
Power-Performance Modeling and Adaptive Management of

Heterogeneous Mobile Platforms

by

Ujjwal Gupta

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2018 by the
Graduate Supervisory Committee:

Umit Y. Ogras, Chair
Chaitali Chakrabarti
Michael Kishinevsky

Nikil Dutt

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

Nearly 60% of the world population uses a mobile phone, which is typically powered

by a system-on-chip (SoC). While the mobile platform capabilities range widely, re-

sponsiveness, long battery life and reliability are common design concerns that are

crucial to remain competitive. Consequently, state-of-the-art mobile platforms have

become highly heterogeneous by combining a powerful SoC with numerous other

resources, including display, memory, power management IC, battery and wireless

modems. Furthermore, the SoC itself is a heterogeneous resource that integrates

many processing elements, such as CPU cores, GPU, video, image, and audio proces-

sors. Therefore, CPU cores do not dominate the platform power consumption under

many application scenarios.

Competitive performance requires higher operating frequency, and leads to larger

power consumption. In turn, power consumption increases the junction and skin

temperatures, which have adverse effects on the device reliability and user experi-

ence. As a result, allocating the power budget among the major platform resources

and temperature control have become fundamental consideration for mobile plat-

forms. Dynamic thermal and power management algorithms address this problem

by putting a subset of the processing elements or shared resources to sleep states, or

throttling their frequencies. However, an adhoc approach could easily cripple the per-

formance, if it slows down the performance-critical processing element. Furthermore,

mobile platforms run a wide range of applications with time varying workload char-

acteristics, unlike early generations, which supported only limited functionality. As a

result, there is a need for adaptive power and performance management approaches

that consider the platform as a whole, rather than focusing on a subset. Towards this

need, our specific contributions include (a) a framework to dynamically select the

Pareto-optimal frequency and active cores for the heterogeneous CPUs, such as ARM

i

big.LITTLE architecture, (b) a dynamic power budgeting approach for allocating op-

timal power consumption to the CPU and GPU using performance sensitivity models

for each PE, (c) an adaptive GPU frame time sensitivity prediction model to aid

power management algorithms, and (d) an online learning algorithm that constructs

adaptive run-time models for non-stationary workloads.

ii

Dedicated to my family:

Udai Kumar Gupta, Rashmi Gupta,

Dhruv Gupta, and

Ramandeep Kaur

iii

ACKNOWLEDGEMENTS

My deepest gratitude is to my advisor, Dr. Umit Y. Ogras, for the patience, advice

and guidance he has offered throughout my study. His insightful recommendations

helped me navigate through challenges that I faced during my study. In particular,

his tips about software development, writing papers, attending conferences, time

management and networking have been extremely useful. This has led to one of

the most productive times in my life. It is natural that this dissertation would not

be possible without his support.

I am thankful to Dr. Chaitali Chakrabarti, Dr. Michael Kishinevsky, and Dr.

Nikil Dutt for taking out time and being in my Ph.D. defense committee.

I am also thankful for encouragement, frequent interactions and help with a num-

ber of colleagues and friends at ASU: Dr. Jaehyun Park, Ganapati Bhat, Manoj

Babu, Joseph Campbell, Cemil Geyik, Rohit Voleti, Md Moztuba, Hitesh Joshi,

Sumit Kumar Mandal, Ugurkan Tursun, Mounica Kothi, Sankalp Jain, Mohit Parihar,

Shankhadeep Mukerji, Navyasree Matturu, Spurthi Korrapati, Prasanthi Yelamarthy,

Sugam Kapur, Darshan Satyamurthy, Sumit Kumar Mandal, Akhil Arunkumar and

Shrikant Singh.

I am thankful to Semiconductor Research Corporation, National Science Founda-

tion and Intel Corporation for funding this research. I enjoyed working closely with

Dr. Michael Kishinevsky, Dr. Raid Ayoub, and Dr. Francesco Paterna in the last

three years. I also enjoyed working with Dr. Prabhat Mishra and I am indebted for

his continued mentorship.

Finally, my parents Udai Kumar Gupta and Rashmi Gupta, brother Dhruv Gupta,

and wife Ramandeep Kaur deserve most of the credit for this work. I am grateful for

their love, endless support and understanding towards my research career.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Summary of Publications . 4

2 DYNAMIC PARETO-OPTIMAL CONFIGURATION SELECTION FOR

HETEROGENEOUS MPSOCS . 6

2.1 Introduction . 6

2.2 Related Research . 10

2.3 DyPO Configuration Selection . 12

2.3.1 Motivation and Overview . 12

2.3.2 Phase-Level Application Instrumentation 16

2.3.3 Data Characterization Methodology . 18

2.3.4 Optimal Configuration Classification . 20

2.3.5 Online Optimal Configuration Selection 23

2.4 Experimental Results . 24

2.4.1 Experimental Setup . 24

2.4.2 Classifier Accuracy . 27

2.4.3 Runtime Validation of DyPO . 28

2.4.4 Improvements in Energy and PPW . 33

2.5 Conclusion . 37

3 DYNAMIC POWER BUDGETING FOR MOBILE SYSTEMS RUN-

NING GRAPHICS WORKLOADS . 38

v

CHAPTER Page

3.1 Introduction . 38

3.2 Related Research . 41

3.3 Power Budget Allocation Mechanism . 43

3.3.1 Preliminaries . 43

3.3.2 Power Budget Allocation . 46

3.3.3 Illustration of the Power Allocation Technique 47

3.3.4 Summary of Overall Operation . 50

3.4 Experiment and Simulation Results . 50

3.4.1 Hardware Experimental Setup . 51

3.4.2 Experimental Results on the Hardware Platform 54

3.4.3 Simulation Framework . 58

3.4.4 Simulation Results . 61

3.5 Conclusion . 63

4 AN ONLINE LEARNING METHODOLOGY FOR PERFORMANCE

MODELING OF GRAPHICS PROCESSORS . 66

4.1 Introduction . 66

4.2 Related Research . 69

4.3 Frame Time Characterization . 72

4.3.1 Challenges and Notation . 72

4.3.2 Frame Time and Counter Data Collection 74

4.4 Frame Time Prediction . 78

4.4.1 Differential Frame Time Model . 79

4.4.2 Frame Time Sensitivity . 81

4.4.3 Offline Feature Selection . 84

vi

CHAPTER Page

4.4.4 Online Learning of the Model Parameters 86

4.5 Experimental Results . 88

4.5.1 Experimental Setup . 88

4.5.2 Offline Feature Selection and `2 Regularization 90

4.5.3 Online Frame Time Prediction . 92

4.5.4 Online Frame Time Sensitivity Prediction 95

4.5.5 Comparison with an Auto Regressive Model using LMS 96

4.5.6 Impact for Dynamic Power Management 97

4.5.7 Overhead Analysis . 99

4.6 Conclusion . 100

5 STAFF: ONLINE LEARNING WITH STABILIZED ADAPTIVE FOR-

GETTING FACTOR AND FEATURE SELECTION ALGORITHM 109

5.1 Introduction . 109

5.2 Related Research . 112

5.3 STAFF Online Learning Framework . 113

5.3.1 Model Template . 113

5.3.2 Stability under Exponential Forgetting . 114

5.3.3 Online Feature Selection . 116

5.3.4 Adaptive Forgetting Factor . 118

5.4 Summary and Complexity Analysis . 120

5.5 Experiments . 123

5.5.1 Experimental Setup . 123

5.5.2 Evaluating the GPU Performance Model 124

5.5.3 Faster Convergence for STAFF. 129

vii

CHAPTER Page

5.6 Conclusion . 129

6 CONCLUSION . 131

REFERENCES . 133

viii

LIST OF TABLES

Table Page

2.1 System and application level parameters used in this work. 16

2.2 Data format for each phase. 20

3.1 Notation Table . 65

4.1 Summary of the notation used in this chapter . 102

5.1 The number of algebraic operations in the SEF and STAFF algorithms

in each iteration. 122

5.2 Summary of the baseline algorithms and the proposed STAFF frame-

work. 125

5.3 Three most correlated features used by the STAFF in different time

regions of the workload in Figure 5.9. 127

ix

LIST OF FIGURES

Figure Page

2.1 128 different frequency and core configurations of the Blackscholes ap-

plication showing the trade-off between (a) power consumption and

execution time, (b) energy consumption and execution time. 7

2.2 The outline of the proposed approach with an illustrative example. A

block of instructions, such as a function call, makes up basic blocks.

Our instrumentation groups a sequence of basic blocks into distinct

snippets. Finally, each snippet or a sequence of snippets may form

workload phases. 14

2.3 PAPI API instrumentation overview. 18

2.4 Training and runtime use of the DyPO classifier. 21

2.5 Implementation of DyPO in Linux Kernel 3.10. 25

2.6 Accuracy of the two classifiers used on the Odroid platform. In multi-

threaded benchmarks, -2T and -4T represents two and four threads,

respectively. 28

2.7 DyPO-Energy approach compared with the default governors running

on the platform. In multi-threaded benchmarks, -2T and -4T repre-

sents two and four threads, respectively. 30

2.8 DyPO-Energy, Interactive, Ondemand and Powersave governor com-

parison for normalized energy consumption. 34

2.9 DyPO-Energy, Interactive, Ondemand and Powersave governor com-

parison for normalized execution time. 34

2.10 DyPO-Energy, Interactive, Ondemand and Powersave governor com-

parison for normalized power consumption. 35

x

Figure Page

2.11 DyPO-Energy, Interactive, Ondemand and Powersave governor com-

parison for normalized PPW. 35

2.12 Comparison of the normalized PPW obtained using DyPO-Energy ap-

proach and Aalsaud et al. [1]. 37

3.1 A sample of the total power consumption and CPU temperature while run-

ning the 3D-Mark application. 39

3.2 Example of a CPU-GPU queueing model showing batch buffer and frame

buffer. 45

3.3 Summary of the power budgeting technique, showing the steps in each con-

trol interval. 51

3.4 Block diagram of the Atom chip [137] used in our experiments. 51

3.5 The sum of the CPU and GPU power consumption for 3D-Mark benchmark

showing two levels of power budget. The trace is 15 seconds long, i.e., 300

control intervals. 55

3.6 Deviation from the power budget constraint for different values of the power

budget. Each bar reports the average of the error in 3D-Mark, GLbench-

Egypt, Citadel, Nenamark2 and Jet-Ski benchmarks. 55

3.7 Experimental results for two different power budget values (50% and 90%

of the unconstrained power Punconst). The CPU power fraction of the power

budgets is plotted for each of the benchmarks. The GPU power fraction is

equal to (1− CPU power fraction). 56

3.8 Comparison of the throughput gain (FPS) achieved with the proposed tech-

nique with respect to 1) dynamic heuristic, and 2) static heuristic that

allocates 90% of Pmax to GPU and 10% of Pmax to CPU. 57

xi

Figure Page

3.9 The average frame rate across all benchmarks for each of the power budget

algorithms. 58

3.10 Simulation result of the proposed power budgeting technique showing the

sum of the CPU and GPU power consumption and frame rates for different

power budget values and workload phases. The GPU is under heavy load

to simulate graphics intensive applications like gaming. 59

3.11 Power budget distribution between the CPU and GPU for the three power

budget values and workloads. 62

3.12 Static heuristic algorithm result for (a) the sum of the CPU and GPU power

consumption and (b) performance for different distributions of GPU/CPU

powers. The power budget is set to 2.5 W. Dist=Y/X in the legend indicates

that Y% of 2.5 W is allocated to the GPU and X% of 2.5 W to the CPU. . . 64

4.1 The change in frame time for ice-storm application for (a) 200 MHz

and (b) 489 MHz GPU frequencies. 67

4.2 (a) Total power consumption of the Intel Minnowboard MAX plat-

form [61] when the GPU is rendering Art3 application at 60 FPS. The

crests correspond to the power consumption when the GPU is actively

rendering the frames, while the trough correspond to the power con-

sumption when the GPU is in sleep state. (b) Zoomed portion, which

shows three frames in the first 50ms. The width of the peaks give

the time the GPU is actively computing the frame. (c) Frame time

distribution for kernel and power instrumentations for Art3 application. 73

4.3 The frame time distribution obtained for rendering the same frame and

rendering multiple similar frames. 76

xii

Figure Page

4.4 The proposed methodology for collecting a rich set of training and test

data. Each frame is repeated nr times for every configuration. 77

4.5 Frame time and hardware counter values for the RenderingTest appli-

cation with increasing GPU frequency at four different frame complex-

ities. 101

4.6 Frame time for the RenderingTest application with increasing frame

complexity at four different GPU frequencies. 101

4.7 Adaptive filtering approach showing the update in parameters ai based

on error between the actual change in frame time and prediction. 103

4.8 Cross-validated LASSO regression result for; (a) the change in mean

squared error of the frame time prediction with increasing η values,

and (b) the change in the number of selected features with increasing

η values. 103

4.9 Correlation between the selected features and the difference in the

frame time tk − tk−1. 104

4.10 Frame time prediction error for RenderingTest and Art3 applications

for different values of the `2 regularization parameter µ. The black

markers show the mean value of the error and the whiskers show the

one standard deviation boundaries. 104

4.11 Frame time prediction for the RenderingTest app. 104

4.12 Frame time prediction for the 3DMark Ice Storm application running

at (a) 200 MHz, (b) 489 MHz. 105

4.13 Frame time prediction for the BrainItOn application running at 200

MHz. 105

xiii

Figure Page

4.14 Mean absolute percentage errors in the frame time for the Android

applications using the three algorithms: RLS, RLS+Offline, and DCD-

RLS. 106

4.15 Comparison of mean absolute percentage error in frame time for all

Android applications combined. 106

4.16 Frame time prediction while running YouTube and Chain reaction

game running simultaneously on Moto-X smartphone. 106

4.17 Predicted and actual frame times for RenderingTest application when

fnew is one level higher. 107

4.18 Frame time prediction error in RenderingTest application for multiple

frequency jumps. 107

4.19 Sensitivity of frame time with respect to frequency for (a) Render-

ingTest and (b) Art3 applications. 107

4.20 The proposed RLS technique converges in only 50ms compared to the

AR-LMS technique that converges in 1.6s for the Icestorm application. 108

4.21 Normalized energy consumption of the Ondemand governor and our

RLS-based policy normalized to the Oracle-based policy. 108

4.22 Overhead time as a function of the number of features for the RLS and

DCD-RLS algorithm. 108

5.1 A non-stationary GPU workload (a) example and (b) analysis using

autocorrelation function (ACF). 110

5.2 The y-axis is in log10scale. `1 norm of the inverse of the correlation

matrix R shows unstable behavior for α = 0 and stability for α = 10−5,

respectively. 115

xiv

Figure Page

5.3 Online STAFF framework has superior tracking performance to offline

feature selection. 118

5.4 Illustration of the entropy-based change detection. The solid-line shows

the entropy, while the and dashed-lines show the likelihoods of feature

1 and feature 2, respectively. 120

5.5 The STAFF framework adapts much faster to the new workload com-

pared to λ = 0.99. In addition, it does not possess the local erroneous

tracking of a0 caused by λ = 0.9. 120

5.6 Summary of the STAFF algorithm. 121

5.7 STAFF framework has 3.2× lower error (right axis) in frequency sensi-

tivity, and 6.5× lower complexity compared to the SEF algorithm for

M = 17. The errors are computed using the non-stationary workload

employed in Section 5.5.2 . 122

5.8 Comparison of the STAFF framework against constant forgetting factor

approaches. 124

5.9 Comparison of the STAFF framework against adaptiveforgetting factor

approaches. 124

5.10 Normalized RMS error in the frequency sensitivity estimates of the

algorithms in different workload regions. Errors are normalized with

respect to the best baseline approach (SEF+Offline FS*). 127

xv

Figure Page

5.11 Analysis of correlation coefficients, likelihoods, and entropy of the hard-

ware counter features for STAFF algorithm at 2 minutes time of Fig-

ure 5.9. (a) The correlation coefficients become equal in the time in-

terval immediately after a workload change occurs at time 2 minutes.

(b) The likelihood values become equal in the same time interval. (c)

The entropy for the set of the hardware counter features also changes

and peaks in the same time interval. 128

5.12 Comparison of the STAFF and Fast-STAFF algorithm. 129

xvi

Chapter 1

INTRODUCTION

More than half of the world’s population uses mobile systems for a variety of tasks,

such as calling, video conferencing, navigating, and gaming [133]. The users of mobile

systems primarily care about the responsiveness, long battery life and reliability of

the mobile platforms. Runtime management of these concerns is necessary, because

the set of active applications and their requirements change dynamically. Dynamic

thermal and power management (DTPM) techniques manage the trade-off between

performance, power consumption and temperature to provide a desirable user expe-

rience on a mobile system. Among the many components of a mobile system, the

System-on-a-chip (SoC) is one of the most power hungry and hot components. As a

result, dynamically managing the power consumption of a SoC is crucial to deliver

competitive performance. Furthermore, the SoC itself is a heterogeneous resource

that integrates many processing elements (PE), such as CPU cores, GPU, video, im-

age, and audio processors [42, 43]. Therefore, it becomes important to manage power

consumption of these PEs, since the CPU cores do not dominate the platform power

consumption under many application scenarios [14].

DTPM techniques for mobile phones have received unprecedented attention in the

last decade [121]. This is evident from the industry wide trend to provide more number

of OS-level hardware configuration knobs, such as frequency and number of cores for

the CPU and GPU [79, 86, 110]. Furthermore, these configurations are expected

to increase in the future, to provide power management architects more flexibility

in managing the power consumption of even more PEs. Therefore, techniques that

consider power management of more than one PE are now critical [57, 70].

1

Our overarching goal is to design theoretically grounded and practical approaches

that will comprehend the whole platform and adapt to workload and temperature

variations. A strong theoretical foundation is necessary to provide stability, power

and performance guarantees, while maintaining scalability in terms of platform com-

ponents, such as the number of cores. To be effective, new approaches should have

low overhead and be amenable to integration with existing hardware, firmware and

software stacks. Towards these goals, we develop novel techniques for modeling, anal-

ysis, and optimization of power consumption, energy, performance per watt, and

performance.

1.1 Contributions

Our first contribution is a dynamic power management technique for a recently

introduced single ISA big.LITTLE heterogeneous CPU system [51]. Power manage-

ment of heterogeneous systems involve managing a number of configurations, i.e.,

the number of big and little cores, and their frequencies. Dynamically selecting the

optimal configuration is a challenging task because the configurations change as the

composition of the active applications and their phases vary. Moreover, finding the

optimal configuration as a function of workload is difficult (even offline), since it re-

quires running precisely the same workload at each possible configuration, especially

for CPUs [151]. Therefore, we develop a framework to select the Pareto-optimal

configurations at runtime, using multinomial logistic regression classifiers that are

built offline [46]. Experimental evaluation of our technique shows substantial gains in

performance per watt compared to the default and state-of-the-art techniques [1, 106].

While the CPU is one of the most important components of a SoC, a number

of mobile applications, such as games critically depend on the GPU for rendering.

Therefore, in our second contribution, we focus on power management of the CPU

2

and GPU together for graphics workloads. High graphics performance comes at the

cost of higher power consumption, which elevates the temperature of the mobile

system due to limited cooling solutions. To avoid thermal violations, the system

needs to operate within a power budget. Since the power budget is a shared resource,

there is a strong demand for effective dynamic power budgeting techniques. This

chapter presents a novel technique to efficiently distribute the power budget among

the CPU and GPU cores, while maximizing performance. The proposed technique is

evaluated using an Intel Baytrail platform [62] running industrial benchmarks, and

an in-house simulator [47].

Finally, integrated GPUs have become an indispensable component of mobile pro-

cessors due to the increasing popularity of graphics applications. The GPU frequency

is a key factor both in application throughput and mobile processor power consump-

tion under graphics workloads. Therefore, dynamic power management algorithms

have to assess the performance sensitivity to the GPU frequency accurately. Since

the impact of the GPU frequency on performance varies rapidly over time, there is a

need for online performance models that can adapt to varying workloads. To address

this need, a number of performance models have been proposed [27, 28, 70, 111].

Yet, these models do not generalize well to a larger set of workloads due to offline

training and coarse-grain inputs, such as utilization. In stark contrast, we construct a

light-weight adaptive runtime performance model that predicts the frame processing

time of graphics workloads at runtime without apriori characterization. We employ

this model to estimate the frame time sensitivity to the GPU frequency, i.e., the par-

tial derivative of the frame time with respect to the GPU frequency. The proposed

model does not rely on any parameter learned offline. We also experimentally vali-

date the model on an Intel Minnowboard MAX platform [61] running common GPU

benchmarks [40].

3

This dissertation summarizes our contributions that aid the power management

of heterogeneous systems. More precisely, our specific contributions are as follows:

• A framework to dynamically select the Pareto-optimal frequency and active

cores for the heterogeneous CPUs, such as ARM big.LITTLE architecture [46,

51],

• A dynamic power budgeting approach for allocating optimal power consumption

to the CPU and GPU using performance sensitivity models for each PE [47],

• An adaptive GPU frame time sensitivity prediction model to aid power man-

agement algorithms [40, 109].

• A novel online learning framework for recursive parameter estimation [39].

The rest of the dissertation is organized as follows. Chapter 2 presents the dy-

namic Pareto-optimal configuration selection framework for heterogeneous MpSoCs.

Chapter 3 details the dynamic power budgeting approach for CPU and GPU running

graphics applications. Chapter 4 presents the technique for online learning of GPU

frame time model. Chapter 5 presents a new online learning algorithm that can per-

form online feature selection and adaptive forgetting with stability. Finally, Section 6

concludes the dissertation prospectus with discussion on future work.

1.2 Summary of Publications

This dissertation is a collection of the research manuscripts written by the au-

thor in the area of dynamic power management for heterogeneous computing plat-

forms [39, 40, 46, 47, 109]. Besides working in this area, the author also extensively

worked in the area of flexible hybrid electronics. Flexible hybrid electronics includes

the development of mechanically flexible, printed and stretchable electronics [44].

4

While rapid advancement is well underway at the device and circuit levels, researchers

have yet to envision the system design in a flexible form. We introduce the concept

of Systems-on-Polymer (SoP) based on flexible hybrid electronics (FHE) to combine

the advantages of flexible electronics and traditional silicon technology [41, 45]. First,

we formally define flexibility as a new design metric in addition to existing power,

performance, and area metrics. Then, we present a novel optimization approach to

place rigid components onto a flexible substrate while minimizing the loss in flexibil-

ity. We show that the optimal placement leads to as much as 5.7× enhancement in

flexibility compared to a näıve placement. We confirm the accuracy of our models

and optimization framework using a finite element method (FEM) simulator. Finally,

we demonstrate the SoP concept using a concrete hardware prototype, and discuss

the major challenges in the architecture, design of SoPs, and applications [10, 95].

5

Chapter 2

DYNAMIC PARETO-OPTIMAL CONFIGURATION SELECTION FOR

HETEROGENEOUS MPSOCS

2.1 Introduction

State-of-the-art smartphones and tablets have to satisfy the performance require-

ments of a diverse range of applications under tight power and thermal budget [19,

128]. The number of power management configurations offered by MpSoCs, such

as the number of voltage-frequency levels and active cores, have been increasing

steadily to adapt to these dynamically varying requirements. For example, octa-

core big.LITTLE architectures have 20 different CPU core configurations that can

be selected at runtime. Combined with the voltage and frequency levels, this leads

to more than 4000 dynamic configurations to consider during optimization. This

huge collection results in more than one order of magnitude variation in both power

consumption and performance, as shown in Figure 2.1(a). Moreover, the definition

of the optimality can change depending on the context. For instance, users prefer

to maximize the responsiveness (i.e., performance) for interactive applications, while

minimizing the energy becomes the priority when the platform is running out of

power. Therefore, it is crucial to identify the optimal configuration at runtime.

Dynamically selecting the optimal configuration is a challenging task aggravated

by two major factors. First, the design space is large for a runtime evaluation and

exploration. Therefore, an exhaustive search is prohibitive due to significant overhead

associated with exploration. Second, and more importantly, the optimal choice is a

strong function of the workload, which itself varies dynamically [13]. For example,

6

bringing the data from memory faster is important upon launching the application,

but processing time starts dominating later on. Similarly, the application may go

through CPU- and memory-bound phases during its lifetime. Consequently, the op-

timal configuration changes as the composition of the active applications and their

phases vary.

Chip designers and power management architects spend significant effort to at-

tain the optimal power-performance trade-off. For example, Figure 2.1(a) plots power

consumption and execution time of a multi-threaded application for 128 different core

and operating frequency configurations. We clearly see that many configurations are

close to the Pareto-optimal curve. Frequency governors integrated in the OS-stack

leverage this fact effectively to deliver the desired trade-off. For instance, the interac-

tive and on-demand governors increase the frequency whenever core utilizations ex-

ceed a threshold to maximize the performance, while the powersave governor chooses

the minimum operating frequency to minimize power consumption [106]. Similarly,

the dynamic power management algorithms, such as cpuidle, increase (decrease) the

number of active cores when the core utilizations are above (below) tunable thresh-

1 2 3 4
Execution Time (s)

0

1

2

3

4

P
o

w
er

 (
W

)

(a)

1 2 3 4
Execution Time (s)

1

2

3

4

E
n

er
g

y
(J

)

(b)

All Configurations Pareto-Power Pareto-Energy

Figure 2.1: 128 different frequency and core configurations of the Blackscholes appli-

cation showing the trade-off between (a) power consumption and execution time, (b)

energy consumption and execution time.

7

olds [8, 105]. Hence, these highly optimized governors can dynamically scale the

number of active cores and frequency to optimize the power-performance trade-off.

However, none of these approaches can guarantee optimality with respect to other

metrics, such as energy consumption. For instance, Figure 2.1(b) shows that many

Pareto-optimal configurations in the power-performance plane are far away from the

Pareto curve in the energy-performance plane. Moreover, a governor that chooses

the lowest power configuration results in 39% more energy consumption and 126%

slower execution with respect to the minimum energy configuration. Our experimen-

tal results reveal similar trends for default governors for many other metrics, such as

performance per watt and instructions per second. Therefore, there is a strong need

for runtime algorithms that can choose the optimal configuration with respect to a

given metric as a function of the workload.

This chapter presents a comprehensive methodology to choose optimal core and

frequency configuration at runtime as a function of workload characteristics. Existing

approaches rely on core utilizations to make decisions in single steps [106]. In strong

contrast, we employ a classifier that chooses the optimal configuration for a given

workload phase characterized with a diverse set of performance counters available on

the target platform.

Our major contributions towards enabling and validating the proposed methodology

are as follows:

- Instrumentation (Section 2.3.2): Finding the optimal configuration as a func-

tion of workload is difficult (even offline), since it requires running precisely the same

workload at each possible configuration. One could run a given application at each

possible configuration and collect statistics at uniform time intervals. However, the

workload in each time interval would be different for each configuration, since the in-

structions are processed at different speeds. Therefore, the first step of the proposed

8

methodology is instrumenting the applications using the LLVM [78] compiler infras-

tructure and PAPI calls [92]. This instrumentation, which has less than 1% overhead,

enables us to collect a vast amount of characterization data for each workload snippet

1 .

- Characterization (Section 2.3.3 & 2.3.4): The second step is to collect

characterization data using the instrumented applications. In this work, we collected

power consumption, processing time and six performance counters for a total of 4,467

workload snippet using 18 different applications. In the third step, we use the power

consumption and processing time information to identify the optimal configuration for

each of the 4,467 workload snippet with respect to any metric, such as energy, which

can be expressed in terms of this information. Finally, the characterization data is

used to find classifiers that map each workload snippet to its optimal configuration.

- Runtime selection (Section 2.3.5): Our final step is to develop a new governor

that implements the classifier for each metric of interest. The user can easily choose

any of the classifiers in this unified governor at runtime by setting a variable at user

space. The same features (i.e., performance counters and core utilizations) used for

characterization are collected at runtime. Then, the features are fed to the classifier

to find the optimal configuration.

- Experimental validation (Section 2.4): We present an extensive set of eval-

uations using 18 single- and multi-threaded applications running on Odroid XU3.

We obtain on average 49%, 45% and 6% lower energy consumption compared to the

interactive, ondemand, and powersave governors, respectively. Our approach also out-

performs the powersave governor by achieving lower execution time, but has longer

execution time than interactive and ondemand governors, as explained in Section 2.4.

1 In this chapter, a workload snippet is a sequence of basic blocks with sizes varying from 5k
to 100M instructions, as explained in Section 2.3.2. A group of consecutive snippets make up a
workload phase. Each snippet is similar to a micro-benchmark.

9

The rest of the chapter is organized as follows: Section 2.2 presents the related

work. Section 2.3 lays out the groundwork required for collecting meaningful exper-

imental data and the framework for the proposed technique for optimization. Sec-

tion 2.4 discusses the experimental results. and Section 2.5 presents the conclusion.

2.2 Related Research

Widespread use of mobile platforms in the last decade is enabled by advanced

power management techniques, including dynamic core and uncore scaling [16, 73,

100], cache reconfiguration, task partitioning, task scheduling, and power budget-

ing [47, 53, 141, 144]. Significant number of these power management techniques focus

on power and performance optimization through dynamic power management (DPM)

and dynamic voltage, frequency scaling (DVFS). DPM consists of a set of algorithms

that selectively turns off system components that are idle, such as controlling the

number of active cores in the system depending on their utilization [8]. Similarly,

DVFS-based schemes control the operating frequency of a core based on the utiliza-

tion [54, 94, 106]. For example, millions of commercial mobile platforms run the

ondemand and interactive governors [106]. However, these techniques do not guar-

antee optimality with respect to a given metric such as energy consumption. These

approaches typically perturb the configuration by a single predetermined step. For

example, interactive and ondemand governors increase (decrease) the frequency of

the processor if the utilization is above (below) a certain threshold [106]. The work

presented in [146] proposes a technique to maximize the performance within a given

power budget by estimating Pareto-optimal solutions dynamically. This approach

relies on analytical power consumption and instructions per second model to find the

Pareto-optimal frequency configurations of homogenous architectures. In contrast,

our approach finds the Pareto-optimal core and frequency configuration in heteroge-

10

neous architectures using an extensive set of hardware measurements and multinomial

logistic regression. Hence, our approach combines DVFS and DPM by setting the op-

erating frequency/voltage and the type and number of active cores simultaneously.

