH neutralization process CSTR

due microcontrollers one(Microcontroller1) to implement feedback control loop and

other to implement the proposed adaptive control algorithm(Microcontroller2). Where,

Microcontroller1 acquires the pH value from the pH sensor, computes base flow rate using

PI control algorithm and outputs control commands to the Pump2. It also transmits the

sensor and the control values(base flow rates) to a supervisor PC for logging using UART

serial communication. On the other hand, Microcontroller2 receives plant’s input(base

flow rate) and output(pH) values from the Microcontroller1, computes the controller

gain(K) based on the proposed direct adaptive control algorithm and sends the computed

controller gain value to the Microcontroller1. Data transfer between Microcontroller1

and Microcontroller2 is also done using UART serial communication protocol.

The main motivation behind this experiment is to examine the behavior of the adaptive

controller under realistic conditions and establish reasonable expectations as well as

limitations of performance. It is shown that the linearized model of the plant, combined
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with controller gain adaptation, is sufficient to achieve uniform performance across a wide

range of operating points. At the same time, undesirable performance effects caused by the

simultaneous lack of excitation and disturbances appear to be within practically tolerable

limits.

The first step is to obtain the nominal plant model at the operating pH of 6 by fitting

a linear model to the input-output data from a system identification experiment. This

step provides an estimate of the plant dynamics, that undergo only small changes with the

change of operating conditions. The latter was the result of the theoretical model analysis

and was independently verified by performing identification at multiple operating points.

An important condition for the system identification to produce meaningful results is

that the input signal used in the identification experiment should satisfy persistence of

excitation condition. There are different ways to design such inputs and one of the common

choice is a pseudo-random binary sequence (PRBS) [57] [35][14]. In our experiment, we

identify the system around pH of 6 and for Case 1 of buffer flow combination using a PRBS

input with the power spectrum that extends roughly up to the intended frequency crossover.

The PRBS signal and process output are shown in Fig. 3.3(a). We employ a system

identification algorithm, as described in [63] [64][55][71] [66] and [62], to identify a model of

the process. We also use the estimation error to obtain an estimate of the uncertainty that

will act as one of the constraints for the selection of an appropriate closed-loop bandwidth

parameter, entering in the PID parameter tuning through the selection of the target loop.

The identified transfer function Ĝ6 is given by

Ĝ6(s) =
7.630× 10−5(−s+ 1.53)

(s+ 4.26)(s+ 0.018)
(3.12)

and the identified model prediction of the response to the PRBS input is shown in Fig.

3.3(b).

Next, the nominal PI controller is designed for the nominal plant model with a target

loop transfer function generated iteratively to maximize the closed-loop bandwidth subject

to the estimated uncertainty constraint, as shown in Fig. 3.4(b). In general, the target
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(a) (b)

Figure 3.3: System identification signals (a) input and (b) output(green trace) and
predicted output(blue trace)

loop should also take into account limitations from the sensors and actuators, as well as

bandwidth constraints from right-half plane zeros of the model.

A PI controller (Ĉ6)is designed for the plant Ĝ6 using an offline FLS algorithm [62] [23].

The target loop was chosen to achieve closed-loop bandwidth specification of 0.6 rad/min

based on a linear quadratic regulator optimal loop with integrator augmentation and its

transfer function is given below:

L̂6 =
0.8273(s+ 4.28)(s+ 0.409)

s(s+ 4.261)(s+ 0.018)
(3.13)

The PI controller parameters of the nominal controller are obtained by minimizing an offline

RSC and its transfer function is

Ĉ6 =
2.124× 104(s+ 0.273)

s
(3.14)

The Bode magnitude plots of the target loop and the actual loop transfer function is shown

in Fig. 3.4(a) showing a fairly good matching.

To validate the designed controller, a coprime factor uncertainty estimate [63] [64] [66]

[62][72] is obtained from the estimation error. A small gain condition for the co-prime factor
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(a) (b)

(c)

Figure 3.4: (a) Frequency response of target loop and identified loop transfer functions (b)
complementary sensitivity plot (red) with its multiplicative uncertainty bound obtained in
the identification step (c) RSC plot for the nominal controller; The actual loop and the target
loop are close as expected. Multiplicative uncertainty provides an approximate bound on
the complementary sensitivity and helps in the selection of a closed-loop bandwidth. For the
chosen bandwidth of 0.6 rad/min the complementary sensitivity is at the at the constraint.
A less conservative estimate, obtained using a coprime factor uncertainty computation,
shows that the corresponding RSC (CFRSC) value less than 1 for all frequencies, thereby
the designed controller is expected to yield robust closed-loop stability.

uncertainty estimate (CFRSC) is given by

CFRSC = σ

Ĉ6SM
−1

SM−1

σ

(
∆N ∆M

)
(3.15)

where N , M are left coprime factors of the nominal plant(G6) and ∆N , ∆M are their

corresponding uncertainty estimates and S is the sensitivity of the loop with the controller

Ĉ6. The use of CFRSC yields a less conservative result because the CF error is exactly
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what is minimized by the least squares estimation. Any transformation of that error to

multiplicative uncertainty is bound to produce a more conservative result. Fig. 3.4(c)

shows a CFRSC value less than 1 for all frequencies, indicating the robust stability of the

nominal controller (Ĉ6) with respect to the uncertainty arising from the estimation error.

(A more precise statement is that the robust stability of the loop is not invalidated by the

data, in the spirit of [58].)

For the direct adaptive control experiments, Ĉ6 was used as a base controller and the

target loop used in its design (L̂6) was used as a target loop for the adaptation. Notice

that here a fixed target loop was used throughout but, in general, nonlinear systems may

require scheduling of the target loop as well, to reflect changing specifications or constraints,

depending on the operating conditions.

The filter bank was constructed using 20 all-pass filters with corner frequencies spanning

the logarithmic interval between 0.1BW to 10BW , where BW is the bandwidth of target

loop. The gain values of [10, 106] were used as lower and upper limits of K respectively. A

forgetting factor of 0.9999 was used and the covariance matrix was reset to its initial value

every 25 minutes.

The closed-loop was tested for Cases 1 and 2 of the buffer flow described in the Section

2.2. Step changes from 6 to 9 and 6 to 3 are applied as set-points for the transition between

operating points. To provide excitation for the adaptation and to assess the rate and the

quality of convergence a small square wave was superimposed on the reference input (

magnitude of 0.2 and period of 25 minutes). While this injected excitation is not intended

to appear during normal operation, it is rather small and can be used if the supervisory or

monitoring logic determines that the controller should be redesigned. A better choice would

be a square wave with the fundamental frequency at the loop bandwidth, which is near the

frequencies of interest. This choice, however, would not allow the easy visualization of

adaptation convergence since the response would never approach the constant steady-state.

As we also discuss later in the conclusion, the same excitation injected during set point
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transitions is beneficial to the overall controller performance by helping the adaptation

converge without causing significant errors.

(a) (b)

(c) (d)

Figure 3.5: Closed-loop adaption results for Case 1 (a) plant output plot (b) controller
gain plot (c) plant input plot (d) zoomed input-output plot; The proposed direct adaptive
control adapts controller gain to compensate for the gain changes in the plant with operating
points. The big step transition signal results in the large overshoot and it takes about two
small square pulses for the controller gain convergence.

The experimental results with the direct adaptive pH controller are shown in Fig. 3.5

-3.8. We observe that the proposed controller is able to adapt reasonably well to the gain

changes in the plant with the operating points and with the change in buffering capacity.

