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ABSTRACT

Autonomous smart windows may be integrated with a stack of active components,

such as electrochromic devices, to modulate the opacity/transparency by an applied

voltage. Here, we describe the processing and performance of two classes of visibly-

transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully or-

ganic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were

used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS),

and p-i-n heterojunction devices, and their photovoltaic conversion under ultravio-

let (UV) illumination was evaluated with and without oxygen plasma-treated surface

electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against

the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011

eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive

behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R)

and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Con-

firmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag

and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized

with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of re-

combination at the metal/semiconductor interface and blocking of majority carriers.

For interdigitated devices under monochromatic UV-C illumination, the open-circuit

voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier

tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-

heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-

C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole

transport layers, i.e., LiF with Al contact and conducting/non-conducting (nc) PE-
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DOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side),

respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET

stack exhibited the highest performance: power conversion efficiency (PCE)≈ 3%, V oc

= 0.9V, and Jsc ≈ 10-15 mA/cm2 . These stacks exhibited high visible range trans-

parency, and provided the requisite power for a switchable electrochromic stack having

an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic

acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic

stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS sub-

strates) exhibited optical switching under external bias from the PV stack (or an

electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 opti-

cal modulation at λ=525 nm. The devices were paired using an Internet of Things

controller that enabled wireless switching.
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Chapter 1

INTRODUCTION

1.1 Motivation

1.1.1 Energy Challenges

The United States Department of Energy (DOE) has served as the guide and

motivator for standardizing public knowledge of both energy conservation and sur-

veying new sources for energy. In fact, the DOE maintains a national residential

efficiency measures database that accumulates portions of the households that most

prone to radiant and insulating heat. As recently as 2018, the Energy Information

Administration (EIA), a subset of the DOE, estimated that heating and cooling cate-

gories represented a majority of the non-pooled studied energy consumption (listed as

’other’). It is estimated that 20-50% of heat absorption occurs from sunlight radiation

through windows (US Department of Energy, 2018), however, more specifically, it is

projected that removing cooling loads from windows totals about 5 quadrillion BTUs

and 3 quadrillion BTUs for residential and commercial (EIA, 2017), respectively, and

this accounted for over 15% of total energy consumption in the U.S (EIA, 2017; Wong

and Chan, 2013; DeForest et al., 2015; Piccolo and Simone, 2015). Additionally, en-

ergy consumption normalized to building sizes indicated that cooling accounted for

the highest majority at 25,000 BTUs per square foot (EIA, 2017). In 2001, it was

estimated that 1.5 quadrillion BTUs per year amounted to costs of almost $15 billion

(Deb et al., 2001). A staggering 2 billion square meters of flat glass is produced world-

wide each year (Deb et al., 2001) for the purposes of both residential and commercial

windows, and while a small fraction of these windows encompass energy-saving de-
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sign features (such as low-emissivity coating, argon filling, and vacuum insulation),

these solutions still ultimately render the window passive. Such large areas have

massive potential for power generation and integration of self-powered electronics,

sensors, and displays while retaining nearly identical optical properties. Considering

the following: a 1 kW PV device can remove heat at approximately 3 kW from a

building envelope during cooling, whereas the same device can be used to drive smart

windows, averting an estimated electrical consumption rate of 110 kW; resulting in

enormous energy savings (US Department of Energy, 2018; Deb et al., 2001). With

these metrics in mind, smart windows have sensibly received much attention over the

years for their potential to be a completely transformative force in reducing energy

consumption.

Electrochromism is a technique that has been been explored by many commer-

cial interests and academic reports. Transparent surfaces like windows are able to

transition between opaque and translucent states through an external potential. By

blocking radiant heat from sunlight, households or other buildings can be insulated

properly to reduce cooling loads, with a mechanism that fundamentally uses less

power. Smart windows based on electrochromic mechanisms allow for the variation

of transmittance through electrical current, and while the energy required to power

and maintain a smart window is only 1/15 the power consumed of a standard night-

light (Bailey-Salzman et al., 2006; Baxter and Aydil, 2005), smart windows account

for an even smaller fraction of total windows manufactured worldwide. Part of the

small demand is attributed to the fact that the product still represents an extremely

niche interest.

The use of an external power source to operate each window ultimately reduces

the freedom of architectural designers, having to accommodate for this requirement.

However, a solution to this problem arrives from the attachment of a solar cell to the
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Figure 1.1: Visualization of household heat reflection and wearable applications of
this work

smart glass, truly allowing for “off-the-grid” use. While the cell may not ultimately

power a smart window, the amount of solar energy that drives it may be used to

power a variety of other devices. At AM 1.5G, a power density (Pd) of 100 W/cm2

will be available. As a conservative estimate, for energy conversion efficiency (η) of

only 1%, a 1 meter by 1 meter window will potentially generate the following power

density:

Pd(1meter×1meter) = Pd × η (1.1)

100 W

cm2 × 1% = 1 W

cm2 = 10, 000W
m2 (1.2)

i.e., a 1 m2 window (which is still a relatively small area) can generate 10,000 W/m2.

As previously mentioned, since billions of square meters of glass for windows are

manufactured worldwide, the potential payoffs for the incorporation of this smart

technology are significant. Conventional (monocrystalline Si-based) solar cells on

windows suffer mainly from aesthetic drawbacks—their cold, bulky feel may be one
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issue, but the fact that they ultimately undermine the very purpose of a window

(to see what is outside) is a more pressing issue. Thus, regardless of whether the

solar cell is used to power a smart window or simply harvest energy, the cell must be

relatively transparent, so as to retain the optical properties of a lucid window. Reports

of optically transparent or semi-transparent Si-based photovoltaics have run into a

problem of overall size reduction to less than 100 nm and 60 nm (Bailey-Salzman et al.,

2006; Baxter and Aydil, 2005); both indicate that this reduced thickness contributes

to electrical shorts from the top contact with the PV, making the fabrication of large

area devices extremely difficult.

The U.S. government has already invested considerable resources on “smart” win-

dows, i.e., windows in which light transmission properties can be controlled by an

external stimulus. Previous works have comprised a wide range of technologies to

meet these needs, including electrochromic systems (Qi and Peterson, 2001) and even

phase change glass materials that respond to heat pulses (Lee, 2006). However, these

techniques require power to generate the desired effect; thus the need for a completely

self-powered smart-window system becomes more evident, appealing, and urgent. A

US company in 2006, NTERA Inc., created electrochromic dislayes based on TiO2

nanoparticles coated with bis(2-phosphonoethyl)-4,4’-bipyridinium dichloride (Moller

et al., 2010). The company was able to achieve a high contrast ratio and fast switching

time through the integration of white pigments from ZnO nanoparticles and optically

active organic violgen. (Corr et al., 2003). In 2007, Swedish company ACREO ITC

fabricated flexible electrochromic displays using printed PEDOT:PSS and reported

extremely fast switching times (Andersson et al., 2007; Mannerbro et al., 2008; Said

et al., 2009; Kawahara et al., 2013). Another US company, Aveso Inc. (later acquired

in 2011 by French Company Gemalto), produced embedded electrochromics for their

“smart card” technology, that would randomly generate passkeys on a seven segment
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Figure 1.2: Electrochromic and smart windows products from (a) NTERA Inc.
(Ganapati, 2010), (b) Aveso Inc. (IDTechEx, 2005), (c) Sage Windows (Spivak, 2016),
and (d) View Inc. (Koerner, 2014)

display which they donned the One Time Password (OTP) technology. Based on or-

ganic pH indicators such as bromoscrescol purple, the technology created withstood

operating times of up to 5 years (Babinec et al., 2004). In terms of active building

integrated electrochromics for glass, a US companies, Sage Windows and View Inc.

released an electrochromic window panel which claims moderately fast switching time

but at the expense of large power usage. Most recently, both of their flagship products

have included Internet of Things (IoT) remote controlling to adjust daytime opacity.

1.1.2 Flexible Electronics

A field of major interest in recent years has been the fabrication of integrated

circuits, not onto conventional substrates such as silicon (Si), but rather onto flexible,

transparent, and even stretchable substrates. Indeed, tremendous progress has been

made in flexible and transparent electronics in the last few years, as demonstrated
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by the emergence of exciting flexible displays, e-papers, radio frequency identification

card (RFID) etc. This has been feasible due to light weight, compact form factor,

conformable, low cost, shock-resistance and potential versatility of multifunctionality.

Beyond just information display, integrated multifunctionality on flexible substrates

will certainly drive this field much further. UV resistant films and polymers used to

block harmful radiation from entering buildings have been heavily commercialized.

By itself, the material is simply a passive element, but possesses the capability of

integrating many more features including complex transparent circuitry and photo-

voltaics. The flexible nature of the device also allows it to be attached to a variety of

complex surfaces for smart window applications and energy harvesting. Conventional

approaches for energy harvesting window production concentrate fabrication on rigid

Si substrates, a material that is already so brittle that with additional thickness mildly

adverse weather conditions may erode these devices if no external encampsulation is

in use. Thus, the need for a flexible, mechanically resilient solar cell becomes more

imperative. Flexible PVs with the required material characteristics certainly further

the freedom of architectural designers. The inclusion of a self-powered stand-alone

smart window or solar cell becomes a post-design thought of retrofitting, rather than

a burden at the outset. Additionally, the mechanically flexible nature of the device

substrate allows for contouring to complex surfaces such as curved windows or even

soft fabrics such as a camping tent. Finally, the growth and popularity of Internet of

things (IoT) enabled devices has unified the ability to remotely control the switch-

ing characteristics of devices (Xia et al., 2012). IoT controllers will be integrated

allowing for more robust control use-cases and greater consumer-level interest in such

an integrated design. Realizing its importance in the consumer marketplace, the

aforementioned Sage Inc. and View Inc. offer IoT functionality directly onto their

electrochromic windows. The economic viability of flexible electronics is enhanced
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Figure 1.3: Flexible ZnO single-nanowire photodetectors

by the advent of fabrication techniques such as printing (Fan et al., 2009). Various

techniques such as contact printing or direct printing have allowed for large-scale in-

tegration of single-crystal inorganic NWs to be directly placed in specific locations.

These methodologies of collecting such NWs into aggregates of well-ordered arrays

have enabled the ability to mass-produce cohesive NW devices in a roll-to-roll fash-

ion; a fabrication process that has the promise of being one of the most cost-effective

ways to create a large volume of NW devices on a sheet of flexible substrate. Thus,

the challenge to achieving self-powered flexible smart windows lie in fabrication of

the reliable and reproducible photovoltaic devices for harvesting solar energy and

electrochromic devices for shading sunlight. These devices must also demonstrate

robustness (especially when subject to mechanical strain from bending), as well as

large-scale, cost effective integration for potential commercialization.

7



1.2 Fundamentals

1.2.1 Metal-Semiconductor-Based Thin Film (Second Generation) Photovoltaics

Since A.E. Becquerel’s discovery of electrical current generation from incident

sunlight, Bell Labs’ production of the first commercial solar cell in the 50s, and the

energy crisis of the 70s, interest in photovoltaic technology had been sparse, and had

largely been dominated by monocrystalline Si. Emerging thin film solar cells from the

90s and early 2000s sought to address the problems with crystalline Si, including high

materials costs, as well as processing energy and costs. Materials for thin film-based

cells have included amorphous silicon, CdTe, CIGS, of which introduced much lower

processing temperatures and cost. Within this category, Schottky barrier (or surface

barrier) solar cells have too been measured with cell performances comparable to

homojunction or heterojunction cells. Within the enormously prolific field of silicon

photovoltaics, even as early as the 70s, silicon based Schottky solar cells were reported

to operate just as well as PN junction counterparts in terms of typical performance

characteristics (Jsc, Voc, and power conversion efficiencies) in both simulation and

experimental studies (Fonash, 2010). Surface barrier photovoltaics can have promised

even less processing steps and therefore less cost. Additionally, for materials in which

dissimilar doping is exceptionally difficult (for example, ZnO), it is advantageous to

implement Schottky-based solar cells.

Under equilibrium Schottky barrier-based solar cells can be characterized as as the

diffusion of photogenerated minority carriers to a narrow surface or Schottky barrier.

The difference between energy levels from differences in density of states create an

electrostatic field and break symetry along the semiconductor surface inducing band

bending, as shown in Figure 1.4(a). An insulator layer is introduced between the metal

and absorber in order to serve as an electron blocking layer for self-recombination near
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Figure 1.4: Band diagram of MIS Schottky Photovoltaic Diode in (a) equilibrium
and (b) under illumination

the semiconductor surface. Under illumination, electrons are injected by thermionic

emission into the metal layer, as illustrated in Figure 1.4(b).

1.2.2 Organic (Third Generation) Photovoltaics

Despite its promises for better or equal performance at low cost, interest in thin-

film cells has been short-lived due to extremely slow development-leaving another

category of solar cells to emerge, organics. In addition to the low cost of thin films,

organic materials brought about even lower costs, thinner films, and even lower tem-

peratures. Organic based solar cells have also exploded to an infinite variations of

materials, material compositions, layer stacking, architecture, and even substrate in-

dependence, despite its poor stability. However, the combination of performance and

production costs of previous generation solar cells are not scalable to the gigawatt

or even terawatt scale, which has led many researchers to explore organic cells with

great depth.
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Figure 1.5: Comparison of power conversion efficient of dominant photovoltaic tech-
nology with organic solutions circled (NREL, 2018)

Organic based photovoltaic technologies have shown great promise and an even

steeper learning curve over the last few years (Dong et al., 2012; Khalil et al., 2016)

with power conversion efficiencies of 13.2% and lifetimes of over 5000 hours unencap-

sulated. Figure 1.5 presents a timeline of power conversion efficiencies for dominant

photovoltaic technologies (Note: organic and perovskite typologies, indicating fastest

rate or improvement, are circled). Organic polymers such as P3HT and PCDTBT

mixed with fullerenes such as PC60BM for power harvesting have met incredible

advances that allow for stand-alone atmospheric processing capabilities on tabletop

inkjet printers, ultrasonic spray stations, sheet-to-sheet slot-die coater, roll-to-roll

deposition with microgravure printing and slot-die coating, and laser scribing to en-

able monolithic interconnection and edge delete (Das et al., 2014; Das and Alford,

2015; Das et al., 2015; Steirer et al., 2011; Ratcliff et al., 2013, 2012). NREL has re-

cently sponsored the SolarWindow CRADA whose aim is to “transparent electricity-
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generating OPV film for glass and flexible plastics...low-capex, high-throughput man-

ufacturing; and they generate electricity in sunlight and artificial, diffused, reflected,

shaded, and low-light condition” (NREL, 2016).

The active absorbers in organic-based solar cells are shown in Figure 1.6 and can

be characterized as a mixture of donor materials, conjugated thiophene monomers

(represented with an S) with side chain esthers or alkyles (represented with an R),

which produce π-electrons that can diffuse accross the entire polymer. Acceptor

materials are composed of fullerenes that begin as C60 and undergo a series of reflux

distillations with multiadducts to transform into PC60BM, that allows solubility in

typical solvents like o-dicholorobenzene or o-xylene. The acceptor and donor are

allowed to dissolve within one another and form a bulk heterojunction. The typical

device structure involves this bulk heterojunction sandwiched by a hole transport

layer (such as PEDOT:PSS, or MoOx) and an electron transport layer (LiF or ZnO)

which facilitates the extraction of exitonic charges, that have been generated and

allowed to seperate under illumination. Top electrodes that contact the electron

transport layer tend to be annodic (such as Al) and bottom electrode that addresses

the hole transport layer tend to be cathodic (such as ITO). The bulk heterojunction

is composed of microdomains of acceptors and donors, and the regularity of these

domains is small enough to allow the hopping and transport of charges from generated

excitons across the domains and to the contact so that they can be collected and

converted to usable work (Krebs, 2008). This hopping process is highlighted in the

band diagram of Figure 1.7(b).