Recently, a number of studies have focused on workload-aware DPM and DVFS

together [1, 17, 23, 26, 29, 80, 152]. These techniques choose the best or a mixture of

the two strategies to optimize the mobile platform. For instance, the technique pro-

posed in [1] first derives the power and performance models using multivariate linear

regression for each different frequency and application. Then, these models are used

to determine an optimal performance per watt configuration for an application at

runtime. Similarly, the work in [26] proposes an online learning method to select the

best-performing DPM policy together with DVFS settings called experts, for a single

CPU core. At runtime, the controller characterizes the workload based on energy

and cycles-per-instruction models to choose the best-performing expert. The work

in [23] proposes a new Linux scheduler to optimize the power consumption under a

throughput constraint. Their approach is specifically designed for parallel applica-

tions with computation intensive loops. Similarly, the approach proposed in [152]

focuses on a group of applications related to web browsing for heterogeneous plat-

forms. They build linear regression models for performance and energy consumption,

and then use them to schedule webpages for minimizing the energy consumption of

the system. Several recent techniques have also considered applying classification-

based methods for the frequency and core selection. For example, the work in [17]

proposes a technique for homogeneous server systems, which uses logistic regression

to find thread packing and frequency such that the system remains within a power

budget. Similarly, the work in [29] uses binning-based classification for identifying

the degree of memory- and compute-boundedness of the tasks. Then, these tasks

are allocated based on the predicted power and performance to the CPU cores for

11

minimizing the power consumption under a throughput constraint. However, none

of the above methods use phase-level instrumentation, which is necessary to identify

the optimal configurations for a given workload.

Phase-level performance and power analysis provide a fine grained and reliable

information about the workload, as we describe in Section 2.3.2. This information

enables accurate power and performance models across different platforms [151] and

practical power management algorithms [65]. For example, using the phase-level

analysis one can collect statistics on one platform and use it to predict the power

and performance on another platform [151]. This leads to significant improvements

in the accuracy of the models by using this insight compared to an approach that

uses aggregate application statistics. Therefore, in contrast to the other DVFS and

DPM approaches, our work leverages the use of phase-level offline characterization

for a number of benchmarks to find the Pareto-optimal configurations for each phase.

Then, we build classifiers that map the characterized feature data to the Pareto-

optimal configurations. Finally, the classifier is used at runtime to select the optimal

configuration for a new application phase. In our experimental evaluations, we observe

substantial numerical gains in performance per watt compared to a recently proposed

algorithm [1] and the default governors.

2.3 DyPO Configuration Selection

2.3.1 Motivation and Overview

Modern MpSoCs offer a staggering number of configuration knobs. For example,

the recently introduced Samsung Exynos 5422 MpSoC based on ARM big.LITTLE

architecture offers four little (A7) and four big (A15) cores that can operate at 13

and 19 different frequencies, respectively [51]. Furthermore, the voltage of each of

12

the core clusters scales with frequency. Since at least one little core has to remain

active at all times, this leads to a total of (4×13×4×19) + (4×13) = 4004 different

frequency and core configurations. Different configurations lead to a huge variation

in power consumption and performance, as shown in Figure 2.1. Moreover, any

given application workload consists of multiple workload phases [126]. For example,

lower CPU frequencies may save power during a memory-intensive phase. In contrast,

CPU-intensive phases with many active threads are likely to benefit more from higher

frequencies and number of cores. Therefore, different configurations may become

optimal with respect to a given metric as the workload varies at runtime [13].

We denote the set of all possible configurations by C, and the configuration

at time k with ck ∈ C. Each feasible configuration can be represented by ck =

{nL,k, fL,k, nB,k, fB,k}, where the elements represent the number of active little cores,

the frequency of little cores, the number of active big cores, and the frequency of big

cores, respectively. Similarly, we denote the set of phases encountered during the life-

time of an application by P, and the phase at time k with pk ∈ P. Our optimization

goal can be expressed as:

Find f : P 3 pk 7→ c∗k ∈ C (2.1)

where c∗k ∈ C is the optimal configuration

for workload phase pk ∈ P

Identifying the optimal configuration c∗k at runtime for each phase pk is a daunt-

ing task due to the large number of workloads and configurations. For example, the

Basicmath application has three phases, and identifying the optimal configuration

of each phase would mean searching through 40043 (≈ 6 × 1010) different possibil-

ities for the entire application. Clearly, searching through this combinatorial space

is intractable at runtime. Furthermore, the definition of the optimality may change

13

BB_PAPI_read()
BB1
BB2

BB1M

BB_PAPI_read()
BB(1M + 1)
BB(1M + 2)

BB2M

BB_PAPI_read()

Find optimal Config (�
�

∗)

�2L, 1	GHz,	

3B, 1GHz

Find � �
�

� �
�

∗

(boundary)

#LLC-misses #i
ns

tr
uc

tio
ns

-r
et

d.

�
�

∗ � ��				�

Instrumented AppsLL
V

M

C
la

ng
In

st
ru

m
en

ta
tio

n
Phase-1

�
�

=10M
�
�

=10k

Phase-2

�
�

=10M
�
�

=1k

Input (�)

Phase-3

�
�

= 10M
�
�

= 9k

Step 1: Instrumentation
(Section 2.3.2)

�4L, 2	GHz,	

4B, 2GHz

Output (�
�

∗)

Online

New
App

�
�

= #Instr.-retd.
�
�

= #LLC-misses

P
ha

se
-1

P
ha

se
-2

Step 2: Characterization
(Section 2.3.3)

Multiple Apps

Start:
BB1
BB2

BB100M
End

A1

A2
A3

…

…
…

Example:

Phase-3 is
similar to Phase-1

Use the same optimal
configuration as Phase-1

Step 3: Classification
(Section 2.3.4)

�2L, 1	GHz, 3B, 1GHz

Classifier

∀
�

	New Phase P
�
���	

� �	��
�

Step 4: Online Selection
(Section 2.3.5)

Offline

Figure 2.2: The outline of the proposed approach with an illustrative example. A

block of instructions, such as a function call, makes up basic blocks. Our instrumen-

tation groups a sequence of basic blocks into distinct snippets. Finally, each snippet

or a sequence of snippets may form workload phases.

over time depending on the application scenario. For example, minimizing the energy

consumption becomes a priority when the battery is running low. Hence, there is a

strong need to dynamically identify the optimal configuration c∗k for a given optimiza-

tion objective at any point in time.

Overview and illustrative example: We start with an overview and illustrative

14

example, before detailing the proposed approach. First, we instrument the target

application to divide the workload into groups of basic blocks called snippets. This

step enables us to collect power and performance statistics of each snippet at runtime,

as illustrated in Figure 2.2. For example, consider an application code with 100 million

basic blocks (BB1 to BB100M) where each basic block is a sequence of instructions.

The instrumentation in this example inserts special BB PAPI read() basic blocks that

call the PAPI APIs for reading hardware counters and system statistics every 1 million

basic blocks. A pair of BB PAPI read() basic blocks create a boundary for different

snippets of an application. Each snippet or a sequence of snippets may form distinct

phases. Offline instrumentation is followed by the characterization step, where we

collect extensive power consumption and performance data for a large variety of

single- and multi-threaded applications (Section 2.3.3). More specifically, we collect

the data listed in Table 2.1 while repeatedly running each application using different

configurations supported by the platform. Then, this data is used to identify the

optimal configuration for each workload snippet. The third step is to design a classifier

using this characterization data (Section 2.3.4). For example, consider two different

snippets, the first with 10K LLC-misses (high) and the second with 1K LLC-misses

(low). Suppose that the characterization step reveals the optimal configurations as

{2L, 1 GHz, 3B, 1 GHz } and {4L, 2 GHz, 4B, 2 GHz }, respectively. The classification

step uses these data points to design a classifier f : P 3 pk 7→ c∗k ∈ C that maps

different snippets to the optimal configurations at runtime. The plot in the lower

right corner of Figure 2.2 illustrates a potential classifier that can clearly separate

these two snippets. The final step is using the classifier online to determine the

optimal configuration for any workload encountered at runtime (Section 2.3.5). As

an example, assume that the system encounters Phase-3, which has 9K LLC-misses

and similar number of instruction-retired with Phase 1 and Phase 2. Since Phase-3

15

Table 2.1: System and application level parameters used in this work.

Application Level Parameters System Level Parameters

Instructions Retired Per Core CPU Frequency

CPU Cycles Per Core CPU Utilization

Branch Miss Prediction little, big, GPU and DRAM Power Consumption

Level 2 Cache Misses Number of Active Cores

Data Memory Access Execution Time

Noncache External Memory Request

is closer to Phase-1 characterized offline, the classifier will assign it the same optimal

configuration of {2L, 1 GHz, 3B, 1 GHz }. While our illustrative example is simple,

the real problem is multidimensional and far more challenging than creating simple

visual boundaries between phases. The rest of this section detail these four steps

employed in the proposed methodology.

2.3.2 Phase-Level Application Instrumentation

Platform designers provide a rich set of hardware and software counters that can

be accessed at runtime to identify different workload phases. The PAPI infrastructure

provides user level APIs that can be inserted within the application to capture these

counters at runtime [92]. In addition to the performance counter information provided

by PAPI, it is also important to capture system behavior during the same interval.

Therefore, we also log important features, such as the total CPU power consumption,

core frequencies, core utilizations, and execution time, by modifying the PAPI API.

The system and application level parameters employed in this work are listed in

Table 2.1.

16

To accurately instrument applications with PAPI APIs, we use the LLVM com-

piler infrastructure, which has the functionality to analyze any given source code at

different granularities, such as module level, function level, and basic block level [78].

LLVM treats any input source as a single block of module that can be broken down

into functions. Each of these functions contains different basic blocks that subse-

quently contain assembly instructions. Instrumenting at the function level is too

coarse, while instrumentation at the instruction level is too fine-grained. Therefore,

we utilize LLVM with clang compiler [77] to analyze and instrument PAPI calls at

critical basic blocks within an application to collect the hardware counters at runtime.

Figure 2.3 illustrates the process of instrumenting any benchmark with PAPI calls

using LLVM and clang compiler. The first step is an instrumentation pass source file

in LLVM that can identify existing functions and basic blocks, and add new functions

(PAPI APIs) for any application. Then, we use Cmake/Make utilities to compile the

LLVM instrumentation pass to get a custom library object file. Finally, we use the

clang compiler to compile the benchmark with the custom library as an additional

input. This generates an output object file that has PAPI APIs instrumented at

different basic blocks. Note that our instrumentation process is independent of how

the application code is written, as it relies specifically on analyzing the basic blocks,

which are the building blocks of any application and a widely used syntax analysis

terminology in the compiler domain.

Instrumenting single-threaded workloads requires identifying the critical basic

blocks and then adding simple PAPI calls. While instrumenting the multi-threaded

benchmarks, we tie each thread to its own performance counter values. We achieve

this with the help of PAPI APIs, which provide specific calls to register threads

that can maintain their own counter data. Since multi-threaded workloads also have

phases that only have single threads, we ensure that our instrumentation can cap-

17

PAPI Instrumentation
Pass Using LLVM

Custom Library (.so)

Clang Compiler

Benchmark

Instrumented
Benchmark (.o)

Cmake/Make

In
pu

ts
O

ut
pu

t

Figure 2.3: PAPI API instrumentation overview.

ture such phases as well. At the time of logging the hardware counter values along

with system performance, we also capture the thread IDs and time-stamp of data

collection. This methodology ensures that we are able to analyze both single- and

multi-threaded phases of any workload. In practice, inserting PAPI APIs are ex-

pected to introduce extra instructions as overhead. Therefore, we ensure that the

overhead introduced with these API calls is negligible, as detailed in Section 2.4.1.

Overall, the process of instrumentation enables us to capture the critical regions that

provide useful information regarding different phases of an application running on

any platform.

2.3.3 Data Characterization Methodology

Once the benchmarks are instrumented with the PAPI APIs, we collect data for

different frequency and core configurations. We first set the highest frequency and

core configuration, i.e., 2 GHz for the big cores with all eight cores active. Then, we

run three iterations of each benchmark at this frequency and core configuration. Next,

we step down the frequency of the big core cluster while maintaining the number of

active cores. We repeat this process for each benchmark included in the study. After

18

this, we reduce the frequency level by one, and repeat this process for all supported

frequency levels and core configurations. Since the number of total configurations is

large even for offline analysis, we use a representative data set obtained by running

each benchmark three times with 4×4×8=128 different core and frequency config-

urations 2 . This selection includes all core configurations (4×4) from 1L+1B to

4L+4B. We include at least one little and one big core, since we are interested in

maintaining the heterogeneity of the system. We sweep the frequency uniformly from

0.6 GHz to 2 GHz in steps of 0.2 GHz for all 16 core configurations. Frequencies

lower than 600 MHz are not included, since they are rarely energy optimal. Indeed,

default Android governors also do not utilize lower frequencies. That is, the lowest

power configuration in our experimental setup is {1L, 0.6 GHz, 1B, 0.6 GHz} and the

highest performance configuration is {4L, 1.4 GHz, 4B, 2 GHz}. We run the entire

application from start to end for all the selected configurations. Therefore, all the rel-

evant phases are considered irrespective of the application. In this work, our specific

knowledge about the target platform is used to choose the frequency configurations.

In general, one can also apply formal approaches to select a representative set of con-

figurations [103, 104]. On profiling three iterations of 18 benchmarks for 128 different

configurations lead to a total of 6,912 different benchmark runs. We always re-boot

the system before starting the data collection process for each benchmark to ensure

consistency of the platform environment. Finally, we collect the characterization data

for each workload snippet following the format shown in Table 2.2.

2 Time spent for collecting data for 128 configurations on Odroid XU3 is typically about 1-2
hours per benchmark.

19

Table 2.2: Data format for each phase.

Time-
stamp

Power
Consumption

Active
Cores

CPU
Frequency

Perf.
Cntr 1

Perf.
Cntr N

Core
Utilizations

…

One row for each workload snippet, frequency, little core and big core configuration
Total number of rows per phase of a benchmark= ���� � ������� � ����	 � ���
���

2.3.4 Optimal Configuration Classification

After the characterization is complete, we first find the Pareto-optimal configu-

rations for each characterized workload snipped with respect to a given optimization

goal. Then, this data combination, i.e., (snippet, optimal configuration) is used to

design a classifier. Finally, this classifier is stored on the platform and used at runtime

to select the optimal configuration, as detailed in Section 2.3.5.

Optimization Goal

Energy consumption and responsiveness are of primary importance in mobile sys-

tems [141]. Furthermore, optimizing them also improves performance per watt (PPW).

Therefore, we consider a bi-objective optimization problem of minimizing the energy

consumption E(ck, pk) and execution time texe(ck, pk) for program snippet pk and con-

figuration ck. The optimal cost J(pk) for this bi-objective problem can be written as

follows:

J(pk) = min
ck

[E(ck, pk) + µtexe(ck, pk)] (2.2)

where µ ≥ 0 is a weight between the energy and execution time that determines

the relative importance of the two objectives. For example, when µ is small, the

optimization problem essentially turns into minimization of energy (DyPO-Energy),

and when µ is large, the optimization problem minimizes the execution time (DyPO-

Performance). Any µ value in between will lead to minimizing the energy consumption

20

k-means
clustering Feature data (�

�

)

Optimal config (�
�

∗)

Store �

�
�

�
�
�
� � �

Training

Solve Eqn 4
offline to
get model
coeff. �

Solve Eqn 3 for �
�

∗

Read new feature
data (�

�

) and stored �

At runtimeCharacterization data (Table 2)
Solve Eqn 2

H/W cntrs,
CPU stats

Figure 2.4: Training and runtime use of the DyPO classifier.

with some other execution time constraint. More importantly, our classification does

not depend on the structure of Equation 2.2, as described next. Therefore, we can

compute the Pareto-optimal configurations c∗k for each snippet pk for an arbitrary

optimization objective that combines energy, execution time, instructions per cycle

and power consumption.

Design of the Classifier

Once the Pareto-optimal configuration c∗k for each snippet pk is identified using Equa-

tion 2.2, the next task is to map different snippets to their optimal configurations using

the function f : P 3 pk 7→ c∗k ∈ C. We utilize multinomial logistic regression clas-

sification technique for this purpose due to its simple implementation in the kernel.

However, any other supervised machine learning classification technique can be used

to the same effect.

To train the logistic regression classifier, we need to use input features and associ-

ated output labels, as shown on the upper left corner of Figure 2.4. The inputs to the

classifier are five hardware counters, shown in Table 2.1 normalized with instructions-

retired, the sum of the utilizations of the little cores, sorted utilizations of the big

cores, and one bias term. The output labels are the optimal configurations found

21

with respect to the criterion in Equation 2.2. Note that two different snippets can

map to the same optimal configuration. Hence, an approach that arbitrarily assigns

a supervisory response (optimal configuration) to the features would fail to create a

good mapping function f. To avoid this, we first employ k -means clustering to find

natural clustering in the data set [34]. Then, we assign the most frequently occurring

optimal configuration in each of the clusters as their output labels. This can also be

performed hierarchically with multiple levels of k -means clustering and classification.

For example, we use two highly accurate classifiers with three classes each in our

experiments, as explained in Section 2.4.2. After the input features and output labels

are determined, we design the classifier, as described next.

The conditional probability of the occurrence of a Pareto-optimal configuration

c∗k ∈ C given an input xk = [x1, x2, x3, ..., xN], can be represented as Pr(C = c∗k|x =

xk). We express the conditional probability for each Pareto-optimal configuration

using a logistic function as follows [34]:

Pr(C = c∗k|x = xk) =
eβxk

1 + eβxk
(2.3)

where β = [β0, β1, ..., βN] are the regression coefficients learned offline using the char-

acterized data for each workload snippet. The regression coefficients are estimated

by maximum likelihood, using the known conditional likelihoods for a class C given

features x (training data). When the total number of data points (i.e., number of

workload snippets × number of configurations) is M , the likelihood function can be

written as:

`(β) =
M∏
k=1

Pr(C = c∗k|X = xk) (2.4)

Since the maximum likelihood function in Equation 2.4 is non-linear, we use the mnrfit

function in Matlab to solve for the β values offline. Then, we store the β values as

look-up tables in the platform, and use them for selecting the optimal configurations

22

at runtime, as illustrated in Figure 2.4.

2.3.5 Online Optimal Configuration Selection

To implement the classifier at the target platform, we need to do only the following:

1. Store the classifier parameters β = [β0, β1, ..., βN], where N is the number of

input features (N = 11 in this work)

2. Implement Equation 2.3

At runtime, we read the input features using the PAPI calls for each workload snippet.

Then, we plug these features and the β values to Equation 2.3, as shown in Figure 2.4.

This gives the conditional probability of the occurrence of a Pareto-optimal configu-

ration c∗k given the input features xk. Then, the Pareto-optimal configuration c∗k with

the maximum conditional probability is selected as the output of the controller.

The proposed approach is highly scalable as it requires only a look-up table for a

small number model coefficients β stored in the platform. This occupies very small

storage space of only 282 bytes in the Odroid XU3 platform for the 11 features used in

our work. Even if we store classifiers for multiple objective functions, such as energy,

energy-delay product and performance, the file size does not exceed 2 kB. In general,

the number of inputs to the classifier are always much smaller than the number of

applications, phases and configurations. For example, if the system that needs to be

optimized has hundreds of CPU cores, the proposed technique will still require to store

only tens of model coefficients for any optimization objective. Note that when the

number of features N becomes too large, the cost of computing the logistic function

in Equation 2.3 can increase. In such cases, it is desirable to reduce and select the

appropriate number of features using subset selection or Lasso regression [68]. Our

approach is also general enough to consider more than two core types. In this case,

23

the characterization data has to include new types of cores. When the number of

configurations grow, a subset can be characterized, as detailed in Section 2.3.3. Since

the optimal classifier is designed offline, current offline computing power and existing

classification algorithms can easily support solving iterative optimization techniques

with tens of types of classes. Finally, the computation complexity of Equation 2.3

will not increase, making our approach scalable.

2.4 Experimental Results

This section first describes the experimental setup, including the details of the

platform, benchmarks, baseline algorithms and the overhead of our approach. Then,

we demonstrate the usefulness of the proposed dynamic Pareto-optimal configura-

tion selection technique by comparing the results of the DyPO-Energy classifier with

baseline algorithms and a recently proposed algorithm [1] running on the platform.

2.4.1 Experimental Setup

We present the experimental results performed on the Odroid XU3 platform run-

ning Ubuntu OS with kernel version 3.10 [51]. The platform is equipped with Exynos

5422 chip, which has four little (A7) cores and four big (A15) cores. The little core

frequency can vary from 0.2 GHz to 1.4 GHz and big core frequency can change from

0.2 GHz to 2 GHz in steps of 0.1 GHz. The platform supports per cluster DVFS,

i.e., the cores within the same cluster have to run at the same frequency and volt-

age. Changing the CPU cluster frequencies and setting of the core online and offline

are supported in the platform using the cpu-freq driver. The platform also provides

INA231 current monitoring sensors [139] that report the power consumptions for each

CPU cluster, memory and GPU using the I2C driver. We set the sampling frequency

of the current sensors to 5 ms to capture small transients in power consumption.

24

Sysfs interface

Power

Frequency

Core Config

Utilization

Perf
Driver

CPU
Governor

O
u

tp
u

t D
ata F

o
r

A
n

alysis

Benchmark

DyPO

PAPI
Calls

Kernel Space User Space

P
M

U

Figure 2.5: Implementation of DyPO in Linux Kernel 3.10.

Integration of the DyPO framework with the existing software infrastructure is

shown in Figure 2.5. Our implementation is divided into the kernel space and user

space. The kernel space contains the Perf driver and the CPU governors with a

sysfs interface [89]. The Perf driver is mainly responsible for communicating with

the ARM’s performance monitoring unit (PMU) [18], which keeps track of different

hardware and software counters. We enable the PMU to capture the performance

counters listed in Table 2.1. We also utilize a custom CPU governor to capture per-

core utilization through the sysfs interface. The user space contains the instrumented

benchmarks with PAPI APIs that query the perf driver for performance counters [92].

At runtime, the hardware counters and CPU utilizations at each snippet of the appli-

cation are used as inputs to the DyPO classifier. The classifier first finds the optimal

frequency and core configuration, and then assigns them to the cores using the sysfs

interface. We also export time stamps, classifier output and input features to a log

file for debugging and offline analysis purposes.

Benchmarks: To validate our implementation, we use eighteen single- and multi-

threaded benchmarks from MI-Bench [48], Cortex [138], and PARSEC [11] suites.

Default Governors: The Linux kernel implements a number of frequency governors

that allow developers to optimize for a certain parameter. The powersave governor

25

runs the application at the lowest frequency such that the power consumption is min-

imized. The ondemand governor is used to meet a user defined utilization threshold

by changing frequency [106]. The interactive governor is similar to the ondemand

governor, except that it holds the frequency at a certain level for a fixed interval

before making any changes. We compare our approach to these three governors 3 be-

cause they offer a wide variety of optimization goals and are implemented on millions

of smartphones, making them competitive baselines [147].

Overhead Analysis: The DyPO framework induces instrumentation and algorithm

runtime overheads. The instrumentation overhead can be measured in terms of the

percentage of the extra instructions added to the benchmarks to log the performance

counter data using the PAPI APIs. The baseline is the case when no APIs are inserted

within the benchmark. As opposed to the baseline, the APIs in our approach have

to be added in the source code to form different workload snippets, as explained in

Section 2.3.2. We observe a very low mean and median overheads of 1.0% and 0.2%

across all the 18 different benchmarks used in this chapter. The overhead of our

runtime selection algorithm is 20µs, whereas the minimum and mean execution time

of the workload snippets are 2.1 ms and 22.6 ms, respectively. That is, the runtime

overhead of our approach is less than 1% of the smallest snippet and less than 0.1%

of the mean value of the execution time of all the snippets. Our algorithm is called

in the same way as the default frequency governor. As shown in Figure 2.5, the

DyPO approach is implemented within the application to enable phase-level analysis.

Therefore, during the decision process of the classifier, a single-threaded application

pauses for 20µs. For multi-threaded applications, only one thread has to be paused

for 20µs, other threads are not paused and continue to run normally.

3We kept the default cpuidle [105] governor active for the frequency governors to enable changes
in the core configuration.

26

2.4.2 Classifier Accuracy

We use two classifiers in a hierarchical fashion, as explained in Section 2.3.5. The

first classifier is a Level-1 classifier that outputs three probabilities. The highest

probability class is chosen as the output of the classifier. Out of the three classes,

two lead to specific frequency and core configurations. The third class fires another

classifier, which we call the Level-2 classifier. The Level-2 classifier also outputs three

classes that lead to specific frequency and core configurations.

The entire data set is divided into 60% training-validation set and 40% for test

set on the actual platform. We train the classifiers using the training-validation set.

Then, we use the classifiers at runtime for the entire data set (see Section 2.4.3 for

results). Figure 2.6 shows the accuracy of both classifiers for the training-validation

set. The accuracy for the Level-1 classifier across all the benchmarks is very high,

with an average of 99.9%. The average accuracy of the Level-2 classifier for the

benchmarks is 92.7%. The Blowfish benchmark never uses the Level-2 classifier, i.e.,

all of its snippets map to the Level-1 classifier only. Single-threaded applications

achieve close to 100% accuracy for Level-2 classifier. However, the multi-threaded

applications do not perform as well as the single-threaded benchmarks across all

the three classes in the Level-2 classifier. For example, Blackscholes-4T shows 71%

accuracy as opposed to 100% accuracy of the Basicmath application. This is because

all the features of Blackscholes-4T are close to each other and harder to separate into

different classes at the second level. We also assess the robustness of the classifiers

to unknown data inputs by applying 5-fold cross-validation on the training-validation

set. Our results for the 5-fold cross-validation show high average accuracy of 99.9%

and 80.5% for the Level-1 and Level-2 classifiers, respectively.

27

B a s i c m a t h F F T
Q s o r t S H A

B l o w f i s h
K m e a n s P C A

B l a c k s c h o l e s - 2 T

B l a c k s c h o l e s - 4 T

F l u i d a n i m a t e - 2 T

F l u i d a n i m a t e - 4 T
A v e r a g e0

2 0
4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%)

 L e v e l - 1 c l a s s i f i e r L e v e l - 2 c l a s s i f i e r

Figure 2.6: Accuracy of the two classifiers used on the Odroid platform. In multi-

threaded benchmarks, -2T and -4T represents two and four threads, respectively.

2.4.3 Runtime Validation of DyPO

In this section, we present the validation of the proposed dynamic Pareto-optimal

configuration selection approach by using the DyPO classifier at runtime. We use

DyPO-Energy for illustration, since energy minimization is one of the main objectives

in mobile platforms. At runtime, DyPO reads the hardware counters and utilization

during each workload snippet as inputs to the classifier. Then, the classifier com-

putes the probabilities of the optimal configurations using Equation 2.2. Finally, the

configuration with the highest probability is assigned to the system for the next.

Figure 2.7 shows the comparison between offline characterized data for the entire

application run at different frequency and core configurations (◦), the Pareto-optimal

points for power-execution time trade-off (♦), the Pareto-optimal frontier for energy-

execution time trade-off (—), powersave governor (+), interactive governor (∗), onde-

mand governor (×), and the proposed DyPO-Energy approach (4). Since these plots

show energy and execution time trade-off, the operating points closer to the Pareto-

optimal frontier and low ordinate are desirable. The data points plotted using the

28

green markers (◦) show the relative locations of the Pareto frontiers and the configu-

ration space. This is useful in debugging and analyzing how different governor results

get placed relative to these points. Figure 2.7(a) shows the results for the Basicmath

application. The powersave governor lies to the extreme right of the plot at about 20

seconds execution time and consuming about 10 J of energy; this is expected as the

goal of the powersave governor is to minimize power consumption. However, it does

not minimize the energy consumption. In contrast, the DyPO-Energy approach runs

the application at the lowest energy point of the Pareto frontier at about 14 seconds

execution time and 8.7 J of energy consumption. It successfully achieves the energy

minimization goal while also improving the execution time. Similarly, the DyPO-

Energy approach leads to much lower energy consumption when compared with the

interactive and ondemand governors. More precisely, the energy consumption is re-

duced by 42% (15 J to 8.7 J) and 46% (16 J to 8.7 J), respectively. This demonstrates

the effectiveness of the DyPO technique in optimizing energy consumption. More im-

portantly, none of the three default governors in the system lie on the Pareto-optimal

point. In particular, the powersave and interactive governor are significantly off the

Pareto curve. This is not desirable because there are clearly other configurations in

the system that could have achieved lower energy consumption for the same execu-

tion time. The rest of the plots in Figure 2.7(b-n) show the energy consumption and

performance trade-off for 13 more single-threaded applications. As expected, the in-

teractive and ondemand governors consume significantly more energy, since they are

optimizing the system to meet a utilization target. The powersave governor, on the

other hand, does a good job in reducing the power consumption. However, it comes

at the expense of performance and energy. In contrast, the results achieved by the

proposed technique are always closest to the lowest point of the Pareto frontier for

all applications.

29

8 10 12 14 16 18
Execution Time (s)

10

15

20

E
n

er
g

y
(J

)
Basicmath

(a) 1 1.5 2 2.5
Execution Time (s)

1.5

2

2.5

E
n

er
g

y
(J

)

Dijkstra

(b) 2 3 4
Execution Time (s)

2

2.5

3

3.5

E
n

er
g

y
(J

)

FFT

(c) 3 4 5 6
Execution Time (s)

3

4

5

6

E
n

er
g

y
(J

)

Patricia

(d)

1.5 2 2.5 3 3.5
Execution Time (s)

2

3

4

5

E
n

er
g

y
(J

)

Qsort

(e) 1 2 3
Execution Time (s)

1

2

3
E

n
er

g
y

(J
)

SHA

(f) 12 14 16 18 20 22 24
Execution Time (s)

10

15

20

E
n

er
g

y
(J

)

Blowfish

(g) 0.3 0.4 0.5 0.6
Execution Time (s)

0.3

0.4

0.5

E
n

er
g

y
(J

)

StringSearch

(h)

4 6 8
Execution Time (s)

5
6
7
8
9

E
n

er
g

y
(J

)

ADPCM

(i) 4 6 8
Execution Time (s)

4

6

8

E
n

er
g

y
(J

)

AES

(j) 4 6 8 10
Execution Time (s)

6

8

10
E

n
er

g
y

(J
)

Kmeans

(k) 8 10 12 14 16
Execution Time (s)

10
12
14
16
18

E
n

er
g

y
(J

)

Spectral

(l)

4 6 8
Execution Time (s)

4

6

8

E
n

er
g

y
(J

)

MotionEstimation

(m) 2 3 4 5
Execution Time (s)

3

4

5

E
n

er
g

y
(J

)

PCA

(n) 1 2 3 4
Execution Time (s)

1.5

2

2.5

3

3.5

E
n

er
g

y
(J

)

Blackscholes-2T

(o) 1 2 3
Execution Time (s)

1

1.5

2

2.5
E

n
er

g
y

(J
)

Blackscholes-4T

(p)

1 1.5 2
Execution Time (s)

1

1.5

2

E
n

er
g

y
(J

)

Fluidanimate-2T

(q) 1 1.5 2
Execution Time (s)

1

1.5

2

E
n

er
g

y
(J

)

Fluidanimate-4T

(r) 10 20 30 40
Execution Time (s)

15
20
25
30
35

E
n

er
g

y
(J

)

Basicmath + Patricia

(s)

Characterization
Pareto-Power
Pareto-Energy
Powersave
Interactive
Ondemand
DyPO-Energy

Figure 2.7: DyPO-Energy approach compared with the default governors running on

the platform. In multi-threaded benchmarks, -2T and -4T represents two and four

threads, respectively.