Undesirable characteristics of the response include the rather large overshoot during the

step change of the setpoint from 6 to 9 pH (Fig. 3.5). This is not unreasonable since even

the nominal loop exhibits some overshoot (red trace), but the overshoot is exacerbated by

the slow adaptation of the gain. In such transitions, the transient response offers very little

information on the plant around the step point and the adaptation cannot be expected to

converge very quickly.
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(a) (b)

(c) (d)

Figure 3.6: Closed-loop adaption results for Case 1 (a) plant output plot (b) controller
gain plot (c) plant input plot (d) zoomed input-output plot; The proposed direct adaptive
control adapts controller gain to compensate for the gain changes in the plant with operating
points. The big step transition signal results in the large overshoot and it takes about two
small square pulses for the controller gain convergence. The controller also rejects external
disturbance at 150 mins

We also observe that the controller gain convergence time depends on the input and

parameter saturation. As shown in Fig. 3.5 - 3.8, convergence was achieved in around 2-3

small pulses, after which the gain reaches steady state and the closed-loop system response

is very close to the target response. In Fig. 3.6 and Fig. 3.8 we observe a spike after

convergence. It is the result of an unintentional disturbance, which, nevertheless, verifies

that the adaptive controller response remains reasonable. We conclude that using a single

data-driven linear model (obtained using a system identification experiment) along with the

proposed direct adaptive algorithm to update the gain, we achieve successful closed-loop

pH control over a wide range of operating conditions including variations in the pH, as well

as in the buffer flows.
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(a) (b)

(c) (d)

Figure 3.7: Closed-loop adaption results for Case 2 (a) plant output plot (b) controller
gain plot (c) plant input plot (d) zoomed input-output plot; The proposed direct adaptive
control adapts controller gain to compensate for the gain changes in the plant with operating
points and buffer flow variation. The big step transition signal results in the large overshoot
and it takes about two small square pulses for the controller gain convergence.

3.3 Direct adaptive pH control simulation results

The experimental models are qualitatively very similar to the simulations of the

model derived from first-principles, even though it requires detailed modeling to achieve

quantitative matching. This similarity allows us to investigate the behavior of the proposed

adaptive controller under a much wider set of conditions using computer simulations, for

example, those mentioned in Section 2.2. They are also used to test the proposed adaptive

control algorithm for the variation in the excitation properties. The simulations are also

used to examine the effectiveness of alternative schemes and the determination of sound

principles for their practical implementation.

In this section we evaluate the proposed direct adaptive pH control algorithm using
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(a) (b)

(c) (d)

Figure 3.8: Closed-loop adaption results for Case 2 (a) Plant output plot (b) controller
gain (c) plant input plot (d) zoomed input-output plot; The proposed direct adaptive control
adapts controller gain to compensate for the gain changes in the plant because of buffer flow
changes. There is a spike in the pH around 110th minute, which is the result of a significant
unknown disturbance in the system, unrelated to our injected excitation. The response of
the adaptive controller is reasonable and it quickly rejects this disturbance.

computer simulations. In subsection 3.3.1, we present results from a comparative study

between adaptive control algorithms using H∞ cost objective(system norm) against L2 norm

based cost objectives (signal norm) under different excitation conditions. In subsection

3.3.2, we present tracking results that validate the ability of the proposed algorithm to

adapt controller parameters to compensate plant nonlinearities over a wide range because

of set-point and buffer flow changes.

For our simulation studies, we use linearized plant at pH 6 (Case 1) as a nominal plant

(G6) and a PI controller (C6) is designed for this plant as the nominal controller. To be

consistent with the experimental setup we use offline FLS algorithm with the target loop

L6 that corresponds to the closed-loop bandwidth of 0.6 rad/min to tune the nominal
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controller. Transfer functions of the nominal plant(G6), the nominal controller(C6) and the

target loop( L6) are listed below.

G6(s) =
0.000197

(s+ 0.0191)
× e−s/6 (3.16)

C6(s) =
4206(s+ 0.434)

s
(3.17)

L6(s) =
0.83(s+ 0.434)

s(s+ 0.0191)
(3.18)

Details of the parameters used in the adaptation algorithm are discussed in the next

section.

3.3.1 Comparative study

In this subsection, we evaluate the performance of the proposed FLS H∞ cost

function used in the adaptive control algorithm under different excitation signals against

a L2 cost function based FLS algorithm. The goal of this section is to study both

adaptation algorithms under different excitation. For this study, we also consider two

parameter adaptation version of the proposed FLS H∞ direct adaptive algorithm where we

independently adapt proportional and integral gains of PI controller.

For this study, we start at nominal pH 6 and go to the set point of pH 7.5 at the 25th

minute and to provide the excitation for the adaptive control algorithms we inject sine wave

signals with different frequencies at the plant input(ui in Fig. 3.14) or at the reference(r

in Fig. 3.14) for the duration of 325 mins. An example of one such reference signal (R3) is

shown in Fig. 3.9. After 350 minutes, both sine wave excitation and adaptation are turned

off and a small square wave of 0.1 magnitude is applied at reference which is used in the

performance evaluation of both algorithms in the time domain. To evaluate performance

in the frequency domain we compare their H∞ FLS distance(RSC measure described in

Eq. 3.3) of the converged parameters. Specifically, we look at the bound of RSC value

of the converged controller computed online using I/O data as shown in Eq.3.5. We also

study offline RSC values of both algorithms, which is computed using converged controller
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Figure 3.9: Sample test reference signal(R3) used in the comparison study

parameters (K and θ) and linearized plant at pH 7.5 using Eq. 3.3. Details of parameters

used in the adaptive control algorithms for this study are listed below.

� Two parameters

– H∞ cost function:

θ∗ = argmin
θ

max
i

||(SFiW T y)θ − TFiu)||2,δ
||Fiu||2,δ

(3.19)

– L2 cost function:

θ∗ = argmin
θ
||(SW T y)θ − Tu)||2,δ (3.20)

Where W = [1; 1
s ] represent regressors and θ = [KpKi], where Kp and Ki represent

proportional and integral gain of the PI controller.

� One parameter

– H∞ cost function:

K∗ = argmin
K

max
i

||(SFiC̃y)K − TFiu)||2,δ
||Fiu||2,δ

(3.21)
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– L2 cost function:

K∗ = argmin
K
||(SC̃y)K − Tu)||2,δ (3.22)

Where C̃ = s+a
s and K represent PI controller gain expressed in Eq. 3.6 form.

� Closed-loop bandwidth: BW = 0.6rad/min

� Forgetting factor (λ)=5× 10−4

� Filter Bank [Fi]: 20 filters logarithmically placed between 0.1×BW and 10×BW

� Frequency of sine wave injected at plant input:

– Ui1: 18 rad/min

– Ui2: 0.6 rad/min

– Ui3: 0.3 rad/min

� Frequency of sine wave injected at reference:

– R1: 18 rad/min

– R2: 0.6 rad/min

– R3: 0.3 rad/min

These adaptive control algorithms are tested for all excitation signals. Controller

parameter values(at 300th minute) for both two and one parameter adaption are listed

in Table 3.1 and Table 3.3 respectively. Mean and variance plots of these parameters are

shown in Fig. 3.11(a) and Fig. 3.10(a). RSC values computed online and offline for both two

parameter and one paramter adaptation are listed in Table. 3.2 and Table 3.4 respectability.