1.2.3 Electrochromism

Electrochromism is a phenomenon in which ions insert or extract from a material,

driven by an external potential, and results in a change in color or transparency.
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Figure 1.6: Chemical structures of (a) donor and (b) acceptor materials for organic
photovoltaics

WO3 has been among the most explored materials in this category because of its

extremely stable switching and coloration mechanics with alkali ions such as Li+. The

device works on the same principle as an electrochemical cell, in which two electrodes

are submerged in an electrolyte containing cations, shown below in Figure 1.8. As

an external potential is produced between the annode and cathode, a reduction-

oxidation reaction takes place leading to the movement and insertion/extraction of

Li+ ions, thereby causing coloration/bleaching (Figure 1.8 left/right). The underlying

mechanism describing both coloration and bleaching can be expressed as:

WOx + y(Li+ + e+)→ LiyWOx (1.3)

LiyWOx − y(Li+ + e+)→ WOx (1.4)

The above reactions indicate a reversible switching of states through an external

potential forming tungsten bronze, where y refers to the number of insertion sites.

Electrochromic films are typically deposited on a conductive transparent substrate

such as glass or a polyester like polyethylene terephthalate (PET) coated with ITO.

The film is then cast with an electrolyte which serves to contain Li+ ions and acts as
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Figure 1.7: (a) Device structure and visualization of excitonic generation in bulk
heterojunction. (b) Band diagram of bulk heterojunction solar cell.

an electronic insulator. Electrolytes can either be liquid or solid-state based on the

molecular weight of the constituents. This device is then sandwiched atop another

transparent electrode. The performance of electrochromic action depends on the

electronic and ionic dynamics of the system. A combination of a highly electronically

conductive materials with several active insertion sites, as well as a highly ionically

conductive electrolyte ensures both fast switching times and high dynamic contrast

between colored and bleach states.

1.3 Literature Review

1.3.1 Inkjet Printed Electrochromics

Inkjet printing is a technique that expels picoliter droplets of low-viscocity inks

from the nozzle of the print head onto a two-dimensional plane. Inkjet printing is a
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Figure 1.8: Electrochemical reaction of WOx based electrochromic devices for re-
duction (left) and oxidation (right) reactions

attractive fabrication technique that encompasses additive patterned deposition pro-

cesses. Inkjet printing allows for the deposition and patterning on a robust array of

substrates, which can further be integrated with roll-to-roll industrial scale manufac-

turing (Angmo et al., 2013; Yu et al., 2012b). It allows for the rapid prototyping

of devices and and products while allowing researchers to focus on the chemistry

that constitutes them. Ink formulation is often a complicated process of optimiz-

ing viscosity, particle size, and surface tension such that the printed pattern does

not exhibit deformation, cracks, problems with adhesion, or problems with expelling

droplets. The choice of solvent is extremely critical for mixtures of printable parti-

cles because it keeps them in a bound liquid form before meeting the substrate as a

droplet and becomes allowed to dry. Solvent selection must be considered in terms of

its room temperature vapor pressure, such that premature evaporation on print heads

is avoided, and so that post-deposition, the solvent can be burned off or decomposed

completely. For this reason, volatile alcohols or short chain esters are preferred.

Inkjet printing has sparsely been applied to electrochromics. In 2009, NREL
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began work on formulating printing techniques for windows using inorganic mate-

rials (Verrengia, 2010). They created a window with Li infused NiO as a counter

electrode, and WO3 as a working electrode and had moderate switching time with

a 300 ◦C processing temperature. In 2012, Costa et al. printed Vanadium Oxide

gels (Costa et al., 2012a) and hydrated WO3 nanoparticles (Costa et al., 2012b) on

PET, in which they found a “dual spectroscopic response depending on the applied

voltage” which was attributed to the two crystalline states formed after hydration.

A dual-phase α-WO3/TiO2/WOx was explored in a combination of amorphous and

monoclinic WO3 allowed for higher optical contrast due to more insertion sites, but

also faster switching kinetics due to the crystalline phase. This effect was punctuated

with TiO2 (a cathodic material) NP loading reduced the transition potential needed

to induce coloration (Wojcik et al., 2012, 2014). In 2015, they tailored a variety of

WO3 nanostructures including hydrated orthohombic nanorods and nanowires, as well

as monoclinic nanosheets, and correlated their structure and morphology to conduc-

tivity, fluid control, processing temperature and overall electrochromic performance

(Wojcik et al., 2015; Santos et al., 2015). Reports of printed WO3 sols on sintered

Ag nanoparticles demonstrated a highly transparent substrate-independent realiza-

tion (Layani et al., 2014). In 2015, this work was continued with printing NiO and

WO3-based complementary electrodes and correlated performance with the number

of printed layers (Cai et al., 2015). Additionally, reports of an ink formulation that

involved printing metallo-supramolecular polymers based on Fe and Ru was devel-

oped and demonstrated a vast array of color-changing electrochromics (Chen et al.,

2015). In 2016, reports of successfully printed WO3-PEDOT:PSS based hybrid films

in which high electrical conductivity was found to lead to faster response times, along

with lowered redox potentials through the inclusion of PEDOT:PSS (Nguyen et al.,

2016).
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1.3.2 Stretchable Electrochromics

Most recently, attention has been placed on stretchable devices for textiles and

other wearables. Stretchability for electrochromics has been described as more chal-

lenging than achieving flexibility because the demand of a more mechanically robust

device structure that considers elasticity as well as flexure. A stretchable device is

expected to conform to non-planar surfaces without incurring performance degreda-

tion, along with being bent, twisted, and folded. This introduces further challenges

for ITO as an electrode, which is quite brittle, and provides a common ground to the

entire electrochromic film. Very few researchers have perused this idea, but the few re-

ported implementations have been enabled by percolating AgNW networks embedded

on stretchable substrates. In 2014, electrodeposited WO3 layers on AgNW/PDMS

substates, as well as embedding these substrates on textiles, and EC devices were

shown to still function post-mechanical deformation (Yan et al., 2014). In 2015, Ag-

NWs were embedded on nano-cellulose paper and WO3 was electrodeposited with

an H2SO4 electrolyte, and was optimized against resistivity and transparency (Kang

et al., 2015).

1.3.3 Solar-Powered Electrochromics

Self-powered EC devices represent an interesting design goal toward the devel-

opment of multifunctional and efficient smart windows. Self-powered electrochromic

devices fit within a subset of research interests that work toward pairing energy har-

vesting devices with electrochemical storage devices (Zhong et al., 2017). A smart

window adds additional design constraints such as high visible-range transparency

with a priority on optical modulation, transition time, and low power consumption.

As previously mentioned, a report by NREL estimated that 1 kW of PV power can
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remove approximately 3 kW of heat from a building envelope (Deb et al., 2001).

In the late 90s, electrochromic devices were too expensive to scale up (Bechinger

and Gregg, 1998), and similarly sized photovoltaic devices were not powerful enough.

As a result, the scientific literature was dominated with device design proposals than

actual realizations (Benson and Branz, 1995). Self-powered electrochromics have

come in design flavors of vertical integration in which the electrochromic device is

integrated directly on the device stack with the photovoltaic (largely dominated by

photoelectrochromic cells with dye-sensitized solar cells), and laterally configured de-

vices, in which the photovoltaic and electrochromic devices are seperate modules.

The aforementioned issues with development of smart windows is to retain visibility

functionality, which is why vertical integration has the problem of low optical mod-

ulation (Huang et al., 2012a,b), in addition to low bleached state transparency. The

integration of both systems in a lateral manner presents the most efficient genera-

tion of potential, and the most effective way of creating the most dynamic optical

modulation range. In 2013, Xie implemented such a design and it was the first to

integrate a double-pole double throw switch the reverse the external reaction poten-

tial (Xie et al., 2013). In 2014, Dyer et al. created a vertically integrated tandem

organic cells sandwiching an electrochromic device device, which was addressed with

internal PEDOT:PSS electrodes (Dyer et al., 2014). In 2016, another integration

of photo-electrochromic device was released, transitioning glass from green to blue,

with low optical modulation (Huang et al., 2016). Table 1.1 summarizes some experi-

mental processing conditions and materials for integrated self-powered electrochromic

devices.
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Figure 1.9: Categories and images of electrochromic devices reported in scientific
literature

1.4 Research Goals

1.4.1 Smart windows, smart textiles, and the future

Previous studies on smart windows have focused on the fabrication using rigid

substrate materials, use of flexible substrates opens new opportunities. Here we pro-

pose novel strategies to face the aforementioned challenges. A monolithic integration

of organic-based photovoltaic cells and nanomaterials for electrocrhromic layers will

be demonstrated using a flexible polymer as the substrate, to achieve self-powered

smart windows and wearable electrochromics. The characteristics of the hybrid cells,

such as transparency and switching time will also be determined. The final device

structure is illustrated in Figure 1.10.
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Device

Orientation

EC

Deposition

EC

Material

PV

Deposition

PV

Material

Controller

Circuit

Ref.

Vertical Drop-cast TMPD/

TBAB4

Sputter

Coat

α-Si None Huang

(2012)

Vertical Electro-

deposition

Prussian

Blue

Sputter

Coat

Si-TFSC None Huang

(2012)

Lateral Dip

Coated

WO3-

2·H2O

films

Screen

Printed

Si (DSSC) DPDT Xie

(2013)

Vertical Spray

Cast

ECP-

Magenta/

MCCP

Spin-Coat PDPP3T:

PCBM60

None Dyer

(2014)

Lateral Sputtering NiO/WO3 MOCVD InGaN/

GaN

MQW

None Kwon

(2015)

Vertical Spin Coat Polyaniline:

PSS

Sputter Si-TFSC None Huang

(2016)

Table 1.1: Comparison of implemented solar-powered electrochromic devices in sci-
entific literature

1.4.2 Objectives

Despite maintaining a sufficiently high visible range transparency for window in-

tegration, a highly transparent solar cell results in lower utilization of the solar spec-

trum. Additionally, the power delivered by the photovoltaic device must be sufficient

in order to instigate the reduction-oxidation reaction that initiates the electrochromic

optical transition. Thus, such an electrochromic device should maintain a sufficiently
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Figure 1.10: Final device structure (a) as a block system and (b) fully realized,
encompassing electrochromic and photovoltaic components demonstrating material
and system view of Self-powered IoT-enabled Electrochromic Device

low threshold voltage, while not sacrificing coloration and bleaching kinetics (transi-

tion time), as well as maintaining a sufficiently high optical density. When considered

as a complete system, the photovoltaic device should consume an area much smaller

than that of the electrochromic device.

With these design constraints in mind, integrating electrochromic devices with
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photovoltaic devices requires an interdisciplinary approach toward tackling such a

design objective (powering an electrochromic device with sunlight), while consid-

ering other design tradeoffs (switching time, optical modulation, power conversion

efficiency). The purpose of this work is to extend the body of knowledge as related

to stretchable, inkjet printed, self-powered, electrochromic devices, of which only few

implementations have been reported. This work shall provide new solutions, exper-

tise, and insights into the design considerations and restrictions that come about

when integrating both technologies. It is the aim for this research to create simple,

cost-effective, printable-based mixtures at lab-scale that would be compatible with

large-scale R2R processes.

This study aims to focus on:

• Low temperature processing techniques

• Uniform printed films

• Material performance stability

• Mechanical integrity under physical stress

• High optical contrast

• High power conversion efficiency

• High visible spectrum transparency

• Low-cost materials and inexpensive synthesis

1.4.3 Research Approach

The topic of applied nanosciences, especially when applied to functional flexible

devices requires an extraordinarily interdisciplinary approach. The methods described
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in this work require the application of more than classical chemistry lab practicals

and techniques, but also requires parsing and developing a deeper understanding of

the results through informatics, data analytics, and other tools of specialized engi-

neering backgrounds as well as academic bodies of knowledge. Figure 1.11 attempts

to visualize the core aspects of the experimental research workflow, while expounding

on the tools and techniques used in this work. The result of printed devices based on

nanomaterials comes about from motivations from environmental sciences as applied

to the built environment, materials science for understanding the properties of con-

stituent materials needed to realize the devices, as well as device physics needed to

model and predict their electrical behavior. This research, in addition to traditional

engineering and chemistry knowledge, required the skills of CAD design to simulate

circuit elements and to perform the necessary layout tasks required to realize them

with the selected materials. The post-characterization understanding of results has

come about from a quantitative approach, that is, translating and organizing obser-

vations to sets numerical values, such that statistical techniques and analysis can

be applied to the data. This allowed statistical inferential techniques and modeling

techniques to be applied in order to develop digestible understanding and insights

of the research explored in this work. A subset of hypotheses are presented below,

which illustrates the major scientific questions answered by this body of work.

• Chapter 2

– Hypothesis: The thickness of insulator layers for MIS Schottky devices pro-
duces linearly increasing Schottky barrier height for ZnO between Schottky
contacts.
∗ Observation 1 : Local maxima of Schottky Barrier height found across

all tested metal contacts, with the exception of Aluminum
· Experimental Design: I-V measurements with extracted Schottky

barrier height (numerical response) as a function of oxide layer
thickness (numerical), and contact metal (categorical).
· Fundamental Physical Interactions Uncovered: Local maxima of

Schottky barrier created by increased oxide barrier height. When
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Figure 1.11: Visualization of device fabrication workflow and research techniques
used in this dissertation 23



oxide thickness increases further, increased barrier width suppresses
conduction. In the case of aluminum, at lower thicknesses, Al pen-
etrates the oxide layer, bridging a conduction path to ZnO, which
forms an ohmic contact. Increased barrier width suppresses con-
duction.

∗ Observation 2 : Schottky Barrier height found to increase due to oxy-
gen plasma treatment
· Experimental Design: Schottky Barrier Height (numerical response)

before and after oxygen plasma (categorical, 2-sample matched
pair t-test), across two metal contacts (categorical), and two plasma
powers powers (categorical).
· Fundamental Physical Interactions Uncovered: Formation of Ag2O

and TiO2 which have larger Schottky Barrier Height than unoxi-
dized Ag and Ti. Passivation of ZnO and SiO2 surfaces reducing
tunneling.

∗ Observation 3 : Photovoltaic action correlated with large Schottky bar-
rier heights on ZnO thin films with low wavelength (UV) illumination
for Ti/Ag and Ag oxygenated contacts
· Experimental Design: IV measurements, PV performance param-

eters extracted (numerical response), as a function of contact ge-
ometry (categorical variable).
· Fundamental Physical Interactions Uncovered: Explanation: Sub-

band-edge illumination and large Schottky Barrier height through
Ag and Ti/Ag oxidation favor spontaneous band splitting neces-
sary for illuminated current.

• Appendix A

– Hypothesis: Using PEDOT:PSS as a Schottky contact, or applying a
Schottky contact to PEDOT:PSS will result in necessary solar power con-
version to operate electrochromic devices.