30

Multi-threaded Applications: As the complexity of mobile apps increases, it is

also important to analyze the behavior when running multi-threaded applications.

Therefore, we analyze their energy consumption and performance trade-off in Fig-

ure 2.7(o-r). In particular, Figure 2.7(q) shows the results obtained for the Fluidani-

mate application running with two threads. The DyPO-Energy approach lies below

the Pareto-optimal curve, which means that our approach even outperformed the

best case scenario of the characterization data, with a low energy consumption of

0.87 J and 1 second execution time. We observe that the lowest power configura-

tion on the power and execution time Pareto curve (♦) leads to 2 seconds execution

time. Moreover, it has substantially higher energy consumption compared to DyPO-

Energy. This happens since the lowest power configuration utilizes fewer number of

cores, which has a very large penalty when there are more than one active threads.

Similarly, the Blackscholes application running with two and four threads and Flu-

idanimate application with four threads show that our technique achieves lower energy

than the default governors, as illustrated in Figures 2.7(o)(p)(r). In these workloads,

the DyPO-Energy moves up on the Pareto-optimal curve towards higher performance.

This happens since the active threads increase the utilization, which demands a larger

frequency. However, the proposed technique still stays at the Pareto frontier unlike

the powersave, interactive and ondemand governors.

Concurrent Applications: The proposed runtime approach also works when mul-

tiple applications are running concurrently. More specifically, the instrumentation is

specific to a particular foreground application. However, the classifiers operate on the

performance counters, such as cache misses, non-cache external memory request, and

number of active cores listed in Table 2.1. Therefore, when other background appli-

cations are running, the load perceived by the governor changes. For example, the

background applications can increase the CPU utilizations, as well as hardware coun-

31

ters, such as LLC misses. Since the CPU utilization and hardware counters are inputs

of the DyPO classifier, the proposed approach works with any number of applications

and tasks running simultaneously with the foreground application. In fact, there were

always hundreds of Linux OS background applications when we performed our exper-

iments. To demonstrate the operation with multiple applications more explicitly, we

simultaneously executed two applications, Basicmath (in foreground), and Patricia (in

background). Figure 2.7(s) shows the results with this multiple application scenario.

The proposed DyPO-Energy approach successfully minimizes the energy consumption

compared to the default governors. More precisely, DyPO-Energy achieves 9% lower

energy consumption, and at the same time, 27% faster execution time compared to

the powersave governor. We also observe 52% lower energy consumption than the

ondemand and interactive governors, albeit with a significant increase in execution

time. This is expected since DyPO-Energy minimizes the energy consumption, while

ondemand and interactive governors aim for performance. Most importantly, the

optimal energy consumption of BML and Patricia running together is 12 J. This is

almost the same as the sum of the individual optimal energy consumptions of BML

and Patricia from Figure 2.7(a) and (d) equal to 11.7 J (sum of 8.7 J and 3 J). This

further corroborates our claim that multiple applications can be optimized by using

the DyPO-Energy approach effectively.

Note that we can choose any optimization objective in the DyPO technique, such

as maximizing performance, minimizing energy with execution time constraint, mini-

mizing the energy-delay product, as mentioned in Section 2.3.4. For example, we also

experimented on performance (DyPO-Performance), in which case our framework al-

ways chose the highest points on the Pareto frontier (lowest execution time). This

matches closely with the performance governor in the platform that is designed to

achieve maximum performance. Also, the DyPO-PPW (maximizing performance per

32

watt) results are similar to DyPO-Energy in our setup, since the number of instruc-

tions are almost same for a given application run due to phase-level instrumentation.

2.4.4 Improvements in Energy and PPW

This section summarizes the advantages of the proposed methodology with re-

spect to the default governors for each benchmark. To this end, we normalize the

energy consumption, power consumption, execution time and PPW obtained for each

governor with DyPO-Energy results. For example, Figure 2.8 shows the normalized

energy consumption of all the benchmarks compared with the interactive, ondemand

and powersave governors. We observe that the energy consumption reduces by 49%

and 45% compared to the interactive and ondemand governor, respectively. For the

interactive governor, even the smallest energy savings obtained by DyPO-Energy for

the Basicmath application is 41%. The energy consumption achieved by the pow-

ersave governor is slightly more than 6% of the energy consumed by DyPO-Energy.

Furthermore, this comes at the expense of almost 24% increase in execution time, as

shown in Figure 2.9. The power consumed by the interactive and ondemand governors

is about 3.5× that of the DyPO-Energy, as shown in Figure 2.10, while the power

consumed by the powersave governor is about 23% lower. We also observe that the

DyPO-Energy provides 93%, 81%, 6% more PPW than interactive, ondemand, and

powersave governors, respectively (shown in Figure 2.11). Note that compared to the

powersave governor, DyPO-Energy provides both energy savings and higher perfor-

mance. When compared to the ondemand and interactive governors DyPO-Energy

obtains substantial reductions in energy consumption albeit with lower performance,

as shown in Figure 2.9. This is expected because the ondemand and interactive

governors are designed for performance, not energy efficiency.

Comparison with Aalsaud et al. [1]: This section presents comparison of DyPO-

33

Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

1

2

N
o

rm
al

iz
ed

 E
n

er
g

y Powersave Interactive DyPO-Energy Ondemand

Average Powersave

Average Ondemand

Average Interactive

Figure 2.8: DyPO-Energy, Interactive, Ondemand and Powersave governor compari-

son for normalized energy consumption.

Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

0.5

1

1.5

N
o

rm
al

iz
ed

E
xe

cu
ti

o
n

 T
im

e

Powersave Interactive DyPO-Energy Ondemand

Average Interactive and Ondemand

Average Powersave

Figure 2.9: DyPO-Energy, Interactive, Ondemand and Powersave governor compari-

son for normalized execution time.

Energy against a state-of-the-art approach proposed by Aalsaud et al. [1]. They use

power and performance (IPC: Instructions/Cycle) models that are linear functions of

the number of little cores, big cores and one bias term. Each model is unique for an

application and frequency level. That is, there are as many power and performance

models as the number of supported frequencies in the platform for each application.

These models are used for computing the PPW for all the supported frequencies

and core configurations for a given application. There are two methods to their

34

Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

2

4

N
o

rm
al

iz
ed

 P
o

w
er

Powersave Interactive DyPO-Energy Ondemand

Average Interactive
and OndemandAverage Powersave

Figure 2.10: DyPO-Energy, Interactive, Ondemand and Powersave governor compar-

ison for normalized power consumption.

Spec
tra

l
AES

Blo
wfis

h

Km
ea

ns

Flu
id

an
im

at
e-

2T

ADPCM

Flu
id

an
im

at
e-

4T
PCA

Motio
nEst

im
at

io
n

Blac
ks

ch
oles

-4
T

Pat
ric

ia

Blac
ks

ch
oles

-2
T
Qso

rt

Dijk
st

ra

Stri
ngSea

rc
h

SHA
FFT

Bas
icm

at
h

0

0.5

1

N
o

rm
al

iz
ed

 P
P

W

Powersave Interactive DyPO-Energy Ondemand

Average Ondemand

Average Interactive

Average Powersave

Figure 2.11: DyPO-Energy, Interactive, Ondemand and Powersave governor compar-

ison for normalized PPW.

operation to maximize PPW at runtime. The first is offline (Aalsaud-offline) where

the power consumption and performance models associated with an application are

pre-characterized. The optimal configuration is found at runtime by a simple linear

search through all possible frequency and core configurations. The second method is

adaptive (Aalsaud-ADA) that works for an uncharacterized application. That is, an

application for which the models are not known. Therefore, they determine the power

and performance models at runtime for the adaptive method. To achieve this, they

35

first sweep the frequency every 200 ms. In each 200 ms interval, they measure power

and IPC data for at least three different core configurations. Then, they apply linear

regression on this data to find the models. Clearly, this is an overhead, since the

system runs at non-optimal configuration for 200 ms times the number of frequency

levels. However, this happens only one time, once the application is learned, the

model is saved in a file for future use. Unlike the proposed approach, Aalsaud et

al. [1] profiles the system at fixed time intervals. Since the PAPI APIs are not built

to sample an application based on time, we used the perf utility [22] in the Odroid

XU3 board to profile the applications every 50ms.

Figure 2.12 shows the PPW obtained by the DyPO-Energy, Aalsaud-offline and

Aalsaud-ADA approaches normalized to the PPW obtained by running the ondemand

governor. On average, the DyPO-Energy, Aalsaud-offline and Aalsaud-ADA provide

81%, 46% and 18% gain in PPW compared to the ondemand governor. Therefore,

the DyPO-Energy approach shows 55% and 25% improvement in PPW compared to

the Aalsaud-offline and Aalsaud-ADA approaches, respectively. Note that for appli-

cations Blackscholes-2T and String-Search, both Aalsaud-ADA and Aalsaud-offline

perform worse than the ondemand governor. This is because for the String-Search

application, the Aalsaud-offline approach used the configuration with a frequency

of 1.2 GHz, and four little and big cores. This wastes the extra energy headroom,

whereas the ondemand governor utilizes it by keeping the frequency below 1 GHz. We

see similar behavior for the Blackscholes-2T application. In contrast, DyPO-Energy

provides substantial gains in PPW compared to the approaches in Aalsaud et al. [1]

and to the ondemand governor for all the benchmarks.

36

B l o w f i s h
S p e c t r a l

A E S
K m e a n s

F l u i d a n i m a t e - 2 T
A D P C M P C A

M o t i o n E s t i m a t i o n

B a s i c m a t h

B l a c k s c h o l e s - 4 T

B l a c k s c h o l e s - 2 T
P a t r i c i a

Q s o r t

F l u i d a n i m a t e - 4 T
D i j k s t r a F F T S H A

S t r i n
g S e a r c h

A v e r a g e0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

No
rm

ali
ze

d P
PW

 D y P O - E n e r g y A a l s a u d - O f f l i n e A a l s a u d - A D A O n d e m a n d

Figure 2.12: Comparison of the normalized PPW obtained using DyPO-Energy ap-

proach and Aalsaud et al. [1].

2.5 Conclusion

Continued demand for performance led to powerful mobile platforms with het-

erogeneous multiprocessor system on chips. These platforms provide many voltage-

frequency levels and active core configurations that can be chosen at runtime. This

chapter presented a novel methodology that finds the Pareto-optimal configurations

at runtime as a function of the workload. The methodology consists of a combina-

tion of offline characterization and runtime classification. First, phase-level offline

characterization for a number of benchmarks is performed to find the Pareto-optimal

configurations for each workload snippet. Then, classifiers that map the characterized

data to the Pareto-optimal configuration are learned offline using multinomial logistic

regression. Finally, the classifiers are used at runtime to select the optimal configura-

tion with respect to a specific metric, such as energy consumption. Our experiments

show an average increase of 93%, 81% and 6% in performance per watt compared to

the interactive, ondemand and powersave governors, respectively.

37

Chapter 3

DYNAMIC POWER BUDGETING FOR MOBILE SYSTEMS RUNNING

GRAPHICS WORKLOADS

3.1 Introduction

Mobile platforms use system-on-chip (SoC) technology, which integrates special-

ized processing elements, such as the GPU, wireless modem, and DSP, in addition

to the CPU cores. CPU cores do not dominate the power consumption under many

application scenarios [14, 25]. For example, integrated GPUs have a relatively large

surface area and can consume 5 to 10 times more power than the CPU cores, when

running heavy graphic workloads. Furthermore, the total power consumption can

fluctuate over time and exceed thermal power budget, as depicted in Figure 3.1a. For

example, persistent violation of the power budget leads to thermal violations, while

short peaks, such as the one at t = 11 s, are acceptable.

Thermal violations can have adverse effects on the device reliability and user

experience [125, 129]. The power consumption needs to stay within a power budget

to prevent thermal violations, as illustrated in Figure 3.1. As a result, allocating

the power budget among the major platform resources and temperature control have

become fundamental consideration for mobile platforms 1 . This can be achieved

by putting a subset of the processing elements or shared resources to sleep states,

or throttling their frequencies [16, 36, 120]. However, an ad hoc approach could

easily cripple the performance, if it slows down the performance-critical processing

element. For example, poor coordination between the CPU and GPU can easily

1For example, leading smart-phone manufacturers like Apple have a support page for customers
to understand the thermal alleviation policies [6].

38

0 50 100 150 200 250 300
70

75

80

85

90
0 50 100 150 200 250 300

1
2
3
4
5
6

(b)
Te

m
pe

ra
tu

re
 (

C
)

Time (s)

To
ta

l P
ow

er
 (W

)

Power Budget
Violation

(a)

Figure 3.1: A sample of the total power consumption and CPU temperature while running

the 3D-Mark application.

lead to a noticeable reduction in the frame rate, which would directly affect the user

experience. Hence, there is a strong need for robust solutions to distribute the power

budget efficiently among the active processing elements.

An ideal power budgeting approach would control every processing element in a

coordinated manner, using dedicated control knobs. However, state-of-the-art mobile

platforms traditionally offer fine-grained dynamic voltage-frequency scaling (DVFS)

capability only for the CPU cores. Recently, this functionality has become available

for the GPU [51, 64], but there is limited or no support for the rest of the processing

elements. Furthermore, power consumption is dominated by the CPU cores and GPU

when running graphics workloads Therefore, the rest of this chapter will focus on the

CPU-GPU subsystem, even though the proposed approach is general for the whole

SoC.

This chapter presents a power budgeting technique that allocates the power bud-

get optimally between the CPU cores and GPU, while simultaneously adapting the

achievable frame rate target. This is a challenging problem, since the CPU and GPU

39

utilizations vary dynamically as a function the workload. For example, when the

application stage (i.e. processing points, evaluating different scenarios) takes more

time, the system operation will critically depend on the CPU performance [2, 107].

This typically happens during physics simulations of realistic games. Similarly, higher

complexity in the rasterizer stage (e.g., processing the pixels) makes the GPU the sys-

tem performance bottleneck. When the GPU is the performance limiter, the CPU

clock frequency can be lowered without any noticeable impact on the frame rate (and

vice versa). However, both the CPU and GPU can become critical for certain pe-

riods of the application. As a result, it becomes crucial to determine by how much

each resource should be throttled, especially when the platform is operating near the

maximum power budget. To address this need, we present a mathematical model for

the CPU-GPU subsystem power budgeting. We employ this model to determine the

CPU and GPU clock frequencies that meets the target frame rate target subject to

dynamically varying power budget constraints.

In general, an experimental evaluation provides the most accurate and decisive

power and performance assessment. However, debugging and validating power man-

agement algorithms on a real world platform requires significant effort [21]. Moreover,

validation of all features is not always feasible on a real hardware platform, since it

requires the availability of a SoC, firmware, and an operating system, before testing

new algorithms. Therefore, we performed both experimental and simulation studies.

More precisely, we evaluated the proposed power allocation technique on a state-of-

the-art mobile platform by running industrial benchmarks [137]. We also developed

a trace-driven high-level simulator using Matlab/Simulink. This simulator enables us

to debug, test and tune the power management algorithms before deploying them into

target platforms. To ensure accuracy, we calibrated the simulator with measurements

performed on an appropriate hardware platform [61].

40

The major contributions of this work are as follows:

• We propose a new power allocation technique, to compute simultaneously the

optimal power budget allocations and the achievable frame rate under a power

budget constraint.

• We present experimental evaluations on a commercial mobile platform using

industrial benchmarks.

• We debug and validate the proposed approach on a wider range of scenario

using a high-level simulator.

The rest of this chapter is organized as follows. Section 3.2 reviews the related work.

Section 3.3 presents the proposed power budgeting technique. Section 3.4 discusses

the experimental evaluation, and Section 3.5 concludes the chapter.

3.2 Related Research

Power consumption has remained as one of the most crucial design constraints for

many years [93, 101, 117]. Traditionally, the peak power consumption has been a crit-

ical constraint for high-end systems [52, 76, 149]. With the advent of mobile devices,

thermal-aware resource management [115, 122] and power budgeting [128] have be-

come essential due to limited cooling options and demand for higher performance [99],

respectively.

Several techniques have been successfully applied for power budgeting in multi-

core systems [58, 66, 72, 102, 112, 150]. For example, the work presented in [112]

compares different CPU power limiting techniques, such as DVFS, running average

power limit (RAPL) [71], forced idleness [35] and thread packing [17]. Similarly, Reda

et al. proposed an adaptive power capping technique that employs DVFS and adjusts

the number of active cores [119]. The work presented in [76] uses a reactive dynamic

41

power partitioning algorithm to distribute the power budget unevenly among two

CPU power domains to maximize instructions per second. Finally, power budget

allocation per application instead of per CPU core was presented in [81]. Since these

techniques target only CPUs, they cannot be applied to heterogeneous mobile systems

running graphics workloads with complex CPU and GPU dynamics.

Graphics applications, such as Quake II are highly sensitive to DVFS [38]. This

observation has drawn attention to mobile platform power management under graph-

ics workloads. Most of the recent research is focused on minimizing the energy con-

sumption, rather than power budgeting [15, 27, 108, 111, 128]. Furthermore, these

approaches typically use heuristic governors, which require tuning to control the clock

frequencies. For example, the technique presented in [27] relies on learning the per-

formance model separately for each gaming workload. Similarly, Park et al. [27]

proposed a heuristic technique that uses offline frequency tables for the CPU and

GPU to minimize energy. Moreover, these models and tables have to be tailored to

different hardware platforms. While the work presented in [70] employs a control-

theoretic framework for managing the CPU and GPU clock frequencies to minimize

energy, it cannot guarantee any power budget.

A number of power budgeting techniques have been proposed for heterogeneous

MpSoCs. Singla et al. presented a dynamic thermal and power management al-

gorithm that computes a total power budget using the predicted on-chip tempera-

ture [128]. If the predicted temperature exceed the maximum temperature threshold,

their algorithm throttles first the frequency, and then the number of active proces-

sors until the predicted temperature drops below the threshold. Their work does not

compute optimal power allocations for the CPU and the GPU, unlike the algorithm

we propose in this chapter. Similarly, Wang et al. proposed a joint optimization

technique for the workload and dynamic power budget distribution between the CPU

42

and GPU [143]. Their algorithm distributes the workload by assigning different data

inputs for the same OpenCL compute kernels running in parallel on the CPU and

GPU. This is different for graphics applications since the CPU has a fixed responsibil-

ity to execute application tasks, while the GPU has a fixed responsibility to execute

rasterizer tasks.

In contrast to the previous approaches, the proposed technique is designed specifi-

cally for heterogeneous MpSoCs running demanding graphics applications under lim-

ited power budget. The proposed technique ensures that the total power consumption

will stay within the power budget by computing simultaneously the optimal power

budget allocations and the achievable frame rate.

3.3 Power Budget Allocation Mechanism

3.3.1 Preliminaries

This section presents the proposed power budget allocation technique. We limit

the indices in the equations to a CPU cluster and GPU for the brevity of notation.

However, our formulation can be generalized for any number of processing elements.

Power Budget: We define the power budget at time step k (P k
max) as the maximum

allowable power consumption, which can be determined based on thermal constraints.

We use a discrete time model since the control decisions in real systems are made at

fixed control intervals. The power consumption of the CPU and GPU are denoted

as pkcpu and pkgpu, respectively. Using this notation, we define the power slack at time

step k as:

∆P k
total = P k

max − (pkcpu + pkgpu) (3.1)

When the total power consumption is greater than P k
max, i.e., ∆P k

total < 0, the

43

total power consumption needs to be reduced to stay within the power budget. The

CPU and GPU clock frequencies cannot be decreased arbitrarily, since this can cause

an unnecessary loss in the frame rate. In contrast, ∆P k
total > 0 means that the current

platform power consumption is less than the power budget. Therefore, the CPU and

GPU clock frequencies could be increased without violating the power budget, if the

frame rate is less than the target frame rate. However, an arbitrary increase in the

clock frequency does not guarantee the best performance, and can lead to wasted

power headroom. To formalize the power allocation problem, we express the total

power slack as the sum of the change in the power consumption of the CPU (∆pkcpu)

and GPU (∆pkgpu):

∆P k
total = ∆pkcpu + ∆pkgpu (3.2)

Our goal can now be expressed as determining ∆pkcpu and ∆pkgpu such that the

frame rate target is met.

Performance Speedup: In the graphics pipeline, the CPU cores process batches,

while the GPU processes frames, as illustrated in Figure 3.2. The effective frame

processing rate (µd) is determined by the CPU (λcpu) and GPU (λgpu) throughputs,

which are measured in batches per second and frames per second, respectively 2 . The

rate at which the commands are fetched from the batch buffer is given by the ratio

of the number of processed batches to the processing time. That is, a long batch

processing time implies longer duration between two consecutive fetches, and leads

to a smaller rate. Similarly, certain frames may consist of multiple batches. This is

captured in our approach by the job ratio (r), which gives the number of batches per

frame.

2 We call µd as the frame rate for short. It is the fastest rate at which frames can be delivered
to the display. Hence, it puts an upper bound on the display refresh rate.

44

CPU Cores GPU

Display
Controller

�cpu �gpu

�d

�gpu

�� ��

Batch buffer Frame buffer

Figure 3.2: Example of a CPU-GPU queueing model showing batch buffer and frame

buffer.

In order to quantify the impact of the CPU and GPU frequencies on the frame

rate, we need to model how their respective throughputs change with frequency. Let

fkcpu and fkgpu denote the CPU and GPU frequencies in time step k. Suppose that the

ratio of the total processing time spent in the CPU pipeline, i.e, the CPU scalability

factor [7], is given by xcpu. Similarly, we denote the GPU scalability factor by xgpu.

We can use Amdahl’s law [3] to express the throughput speedup that can be achieved

by scaling the CPU frequency (Skcpu) and the GPU frequency (Skgpu) as:

Ski =
λki
λk−1
i

=
1

1− xi
(

1− fk−1
i

fki

) , i ∈ {cpu, gpu} (3.3)

Since the scalability factor x in Equation 3.3 changes dynamically, we predict it

at runtime using a linear function of individual hardware counters, their products

and quotients. We estimated the coefficients of the function using offline linear re-

gression [70]. Note that Equations 3.1–3.3 can be easily generalized to an arbitrary

number of processing elements, as mentioned earlier. In the rest of the chapter, we

use notation i to refer to the CPU and GPU.

A request to change the speedup can be triggered either due to violations of the

power constraint, or a change in the frame rate target. For example, it may be

necessary to slow down the clock frequency due to a negative power slack. Similarly,

we may want to increase the clock frequency, when the power slack is positive and

45

the frame rate is below the target. Hence, we express the change in the speedup as:

∆Ski = ∆Ski,µd + ∆Ski,p (3.4)

where ∆Ski,µd and ∆Ski,p denote the change in speedup due to the frame rate and the

power budget, respectively. These terms can be obtained by applying the first order

Taylor series approximation as follows:

∆Ski,µd =
∂Si
∂µd

∣∣∣
k
∆µkd and ∆Ski,p =

∂Si
∂pi

∣∣∣
k
∆pki (3.5)

The speedup definitions and list of the other parameters are summarized in Table 3.1.

3.3.2 Power Budget Allocation

We use Equations 3.2 through 3.5 to find the power consumption allocations and

the required change in the frame rate target. To achieve this, we form step by step

a system of equations as follows. Equation 3.2 gives the constraint on the total

power slack, which would be distributed between the CPU and GPU. Substituting

Equation 3.5 into Equation 3.4 gives two speedup equations, one for the CPU and

the other for GPU. These equations can be written as:


∆P k

total

∆Skcpu

∆Skgpu


︸ ︷︷ ︸

bk

=


1 1 0

∂Scpu

∂pcpu

∣∣∣
k

0 ∂Scpu

∂µd

∣∣∣
k

0 ∂Sgpu

∂pgpu

∣∣∣
k

∂Sgpu

∂µd

∣∣∣
k


︸ ︷︷ ︸

Ak


∆pkcpu

∆pkgpu

∆µkd


(3.6)

Once the parameters in bk and Ak are computed (as illustrated in Section 3.3.3),

the unknowns, i.e., the required change in CPU power ∆pkcpu, in GPU power ∆pkgpu,

and frame rate target can be found by solving Equation 3.6 when the determinant of

Ak is nonzero:

46

det(Ak) = −∂Scpu

∂µd

∣∣∣
k

∂Sgpu

∂pgpu

∣∣∣
k
− ∂Scpu

∂pcpu

∣∣∣
k

∂Sgpu

∂µd

∣∣∣
k
6= 0 (3.7)

Corner cases: We note that det(Ak) could be zero under four corner cases. For

example, det(Ak) = 0 when both ∂Scpu/∂µd = 0 and ∂Scpu/∂pcpu = 0. This condi-

tion means that the CPU speedup does not change either with allocated power or

frame rate. Therefore, if this condition occurs, the remaining power budget should

be allocated completely to the GPU. In general, when the speedup of one of the re-

sources is oblivious to allocated power, one should allocate the extra power to the

other processing element. The second corner case occurs for ∂Scpu/∂µd = 0 and

∂Sgpu/∂µd = 0. That is, the speedup of neither of the processing elements depends

on the frame rate change. If this condition happens, we allocate the power pro-

portional to the derivative of their speed up with respect to the allocated power.

Similarly, if neither speedup depends on the power allocation (∂Scpu/∂pcpu = 0 and

∂Sgpu/∂pgpu = 0), there is no need to allocate more power to any resource. The final

corner case appears, if ∂µd/∂pgpu and ∂µd/∂pcpu have opposite signs. However, this

can occur only if allocating more power, to the CPU or GPU, decreases the frame

rate. If this unlikely scenario ever occurred, all of the power slack can be allocated

to the processing element that would increase the frame rate.

3.3.3 Illustration of the Power Allocation Technique

The proposed power allocation technique can be used in conjunction with any

control algorithm for which the parameters in Equation 3.6 can be expressed. Without

loss of generality, we illustrate our technique using the state-space controller presented

in [70]. Note that this controller alone can neither allocate the power budget optimally

between a CPU and GPU, nor guarantee a power budget, unlike the current work.

47

We chose this controller for illustration, since it also uses the queuing model shown in

Figure 3.2, where the CPU and GPU throughputs are shown as injections rates λcpu

and λgpu. The ejection rate from the batch buffer to GPU is given as µgpu, while the

ejection rate from the frame buffer to display is given as µd. If we denote the length

of the control interval as T , the occupancy of batch buffer (q1) and frame buffer (q2)

can be written as:

q
k+1
1

qk+1
2

 =

q
k
1

qk2

+ T

λ
k−1
cpu −rk−1λk−1

gpu

0 λk−1
gpu


S

k
cpu

Skgpu

− T
 0

µkd

 (3.8)

where rk gives the average number of batches per frame in control interval k. The

control output Sk can be found by applying a state feedback Gk(qk − qref), where

Gk is the controller gain matrix and qref is the reference queue utilization:

Sk = −Gk(qk − qref) +

 rk−1µkd
λk−1
cpu

µkd
λk−1
gpu

 (3.9)

Since the proposed budget allocation technique is not specific to this controller,

we refer the reader to [70] for the details of the controller design. Next, we show the

derivation of the parameters in Equation 3.6.

The left-hand side of Equation 3.6 (bk): The total power slack ∆P k
total is com-

puted using Equation 3.1. To find the speedup of the CPU and GPU throughput

(∆Skcpu, ∆Skgpu), we use the speedup expression given by Equation 3.3. That is,

∆Ski , Ski − 1 =
λki − λk−1

i

λk−1
i

(3.10)

Derivatives with respect to frame rate in Ak: We can find the first order

derivatives of speedup, with respect to frame rate using Equation 3.9 of the feedback

controller:

48

∂Scpu

∂µd

∣∣∣
k

=
rk−1

λk−1
cpu

, and
∂Sgpu

∂µd

∣∣∣
k

=
1

λk−1
gpu

(3.11)

Derivatives with respect to power slack in Ak: The power consumption of the

CPU and GPU cores can be written as the sum of dynamic and leakage power. Since

voltage typically scales linearly with frequency, power consumption during the control

interval k can be written as a cubic polynomial in frequency [42, 153]:

pki = aki (f
k
i)3 + bki (f

k
i)2 + cki f

k
i + dki (3.12)

where, the coefficients ai, bi, ci, and di are the functions of hardware performance

counters that change with time, to account for the workload dependent activity of the

circuits. These parameters are characterized by measuring the power consumption

offline, and fitting it to the model given in Equation 3.12. The maximum error in our

power prediction was 8.2% for all benchmarks used in this chapter.

The derivative of speedup, with respect to power of a resource, can be expressed

as:

∂Si
∂pi

=
∂Si
∂fi

dfi
dpi

(3.13)

∂Si/∂fi is computed using the speedup Equation 3.3, while dfi/dpi can be obtained

from the power model given in Equation 3.12.

The unknowns in Equation 3.6: After bk and the derivatives in matrix Ak are

found, the unknowns (i.e. the optimal power allocations and frame rate adjustments,

are given by inv(Ak)bk.