Their corresponding mean variance plots are shown in Fig 3.10(b) and Fig. 3.11(b). Time

domain evaluation results for these cases are shown in Fig. 3.13 and in Fig. 3.12

It can be seen from the time domain results Fig. 3.12 and Fig. 3.13 both H∞ and L2

algorithms produce tracking performance close to the target for low frequency excitation(U3
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Table 3.1: Controller parameter values of adaptive control algorithms for two parameters
adaptation

Excitation H∞ L2

Kp Ki Kp Ki

Ui1 3708.4 1098 464.8882 1643.6

Ui2 1841.6 648 4024.2 1644

Ui3 2446.1 882 9371.2 1644

R1 3715.6 1344 840.8206 1644

R2 3715.6 1158 2709.6 1644

R3 3715.6 1038 2511.5 1644

Table 3.2: RSC values of adaptive control algorithms for two parameters adaptation

Excitation H∞ L2

RSCon RSCoff RSCon RSCoff

Ui1 0.4053 0.3245 0.8736 0.8512

Ui2 0.5202 0.5129 0.5813 0.5034

Ui3 0.4740 0.3002 1.3251 2.3052

R1 0.4062 0.3275 0.7631 0.7267

R2 0.4624 0.3212 0.6465 0.3473

R3 0.3693 0.3362 0.5667 0.3479

Table 3.3: Controller parameter values of adaptive control algorithms for one parameter
adaptation

Excitation H∞ L2

Ui1 3254.7 100

Ui2 2671.8 2766.5

Ui3 2194.9 2776.1

R1 2285.6 100

R2 2584.9 2722.7

R3 2583.5 2786.2
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Table 3.4: RSC values of adaptive control algorithms for one parameter adaptation

Excitation H∞ L2

RSCon RSCoff RSCon RSCoff

Ui1 0.2876 0.2026 0.9526 1.2109

Ui2 0.2369 0.0785 0.3503 0.0459

Ui3 0.9763 0.2722 0.4497 0.0425

R1 0.2812 0.2316 0.8079 1.2109

R2 0.3522 0.1085 0.3909 0.0610

R3 0.4198 0.1090 0.4594 0.0390

(a) (b)

Figure 3.10: Results for one parameter adaptation (a) controller gain(K) (b) RSC
estimates; Variance in the controller gain for the H∞ cost is far less than that of L2 cost;
RSC values computed online and offline for the H∞ are far less as compared to of L2 cost
function

and R3) and for the frequency of excitation at the bandwidth(U2 and R2). But, only H∞

produces good tracking performance for high frequency excitation(U1 and R1). This fact

can be further validated from both online and offline RSC values (Fig. 3.10(b) and Fig.

3.11(b) ). It can clearly be seen from the RSC values H∞ algorithm produces actual control

loop that is close to the target(low RSC values) as compared to the L2. It is seen in

Fig. 3.10(a) and Fig. 3.11(a) variance of the controller gain in one parameter adaptation

and the proportional gain in two parameter adaptation is low for the H∞ as compared to

L2. However, variance in the integral gain high for H∞ as compared to L2 and this is
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(a) (b)

Figure 3.11: Results for two parameter adaptation (a) controller parameters (θ) (b) RSC
estimates; Variance in the controller proportional gain for the H∞ cost is far less than that
of L2 cost and opposite for the controller integral gain; RSC values computed online and
offline for the H∞ are far less as compared to of L2 cost function

(a) (b) (c)

(d) (e) (f)

Figure 3.12: Tracking plots in time domain for one parameter adaption (a) for R3

excitation (b) for R2 excitation (c) for R1 excitation (d) for Ui3 excitation (e) for Ui2
excitation(f) for Ui1 excitation; For low frequency excitation (plots (a) and (d)) and for
excitation at bandwidth (plots (b) and (e)) both H∞ and L2 produce results close to the
target. For high frequency excitation (plots (c) and (f)) both H∞ produces response close
to the target and L2 produces result that is completely off
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Tracking plots in time domain for two parameters adaption (a) for R3

excitation (b) for R2 excitation (c) for R1 excitation (d) for Ui3 excitation (e) for Ui2
excitation (f) for Ui1 excitation; For low frequency excitation (plots (a) and (d)) and for
excitation at bandwidth (plots (b) and (e)) both H∞ and L2 produce results close to the
target. For high frequency excitation (plots (c) and (f)) H∞ produces response close to the
target and L2 produces result that is completely off

because L2 algorithm’s integral gain is stuck at the parameter constraint. These results

conclusively prove H∞ cost function’s low susceptibility to the type of excitation. The

proposed direct adaptive control algorithm is further tested for wider set-point changes and

for buffer variation. Details of settings used in the testing along with results are discussed

in the next subsection.

3.3.2 Performance evaluation of the direct adaptive pH controller

To test the proposed adaptive control for wider operating range we use C6 (Eq. 3.17) as

the nominal controller and L6 (Eq. 3.18)as the target loop. To test tracking we simulate the

transitions from the nominal(pH 6) to other operating points, namely pH 3, 4.5, 6, 9, 12.

A small square wave with 25 mins period is also injected after the transition to assess the
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speed of convergence. Results from the simulation show the adaptive controller performs

well and the controller gain adaptation compensates for variation in the plant gain because

of changes in the operating point and buffer flows, as anticipated. Some sample results from

the simulations are shown below.

(a) (b)

(c) (d) (e) (f)

Figure 3.14: Direct adaptive pH control results for Case 1 (a) output plot (b) top plot-
plant input, bottom plot- controller gain plot (c-f) zoomed in input-output plots after
each big transition step; This simulation result is similar to the experimental result. Step
transition signals result in huge over shoot and the controller gain adapts to the change
in the system with pH operating point. The transient time is high because of input and
parameter saturation.

Set-point transitions and adaptation convergence are shown in Fig. 3.14 and Fig. 3.15

. We observe the similarity with the experimental results and the fairly quick adaptation

as it takes approximately 2-3 cycles of the square wave for the controller gain to converge.

We also note a significant overshoot during the step change, this results from the inability

to estimate the correct gain in such a short time.

Results for the buffer flow cases 2, 3 and 4 are shown in Figures 3.16, 3.17 and 3.18
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(a) (b)

(c) (d) (e) (f)

Figure 3.15: Direct adaptive pH control results for Case 1 (a) output plot (b) top plot-
plant input, bottom plot- controller gain (c-f) zoomed in input-output plots after each
big transition step; This simulation result is similar to the experimental result. Step
transition signals result in huge over shoot and the controller gain adapts to the change
in the system with pH operating point. The transient time is high because of input and
parameter saturation.

respectively. In all these cases buffer flow is changed to their corresponding values at pH

6 and the step transition is applied after pH reaches the steady state. It can be seen from

these plots, after set-point transition the gain of the controller is adapted to a steady state

value that results in a performance closer to the target. As compared to the Case 1 the

transient time is higher in these cases. One reason for the longer transient time is the

controller parameter saturation. This phenomenon is clearly observed in Figures 3.16(e),

3.17(b),3.17(e) and 3.18(e).

Simulation results reinforce our conclusions from the experimental results, that the

proposed direct adaptive control algorithm is able to achieve reasonable and uniform

performance, while relatively weak excitation requirements (e.g., small square wave) can

47



(a) (b) (c)

(d) (e) (f)

Figure 3.16: Direct adaptive pH control results for Case 2, (a) and (d) output plots, (b)
and (e) top plots- plant input, bottom plots- controller gains, (c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the controller gain adaptation produces uniform performance

yield quick parameter convergence.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Direct adaptive pH control results for Case 3, (a) and (d) output plots, (b)
and (e) top plots- plant input, bottom plots- controller gains, (c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the controller gain adaptation produces uniform performance
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: Direct adaptive pH control results for Case 4, (a) and (d) output plots, (b)
and (e) top plots- plant input, bottom plots- controller gains, (c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the controller gain adaptation produces uniform performance

50



Chapter 4

MULTI MODEL ADAPTIVE PH CONTROLLER

4.1 Multi model adaptive controller algorithm with RSC metric

Interest in multi-model adaptive control (MMAC) has gained traction significantly in

recent past. In this scheme, the controller used in the closed-loop system is selected from

a bank of controllers based on metrics derived from the on-line data. As long as the

possible controllers can be restricted to a discrete (and hopefully small) set, the multi-model

adaptation can be extended to various controller structures and can adapt rapidly, as soon

as the decision signal changes. On the other hand, MMAC is computationally expensive

and may cause performance deterioration if the suitable controller is not present in the

selected controller bank.