– Hypothesis: Current-Voltage Hysteresis behavior and transformations (Voc+/-
, Isc+/-, intersection, loop areas) for organic semiconductors are a function
of testing parameters (maximum voltage, illumination, voltage scan rate)
and processing parameters (device size, choice of PEDOT:PSS conductiv-
ity grade, substrate).
∗ Observation 1 : Intercepts (current or voltage axis crossings) found

to be a strong function of device size and illumination. Open circuit
voltage found to shift for Al, and expand for Au.
· Experimental Design: All processing and characterization condi-

tions tabulated, extracted intercept points with secant method.
Empirical model describing evolution of intercepts developed us-
ing Multiple Linear Regression (MLR).
· Fundamental Physical Interactions Uncovered: Further explored

the interaction between the Al/PEDOT:PSS interface and
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Au/PEDOT:PSS interface and traced respective movement of in-
tercept points. For short circuit current, an absolute increase of
current is found to correspond to increased device areas, which
was tied to the increase of absorbed light flux through each pro-
gressively larger device. In the case of Voc, the logrithmic ratio of
illuminated to saturated current determined the direction of Voc

shift, and because Au is less anodic than Al, open circuit voltage
was found to decrease.

∗ Observation 2 : Intersections between forward and reverse traces were
found to have a non-origin shift as a function of device size, for non-
conductive PEDOT:PSS on ITO substrates.
· Experimental Design: All processing and characterization condi-

tions tabulated, extracted intercept points with secant method.
Empirical model describing evolution of intersections developed
using Multiple Linear Regression (MLR).
· Fundamental Physical Interactions Uncovered: First quadrant in-

tersections which indicate further that a memcapacitance effect
via slow states in PEDOT:PSS.

∗ Observation 3 : Loop area increased as a function of device size and in
most cases increased device sizes.
· Experimental Design: All processing and characterization condi-

tions tabulated, extracted hysteresis loop areas with composite
Simpson’s 3/8th method. Empirical model describing evolution of
intersections developed using Multiple Linear Regression (MLR).
· Fundamental Physical Interactions Uncovered: Larger device sizes

and greater illumination increased the density of trapped carriers.
With Au/Si on conductive PEDOT:PSS, this case was an excep-
tion because a cathodic material of heavily doped Si increased the
conduction path through PEDOT:PSS, which increased the rate at
which the electrons can detrap, thereby suppressing the formation
of a hysteresis loop.

• Chapter 3

– Hypothesis: Low reaction potential electrochromics can be achieved with
TiO2 NP loading.
∗ Experimental Design: Mixture design of varying two types of WO3

nanoparticles and TiO2 nanoparticles were tested, switching charac-
teristics and optical modulation recorded and tabulated.
· Observation 1 : Coloration density and contrast trade off with

switching time and reaction potential, without the inclusion of
TiO2.
· Observation 2 : W-TiO2 led to greater optical modulation without

significant compromise in switching time and reaction potential
· Fundamental Physical Interactions Uncovered: W doped TiO2 in-

troduce more insertion and extraction sites for Li+ ions but due to
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the higher coordination numbers and high electronegativity, bond-
ing to O2 radicals. The 6 courdination in WO3 and 4 courdination
of TiO2 impedes electronic charge transfer, but will increase the
number of insertion sites.

– Hypothesis: PCDTBT thin films can be applied to stretchable surfaces
and can power electrochromic devices.
∗ Experimental Design: Devices were fabricated composed of conductive

and non-conductive PEDOT:PSS HTL and ITO/PET and
AgNW/PDMS substrates. Solar cell performance parameters extracted
from IV measurements and tabulated.
· Observation 1 : PCDTBT films exhibit larger power conversion

efficiency with NC PEDOT:PSS.
· Fundamental Physical Interactions Uncovered: The higher solid

content and acidity of non-codncutive PEDOT:PSS allow the de-
vice to supress losses from laterial conduction between contacts.
· Observation 2 : PCDTBT films on AgNW/PDMS exhibit smaller

power conversion efficiencies
· Fundamental Physical Interactions Uncovered: Nonuniform dis-

tribution of AgNWs leads to larger series resistance from non-
optimized conduction paths of percolation networks.

1.4.4 Merit

It is the intent of this work to describe the results of this Ph.D. research in a

form that is standard and easily understood from professionals in the wide society

of engineers. Systematic literature reviews and the parsing of experimental informa-

tion have been entered in databases, and have been used to translate a set of facts

into novel, actionable, and testable research work. This work uses the research and

information of authors who came before it, which have included journal periodicals,

conferences, and periodic reviews. The authors have made attempts to ensure that all

work is repeatable by future researchers. A set of underlying hypotheses, discoveries,

and scientific explanation is highlighted in each chapter, which further explains how

the research work conducted expands each field respectively. The intellectual merit

of this work lies in the interdisciplinary research approach, that has allowed for the

exploration of a singular design problem in the context of multiple material systems,
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Figure 1.12: Organization of photovoltaic material systems and nanomaterials ex-
plored in this work.

multiple goals, and multiple trade-offs that must be reconciled with one another. Each

study marks a series of intellectually rigorous stages including planning, executing,

and analyzing. Each process requires a certain dedication toward learning, due dili-

gence, discovery and confirming abstract expectations with evidence in the physical

world. Once again, the tools and techniques acquired acquired to contextualize the

torrent of information are detailed in 1.11.

The broader impact of this work is, in addition to the realization of smart windows

that are self-powered, the advances will open up numerous opportunities using self-

powered (solar) electrochromic devices. Furthermore, novel integration strategies

will bring innovation from concept-to-commercialization at an accelerated pace in

this rapidly growing field of organic and nanomaterial-based applications.

1.5 Organization of the dissertation

The organization of this thesis falls under the order in which the work was executed

and completed. Chapters 2 and Appendix A discuss the work of power generation

on ZnO thin films. Chapter 2 discusses ZnO based schottky devices and the pro-

cessing conditions that lead to larger schottky barrier height and power conversion
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efficiency. Appendix A characterizes, models, and discusses the hysteresis behavior

exhibited with the inclusion of an organic conductive polymer, PEDOT:PSS. Chap-

ter 3 discusses the organic and inorganic synthesis and fabrication of a self-powered

electrochromic device on stretchable substrates. The organization of this thesis is

combined upon the single learning tracks presented in Figure 1.12, which included

nanomaterial integration on flexible and stretchable substrates and transparent, high

open-circuit solar cell devices, which shows a culmination on both to the final imple-

mentation of a solar-powered smart window in Chapter 3.
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Chapter 2

ZNO-BASED SCHOTTKY AND OXIDE MULTILAYERS FOR

VISIBLE-TRANSPARENT PHOTOVOLTAIC DEVICES

2.1 Abstract

Zinc oxide (ZnO) films are suitable for low-power applications including smart-

window harvesters and electrochromic devices. Initially, the scanning electron mi-

croscopy (SEM) microstructure of sputtered ZnO (2% Mn) semiconductor thin films

and their spectral response of high transparency in the visible range were deter-

mined. Next, metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and

p-i-n heterojunction devices were fabricated, and their photovoltaic conversion under

ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated

surface electrodes. To achieve MS Schottky devices, noble and/or transition contact

metals (Au, Ag, and Ti/Ag) were deposited, with Al as a control (ohmic) case. The

Schottky parameters were fitted against the generalized Bardeen model, and density

of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and the neutral level (Eo ≈ -5.2 eV)

were estimated. These devices exhibited photoconductive behavior under UV illumi-

nation (λ=365 nm); note, low-noise, Ag-ZnO detectors exhibited the highest perfor-

mance, with responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and

6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization,

oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in an increase of the

Schottky barrier height, which maximized with a 2 nm SiO2 electron blocking layer

(EBL), coupled with the suppression of recombination at the metal/semiconductor

interface. Also, the blocking of majority carriers, and the unaffected short circuit cur-
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rent due to tunneling of minority carriers, resulted in an open-circuit voltage (Voc) of

1.2 V and short circuit current density (Jsc) of 0.68 mA/cm2 for interdigitated devices

under high energy, monochromatic UV-C illumination.

2.2 Introduction

Building-integrated photovoltaics (BIPV) have garnered immense attention for

research and commercialization since building facets, such as windows and skylights,

represent underutilized spaces for the incorporation of solar cells (Petter Jelle et al.,

2012). Due to its long development history following the microelectronics indus-

try, silicon technology has largely dominated this BIPV platform (Swanson, 2006).

Since the development of the earliest Si p-n junction solar cells, comparably perform-

ing metal-semiconductor (MS) Schottky (Charlson et al., 1972) and metal-insulator-

semiconductor (MIS) photovoltaic devices (Card, 1977; Thomas et al., 1980) have

also come under extensive scrutiny; for the former, open circuit voltage (Voc) and

power conversion efficiency are highly correlated with Schottky barrier height (Zhu

et al., 2012). Moreover, since Si and other narrow gap, inorganic semiconductors

are opaque in the visible range, varieties of functional challenges present themselves

for replacing passive transparent surfaces with “smart,” energy harvesting windows

(Mercaldo et al., 2009).

Wide-gap materials, such as zinc oxide (ZnO), have gained traction toward meet-

ing the aforementioned needs due to their visible-range transparency (Ozgur et al.,

2005). Additionally, analytical transport models have suggested that with large ab-

sorber bandgap energy, high open-circuit voltage (Voc) can be achieved (Bowden and

Honsberg, 2014). Certain models (after disregarding thermal, resistive, and optical

losses) have determined a theoretical limit of single-junction visibly transparent solar

cells composed of wide-gap materials (coupled with absorption in the near infra-red
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spectrum); predicted power conversion efficiencies (PCE) are as high as 21% (Lunt,

2012). Metal-semiconductors (MS) and metal-insulator-semiconductor (MIS) barriers

on ZnO have been a topic of vast exploration (Brillson and Lu, 2011), and further-

more, ZnO is an excellent absorber of ultraviolet (UV) radiation, as noted by the

realization of UV photodetectors (Soci et al., 2007; Yu et al., 2012a; Azhar et al.,

2018) and UV photocatalysts (Ullah and Dutta, 2008; Mahmood et al., 2011).

While photovoltage has been shown to vary with metal work function for bulk

ZnO (Li et al., 2009), achieving transparent photovoltaics has led to enormous efforts

in other oxide-based semiconductor absorbers (Rühle et al., 2012). In the context

of conventional solar cells, ZnO has typically been integrated as a thin-film “win-

dow” material; and nanostructured ZnO have been utilized for their light trapping

and light scattering properties (Hagiwara et al., 2001; Son et al., 2012). Weak pho-

tovoltaic conversion utilizing ZnO absorbers under ultraviolet illumination has also

been discussed in some reports (Nakano et al., 2008; Amiruddin and Kumar, 2016).

Most recently, interest in scavenging energy from UV radiation has become of great

interest for structural and vehicular window integration, and have largely focused

on absorber-tuned polymer-based solar cells composed of ZnO-C60 core-shell quan-

tum dots (Son et al., 2011), fluorophore-doped dye-sensitized solar cells (Lin et al.,

2015), and PTB7:PCBM (Liu et al., 2013; Lim Dong Chan et al., 2017). While

purely inorganic material-based devices are considerably less reported, interests have

arisen from p-GaN/MgO/n-ZnO layers exhibiting 0.46% PCE (Yang et al., 2016b)

to ZnO/NiO/Ag layers demonstrating PCE as high as 6% (Patel et al., 2017), un-

der ultraviolet illumination. Although the terrestrial energy content of UV radiation

is fundamentally small, power conversion through limited absorption may supply

enough energy for applications that require a relatively low operating point, such as

electrochromic windows (Davy et al., 2017).
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In this study, the microstructral, optical, and electronic properties of sputtered

ZnO thin films in varying device configurations (MS, MIS, and p-i-n heterojunction)

were analyzed. The electrical response as a function of Schottky barrier height, varied

by metal-semiconductor work function differences, was used to estimate the density

of interface states (Dit) and the surface neutral level (Eo). To address this, the effect of

SiO2 electron blocking layer (EBL) thickness toward suppressing metal/semiconductor

interface recombination was examined. In addition, post-metallization oxygen plasma

treatment was carried out to maximize the effective barrier potential experienced by

carriers. Finally, the photovoltaic and photodetection performance for assorted elec-

trode patterning of Ag2O and Tix/Ag2O electrodes, differentiated by illumination

energy, are reported. A brief discussion of the limitations in forming a robust model

in completely describing transport phenomena in the specified oxide multilayers is

also presented.

2.3 Experimental Details

Glass microslides coated with indium tin oxide (ITO, Delta Technologies, CG-

61IN) were submerged in Piranha (70% sulfuric acid, 30% hydrogen peroxide) for 10

minutes to remove organic contaminants. Varying thicknesses of ZnO (2% Mn) were

deposited via RF magnetron sputtering (Lesker PVD 250) at 400 W in 1 × 10−6

Torr O2 ambient. Surface microstructure of ZnO films was characterized with Field

Emission Scannning Electron Microscopy (FESEM, Hitachi S4700-II), operating at 15

kV excitation. Visible light transmittance was measured with a halogen broad band

white light source (Princeton Instruments TS-425) and concave grating spectrom-

eter (StellarNet BLACK-Comet). Fourier transform infrared spectroscopy (FTIR,

Nicolet 800) system was used to characterize transmittance in the wavenumber range

from 400 to 4000 cm−1 using a potassium bromide (KBr) beam splitter. In order to
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passivate the ZnO surface, all samples subsequently received oxygen plasma (Tegal

PlasmaLine Asher) treatment of 250 W for 15 minutes. A Plasma Enhanced Chem-

ical Vapor Depositor (PECVD, Oxford 100) was used to coat the ZnO surface with

thin (2 nm and 5 nm) SiO2 electron blocking layers (EBL). Surface electrodes includ-

ing Al, Au, Ag and Ti/Ag (250 nm each, 5 nm/245 nm Ti/Ag) were deposited atop

the coated and uncoated ZnO films via electron beam evaporation (CHA SE-600).

Device structures analyzed included adjacent circular patterns of varying diameters

(300-700 µm diameter) in order to control for device area in barrier height determi-

nation with current-voltage (I-V) measurements (Keithly 4200). After metallization

and initially-illuminated electrical characterization, a second oxygen plasma treat-

ment was undertaken on four blocks of Ag and Ti/Ag device test groups (without

EBL) at 50 W for 5 minutes and at 250 W for 5 min; the contacts visibly dark-

ened from reflective to completely opaque, indicating the formation of Ag2O (Bock

et al., 2004). These devices were subsequently re-measured, and the increased Schot-

tky barrier heights were inferentially evaluated as matched pairs. Additionally, an

interdigitated grid (0.5 cm × 1 cm, 1 µm pitch) shown in Fig. 2.1(b), was photolitho-

graphically patterned on ZnO thin film devices for photovoltaic measurement under

monochromatic UV-A (365 nm) and UV-C (254 nm) illumination (UVP EL Series).

A final schematic of the device fabrication workflow is illustrated in Fig. 2.1(a), high-

lighting the primary experimental design parameters. Post-processing of data, which

included data transformation, parameter extraction, analysis, and visualization were

performed in R language with the ggplot2 library.
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Figure 2.1: (a) Schematic of device fabrication procedure. (b) Image of final de-
vice structure with grid pattern (inset: optical microscope image of device). (c)
Equilibrium energy band diagram of high interface state density Schottky-Bardeen
device configuration with estimated surface neutral level. (d) Energy band diagram
of final p-i-n heterojunction device with Ag2O contacts illustrating majority carrier
blocking, minority carrier tunneling transport mechanism under forward bias and UV
illumination (Note: energy levels and band offsets not to scale).