49

3.3.4 Summary of Overall Operation

Figure 3.3 summarizes the proposed power budgeting technique. At the start of

each control interval, we calculate the power slack ∆P k
total using Equation 3.1. Then,

we solve Equation 3.6 using the inputs from the frequency controller, as explained

in Section 3.3.3. This gives the required change in frame rate target ∆µkd, as well as

the required change in the CPU and GPU power. Finally, we use ∆µkd to update the

frame rate target as:

µk+1
d = µkd −∆µkd (3.14)

To ensure convergence to the target power budget, we apply an iterative linear search

for the change in frame rate target ∆µkd in steps of 1 FPS until power budget constraint

is met. This value is then used in Equation 3.9 to find the required speedups Skcpu and

Skgpu. Finally, we utilize Equation 3.3 to calculate the actual CPU and GPU clock

frequencies, given Skcpu and Skgpu as follows:

fki =
fk−1
i

1− 1
xi

(
1− 1

Sk
i

) (3.15)

3.4 Experiment and Simulation Results

In this section, we present the hardware platform setup used to evaluate the pro-

posed power budgeting technique. Then, we discuss the experiment results. Finally,

we describe our high-level simulations used to validate the proposed power budgeting

algorithm.

50

Compute	∆�
�����

�

using Equation 1

Update the frame rate target
Δ�

�

��� using Equation 14

Compute �
	
�

� and �
�
�

�

Compute �
	
�

� , �
�
�

� using Equation 3

Get Δ	
	
�

� , Δ	
�
�

� 	and	Δ�
�

�

by solving Equation 6

It
er

at
e

ev
er

y
co

n
tr

o
l i

n
te

rv
al

Figure 3.3: Summary of the power budgeting technique, showing the steps in each control

interval.

3.4.1 Hardware Experimental Setup

We implemented our technique on a quad-core AtomZ3775 [62] based platform,

shown in Figure 3.4. The platform runs Android JellyBean 4.2.2 [37]. The Atom

chip consists of Intel HD graphics core with 4 execution units that operate in the

frequency range of 244 MHz to 778 MHz. There are four CPU cores whose operating

frequency ranges from 533 MHz to 2192 MHz.

Silvermont System Agent

Intel HD
Graphics

CPU
core-1

Shared 1M L2$

CPU
core-2

CPU
core-3

Shared 1M L2$

CPU
core-4

Figure 3.4: Block diagram of the Atom chip [137] used in our experiments.

The CPU-GPU queueing model shown in Figure 3.2 is valid for both ARM and

x86 based MpSoCs. Therefore, the proposed technique can also be applied to other

platforms with integrated GPUs. Successful implementation requires instrumenting

51

the Android kernel to obtain the CPU and GPU frequencies, frame rate, the occu-

pancies, injection rates and ejection rates of the batch and frame buffers. In addition,

the CPU and GPU power consumptions need to be read through a sensor, or a power

meter. In particular, we used a power meter similar to Trepn profiler from Qual-

comm [116]. Furthermore, instrumenting of the batch and frame buffers to obtain

the injection and ejection rates is nontrivial. To achieve this, we identified the dis-

play kernel functions that are called whenever a frame is written to the frame buffer

using the debug log. Then, we added global counters that can be read through the

sysfs interface [89] in every control interval. The ratio of the number of frames to the

length of the control interval—in our case, 50 ms—gives the frame rate.

Our implementation is partitioned between the kernel space (within the CPU and

GPU drivers) and user space (proposed power budgeting technique). The maximum

achievable frame rate is limited by the display refresh rate. For example, our exper-

imental platform supports a maximum frame rate of 60 FPS. The proposed power

allocation technique targets the operation regions where the power budget forces the

achievable frame rate less than or equal to this value. The proposed technique is in-

voked at every 50 ms to allocate the power budget and control the clock frequencies.

The control interval is set as 50 ms, since this causes negligible overhead, and at the

same time allows processing three frames assuming a frame rate of 60 FPS. Finally,

we validated the power models using NI-USB 6289 data acquisition unit [97].

Benchmarks: We ran a set of representative graphics applications, such as 3D-Mark,

GLbench, Citadel, Nenamark2 and Jet-Ski on the platform.

Power budget: Pmax is usually determined by the power control unit using the

thermal constraints and available battery level. Increasing power consumption leads

to an increase in the temperature [130]. For example, as the total power consumption

of our experimental platform increased from 2.1 W to 5.5 W, the temperature of the

52

heat sink rose from 39◦C and 55◦C. At any point in time, the difference between the

maximum safe temperature and current temperature can be used to determine the

power budget that can be allocated to the CPU and GPU [128]. Hence, the power

budget can change dynamically during the runtime of an application to utilize the

available thermal headroom. It has been also shown that computational sprinting can

provide a significant performance gain by allowing the power consumption to exceed

the thermal power budget for short durations of time [118]. Hence, one can allow

short violations (∼ 200 ms) when the frame rate needs to be boosted.

Many platforms have heuristic policies implemented in firmware to reduce the

power when the total power exceeds Pmax. In our setup, we allow Pmax to change to

any desired user-defined level to enable us to undertake controlled experiments. To

accomplish this, we first obtained the total power consumed by the CPU and GPU

for an unconstrained system Punconst. Then, we chose a set of Pmax values at 50%,

70%, 80%, and 90% of Punconst in order to study the sensitivity of our technique to

Pmax.

Heuristics: We compared our technique to the default static and dynamic heuristic

algorithms that distribute the power consumption between the CPU and graphics

components such that the sum of the individual power consumptions is constant [56].

a) Static: The CPU and GPU power budgets have fixed ratios during the lifetime

of the system (typically 90% of Pmax is assigned to the GPU, and 10% is assigned to

the CPU cores).

b) Dynamic: The CPU and GPU power budgets are distributed proportionally to a

weight parameter that signifies the criticality of the GPU. This weight is incremented

or decremented dynamically as a function of the GPU utilization, which is defined

as the ratio of the GPU active time to the control period. As a result, larger GPU

53

utilization leads to larger power budget allocated to the GPU. Likewise, more power is

allocated to the CPU as the utilization of the GPU reduces. The utilization thresholds

and power increment/decrement step size are fixed, and are tuned for a given platform.

3.4.2 Experimental Results on the Hardware Platform

Power consumption evaluation: Figure 3.5 shows the sum of the CPU and GPU

power consumption of 3D-Mark benchmark over 15 seconds. During the first 5 sec-

onds, the power budget is set to 50% of the unconstrained power consumption. We

observe that the proposed technique successfully maintains the power consumption

within the budget. The power budget is then raised to 80% of the unconstrained

power consumption during the following 5 seconds. The controller responds quickly

by increasing the CPU and GPU clock frequencies. Similarly, the power consumption

is throttled at t = 10 second, immediately after lowering the power budget again to

50%. This shows the robustness of the proposed approach in meeting the power bud-

get target. A more detailed analysis of the data also reveals that the total power can

occasionally deviate from the power budget. For example, we observe spikes around

t = 1.5, t = 3.5, and t = 14 seconds in Figure 5. These spikes can occur at runtime

due to the change in the workload and quantized values of p-states for the CPU and

GPU. Figure 6 shows the mean absolute percentage error between the target power

budget and the achieved power consumption using the proposed approach for the

benchmarks running with Pmax values at 50%, 70%, 80%, and 90% of Punconst. The

error across the benchmarks is less than 6% indicating the proposed power budgeting

technique successfully meets the target power consumption.

Next, we analyze the CPU-GPU power budget distribution at two different power

budget settings. One setting is tight (Pmax is 50% of the unconstrained power), and

the other is loose (Pmax is 90% of the unconstrained power). Figure 3.7 shows that

54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

To

ta
l P

ow
er

Time (s)

Figure 3.5: The sum of the CPU and GPU power consumption for 3D-Mark benchmark

showing two levels of power budget. The trace is 15 seconds long, i.e., 300 control intervals.

90% 80% 70% 50%
0
2
4
6
8
10 Mean Abs. Perc. Error

E
rr

or
 (%

)

Pmax/Punconst

Figure 3.6: Deviation from the power budget constraint for different values of the power

budget. Each bar reports the average of the error in 3D-Mark, GLbench-Egypt, Citadel,

Nenamark2 and Jet-Ski benchmarks.

the average CPU power hardly reaches 10% of the total power consumption for our

benchmarks. This is expected as most graphics applications are GPU heavy. We

also note that the CPU power consumption varies across different benchmarks. In

particular, the Jet-Ski game has higher fraction of CPU power consumption than the

rest of the benchmarks. This shows the importance of adapting the power budget

dynamically. Finally, the ratio of the CPU to GPU power consumption changes as

a function of the power budget. This indicates that static allocation would either

over- or under-utilize the power budget, while a dynamic allocation has a potential

to adapt to different workloads.

Performance evaluation: Figure 3.8 compares the frame rate achieved with the

55

proposed power budgeting technique against the heuristic algorithms under different

power budget scenarios 3 . Note that the heuristics in this chapter were highly

tuned. Thus, we are comparing our technique’s results against competitive baseline

algorithms.

When the power budget is set to 50% of the unconstrained power consumption, the

proposed technique significantly outperforms the heuristics, as shown in Figure 3.8a.

In particular, when running the Glbench-Trex benchmark, the proposed technique

achieves 38% and 64% higher frame rate than the static and dynamic heuristics,

respectively. On average, the proposed technique delivers 15% higher frame rate

than the static heuristic, and 10% higher frame rate than the dynamic heuristic.

These improvements are achieved because our solution controls the CPU and GPU

clock frequencies very effectively under tight power budget constraints. When the

power budget is relaxed (as shown in figures 3.8b, 3.8c, and 3.8d) our technique still

outperforms the heuristic algorithms, albeit with a smaller gain in frame rate. It is

3For fairness, all three algorithms were evaluated under the same power consumption in any given
scenario.

3d
ma
rk

GL
be
nc
h-T

rex

GL
be
nc
h-E

gy
pt

Cit
ad
el

Ne
na
ma
rk2

Je
t-S
ki

Av
era

ge
0.00
0.04
0.08
0.12
0.16
0.20

C
PU

 P
ow

er

Fr
ac

tio
n

 Pmax = 50% of Punconst Pmax = 90% of Punconst

Figure 3.7: Experimental results for two different power budget values (50% and 90% of

the unconstrained power Punconst). The CPU power fraction of the power budgets is plotted

for each of the benchmarks. The GPU power fraction is equal to (1− CPU power fraction).

56

3d
ma
rk

GL
be
nc
h-T

rex

GL
be
nc
h-E

gy
pt

Cit
ad
el

Ne
na
ma
rk2
Je
t-S
ki

Av
era

ge
0
5
10
15

40
50
60
70

%
 G

ai
n

in
 F

P
S

Pmax = 50% of Punconst Pmax = 70% of Punconst Pmax = 80% of Punconst Pmax = 90% of Punconst

3d
ma
rk

GL
be
nc
h-T

rex

GL
be
nc
h-E

gy
pt

Cit
ad
el

Ne
na
ma
rk2
Je
t-S
ki

Av
era

ge
-2
2
6
10
14
18
22
26
30

(d)(c)(b)(a)

3d
ma
rk

GL
be
nc
h-T

rex

GL
be
nc
h-E

gy
pt

Cit
ad
el

Ne
na
ma
rk2
Je
t-S
ki

Av
era

ge
-3
0
3
6
9
12
15
18
21
24
27

 Improvement over dynamic heuristic Improvement over static heuristic 90/10

3d
ma
rk

GL
be
nc
h-T

rex

GL
be
nc
h-E

gy
pt

Cit
ad
el

Ne
na
ma
rk2
Je
t-S
ki

Av
era

ge
-1
2
5
8
11
14
17

Figure 3.8: Comparison of the throughput gain (FPS) achieved with the proposed technique

with respect to 1) dynamic heuristic, and 2) static heuristic that allocates 90% of Pmax to

GPU and 10% of Pmax to CPU.

also important to note that the proposed technique delivers a consistent performance

across all the benchmarks, while there is no clear trend for the heuristics. For example,

the dynamic heuristic performs better than the static heuristic for the GLbench-Trex

benchmark, when the power budget was less than or equal to 80% of the unconstrained

power consumption, as shown in figures 3.8a, 3.8b and 3.8c. However, when the power

budget increases, the static heuristic starts to perform better, as shown in Figure 3.8d.

We observe smaller frame rate improvement for Nenamark2 and 3D-Mark compared to

others such as Jet-Ski. Due to the relatively lower frame complexities in Nenamark2,

the heuristics are able to meet the frame rate target even with lower power budgets.

Similarly, the heuristics are able to meet the frame rate target for 3D-Mark because

the frame rate saturates quickly even with a high power budget. Hence, the proposed

approach does not show significant improvement in these cases.

Finally, Figure 3.9 shows the average frame rate as a function of the power budget.

When the power budget is as low as 50% of the unconstrained power consumption,

both heuristics perform significantly worse than the proposed technique. The heuris-

tics close the gap gradually and approach the performance of the proposed technique

when the power budget relaxes to 80% of the unconstrained power consumption.

57

However, any further increase in the power budget degrades the performance of the

heuristic algorithms. The mean and median values of the frame rate across all the

benchmarks are 42 FPS and 49 FPS, respectively. The large values of the mean and

median indicate that many applications achieved high frame rates. In fact, the max-

imum measured frame rate is 60 FPS, while the minimum observed value is 11 FPS,

which occurred only once at the lowest power budget. In the figures, we report only

the normalized values due to confidentiality reasons.

In conclusion, the proposed approach not only provides a high throughput, but

also utilizes the available power slack more effectively. Hence, it achieves its goal of

allocating the optimal power consumption to the CPU and GPU under a given power

budget.

3.4.3 Simulation Framework

In this section, we first provide the motivation and details of our high level simu-

lator and then present the simulation results.

Use of the Simulator: The ultimate test for power and performance validation is

running the applications on a hardware platform, as presented in the previous section.

However, validating power management algorithms, such as the proposed technique,

0.5 0.6 0.7 0.8 0.9
0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 A
ve

ra
ge

FP

S

Pmax/Punconst

 Power buget controller
 Heuristic-dynamic
 Heuristic-static-90/10

Figure 3.9: The average frame rate across all benchmarks for each of the power budget

algorithms.

58

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60

0 1 2 3 4 5 6 7 8 9 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8 9 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60

Fr
am

e
ra

te
 (F

PS
)

Time (s)

CPU-Heavy
CPU-Light

CPU-LightCPU-HeavyCPU-Heavy CPU-Light

Time (s) Time (s)

Fr
am

e
ra

te
 (F

PS
)

To
ta

l P
ow

er
 (W

)

(d)(b)

To
ta

l P
ow

er
 (W

)

 Pmax = 2.5 W Pmax = 1.8 W

(a) (c)

CPU-Heavy CPU-Light

 No power constraint

Time (s)

Figure 3.10: Simulation result of the proposed power budgeting technique showing the

sum of the CPU and GPU power consumption and frame rates for different power budget

values and workload phases. The GPU is under heavy load to simulate graphics intensive

applications like gaming.

requires running minutes of workloads, which generally implies several thousands of

frames. This range of runtime can be easily achieved on real platforms, but imple-

menting and debugging the algorithm directly on the platform is time consuming.

More specifically, limited observability at the kernel level makes debugging and tun-

ing of the algorithms difficult. Furthermore, the compile time after each modification

takes a significant amount time. As a result, the debugging and tuning time ends up

in the order of weeks. The traditional cycle-accurate architectural level simulators,

like gem5-gpu [114], are also not suitable for validating power management algorithms

due to their long execution times. For example, simulating thousands of frames on

gem5-gpu can easily take weeks to run. Therefore, we developed a trace-driven high-

level simulator using Matlab/Simulink to develop, debug and tune the algorithms.

After the algorithm is validated and tuned on the simulator, we port the code and

59

parameters to the real platform. This reduces the development effort on the platform

to a few days.

Simulator Infrastructure: The simulator was built using the performance and

power models for the CPU and GPU that were derived from the real experiments

using Minnowboard [61] and Odroid-XU+E [98]. The CPU and GPU interactions

were modeled using the queueing system shown in Figure 3.2. The simulator operates

at the batch level, i.e., the CPU and GPU read in batches from a trace file. Each

batch comes with processing time, sleep time, frequency and utilization for both

CPU and GPU cores. To obtain the input traces, we modified the Android kernel

such that these values can be stored as a function of time. Then, we ran the target

benchmarks on the platform to collect the reference input traces. The reference

values from the trace are then used to simulate the performance and power under

varying workload and control policies implemented in our simulator. To ensure good

fidelity, we calibrated the simulator with the help of the workloads and algorithms

implemented both in the hardware [61, 62] and the simulator. This resulted in less

than 3% error in power consumption across all supported frequencies and 5% error

in the frame rate. In addition, we also verified that the batch and frame processing

times reported by the simulator match the measured values when the CPU and GPU

frequencies were kept at their reference values. We note that this simulator does not

provide visibility in terms of how each batch is composed, but it captures the impact

of the CPU and GPU frequencies on the frame rate accurately. Moreover, operating

at a high level enables us to evaluate power management algorithms while running

thousands of frames at a speed of 60 frames/min.

60

3.4.4 Simulation Results

One of the main benefits of high-level simulation is the ability to test the power

management algorithms under workloads that are difficult to generate on the target

platform. To evaluate the power budgeting algorithms under different corner cases,

we simulated a workload that consists of a {CPU heavy, GPU heavy} phase for the

first 5 seconds, and a {CPU light, GPU heavy} phase for the next 5 seconds. Next,

we provide the results for the proposed power budgeting algorithm and the static

heuristic algorithm to present a deeper understanding of how each algorithm behaves

under different corner cases.

Proposed Algorithm

Figure 3.10 shows the total power and frame rate for the 10 seconds simulation work-

load under different power budgets using the proposed algorithm.

{CPU heavy, GPU heavy} phase: Without any power constraint, the maximum

power consumption is about 3.3 W, and the frame rate is 43 FPS, as shown in Fig-

ures 3.10a and 3.10b. The proposed technique successfully stabilizes the total power

at 2.5 W and 1.8 W after constraining the power budget to about 80% and 60% of the

unconstrained power, as depicted in Figure 3.10c. As a result of the reduced power

budget, the frame rate drops to 24 FPS and 20 FPS, as presented in the CPU-heavy

region of Figure 3.10d.

{CPU light, GPU heavy} phase: Lowering the CPU load immediately reduces

total power consumption when there was no power constraint. This transition is

clearly visible at time t = 5 second in Figure 3.10a. In contrast, when there is a

power constraint, the power slack released by the CPU is allocated to the GPU.

Hence, the total power consumption remains flat, as depicted in Figure 3.10c. In par-

61

ticular, when the power constraint is 2.5 W, the CPU power consumption drops from

0.8 W to 0.5 W after the workload changes, as detailed in Figure 3.11. The second

consequence of lowering the CPU load is increased frame rate, as shown Figure 3.10b.

Without the proposed power reallocation technique, the GPU would become the per-

formance bottleneck and limit the frame rate. Our technique, however, allocates the

resulting 0.3 W power slack to the GPU in less than 150 ms by increasing the GPU

clock frequency. In turn, the GPU starts processing more frames within the same

total power budget. Consequently, the frame rate increases to 51 FPS, as shown in

Figure 3.10d. Similarly, the proposed technique successfully redistributes the power

budget under a 1.8 W power constraint and achieves a frame rate of 31 FPS.

In summary, the proposed technique effectively redistributes the power budget

and achieves a high frame rate. Figure 3.11 summarizes the precise distribution of

the total power budget between the CPU cores and GPU for all the workload and

power constraint scenarios considered in this simulation.

No power constraint

Pmax =
 2.5 W

Pmax =
 1.8 W

0.0
0.5
1.0
1.5
2.0
2.5
3.0

 CPU GPU
CPU - Light, GPU - Heavy

No power constraint

Pmax =
 2.5 W

Pmax =
 1.8 W

0.0
0.5
1.0
1.5
2.0
2.5
3.0

CPU - Heavy, GPU - Heavy

P
ow

er
 (W

)

Figure 3.11: Power budget distribution between the CPU and GPU for the three power

budget values and workloads.

62

Static Heuristic Algorithm

Another use of the simulator is the ability to test a wider set of scenarios, which

would take days on the real platform. For example, the static heuristic we used in

the experiments allocated 90% of the total power to the GPU and the remaining

10% to the CPU based on experience. To explore the impact of these allocations, we

re-ran the same trace, that consists of a 5 second CPU-Heavy phase followed by a

5 second CPU-Light phase for three scenarios with 10%, 30%, and 50% CPU power

allocations. Growing the CPU power allocation from 10% to 50% increases the frame

from 19 FPS to 28 FPS during the CPU-Heavy phase, as shown in Figure 3.12b.

However, this also reduces the frame rate by half during the CPU-Light phase, since

GPU has to run at a lower frequency. Similarly, allocating 30% of the power budget

marginally improves the frame rate during the CPU-Heavy phase, but significantly

hurts it later. This shows that 90% GPU - 10% CPU allocation is relatively better

than the other allocations. However, static allocation, by its nature, cannot adapt to

workloads and meet time varying requirements, unlike the proposed technique.

3.5 Conclusion

Mobile platforms operate under tight power budgets due to limited cooling so-

lutions. Therefore, it is critical to distribute the limited power budget efficiently

between the GPU and CPU cores, when running graphics applications. In this chap-

ter, we present a power budgeting technique, for the GPU-CPU subsystem, which

does not require any tuning, unlike existing heuristics. Furthermore, the proposed

technique not only provides high throughput, but also utilizes the available power

slack more effectively. Therefore, it successfully achieves its goal of allocating the

optimal power consumption to the CPU and GPU, under a given power budget. The

63

0 1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9 10

0
10
20
30
40
50
60

To
ta

l P
ow

er
 (W

)
Time (s)

 Dist = 90/10 Dist = 70/30 Dist = 50/50

CPU-Heavy CPU-Light

Fr
am

e
ra

te
 (F

PS
)

Time (s)

CPU-LightCPU-Heavy

(a)

(b)

Figure 3.12: Static heuristic algorithm result for (a) the sum of the CPU and GPU power

consumption and (b) performance for different distributions of GPU/CPU powers. The

power budget is set to 2.5 W. Dist=Y/X in the legend indicates that Y% of 2.5 W is

allocated to the GPU and X% of 2.5 W to the CPU.

effectiveness, of the proposed technique, has been demonstrated using both simula-

tions and experiments. The experiments being performed on a state-of-the-art mobile

platform running industrial benchmarks. In future, we plan to perform experimen-

tal evaluation of our power budgeting framework by adding more components of the

MpSoCs, such as memory.

64

Table 3.1: Notation Table

Notation Description

Pmax Power budget: maximum allowable power consumed

by the CPU and GPU

∆Ptotal Power slack

k Time step

pi Power consumed by the CPU/GPU

λi Throughput of the CPU/GPU

fi CPU/GPU frequency

xi Scalability factor of the CPU/GPU

Si CPU/GPU speedup in throughput

∆Si CPU/GPU change in the speedup

∆Si,µd CPU/GPU change in the speedup due to frame rate

∆Si,p CPU/GPU change in the speedup due to power consumption

µd Frame processing rate

q1 Queue occupancy of batch buffer

q2 Queue occupancy of frame buffer

T Length of each control interval (50 ms)

r Average number of batches per frame

qref Column vector of reference queue utilizations

for batch and frame buffers

G Controller gain matrix

Punconst Power consumed by the CPU and GPU combined

for unconstrained case

65

Chapter 4

AN ONLINE LEARNING METHODOLOGY FOR PERFORMANCE

MODELING OF GRAPHICS PROCESSORS

4.1 Introduction

Graphically-intensive mobile applications, such as games, constitute about 18%

of the most popular smartphone application categories [5]. Consequently, integrated

GPUs have become an indispensable component of mobile processors due to the

increasing popularity of graphics applications. Our measurements show that the

GPU power consumption accounts for more than 35% of application processor power

when running many of these applications. The GPU frequency cannot be reduced

arbitrarily to save power, since it also determines the achievable frame rate, which

has a significant impact on the user experience. Therefore, there is a growing need

to use graphics performance models that can accurately and judiciously control the

GPU frequency.

The primary graphics performance metric is the number of frames that can be

processed per second, since this limits the maximum display frame rate. Therefore, we

use the time the GPU takes to process a frame as the performance metric. Frame time

highly correlates with GPU frequency, and is dependent on the target application.

Furthermore, it varies significantly throughout the lifetime of an application, as shown

in Figure 4.1. That is, the frame time is a multivariate function of the frequency and

workload, where the latter is captured by the performance counters. Therefore, an

effective GPU performance model must adapt to the dynamic workload variations to

accurately predict the frame time as a function of frequency.

66

0 5 10 15 20 25 30

F
ra

m
e

ti
m

e
(m

s)

20

40

60

Time (s)
0 5 10 15 20 25 30

F
ra

m
e

ti
m

e
(m

s)

10

20

30

(a)

(b)

Figure 4.1: The change in frame time for ice-storm application for (a) 200 MHz and

(b) 489 MHz GPU frequencies.

In this chapter, we present a performance model that when combined with a power

model can be integrated into dynamic power management algorithms to enable selec-

tion of the best GPU frequency for graphics applications. We develop a systematic

two-step methodology for constructing a tractable runtime model for GPU frame time

prediction. The first step is an extensive analysis to collect frame time and GPU per-

formance counter data. This analysis enables us to construct a frame time model

template and select the feature set that should be used online. Our model employs

differential calculus to express the change in frame time as a function of the partial

derivatives of the frame time with respect to the GPU frequency and performance

counters. In the second step, we implement an adaptive algorithm, whose function is

to learn the coefficients of the proposed model online for dynamically predicting the

change in the frame time. Unlike our previous work [40], the proposed adaptive algo-

rithm does not depend on modeling any performance counters offline. We achieve this

by identifying the counters that depend on the GPU frequency during the offline fea-

ture selection process. Hence, we exploit the characterization data, which is already

67

available, and construct a fully online model without relying on micro-architectural

details. Furthermore, we present two different online algorithms that can be employed

based on the number of features used in the model. The first algorithm is the co-

variance form of recursive least squares (RLS) algorithm. RLS is a good choice since

the correlation between different frames decays quickly unlike the fractal behavior

observed at the macroblock level [142]. The covariance form avoids matrix inversion

and incurs very small overhead when the number of features is small (≈10). However,

its computational complexity still grows quadratically [85]. Therefore, we also employ

the traversal form of RLS with coordinate descent, called Dichotomous Coordinate

Descent form of RLS (DCD-RLS), whose complexity grows linearly with the number

of features [148]. We employ the adaptive frame time model to estimate the frame

time sensitivity to the GPU frequency, which is defined as the partial derivative of

the frame time with respect to the GPU frequency.

To validate our approach experimentally, we run custom applications and com-

monly used graphics benchmarks on three different hardware platforms 1 : the Intel

Minnowboard MAX mobile platform [61], Intel core i5 6th generation platform [109],

and Moto-X pure edition smartphone [91]. First, we test the accuracy of our per-

formance model. Our experiments show that the mean absolute percentage error in

frame time and frame time sensitivity prediction are 4.2% and 6.7%, respectively.

Then, we employ our model in a dynamic power management algorithm to optimize

energy consumption with performance constraint. We achieve 43% better energy sav-

ings than the default Ondemand governor and only 3% higher energy consumption

compared to an Oracle policy.

The major contributions of this work are:

1 Note that our previous work [40] was validated only on the Intel Minnowboard MAX mobile
platform.

68

• A methodology for collecting offline data and developing a GPU performance

model,

• An adaptive performance model as a function of the GPU frequency and hard-

ware counters observed online,

• Practical implementation and overhead analysis of two low-cost RLS algorithms

to adaptively learn the model coefficients,

• Extensive evaluations of our approach on three experimental and commercial

platforms using common GPU benchmarks.

The rest of the chapter is organized as follows. Section 4.2 presents the related

work. Section 4.3 details the challenges and lays out the groundwork required for

frame time prediction. Section 4.4 presents the techniques for offline analysis and

online learning. Finally, Section 4.5 discusses the experimental results, and Section 4.6

concludes the chapter.

4.2 Related Research

The number of power hungry and performance critical graphics applications run-

ning on the smartphone is increasing [90]. As a result, power consumption, temper-

ature, and performance metrics in smartphones have become important considera-

tions [38, 99]. Dynamic thermal and power management (DTPM) techniques often

perform tradeoffs between these metrics for good user experience [8, 42, 113]. This

work focuses on building quantifiable light-weight performance models that can guide

DTPM algorithms in conjunction with runtime power models [24, 69, 96].

A number of researchers have proposed dynamic power management techniques

for graphics applications [28, 70, 111]. Many of these techniques employ performance

69

models that are either learned offline or online. For example, Kadjo et al. employs

a performance model that is a function of the individual, the products, and the quo-

tients of the hardware performance counters [70]. This technique learns the model

parameters using batch linear regression and predicts the frequency-scalable portion

of the GPU active time. Thus, enabling accurate performance modeling, but at the

same time is dependent on the offline training data. Another work on performance

modeling uses an auto-regressive (AR) model for frame time prediction [27]. The

authors employ a tenth order AR model, whose coefficients are learned offline using

ten minutes of frame time data for each application using the Matlab System Iden-

tification tool [84]. In another technique, the authors use a similar AR model whose

inputs are based on prior frame times, and the model coefficients are estimated using

the normalized least mean squares technique [28].

Workload prediction models based on PID controllers have also shown good ac-

curacy in prediction of graphics workloads [28]. However, as mentioned in [28] the

PID gains are very hard to tune due to a large search space of the gain parameters.

Furthermore, it is not practically feasible to change the PID gains adaptively at run-

time. Yet another approach to compute the GPU performance is presented in [111].

This technique models the GPU performance using the CPU and GPU frequencies

and their utilizations as inputs. The authors employ batch linear regression adap-

tively at runtime to learn the model coefficients, which is computation and memory

intensive [123]. Furthermore, their model relies on utilization (instead of using the

performance counters) that does not provide a fine-grain measure of the workload.

A hybrid combination of offline and online techniques has recently been proposed

to minimize the energy consumption under a performance constraint [88]. This tech-

nique employs probabilistic graphical models to estimate the power and performance

for unknown applications at runtime based on previously stored offline application

70

data. The authors show high accuracy compared to an online learning algorithm.

However, this online algorithm ignores the application history and employs a basic

multi-variable linear regression technique.

In summary, relying solely on offline data does not generalize well to other data

sets, as it is not feasible to account for all possible workloads. Alternatively, online

learning is challenging due to limited observability and computing resources. We

address these concerns by providing an efficient technique for GPU performance pre-

diction, which includes a performance model, a feature selection methodology and an

online learning algorithm.

Our adaptive performance model uses hardware performance counters and fre-

quency as inputs. We employ RLS for online learning of the model coefficients.