In a quick overview, MMAC uses the plant input-output data to estimate a performance

or health metric, assessing the suitability of a controller in the loop. This metric is then

used to rank the potential controllers and switching to the best candidate. Although

the pH control problem does not necessarily fit the MMAC paradigm in the sense that

a large number of controllers is needed to span the range of possible process gains, it is

still a candidate application because the controllers are simple and controller bank can be

restricted to only one parameter.

In the past, we have successfully used RSC metrics for the controller performance

monitoring,[61] indicating that the same metric can be applied in an MMAC framework

to the pH control problem. The key difference of this metric is the approximation of the

H∞ gain of the mismatch operator, instead of the more frequently mentioned 2-norm of the

error signal. Our expectation, supported by simulations is that the proposed metric would

translate into reduced sensitivity of the optimal solution to the input signal properties and

a more uniform performance.
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Figure 4.1: Block diagram of the closed-loop system with multi model adaptive pH
controller

For the MMAC algorithm, we consider [Gj ], where j = 1, 2 . . . n be the bank of plants

and [Cj ] be the corresponding controllers designed using an offline FLS algorithm using a

target loop-shape L. The RSC estimate of the controller(Cj) computed using the plant’s

input-output data and it is described using the following equation.

RSCj = max
i

||SCjFiy − TFiu)||2,δ
||Fiu||2,δ

(4.1)

The objective of a multi-model adaptive control is to switch to a controller that results in

a minimum estimate of RSC. Following equation describes controller section criteria of this

algorithm.

Cj∗ = argmin
j

max
i

||SCjFiy − TFiu)||2,δ
||Fiu||2,δ

(4.2)

In our case of pH control, the controller structure is restricted to a PI parametrization and

only its gain is adapted. Mainly, the bank of controllers is then formed by just varying the

gain of the PI controller designed for the nominal plant model(some preselected operating

point). It is desirable for an MMAC algorithm to avoid excessive switching during transients.

A common approach is to introduce a switching threshold or a hysteresis logic, this provides

trading off between transient performance for a less oscillatory behavior. The RSC-based

MMAC algorithm with hysteresis for the pH control is described as follows:

� Design PI controller C0 for the nominal plant G0.
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� Build the bank of PI controllers [Cj ] by varying the gain (Kj) of the nominal controller

C0.

� Initialize ’controller selected’ to the nominal controller C0.

� For each time step k

– Compute RSC values for all controllers in the controller bank [Cj ]

RSCj(k) = max
i

||SCjFiy(k)− TFiu(k))||2,δ
||Fiu(k)||2,δ

(4.3)

– If RSCselected > (1 + h)min
j
RSCj(k), then switch to the controller Cj∗ , where

RSCselected is the RSC value of the currently selected controller, j∗ = arg

min
j
RSCj(k) and h is a hysteresis parameter (h > 0).

The evaluation of the RSC metric (as all similar metrics) involves computation of

exponentially weighted norms of signals and the forgetting factor computation provides

an inherent trade-off between long and short-term memory. The former has noise immunity

while the latter offers fast adaptation to rapidly changing conditions. The choice of an

exponential weight (δ) is very important in the RSC computation. Smaller values of δ

results in the RSC estimate close to actual(2-norm), but it has higher transient time. On

the other hand, higher values of the δ have low transient time, but the RSC estimates have

spikes and are far from actual 2-norm. An example plot of RSC computation with different

exponential weights is shown in figure 4.2. Comparison between the estimated exponentially

weighted norm and the actual 2-norm (Fig. 4.2) of the RSC indicates that δ = BW/10,

where BW is the bandwidth of target loop transfer function is a reasonable choice.

The RSC computation also needs to handle the possible lack of excitation condition.

The disturbance threshold term described in [61] can be used in the RSC computation to

avoid bias in the RSC values because of lack of excitation. To avoid bias in the parameter

estimate because of disturbances or noise, the plant input-output pair used in the RSC

estimation is filtered using a band pass filter that only allows signals in the frequencies of

interest, namely around the loop crossover frequency.
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Figure 4.2: RSC plots for different exponential weights δ1 = 2, δ2 = 10δ3; Increase in the
forgetting factor results in an exponentially weighted 2-norm estimate close to the 2-norm.
However, increase in the forgetting factor also results in an increase in the transient time.

This MMAC algorithm is tested using computer simulations, we use same filter bank

settings and the same setpoint signals used in the testing of the direct adaptive controller

in Section 3.3. The controller gain bank [Ki] of size 20 is formed by spanning gains between

0.01 times and 10 times of the nominal controller gain (gain of the controller C6). The

MMAC produces similar results as the direct adaptive controller and computer simulation

results are presented in the next section.

4.2 Multi-model adaptive control test results

It can be seen in Fig. 4.3 and Fig. 4.4 after the set-point transition that the gain of the

controller adapts to the steady state and the loop performance is closer to the target. As

compared to direct adaptive control, MMAC controller gain convergence takes more time

and however, faster convergence can be achieved by adjusting exponential weight(δ) used in

the computation of the RSC. However, we observe a small performance degradation, because

the controller gain required to match the target is not present in the bank of controllers

(Fig. 4.3(e), 4.3(f)) and 4.4(f)).
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(a) (b)

(c) (d) (e) (f)

Figure 4.3: Multi-model adaptive pH control results for Case 1 (a) output plot (b) top
plot - plant input, bottom plot controller gain (c-f) zoomed in plots of the input output
plot after each big step transition; After transients the gain of the controller converges to a
value that brings the actual loop close to the target loop. As compared to direct adaptive
control, MMAC exhibits somewhat larger transient times and has some mismatch in the
controller parameter because of the controller gain quantization.

It can be seen from Fig. 4.5 -4.7, the proposed multimodel adaptive control algorithm

has similar performance as the direct adaptive algorithm. In some cases, like in Fig. 4.7(d)

it can be seen that there is a mismatch between the target and the actual loop. This

mismatch is a result of controller gain quantization. This mismatch can be minimized by

increasing number of controller gains in the controller bank. However, larger controller

bank results in an increase in the computational power required to implement an adaptive

loop. In Fig. 4.7(e) mismatch between the actual and the target response is relatively high.

This is because the controller gain hits saturation(lowest gain value of the controller bank ).

This phenomena also can be avoided by increasing the number and range of the controller

gains used in the controller bank. It is also seen from the results that a step signal is not
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(a) (b)

(c) (d) (e) (f)

Figure 4.4: Multi-model adaptive pH control results for Case 1 (a) output plot (b) top
plot - plant input, bottom plot controller gain (c-f) zoomed in plots of the input output
plot after each big step transition; After transients the gain of the controller converges to a
value that brings the actual loop close to the target loop. As compared to direct adaptive
control, MMAC exhibits somewhat larger transient times and has some mismatch in the
controller parameter because of the controller gain quantization.

ideal for the transition between set points.