2.4 Results and Discussion

2.4.1 Optical and Microstructural Properties

The visible-range spectral transmittance of ZnO films are illustrated in Fig. 2.2(a).

As previously reported for ZnO and other wide-gap semiconductors, the transmittance
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Figure 2.2: (a) Visible range transmission spectra of ZnO thin films. Increased
film thickness results larger frequency periodic signature with local minima and max-
ima corresponding to constructive and destructive integer-factor wavelengths (inset:
Scanning electron micrograph of sputtered ZnO) (b) FTIR (mid-IR) spectra of ZnO
and ZnO (2% Mn) films (red and teal trace respectively).

in the visible spectrum is found to be high, with a slight attenuation for increased

film thickness due to larger penetration depth (Song et al., 2002). While a small

component of the signal is lost due to reflectance, the transmission profile at and

above 370 nm indicate excellent absorption in the UV range, the onset of which begins

at the band edge of ZnO. Increased film thickness also results in a pronounced higher

frequency periodic interference signature stemming from path differences of integer-

factor wavelengths, with local minima and maxima corresponding to destructive and

constructive interference, respectively. An empirical dispersion relationship for ZnO

(Bond, 1965) is expressed in (C.1), and the thickness is extrapolated from interference

fringes (Tuzemen et al., 2009) from (C.2). The thicknesses are confirmed as 504 ±

15.6 nm, 1039 ± 28.5 nm, and 2503.1 ± 37.8 nm, respectively.

n2 = 2.81418 + 0.87968λ2

λ2 − 0.30422 0.00711λ2 (2.1)
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t = λ1λ2

2[n(λ1)× λ2 − n(λ2)× λ1] (2.2)

The surface microstructure of the ZnO films is shown in the scanning electron micro-

graph inset of Fig. 2.2(a) and the presence of grains typical of sputtered ZnO thin

films are observed. These columnar, grains on the film surface have been attributed

to the high power of Zn2+ and O2− ions, from the sputtering process, irregularly ad-

justing their bond length and settling in various bond directions, promoting periodic

segregated nucleation, and forming as distinct grains (Yu et al., 2005).

The vibrational bands in the IR range for pristine ZnO films and Mn (2%)-doped

ZnO films are shown in Fig. 2.2(b). The peak at 545 cm−1 in both spectra has

been attributed to the stretching mode of ZnO, but the shift of the secondary peak

at approximately 538 cm−1 in Mn-doped ZnO indicates a perturbation in the Zn-O-

Zn network from the incorporation of Mn (Hao et al., 2012). Previous studies for

photocatalytic applications have linked the increased visible range absorption to the

relative concentration of Mn2+ as a substitutional dopant for Zn2+. This has been

attributed to the electron transitions from the sp-d exchange interactions between

the Mn2+ ions and photogenerated carriers in ZnO (Lu et al., 2012).

2.4.2 Electrical and Optoelectronic Properties

The current-voltage characteristics of two-terminal, metal-semiconductor (MS)

Schottky devices are shown in Fig. 2.3. The choice of contact metal determines con-

ductivity, as well as rectifying or ohmic behavior. As illustrated in Fig. 2.3(b), ohmic

conductivity is exhibited for Al, whereas Ag, Au, and Ti/Ag exhibit asymmetry across

the origin. Applying the thermionic emission model, expressed in (C.4), with the ZnO

Richardson constant A∗ taken as 32 A
cm2K2 ), to measured current-voltage responses

without illumination, a series of Schottky Barrier heights and ideality factors (2.4)
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Figure 2.3: Current Voltage response of ZnO films in dark (black) and under UV
illumination (red) with (a) Au, (b) Al (nA response), (c) Ag, and (d) Ti/Ag Shottky
contacts. Insets for each electrode: (1) median extracted Schottky barrier height along
with median ideality factor and (2) photodetection performance and noise parameters.

were extracted for each test electrode, and are appended to each plot in Fig. 2.3.

φB = kT

q
ln(A

∗T 2

Jo
) (2.3)

n = q

kT

dV

d(ln(J)) (2.4)

The results of pre-plasma treated barrier height extractions are consistent with

previous studies on treated and untreated Zn or O polar faces, which have indicated

Schottky barrier heights in the range of 0.6 eV - 0.8 eV (Ozgur et al., 2005) despite

measureable metal-semiconductor workfunction differences. This behavior has been

attributed to the dominance of Fermi level pinning by a high density of interface
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Material Structure (Synthesis/Deposition Technique) Dit (eV−1cm−2)

ZnO:Al Thin Film (sputtered) (Oh et al., 2006) 1.66 × 1010 - 4.46 × 1011

SiO2/ZnO Thin Film (sputtered) (Nandi et al., 2003) 6.84 × 1011 - 8.52 × 1011

ZnO Thin Film (hydrothermal/sol-gel) (Yakuphanoglu,

2011)

1.38 × 108

Au/ZnO Nanorod (hydrothermal) (Hussain et al., 2012) 1.9 × 108

ZnO Thin Film (electrodeposition) (Aydogan et al., 2009) 17.3 × 1013

ZnO Nanorod (hydrothermal) (Faraz et al., 2012) 7.98 × 1010 - 3.74 × 1011

ZnO:Mn Thin Film (sputtered, this work) 8.0 × 1011

Table 2.1: Comparison of interface state densities as reported for ZnO material
systems

states (Dit) due to point defects over metal induced gap states (Allen and Durbin,

2008). To describe the interface transport behavior of measured ZnO thin film de-

vices, a modified set of linear systems based on Cowley and Sze’s generalized case of

the Bardeen model (Cowley and Sze, 1965), expressed in (2.5), was evaluated with

extrapolated parameters and known quantities (note: this model is only applied to

analysis of metal-semiconductor devices, i.e. without EBL). Modeled in Fig. 2.1(c),

the neutral level (Eo) is estimated to be approximately -5.2 eV, and the interface state

density (Dit) is approximately 8.0 × 1011 ev−1cm−2, which is in agreement with re-

ports of interface state determinations for ZnO with deep-level transient spectroscopy

(DLTS), summarized in Table 2.1.

φBn(Ag)

φBn(Au)

 = 1
1 + qDit{δ}

εrεo

(

φm(Ag)

φm(Au)

− χ) + (1− 1
1 + qDit{δ}

εrεo

)(Eg − (Eo − Ev)) (2.5)

Previous reports investigating Ti/Au, Ti/Al, and Ti/Pt with alloying post-anneal

(Brillson and Lu, 2011) have demonstrated ohmic behavior. Brillson had noted that
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Ti and Al react strongly with chalcogenides, forming alloyed n-type barriers with gen-

erally ohmic behavior exhibited, and that analysis was later extended to oxide-based

systems (Brillson, 1982; Brillson and Lu, 2011). However, in this work, Ti/Ag ex-

hibits rectification, which suggests that thermionic emission dominates. Considering

the 5 nm thickness of Ti (as compared to that of the 1 µm ZnO thin film), Ti spon-

taneously forms into a kinetically-limited semiconducting TiOx layer, due to its high

negative formation energy, by scavenging oxygen from ZnO (Dey et al., 1995). The

net effect is a metal-semiconductor interface between Ag and TiOx, thereby increas-

ing the measured barrier potential, especially evident in post-metallization oxygen

plasma treated layers.

Devices in the metal-semiconductor configuration did not exhibit photovoltaic be-

havior under UV-A (λ=365 nm) illumination, however, a photoconductive effect was

observed. The spectral responsivity (Rλ) and photoconductive gain (G), key metrics

distinguishing photodetector systems, are defined according to relationships expressed

in previous reports (Yu et al., 2012a; Azhar et al., 2018). Studies of ZnO-based UV

detectors have attributed its photoconductive behavior to the desorption and ab-

sorption of O2 on the surface of ZnO, creating surface band bending with reduced

depletion width, which allows photogenerated carriers to be separated by an electric

field (Liang et al., 2001). Detector noise characteristics, including noise-equivalent

power (NEP) and detectivity (D∗) (Sze and Ng, 2006; Yu et al., 2012a; Azhar et al.,

2018), were also evaluated in order to distinguish the sensitivity of ZnO thin-film

devices before any post-metallization plasma treatment or pre-metallization EBL de-

position. Along with detector performance metrics, detector noise characteristics,

differentiated by surface electrode, are appended with each plot in Fig. 2.3.

Rλ = ∆I
PA

(2.6)
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G =
(∆I
e

)
/

(
P

hν

)
(2.7)

Noteworthy deviations in performance and noise metrics were exhibited with Al

electrodes, in which three orders of magnitude reduction in G (1.05×10−7) is found as

compared to that of Au (3.52×10−4), Ag (6.57×10−4), and Ti/Ag (3.05×10−4). The

same general trend is exhibited with noise parameters, indicating decreased spectral

sensitivity in the case of Al. Reports on ohmic behavior for non-alloyed Al have been

discussed by Kim et al., namely the formation of an interfacial Al2O3 that creates

an accumulation of oxygen vacancies behaving as donors, thereby leading to field

emission transport (Han-Ki Kim et al., 2003). The heavily doped region, formed

by Al penetrating ZnO, diminishes the effect of surface band-bending from oxygen

desporption (Feng, 2012), reducing the observed Rλ and G. With high electron con-

centration in the heavily doped region, along with trap levels present as intrinsic

defects in ZnO, a reduction of recombination rate and increased electron accumula-

tion has been described among reports of time-resolved photoresponse measurements

of Al:ZnO photodiodes (Amiruddin and Kumar, 2016). This reduction in photocon-

ductivity is accompanied by thermal agitation of charge carriers (Hsu et al., 2004),

which is linked to thermal noise, and may explain the significant increase in NEP for

Al contacts.

NEP = (1/Rλ)(2qId + 4kT/Rv)1/2 (2.8)

D∗ = (Af)1/2/NEP (2.9)

The results of the matched pair analysis of Ag and Ti/Ag electrodes is presented in

Table 2.2, which tabulates electrode type, oxygen plasma power, number of samples,
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95% confidence interval of the barrier height difference (Note: intervals that do not

overlap 0 indicates rejection of the null hypothesis), t-statistic and associated p-value.

Electrode Plasma Power (W) df Confidence Interval (eV) t p-value

Ag 50 11 [0.037, 0.111] 4.41 1.052 ×10−3

Ag 250 8 [0.189, 0.214] 37.06 3.083 ×10−10

Ti/Ag 50 9 [0.093, 0.152] 9.51 5.409 ×10−6

Ti/Ag 250 11 [0.084, 0.151] 7.69 9.521 ×10−6

Table 2.2: Matched Pair two-sample t-test analysis of difference in extracted Schot-
tky Barrier Height before and after oxygen plasma treatment

The effect of oxygen plasma post-metallization was explored in the case of Ag and

Ti/Ag electrodes, and the treatment quite clearly leads to the formation of Ag2O and

TiOx/Ag2O. The barrier heights were extracted before and after treatment and were

analyzed as two-sample matched pairs. The null and alternative hypothesis, along

with associated probability of a type-I error (p-value) are presented in Fig. 2.4(b) for

each combination of Ag and Ti/Ag electrodes, along with plasma treatment power.

The results confirm that the barrier energy, in all cases, exhibited a statistically sig-

nificant increase as a direct result of oxygen plasma treatment. Other studies of Ag2O

contacts on ZnO have also found a significant improvement on barrier heights as a

direct result of silver oxidation (Allen et al., 2006), and have attributed this effect

to the predicted high work function of the thin O-terminated Ag2O (001) and (111)

surfaces (Gajdoš et al., 2003), while others have modeled Ag2O as a p-type semi-

conductor (Li et al., 2003). Since the Ag2O is already in an oxidized state, it does

not introduce additional oxygen vacancies to the ZnO surface. The effect of induced

oxidation leading to increased Schottky barrier height has been observed with other

noble metals on ZnO (Allen et al., 2009). Along with its high formation energy, with

higher plasma power, the formation of TiOx from Ti is amplified, once again mitigat-
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Figure 2.4: (a) Effective Barrier potential variation as a function of EBL thick-
ness and electrode metal. (b) Schottky Barrier height variation due to O2 plasma
treatment with connecting line matching individual devices before and after treat-
ment (Bottom: null and alternative hypothesis of matched pair two sample t-test;
associated p-values within inset of each experimental group).

ing the electronic transport modification of a separate (e.g.,TiOx/Ag2O) interface and

dissimilar barrier with ZnO. This effect explains the larger barrier heights extracted

for all Ti/Ag (TiOx/Ag2O) cases, as compared to the Ag (Ag2O) case alone.

Electrical characterization of devices at varying levels of SiO2 thickness (0 Å, 20 Å,

and 50 Å) for each metal electrode was conducted, and the extracted barrier heights

are summarized in Fig. 2.4(a). (Note: Transport modeled for thermionic emission

in MIS devices entails a current density (J) dependence on exp(V1/2), rather than

exp(V) (Sze and Ng, 2006), and was accounted for accordingly in barrier potential

extraction). The effective barrier potential was found to vary in correspondence to

the thickness of the EBL, and was maximized for a thickness of 20 Å. The SiO2/ZnO

interface has been investigated by Mohammadnejad et al. who have proposed that

thermal electron emission is suppressed with the inclusion of the insulator layer, and

that Fowler-Nordheim tunneling dominates with thermionic field emission occurring

42



Figure 2.5: Current Voltage response in dark, UV (365 nm) and UV (254 nm)
illumination (black, red, and blue traces, respectively) for (a) Au, (b) Ag2O, (c)
TiOx/Ag2O, and (d) TiOx/Ag2O electrodes patterned as interdigitated grids.

for a greater barrier height than the MS case (Mohammadnejad et al., 2008). In con-

junction with oxygen plasma used to induce silver oxidation, this treatment may fur-

ther passivate ZnO and SiO2 surfaces (Allen and Durbin, 2008), and reduce incidences

of electron hopping and recombination through trap states within the SiO2/ZnO in-

terface (Allen et al., 2007). For insulator thicknesses greater than 20 Å, the barrier

width increases leading to heavily suppressed (leakage) current and reduced barrier

potentials (Brillson and Lu, 2011; Yang et al., 2016a).

The I-V responses of devices, incorporating a 20 Å SiO2 EBL and post-metallization

oxygen plasma treatment, under UV illumination are shown in Fig. 2.5. Although
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Contact

Metal

Contact

Geome-

try

Illumination

Wave-

length

(nm)

Voc

(V)

Jsc

(mA/cm2)

Fill

Factor

Power

Conversion

Efficiency

Ag2O circle 365 0.85 9.49 ×10−4 0.2705 2.55 ×10−3

Ag2O circle 254 0.9 2.33 ×10−3 0.2709 7.72 ×10−3

TiO2/Ag2O circle 365 0.85 0.144285 0.2983 0.332

TiO2/Ag2O circle 254 0.95 0.205098 0.3486 0.472

TiO2/Ag2O grid 365 0.9 0.124067 0.3901 0.602

TiO2/Ag2O grid 254 1.2 0.729128 0.5394 0.341

Table 2.3: Comparison of solar cell performance for Schottky contact metal, device
configuration, and illumination conditions.

characteristic photovoltaic response curves are observed for devices with TiOx/Ag2O

contacts, devices with Al (not shown) and Au do not exhibit such behavior. The

power conversion efficiencies were extracted using (2.7), where Plight is the power of

the illumination source and FF is the fill factor (defined as a ratio of the maximum

power point to the product of short circuit current, Isc, and open circuit voltage,

Voc). The use of a large area interdigitated grid design that minimizes shading while

maintaining conduction was also explored in this work and resulted in greater power

conversion efficiency, as shown in Fig. 2.5(d). These results, arranged by device con-

tact geometry and illumination configurations, are summarized in Table 2.3. Power

losses from the illuminated electrode are proportional to the cube of line spacing,

however, narrower line widths with thicker metal can reduce resistive losses, while

allowing for shorter spacing (Serreze, 1978). These design rules were considered in

formulating a suitable electrode pattern for optimizing photovoltaic performance and

further explain why grid patterns resulted in greater power conversion than a com-
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pletely opaque electrode pattern.