Note that RLS has been extensively applied in signal processing and control appli-

cations [123]. In fact, RLS has also been employed for building an adaptive power

model [145] and performance model [83, 146] for CPUs. Unlike our work, these mod-

els are not built for GPUs, and do not use frequency and performance counters as

inputs. Our prior performance model for integrated GPUs [40] also employ RLS algo-

rithm and performance counters. However, it requires offline learning to characterize

the frequency dependence of the counters used by the RLS algorithm. More pre-

cisely, the prior technique learns a non-linear model offline to compute the derivative

of frequency dependent counters with respect to the GPU frequency. Since offline

learning limits the usability of the earlier model, we propose a fully online technique.

The main challenge is to identify which counters depend on the GPU frequency, and

characterize this dependence without knowing micro-architectural details. Our key

insight is to find this information in the experimental data set, which is already used

for feature selection. We add a subtle term to the model template used in the fea-

ture selection step. The new term enables us to choose only the counters that are

71

not correlated with the frequency term. This leads to a more robust and practical

mechanism that employs only frequency dependent counters.

In addition, we present the results with a low complexity DCD-RLS algorithm that

can be more efficient than traditional RLS algorithm for large number of inputs [148].

Furthermore, we also evaluate our technique by concurrently running GPU applica-

tions on commercial Moto-X pure edition smartphone. Finally, we demonstrate the

application of our approach for dynamic power management and evaluate the results

on an Intel core i5 6th generation platform.

4.3 Frame Time Characterization

4.3.1 Challenges and Notation

To construct a high fidelity frame time model, it is crucial to understand the

dependence of the frame time on the GPU frequency and workload. As mentioned

in Section 4.1, the workload characteristics are captured by the performance coun-

ters x = [x1, x2, . . . , xN], where N is the total number of counters. These counters

are functions of the frame complexity C that can be defined as the processing effort

required to render a frame. For example, the number of various operations, such

as the number of pixels shades, and the number of cycles that the rendering engine

is busy vary as the frames stream through the GPU. Consequently, corresponding

performance counters become indicators of the frame complexity. Furthermore, both

the frame time and some of the counters are functions of the operating frequency.

Therefore, we characterize the frame time tF in any given time step k using a multi-

variate function tF,k(fk,xk(Ck, fk)), where the subscript k denotes discrete time steps

used in practical systems. Besides showing the dependency of the frame time on the

frequency and counters, this notation also reveals that the counters themselves can

72

0 50 100 150 200 250
3
4
5
6

5 10 15 20 25 30 35 40 45 50 553
4
5
6

Frame
Time

Time (ms)

Time (ms)

To
ta

l p
ow

er
 (W

)
To

ta
l p

ow
er

 (W
)

(b)

(a)

3 4 5 6 7 8

Frametime (ms)

0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Mean = 5.61 ms
SD = 0.66 ms Mean = 5.78 ms

SD = 0.56 ms

Kernel instr.
Power instr.

(c)

Figure 4.2: (a) Total power consumption of the Intel Minnowboard MAX platform [61]

when the GPU is rendering Art3 application at 60 FPS. The crests correspond to the

power consumption when the GPU is actively rendering the frames, while the trough

correspond to the power consumption when the GPU is in sleep state. (b) Zoomed

portion, which shows three frames in the first 50ms. The width of the peaks give the

time the GPU is actively computing the frame. (c) Frame time distribution for kernel

and power instrumentations for Art3 application.

73

vary with frequency.

There are two major challenges in the characterization of tF,k(fk,xk(Ck, fk)). The

first challenge is to establish a trusted reference for frame time that provides a rich

set of samples of this function. This set needs to provide the frame time for an

exhaustive list of frequencies and counter values. The second and bigger challenge

is to understand the sensitivity of frame time to frequency, i.e., finding the partial

derivative of the frame time with respect to the frequency. This quantitative measure

of the impact on performance due to a change in the GPU frequency is vital for

dynamic power management algorithms. For example, when the derivative is zero,

the power management algorithm can safely lower the frequency without affecting

the performance. However, finding this partial derivative is very challenging, since a

direct reference is not available at runtime. Therefore, we perform extensive offline

characterization by decoupling the impact of the change in frame time due to the

frequency and frame complexity.

4.3.2 Frame Time and Counter Data Collection

We establish the reference frame time by modifying the Android’s Direct Render-

ing Manager [30] driver to mark the GPU start and completion times for each new

frame. In this way, we can record the frame processing time and frame count from the

kernel while running any benchmark that uses the GPU. We set the sampling period

to 50 ms such that three frames can fit into the interval at 60 frames per second

(FPS).

Our frame time instrumentation is a non-trivial modification to the Linux kernel.

Therefore, we constructed an experimental setup to validate the accuracy of our

instrumentation using power consumption measurements. In our setup, an external

power supply is connected to the target platform using a shunt resistor. We employ an

74

NI data acquisition (DAQ) system [97] to measure the voltage across the terminals of

the resistor while running application. Then, the data collected by the DAQ systems

is used to compute the current drawn by the target platform. Figure 4.2(a) shows the

total platform power consumption as a function of time when running a custom target

application (Art3) at 60 FPS. By maintaining a low CPU activity, we know that the

peaks in the power consumption occur due to the GPU activity. Figure 4.2(b) zooms

to the first 50 ms of the trace that shows three frames. The width of the pulses

is a good measure of frame time, since they correspond to the time periods during

which the GPU is active. Hence, we can test the accuracy of frame time and frame

count instrumentations by correlating them to the pulse durations obtained by power

measurements. Figure 4.2(c) shows the probability density functions for the frame

time measured by the software kernel instrumentation and the external board power

measurements. We observe that our kernel instrumentation and power measurements

yield only a 3% difference in mean of the frame time. We also find that the kernel

instrumentation is more practical and accurate than the power measurements, since

it does not depend on external equipment and has lower measurement noise.

We use the Intel GPU Tools [60] to log the counter values at runtime [59]. Our

modification to the kernel source code enables us to collect traces in the format shown

below:

Time
Frame

Time

Frame

Count

GPU

Frequency

Perf.

Cntr 1

Perf.

Cntr 2
. . .

Perf.

Cntr N

Each row corresponds to a 50 ms interval, which matches the rate at which the

frequency governors change the GPU frequency. We also test that this data collection

does not induce any noticeable impact on the application performance.

Instead of collecting the data every 50 ms interval, another way to isolate the

75

3 4 5 6 7 8
Frametime (ms)

1

2

3

4

P
ro

b
ab

ili
ty

 D
en

si
ty

 F
u

n
ct

io
n

SD = 0.56 ms

SD = 0.1 ms

SD = 0.13 ms

Multiple frames
Single frame (iter 1)
Single frame (iter 2)

Figure 4.3: The frame time distribution obtained for rendering the same frame and

rendering multiple similar frames.

changes due to the GPU frequency is by running the entire application repeatedly

at each supported GPU frequency. Theoretically, this data collection method can be

used to identify the effect of GPU frequency on frame time. However, this approach

is intractable for a number of reasons. First, there will not be a one-to-one corre-

spondence between the frames in different runs. For example, consider an application

that runs at 60 FPS or 30 FPS depending on the GPU frequency. At the low GPU

frequency, the application will drop the 30 frames that it failed to render, rather than

rendering them later. Second, even processing the same frame may take different

amounts of time due to the variations in the memory access time from one run to

another, as shown in Figure 4.3. We also observe that frame time variations can be

significant even when rendering multiple frames that have similar frame complexity.

These challenges are aggravated in many GPU intensive applications. Therefore, the

most reliable approach for collecting reference data is by varying the GPU frequency

while freezing the workload.

A consistent apple-to-apple comparison is possible only if the workload is kept

76

constant, i.e., same frame is frozen and rendered repeatedly. To facilitate this com-

parison, we built two custom Android applications, Art3 and RenderingTest, as de-

tailed in Section 4.5.1. These applications enable us to precisely control the frame

content and target frame rate. We first set the CPU frequency to ensure repeata-

bility of the results, as shown in Figure 4.4. Then, we sweep the GPU frequency

across the set of frequencies supported by the target system. For example, our target

platform supports nine frequencies ranging from 200MHz to 511MHz, as shown in

Figure 4.4. Each of these combinations is further repeated for 64 frame complexities,

which is determined by the number and variety of features in a given frame. We note

that different frame complexities enable us to exercise the performance counters in a

controlled manner. Finally, we run each configuration multiple times to suppress the

random variations. In our experiments, we collect 80 samples for each configuration,

which leads to 2 × 9 × 64 × 80 = 92160 lines with 1152 different configurations.

Sweep CPU frequency (��)

Sweep GPU frequency (��)

Sweep Complexity (��)

Repeat the frame (��)

�� � �� �

�� � ��

Data lines

GPU
Freq (MHz)

200
244
289
311
355
400
444
489
511

Figure 4.4: The proposed methodology for collecting a rich set of training and test

data. Each frame is repeated nr times for every configuration.

The proposed methodology is applied to both of our Art3 and RenderingTest ap-

plications. Figure 4.5(a) shows how the frame time changes with the GPU frequency

at a CPU frequency of 1.3 GHz. Different curves on this plot show that increasing

77

frame complexity implies larger frame time, as expected. Therefore, the data set

confirms that the frame time is a function of both the GPU frequency and the work-

load. Similarly, Figures 4.5(b) and (c) show the Rendering Engine Busy counter and

Vertex Shader Active Time counter as a function of the frequency. The Rendering

Engine Busy counts the number of cycles for which the rendering engine is not idle

and the Vertex Shader Active Time counts the cycles for which the vertex shader is

active on all cores [59]. Clearly, Rendering Engine Busy counter is a strong function

of frequency, while Vertex Shader Active Time counter is independent of frequency.

Figure 4.6 shows the relation between the counters and the frame time. We observe

that a larger cycle count (i.e., higher complexity) results in an almost linear increase

in frame time. The partial derivative of frame time with respect to the counter value

changes with frequency. Furthermore, Figures 4.6(a) and (b) show that the partial

derivative of frame time with respect to the counter value, i.e., the slope of the frame

time, is a function of both the frequency and counter. In summary, our data set

enables characterizing the multivariate function tF,k(fk,xk(fk)). We use this data

at design time to construct a template for the frame time model. Then, our online

learning algorithm updates the coefficients in this model to predict the frame time

for arbitrary applications.

4.4 Frame Time Prediction

This section presents the proposed frame time prediction methodology. First,

a mathematical model is derived to express change in frame time, followed by a

demonstration of how frame time sensitivity is computed using this model. Then, we

describe the offline learning process for selecting the features that will be used during

online learning. Finally, we present the proposed adaptive frame time prediction

algorithm.

78

4.4.1 Differential Frame Time Model

The quintessential information used by dynamic power management algorithm is:

“How do the control parameters (in our case the GPU frequency) affect the perfor-

mance and power consumption”. For example, if the performance is not affected by

the GPU frequency, then we can use the minimum available frequency to minimize

the power consumption, since there is no performance penalty. In contrast, if the

frame time is inversely proportional to the GPU frequency, then it would be pro-

hibitive to reduce the frequency. Therefore, we are interested in modeling the change

in frame time as a function of the frequency. From a practical point of view, we know

the frame time in the previous interval k − 1 thanks to our instrumentation. There-

fore, the expected change (i.e., the difference from the previous interval) is sufficient

to predict the frame time in next interval k. This change can be approximated as

the total derivative with respect to the GPU frequency and performance counters as

follows:

dtF (fk,xk(Ck, fk)) =
∂tF (fk,xk(Ck, fk))

∂fk
dfk+

N∑
i=1

∂tF (fk,xk(Ck, fk))

∂xi(Ck, fk)
dxi,k(Ck, fk) (4.1)

This equation reveals that the variation in frame time is a combined effect of the

change in the GPU frequency (the first term), and the changes in the counters, which

reflect the workload (the summation term). Equation 4.1 holds, if the frequency and

counters are continuous variables. Since they are discrete variables in practice, we

can approximate the change in frame time as:

∆tF (fk,xk(Ck, fk)) ≈
∂tF,k
∂fk

∆fk +
N∑
i=1

∂tF,k
∂xi,k

∆xi,k (4.2)

Note that ∂tF/∂fk is the partial derivative of frame time with respect to frequency

79

2 . The frame time change due to ∂xi,k(fk)/∂fk is included in the difference term ∆xi,k.

This equation forms the basis of our mathematical model. The differential form is

useful, since the current frame time is known, and we are interested in the change.

Next, we analyze each term of Equation 4.2 in detail to derive our frame time model.

Change due to the GPU frequency: In general, the part of the processing time

confined within the GPU pipeline is inversely proportional to the frequency. However,

memory access and stall times do not scale with the frequency. Therefore, the frame

time is a non-linear function of the GPU frequency, as shown in Figure 4.5(a). Using

this observation, we can approximate the frame time tF for a given workload (i.e., x)

in terms of a frequency-scalable portion tF,s and an unscalable portion tF,us [7]. More

specifically,

tF (fk−1,x) = tF,s(fk−1,x) + tF,us(x)

tF (fk,x) = tF,s(fk−1,x)
fk−1

fk
+ tF,us(x)

(4.3)

Hence, the change in frame time when switching from fk−1 to fk can be found by

subtracting the first line in Equation 4.3 from the second line as follows:

∂tF,k
∂fk

∆fk≈ tF,s(fk−1,x)

(
fk−1

fk
− 1

)
≡a0tF,k−1

(
fk−1

fk
− 1

)
(4.4)

where tF,k−1 is the frame time from the previous instant k − 1. We note that

tF,k−1

(
fk−1

fk
− 1
)

can be easily calculated at run time. Since the scalable frame time

is in general not known, we express it as an unknown parameter a0 that our online

learning algorithm will learn at runtime.

Hardware performance counter change: The frame time changes linearly with

many hardware performance counters, such as the one shown in Figure 4.6. If any

2 We illustrate our approach using a single clock domain, since integrated GPUs used in mobile
processors, such as, ARM Mali, have a single clock domain [4]. However, this approach can be
extended to multiple clock domains by adding a new frequency term for each clock domain. and
using counters representative of all domains.

80

counters cause a non-linear change in frame time, they can be taken as piece-wise

linear. Thus, we express the second term in Equation 4.2, i.e., the change in frame

time with counters as:

∆tF (xk) ≈
N∑
i=1

∂tF,k
∂xi,k

∆xi,k ≡
N∑
i=1

ai∆xi,k (4.5)

where ai’s are the coefficients that change at runtime as a function of the workload.

Therefore, they are learned online.

By combining Equation 4.4 and Equation 4.5, we can re-write our mathematical

model in Equation 4.2 as:

∆tF,k(fk,xk(fk))≈a0tF,k−1

(
fk−1

fk
− 1

)
+

N∑
i=1

ai∆xi,k(fk) (4.6)

The terms tF,k−1

(
fk−1

fk
− 1
)

and ∆xi,k(fk) ∀ i ∈ [0, N] form the feature set hk,

while the parameters a ∈ RN+1 are learned online. The list all of the parameters with

their description are shown in Table 4.1.

4.4.2 Frame Time Sensitivity

DTPM algorithms often need to evaluate the impact of a frequency change on

performance before making any decision. This information, together with power

sensitivity to frequency, can help DTPM algorithms to make better decisions. This

section explains how our frame time prediction model is used for computing the frame

time sensitivity.

As an example, consider a scenario where the GPU frequency at time k is fk = 400

MHz. Suppose that a DTPM algorithm needs to predict the change in frame time

when the frequency goes from fk = 400 MHz to a candidate frequency fnew = 444

MHz. Before finalizing this decision, we will need to evaluate the corresponding

change in frame time, i.e., tF (fnew) − tF (fk) using Equation 4.6. In this equation,

81

the frequency change affects the first term
(

400
444
− 1
)

and only the counters that are a

function of the frequency. To make the latter more explicit, we can write the change

in counters due to the GPU frequency f and the frame complexity C as:

∆xi,k ≈
∂xi,k
∂f

∆fk +
∂xi,k
∂C

∆C, for 1 ≤ i ≤ N (4.7)

Since the frame time sensitivity is calculated for a given frame, the change in com-

plexity ∆C = 0, and Equation 4.6 can be written as:

tF (fnew) − tF (fk) ≈ a0tF,k−1

(
fk
fnew

− 1

)
+

N∑
i=1

ai

(
∂xi,k
∂f

(fnew−fk)
)

(4.8)

This equation can be used to predict the change in frame time for the new candi-

date frequency as:

dtF
df

∣∣
k
≈ tF (fnew)− tF (fk)

fnew − fk
(4.9)

In Equation 4.8, fk, fnew, and ai ∀ i ∈ [0, N] are known at time step k. The only

unknown value is
∂xi,k
∂f

, which is zero for frequency independent counters. Note that

our prior work employed a non-linear offline model to compute
∂xi,k
∂f

[40]. It is possible

to learn this model online as well by employing two parallel adaptive algorithms, but

that will incur more overhead. Since it is desirable to keep the overhead of the

implementation small, we modify the model to use only the frequency independent

counters, as described in Section 4.4.3. Selecting the counters for which
∂xi,k
∂f

= 0

greatly simplifies the frequency sensitivity calculation. In particular, a simplified

form can be obtained after combining the Equations 4.6 and 4.7.

∆tF,k(fk,xk(fk)) ≈ a0tF,k−1

(
fk−1

fk
− 1

)
+

N∑
i=1

ai

(
∂xi,k
∂f

∆fk +
∂xi,k
∂C

∆C

)
(4.10)

82

Then, we separate the terms for the change in counters due to frequency f and

complexity C.

∆tF,k(fk,xk(fk)) = a0tF,k−1

(
fk−1

fk
− 1

)
+

(
N∑
i=1

ai
∂xi,k
∂f

)
∆fk+

N∑
i=1

ai

(
∂xi,k
∂C

∆C

)
(4.11)

We combine the term
∑N

i=1 ai
∂xi,k
∂f

into a single model coefficient b1 that is learned

at runtime.

∆tF,k(fk,xk(fk)) = a0tF,k−1

(
fk−1

fk
− 1

)
+b1∆fk +

N∑
i=1

ai

(
∂xi,k
∂C

∆C

)
(4.12)

The change in the counters that are frequency independent can be written as

∆xk = ∂xk
∂C

∆C. As a result, we can change the summation in the third term to only

include the frequency independent counters without loss of generality.

∆tF,k(fk,xk(fk)) = a0tF,k−1

(
fk−1

fk
− 1

)
+b1∆fk +

Nindep∑
i=1

bi+1∆xi,k (4.13)

Finally, we perform a change in variables for the model coefficients to represent b

with a and obtain the following equation:

∆tF,k(fk,xk(fk))≈ a0tF,k−1

(
fk−1

fk
− 1

)
+a1∆fk +

Nindep∑
i=1

ai+1∆xi,k (4.14)

where Nindep ⊆ N is the number of frequency independent counters. This step sim-

plifies the calculation of tF (fnew) − tF (fk) by making the partial derivative of the

counters with respect to frequency equal to zero in Equation 4.14.

tF (fnew)− tF (fk) ≈a0tF,k−1

(
fk
fnew

− 1

)
+ a1(fnew − fk) (4.15)

83

Derivative at time k: We can compute the derivative of frame time with respect

to frequency at time k using the average of the derivative to jump one level higher

and one level lower frequency. The one level higher and lower frequencies correspond

to the smallest possible change in the frequency of the platform.

dtF
df

∣∣∣∣∣
k

= lim
∆f→0

1

2

[
tF (fk + ∆f)− tF (fk)

∆f
+
tF (fk)− tF (fk −∆f)

∆f

]
(4.16)

where ∆f is the change in the frequency one level higher and lower to the frequency

fk. Since the change in the frequency is in both the higher and lower directions, the

weights are 0.5. For some platforms, such as Minnowboard the frequency levels are

not equally spaced. For example, when fk = 489 MHz the change to the frequency one

level higher is ∆f1 = 511− 489 = 22 MHz and one level lower is ∆f2 = 489− 444 =

45 MHz, as shown in the frequency table of Figure 4.4. To accurately predict the

numerical derivative of frame time with respect to the frequency, we employ a three

point derivative of Lagrange’s polynomial [127, 135] as follows:

dtF
df

∣∣∣∣∣
k

≈∆f2
1 tF (fk+∆f2)+(∆f2

2 −∆f2
1)tF (fk)−∆f2

2 tF (fk−∆f1)

∆f1∆f2(∆f1 + ∆f2)
(4.17)

Equation 4.17 simplifies to Equation 4.16 for equal spacing of frequencies, i.e.,

when ∆f1 = ∆f2.

4.4.3 Offline Feature Selection

Real-time prediction requires an extremely efficient learning algorithm to facilitate

fast evaluation of a GPU frequency change. One approach to reduce the overhead of

regression is dimensionality reduction on the input data. The goal of this approach

84

is to reduce the complexity of the data and speed up computation, while maintaining

a good prediction accuracy. In addition to algorithm efficiency, this can help remove

the features that either add duplicate information to the output or do not change with

our parameters. The main challenge here is to identify which counters depend on the

GPU frequency and characterize this dependence without knowing micro-architectural

details . We note the Equation 4.14 has two types of terms. The first two terms with

coefficients a0 and a1 are explicit functions of the frequency, whereas the remaining

terms are functions of the performance counters. If the counters in our feature set

are correlated with the frequency, RLS cannot reliably converge to optimal model

coefficients due to the multicollinearity phenomenon. Therefore, we limit our feature

set to the performance counters that are independent from the frequency. We are

able to differentiate frequency dependent and independent counters using our char-

acterization data without having access to the micro-architecture of the GPU. We

employ Least Absolute Shrinkage and Selection Operator regression (Lasso) to re-

duce the feature size in the model appropriately by selecting the most representative

set of features by minimizing the MSE with a bound on the `1 norm of parameters

ai [34]. The results from Lasso regression are highly sparse due to the `1 nature of the

bound. That is, for T samples the Lasso regression can be performed by minimizing

the MSE between the actual change in frame time ∆tF,k and using the estimate from

Equation 4.14 after adding a `1 norm penalty as:

â = argmin
a

T∑
k=1

[
∆tF,k−a0tF,k−1

(
fk−1

fk
− 1

)
−a1∆fk+

Nindep∑
i=1

ai+1∆xi,k

]2

+η

Nindep∑
j=0

|aj | (4.18)

By increasing the value of η, less features can be selected at the expense of ac-

curacy. An acceptable loss in accuracy is within one standard error more than the

minimum MSE. Thus, during the learning phase we will regress on M feature sub-

85

set, where M << N + 1, instead of N + 1 features. Note that our approach relies

on the availability of frequency independent features in the platform. Based on our

experiments with Minnowboard [61] and Intel core i5 6th generation platform [109],

we have always been able to find frequency independent features.

4.4.4 Online Learning of the Model Parameters

The parameters in Equation 4.14 can be learned offline and then used at runtime.

However, it is hard to generalize offline learning to all possible applications that would

be executed by the system. Moreover, the workload can change as a function of user

activity. Therefore, the learning mechanism should not completely rely on offline

learning. We employ an adaptive algorithm to learn the parameters of the frame time

model. In particular, we use the covariance form of RLS [123] and the Dichotomous

Coordinate Descent form of RLS [148] estimation techniques, as described next.

RLS algorithm updates the parameters ai in Equation 4.14 in each prediction

interval, as described in Figure 4.7, using the following set of equations:

Gk = Pk−1hk(h
T
kPk−1hk + λ)−1 (4.19)

Pk = (I−Gkh
T
k)Pk−1λ

−1 (4.20)

âk = âk−1 + Gk(∆tF,k(fk,xk(fk))− hTk âk−1) (4.21)

The update rule given in Equation 4.21 computes the prediction error by sub-

tracting the frame time prediction from the actual change in frame time. Note that

online learning would not be possible without our kernel instrumentation, which pro-

vides reliable reference measurement at runtime (∆tF,k(fk,xk(fk))). Equation 4.19

and Equation 4.20 update the gain Gk and covariance Pk matrices using the feature

vector. The forgetting factor 0 � λ ≤ 1 is used to give more weight to latest data

86

and less weight to the older data. The set of Equations 4.19-4.21 together solve the

`2 regularized cost function at runtime for any samples T as follows [67]:

J = min
a

[
(a− ainit)

′(µI)(a− ainit) +
T∑
k=1

(∆tF,k − h′ka)2

]
(4.22)

where ainit are the initial values of the model coefficients a and µ is a regularization

parameter. We denote the matrix and vector transpose by (·)′ symbol.

Parameter initializations: We choose the ainit = diag(I), since we assume full

scalability of the frames with respect to the frequency and counters in the begin-

ning. The forgetting factor λ is set to one to utilize all the past information. We

find the regularization parameter µ such that the multicollinearity of the inputs is

considerably reduced. Multicollinearity in linear regression problems occur when two

or more inputs are highly correlated causing the standard errors in the estimate of

the coefficients to increase [31]. RLS solves the multicollinearity issue by minimizing

a `2 regularized cost function [55, 67]. Finally, we initialize the covariance matrix as

P = I/µ.

Computational complexity: RLS is well known for giving good predictions in

the signal processing field. However, its computational complexity grows with the

number of features as O(M2) [124]. Nonetheless, feature selection minimizes the

size of the feature set to reduce the complexity. Furthermore, matrix inversions are

the main source of complexity in many algorithms, including RLS. Our solution is

to use the co-variance form of RLS that does not perform matrix inversion. The

value hTkPk−1hk in Equation 4.19 evaluates to a scalar, eliminating the overhead of

the inversion operation. The complexity of the RLS is acceptable for small number

of features. When there are large number of features then a traversal form of RLS

coupled with coordinate descent called DCD-RLS can be used [148]. In this algorithm,

first, the correlation matrix P−1 is partially updated in each time stamp k. Then, the

87

change in the model coefficients are estimated using inexact line-search. This reduces

the complexity of the DCD-RLS algorithm to O(M). For example, in a platform if

the number of features M = 10, then the number of arithmetic operations in RLS are

2M2 + 8M + 2 = 282, while the operations used in DCD-RLS are only 17M = 170.

Since in our current platform we perform feature selection and reduce the number of

features to 4, the number of operations in RLS and DCD-RLS are similar. Also, DCD-

RLS reduces the number of multiplication and division operations at the expense

of low-cost addition operations. This provides slight speedup for small features and

larger benefits when the number of features are more. More details about the platform

overhead of RLS are given in Section 4.5.7.

4.5 Experimental Results

This section first describes the experimental setup and the selection of the offline

learning of regularization parameters η and µ. Next, we demonstrate the accuracy

of the proposed online frame time and frequency sensitivity prediction techniques.

After that, we compare our approach to an existing online performance modeling

methodology, and demonstrate its application for dynamic power management. Fi-

nally, we discuss the implementation overhead of the proposed frame time prediction

techniques.

4.5.1 Experimental Setup

We primarily employ the Minnowboard MAX platform [61] running the Android

5.1 operating system with the kernel modifications mentioned in Section 4.3.2 to

evaluate our approach. This platform has two CPU cores and one GPU, whose

frequency can take the values listed in Figure 4.4. The GPU frequency is readily

available from the kernel file system. In addition to this, we use the Intel GPU Tools

88

as an external module to the Android system to trace the GPU performance counters.

To further demonstrate the effectiveness of our approach, we employ two additional

hardware platforms. We evaluate the accuracy of our approach while running multiple

graphics applications concurrently using a Moto-X pure edition smartphone, which

has Qualcomm Snapdragon 808 SoC. Finally, we employ Intel core i5 6th generation

platform [109] for dynamic power management experiments.

Standard Benchmarks and Scenarios: The proposed frame time prediction

technique is validated using the following commonly used GPU benchmarks on Min-

nowboard MAX platform: Nenamark2, BrainItOn, 3DMark (both the Ice Storm and

Slingshot scenarios), Mobilebench, Chess, and Jet-ski. We also employ eight gaming

application scenarios, such as Fruit Ninja, Angry Birds, Jungle Run, Angry Bots, and

Shark Dash, running on Intel core i5 6th generation platform. These workloads are

referred to as Workloads 1-8 for confidentiality 3 . Finally, we run YouTube applica-

tion and Chain Reaction game concurrently using Android 7 split-screen feature to

create a multiple application scenario on Moto-X pure edition smartphone.

Custom Benchmarks: The accuracy of the frame time prediction can be tested

without any limitations, since our frame time prediction technique works for any An-

droid app that can run on the target platform. However, validating the sensitivity

prediction (i.e., the partial derivative of the frame time with respect to the frequency)

requires reference measurements taken at different frequencies. This golden reference

cannot be simply collected by running the whole application at different frequencies

due to the reasons detailed in Section 4.3.2. Therefore, we also developed Render-

ingTest and Art3 applications that enable us to control the number of times each

frame is repeated.

The RenderingTest application accepts two inputs that specify the number of

3This is requested by Intel Corp.

89

cubes rendered in the frame, and the number of times the same frame is processed. By

changing the number of cubes, we control the frame complexity. In our experiments,

we sweep the number of cubes from 1 to 64 and repeat each frame 80 times. The

cubes are rendered at a maximum of 60 FPS with vertex shaders and depth buffering

enabled. Since we use the RenderingTest application for offline characterization, we

also developed one more custom application, called Art3, which renders pyramids

with a different rendering pipeline. The RenderingTest application renders each cube

with its own memory buffer, while Art3 concatenates all pyramids into the same

memory buffer before rendering. These two applications allow us to compute and

store the reference sensitivities, such that they can be used as the golden reference to

validate our online frequency sensitivity predictions.

Evaluation: We evaluate the proposed methodology using three algorithms. The

first algorithm employs Equation 4.14 with online learning using RLS algorithm

(RLS). This is also the default algorithm used throughout the chapter. The second al-

gorithm employs the same model with online learning using the DCD-RLS algorithm

(DCD-RLS). The third algorithm employs two models: (a) the model shown in Equa-

tion 4.6 with online learning using RLS and (b) an offline nonlinear model for deriva-

tive of frequency dependent counter with respect to frequency (RLS+Offline) [40].

4.5.2 Offline Feature Selection and `2 Regularization

To perform feature selection using Equation 4.18, we first prune the counters that

are highly dependent on frequency by measuring the Pearson correlation coefficient of

the counters with respect to the GPU frequency. Counters that have the correlation

coefficient less than 0.1 are retained for further processing. Then, we apply the

Lasso regression with 10–fold cross-validation on our large dataset collected from the

90

RenderingTest application. Figure 4.8(a) shows the change in mean squared error

between the predicted and measured frame time of the GPU. As the `1 regularization

parameter η in Equation 4.18 increases, the penalty on the cost function increases

leading to a higher MSE, in general. Note that the mean error (black line) first slightly

decreases, then increases for incrementing η values. The slight decrease occurs due

to overfitting that also leads to higher cross-validation variance in the error. The

minimum value of ηmin = 5× 10−3 uses four features, as shown in Figure 4.8(b). To

shrink the model features, a good choice is ηsel = 3.4×10−3 for which the performance

in terms of expected generalization error is within one standard error of the minimum.