The above results are representative to all the tested cases, demonstrating that the

proposed MMAC algorithm performs reasonably well and achieves uniform performance

across the operating range with a variation in buffer flows. Because of its large

computational requirements that necessitate a different hardware configuration, it was not

tested experimentally. However, it is anticipated its performance will be similar to the

direct adaptive controller.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Multi-model adaptive pH control results for Case 2, (a) and (d) output plots,
(b) and (e) top plots- plant input, bottom plots- controller gains(c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the MMAC results in a loop close to the target
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Multi-model adaptive pH control results for Case 3, (a) and (d) output plots,
(b) and (e) top plots- plant input, bottom plots- controller gains(c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the MMAC results in a loop close to the target
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Multi-model adaptive pH control results for Case 4, (a) and (d) output plots,
(b) and (e) top plots- plant input, bottom plots- controller gains(c) and (f) zoomed in plots
of the input output plot in (a) and (d) respectively after each big step; With the buffer flow
changes the MMAC results in a loop close to the target
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Chapter 5

IMPLEMENTATION OF PH CONTROL IN MFC

This chapter focuses on the application of the proposed direct adaptive pH control

algorithms to control pH of an MFC anode and study implications of pH control on its

performance. Combined activated sludge anaerobic digestion model(CASADM) from [70] is

used in this study. First, important details of CASADM model([70]) along with necessary

changes for pH control are described. Second, the pH control algorithm implementation

details are discussed. Finally, results of pH control along with results that support the

improvement of MFC performance with pH control are presented.

5.1 CASADM model

Anaerobic digestion one of the commonly used technology in the improvement of

wastewater treatment sustainability. In a typical wastewater treatment plant (WWTP)

sludge produced from the primary sedimentation and the activated sludge (AS) processes

are sent to the anaerobic digester (AD). In anaerobic digestion, first complex and particulate

organic compounds are hydrolyzed to soluble fermentable substrates. Second, these

substrates are then fermented by bacteria(acetogenic and acidogenic) to produce acetate,

carbon dioxide (CO2), and hydrogen gas (H2). The products of fermentation are further

consumed by methanogens to produce methane gas(CH4). Anaerobic digestion not only

reduces bio-solids from the sludge but also produces methane gas(CH4), which can be

further used to generate energy.

AD’s performance is highly influenced by its solids retention time (SRT) for three

reasons. Mainly, slow-growing methanogens, hydrolysis of complex and particulate organic

substrates and rates of CH4 production. Extracellular polymeric substances (EPS) and

soluble microbial products (SMP) are also important in AS and AD processes with their
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fate also strongly depend on SRT. CASADM model helps to understand effects of sludge

recycling on AD SRT along with COD removal and methane CH4 production. A brief

description of CASADM model is discussed below.

CASADM is a multi-species, dynamic mathematical model that is used to describe

AS-AD processes in different configurations (hybrid and conventional). CASADM

components are divided into solids and soluble groups. This model tracks five types

of active biomass species of solids group –heterotrophic bacteria, ammonium-oxidizing

bacteria(AOB), nitrite-oxidizing bacteria(NOB), fermenting bacteria, and methanogenic

Archaea – along with EPS and inert biomass. Influent particulate COD (PCOD) is also

one of the solid components. Soluble chemical components included in the model are

acetate, soluble COD (SCOD) that excludes acetate, dissolved oxygen, utilization-associated

byproducts (UAP), biomass- associated byproducts(BAP), ammonium (NH+
4 ), nitrate

(NO−3 ), and nitrite(NO−2 ). This model also includes two gas components mainly nitrogen

(N2) and methane(CH4). CASADM assumes the only acetate is an electron-containing

product produced during fermentation and balances the electron equivalents in fermentation

reaction without H2. This is because stoichiometric and kinetic relationships of H2

production are not defined for SMP and EPS and the consumption of H2 normally is so

rapid that it does not accumulate to a significant level. In terms of mechanisms, CASADM

includes hydrolysis of PCOD and EPS; aerobic biodegradation of SCOD, acetate, and SMP;

two- step nitrification; denitrification; fermentation; and methanogenesis. To study pH

effect on the AS-AD process we consider simplified CASADM model with one tank and

important CASADM model settings used in this study are listed in Table 5.1. More details

of this model can be found in [70].

In general, AS-AD process makes the output stream acidic and a sample profile of pH

is shown in Fig. 5.1

To study pH control effects of CASADM model, a new flow of 1M NaOH is introduced

in the input stream and its flow rate is manipulated to adjust the pH. For control purposes,
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Table 5.1: CADADM parameters

Model parameter Value

Influent flow rate(Qin) 1000 L/day

Tank Volume 15000 L

Nominal SRT 20 days

Influent concentrations

SCOD 322.5 mg/L

PCOD 0 mg/L

Heterotrophs 50 mg/L

AOB 10 mg/L

NOB 1 mg/L

Fermenters 10 mg/L

Methanogens 1 mg/L

Inerts 50 mg/L

Ammonium 60 mg/L

Nitrate 0.2 mg/L

Dissolved oxygen 0.5 mg/L

Dihydrogen Phosphate 10 mg/L

Bicarbonate 200 mg/L

Acetate 5 mg/L
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Figure 5.1: pH profile of CASADM model without pH control; It can be seen AS-AD
process makes the stream acidic. However, presence of large quantities of buffer stabilizes
pH around 5.4

pH is measured every 10 seconds and a white noise is added to the pH value to mimic

sensor noise. Implementation details of adaptive pH control algorithm for CASADM model

are discussed in the next section.

5.2 pH control implementation

This section uses the modified CASADM model to apply the proposed direct adaptive

pH control algorithm. The proposed adaptive control requires a nominal plant model, which

is obtained by injecting PRBS signal to control NaOH flow around operating pH of 6 and

fitting a linear model to the input-output data. Here NaOH flow rate is the plant input

and pH reading is the plant output. This step provides an estimate of the plant dynamics,

that undergo only small changes with the change of operating conditions.

As described in experimental section of direct adaptive pH control, system identification

algorithms from [63] [64][55] [66] and [62] are used to fit model to the data. Uncertainty

estimates from the residuals of these algorithm are further used in the selection of

specifications for the controller design.
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(a) (b)

Figure 5.2: System identification signals (a) input and (b) output(red trace) and predicted
output(blue trace)

The identified transfer function G̃6 is shown below

G̃6(s) =
3.815× 10−2

s
(5.1)

Output responses of the identified model along with the actual output for the PRBS

input is shown in Fig. 5.2(b). Because the plant is an integrator, the output of the identified

plant drifts away from the actual plant. It can be seen from the multiplicative uncertainty

plot bandwidth of BW = 0.006rad/min is a reasonable choice.

A PI controller (C̃6) is designed for the plant G̃6 using an offline FLS algorithm [62]

[23]. The target loop was chosen to achieve closed-loop bandwidth specification of 0.006

rad/min based on a linear quadratic regulator optimal loop with integrator augmentation

and its transfer function is given below:

L̃6 =
2.456× 10−6(s+ 1.134× 10−6)

s2
(5.2)

The PI controller parameters of the nominal controller are obtained by minimizing an offline

RSC and its transfer function is shown below

C̃6 =
6.4372× 10−5(s+ 1.135× 10−6)

s
(5.3)

Bode magnitude plots of the target loop and the actual loop transfer function are shown

in Fig. 5.3(a) and plots are showing a fairly good match. To validate the designed controller,
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(a) (b)

(c)

Figure 5.3: (a) Frequency response of target loop and identified loop transfer functions
(b) complementary sensitivity plot (red) with its multiplicative uncertainty bound(blue)
obtained in the identification step (c) RSC plot for the nominal controller; The actual
loop and the target loop are close as expected. The multiplicative uncertainty provides
an approximate bound on the complementary sensitivity and helps in the selection of a
closed-loop bandwidth. For the chosen bandwidth of 0.006 rad/min the complementary
sensitivity is at the at the constraint. A less conservative estimate, obtained using a coprime
factor uncertainty computation, shows that the corresponding RSC (CFRSC) value less than
1 for all frequencies, thereby the designed controller is expected to yield robust closed-loop
stability.

a coprime factor uncertainty estimate described in Section 3.2 is used. Fig. 5.3(c) shows an

CFRSC value less than 1 for all frequencies, indicating the robust stability of the nominal

controller (C̃6) with respect to the uncertainty arising from the estimation error

For the direct adaptive control experiments, C̃6 was used as a base controller and the
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target loop used in its design (L̃6) was used as a target loop for the adaptation.