In general, weak photovoltaic conversion utilizing ZnO absorbers under ultravio-

let illumination has been reported previously (Nakano et al., 2008; Amiruddin and

Kumar, 2016). Additionally, studies on (a) photovoltage on ZnO surface using time-

resolved Kelvin probes (Li et al., 2009) and (b) majority carrier-based, Schottky solar

cells with high Eg absorber (Yang et al., 2016a) have alluded to the inherent relation-

ship of work function to typical photovoltaic conversion mechanisms (Kasap, 2017).

However, as observed throughout Fig. 2.3, the lack of photovoltaic conversion for

MS diodes suggest the presence of recombination centers at the metal-semiconductor

interface. Moreover, in contrast to a pn diode that is a minority carrier controlled

device, the saturation current (I0) in an MS diode, a majority carrier device, be-

comes a major limitation for the improvement of solar cell performance. Therefore,

the integration of a sufficiently thin insulating layer on ZnO effectively passivates the

interface (Fonash, 2010) and reduces (I0), while allowing minority carriers to tunnel

through the insulator. In forward bias, the field drives minority carriers toward the

interfacial barrier prior to tunneling, while majority carriers are driven away from the

interface. When considering the post-metallization oxidation of Ag/SiO2/ZnO (MIS)

devices, the formation of p-Ag2O surface electrodes transforms device configurations

into p-i-n heterojunctions, which more precisely models measured I-V photoresponse.

The transport mechanism for such heterojunction devices is illustrated in Fig. 2.1(d)

in the case of Ag2O in contact with a thin EBL on ZnO. The sufficiently thin EBL

results in increased effective barrier potential, as noted in Fig 2.4(a), and reinforces

the relationship between the effective barrier potential and Voc. The integration of

an additional layer of TiOx further reduces the recombination rates and improves the

solar cell characteristics, as illustrated in Fig. 2.5(c,d). Indeed as previously reported

for Si MIS-based cells, an interfacial layer up to approximately 20 Å in thickness re-

45



duces dark current (due to suppressed majority electrons) while minimally affecting

the short circuit current (due to tunneled minority holes), and locally maximizing

Voc (Card, 1977). Considering the relatively large Dit estimated for ZnO thin film

in this study (Table 2.1), as well as the small grain size observed in Fig. 2.2(a),

the effectiveness of EBL in reducing the trap states is noteworthy. The thin-film

integration of additional oxide layers and interfaces coupled with the EBL on ZnO

introduces confounding complexities and difficulties in interpretations; for example,

under dark and illuminated conditions, recombination (and generation rates under

light) is field and spatially dependent, but unknown for these systems. All I-V pho-

toresponse presented throughout Fig. 2.5 clearly indicate that photocurrent is voltage

and oxide layer-dependent, and therefore, the principle of superposition is not appli-

cable. Although this preliminary work qualitatively describes the experimental data,

a more robust analysis (similar to that presented in (Card, 1977)) must be under-

taken. Specifically, numerical and/or analytical models of the multi-layered oxides

coupled with relevant parameters (e.g., energy levels of interface states and defects,

spatially-dependent recombination and generation rates, oxide-dependent carrier life-

times etc.) must be developed to compare against experimental and simulated UV

photovoltaic current-voltage responses.

2.5 Conclusion

This preliminary study reports the photovoltaic response of sputtered ZnO (2%

Mn) films integrated with metal or semiconductor contacts, and/or majority carrier

blocking layers (i.e., in MS, MIS, and p-i-n heterojunction configurations) for visi-

bly transparent, low-power applications such as window-integrated photovoltaics and

electrochromic devices. For MS Schottky devices, a high interface state trap density

(Dit ≈ 8.0×1011 eV−1cm−2), estimated by fitting the dark current-voltage response
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to the generalized Bardeen Model, warranted ZnO surface passivation. Nonetheless,

the photodetection performance and noise response of MS devices were assessed with

respect to the nature of contacts, i.e., Schottky (Au, Ag, and Ti/Ag) versus ohmic

(Al). Under UV-A illumination, the Ag-ZnO detectors exhibited the highest per-

formance, with responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W

and 6.57×10−4, respectively. Post-metallization oxygen plasma treatment of Ag or

Ag/Ti electrodes, coupled with inferential matched pair analysis, indicated significant

increases in effective Schottky barrier heights, as well as the formation of semicon-

ducting Ag2O and TiOx/Ag2O at the interfaces. For such devices with patterned

interdigitated electrodes, the photovoltaic response of Ag2O/TiOx/SiO2/ZnO layers

(modeled as a p-i-n heterojunction) under UV-C illumination indicated a short circuit

current density (Jsc) and a relatively high open circuit voltage (Voc) of 0.68 mA/cm2

and 1.2 V, respectively. These results are attributed to the presence of additional

quasi-neutral and space charge regions for optical generation of charge carriers, and

the promotion of minority carrier tunneling and surface passivation by the optimally

determined 2 nm SiO2 blocking layer. Much work remains to quantitatively account

for the (a) voltage-dependent and site-dependant recombination losses, (b) carrier re-

combination at contacts, (c) photocurrent sign change, and (d) spatial dependence of

the generation and recombination across the multilayered structures in order to model

the photovoltaic I-V response (with accurate transport parameters) under high-energy

UV illumination. However, this initial study indicates the potential of all-inorganic,

visibly transparent, current-matched and voltage-matched ZnO-based UV absorbers

for low-power, smart window-integrated photovoltaic devices.
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Chapter 3

SELF-POWERED, INKJET PRINTED ELECTROCHROMIC FILMS ON

FLEXIBLE AND STRETCHABLE SUBSTRATES

3.1 Abstract

Electrochromic films have been used as a non-emissive material for display appli-

cations. Such materials have already been integrated in antiglare rearview mirrors for

passenger vehicles as well as smart windows intended for energy savings for buildings.

However, most electrochromic materials are deposited on rigid substrates, which pre-

vent its use in flexible and stretchable electronic applications, where low temperature

deposition techniques are desired. Additionally, electrochormics require an external

power source to drive the underlying reduction/oxidation reaction. In this work,

electrochromic materials inkjet-printed onto flexible and stretchable substrates have

been explored. These devices are “self-powered” by organic solar cells also fabricated

on flexible and stretchable substrate such as PDMS and PET. A set of inks based

on a combination of synthesized and commercially obtained WO3 nanoparticles, W-

TiO2 and TiO2 nanoparticles were evaluated. The microstructure of the nanoparticles

used in this study were examined under scanning electron microscopy for examining

nanoparticle morphology, x-ray diffraction for chemical and structural characteriza-

tion, and dynamic light scattering for particle size determination. Electrochromic lay-

ers were then ink-jet printed on flexible and stretchable PDMS substrates, using syn-

thesized Ag nanowires as conductive, yet highly transparent electrodes. The stretch-

able printed electrochromic devices under various stress conditions and electrochromic

performances were evaluated and demonstrated clear switching behavior under exter-
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nal bias, with 7 second coloration time, 8 second bleaching time, and 0.36-0.75 optical

modulation at λ=525 nm. Cyclic voltammetry and galvanostatic charge/discharge

measurements demonstrated high areal capacitance, with limited stability upon cy-

cled operation. The electrochromic devices were then integrated in an Internet of

Things (IoT)-enabled switching configuration, self-powered by PCDTBT:PC70BM

organic photovoltaics. The bulk heterojunction devices were evaluated with vary-

ing hole-transport layers and substrates, and exhibited the strongest performance of

PCE≈ 3%, Voc=0.9V and Jsc ≈ 10-15 mA/cm2 . The described self-powered, IoT-

enabled, ink-jet printed electrochromic devices, fabricated on flexible substrates, are

demonstrative of potential applications for wearable electronics.

3.2 Introduction

In recent years smart window technologies have become among the most rapidly

developing fields, both in commercial and in academic realms. In conjunction with

attention devoted to harvesting energy through solar radiation, researchers have rec-

ognized that solar radiation also represents the cause of major energy consumption

through cooling loads of residential and commercial buildings (US Department of

Energy, 2018). Traditional electrochromic devices have become increasingly popular

as a method to solving this problem, but suffer the limitation of requiring external

power. Several researchers have integrated electrochromics with photovoltaics form-

ing “self-powered,” or photo-electrochromic devices. These realizations have varied

from printed devices, to vertically integrated devices, and even devices that harness

an internal redox potential (Cannavale et al., 2016). However, these studies have

focused their efforts on rigid or flexible substrates, but not necessarily stretchable

substrates. This distinction is heavily important for wearable implementations of

such technologies as they must contour to irregular nature of the human body, but
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fundamentally represent many processing challenges.

Electrochromic devices have been realized with a variety of material systems in-

cluding organic semiconducting polymers such as PEDOT:PSS and metal oxides, of

which, WO3 has dominated (Taylor et al., 1996). Typical methods of deposition

of WO3 have included electrodeposition (Deepa et al., 2004) and sol-gel techniques.

Sol-gel techniques in particular require rather large and slowly ramped sintering tem-

peratures to achieve crystalization of the WO3 sols, and these processing temperatures

are fundamentally incompatible with substrates that are otherwise sensitive to heat

(Deepa et al., 2006b), including PET and PDMS. Relatively few groups have explored

inkjet printing electrochromicly active oxide-based nanoparticles (Costa et al., 2012b;

Layani et al., 2014; Santos et al., 2015). This is important for substrate-independent

patterning of functional electrochromics, and can later be extended into roll-to-roll

mass-manufacturing. Wojcik et al. systematically demonstrated the trade-offs be-

tween speed in electrochromic switching kinetics from the from the highly active

crystal surfaces, and the intensity of optical modulation brought upon by the amor-

phous phase materials (Wojcik et al., 2012). Deepa et al. have shown that this is

due to the fact that highly ordered crystal phases become more dense, and there-

fore inhibit Li+ ion intercolation into the WO3 sites, thereby reducing colaration

(Deepa et al., 2006c). Wojcik was also able to demonstrate that the inclusion of

TiO2 nanoparticles, which are also electrochromic in nature, is a cathodic material,

and were able to reduce the switching potential considerably. In a later analysis of

their mixture experimental design, Wojcik et al. demonstrate that the inclusion of

an amorphous matrix in tandem with the highly crystal nanoparticles can balance

the tradeoffs of coloration and bleaching time, operating voltage, and optical density,

such that an optimal ink can be achieved (Wojcik et al., 2014).

In conjunction with low-temperature developments for processing oxide nanoparticle-
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based functional devices, the progress of organic photovoltaics, (along with other

organic-based electronic and optoelectronic devices) have steepened considerably.

In particular, active layers composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-

(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acid-methyl

(PCDTBT:PC70BM) have quickly emerged as a high performance OPV devices as

they have continually demonstrated high open circuit voltage and reported power

conversion efficiencies of as high as 7.2% (Sun et al., 2011), incorporating MoOx as

the hole injection material. Devices composed of this this bulk heterojunction have

also been reported as particularly air-stable (Jung et al., 2014; Zhang et al., 2016)

and have frequently been processed on flexible substrates using inkjet-printed tech-

niques. One of the major differences that sets apart PCDTBT from regioregular bulk

heterojunction polymers is the elimination of the post-deposition anneal, in which

it has been shown by other researchers (Staniec et al., 2011) to not affect optical

properties such as extinction coefficient, and degrade device performance, due to the

introduction of midgap monomolecular recombination centers (Constantinou et al.,

2015). The result is the retention of a highly amorphous and thus flexible prop-

erties, which has catalyzed its discussion in large scale plastic processing (Beaupré

and Leclerc, 2013). The aforementioned studies have largely focused on incorporating

PCDTBT:PC70BM onto PET, with ITO as the transparent conductor. However, ITO

takes on a variety of disadvantages including the scarcity of indium, leading to higher

demand. More importantly, ITO is highly brittle which limits its performance under

strain. Thus many researchers have elected to explore AgNWs embedded in PDMS

as a substrate for realizing stretchable electrochromics, due to percolating nanowire

networks that have shown excellent resilience to strain (Yan et al., 2014). Others have

explored the use of embedded AgNW networks in PDMS as substrates for organic

photovoltaic devices (Herrera Rocher, 2015) and some have even explored embedded

51



AgNPs in active layers with improved device performance (Wang et al., 2015; Parlak

et al., 2013).

In this study the two technologies have been intersected to realize a fully func-

tional solar-powered electrochromic device on a stretchable substrate, incorporat-

ing dual-phased WO3 nanoparticles for the electrochromic device and powered by

a PCDTBT:PC70BM organic solar cell. These devices are linked to an Internet of

Things controller, allowing users to control electrochromic switching remotely. As

shown in Figure 3.1(a), the organic photovoltaic device powers a modified Broad-

com BCM43362 WiFi controller, driven by an ST Microelectronics STM32f205RGY6

ARM Cortex-M3 MCU (packaged by Particle Inc.). The internal microcontroler

drives a pulse-width modulated output that allows tuning of output potential. When

the user remotely varies intensity from a slider interface (provided as a mobile app

by Particle) the load device, the stretchable electrochromic device is activated and

transitions accordingly.

3.3 Experimental Details

3.3.1 AgNW Synthesis and PDMS Substrate Embedding

AgNWs grown by a solvothermal technique (Moreno et al., 2012) in which 0.1

mM of NaCl and 0.15 M of polyvinylpyrrolidone (PVP) were dissolved in 10 mL of

ethylene glycol. This salt solution was then placed in a buret and injected dropwise

into a 0.1M solution of AgNO3, also dissolved in 10 mL of ethylene glycol. The light-

yellow solution was stirred vigorously and half of this mixture was transferred into

a 25 mL teflon lined autoclave, and heated at 160 ◦C for 2.5 hours. The chamber

was allowed to cool to room temperature and its contents were thoroughly washed by

successive repetitions of dispersing in acetone and centrifugation to separate the solid
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Figure 3.1: (a) Material and system view and (b) Device realization of Self-powered
IoT-enabled Electrochromic Stack

content. The nanowires were dispersed on a Si substrate and characterized under

field-emission scanning electron microscopy.

To embed the nanowires in PDMS, a PC filter paper was placed over a vacuum

buchner filter, AgNWs in isopropanol dispersion were dispersed over the paper, and

the isopropanol was allowed to evaporate naturally. The PDMS (Sylgard 184) was

prepared by mixing a base and curer (weight ratio 10:1) over the filter paper in a
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petri dish. After curing at 80 ◦C for 2 hours, the filter paper was removed and the

AgNWs remained embedded in the PDMS matrix.