In our experiments, we choose the minimum MSE point with four features. These

four features consist of the two change in the frequency terms from Equation 4.14 and

change in the Vertex Shader Active Time and Slow Z Test Pixels Failing counters.

The Vertex Shader Active Time counter counts the cycles for which the vertex shader

is active on all cores. The Slow Z Test Pixels Failing counter gives the number of

pixels that fail the slow check in the GPU. Neither of these counters depend on the

frequency; they are functions of only the frame complexity. Note that in our prior

work [40] we also select four features, but these consist of a single frequency change

term and three counters. Two of these counters, Aggregate Core Array Active and

Slow Z Test Pixels Failing are frequency independent and one counter Rendering

Engine Busy is frequency dependent. We compute the derivative of the frequency

dependent counter offline using a non-linear model. However, in this work by using

frequency independent counters only, there is no need for using any additional models.

Figure 4.9 shows the features employed by our GPU performance model. We observe

that all the features are highly correlated to the change in frame time.

We determine the `2 regularization parameter µ for optimizing the cost function in

Equation 4.22 of the RLS algorithm offline. We first sweep the parameter µ between

91

a large range of 10−28 to 1020, and run the RLS algorithm for each value of the

µ to find the error in the frame time predictions. Figure 4.10 shows the mean and

variance of the absolute percentage error in frame time for a number of µ values for the

RenderingTest and Art3 applications. When µ is small, there is little regularization

effect and consequently the error is low. However, when µ value is large, the left term

in Equation 4.22 starts to dominate the cost function and severely constrains the

model coefficients a close to ainit. This leads to higher frame time prediction errors

for µ > 1. We employ a µ = 10−14 in all our experiments, which is the geometric

mean of the starting sweep value of µ = 10−28 and the knee point µ = 1 to provide

sufficient adaptability for any unknown workloads.

4.5.3 Online Frame Time Prediction

We validate our frame time prediction approach first on the RenderingTest appli-

cation to test the corner cases. Figure 4.11 shows the comparison between the actual

and the predicted frame time. During the first 5 seconds, both the GPU frequency

and frames change randomly. We observe that the proposed online model successfully

keeps up with the rapid changes. In order to test our approach under corner cases, we

enforce a saw-tooth pattern during the remaining duration of the application. More

precisely, the GPU frequency starts at 200 MHz, and the complexity increases from 1

to 64 in increments of one (the first tooth). Then, the same iterations are repeated for

9 supported GPU frequencies. Figure 4.11 demonstrates that we achieve very good

accuracy when the frequency stays constant for a period of time. There is a spike

when the complexity jumps suddenly from 64 to 1. However, the RLS reacts quickly

and maintains a high accuracy. Overall, the mean absolute percentage error between

the real and predicted frame time values is 2.6%.

We observe similar levels of accuracy for Art3 and standard benchmarks. In

92

particular, Figure 4.12 shows the actual and predicted frame times for 3DMark’s Ice

Storm benchmark at two different GPU frequencies. We achieve a high prediction

accuracy with the mean absolute error of 2.1% and 7.4% for the GPU frequencies 200

MHz and 489 MHz, respectively. Similarly, the actual and predicted frame time for

the BrainItOn gaming application with fixed GPU frequency is shown in Figure 4.13.

This interactive game requires frequent user inputs, and the frame time exhibits more

sudden changes compared to other applications. Our frame time prediction matches

closely to the actual frame time with the median and mean absolute percentage errors

of 0.4% and 12.9%, respectively. Note that the higher mean absolute error value for

the application is due to a few outliers in the frame time. This is confirmed from the

very low median absolute percentage error value of the benchmark.

The frame time prediction mean absolute error for all of the benchmarks running

over all GPU frequencies is summarized in Figure 4.14. The results are sorted with

the errors in the RLS technique. The average of the mean absolute errors across

all the benchmarks for the RLS, RLS+Offline, and DCD-RLS algorithms are 4.2%,

4.3%, and 4.6%, respectively. On average, the three algorithms provide similar and

high accuracy. The RLS and DCD-RLS techniques have the additional advantage of

not relying on any offline model. We observe that the games BrainItOn and Jetski

require extensive user interaction, which leads to fast changes in the frame time.

This makes the tracking of the rapidly changing frame time difficult and results in

a mean error of 12% and 10%, respectively. Nonetheless, both these applications

have low median absolute errors of 6.5% and 1.3%, which suggests that the error

is not high for majority of time intervals. Other benchmarks show errors smaller

than 5%, indicating very high accuracy for frame time prediction. For Scenario-4

benchmark the DCD-RLS technique shows 3% higher error compared to the other

two algorithms. This is because the RLS algorithm is better at rejecting the noise in

93

the inputs compared to the DCD-RLS. This indicates that RLS should be preferred

over DCD-RLS, except when the complexity of RLS is critically important in the

system and slightly larger errors in frame time prediction are acceptable.

Comparison with Completely Offline Learning: We also compare our approach

with an offline method, where all the model parameters are learned at design time

and remain constant at runtime. Figure 4.15 shows the mean absolute percentage

errors for online (dashed line) and offline (solid line) learning for different training

ratios. When we run all the benchmarks one after the other with our online learning

mechanism, we get an error of 4.6%. However, running the same benchmarks with

offline learned parameters leads to higher errors. As shown in the figure, the difference

between the offline and online error decreases as the training ratio approaches one,

i.e., when the training set equals the test set. This shows that offline learning leads

to higher error, unless the model can be trained on all the applications. Of note, the

prediction error of our approach is flat, since the same set of features are selected

with smaller training set.

Frame Time Prediction for Concurrent Application: Newer generation of mo-

bile platforms using Android 7.1 have added support for running multiple applications

using split-screen. Therefore, it is important to also validate the performance model

on these newer generation of platforms and multiple application scenarios. For this

experiment, we employ the Moto-X pure edition smartphone running Android 7.1 on

a Qualcomm Snapdragon 808 SoC. We split the screen into two parts as top and bot-

tom. Then, we run a YouTube application in the bottom part of the screen and play

the Chain reaction game simultaneously on the top part of the screen. Figure 4.16

shows the reference and predicted frame times for this multiple application scenario.

The proposed RLS algorithm achieves 8% frame time prediction error.

There are many benefits of the online performance model compared to offline

94

evaluation. For example, in our case, the online modeling methodology reduced the

characterization and model tuning effort from several months to a few days for the

Moto-X smartphone. Similarly, the mobile platforms are expected to deliver good

performance for any new applications that were created after the product launch.

Therefore, the online modeling technique enables adaptation to the new workloads

without costly repetition of the workload characterization by the platform designers.

Finally, our approach is easily portable and independent of any vendor and architec-

ture.

4.5.4 Online Frame Time Sensitivity Prediction

To assess the accuracy of our sensitivity prediction, we predict the change in frame

time as a result of increasing (or decreasing) the frequency. Then, we compute the

frame time sensitivity using Equation 4.9. We start with changing the frequency by

one level according the supported GPU frequencies listed in Figure 4.4, e.g., changing

fGPU from fk = 400 MHz to fnew = 444 MHz or fnew = 355 MHz. Figure 4.17 shows

the predicted and actual frame time when the new frequency fnew is one level higher.

The mean absolute percentage error for this prediction is 5.4%. We observe the same

result when fnew is one level lower. One might argue that the high prediction

accuracy is only due to single frequency jumps like 400 MHz to 444 MHz. Therefore,

we also repeat our experiments for multiple frequency jumps. For example, if current

frequency is 200 MHz, then a frequency jump of three implies fnew is 311 MHz.

Figure 4.18 shows that the accuracy indeed degrades, but even when the number of

frequency levels is eight (maximum allowed on Minnowboard), the error is less than

10%. In practice, the frequency level changes in DTPM algorithms is not performed

drastically from lowest to highest, but in smaller steps leading to higher accuracy.

Accuracy of the Partial Derivative of Frame Time with Respect to Fre-

95

quency: We present the accuracy in predicting the derivative of frame time with re-

spect to GPU frequency for the RenderingTest and Art3 applications in Figure 4.19(a)

and (b), respectively. Each plot shows the derivative values for the reference, RLS,

RLS+Offline, and DCD-RLS techniques. We compute the derivative using Lagrange’s

polynomial method with change in frequency one level higher and one level lower, as

given by Equation 4.17. As seen from Figure 4.19(a), the slope starts with a neg-

ative value and then diminishes to zero on increasing frequency. This is consistent

with the observation in Figure 4.5(a). The normalized root mean squared error in

the derivative prediction for RenderingTest application using RLS, RLS+Offline, and

DCD-RLS are 6.8%, 6.9%, and 5.9%, respectively. These results indicate high accu-

racy for the derivative prediction, with the RLS and DCD-RLS having an additional

advantage of performing the prediction completely online without using frequency

dependent counters. This eliminates an extra step of predicting the derivative of the

counter with respect to frequency. In addition to running the RenderingTest appli-

cation, we ran Art3 as well to measure frame time sensitivity. Figure 4.19(b) shows

that the predicted derivative of frame time with respect to GPU frequency follows the

reference values closely. In particular, the normalized root mean squared error in the

derivative prediction for Art3 application using RLS, RLS+Offline, and DCD-RLS

algorithms are 6.6%, 4.9%, and 8%, respectively. Off note, the derivative values for

Art3 application are smaller than the RenderingTest application, because Art3 is a

memory bound graphics application.

4.5.5 Comparison with an Auto Regressive Model using LMS

In this section, we compare our approach to a tenth-order autoregressive (AR)

model which learns the model parameters using Normalized Least Mean Square

(LMS) algorithm [28]. We first observe that LMS algorithm is slower to converge

96

than RLS. For example, Figure 4.20 shows that our approach converges to optimal

model coefficients in 50ms while running the Icestorm application. In contrast, the

LMS approach takes 1.6s to converge while running the same workload. In gen-

eral, the optimal model coefficient targets also change at runtime as the application

phases change dynamically. The convergence of the LMS approach is slow due to the

tenth-order AR model, which takes the first ten samples to do the initial learning.

However, the convergence time of our approach varies between 50ms to 0.3s, while

LMS takes in the order of seconds. We also note that the AR model can predict the

frame time, but it cannot predict the partial derivative of GPU performance with re-

spect to frequency, since it does not have a frequency term. Therefore, our approach

can directly provide the frequency sensitivity data to dynamic power management

algorithms unlike the existing AR model [28]. Furthermore, fast convergence enables

quick response to the dynamic changes in the workload.

4.5.6 Impact for Dynamic Power Management

Our performance model can be used with a large variety of power management

algorithms that can optimize for system objectives, such as performance under a

power budget [47, 150] and energy [46]. In this section, we demonstrate the application

of the proposed GPU performance model for minimizing the energy consumption

subject to a minimum frame rate constraint of 60 FPS. At each control interval,

we use the proposed GPU performance model to predict the frame time at all the

frequencies supported in the platform. Then, we select the frequency that leads to

the smallest energy consumption, while meeting the minimum frame time constraint

for the next interval. To evaluate the effectiveness of our approach, we compare our

results to an Oracle-based policy that precisely knows what the frequency in the

next interval should be. We obtain this information by running each frame at each

97

supported frequency before this experiment. Obviously, Oracle-based policy is not

practical, but it provides the optimal results as a comparison point. In addition to

Oracle, we also compare our approach against the Linux Ondemand governor, which

is used in many commercial products [106].

For this experiment, we run industrial gaming workloads and our custom applica-

tions 4 . Out of these interactive games, the first five workloads have frame time error

less than 4%, while the remaining workloads 6-8 have higher frame time errors of more

than 10%. Figure 4.21 shows the energy consumption achieved by the Ondemand

governor and the proposed RLS-based algorithm. The optimal energy value achieved

by Oracle is shown by the dotted red line, and the other results are normalized to

that of the Oracle-based policy.

Workloads-6 to 8 and our custom applications have light-load graphics processing

requirements. Consequently, these applications have low GPU utilization and can

achieve the 60 FPS frame rate target with small GPU frequencies. Our algorithm

successfully chooses the right GPU frequency and matches the Oracle-based policy,

as expected. The Ondemand governor, which makes its decisions based on the GPU

utilization, chooses small frequencies. As a result, it can also achieve the minimum

energy consumption.

Unlike the light-load graphics applications, the frame rate target cannot be achieved

with lower GPU frequencies while running Workloads-1 to 5. These workloads are

heavy to medium-load graphics games that result in high GPU utilization. In this

case, high GPU utilization makes the Ondemand governor choose large frequencies.

As a result, its energy consumption is 1.3×-2.6× larger than the minimum energy

achieved by the Oracle-based policy. In contrast, our RLS-based approach can suc-

4 These workloads include games, such as, Fruit Ninja, Angry Birds, Jungle Run, Angry Bots,
and Shark Dash, running on Intel core i5 6th generation platform. We refer to these games as
Workload 1-8 in the plot for confidentiality following the request from Intel.

98

cessfully choose the optimal operating frequencies due to its high accuracy. Con-

sequently, the energy consumption of our approach is within 1.06× of the optimal

value.

Overall, our RLS-based policy leads to only 3% higher average energy consumption

compared to the Oracle-based policy. In contrast, the Ondemand governor has 1.3×-

2.6× larger energy consumption under heavy workloads. On average, our RLS-based

policy provides about 43% lower energy consumption compared to the Ondemand

governor while achieving the same frame rate.

4.5.7 Overhead Analysis

We measure the overhead of the proposed approach by instrumenting the start

and end times of each of the RLS iterations, including the feature data preparation

step. Then, we measure the time for the proposed frame time prediction mechanism

running on the Minnowboard platform. Figure 4.22 demonstrates the difference in the

runtime overheads of the RLS and DCD-RLS algorithms in each iteration. When the

number of features are four, the overhead time of the RLS and DCD-RLS algorithms

are 3.8µs and 3.2µs, respectively. As the number of features increase to 20, the

runtime overhead of the RLS algorithm becomes much larger than DCD-RLS. More

precisely, for 20 features, the RLS algorithm has the runtime overhead of 53.4µs,

while the DCD-RLS algorithm has 7.6× smaller overhead of 7µs. This experiment

demonstrates that the proposed RLS technique has very low overhead for a small

number of features. When the number of features are large and lowering the overhead

time is critical, DCD-RLS is a viable alternative to the proposed RLS algorithm.

99

4.6 Conclusion

In this chapter, we propose an online performance modeling methodology for

graphics cores. The proposed methodology combines offline data collection and on-

line learning using RLS algorithm. Online learning of the model coefficients enables

adapting to unknown workloads by eliminating the need for costly offline training.

Extensive evaluations on an experimental platform using common GPU benchmarks

resulted in average mean absolute errors of 4.2% in frame time and 6.7% in frame

time sensitivity prediction. Furthermore, we experimentally showed that the pro-

posed high accuracy performance model could be successfully employed by an dy-

namic power management algorithm that minimizes energy consumption under a

performance constraint.

100

200 250 300 350 400 450 500

GPU Frequency (MHz)

5

10

15

F
ra

m
e

T
im

e
(m

s)

200 250 300 350 400 450 500

GPU Frequency (MHz)

6

8

10

12

R
en

de
rin

g
E

ng
in

e
B

us
y

V
al

ue
106

200 250 300 350 400 450 500

GPU Frequency (MHz)

5000

10000

15000

V
er

te
x

S
ha

de
r

A
ct

iv
e

T
im

e
V

al
ue

s

Complexity: 64
Complexity: 32
Complexity: 16
Complexity: 2

(a)

(b)

(c)

Figure 4.5: Frame time and hardware counter values for the RenderingTest applica-

tion with increasing GPU frequency at four different frame complexities.

0.6 0.8 1 1.2 1.4

Rendering Engine Busy Value 107

0

5

10

15

F
ra

m
e

T
im

e
(m

s)

2000 4000 6000 8000 10000 12000 14000

Vertex Shader Active Time Value

0

5

10

15

F
ra

m
e

T
im

e
(m

s)

244 MHz 311 MHz 400 MHz 511 MHz

(a)

(b)

Figure 4.6: Frame time for the RenderingTest application with increasing frame com-

plexity at four different GPU frequencies.

101

Table 4.1: Summary of the notation used in this chapter

Notation Description

k Discrete time sample

f GPU frequency

C Complexity of a frame

x = [x1, . . . , xN] A vector of N hardware counters

T Total number of data samples

tF Frame time

tF,s Frequency-scalable portion of frame time

tF,us Unscalable portion of frame time

a Model parameters

fnew A new candidate GPU frequency

Nindep Number of frequency independent counters

η `1 regularization parameter

M Number of features after offline selection

G Adaptive gain of the RLS

P Covariance matrix of the error in RLS

h Input features

λ Forgetting factor

ainit Initial estimate of the model parameters

µ `2 regularization parameter for RLS

102

Feature
set

��
Adaptive

Filter

Δ�̂�,� � ��
�
�����

Estimate

Actual
Δ��,�

�̃� � Δ��,�
 Δ�̂�,�

Update
algorithm

Δ���

Error

Figure 4.7: Adaptive filtering approach showing the update in parameters ai based

on error between the actual change in frame time and prediction.

10-4 10-2

Lasso Paramerter ()

0.1

0.2

0.3

0.4

0.5

M
S

E

10-4 10-2

Lasso Paramerter ()

0

2

4

6

8

N
u

m
b

er
 o

f
fe

at
u

re
s

(a) (b)

Figure 4.8: Cross-validated LASSO regression result for; (a) the change in mean

squared error of the frame time prediction with increasing η values, and (b) the

change in the number of selected features with increasing η values.

103

∆ V e r t e
x S

h a d
e r

 A c t i v
e T

i m e
∆ S l o w

 Z T
e s t

P i x e l

s F
a i l i n

g
∆ A g g r

e g a
t e C

o r e

A r r a y
 A c t i v

e
∆ R e n d

e r i n
g

E n g i n
e B

u s y f k - 1
 - f k

t k - 1
(f k - 1

 - f k) / f k

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F e a t u r e s :

Co
rre

lat
ion

Co

eff
icie

nt

C o r r e l a t i o n w i t h t k - t k - 1

Figure 4.9: Correlation between the selected features and the difference in the frame

time tk − tk−1.

-30 -20 -10 0 10 20 30
Log

10
()

0
5

10
15
20
25
30

E
rr

o
r

(%
)

Frame Time Prediction

Figure 4.10: Frame time prediction error for RenderingTest and Art3 applications

for different values of the `2 regularization parameter µ. The black markers show the

mean value of the error and the whiskers show the one standard deviation boundaries.

0 5 10 15 20 25 30
Time (s)

0

5

10

15

F
ra

m
e

ti
m

e
(m

s)

Frame time prediction result
Predicted Actual

Figure 4.11: Frame time prediction for the RenderingTest app.

104

0 5 10 15 20 25 30

F
ra

m
e

ti
m

e
(m

s)

20

40

60

Prediction Actual

Time (s)
0 5 10 15 20 25 30

F
ra

m
e

ti
m

e
(m

s)

10

20

30

(b)

(a)

Figure 4.12: Frame time prediction for the 3DMark Ice Storm application running at

(a) 200 MHz, (b) 489 MHz.

0 10 20 30 40 50 60
Time (s)

0

50

100

F
ra

m
e

ti
m

e
(m

s)

Prediction Actual

Figure 4.13: Frame time prediction for the BrainItOn application running at 200

MHz.

105

Je
tSk

i

Br
ain
ItO
n

Re
nd
eri
ng
Te
st
Ch
es
s

Ice
-St
orm Art

3

Ne
na
ma
rk2

Mo
bil
eB
en
ch

Sc
en
ari
o3

Sc
en
ari
o1

Sc
en
ari
o2

Sc
en
ari
o4

Av
era

ge
0
2
4
6
8
10
12

Er
ro

r (
%

)

 RLS RLS+Offline DCD-RLS

Figure 4.14: Mean absolute percentage errors in the frame time for the Android

applications using the three algorithms: RLS, RLS+Offline, and DCD-RLS.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Training Ratio

4
6
8

10
12
14

E
rr

o
r

(%
)

Mean Absolute Percentage Error in Frame Time

Offline Learning
Online Learning

Figure 4.15: Comparison of mean absolute percentage error in frame time for all

Android applications combined.

0 20 40 60 80 100
Time (s)

0

20

40

F
ra

m
e

ti
m

e
(m

s) Frame time prediction result

Prediction Actual

Figure 4.16: Frame time prediction while running YouTube and Chain reaction game

running simultaneously on Moto-X smartphone.

106

0 5 10 15 20 25 30
Time (s)

0

5

10

15

F
ra

m
e

T
im

e
(m

s)

Frame time prediction with fnew one level higher

Prediction Actual

Figure 4.17: Predicted and actual frame times for RenderingTest application when

fnew is one level higher.

1 2 3 4 5 6 7 8

Number of levels f
GPU

 jumps

0

5

10

E
rr

o
r

(%
)

Average Frame Time Prediction

Figure 4.18: Frame time prediction error in RenderingTest application for multiple

frequency jumps.

200 300 400 500-0.05
-0.04
-0.03
-0.02
-0.01
0.00

200 300 400 500-0.05
-0.04
-0.03
-0.02
-0.01
0.00

(b)

 Reference RLS RLS+Offline DCD-RLS

GPU Frequency (MHz)

f
tF

(a)

GPU Frequency (MHz)

f
tF

Figure 4.19: Sensitivity of frame time with respect to frequency for (a) RenderingTest

and (b) Art3 applications.

107

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
0

2 0
4 0
6 0
8 0

1 0 0

Err
or

(%
)

T i m e (m s)

 R L S (f a s t e r) A R - L M S (s l o w e r)

Figure 4.20: The proposed RLS technique converges in only 50ms compared to the

AR-LMS technique that converges in 1.6s for the Icestorm application.

W o r k l o a d - 1

W o r k l o a d - 2

W o r k l o a d - 3

W o r k l o a d - 4

W o r k l o a d - 5

W o r k l o a d - 6

W o r k l o a d - 7

W o r k l o a d - 8

R e n d e r i n g T e s t A r t 3
A v e r a g e

0 . 81 . 01 . 21 . 41 . 61 . 82 . 02 . 22 . 42 . 6

No
rm

ali
ze

d
En

erg
y C

on
su

mp
tio

n O n d e m a n d R L S - b a s e d O r a c l e - b a s e d

Figure 4.21: Normalized energy consumption of the Ondemand governor and our

RLS-based policy normalized to the Oracle-based policy.

5 10 15 20 25 30
Number of Features

0

50

100

T
im

e
(

s)

Runtime Overhead

RLS DCD-RLS

Figure 4.22: Overhead time as a function of the number of features for the RLS and

DCD-RLS algorithm.

108

Chapter 5

STAFF: ONLINE LEARNING WITH STABILIZED ADAPTIVE FORGETTING

FACTOR AND FEATURE SELECTION ALGORITHM

5.1 Introduction

Computing systems ranging from mobile platforms to servers run millions of ap-

plications, such as games, navigation and browsers. The number and types of these

applications are expected to increase further [134]. Sophisticated runtime techniques

schedule these applications to the hardware resources and perform dynamic thermal

and power management (DTPM) decisions [9, 50, 74, 111, 131]. These techniques

need to assess the impact of control variables, such as the operating frequency, to

optimize power, performance, energy or other metrics. Therefore, the accuracy of

runtime models is critical to meet stringent optimization objectives.

Typically, runtime models are trained offline by employing supervised machine

learning, such as batch linear regression [68]. Data used for training involves a set of

known application scenarios. There are three main problems with offline approaches.

First, offline models can only be trained on a limited set of applications available

at design time. Hence, these models cannot guarantee a reliable operation for the

applications that were not considered during training. Second, workloads can be non-

stationary, i.e., the statistics like mean and variance of data can change at runtime

for different applications [12]. Figure 5.1(a) depicts a non-stationary GPU work-

load, where both the frame processing time and one of its model coefficient changes

as a function of time. Similarly, Figure 5.1(b) shows that the autocorrelation func-

tion (ACF) decreases slowly for the entire workload from 0-30 seconds, while ACF

109

0 5 1 0 1 5 2 0 2 5 3 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

(a) T i m e (s e c)

No
rm

aliz
ed

Fra

me
 Ti

me

R e g i o n 1
R e g i o n 2

R e g i o n 3

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Mo
de

l C
oe

ff.

0 1 2 3 4 5 6 7 8 9 1 0- 0 . 20 . 00 . 20 . 40 . 60 . 81 . 0

(b)

AC

F

T i m e L a g (0 . 1 s e c)

 0 - 3 0 s e c R e g i o n 1 R e g i o n 2 R e g i o n 3

Figure 5.1: A non-stationary GPU workload (a) example and (b) analysis using

autocorrelation function (ACF).

for individual phases of the workload ([0,10), [10,20), [20,30] seconds) decays faster.

Standard Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and augmented Dickey-Fuller

(ADF) tests [49] also confirm that individual regions are stationary, while the entire

workload is non-stationary. Consequently, offline models are unsuitable for learning

non-stationary workloads as they have fixed coefficients that cannot change at run-

time. Finally, the optimum set of features that describe the underlying metric change

dynamically with the workload. For example, Intel Skylake GPU has 35 hardware

counters that can be used as feature inputs to a model [63]. Generally, only a dy-

namically varying subset of such counters is a good indicator for building a model.

Hence, features should be selected at runtime, in contrast to offline models, which

rely on a set of features determined at design time.

We present an online learning framework, STAFF, to estimate model coefficients

without offline training. STAFF combines guaranteed stability, online feature selec-

tion and adaptive forgetting factor into a single computationally efficient runtime

110

framework. Online algorithms, such as Recursive Least Squares (RLS), employ expo-

nential forgetting factor to discard old data points and make room for learning from

new data points [123]. However, this can result in instability during non-persistently

exciting inputs, such as idle period between two workloads [75]. We guarantee stability

by bounding the correlation matrix of the proposed online algorithm. Moreover, the

set of most useful features may change over time, while using all the features leads to

over-fitting and increases computational cost. Thus, our framework performs runtime

feature selection by dynamically computing the correlation of each feature with the

output. Finally, the forgetting factor should be adaptive, since old data points need

to be forgotten faster during phase transitions, as illustrated in Figure 5.1(a). Our

framework also dynamically adapts the forgetting factor to the workload. In sum-

mary, STAFF improves the accuracy of runtime models, and reduces their deployment

cost on new systems by eliminating offline characterization effort.

In summary, the main contributions of this work are as follows:

• Online feature selection with linear complexity,

• Dynamic forgetting factor methodology that is capable of workload change detec-

tion,

• Guaranteed stability while quickly adapting to workload,

• Empirical evaluation on an Intelr CoreTM i5 6th generation platform using 17 graph-

ics benchmark scenarios. We achieve up to 6× better accuracy compared to existing

techniques.

The remainder of the chapter is organized as follows: Section 5.2 presents an

overview of related research. Section 5.3 presents the methodology to develop the

proposed STAFF framework. Section 5.4 summarizes the STAFF framework and

111

shows the complexity analysis. Section 5.5 discusses the experimental results, and

Section 5.6 presents the conclusion.

5.2 Related Research

Online learning for power and performance models is relatively new in the power

management field. In online learning, model coefficients are estimated at runtime

using standard algorithms, such as batch linear regression [111], least mean square

(LMS) [28], recursive least squares [40, 50, 83], and an array form of RLS algorithm

using QR decomposition [131]. The standard versions of these algorithms are well-

known in literature and have severe limitations [123]. In particular, the batch linear

regression approach uses costly matrix inversions and large memory in each step, thus

providing poor scalability. The standard LMS technique has slower convergence than

RLS. Therefore, RLS has turned up as a popular choice for online learning of power

and performance models.

RLS is a type of Kalman Filter with fast tracking capabilities for sequential

data [123]. Recently, RLS algorithm without forgetting factor has been adopted for

learning performance models for CPU and GPU [40, 131]. This works well for single

workload scenarios, but incorporating variable forgetting factor is crucial for practi-

cal applications which switch between different workloads and idle periods [123]. A

constant exponential forgetting RLS has been employed for power and performance

predictions for CPUs [50, 83]. It is known that all methods that employ exponen-

tial forgetting are prone to instability during non-persistently exciting inputs [87].

Kreisselmeier proposed a general class of exponential forgetting RLS algorithm with

stability [75]. A special case of Kreisselmeier’s algorithm has been shown to guarantee

stability under dynamically varying forgetting factor by Milek [87]. However, these

algorithms still cannot select features at runtime. A recent approach performs online

112

feature selection by combining all the features into a single feature [132]. However,

this method uses a fixed forgetting factor without stability guarantees. Similarly,

Fortescue et al. proposed a variable forgetting factor RLS [33], but their solution

cannot neither guarantee stability nor perform online feature selection. In contrast to

these approaches [33, 75, 87, 132], STAFF combines adaptive forgetting factor, guar-

anteed stability and runtime feature selection into a single online learning framework.

An online learning framework also requires a runtime technique to track large

changes in workloads, such as transitioning from one application to another. A recent

proposal employs Kullback-Leibler (KL) divergence test for this purpose [20]. The

authors use only one input variable (the CPU cycles) due to runtime complexity of

the KL test. In contrast, we develop a novel low-cost information theoretic approach

that utilizes multiple hardware counters.

5.3 STAFF Online Learning Framework

This section introduces first the model templates used for performance modeling.

Then, it presents the standard form of RLS with constant forgetting and stabiliza-

tion. Finally, it presents the online feature selection and adaptive forgetting factor

mechanisms.

5.3.1 Model Template

Consider a general linear model with input features hk = [h0,k, h1,k, ..., hM−1,k]
T

and output yk at time k,

yk = aThk (5.1)

where a = [a0, a1, ..., aM−1]T are model coefficients and (·)T is the transpose operator.