The filter bank was constructed using 5 all-pass filters with corner frequencies spanning

the logarithmic interval between 0.1BW to 10BW , where BW is the bandwidth of target

loop. The gain values of [6.4372× 10−6, 6.4372× 10−4] were used as lower and upper limits

of K respectively. A forgetting factor of 0.9999 was used.

Results from the closed-loop simulations along with its effect on MFC operation is

described in the next section.

5.3 Results

This section presents pH tracking results of the proposed algorithm around pH 6. A

square wave is injected at the reference to provide excitation for the adaptation. Tracking

results from the simulations are shown in Fig. 5.4. It can be seen from the pH tracking

results( Fig. 5.4(a)) it took about 300000 mins for the initial transients to die and this is

because of the saturation in the plant input Fig. 5.4(b). This also results in the parameter

saturation of the controller gain for this period and it can be noticed in Fig. 5.4(c). Overall

the proposed pH control algorithm controls pH close to the set-point

To study the effect of pH control on CASADM operation all 44 state components of this

model with pH control are compared against the model without pH control. It has been

noticed most of the components look similar in both cases. This is because pH variation in

the case without pH control is minimal( Fig. 5.1). However, a small improvement is noticed

in the methane(CH4) production. Plots of methane concentration for the cases with pH

control and without pH control are shown in Fig. 5.5. The CASADM model used for this

study has high resting time with majority activity carried during the start of the process.

So increase in the methane production can also be attributed to initial transients in pH.

With this result, we conclude inclusion of pH control in CASADM improves methane

production sightly. In the case of CASADM model with less buffer, pH of the process can

drop significantly (instead of settling around 5.4 ) and pH control for this case can give

more tangible benefits in terms of its efficiency.
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(a) (b)

(c)

Figure 5.4: (a) Output pH plot(red) of the plant for a set point(blue) (b) input NaOH
flow plot (c) Controller gain plot; pH plot shows large transient time this is because of the
saturation in the plant input. This also causes saturation in the controller gain during the
initial transient

67



Figure 5.5: Plots of methane(CH4) concentration in the reactor for the case without pH
control (red) and for the case with pH controlled at 6 (blue); It can be seen CASADM
model with pH controlled at 6 produces more methane as compared to a CASADM model
without pH control
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Chapter 6

GUIDELINES FOR INDUSTRIAL IMPLEMENTATION

One of the weaknesses in the usage of the proposed adaptive control algorithms

for industrial implementations is in step set-point transitions where the gain changes

dramatically and large overshoots are obtained. A potential common remedy is in restricting

the rate of change in the set-point, e.g., with ramp transitions, to reduce the frequency

content of the reference signal and allow more time for the adaptation to catch up.

Ramp signal transition behaves similarly to a step signal transition with a pre-filter. Our

simulations, however, indicate that at the end of the ramp the excitation presented to the

estimator is not sufficient to identify the process gain at the new operating conditions,

leaving the door open for subsequent poor performance. For this reason, and since the

controller is already in a transient regime, we propose to include a logic in the supervisory

loop to inject small amplitude excitation around the crossover frequency together with the

ramp change in the set-point. The injected excitation can be stopped automatically when

the gain estimates become reliable, based on the optimal RSC value. The implementation of

such a strategy shows indeed a dramatic reduction in overshoot, as well as the convergence

of the controller gain at the end of the transition between operating points, as shown in

Fig. 6.1 and Fig. 6.2.

Unfortunately, the same remedy cannot provide adaptation convergence for changing

buffer capacity. For this case, we can only include a supervisory logic that injects excitation

whenever the RSC estimate used in the cost objective grows either due to disturbances

or gain drifts. In both cases, the amplitude of the injected excitation and the associated

variation of the pH are kept small so that they do not degrade the performance significantly.

In some cases of buffer flow changes, as in Fig. 1.3, the loop instability provides required

excitation for the adaptation. The controller gain adapts to a value that stabilizes the
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(a) (b)

Figure 6.1: Direct adaptive pH control for the ramp transition signal (a) output
plot;output signals include reference (black trace), target loop (red), actual (blue) (b) top
plot- plant input, bottom plot- controller gain; Overshoot in the output is minimal and the
supplied excitation is sufficient for the convergence of the controller gain parameter.

closed-loop. Example of this phenomenon for direct adaptive control Fig. 6.3.

The optimal RSC value is a good signal in process performance monitoring for the

supervisory control. All the performance monitoring guidelines explained in the paper [61]

can be extended with proposed algorithms in the implementation of supervisory control

using the optimal RSC value.
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(a) (b)

Figure 6.2: Multi-model adaptive pH control for the ramp transition signal (a) output
plot; output signals include reference (black trace), target loop (red), actual (blue) (b) top
plot- plant input, bottom plot- controller gain; Overshoot in the output is minimal and the
supplied excitation is sufficient for the convergence of the controller gain parameter.
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Figure 6.3: Direct adaptive pH control results for the buffer flow Case1 to Case 4 transition,
establishing effectiveness of controller gain adaptation for buffer flow changes: top to
bottom- plant output, plant input, controller gain and buffer flow plots; output signals
include reference (black trace), target loop (red), actual (blue) ; As compared to Case
1, Case 4 has larger variation in the plant gain and the proposed direct adaptive control
algorithm is able to adapt controller gain accordingly.
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Chapter 7

LOW-COST POTENTIOSTAT

The main purpose of a potentiostat is to regulate the potential of a working electrode

with respect to a reference electrode potential at a specified set-point. There are many

analytical grade potentiostats readily available in the market, however, they are bulky and

their unit cost is very high. To tackle this problem in this chapter we propose a new low-cost

and portable potentiostat alternative. First, construction details of this potentiostat are

discussed in detail. Second, the proposed potentiostat is tested for set-point tracking using a

ferricyanide reactor. The same ferricyanide reactor is also used to obtain set-point tracking

data for an analytical grade potentiostat. We study both set-point tracking test results by

comparing their accuracy and speed. Using these results trade-offs between the proposed

potentiostat and an analytical grade potentiostat are discussed. Finally, the proposed

potentiostat is tested for its tracking performance when delivering high current using 1-ohm

resistance and corresponding test results are presented.

7.1 Low-cost potentiostat construction

Schematic diagram of the proposed low-cost potentiostat is shown in Fig.7.1, we can

divide it broadly into two groups mainly digital and analog. The digital side consists of an

analog to digital converter (ADC), a digital to analog converter (DAC), a microcontroller

(Arduino Mega) and a personal computer. Personal computer(PC) or equivalent is mainly

used to send set-points to the microcontroller and to perform data acquisition, data storage,

and data visualization tasks. The microcontroller receives potentiostat set-point from the

PC and sends readings of the working electrode voltage, the reference electrode voltage

and current between the anode and cathode back to the PC for the purpose of logging.