3.3.2 OPV Device Fabrication

Both ITO coated PET foils and AgNW/PDMS membrane were ozonated for 10

minutes. The samples were brought into an environmentally controlled glove box

and PEDOT:PSS (non-conductive) was spun coated at 5000 RPM for 60 seconds.

PCDTBT:PC70BM (1:4) was dissolved overnight at 80 ◦C spun coated at 700 RPM

for 60 seconds. The samples were placed into an evaporator chamber and LiF (7

Å)/Al (70 nm) cathode patterns (1 cm × 1 cm) were evaporated through a shadow

mask. The samples were then electrically characterized using a Kiethly electrometer

under dark and AM 1.5G conditions.

3.3.3 PTA/WO3 NP synthesis

Acetetylated Peroxotungstic Acid

Peroxotungstic Acid (PTA) was formed by dissolving 13 g of W powder with 80

mL H2O2 and 8 mL DI water in ice bath (due to the reactive exothermic reaction).

The solid yellow material was filtered with a standard 0.2 µm filter paper and then

dissolved in 80 mL acetic acid. This solution was then refluxed for 48 hours at 60 ◦C

and was removed and vacuum dried. A solid, light-yellow flaky product, Acetetylated

Peroxotungstic Acid was extracted.

WO3 Nanoparticles

The PTA solid was dissolved in 0.3M HCl and placed in a hydrothermal autoclave

for 2.5 hours. The chamber was allowed to cool to room temperature, its contents

removed and washed in DI water, and separated using centrifugation.
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Ink formation

A set of four inks based on the combination of synthesized WO3 nanoparticles, com-

mercial WO3 nanoparticles, commercially obtained W-TiO2 and TiO2 nanoparticles,

PTA, and oxylic acid dihydride (OAD) were mixed in isopropanol. The relative

weights of each mixture were based on a previously reported D-optimal ink formu-

lation. The ink was diluted 1/10 after initial mixture, and patterns were printed 33

times using a Microfab Jetlab II printer.

Electrochemical Characterization

An Autolab Potentiostat/Galvanostat was used to perform Cyclic voltammetry mea-

surements at the specified voltages. A four-channel Arbin system was used to perform

Galvanostatic charge–discharge measurements.

3.4 Results and Discussion

In Figure 3.2, the absorption spectra of PCDTBT and PCDTBT:PC70BM (1:4

weight ratio) are shown, overlayed with the terrestrial AM 1.5G solar spectrum. Upon

complete dissolution of PCDTBT with PC70BM, it is observed that the PCDTBT

peak at 580 nm reduces, and the composite polymer forms a new peak at 480 nm,

as well as exhibiting a broadened absorption spectra across visible range–also ob-

served by others (Ochiai et al., 2012; Zhao et al., 2014). The attenuation of the

natural PCDTBT absorption peak, and its change in pigment indicates a mixed bulk-

heterojunction state of polymer and has been linked to the dimerization of PC70BM

(Distler et al., 2014).

Figure 3.3 shows the current-voltage (I-V) characteristics of the studied organic

photovoltaic devices illuminated under AM 1.5G spectral irradiance with varying sub-

strates, choice of hole transport layer, and a comparison to P3HT absorber (where
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Figure 3.2: (a) UV/Vis Spectra of organic polymers (bottom) with overlayed AM
1.5G Solar Spectral irradiance (top). (b) Energy level diagram of studied bulk het-
erojunction device.

device 1 in this report refers to PCDTBT:PC70BM with non-conductive PEDOT:PSS

hole transport layer, device 2 refers to PCDTBT:PC70BM with conductive PEDOT:PSS

hole transport layer, device 3 refers to PCDTBT:PC70BM with non-conductive PE-

DOT:PSS hole transport layer on silver nanowires, and device 4 refers to P3HT:PC60BM

with non-conductive PEDOT:PSS hole transport layer). Figure 3.3(a-c) features sin-

gle representative devices composed of PCDTBT:PC70BM, and it is found that the
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Figure 3.3: Dark (red trace) and total illuminated (dashed green trace) Current-
Voltage characteristics, with their subtractive difference (dashed blue trace) seg-
mented with the device structures (a) Device 1: PCDTBT: PC70BM/PEDOT: PSS-
NC/ITO/PET, (b) Device 2: PCDTBT: PC70BM/ PEDOT: PSS-C/ITO/PET, (c)
Device 3: PCDTBT: PC70BM/PEDOT: PSS-NC/AgNW/PDMS. (d) Total illumi-
nated current-voltage characteristics for all studied devices (inset: device structure
numbering).

dark current exhibits typical rectifying behavior, while the illuminated current ex-

hibits an S-shaped response (which will be discussed in the next paragraph). Initially

it can be see that the subtracted illuminated current does not converge on a sin-

gle value, suggesting superposition does not apply to this device structure. When

comparing all illuminated current response, illustrated in Figure 3.3(d), the device
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Figure 3.4: (a) Open-Circuit voltage, (b) Short-Circuit current, (c) Fill Factor,
and (d) power conversion efficiency of all studied devices (inset: device structure
numbering).

configuration that performs best incorporates non-conductive PEDOT:PSS as the

hole transport layer (HTL) on ITO/PET (device 1). Device 1, as shown through-

out Fig 3.4, outperformed all other device structures, and was therefore selected for

self-powered window application.

Typically, non-conductive PEDOT:PSS is favored as to suppress lateral conduc-

tion of separated charges that never reach the cathode. In the case of ITO in de-

vice 2, the conduction is comparable to that of conductive PEDOT:PSS, and there-
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Figure 3.5: (a) Series Resistance (linear scale), (b) Series Resistance (log scale),
and (c) Shunt Resistance (linear scale) of all studied devices (inset: device structure
numbering).

fore, forms a current divider that reduces overall performance. Regardless of PE-

DOT:PSS conductivity the formation of S-shaped characteristics emerge in all cases

of PCDTBT:PC70BM devices. This phenomenon has been linked to the formation of

a hole injection (electron extraction) barrier from HTL (Cheng et al., 2015), active

layer degredation extended radially from the center of the device, indicating an imho-

mogeniety of device thicknesses due to the spin coating process and surface dipole

formation from ambient conditions, Substrate conductivity, charge accumulation at

the interfaces between the active layer and the electrodes (R. Mateker et al., 2013), or

oxidized species in a BHJ active layer acting as a carrier trapping site (Wang et al.,

2012), all of which have the ultimate effect of increasing series resistance (Rs). A

summary of extracted series resistances, subdivided by device structure, is presented

in the box plot in Fig. 3.5(a-b). As seen in Fig. 3.5(a), the series resistance of devices

composed of PCDTBT:PC70BM on ITO(120 Ω/�)/PET is almost four times that of

P3HT:PC60BM on ITO(40 Ω/�)/SiO2. For AgNW devices (which will be discussed

in the next paragraph), illustrated in the log plot in Fig. 3.5(b), the series resistance

is almost 7 orders of magnitude larger than the next comparable device. Based on the

available conductivity data of choice of ITO coated PET substrates, the high surface

resistivity may contribute to the observed high-Rs S-shaped traced from illuminated
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Figure 3.6: Transmittance of various polymer stacks

response. The shunt resistance among all devices, as illustrated in Fig. 3.5(c), is

quite sufficiently, and comparably high.

From Fig. 3.4(a), both device 1 and device 3 use non-conductive PEDOT:PSS,

and it is observed that their Voc remain in the range of 0.7-0.9 V. However, despite

performing the best, devices of device 1 configuration consistently demonstrate poor

FF, shown in Fig. 3.4(c). From the above-discussed S-shaped response, a significant

voltage dependence on photocurrent, either due to mechanisms of field dependent

charge generation efficiency or collection efficiency (Etzold et al., 2011) is uncovered.

As can be seen, both device 1 and device 2 do not exhibit ideal diodic characteristics

when illuminated, but do under dark conditions. Other reports have observed a drop

in FF due to increased thicknesses of layer (Moon et al., 2012), and relative weight

ratio of PCDTBT to PC70BM (Ochiai et al., 2012; Zhao et al., 2014), however in those
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cases, the rectification was retained. This could be due to the relative resistance of

ITO on PET which contributes to these loss mechanisms. Device 3 formed of AgNWs

networks on PDMS had the poorest performance, despite exhibiting a large Voc.

From the plot of transmittance in Figure 3.6, we observe that AgNW networks tend

to absorb the most light in the visible spectrum, thereby shading the active layers

that are deposited on the side opposite to illumination. Among the noted features of

degraded device performance in this study was the series resistance of AgNW devices,

which was was found to be 7 orders of magnitude larger than all other cases. This

could be related to the presence of spatially inhomogenous electrically inactive areas

that arise due to inconsistent dispersion of AgNWs.

Material Mean Diameter (nm) Standard Deviation (nm)

W-TiO2 451 17.25

TiO2 82.3 23.5

WO3 (synthesized) 582.5 32.82

WO3 (commercial) 325.8 2.98

PTA 464.9 49.7
Table 3.1: Comparison of constituent nanoparticle sizes in electrochromic inks

The micrstructure of the nanoparticles (shown in Figure 3.7(a)) used in this study

were examined under scanning electron microscopy Figure 3.7(b), and their respective

distribution of sizes using dynamic light scattering are summarized in Table 3.1. It

can be seen that W-loaded TiO2 nanoparticles are considerably larger than that of

intrinsic TiO2 (approximately 5.5× larger), and synthesized WO3 nanoparticles were

1.8× larger than commercial ones. This could be related to the allowed growth time

of synthesized nanoparticles. As a general rule of thumb the ratio nozzle size to

particle size is approximately 9:1 in order to reduce the incidence of clogging and
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Figure 3.7: (a) Photograph (b) SEM Micrographs (c) XRD, and (d) Raman Spec-
trograph of nanopowders

agglomeration (Wojcik et al., 2012). The nozzle used in this study was a MicroFab

MJ-AT-01-50, low temperature printing device with an orifice diameter of 50 µm.

Figure 3.7(c) shows the XRD pattern of all constituent nanoparticles used in

this study, including W-loaded TiO2, undoped TiO2, synthesized WO3, commercial

WO3, and PTA. It is found that the relative difference between both cases of TiO2

studied were relatively negligible, and closely correspond to the anatase phase of

titanium oxide (JCPDS 21-1272). Additionally, the synthesized and commericial

WO3 nanoparticles closely correspond to the monoclinic phase (JCPDS 20-1324).

The pure anatase nanoparticles exhibit a peak at 16.3 which does not match the

JCPDS reference card. The presence of this peak may be due to 1) Lack of thermal

treatment, 2) water or hydride bonds, or 3) size effects of TiO2. However, in the

W-loaded TiO2 does not exhibit this peak, which may either be due to the size of

the particle or the fact that W is suppressing its excitation. However, due to the fact
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that no visible transference of WO3 related peaks can be found in this diffractogram,

it can be inferred that the concentration of W is relatively small and controlled, as

compared to previous studies (Hong et al., 2014; Mayoufi et al., 2014). For WO3, it is

found that the intensity of (002) plane in the synthesized case is slightly more intense

than commercial case. This could be an indication of tetragonal or orthohombic

phase. The diffraction pattern related to PTA matches that of prior studies (Deepa

et al., 2006a).

In Figure 3.7(d), the molecular structures of the nanoparticles have been inves-

tigated with Raman spectroscopy, and were normalized to the largest peak (143.22

cm−1 for TiO2 cases, 805 cm−1 for WO3 cases, and 660 cm−1 for PTA). Once again

TiO2 cases do not show significant differences among one another in regards to peak

positions. Peaks at 143.222 cm−1 and 637.486 cm−1 have been attributed to the 3Eg

peak and peaks at 392.713 cm−1, 515.291 cm−1 have been attributed to the 2B1g

peak. The W-doped TiO2 nanopowder does not show any evidence of weak peaks at-

triubted to WO3 or any vibrational modes related to W-O-W peaks, as addressed by

other reports. Synthesized nanopowders do not show evidence of hydrate phase and

again correspond to the measured commercial case of monoclinic WO3. The evolution

of peaks from amorphous PTA is shown to transition into crystalline nanopowders.

All peaks below 200 cm−1 are related to the lattice modes of WO3. Peaks at 710 cm−1

are described as the “stretching-mode” which is shifted from 820 cm−1 in the amor-

phous phase PTA. Broad peak at 636 cm−1 for amorphous PTA related to O-W-O

bending mode, which has been shifted to 328 and 274 cm−1 for nanopowders. And

finally, amorphous PTA has peak at 946 cm−1 which is consistent with the W=O or

W-O terminal bond.

Several images of the stretchable printed electrochromic device under various stress

conditions are shown in Figure 3.8. A summary of electrochromic performances are
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Ink τ color τ bleach ∆OD|λ=525nm

1 7 10 0.3667

2 15.3 16 0.7554

3 10.5 12 0.6347

4 8 13 0.5874
Table 3.2: Performance metrics of electrochromic inks

shown in Table 3.2. As noted, nanoparticles are used to circumvent high processing

temperatures of traditional amorphous sol. Additionally, higher temperatures densify

crystal phases which ultimately limit Li+ ion intercolation into the WO3 sites. Wojcik

showed a major tradeoff between switching time kinetics, caused by highly crystal

surfaces, and optical modulation, related to the amorphous phase of WO3 (Wojcik

et al., 2012). As noted, TiO2 is cathodic and loaded into the system to reduce

switching potential. It appears that all measured factors in this case are highly

dependant on the type of TiO2 used in the electrochromic ink. Pure anatase NPs

result in extremely fast switching times at the expense of optical modulation, and

the exact opposite is true of W-TiO2. These results suggest that in addition to the

existing WO3 and PTA compositions leading to electrochromic behavior that exist

in the ink matrix, the W of TiO2 also contribute to electrochromic activity because

they also represent Li-ion insertion sites. However, due studies investigating W-TiO2

in photocatalytic activity (Chang and Liu, 2014) have shown that W ions have high

coordination numbers and high electronegativity (Pauling scale: 2.36) which bond to

O2+ radicals. The W6+ in WO3 has a coordination number of 6, whereas they are

4-coordinated in the TiO2 matrix. This leads to tightly bound O2− thereby impeding

interfacial charge transfer. As a result, electrochromic activity within the ink matrix

is increased, but will switch over a longer time-scale due to reduced conductivity.
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Figure 3.8: (a) Comparison of Ink coloration (b) Printed electrochromic device
on ITO/PET (c) Printed electrochromic device on AgNW/PDMS under flexure (d)
tension (e) compression

A stretchable capacitor (Figure 3.9(a)) and stretchable battery (Figure 3.9(b))

were formed without and with the inclusion of WO3-based electrochromic ink, re-

spectively. It can clearly be shown that the absence of WO3, the system acts as

a parallel-plate capacitor with LiClO4 as the dielectric, with a 250 µm separation

distance and area of 1 cm2. In Figure 3.9(a), Charge-discharge cycles of the stretch-

able device was performed at a constant current density of 1 A/g at no applied

tensile strain. Figure 3.9(b) shows the increase in specific capacitance with each
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Figure 3.9: (a) Capacitive cycling and specific capacitance per cycle for device
without EC ink and (b) voltage cycling and charge capacity per cycle for device with
electrochromic ink

charge/discharge cycle, and saturating at 3.5 F/g. More cycling attempts are needed

to understand the stability of the capacitor and to ensure that saturation behavior

continues past 100 cycles. The specific capacitance (C) was calculated from the slope

of the discharge capacitance (Yu et al., 2009):

C = 2I
m∆V

∆t
(3.1)

where I is the applied current and m is the average mass of the two AgNW

electrodes. A cycling study was then conducted with WO3 based ink on one set of

AgNW electrodes and results clearly demonstrate charging (and electrochromic effect)

from lithium intercolation (Figure 5c). In Figure 3.9(d), the areal capacity of battery

device degrades considerably after each charging cycle, which indicates asymmetry

either in the applied voltage offset or that the EC ink is inefficient at charge storage.
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Figure 3.10: Circuit model of self-powered electrochromic device

Several OPV modules (3-6) wired in series (to increase voltage) and parallel (to

current match) configurations, as well as the electrochromic device were paired using

an Internet of Things (IoT) controller described in a configuration illustrated in Figure

3.1(b) and Figure 3.10. A pulse-width modulated output train was generated by the

microcontroller (powered by the OPV device) which allowed for the tuning of the

output potential. As a user changes intensity from a slider component provided by

the mobile application, the electrochromic device treated as the load is accordingly

transitioned.