Such linear models are employed by a number of approaches for power and perfor-

113

mance modeling of the CPU and GPU [40, 83, 136]. For example, a CPU performance

model includes predicting cycles per instruction [136]. Similarly, a GPU performance

model includes predicting frame processing time [40]. For instance, one can express

the change in frame time ∆tF,k as a function of the GPU frequency fk and hardware

counters xi,k as:

∆tF,k = a0tF,k−1

(
fk−1

fk
− 1

)
+

M−1∑
i=1

ai∆xi,k (5.2)

where tF,k is the frame time at time k, a are the model coefficients and [tF,k−1(fk−1

fk
−

1),∆x1,k,∆x2,k, ...,∆xM−1,k]
T = hk are the features. DTPM and scheduling algo-

rithms can use the model coefficients to make runtime decisions [7, 9]. For example,

a0 denotes the frequency sensitivity of frame time, i.e., it quantifies how frequency af-

fects the frame time. The application phase is memory-bound when a0 = 0. In such as

case, lowering the operating frequency will not have any impact on the performance.

In contrast, when a0 = 1 the application phase is compute-bound and reducing the

frequency will lead to reduction in performance. Note that the GPU performance

modeling technique proposed in [40] cannot perform online feature selection and only

uses a constant forgetting factor equal to one. Hence, it is not suitable for tracking

dynamically varying workloads.

5.3.2 Stability under Exponential Forgetting

The information form of RLS with stabilization and exponential forgetting can

estimate the model coefficients a as follows [75]:

Rk = λRk−1 + hkh
T
k + (1− λ)αI, λ ∈ (0, 1] and α ≥ 0 (5.3)

ek = yk − aTk−1hk (5.4)

114

0 . 0 0 . 5 1 . 0 1 . 5 2 . 00
3
6
9

1 2
U n s t a b l e

No
rm

 of
 In

ve
rse

Co

rre
lat

ion
 M

atr
ix

T i m e (m i n)

 α = 0 (U n s t a b i l i z e d) α = 1 0 - 5 (S T A F F)

I d l e p e r i o d S t a b l e

Figure 5.2: The y-axis is in log10scale. `1 norm of the inverse of the correlation matrix

R shows unstable behavior for α = 0 and stability for α = 10−5, respectively.

ak = ak−1 + R−1
k hkek (5.5)

The correlation matrix Rk is recursively updated in each iteration. The forgetting

factor λ and stabilization factor α are usually equal to one and zero, respectively.

The RLS algorithm without forgetting (λ = 1) has been employed previously for

CPU and GPU performance predictions [40, 131]. This leads to infinite memory;

hence it accounts for complete history. In turn, this makes RLS slow and unable

to adapt to time-varying workloads. Hence, it is crucial to make λ < 1. The RLS

algorithm with constant λ < 1 has been employed for CPU performance and power

predictions [50, 83]. Doing so leads to another problem related to exponential decrease

in Rk or blow-up of R−1
k under non-persistently exciting inputs, such as no change

in input during idle periods in workloads [75, 82]. For example, when hk → 0, α = 0

and λ < 1, the recursion in Equation 5.3 leads to a large unbounded increases in R−1
k ,

as illustrated in Figure 5.2. This can make RLS unstable and sensitive to noise based

on the coefficient update in Equation 5.5.

The update of the correlation matrix with α > 0 has been theoretically proven to

guarantee stability [87]. The stabilizing factor α puts an upper bound on R−1
k . The

RLS minimizes a `2 regularized cost function with regularization parameter µ that

is determined using cross-validation [123]. We set α = µ because the stabilization

115

factor has a similar effect as the regularization parameter. The correlation matrix

and weights are initialized as R0 = µI and a0 = 0, respectively. Figure 5.2 contrasts

the blow-up of the inverse of the correlation matrix without stability (α = 0) and our

result. The STAFF framework with α = 10−5 adds an upper bound on the inverse of

the correlation matrix, which avoids instability.

5.3.3 Online Feature Selection

State-of-the-art platforms provide a large number of hardware counters that can

be used as input features to the power and performance models. For example, the

Intel Skylake GPU has 35 hardware counters that can be used as feature inputs to

a model [63]. Using all the features leads to large computation overhead due to the

inversion of the correlation matrix Rk in Equation 5.3.

A recently proposed mechanism for runtime feature selection [132] combines all the

features into a single combined feature. However, we need to preserve the frequency

sensitivity term a0, since it is important for DTPM decisions. Therefore, instead

of using the model aThk in Equation 5.1, we estimate an auxiliary model given as

follows:

yk = a0h0,k + achc,k (5.6)

The feature h0,k and coefficient a0 still represent the frequency term and sensitivity, re-

spectively. The combined feature hc,k is a function of the features hi,k ∀i ∈ [1,M−1],

which captures the workload changes. Hence, our revised model successfully decouples

the impact of frequency (first term) and workload (second term).

Computing the Combined Feature hc,k: A feature that is highly correlated to

the output will also be more likely to predict the output compared to the features

that are less correlated. Thus, we start with a number of single-input affine functions

116

between the output yk and each of the features hi,k,

yk = bi + cihi,k ∀i ∈ [1,M − 1] (5.7)

where the model coefficients bi and ci are estimated by applying two-input RLS de-

scribed by Equations 5.3-5.5. Then, we compute the Pearson correlation coefficients,

ρi,k between the output yk and each feature hi,k as follows:

ρi,k =
σhi,k
σi,yk

ci,k,where − 1 ≤ ρi,k ≤ 1 ∀i ∈ [1,M − 1] (5.8)

The standard deviations σhi,kand σi,yk are computed recursively by employing

forgetting factors [32]. Note that each model can employ a different forgetting factor

λ; therefore, the standard deviations σi,yk may not be same for each model output.

Then, we combine the correlation coefficients to find the likelihood πi,k of a feature

hi,k to predict the output yk as follows:

πi,k =
ρ2
i,k∑M−1

i=1 (ρ2
i,k)

,where 0 ≤ πi,k ≤ 1 ∀i ∈ [1,M − 1] (5.9)

Note that the likelihoods πi,k sum up to one. Finally, the combined feature is expressed

as the weighted sum of original features hi,k:

hc,k =
M−1∑
i=1

πi,khi,k ∀i ∈ [1,M − 1] (5.10)

Now that h0,k and hc,k are known, we estimate the model coefficients a0 and ac in

Equation 5.6 by applying the two-input RLS described by Equations 5.3-5.5.

Figure 5.3 shows the comparison between the offline feature selection algorithm

and the STAFF framework. STAFF tracks the reference value a0 without the erro-

neous troughs by changing the features dynamically at runtime. The offline selection

algorithm gives poorer results due to overfitting. There are two additional advantages

117

of STAFF: First, the implementation is very low cost (see Section 5.4). Second, it

provides the flexibility to select desired features, such as h0,k, while merging other

features, such as hi,k ∀i ∈ [1,M − 1], to reduce the runtime complexity.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

a 0

Fre
q.

Se
ns

itiv
ity

T i m e (m i n)

 O f f l i n e S e l e c t i o n S T A F F R e f e r e n c e

E r r o n e o u s t r a c k i n g

Figure 5.3: Online STAFF framework has superior tracking performance to offline

feature selection.

5.3.4 Adaptive Forgetting Factor

A constant forgetting factor is not desirable, because the amount of history that

needs to be forgotten changes dynamically. Therefore, we employ an auto-tuning

technique to adapt λ to a wide variety of workloads [33]. This technique preserves

the information content in each sample of RLS by adapting the forgetting factor as a

function of the inputs hk, inverse of correlation matrix R−1
k−1, RLS error ek−1 and an

initial estimate of the information content Σ0 = σ2N0. In these expressions, σ2 is the

process noise estimate and N0 = 1
1−λ0 is the initial asymptotic memory length.

λk = 1−
(1− hkR

−1
k−1h

T
k)e2

k−1

Σ0

(5.11)

λk is bounded using a lower bound λLB and an upper bound λUB such that 0 <<

λLB < λk < λUB ≤ 1. However, Equation 5.11 cannot track fast changes, such

as switches from one application to another. In these cases, information stored in

the correlation matrix need to be forgotten faster. Therefore, we propose a novel

118

technique for workload change detection based on Shannon’s entropy.

Workload Change Detection: A large change in workload, such as a new type of

frame, can vary the model output yk and parameters of Equation 5.6. Information

about the type of frame is embedded in the features hi,k ∀i ∈ [1,M−1] of the hardware

counters, as mentioned in Section 5.3.3. We use the likelihoods πi,k, of obtaining yk

from hi,k, to compute the entropy Hk as follows:

Hk = −
M−1∑
i=1

πi,klogb(πi,k) (5.12)

where the logarithm base b = M − 1, such that the entropy is normalized. The

logarithm function can be implemented using a fast binary algorithm [140]. When the

likelihoods πi,k are all equal, the hardware counters have the most disorder (highest

entropy), i.e., no one feature is more important than the other. Conversely, when the

likelihoods are not equal, then the entropy is smaller. Figure 5.4 illustrates the change

in entropy for two features. In region 1, the likelihoods of feature 1 and feature 2 are

π1 = 0.8 and π2 = 0.2, respectively. Then, the workload changes from region 1 to

region 2 where π1 = 0.1 and π2 = 0.9. Due to the recursive computations involved

in finding πi,k, the likelihoods do not instantly jump from small to large values or

vice versa. During the transition, the likelihoods slowly change and become equal

(π1 = 0.5 and π2 = 0.5), leading to highest entropy. Consequently, the information

content Hk becomes close to one whenever the workload changes significantly. In

this condition, we make the lower bound λLB = 0.001, which is still guaranteed to

be stable. If the adaptive forgetting mechanism chooses the lower bound λLB, a

resetting effect on the correlation matrix is achieved, leading to very fast tracking of

workloads. Based on our experiments, we find this method is suitable for capturing

all workload changes. Figure 5.5 shows that variable forgetting performed by STAFF

is more desirable than constant forgetting (λ = 0.99 and λ = 0.9) algorithms that

119

lead to poor tracking of the frequency sensitivity a0.

�
�

� 0.2

�
�

� 0.8
�
�

� 0.9

�
�

� 0.1E
nt

ro
py

 �

�

Time0
0

1
Region 1 Region 2

0.5

Figure 5.4: Illustration of the entropy-based change detection. The solid-line shows

the entropy, while the and dashed-lines show the likelihoods of feature 1 and feature

2, respectively.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 S l o w

a 0
Fre

q.
Se

ns
itiv

ity

T i m e (m i n)

 λ = 0 . 9 9 λ = 0 . 9 S T A F F R e f e r e n c e

E r r o n e o u s t r a c k i n g

F a s t

Figure 5.5: The STAFF framework adapts much faster to the new workload compared

to λ = 0.99. In addition, it does not possess the local erroneous tracking of a0 caused

by λ = 0.9.

5.4 Summary and Complexity Analysis

Figure 5.6 summarizes one iteration of the STAFF framework. We first achieve

stability by employing the term α > 0 in Equation 5.3. Next, we perform online

feature selection by combining features at runtime based on their correlation coeffi-

cient to the output using Equations 5.9 and 5.10. This requires running a total of

M − 1 two-input RLS for estimating the composite feature in Equation 5.6. Then,

120

we dynamically compute the forgetting factor using Equations 5.11 and 5.12. Subse-

quently, we learn the model coefficients in 5.7 using one more two-input RLS. Finally,

we compute the frequency sensitivity by using a moving average with forgetting on the

estimated value of a0 in Equation 5.6. This is done to remove edge effect overshoots

caused by sharp tracking during workload changes.

Achieve stability using 𝛼 > 0 in Equation 3

Dynamically change 𝜆	(Equations 11 and 12)

Perform online feature selection (Equations 7-10)

Section 3.2

Section 3.3

Section 3.4

Estimate model coefficients in Equation 6 Section 3.3

Figure 5.6: Summary of the STAFF algorithm.

Complexity Analysis: Model estimation algorithms must be very low-cost as they

are used with DTPM algorithms. Table 5.1 presents the number of scalar opera-

tions for each iteration of the proposed STAFF algorithm and a competitive base-

line algorithm that employs stabilized exponential variable forgetting (SEF) with

offline feature selection [87]. The SEF algorithm requires inverting the R matrix in

Equation 5.5, whose computational complexity is O(M3). In contrast, the STAFF

approach requires only M simple 2×2 matrix inversions of R, which only linearly in-

creases complexity. Therefore, the STAFF algorithm provides better scalability than

the SEF algorithm. Of note, the unstabilized version of the standard RLS algorithm

has a computational complexity of O(M2), since it is possible to apply the matrix

inversion lemma [123].

In practice, the SEF algorithm is used in conjunction with offline feature selection

(Offline FS) methods that reduce the number of input features. The complexity of

the SEF algorithm changes with the number of features M . In contrast, the STAFF

121

1 3 5 7 9 1 1 1 3 1 5 1 7
02
46
81 01 21 4

S T A F F C o m p l e x i t y

 S T A F F S E F N o r m a l i z e d S E F E r r o r

N u m b e r o f O f f l i n e F e a t u r e s (M)
Co

mp
lex

ity
(ki

lo-
op

era
tio

ns
)

0
1
2
3
4

 No
rm

. E
rro

r

Figure 5.7: STAFF framework has 3.2× lower error (right axis) in frequency sensi-

tivity, and 6.5× lower complexity compared to the SEF algorithm for M = 17. The

errors are computed using the non-stationary workload employed in Section 5.5.2

.

framework uses all the features (M = 17) while keeping a constant complexity, as

shown in Figure 5.7. We observe that the complexity of SEF is 6.5× larger than

STAFF for M = 17. At this complexity, SEF leads to 3.2× larger mean absolute

error in predicting frequency sensitivity compared to STAFF. Even though SEF has

lower complexity with M = 3 and M = 5, this leads to 2.2× and 1.9× higher error,

respectively. Thus, STAFF achieves higher accuracy by using online feature selection

with only linear complexity.

Table 5.1: The number of algebraic operations in the SEF and STAFF algorithms in

each iteration.

Alg. Mul Add/Sub Div Big O

SEF M3 + 4M2 + 7M + 5 M3 + 4M2 + 2M + 3 2M2 - M M3

STAFF 60M - 6 55M - 12 2M + 2 M

122

5.5 Experiments

5.5.1 Experimental Setup

In our experiments we utilize the Intelr CoreTM i5 6th generation platform with

Microsoft Windows 10 OS. We communicate with firmware using the kernel drivers to

read the performance counters, frame time and frequency of the GPU with the help

of our custom user-space routines in C. By employing AutoHotKey, we create 17 real

application scenarios (recorded user interactions) and synthetic application scenarios

(shuffled pre-recorded frames) using representative set of graphic applications, such

as, 3Dmark, Angry Birds, Angry Bots, Jungle Run, Shark Dash, and Fruit Ninja,

to evaluate our approach. We estimate the noise variance of frame time in our data

set as 0.1 ms2 to use in Equation 5.11. STAFF source code is available at http:

// elab. engineering. asu. edu/ public-release/ .

Baseline Algorithms: We compare our approach to several baseline algorithms,

shown in Table 5.2. One approach employs RLS with Offline FS and constant λ =

1 [40], and another with constant λ < 1 [50, 83]. The Offline FS and SEF [75, 87]

algorithms perform costly offline feature selection instead of the low cost online fea-

ture selection performed by the proposed STAFF approach. The Offline FS algorithm

selects the features offline using Lasso regression over 17 application scenarios with

10-fold cross-validation. In contrast, the Offline FS* learns the features using only

the test workloads, thus it is the best baseline when the test data is known in advance.

We also compare against SEF with All-features that uses all the hardware counters

read from the platform.

123

http://elab.engineering.asu.edu/public-release/
http://elab.engineering.asu.edu/public-release/

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

a 0

Fre
q.

Se
ns

itiv
ity

T i m e (m i n)

 O f f l i n e _ F S (λ = 1) O f f l i n e _ F S (λ = 0 . 9 9) O f f l i n e _ F S (λ = 0 . 9 6) S T A F F R e f e r e n c e

F a s t
T r a c k i n g

S l o w T r a c k i n g

E r r o n e o u s
T r a c k i n g

Figure 5.8: Comparison of the STAFF framework against constant forgetting factor

approaches.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

E r r o n e o u s
T r a c k i n g

a 0
Fre

q.
Se

ns
itiv

ity

T i m e (m i n)

 S E F + A l l F e a t u r e s S E F + O f f l i n e _ F S * S T A F F R e f e r e n c e

F a s t
T r a c k i n g

S l o w T r a c k i n g

E r r o n e o u s
T r a c k i n g

Figure 5.9: Comparison of the STAFF framework against adaptive forgetting factor

approaches.

5.5.2 Evaluating the GPU Performance Model

We combine a subset of 17 single applications to compose a real world scenario

that transitions between different applications. Under the composed workload, the

baseline algorithms perform very poorly, even though they can track individual appli-

cations successfully. Figure 5.8 shows such a workload that includes three frequency

sensitivity patterns. First, three applications with high sensitivity (a0 ≈ 1) of du-

ration 10 seconds each are run during the region 0-2 minutes. Then, three other

applications with low sensitivity (a0 ≈ 0) are run during region 2-4 minutes. Finally,

three applications with high sensitivity are run from 4-6 minutes. Clearly, this work-

load is non-stationary because the reference frequency sensitivity (model coefficient

a0) is time varying. This workload captures all major transitions in the sensitivity,

such as, high to low.

Benefits of Adaptive Forgetting: Figure 5.8 shows the comparison between three

124

Table 5.2: Summary of the baseline algorithms and the proposed STAFF framework.

Algorithm # Features Variable λ & α > 0 Complexity

Offline FS (λ = 1) 3 – O(M2)

Offline FS (λ < 1) 3 – O(M2)

SEF+All features 17 X O(M3)

SEF+Offline FS* 5 X O(M3)

STAFF 17 X O(M)

RLS algorithm baselines and the proposed STAFF framework. A basic RLS approach

with Offline FS (λ = 1) cannot track the workload between 2 minutes to 4 minutes.

This is because past information learned from 0 to 2 minutes is not forgotten. The

Offline FS (λ = 0.99) is very slow to track and takes about 1 minute to go from

high to low frequency sensitivity. A lower forgetting factor (λ = 0.96), may seem a

natural choice to track better. While this algorithm tracks faster in the transition

at 2 minutes, there are now local troughs at several location, such as 0.5, 1, and

4.5 minutes. Therefore, an adaptive forgetting scheme is better as it forgets less

in the high sensitivity regions and forgets more during the transition regions. The

STAFF approach performs accurate tracking of the sensitivity in all the time intervals.

The transition interval from high to low sensitivity is about 3 seconds, which is

14× faster than λ = 0.99. This happens, since the forgetting factor becomes low

(λ = 0.001) when a workload change is detected. Otherwise, λ varies between the

bounds λLB = 0.96 to λUB = 0.99.

Benefits of Online Feature Selection: Figure 5.9 shows the comparison of the

proposed STAFF framework with SEF baseline algorithms that can dynamically

change the forgetting factor with stabilization, but without online feature selection.

SEF algorithm that uses all features fail to provide good accuracy over the entire

125

workload. In particular, we find that using all the features leads to over-fitting and

poor estimates of the frequency sensitivity during 0-2 minute and 4-6 minute regions.

Similarly, we find that SEF algorithm that uses the best set of features selected of-

fline (Offline FS*) performs better than using all the features. However, it has local

erroneous peaks and it is slow to converge during the application scenario changes in

comparison to the STAFF framework. Table 5.3 shows the index of the three most

frequently used features that are critical during different workload regions. Clearly,

the most important features change with time. Fixed feature algorithms, such as

SEF, cannot track the frequency sensitivity with high accuracy.

Error Analysis: Figure 5.10 shows the relative region-wise errors in frequency sen-

sitivity estimate of the algorithms with respect to the best baseline SEF+Offline FS*

algorithm. In this figure, we exclude the baseline Offline FS (λ = 0.99) since it is

clearly worse than Offline FS (λ = 0.96) during workload transitions. The lowest

error for STAFF is obtained in the workload transition period of 2-3 minutes due to

our entropy based workload change detection mechanism. The Offline FS (λ = 1)

algorithm can show up to 11.9× higher error during the low frequency sensitivity

regions of 2-4 minutes. Similarly, the Offline FS (λ = 0.96) and SEF algorithms with

all features show up to 6.5× and 8.5× higher error during the high frequency sensi-

tivity region of 5-6 minutes. The error in STAFF is marginally higher than these two

algorithms in the period 3-4 minutes. However, it is still within one standard devia-

tion of the frequency sensitivity reference value. The STAFF algorithm outperforms

all the baselines during all other intervals. In summary, for the entire workload (0-6

minutes), the STAFF framework provides 6×, 2.2×, 3.2×, and 1.9× better accuracy

than the Offline FS (λ = 1), Offline FS (λ = 0.96), SEF with all features, and SEF

with Offline FS* baseline algorithms, respectively.

Workload Change Detection Analysis: Figure 5.11 shows the correlation co-

126

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6
A l l (0 -

6)
0
1
2
3
4
5
6

1 1 . 9

T i m e P e r i o d s (m i n)

No
rm

aliz
ed

 Er
ror

 O f f l i n e _ F S (λ= 1) O f f l i n e _ F S (λ= 0 . 9 6)
 S E F + A l l F e a t S T A F F

S E F + O F S *
6 . 5 8 . 5

Figure 5.10: Normalized RMS error in the frequency sensitivity estimates of the

algorithms in different workload regions. Errors are normalized with respect to the

best baseline approach (SEF+Offline FS*).

efficients, likelihoods, and entropy of the hardware counter features for the STAFF

algorithm. We show a subset of samples around 2 minutes time of the test workload

(shown in Figure 5.9) for clarity. When the workload changes at time 2 minutes,

the absolute value of the correlation coefficients for the 16 hardware counter features

becomes high and closer to each other in the subsequent time interval, as shown in

Figure 5.11(a). This leads to the likelihood of all the hardware counter features to

become equal (1/16 = 0.0625) in Figure 5.11(b). Consequently, the entropy becomes

close to one in Figure 5.11(c), indicating that the workload has changed.

Table 5.3: Three most correlated features used by the STAFF in different time regions

of the workload in Figure 5.9.

Time in Fig. 5.9 0-2 min 2-4 min 4-6 min All (0-6 min)

Feature #1 h1 h14 h1 h1

Feature #2 h2 h7 h2 h2

Feature #3 h4 h6 h4 h6

127

Figure 5.11: Analysis of correlation coefficients, likelihoods, and entropy of the hard-

ware counter features for STAFF algorithm at 2 minutes time of Figure 5.9. (a) The

correlation coefficients become equal in the time interval immediately after a work-

load change occurs at time 2 minutes. (b) The likelihood values become equal in the

same time interval. (c) The entropy for the set of the hardware counter features also

changes and peaks in the same time interval.

128

5.5.3 Faster Convergence for STAFF

In this section, we discuss a faster version of the STAFF algorithm, called Fast-

STAFF, that is able to adapt to the reference frequency sensitivity in shorter duration

than STAFF algorithm. In STAFF algorithm we applied moving average filter to the

coefficient a0 to obtain the frequency sensitivity, as discussed in Section 5.4. We chose

a variable filter width based on the forgetting factor employed for the main RLS of

Equation 5.6. This helps in reducing an extra parameter in the algorithm. However,

it causes the STAFF algorithm to be slower at the transitions of high frequency

sensitivity changes, such as at time 2 minutes in Figure 5.9. In particular, at this

largest workload transition we observe a convergence time of 3.75 seconds in the

STAFF algorithm. Instead of over-provisioning the STAFF algorithm with a variable

width moving average filter, we fix the filter width to reduce the convergence penalty.

Our experiments reveal a good choice for the filter-width is 5, which indicates a 4 Hz

filter frequency for our data sampled at 20 Hz frequency. The Fast-STAFF algorithm

provides 1.85 second convergence time at the largest workload transition, as shown

in Figure 5.12, which is about 2× faster.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

a 0
Fre

q.
Se

ns
itiv

ity

T i m e (m i n)

 S T A F F F a s t S T A F F R e f e r e n c e

F a s t e r
T r a c k i n g

Figure 5.12: Comparison of the STAFF and Fast-STAFF algorithm.

5.6 Conclusion

In this chapter, we present a novel framework, called STAFF, that guarantees

stability, performs online feature selection with linear complexity, and dynamically

129

changes the forgetting factor. We evaluate it by predicting the frequency sensitivity of

a graphics unit in a commercial Intel platform. The framework provides fast tracking

with up to 6× improvement in the prediction accuracy compared to existing state-

of-the-art techniques.

130

Chapter 6

CONCLUSION

Power management has become crucial for heterogeneous systems that integrates

many processing elements, such as CPU cores, GPU, video, image, and audio pro-

cessors. Dynamic thermal and power management algorithms address this problem

by putting a subset of the processing elements or shared resources to sleep states, or

throttling their frequencies. However, an adhoc approach could easily cripple the per-

formance, if it slows down the performance-critical processing element. Furthermore,

mobile platforms run a wide range of applications with time varying workload char-

acteristics, unlike early generations, which supported only limited functionality. As a

result, there is a need for adaptive power and performance management approaches

that consider the platform as a whole, rather than focusing on a subset. Towards this

need, our first contribution is a dynamic power management technique for a recently

introduced single ISA big.LITTLE heterogeneous CPU system [51]. Our experiments

show an average increase of 93%, 81% and 6% in performance per watt compared to

the interactive, ondemand and powersave governors, respectively. While the CPU is

one of the most important components of a SoC, a number of mobile applications,

such as games critically depend on the GPU for rendering. Therefore, in our second

contribution, we focus on power management of the CPU and GPU together for graph-

ics workloads. The experiments on an Intel Baytrail platform [62] show up to 15%

increase in average frame rate compared to the default power allocation algorithms.

Our third contribution targets integrated GPUs, since they have become an indis-

pensable component of mobile processors due to the increasing popularity of graphics

applications. The GPU frequency is a key factor both in application throughput and

131

mobile processor power consumption under graphics workloads. Therefore, dynamic

power management algorithms have to assess the performance sensitivity to the GPU

frequency accurately. Since the impact of the GPU frequency on performance varies

rapidly over time, there is a need for online performance models that can adapt to

varying workloads. To address this, we propose a frame time model that does not

rely on any parameter learned offline. Our experiments on the Intel Minnowboard

MAX platform running common GPU benchmarks show that the mean absolute per-

centage error in frame time and frame time sensitivity prediction are 4.2% and 6.7%,

respectively. Finally, online learning of power and performance models require effi-

cient online learning algorithms that can adapt to multiple applications, determine

the important features at runtime and lead to stable solutions. To address this need,

we develop a novel online learning algorithm, STAFF that performs online feature se-

lection and adapts to non-stationary workloads using dynamically varying forgetting

factor with stability.

This dissertation summarizes our contributions that aid the power management

of heterogeneous mobile platforms. More precisely, our specific contributions are as

follows:

• A framework to dynamically select the Pareto-optimal frequency and active

cores for the heterogeneous CPUs, such as ARM big.LITTLE architecture [46],

• A dynamic power budgeting approach for allocating optimal power consumption

to the CPU and GPU using performance sensitivity models for each PE [47],

• An adaptive GPU frame time sensitivity prediction model to aid power man-

agement algorithms [40, 109].

• An online learning algorithm with stabilized adaptive forgetting factor and run-

time feature selection capabilities [39].

132

REFERENCES

[1] Aalsaud, A. et al., “Power–Aware Performance Adaptation of Concurrent Ap-
plications in Heterogeneous Many-Core Systems”, in “Proc. of the Intl. Symp.
on Low Power Elec. and Design”, pp. 368–373 (2016).

[2] Akenine-Möller, T., E. Haines and N. Hoffman, Real-time rendering (CRC
Press, 2008).

[3] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”, in “Proc. of ACM Spring Joint Computer
Conf.”, (1967).

[4] AnandTech, “ARM’s Mali Midgard Architecture Explored”, https://www.
anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
(2017).

[5] App Tornado, “App Brain”, http://www.appbrain.com/ (2016).

[6] Apple Inc., https://support.apple.com/en-us/HT201678 (2017).

[7] Ayoub, R. Z. et al., “OS-level Power Minimization under Tight Performance
Constraints in General Purpose Systems”, in “Proc. of the Intl. Symp. on Low-
power Elec. and Design”, pp. 321–326 (2011).

[8] Benini, L., A. Bogliolo and G. De Micheli, “A Survey of Design Techniques For
System-Level Dynamic Power Management”, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 8, 3, 299–316 (2000).

[9] Bhat, G., G. Singla, A. K. Unver and U. Y. Ogras, “Algorithmic optimization
of thermal and power management for heterogeneous mobile platforms”, IEEE
Trans. on Very Large Scale Integration Syst. 26, 3, 544–557 (2018).

[10] Bhat, G. et al., “Multi-Objective Design Optimization for Flexible Hybrid Elec-
tronics”, in “Proc. of Int. Conf. on Comput. Aided Design”, (2016).

[11] Bienia, C., S. Kumar, J. P. Singh and K. Li, “The PARSEC Benchmark Suite:
Characterization and Architectural Implications”, in “Proc. of the Intl. Conf.
on Parallel Arch. and Compilation Tech.”, pp. 72–81 (2008).

[12] Bogdan, P. and R. Marculescu, “Non-stationary traffic analysis and its implica-
tions on multicore platform design”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Syst. 30, 4, 508–519 (2011).

[13] Bogdan, P., R. Marculescu, S. Jain and R. T. Gavila, “An Optimal Control
Approach to Power Management for Multi-Voltage and Frequency Islands Mul-
tiprocessor Platforms under Highly Variable Workloads”, in “Proc. of the Intl.
Symp. on Networks on Chip”, pp. 35–42 (2012).

133

https://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
https://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
http://www.appbrain.com/

[14] Carroll, A. and G. Heiser, “An Analysis of Power Consumption in a Smart-
phone”, in “USENIXATC”, (2010).

[15] Chen, W.-M., S.-W. Cheng, P.-C. Hsiu and T.-W. Kuo, “A User-Centric CPU-
GPU Governing Framework for 3D Games on Mobile Devices”, in “Proc. of the
Intl. Conf. on Computer-Aided Design”, pp. 224–231 (2015).

[16] Chen, X. et al., “Dynamic Voltage and Frequency Scaling for Shared Resources
in Multicore Processor Designs”, in “Proc. of the Design Autom. Conf.”, p. 114
(2013).

[17] Cochran, R., C. Hankendi, A. K. Coskun and S. Reda, “Pack & Cap: Adaptive
DVFS and Thread Packing Under Power Caps”, in “Proc. of the Intl. Symp.
on Microarch.”, pp. 175–185 (2011).

[18] Cortex, A., “A15 MPCore Processor Technical Reference Manual”, ARM Hold-
ings PLC 24 (2013).