The microcontroller and the PC communicate using UART serial communication with
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Figure 7.1: Schematic diagram of the proposed low-cost potentiostat

a baud rate of 115200. Both ADC and DAC are powered using the regulated voltage

generated by the analog power circuit. Their main purpose is to interface analog side of

the potentiostat with the microcontroller and they communicate with the microcontroller

using SPI communication protocol. Because they are powered using different voltage

levels(generated from the analog power circuit), SPI communication between the ADC/DAC

and the microcontroller is digitally isolated using an isolator(IC ADUM7641). An integrated

circuit(IC) ADS1248 is used as the ADC and another IC AD5752R is used as the DAC.

The ADS1248 is a 24 bit ADC with 8 differential channels and it can support sampling rate

up to 2000 samples/sec. The AD5752R is a 16 bit DAC with 2 channels and it can support

sampling rate up to 10 mega samples/sec.

The analog circuit is divided into three parts, an analog power circuit, a PI controller

and shifter circuits. The analog power circuit converts a unipolar voltage source into bipolar

voltage source, it translates an anode set-point voltage to an equivalent signal that is capable

of driving current between the anode and the cathode, and it also generates a regulated

+5V voltage signal(used to power ADC and DAC). To keep the cost low, we used a single
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unipolar voltage source and convert it to a bipolar voltage source by generating a floating

ground. The floating ground terminal is created using a voltage divider(R7 and R8) circuit

along with an op-amp(LM358N-IC1B) and power transistors(TIP125-Q2 and TIP122-T2),

details of this can be seen in Fig. 7.2. The anode setpoint from the PI controller is

converted to a signal that can drive high current between the anode and the cathode using

a Darlington pair. This Darlington pair is chosen based on the unit impedance and current

supply requirements. The current between the anode and the cathode is driven by either

the PNP Darlington pair or the NPN Darlington pair (TIP122 or TIP125) depending on

the polarity of the set-point. A shunt resistor of 1 ohm is used to measure the current

between the anode and the cathode and a snippet of the power circuit is shown in Fig. 7.2.

This analog power circuit also generates a regulated DVDD(+5V) using LM7805 voltage

regulator powered using V+ and floating ground. Finally, the anode(working electrode),

the reference electrode and the current signals are sent to shifter circuits to bring them into

the range of ADC for sampling.

Shifter circuits are mainly used to bring the voltage signals into the ADC range for

sampling. In the proposed potentiostat we use a unipolar ADC with the range of 0 to

5V however, our voltage signals (working/reference electrode) are bipolar with the voltage

between -2.5V to +2.5V. The shifter circuit brings signals from -2.5V - +2.5V range to 0V

- +5V and the circuit diagram of the shifter circuit is shown in Fig. 7.3. This shifter circuit

requires a reference voltage of +2.5V to do voltage translation and it is derived from the

buffered DAC reference signal(which is +2.5V). To restrict all the signals going into the

ADC strictly in the ADC range a rail to rail op-amp TLV2470C powered with 0V-5V is

used.

A op-amp based PI controller regulate the potential of the working electrode with

respect to the reference close to the potentiostat set-point. The PI controller generates

anode set-point that minimizes the tracking error e(S − (R − A)), where S, R, and A are

potentiostat’s set-point, reference electrode voltage and anode voltage respectively. This PI
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Figure 7.2: Circuit diagram of the analog power circuit

controller along with the summation block is built using op-amps and the circuit diagram of

the PI controller with the summation block is shown in Fig. 7.4. The proportional gain(Kp)

of the PI controller is chosen as 1 and the integral gain (Ki) of the PI controller is chosen

as 83.22(justification for this choice is discussed in Section 7.2).

The proposed potentiostat is tested for set-point tracking and test results are discussed

in the next section.

7.2 Test results

Now onwards, the potentiostat input means anode potential and the potentiostat

output means anode-reference electrode potential. To analyze the dynamics of the

system(input-output characteristics of a ferricyanide reactor), we performed some system

identification experiments using pseudo-random binary sequence (PRBS) inputs and the

anode voltage readings with respect to the reference electrode(anode-reference voltage) are

76



Figure 7.3: Circuit diagram of the analog shifter circuit

Figure 7.4: Circuit diagram of the analog PI controller

measured. Input-output plots of the data obtained using system identification experiments

with various PRBS settings are shown in Fig. 7.5.

We fit a linear model for the a system identification data set. Input-output plot along

with the estimated output plot is shown in Fig. 7.6.

Transfer function of the identified plant is listed below

P =
0.88452(s+ 1.916)

(s+ 1.917)
(7.1)

The above transfer function has near left half plane pole-zero cancellation(can be

approximated as a constant). This confirms there are very little dynamics between

input(Anode set-point) and output(Anode-Reference) of the system, thereby it can
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(a) (b)

(c) (d)

Figure 7.5: Input(Anode set-point)-output(Anode-Reference) plots from various system
identification experiments

be confirmed that the proposed proportional and integral gains produce satisfactory

performance.

The closed-loop system with the PI controller is tested for set-point changes and

closed-loop set-point tracking plots are shown in Fig. 7.7. It can be seen from these plots

the PI controller tracks the potentiostat set-point fairly well, however, there is a small bias

in the anode-reference potential as compared to potentiostat set-point. Upon investigation,

it is found this bias is a result of discrepancies in the shifter circuit used in the measurement

of potentials and it can be fixed easily by calibrating measurements.
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(a) (b)

Figure 7.6: System identification input-output plots with the estimated output generated
using identified plant model

To test set-point tracking properties of the proposed potentiating under high current

conditions we use 1-ohm resistor as load and reference and cathode potentials are kept

constant. Results from these tests are shown in Fig. 7.8. It can be seen from these plots

the designed potentiostat track set-point reasonably well. They also have a small offset,

causes for these offsets and possible remedies are already discussed in the ferricyanide reactor

set-point tracking case.

To evaluate the performance of our potentiostat, we compare the accuracy of potential

measurements with an analytical grade potentiostat (Biologic-vmp3). Biologic-vmp3 is

made to drive the same ferricyanide reactor with the same set-points used in the proposed

potentiostat testing. Fig. 7.9 shows cathode potential plots of the proposed potentiostat

and Biologic-vmp3 potentiostat at various potentiostat set-points.

It can be seen from the plots in Fig. 7.9 our potentiostat performs reasonably well

in tracking set-points as compared to an analytical grade potentiostat. There is an offset

in our potentiostat response, this is a result of the shifter circuit and a variation in the

reference electrode potential over time. Some of the bias can be corrected by calibrating

potentiostat measurements. Statistical analysis of the proposed potentiostat performance

is discussed in the next paragraph.

79



(a) (b)

(c)

Figure 7.7: Potentiostat closed loop set-point tracking results; It can be seen for these
plots the proposed potentiostat PI controller tracks set-points fairly well, however, there is
a small bias in the output and this is a result of discrepancies in the resistor values used in
the shifter circuits

This potentiostat used an analog to digital converter (ADC) with an effective resolution

of 17 bits and a range of 0 to 2.048 V to measure potentials of the anode and the

reference electrodes. This means ADC least significant bit (LSB) represents a voltage of

1.5625 × 10−5V . If the ADC quantization error is modeled as a uniform random variable

[-0.5LSB, +0.5LSB], then the standard deviation of an ADC voltage reading resulting from

the quantization is 4.5105 × 10−5V and it is a theoretical lower bound on the standard

deviation of actual voltage measurements. Table 7.1 shows the standard deviation of the
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(a) (b)

Figure 7.8: Potentiostat closed loop set-point tracking results with 1 ohm resister as
load(a) 0.5 V set-point (b) 1 V set point; It can be seen for these plots the proposed
potentiostat PI controller tracks set-points fairly well

cathode potential readings, it can be observed their values are higher than theoretical value

(standard deviation because of quantization); this is a result of the presence of external

noise. Effect of external noise can be decreased by migrating our potentiostat’s analog

circuit to a better electrically insulated printed circuit board (PCB).