3.5 Conclusion

In conclusion, self-powered electrochromic devices composed of dual-phased, inkjet

printed TiO2/WO3/PTA nanoparticles for as the electrochromic device, and

PCDTBT:PC70BM organic solar cells were demonstrated on a stretchable platform.

Electrochromic devices demonstrated excellent performance with 7 second coloration

time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ=525 nm. Organic

cells demonstrated high power conversion efficiency needed to active and control the

power delivery system (with PCE ≈ 3%, Voc = 0.9V and Jsc ≈ 10-15 mA/cm2),
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enabled by an IoT personal controller. This work demonstrates the feasibility and

potential impact of personalized, on-demand control of wearable smart-skins.
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Chapter 4

CONCLUSION

In this dissertation, the integration of photovoltaic and electrochromic devices for

self-powered smart window applications has been investigated. The design constraints

for realizing such an integrated device may significantly interact with one another,

compounding its complexity. For a photovoltaic device, high transparency yields re-

duced utilization of the terrestrial solar spectrum, and electrochromic films should

be chosen such that the power requirements for initiating the reduction-oxidation

reaction are minimal. This should be considered in conjunction with low transition

(coloration and bleaching) times, and high optical density. The focus of this dis-

sertation has been toward investigating three classes of solar cells (inorganic, hybrid

organic, and fully organic) devices toward minimally powering electrochromic opti-

mized for low transition voltages.

Inorganic Zinc Oxide (ZnO) thin film-based metal-semiconductor (MS), metal-

insulator-semiconductor (MIS), and p-i-n heterojunction devices were investigated,

and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated.

For MS devices, photoconductive behavior under ultraviolet illumination (λ=365 nm),

suggesting the outsized role of surface states. Fitted against the generalized Bardeen

model, Schottky parameters were used to estimate the density of interface states (Dit

≈ 8.0×1011 eV−1cm−2) and the neutral level (Eo ≈ -5.2 eV). Post-metalization oxygen

plasma treatment of Ag and Ti/Ag electrodes resulted in a net Schottky barrier height

increase; linked to the formation of Ag2O and TiOx. The effective barrier potential

maximized with a 20 Å electron blocking layer (EBL, SiO2), suppressing recombina-

tion at the metal/semiconductor interface and blocking majority carrier current flow.
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Photovoltaic performance of p-i-n heterojunction structures was maximized gener-

ating an open-circuit voltage (Voc) of 1.2 V and short circuit current density (Jsc)

of 0.68 mA/cm2 for interdigitated devices under high energy monochromatic UV-C

radiation. When properly scaled, ZnO thin film absorbers with sufficiently thin EBL

and high surface barrier electrodes are suitable for visibly transparent, low-power

smart-windows.

A fully organic photovoltaic, composed of poly[N-9’-heptadecanyl-2,7-carbazole-

alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acid-methyl

(PCDTBT:PC70BM) was explored the final alternative approach toward powering

electrochromic devices. The bulk heterojunction exhibited high transparency and

relatively large power conversion efficiency and provided the requisite power for

transitioning an inkjet printed, nano-particle-based, tungsten trioxide (WO3) elec-

trochromic films on substrates of varying mechanical flexibility. The printed elec-

trochromic devices demonstrated clear switching behavior under external bias, with

7 second coloration time, 8 second bleaching time, and 0.36-0.75 optical modula-

tion at λ=525 nm. The bulk heterojunction devices were evaluated with varying

hole-transport layers and substrates, and exhibited the strongest performance of

PCE≈ 3%, Voc=0.9V and Jsc ≈ 10-15 mA/cm2 . The devices were paired using

an Internet of Things controller enabling wireless switching.

The purview of this dissertation focuses on the pairing of photovoltaic and elec-

trochromic devices. The realization of such an integrated smart window presents var-

ious challenges that require tradeoffs among device design, selection of electrical and

optical materials, and reproducibility/reliability of low-temperature processing. Here,

we focused on the processing and performance of three classes of visibly-transparent

photovoltaic materials. This interdisciplinary research approach, allowing for the rec-

onciliation of multiple goals and trade-offs within a single design problem. The stages
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of planning, executing, and analysis requires extensive due diligence in addition to

confirming abstract expectations realized in the physical world. The broader impact

of this work may affect household and building envelope energy consumption with the

novel integrated device presented. Furthermore, the use of organic and nanomaterials

may accelerate the pace of manufacturability of the burgeoning field of self-powered

electrochromic devices.
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APPENDIX A

EMPIRICAL MODELING OF PHOTO-ENHANCED CURRENT-VOLTAGE

HYSTERESIS IN PEDOT:PSS/ZNO THIN FILM DEVICES

A.1 Abstract

Organic/inorganic “hybrid” semiconducting devices of zinc oxide (ZnO) thin films

coated with poly (3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)

were fabricated and electrically characterized. These devices exhibited photostimu-

lated current-voltage (I-V) hysteresis behavior, in which dissimilar electrical current

is observed based on the voltage sweep direction, notably as a function of the illu-

minated wavelength exposed on the device surface during electrical characterization.

Ultraviolet-induced oxygen desorption on the ZnO surface, leading to electrons tran-

sitioning into the conduction band, gives rise to an increase of accumulated charges

between the PEDOT:PSS and ZnO layers. This effect, coupled with trap states within

PEDOT:PSS films, produces a hysteresis effect that is amplified by photoconduction.

Characteristic I-V hysteresis was empirically modeled under a series of first-order

multiple linear regression (MLR) expressions that decouple device processing and de-

vice characterization conditions. These models unravel and describe the numerical

markers of hysteresis measured across the organic layer, including scaled and shifted

transformations. The results of this analysis indicate that illumination is statistically

a stronger explanatory variable for hysteresis than device size, which further suggests

that stored space charges on the metal/polymer interface more significantly influence

hysteresis than trapped charges alone.
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A.2 Introduction

Organic conductive polymers have become integral to the growth of materials for

flexible memory devices, such as “write-once, read-many” devices, potentially realiz-

ing low-cost memristive applications. As a highly effective hole transport material for

organic photovoltaic and light emitting applications, poly(3,4-ethylenedioxythiophene)

polystyrene sulfonate (PEDOT:PSS) has been extensively studied due to its tun-

able conductivity, solubility in water, transparency in the visible spectrum, and a

high work function (Nakano et al., 2007; Lin, 2008a). However, a particular artifact

of spin-on PEDOT:PSS film-based devices is the presence of hysteresis in current-

voltage (I-V) characteristics (Arena et al., 2007; Ambrico et al., 2010; Lin, 2008b),

to which these discrepancies, for photovoltaic applications, can create highly inflated

power conversion efficiencies. Studies of Peroskovite and other hybrid organic so-

lar cells have established that the level of power generation can often be ambiguous

when the voltage scan rate exceeds the time-scale required for the device to reach

electronic steady state (Unger et al., 2014; Snaith et al., 2014). This phenomenon

has been attributed to the presence of deep trap states within the organic layer, as

well as stored space charges on the metal/polymer interface. Lin et al performed a

controlled study of ITO/PEDOT:PSS devices, and described displacement current in

terms of a differential model that related applied voltage, device area, and voltage

sweep rate to the observed hysteresis (Lin, 2008b). This displacement current model

has largely been applied to analyze open-hysteresis behavior (where the forward and

reverse current-voltage characteristic do not intersect), while lacking specificity for

pinched hysteresis (where the current intersects at or near the origin on the forward

and return path, and which is necessary for memristor classification) (Chua, 2014).

Although the mechanics governing transport in PEDOT:PSS have been explored

94



extensively, few thorough attempts have been made toward numerically modeling such

complex hysteresis behavior. Hysteresis response can manifest from a wide variety

of processing conditions and device structure considerations, such as the choice of

substrate, surface electrode, and PEDOT:PSS conductivity (as varied through solid

content). Additionally, various conditions during characterization such as the spectra

of illumination exposure, latent dwell time, and the number of repeated measurements

on the same device can modify the PEDOT:PSS chemical structure, thereby having a

significant effect on the shape and position of the hysteresis profile. Understanding the

relative significance of factors that contribute to I-V hysteresis in PEDOT:PSS film-

based devices provides a framework toward optimizing and diagnosing performance

degradation in hybrid organic/inorganic optoelectronic devices.

In this study, a combinatorial experimental approach was used to generate a se-

ries of first-order empirical models from sets of extracted I-V hysteretic parameters,

utilizing a multiple linear regression (MLR) methodology. Stepwise model selection

techniques were employed to form a decision criteria toward filtering potential ex-

planatory variables. The refined models were used to decouple the magnitude of

relative effects of material, processing, and testing conditions on the hysteretic I-V

behavior of PEDOT:PSS/ZnO thin film-based devices.

A.3 Experimental Details

Highly doped Si (p-type boron doped 20 mΩ-cm) and indium tin oxide (ITO, Delta

Technologies, CG-61IN) were prepared by immersing in Piranha (70% sulfuric acid,

30% hydrogen peroxide) for 10 minutes and buffered oxide etchant (2% hydroflouric

acid) for 5 minutes. A 1 µm ZnO electron transport layer was deposited via mag-

netron sputtering system (Lesker PVD 250) atop the substrates. An oxygen plasma

treatment (200 W for 15 minutes, Tegal Asher) was applied to substrates and ZnO
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thin films prior to spin coating in order to clean and passivate coated surfaces. Two

conductive grades of PEDOT:PSS—Heraeus-Clevios PH 500 (1.0-1.3% solid content)

and P VP AI 4083 (1.3-1.7% solid content)—were spun onto Si and ITO/SiO2 sub-

strates at 5000 rpm for 30 seconds, and were subsequently hotplate-baked at 160 ◦C

for 5 minutes, each. Metallization was performed with an electron beam evaporator

system (CHA 600-SE) with Al, Au, and Ag contacts, with five sets of circular patterns

from ascending diameters of 300 - 700 µm. A schematic of device configurations and

energy band diagrams are shown in Figure A.1.

Post-fabrication, vertical capacitance-voltage (C-V) measurements were conducted

with a mercury probe system (Materials Development Corporation) with an attached

LCR meter (HP4284). Current-voltage (I-V) characteristics were collected with a

semiconductor analyzer system (Keithly 4200). Electrical testing was conducted un-

der varying illumination conditions: dark, halogen broad band white light (Princeton

Instruments TS-425), and monochromatic (λ=365 nm) ultraviolet (UVP EL Series).

Characterization was also conducted under three different voltage sweep rates: 38.5

mV/s, 50 mV/s, 71.42 mV/s. The devices were allotted a latent “wait” period of ap-

proximately 5 minutes between measurements to stabilize response from prior mea-

surements. Additionally, the effect of voltage amplitude, repeated bias stress, and

dormant time between characterization was studied by varying applied voltage from

[-3,3] V and [-5,5] V, repeating 10 voltage sweeps, and re-measuring after two years

from a representative subset of devices, respectively. Exploratory analysis was first

undertaken to screen for hysteresis behavior.

From each measurement, a set of parameters were exhaustively extracted in order

to devise a descriptive empirical model correlating the variation of hysteresis param-

eters as a function of processing and characterization conditions. These parameters

included the intersection point of the forward and return sweep, the loop areas formed
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Figure A.1: Device Structure Schematic and Band Diagram of PEDOT:PSS/ZnO
devices for (a) Si and (b) ITO Substrates

from the portions left and right of the intersection (numerically determined with a

composite Simpson’s 3/8 technique), and the axes intercepts: Voc+, Voc−, Isc+and

Isc−, in which a positive subscript refers to a forward sweep, and a negative subscript

refers to a reverse sweep (numerically determined with a modified Secant method).

The extracted parameters were tabulated and treated as response variables, while

the fabrication and testing conditions were treated as explanatory variables. Due to

the large number of regressors, a first iteration of main effects were explored, and

a series of stepwise model selection parameters including adjusted R2 (forward and

backward), Mallow’s CP, and Baysian Information Criteria (BIC) were evaluated to

compare models and to reduce the dimensionality of predictors. A refined model was

generated and analyzed with the remaining regressors for each subset of hysteresis

response variables. Post-processing of data, which included data set transformation,

parameter extraction, model generation, model selection, and model visualization

were performed in R language with the ggplot2 library.
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Figure A.2: Current-Voltage Measurements of PEDOT:PSS device with modified
(a) device size (b) voltage sweep rate (c) amplitude

A.4 Results and Discussion

A.4.1 Exploratory Data Analysis

The degree of observed hysteresis, absent of illumination, was found to be a strong

function of device size, voltage scan rate, and voltage amplitude, as illustrated in

Figure A.2 (a), (b), and (c) respectively. The asymmetric current response between

forward and reverse bias can be explained by the formation of a Schottky barrier

with PEDOT:PSS in the case of Al, leading to rectifying behavior and suppressed

conduction for negative bias. As noted by others (Lin, 2008b; Moujoud et al., 2009;

Ambrico et al., 2010), this behavior has been explained in terms of the displacement

current model, which relates the total current (∑I) in terms of the linear sum of the

resistive component (Ir) and the displacement component (Id), as shown in equation

(A.1).

∑
I = Ir + Id = Ir + (V dC

dt
+ C

dV

dt
) (A.1)

As device area (which is directly proportional to device capacitance) increases,

displacement current increases, as shown in Figure A.2(a), and is modeled by vary-

ing C in equation (A.1). Lin et al. concluded that separation distance between

electrodes directly affected the degree of hysteresis exhibited, due to a larger den-
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sity of trapped charges contributing to displacement current. The effect of voltage

scan rate is considered in the model as dV
dt

, and its relative effect on hysteresis is

experimentally confirmed in this analysis; illustrated in Figure A.2(b). The fastest

measured scan rate (71.42 mV/s) exhibited the greatest oscillatory behavior, which

is an indication of a significant density of interface trap states. Carrier trapping and

detrapping within the organic layer has been known to create large time constants for

measured current to reach equilibrium, and these trap states are unable to unfill trap

charges rapidly enough in relation to the scan rate of the voltage sweep (Ambrico

et al., 2010; Schroder, 2015). Another indicator of interface trap charges is from a

shifted capacitance-voltage (C-V) profile (A.3), which distorts and transforms due to

the contribution of the interface trap capacitance (Schroder, 2015). Finally, a larger

hysteresis loop is observed with larger voltage amplitude, which is illustrated in in

Figure A.2(c), and is considered in the voltage (V) term from equation (A.1). Under

the displacement current model, space charge accumulation at the metal/polymer in-

terface is prevalent, thereby screening the electric field and limiting carrier injection.