[19] Coskun, A. K., T. S. Rosing and K. Whisnant, “Temperature Aware Task
Scheduling in MPSoCs”, in “Proc. of the Conf. on Design, Autom. and Test in
Europe”, pp. 1659–1664 (2007).

[20] Das, A., G. V. Merrett, M. Tribastone and B. M. Al-Hashimi, “Workload
Change Point Detection for Runtime Thermal Management of Embedded Sys-
tems”, Trans. on Comp.-Aided Des. of Int. Circuits and Sys. 35, 8, 1358–1371
(2016).

[21] David, R., P. Bogdan, R. Marculescu and U. Ogras, “Dynamic Power Manage-
ment of Voltage-frequency Island Partitioned Networks-on-Chip using Intel’s
Single-chip Cloud Computer”, in “Proc. of the Intl. Symp. on Networks on
Chip”, pp. 257–258 (2011).

[22] de Melo, A. C., “The New Linux Perf Tools”, in “Linux Kongress”, vol. 18
(2010).

[23] Del Sozzo, E. et al., “Workload-aware Power Optimization Strategy for Asym-
metric Multiprocessors”, in “Proc. of the Design, Auto. & Test in Europe Conf.
& Exhib.”, pp. 531–534 (2016).

[24] Dev, K., A. N. Nowroz and S. Reda, “Power Mapping and Modeling of Multi-
Core Processors”, in “Proc. of the Intl. Symp. on Low Power Electronics and
Design”, pp. 39–44 (2013).

[25] Dev, K. and S. Reda, “Scheduling Challenges and Opportunities in Integrated
CPU+GPU Processors”, in “Proc. of the Symp. of Embedded Systems For
Real-time Multimedia”, pp. 1–6 (2016).

[26] Dhiman, G. and T. S. Rosing, “System-Level Power Management Using Online
Learning”, IEEE Trans. Comput.-Aided Design Integr. Circuits and Syst. 28,
5, 676–689 (2009).

134

[27] Dietrich, B. and S. Chakraborty, “Lightweight Graphics Instrumentation for
Game State-Specific Power Management in Android”, Multimedia Systems 20,
5, 563–578 (2014).

[28] Dietrich, B. et al., “LMS-based Low-complexity Game Workload Prediction for
DVFS”, in “Proc. of the Intl. Conf. on Comp. Design”, pp. 417–424 (2010).

[29] Donyanavard, B., T. Mück, S. Sarma and N. Dutt, “SPARTA: Runtime Task
Allocation for Energy Efficient Heterogeneous Many-cores”, in “Proc. of the
Intl. Conf. on Hardware/Software Codesign and Sys. Syn.”, p. 27 (2016).

[30] Faith, R., “The Direct Rendering Manager: Kernel Support for the Direct
Rendering Infrastructure”, (1999).

[31] Farrar, D. E. and R. R. Glauber, “Multicollinearity in Regression Analysis:
the Problem Revisited”, The Review of Economic and Statistics, JSTOR pp.
92–107 (1967).

[32] Finch, T., “Incremental Calculation of Weighted Mean and Variance”, Univer-
sity of Cambridge 4, 11–5 (2009).

[33] Fortescue, T., L. S. Kershenbaum and B. E. Ydstie, “Implementation of Self-
Tuning Regulators with Variable Forgetting Factors”, Automatica 17, 6, 831–
835 (1981).

[34] Friedman, J., T. Hastie and R. Tibshirani, The Elements of Statistical Learning,
vol. 1 (Springer Series in Statistics, Berlin, 2001).

[35] Gandhi, A., M. Harchol-Balter, R. Das, J. O. Kephart and C. Lefurgy, “Power
Capping Via Forced Idleness”, in “Proc. of Workshop on Energy-Efficient De-
sign”, (2009).

[36] Ghasemazar, M., E. Pakbaznia and M. Pedram, “Minimizing Energy Consump-
tion of a Chip Multiprocessor Through Simultaneous Core Consolidation and
DVFS”, in “Proc. of the Intl. Symp. on Circuits and Systems”, pp. 49–52 (2010).

[37] Google, O., “Android Jelly Bean”, http://www.android.com/versions/
jelly-bean-4-2/ (2017).

[38] Gu, Y., S. Chakraborty and W. T. Ooi, “Games are up for DVFS”, in “Proc.
of the Design Automation Conf.”, pp. 598–603 (2006).

[39] Gupta, U., M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna and U. Y. Ogras,
“STAFF: Online Learning with Stabilized Adaptive Forgetting Factor and Fea-
ture Selection Algorithm”, in “Proc. of Design Autom. Conf.”, p. 6 (2018 (To
appear)).

[40] Gupta, U., J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna
and S. Gumussoy, “Adaptive Performance Prediction for Integrated GPUs”, in
“Proc. of the Intl. Conf. on Computer-Aided Design”, p. 61 (2016).

135

http://www.android.com/versions/jelly-bean-4-2/
http://www.android.com/versions/jelly-bean-4-2/

[41] Gupta, U., S. Jain and U. Y. Ogras, “Can Systems Extend to Polymer? SoP
Architecture Design and Challenges”, in “Proc. of Int. SoC (System-on-Chip)
Conf.”, (2015).

[42] Gupta, U., S. Korrapati, N. Matturu and U. Y. Ogras, “A Generic Energy
Optimization Framework for Heterogeneous Platforms Using Scaling Models”,
Microprocessors and Microsystems 40, 74–87 (2016).

[43] Gupta, U. and U. Ogras, “Constrained Energy Optimization in Heteroge-
neous Platforms using Generalized Scaling Models”, IEEE Comp. Arch. Letters
(2014).

[44] Gupta, U. and U. Y. Ogras, “Extending Networks from Chips to Flexible and
Stretchable Electronics”, in “Proc. of Networks-on-Chip Symp.”, (2016).

[45] Gupta, U., J. Park, H. Joshi and U. Y. Ogras, “Flexibility-aware Systems on
Polymer: Concept to Prototype”, IEEE Trans. on Multi Scale Comput. Sys. 3,
1, 36–49 (2017).

[46] Gupta, U., C. A. Patil, G. Bhat, P. Mishra and U. Y. Ogras, “DyPO: Dy-
namic Pareto Optimal Configuration Selection for Heterogeneous MpSoCs”,
ACM Tran. on Embedded Comp. Sys. (to appear) (2017).

[47] Gupta, U. et al., “Dynamic Power Budgeting for Mobile Systems Running
Graphics Workloads”, IEEE Trans. on Multi-Scale Comp. Sys. (2017).

[48] Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B.
Brown, “Mibench: A Free, Commercially Representative Embedded Benchmark
Suite”, in “Proc. of the Intl. Workshop on Workload Char.”, pp. 3–14 (2001).

[49] Hamilton, J. D., Time Series Analysis, vol. 2 (Princeton University Press, 1994).

[50] Hanumaiah, V., D. Desai, B. Gaudette, C.-J. Wu and S. Vrudhula, “STEAM:
a Smart Temperature and Energy Aware Multicore Controller”, Trans. on Em-
bedded Comp. Sys. 13, 5s, 151 (2014).

[51] Hardkernel, “Platforms, ODROID− XU3”, http://www.hardkernel.com/
main/products/prdt_info.php?g_code=G143452239825 (2017).

[52] Henkel, J., H. Khdr, S. Pagani and M. Shafique, “New Trends in Dark Silicon”,
in “Proc. of the Design Automation Conf.”, pp. 1–6 (2015).

[53] Henkel, J. et al., “Dark Silicon: From Computation to Communication”, in
“Proc. of the Intl. Symp. on Networks-on-Chip”, p. 23 (2015).

[54] Herbert, S. and D. Marculescu, “Analysis of Dynamic Voltage/Frequency Scal-
ing in Chip-Multiprocessors”, in “Proc. of the Intl. Symp. on Low Power Elec.
and Design”, pp. 38–43 (2007).

[55] Hoerl, A. E. and R. W. Kennard, “Ridge regression: Biased Estimation for
Nonorthogonal Problems”, Technometrics, Taylor & Francis Group 12, 1, 55–
67 (1970).

136

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825

[56] Hot Chips, “Power Management Architecture of the 2nd Generation Intel
Core Microarchitecture”, http://www.hotchips.org/wp-content/uploads/
hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_
Power_10-Rotem-Intel.pdf (2017).

[57] Hsieh, C.-Y., J.-G. Park, N. Dutt and S.-S. Lim, “Memory-Aware Cooperative
CPU-GPU DVFS Governor for Mobile Games”, in “Proc. of the Symp. on
Embedded Sys. For Real-time Multimedia”, pp. 1–8 (2015).

[58] Hu, X., Y. Xu, J. Ma, G. Chen, Y. Hu and Y. Xie, “Thermal-sustainable power
budgeting for dynamic threading”, in “Proc. of the Design Automation Conf.”,
(2014).

[59] Intel Corp., Open Source HD Graphics Programmers’ Reference Manual (2015).

[60] Intel Corp., “Intel GPU Tools”, http://01.org/linuxgraphics/gfx-docs/igt/
(2016).

[61] Intel Corp., “Minnowboard”, http://www.minnowboard.org/ (2016).

[62] Intel Corp, “Atom
TM
µP Z3775”, http://ark.intel.com/products/80268

(2017).

[63] Intel Corp., “PRM for Open Source HD Graphics”,
https://01.org/sites/default/files/documentation/
intel-gfx-prm-osrc-skl-vol14-observability.pdf (2017).

[64] Intel Corporation, “Intel c© Atom
TM

Processor Z2760”, http://ark.intel.
com/products/70105 (2017).

[65] Isci, C., G. Contreras and M. Martonosi, “Live, Runtime Phase Monitoring and
Prediction on Real Systems With Application to Dynamic Power Management”,
in “Proc. of the Intl. Symp. on Microarch.”, pp. 359–370 (2006).

[66] Isci, C. et al., “An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget”, in “Proc. of Intl.
Symp. on Microarch.”, (2006).

[67] Ismail, M. and J. Principe, “Equivalence Between RLS Algorithms and the
Ridge Regression Technique”, in “Proc. of the Conf. on Signals, Sys. and
Comp.”, pp. 1083–1087 (1996).

[68] James, G., D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statis-
tical Learning, vol. 6 (Springer, 2013).

[69] Jin, T., S. He and Y. Liu, “Towards Accurate GPU Power Modeling for Smart-
phones”, in “Proc. of the 2nd Workshop on Mobile Gaming”, pp. 7–11 (2015).

[70] Kadjo, D., R. Ayoub, M. Kishinevsky and P. V. Gratz, “A Control-Theoretic
Approach for Energy Efficient CPU-GPU Subsystem in Mobile Platforms”, in
“Proc. of the Design Automation Conf.”, pp. 62:1–62:6 (2015).

137

http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf
http://ark.intel.com/products/80268
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-skl-vol14-observability.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-skl-vol14-observability.pdf
http://ark.intel.com/products/70105
http://ark.intel.com/products/70105

[71] kernel.org, “Linux Power Capping Framework Documentation”, https://www.
kernel.org/doc/Documentation/power/powercap/powercap.txt (2017).

[72] Khan, M. U. K., M. Shafique and J. Henkel, “Hierarchical Power Budgeting for
Dark Silicon Chips”, in “Proc. of the Intl. Symp. on Low Power Electronics and
Design (ISLPED)”, pp. 213–218 (2015).

[73] Kim, R. G. et al., “Wireless NoC and Dynamic VFI Codesign: Energy Efficiency
Without Performance Penalty”, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 24, 7, 2488–2501 (2016).

[74] Kim, R. G. et al., “Imitation learning for dynamic vfi control in large-scale
manycore systems”, IEEE Trans. on Very Large Scale Integration Syst. 25, 9,
2458–2471 (2017).

[75] Kreisselmeier, G., “Stabilized Least-Squares Type Adaptive Identifiers”, Tran.
on Automatic Control 35, 3, 306–310 (1990).

[76] Kultursay, E., K. Swaminathan, V. Saripalli, V. Narayanan, M. T. Kandemir
and S. Datta, “Performance Enhancement Under Power Constraints Using Het-
erogeneous Cmos-TFET Multicores”, in “Proc. of the Intl. Conf. on Hard-
ware/Software Codesign and Sys. Synth.”, pp. 245–254 (2012).

[77] Lattner, C., “LLVM and Clang: Next Generation Compiler Technology”, in
“Proc. of the BSD”, pp. 1–2 (2008).

[78] Lattner, C. and V. Adve, “LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation”, in “Proc. of the Intl. Symp. on Code Gen.
and Opt.: Feedback-directed and Runtime Opt.”, p. 75 (2004).

[79] Lee, J. and N. S. Kim, “Optimizing Throughput of Power-and Thermal-
Constrained Multicore Processors Using DVFS and Per-Core Power-Gating”,
in “Prof. of the Design Autom Conf.”, pp. 47–50 (2009).

[80] Li, J. and J. F. Martinez, “Dynamic Power-Performance Adaptation of Parallel
Computation on Chip Multiprocessors”, in “Proc. of the Intl. Symp. on High-
Perf. Comp. Arch.”, pp. 77–87 (2006).

[81] Lim, H., A. Kansal and J. Liu, “Power Budgeting for Virtualized Data Centers”,
in “Proc. of the USENIX Annual Tech. Conf.”, p. 59 (2011).

[82] Ljung, L., “Characterization of the Concept of ’Persistently Exciting’ in the
Frequency Domain”, Report TFRT 3038 (1971).

[83] Ma, K., X. Wang and Y. Wang, “DPPC: Dynamic Power Partitioning and Con-
trol for Improved Chip Multiprocessor Performance”, IEEE Trans. on Comp.
63, 7, 1736–1750 (2014).

[84] Mathworks, “MATLAB System Identification Toolbox”,
https://www.mathworks.com/products/sysid.html (2017).

138

https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt

[85] Mendel, J. M., Lessons in Estimation Theory for Signal Processing, Communi-
cations, and Control (Pearson Educ., 1995).

[86] Mercati, P., R. Ayoub, M. Kishinevsky, E. Samson, M. Beuchat, F. Paterna
and T. Š. Rosing, “Multi-variable Dynamic Power Management for the GPU
Subsystem”, in “Proc. of the Design Autom. Conf.”, p. 2 (2017).

[87] Milek, J., Stabilized Adaptive Forgetting in Recursive Parameter Estimation,
no. 4 (vdf Hochschulverlag AG, 1995).

[88] Mishra, Nikita and Zhang, Huazhe and Lafferty, John D and Hoffmann, Henry,
“A Probabilistic Graphical Model-Based Approach for Minimizing Energy Un-
der Performance Constraints”, in “ACM SIGARCH Computer Architecture
News”, vol. 43, pp. 267–281 (2015).

[89] Mochel, P., “The sysfs Filesystem”, in “Linux Symposium”, p. 313 (2005).

[90] Mochocki, B., K. Lahiri and S. Cadambi, “Power Analysis of Mobile 3D Graph-
ics”, in “Proc. of the Design, Autom. and Test in Europe Conf.”, pp. 502–507
(2006).

[91] Motorola, “Moto X Pure Edition Smartphone”, https://www.motorola.com/
us/products/moto-x-pure-edition (2017).

[92] Mucci, P. J., S. Browne, C. Deane and G. Ho, “PAPI: A Portable Interface
to Hardware Performance Counters”, in “Proc. of the Department of Defense
HPCMP Users Group Conf.”, (1999).

[93] Mudge, T., “Power: A First-class Architectural Design Constraint”, Computer
34, 4, 52–58 (2001).

[94] Muthukaruppan, T. S., M. Pricopi, V. Venkataramani, T. Mitra and S. Vishin,
“Hierarchical Power Management for Asymmetric Multi-Core in Dark Silicon
Era”, in “Proc. of the Design Autom. Conf.”, pp. 1–9 (2013).

[95] Muztoba, M., U. Gupta, M. Tanvir and U. Y. Ogras, “Robust Communication
with IoT Devices using Wearable Brain Machine Interfaces”, in “Proc. of Int.
Conf. on Computer-Aided Design”, (2015).

[96] Nagasaka, H. et al., “Statistical Power Modeling of GPU Kernels using Per-
formance Counters”, in “Proc. of the Intl. Green Comp. Conf.”, pp. 115–122
(2010).

[97] National Instr., “NI USB-6289”, http://sine.ni.com/nips/cds/view/p/
lang/en/nid/209154 (2015).

[98] ODROID, “ XU+E Platform”, http://www.hardkernel.com/ (2017).

[99] Ogras, U. Y., R. Z. Ayoub, M. Kishinevsky and D. Kadjo, “Managing Mobile
Platform Power”, in “Proc. of Intl. Conf. on Computer-Aided Design”, pp.
161–162 (2013).

139

https://www.motorola.com/us/products/moto-x-pure-edition
https://www.motorola.com/us/products/moto-x-pure-edition
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209154
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209154
http://www.hardkernel.com/

[100] Ogras, U. Y. and R. Marculescu, Modeling, Analysis and Optimization of
Network-on-Chip Communication Architectures, vol. 184 (Springer Science &
Business Media, 2013).

[101] Ogras, U. Y., R. Marculescu, D. Marculescu and E. G. Jung, “Design and Man-
agement of Voltage-Frequency Island Partitioned Networks-on-Chip”, IEEE
Trans. on Very Large Scale Integration Systems 17, 3, 330–341 (2009).

[102] Pagani, S. et al., “TSP: Thermal Safe Power: Efficient Power Budgeting for
Many-Core Systems in Dark Silicon”, in “Proc. of the Intl. Conf. on Hard-
ware/Software Codesign and System Synthesis”, p. 10 (2014).

[103] Palermo, G., C. Silvano and V. Zaccaria, “Multi-objective Design Space Explo-
ration of Embedded Systems”, Jrnl of Embd. Comp. 1.3, 305–316 (2005).

[104] Palesi, M. and T. Givargis, “Multi-objective Design Space Exploration Using
Genetic Algorithms”, in “Proc. of the Intl. Symp. on Hardware/Software Code-
sign”, pp. 67–72 (2002).

[105] Pallipadi, V., S. Li and A. Belay, “Cpuidle: Do Nothing, Efficiently”, in “Proc.
of the Linux Symp.”, vol. 2, pp. 119–125 (2007).

[106] Pallipadi, V. and A. Starikovskiy, “The Ondemand Governor”, in “Proc. of the
Linux Symp.”, vol. 2 (2006).

[107] Panda, P. R., B. Silpa, A. Shrivastava and K. Gummidipudi, Power-efficient
System Design (Springer Science & Business Media, 2010).

[108] Park, J.-G., C.-Y. Hsieh, N. Dutt and S.-S. Lim, “Co-Cap: Energy-Efficient
Cooperative CPU-GPU Frequency Capping for Mobile Games”, in “Proc. of
the ACM Symp. on Applied Computing”, pp. 1717–1723 (2016).

[109] Paterna, F., U. Gupta, R. Ayoub, U. Y. Ogras and M. Kishinevsky, “Adaptive
Performance Sensitivity Model to Support GPU Power Management”, in “Proc.
of the Workshop on Autotuning and Adaptivity Approaches for Energy Efficient
HPC Sys.”, p. 5 (2017).

[110] Pathak, A., Y. C. Hu, M. Zhang, P. Bahl and Y.-M. Wang, “Fine-Grained
Power Modeling for Smartphones using System Call Tracing”, in “Proc. of the
ACM Conf. on Computer systems”, pp. 153–168 (2011).

[111] Pathania, A., A. E. Irimiea, A. Prakash and T. Mitra, “Power-Performance
Modelling of Mobile Gaming Workloads on Heterogeneous MPSoCs”, in “Proc.
of the Design Autom. Conf.”, pp. 201:1–201:6 (2015).

[112] Petoumenos, P., L. Mukhanov, Z. Wang, H. Leather and D. S. Nikolopoulos,
“Power Capping: What Works, What Does Not”, in “Proc. of the Intl. Conf.
on Parallel and Distributed Systems”, pp. 525–534 (2015).

140

[113] Pothukuchi, R. P., A. Ansari, P. Voulgaris and J. Torrellas, “Using Multiple
Input, Multiple Output Formal Control to Maximize Resource Efficiency in
Architectures”, in “Proc. of the Intl. Symp. on Computer Architecture (ISCA)”,
pp. 658–670 (2016).

[114] Power, J., J. Hestness, M. Orr, M. Hill and D. Wood, “gem5-gpu: A Heteroge-
neous CPU-GPU Simulator”, IEEE Comp. Arch. Letters (2014).

[115] Prakash, A., H. Amrouch, M. Shafique, T. Mitra and J. Henkel, “Improving
Mobile Gaming Performance Through Cooperative CPU-GPU Thermal Man-
agement”, in “Proc. of the Design Automation Conf.”, p. 47 (2016).

[116] Qualcomm Inc., “Trepn profiler”, https://developer.qualcomm.com/
software/trepn-power-profiler (2017).

[117] Rabaey, J. M., M. Pedram et al., Low Power Design Methodologies, vol. 118
(Kluwer Academic Publishers Norwell, 1996).

[118] Raghavan, A., Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.
Wenisch and M. M. Martin, “Computational Sprinting”, in “Proc. of Symp. on
High Performance Computer Architecture”, (2012).

[119] Reda, S., R. Cochran and A. K. Coskun, “Adaptive Power Capping for Servers
with Multithreaded Workloads”, IEEE Micro 5, 32, 64–75 (2012).

[120] Ren, Z., B. H. Krogh and R. Marculescu, “Hierarchical Adaptive Dynamic
Power Management”, IEEE Trans. on Computers 54, 4, 409–420 (2005).

[121] Rotem, E., A. Naveh, A. Ananthakrishnan, E. Weissmann and D. Rajwan,
“Power-Management Architecture of the Intel Microarchitecture Code-Named
Sandy Bridge”, IEEE Micro 32, 2, 20–27 (2012).

[122] Sahin, O., P. T. Varghese and A. K. Coskun, “Just Enough is More: Achieving
Sustainable Performance in Mobile Devices under Thermal Limitations”, in
“Proc. of the Intl. Conf. on Computer-Aided Design”, pp. 839–846 (2015).

[123] Sayed, A. H., Fundamentals of Adaptive Filtering (John Wiley & Sons, 2003).

[124] Sayed, A. H., Adaptive Filters (John Wiley & Sons, 2011).

[125] Shafique, M., S. Garg, J. Henkel and D. Marculescu, “The EDA Challenges
in the Dark Silicon Era”, in “Proc. of the Design Automation Conf.”, pp. 1–6
(2014).

[126] Sherwood, T., E. Perelman, G. Hamerly, S. Sair and B. Calder, “Discovering
and Exploiting Program Phases”, IEEE micro 23, 6, 84–93 (2003).

[127] Singh, A. K. and B. Bhadauria, “Finite Difference Formulae for Unequal Sub-
intervals using Lagranges Interpolation Formula”, Int. J. Math. Anal 3, 17, 815
(2009).

141

https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

[128] Singla, G., G. Kaur, A. K. Unver and U. Y. Ogras, “Predictive Dynamic Ther-
mal and Power Management for Heterogeneous Mobile Platforms”, in “Proc. of
the Conf. on Design, Automation & Test in Europe”, pp. 960–965 (2015).

[129] Skadron, K., M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan and
D. Tarjan, “Temperature-Aware Computer Systems: Opportunities and Chal-
lenges”, IEEE Micro 23, 6, 52–61 (2003).

[130] Skadron, K., M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy and
D. Tarjan, “Temperature-Aware Microarchitecture: Modeling and Implemen-
tation”, ACM Tran. on Arch. and Code Optimization 1, 1, 94–125 (2004).

[131] Song, T., D. Lo and G. E. Suh, “Prediction-Guided Performance-Energy Trade-
off with Continuous Run-Time Adaptation”, in “Proc. of the Intl. Symp. on Low
Power Elec. and Design”, pp. 224–229 (2016).

[132] Souza, F. and R. Araújo, “An Online Variable Selection Method Using Recur-
sive Least Squares”, in “Proc. of the Emerging Tech. & Factory Autom.”, pp.
1–8 (2012).

[133] Statista, “Number of Mobile Phone Users Worldwide From
2013 to 2019”, https://www.statista.com/statistics/274774/
forecast-of-mobile-phone-users-worldwide/ (2017).

[134] Statista, “Worldwide mobile app revenues in 2015, 2016
and 2020”, https://www.statista.com/statistics/269025/
worldwide-mobile-app-revenue-forecast/ (2017).

[135] Strang, G., Computational Science and Engineering, vol. 791 (Wellesley-
Cambridge Press, 2007).

[136] Su, B. et al., “PPEP: Online Performance, Power, and Energy Prediction
Framework and DVFS Space Exploration”, in “Proc. of the Intl. Symp. on
Microarch.”, pp. 445–457 (2014).

[137] Techreport, “BayTrail Arch.”, http://techreport.com/review/25329/
intel-atom-z3000-bay-trail-soc-revealed (2016).

[138] Thomas, S. et al., “CortexSuite: A Synthetic Brain Benchmark Suite”, in “Proc.
of the Intl. Symp. on Workload Char.”, pp. 76–79 (2014).

[139] TI-INA231, http://www.ti.com/lit/ds/symlink/ina231.pdf (2017).

[140] Turner, C. S., “A Fast Binary Logarithm Algorithm”, Streamlining Digital
Signal Processing: A Tricks of the Trade Guidebook pp. 281–283 (2012).

[141] Vallina-Rodriguez, N. and J. Crowcroft, “Energy Management Techniques in
Modern Mobile Handsets”, IEEE Comm. Surveys & Tutorials , 99, 1–20 (2012).

[142] Varatkar, G. V. and R. Marculescu, “On-chip Traffic Modeling and Synthesis
for MPEG-2 Video Applications”, IEEE Trans. on Very Large Scale Integration
Systems 12, 1, 108–119 (2004).

142

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
http://techreport.com/review/25329/intel-atom-z3000-bay-trail-soc-revealed
http://techreport.com/review/25329/intel-atom-z3000-bay-trail-soc-revealed
http://www.ti.com/lit/ds/symlink/ina231.pdf

[143] Wang, H., V. Sathish, R. Singh, M. J. Schulte and N. S. Kim, “Workload and
power budget partitioning for single-chip heterogeneous processors”, in “Proc.
of Parallel Arch. and Compilation”, (2012).

[144] Wang, W., P. Mishr A and S. Ranka, Dynamic Reconfiguration in Real-Time
Systems (Springer, 2012).

[145] Wang, X., K. Ma and Y. Wang, “Adaptive Power Control With Online Model
Estimation for Chip Multiprocessors”, IEEE Trans. on Parallel and Distributed
Sys. 22, 10, 1681–1696 (2011).

[146] Wang, X. et al., “A Pareto-Optimal Runtime Power Budgeting Scheme for
Many-Core Systems”, Microprocessors and Microsystems 46, 136–148 (2016).

[147] XDA-Developers Forums, https://forum.xda-developers.com/general/
general/ref-to-date-guide-cpu-governors-o-t3048957 (2017).

[148] Zakharov, Y. V., G. P. White and J. Liu, “Low-complexity RLS Algorithms
Using Dichotomous Coordinate Descent Iterations”, IEEE Tran. on Signal Proc.
56, 7, 3150–3161 (2008).

[149] Zhan, X. and S. Reda, “Techniques For Energy-Efficient Power Budgeting In
Data Centers”, in “Proc. of the Design Automation Conf.”, p. 176 (2013).

[150] Zhang, H. and H. Hoffmann, “Maximizing Performance Under a Power Cap:
A Comparison of Hardware, Software, and Hybrid Techniques”, in “Proc. of
the Intl. Conf. on Arch. Support for Programming Languages and Operating
Systems”, pp. 545–559 (2016).

[151] Zheng, X., L. K. John and A. Gerstlauer, “Accurate Phase-level Cross-platform
Power and Performance Estimation”, in “Proc. of Design Autom. Conf.”, p. 4
(2016).

[152] Zhu, Y. and V. J. Reddi, “High-Performance and Energy-Efficient Mobile
Web Browsing on Big/Little Systems”, in “Intl. Symp. on High Perf. Comput.
Arch.”, (2013).

[153] Zhuo, J. and C. Chakrabarti, “Energy-Efficient Dynamic Task Scheduling Al-
gorithms for DVS Systems”, ACM Trans. on Embedded Computing Systems 7,
2, 17 (2008).

143

https://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-governors-o-t3048957
https://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-governors-o-t3048957

VITA

EDUCATION

Ph.D., Electrical Engineering 08/2014 - 05/2018

Arizona State University, Tempe, Arizona, USA

M.S., Electrical Engineering 08/2012 - 08/2014

Arizona State University, Tempe, Arizona, USA

B.E., Electronics & Communication Engineering 08/2007 - 11/2011

Manipal University, Manipal, Karnataka, India

144

	LIST OF TABLES
	LIST OF FIGURES
	
	Contributions
	Summary of Publications

	
	Introduction
	Related Research
	DyPO Configuration Selection
	Motivation and Overview
	Phase-Level Application Instrumentation
	Data Characterization Methodology
	Optimal Configuration Classification
	Online Optimal Configuration Selection

	Experimental Results
	Experimental Setup
	Classifier Accuracy
	Runtime Validation of DyPO
	Improvements in Energy and PPW

	Conclusion

	
	Introduction
	Related Research
	Power Budget Allocation Mechanism
	Preliminaries
	Power Budget Allocation
	Illustration of the Power Allocation Technique
	Summary of Overall Operation

	Experiment and Simulation Results
	Hardware Experimental Setup
	Experimental Results on the Hardware Platform
	Simulation Framework
	Simulation Results

	Conclusion

	
	Introduction
	Related Research
	Frame Time Characterization
	Challenges and Notation
	Frame Time and Counter Data Collection

	Frame Time Prediction
	Differential Frame Time Model
	Frame Time Sensitivity
	Offline Feature Selection
	Online Learning of the Model Parameters

	Experimental Results
	Experimental Setup
	Offline Feature Selection and 2 Regularization
	Online Frame Time Prediction
	Online Frame Time Sensitivity Prediction
	Comparison with an Auto Regressive Model using LMS
	Impact for Dynamic Power Management
	Overhead Analysis

	Conclusion

	
	Introduction
	Related Research
	STAFF Online Learning Framework
	Model Template
	Stability under Exponential Forgetting
	Online Feature Selection
	Adaptive Forgetting Factor

	Summary and Complexity Analysis
	Experiments
	Experimental Setup
	Evaluating the GPU Performance Model
	Faster Convergence for STAFF

	Conclusion

	

	REFERENCES