As compared to Biologic-vmp3 cathode potential measurements, the standard deviation

of our potential is slightly higher this means the proposed potentiostat is less accurate

as compared to Biologic-vmp3. Even though the analytical grade potentiostat is more

accurate(standard deviation values of voltage readings of the analytical grade potentiostat

are less than our potentiostat) and can sample potentials faster than the potentiostat we

designed, the cost of the analytical grade potentiostat is significantly higher than the

potentiostat we designed ($6000 vs $200). Also less accurate voltage measurements, not

necessary means bad tracking performance as we only use them for the data logging not

in the controller algorithm (PI controller is implemented using an analog circuit). Analog

PI controller also enables us to use lower sampling rates without sacrificing performance

and sampling rate of 1 sample/sec is a reasonable choice for signal monitoring and logging

purposes.
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(a) (b)

(c) (d)

Figure 7.9: Cathode electrode potential plots (a) for the potentiostat set-point of 0.4 V,
(b) for the potentiostat set-point of 0.45 V, (c) for the potentiostat set-point of 0.5 V, (d)
for the potentiostat set-point of 0.6 V.

Table 7.1: Standard deviation of cathode potential measurements

Potentiostat set-point(V) Our potentiostat(V) Analytical grade potentiostat(V)

0.4 5.5575× 10−4 4.3489× 10−4

0.45 5.9654× 10−4 4.1844× 10−4

0.5 5.9194× 10−4 3.5317× 10−4

0.6 5.8798× 10−4 4.4608× 10−4
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Chapter 8

CONCLUSIONS AND FUTURE DIRECTIONS

A pH neutralization process with high retention time is studied in detail and it is shown

that only the gain of the plant changes significantly with the operating point and the

buffering capacity. The gain change is so large that the usual process delays caused by pump

actuators and sensor sampling can cause instability with a fixed or a scheduled controller

that does not account for buffering changes, as shown in Fig. 1.3. To avoid an excessive

performance degradation with a conservative controller gain selection, two formulations of

adaptive control, a direct adaptive and a multi-model switching controller are investigated

as solutions of the control problem.

In both cases, the PI controllers are tuned using a frequency loop shaping objective

and the online optimization based on the approximation of a H∞ robust stability condition

from input-output data. It is shown from the results of the comparative study show the

proposedH∞ norm based adaptation is less susceptible to the properties of excitation signals

as compared to the commonly used L2 norm based adaptation. Lab scale experiments are

used to develop a hardware implementation procedure for the proposed algorithm, where

information from the system identification and uncertainty estimation is used in the selection

of the target loop shape. Experimental and computer simulation results indicate that the

two adaptive controllers can provide similar, practically acceptable performance over a wide

operating range.

A CASADM model of an MFC is studied and modified to include base flow (for pH

control). The proposed direct adaptive control algorithm is applied to perform pH control

of this model and it is shown pH control helps in the improvement of methane production

rate.

For an industrial implementation of these controllers, it is recommended that changes
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of the set-point must be performed under a ramp constraint to avoid excessive overshoots.

Furthermore, a supervisory loop should be included to provide a logic for the acceptance of

the gain estimates and the injection of small amplitude excitation in case that they become

unreliable due to noise or disturbances.

In this dissertation, we also show that, in the typical industrial environment, the

proposed potentiostat performance is practically similar to an analytical grade potentiostat.

The trade-offs between the proposed potentiostat and an analytical grade potentiostat are

also discussed. Moreover, separation of analog, digital and processor hardware parts makes

the potentiostat design flexible.
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P. Aelterman, W. Verstraete and K. Rabaey, “Microbial fuel cells: methodology and
technology”, Environmental Science & Technology 40, 17, 5181–5192 (2006).

[40] Lusk, B. G., P. Parameswaran, S. C. Popat, B. E. Rittmann and C. I. Torres, “The
effect of pH and buffer concentration on anode biofilms of thermincola ferriacetica”,
Bioelectrochemistry 112, 47–52 (2016).

[41] Marcus, A. K., C. I. Torres and B. E. Rittmann, “Analysis of a microbial
electrochemical cell using the proton condition in biofilm (PCBIOFILM) model”,
Bioresource Technology 102, 1, 253 – 262, special Issue: Biofuels - II: Algal Biofuels
and Microbial Fuel Cells (2011).

[42] McAvoy, T. J., E. Hsu and S. Lowenthal, “Dynamics of pH in controlled stirred tank
reactor”, Industrial & Engineering Chemistry Process Design and Development 11, 1,
68–70 (1972).

[43] McCarty, P. L., J. Bae and J. Kim, “Domestic wastewater treatment as a net
energy producer–can this be achieved?”, Environmental Science & Technology 45,
17, 7100–7106, pMID: 21749111 (2011).

87



[44] Modin, O. and K. Fukushi, “Production of high concentrations of H2O2 in a
bioelectrochemical reactor fed with real municipal wastewater”, Environmental
technology 34, 19, 2737–2742 (2013).

[45] Nishikawa, Y., N. Sannomiya, T. Ohta and H. Tanaka, “A method for auto-tuning of
PID control parameters”, Automatica 20, 3, 321–332 (1984).

[46] Pandiaraj, M., A. R. Benjamin, T. Madasamy, K. Vairamani, A. Arya, N. K.
Sethy, K. Bhargava and C. Karunakaran, “A cost-effective volume miniaturized and
microcontroller based cytochrome c assay”, Sensors and Actuators A: Physical 220,
290–297 (2014).

[47] Peymani, E., A. Fatehi, P. Bashivan and A. K. Sedigh, “An experimental comparison
of adaptive controllers on a pH neutralization pilot plant”, in “India Conference, 2008.
INDICON 2008. Annual IEEE”, vol. 2, pp. 377–382 (2008).

[48] Popat, S. C., D. Ki, M. N. Young, B. E. Rittmann and C. I. Torres, “Buffer pKa and
transport govern the concentration overpotential in electrochemical oxygen reduction
at neutral pH”, ChemElectroChem 1, 11, 1909–1915 (2014).
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This chapter discusses derivation of a RSC metric we used in the formulation of adaptive
pH control.

Let G be the plant to be controlled by the controller C. The FLS algorithm objective is
to find the controller C that minimizes distance between in loop transfer function GC and
the target loop L. One way of repenting distance between GC and L is using RSC metric
and the derivation of RSC metric with the use of small gain theorem is shown below.

Consider, a block diagram of the closed-loop system as shown in Fig. A.1. It can be
rearranged into the block diagram shown in Fig. A.1(b). Reduction of the block diagram
in Fig. A.1(b) into the block diagram convenient for the application of small gain theorem
is shown in Fig. A.1(c).

(a) (b)

(c)

Figure A.1: Block diagrams of the closed-loop system

If (GC−L)
1+L is stable, then the small gain theorem condition for the closed loop system

described using the block diagram in Fig. A.1(c) is as follows.∥∥∥ (GC−L)
1+L

∥∥∥
∞
< 1. (A.1)

We call the left side of Eq. A.1 a RSC metric. The RSC term can be further simplified
into the following equation.

RSC =
∥∥S(CG− L)

∥∥
∞ . (A.2)

Where S = 1/(1 + L) is target sensitivity.
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