These observations are in agreement with prior studies indicating that the density of

stored charges is a function of the amplitude of the voltage applied, as higher potential

differences allow deeper interface states to become occupied (Majumdar et al., 2002).

Thus, the combination of these controlled factors confirm the general behavior of the

displacement current model, in which larger charge accumulation area, with deeper

trap states and less mobile trap charges increases the level of hysteresis observed.

A limitation of the displacement current model is the lack of specificity regarding

illumination. In this study, increased hysteresis was observed under illumination,

relative to dark conditions, with both broadband white light and monochromatic UV

irradiation, as illustrated in Figure A.4(a) for Al top electrode and Figure A.4(b)

for Au top electrode on conductive PEDOT:PSS devices. While other studies note
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Figure A.3: Shifted Capacitance-Voltage measurements of devices (Non-Conductive
PEDOT:PSS, Au electrode, ITO Substrate)

that UV treatment of PEDOT:PSS decreased the number of charge trapping defects

and increased conductivity of the PEDOT:PSS Chin et al. (2010), the magnetude of

displacement current, in this work, is found to amplify with illumination. A marker

for the reduced density of trap states manifests when comparing differential resistance

under illumination, in which the devices exhibited strong oscillatory characteristics

when measured in the dark, but this behavior is suppressed under UV illumination

(A.5). Reduced oscillations may reconcile why devices had greater conductivity and

stability post-illumination.

The hysteresis effect from space charge storage and traps states is found to persist

over two years of storage in air (A.6) as I-V characteristics exhibit reduced conduc-

tivity, in addition to increased oscillatory behavior. Over time, ambient moisture

chemically binds to PEDOT:PSS, increasing the density of trap states Moujoud et al.

(2009, 2010). Despite the dormant chemical modification of PEDOT:PSS, illumina-
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Figure A.4: Current-Voltage Measurements of PEDOT:PSS device as a function of
illumination for (a) Al and (b) Au contacts

Figure A.5: (a) Current-Voltage characteristics and (b) Differential Resistance of
device (Conductive PEDOT:PSS, Au electrode, Si Substrate) illustrating degree of
oscillatory behavior indicating reduced trap states with illumination

tion is still found to produce a net increase in measured hysteresis, suggesting that

charge accumulation along the ZnO/PEDOT:PSS interface and into the space charge

region dominates over reduced trap states in the PEDOT:PSS layer alone (Ambrico

et al., 2010).

A.4.2 Descriptive Analysis and Modeling

A series of first order multiple linear regression (MLR) models were generated to

decouple the relationship between numerical markers for hysteresis and their underly-
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Figure A.6: Degradation of PEDOT:PSS device conductivity for dark and illu-
minated test conditions over time. Note increased hysteresis behavior and reduced
oscillatory behavior with UV illumination.

ing relative underlying causes stemming from device processing and characterization

considerations. Due to its fairly anomalous behavior, which has been attributed to

several factors including polarized and mobile ions (Richardson et al., 2016; Meloni

et al., 2016), a theoretical model that perfectly describes I-V hysteresis across organic

polymers is highly impracticable, especially if derived from Fermi-Dirac statistics

for solid-state semiconductors. This analysis, instead uses an empirical parametric

least squares approach toward estimating first-order response (magnitude and sign)

from the set of probable factors that contribute to hysteresis. While hysteretical re-

sponses would be expected to locally optimize, as uncovered through Response Surface

Methodologies (RSM), axial (face-centered) experimental points were not considered

in this study, lending less statistical power to model specifications including interac-

tion and higher order terms. A simplistic first order linear specification is reported
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due to the constrained nature of the experimental exploration space—predominately

due to the range of device sizes available during fabrication. As determined through

experimental screening, stepwise model selection, and model refinement, the factors

of Device Area and Illumination accounted for most of the variation of the hysteresis

loop parameters (see Supporting Information). Additionally, all other explanatory

variables in each model were treated as categorical (with an unambiguous evolution

in hysteresis response from each categorical level). The estimators for each set of

model parameters are tabulated, and the results are visualized for each numerical

hysteresis response marker, along with an overlayed 95% confidence interval.

Current and Voltage Axis Intercepts

The short circuit current (Isc, graphically defined as the intercept along the current

axis) and open circuit voltage (Voc, graphically defined as the intercept along the

voltage axis) were tabulated and modeled for both forward and reverse I-V sweeps.

Included in this model are device subsets composed of non-conductive PEDOT:PSS

with Al and Au contacts (Note: all other characterized subsets intercepted the origin

and therefore did not exhibit an appreciable Isc). These results are summarized

throughout Figure A.7.

The variation of Isc is illustrated in Figure A.7 (a) for forward (Isc+) and (b) for

reverse (Isc−) I-V traces. As previously noted, the magnitude of Isc predominately

increases as a function of contact size and illumination. For a conventional diodic solar

cell, the total current is expressed as a linear combination of drift/diffusion transport,

displacement current, and an illumination current (IL), as shown in equation (A.2)

and (A.3), and each component is a strong function of device area (Sze and Ng, 2006).

I = Is[exp(
qV

kT
)− 1] + (V dC

dt
+ C

dV

dt
)− IL (A.2)
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Figure A.7: Short Circuit Current (Isc) for (a) forward and (b) reverse traces and
Open Circuit Voltage (Voc) for (c) forward and (d) reverse traces as a function of
device size, illumination, and contact electrode

where illuminated current is:

IL = Aq
∫ ∞
hν=Eg

dΦ
dhν dhν (A.3)

However, absent of illumination, this increase is less pronounced, suggesting that

the variability of Isc is a stronger function of IL and Id interacting, rather than to Id

alone. Broad band white light illumination consistently results in less short circuit
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current than UV illumination, because as noted in equation (A.3), the integral of total

incident light flux only considers wavelengths greater than the band edge energy of

ZnO. Illumination at hν ≥ Eg(ZnO) is a stronger driver for Isc precisely because photo-

generated carriers inject into the organic layer, and occupy trap states before able

to sweep across the depletion region. As a result, carriers accumulate at the metal-

polymer interface, shifting the total current away from equilibrium (dark) levels.

A summary of extracted open circuit voltages are presented in Figure A.7 (c)

for forward (Voc+) and (d) reverse (Voc−) traces, subsetted by contact electrode.

In all cases, the effect of illumination (progressing from dark, to white light, to UV)

increases the magnitude of the Voc measured. However, the direction of voltage sweep

in correspondence with the device size and metal work function, affects whether the

magnitude of Voc increases or decreases. With Au, the magnitude of Voc+ increases

(becomes more negative) with increasing device size, however, in the reverse case, Voc−

decreases, corresponding to a left-shift of the hysteresis loops. For Al, the opposite

effect is observed: with increasing device sizes, the forward trace (Voc+) is observed

to increase while the reverse trace (Voc−) decreases; and the net transformation is

a right-shift in the hysteresis profile. Assuming a metal-semiconductor interface in

which thermionic emission dominates, the effect of superposition from illumination

can be described as (Sze and Ng, 2006; Fonash, 2010):

Voc = φB + kT

q
ln( Jsc

A∗T 2 ) ≈ φB + kT

q
ln(IL

Is
) = φB + kT

q
[ln(IL)− ln(Is)] (A.4)

From equation (A.4) Voc is both a function of the Schottky barrier height (φB), and

saturation current (Is). Despite similar Schottky barrier heights, the negative dipole

from the PEDOT:PSS surface, in tandem with Al (anodic index ≈ 0.9 V) having a

dissimilar nobility to that of Au (anodic index ≈ 0 V), modifies the ratio of IL to Is.

Thus, the difference between saturation and illuminated current, stemming from the
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relative positions of the top metal electrodes along the Galvanic series, reverses the

coordination of Voc shift (Ya-Bin et al., 2011; Nakano et al., 2007).

The empirical MLR model describing the relationship of each directional intercept

is shown in equation (A.5) with model estimator coefficients in Table A.1 (Note:

Contact and Illumination are treated as dummy variables referenced to Al and Dark

levels, respectively).

Isc+

Isc−

V oc+

V oc−



= β0+β1×Contact(Au)+β2×Illum.(Light)+β3×Illum.(UV )+β4×DeviceSize

(A.5)

Current and Voltage Intersection

The point of intersection between forward and reverse sweeps was extracted for all PE-

DOT:PSS devices that exhibited pinched hysteresis. Ideally, this intersection should

occur at the origin, however a subset of devices (Si substrate, non-conducting PE-

DOT:PSS, and Au top contact) exhibited shifted intersection voltage and intersection

current. These results are illustrated in Figure A.8, and the model describing the in-

tersection behavior are presented equation (A.6) with model estimator coefficients in

Table A.2.

I intersection

V intersection


= β0+β1×Illum.(Light)+β2×Illum.(UV )+β3×DeviceSize (A.6)
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Response β̂0 β̂1 β̂2 β̂3 β̂4

Isc+

-3.645 ×10−10

***

(8.064 ×10−11)

3.019 ×10−10

***

(5.852 ×10−11)

2.058 ×10−10

**

(7.482 ×10−11)

3.673 ×10−10

***

(7.054 ×10−11)

1.761 ×10−7

***

(2.515 ×10−8)

Isc−

3.416 ×10−10

*

(1.294 ×10−10)

-4.901 ×10−10

***

(9.391 ×10−11)

-5.188 ×10−10

***

(1.150 ×10−10)

-1.312 ×10−9

***

(1.150 ×10−10)

-2.067 ×10−7

***

(4.197 ×10−8)

Voc+

0.06626

(0.12584)

-0.63629

***

(0.09132)

-0.02882

(0.11676)

0.10762

(0.11008)

97.22499

*

(39.24511)

Voc−

0.88797

***

(0.06609)

0.18099

***

(0.04796)

0.28652

***

(0.06132)

0.58511

***

(0.05781)

-220.13372

***

(20.61129)
Table A.1: Model estimators of current and voltage intercepts for reverse and for-
ward traces. Standard error of the coefficient reported in parenthesis below coefficient.
Note: asterisks after the coefficients indicates the level of statistical significance as
follows: *** indicates the coefficient is statistically different from zero at the 1% level,
** at the 5% level, and * at the 10% level.

Both intersection current and intersection voltage increase for each illumination

level, but intersection voltage decreases and intersection current increases with device

size, respectively. Previous exploration of non-zero intersection behavior has been

linked an interaction of distinct memory effects (namely memristive, memcapacitive,

and meminductive) to the quadrant in which the intersection occurs (Di Ventra and

Pershin, 2011; Qingjiang et al., 2014). Because non-conductive PEDOT:PSS has a

greater density of trap states, the memcapacitance effect will be more pronounced for

greater device area. Here, the competing reduction of the intersection voltage, with an

increasing intersection current lead to an overall increase of deviation from the origin

(0 V, 0 A). Shifting into the first quadrant indicates that a stronger memcapacitance

effect will be expressed with increasing device area and illumination levels.
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Figure A.8: Intersection (a) voltage and (b) current between forward and reverse
traces as a function of illumination and device size

Loop Area

The total loop area represents an extraction of the area between forward and reverse

traces of the I-V measurements. Figure A.9 shows the extracted loop areas for devices

on (a) Si and (b) ITO, subsetted by metal electrode and PEDOT:PSS conductivity.

The MLR model describing the total loop area is expressed in equation (A.7) with

model estimator coefficients enumerated in Table A.3.

TotalArea = β0 + β1 × Substrate(Si) + β2 ×Grade(NC) + β3 × Contact(Au)

+β4 × Illum.(Light) + β5 × Illum.(UV ) + β6 ×DeviceSize
(A.7)

In most cases the total loop area increases for every increase in device area, and

with each progressive illumination level. The exceptions to this include conductive

PEDOT:PSS with a Si substrate and Au top electrodes, as well as ITO substrates with

Al top electrodes. In the case of the former, hysteresis is suppressed with increasing

device size, and in the case of the latter, it is suppressed with increasing illumination
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levels. For the first exception, a cathodic material over heavily doped n-type Si,

as well as larger device area, increases conduction paths for carriers through the

conductive PEDOT:PSS medium, thereby increasing the rate at which carriers can

de-trap. The second exception is found for Al on ITO, in which the combination

of an anodic contact over a p-type substrate reduces hysteresis in current traces, as

carriers photo-generate from the ZnO layer. Both phenomena have the net effect of

suppressing hysteresis, thereby reducing the total area measured within the I-V loops.

A.5 Conclusion

In this work exploratory analysis and numerical modeling of hysteresis behavior in

current-voltage characteristics of PEDOT:PSS films have been investigated. Several

device processing parameters and characterization conditions have been confirmed

to affect I-V hysteresis, and these factors were assessed in terms of displacement

current theory. A comprehensive series of specified parametric MLR empirical mod-

els describing the scale and direction of hysteresis profile transformation (e.g. loop

Response β̂0 β̂1 β̂2 β̂3

Iintersection

-5.926 ×10−10

(3.691 ×10−10)

1.008 ×10−9

*

(3.520 ×10−10)

4.195 ×10−9

***

(3.520 ×10−10)

6.926 ×10−7

***

(1.284 ×10−7)

Vintersection

1.57703

***

(0.05891)

0.214

**

(0.05619)

0.436

***

(0.05619)

-158.40232

***

(20.50364)
Table A.2: Model estimators for intersection points between reverse and forward
traces. Standard error of the coefficient reported in parenthesis below coefficient.
Note: asterisks after the coefficients indicates the level of statistical significance as
follows: *** indicates the coefficient is statistically different from zero at the 1% level,
** at the 5% level, and * at the 10% level.
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Estimator Coefficient

β̂0

5.833 ×10−5

**

(2.228 ×10−5)

β̂1

-1.547 ×10−4

***

(1.464 ×10−5)

β̂2

6.721 ×10−5

***

(1.464 ×10−5)

β̂3

-1.093 ×10−5

(1.462 ×10−5)

β̂4

2.706 ×10−5

(1.780 ×10−5)

β̂5

6.565 ×10−5

***

(1.803 ×10−5)

β̂6

1.566 ×10−2

*

(6.532 ×10−3)
Table A.3: Model estimators for Total Hysteresis Loop Area. Standard error of
the coefficient reported in parenthesis below coefficient. Note: asterisks after the
coefficients indicates the level of statistical significance as follows: *** indicates the
coefficient is statistically different from zero at the 1% level, ** at the 5% level, and
* at the 10% level.
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Figure A.9: Loop Area between forward and reverse traces for (a) Si and (b)
ITO substrates as a function of device size and illumination, subsetted by contact
metal and PEDOT:PSS conductivity. (Note: C and NC refer to conductive and
non-conductive PEDOT:PSS respectively)

area and functional shifting) have been generated and analyzed. With an extended

experimental exploration space, processing parameters could conceivably be investi-

gated to minimize hysteretical response as a design objective. Evaluated in terms of

fundamental electronic transport, these models provide a predictive framework for

estimating general transformations of hysteresis behavior from the I-V characteris-

tics of hybrid organic/inorganic semiconducting polymers. This work represents a

principle undertaking in developing hysteresis mitigation objectives through a deeper

understanding of how the studied processing and characterization factors interact to

form the resultant hysteresis.
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APPENDIX B

ZNO NANOWIRE BASED VISIBLE-TRANSPARENT ULTRAVIOLET

DETECTORS ON POLYMER SUBSTRATES

B.1 Abstract

The fabrication and characterization of fully visible-transparent and flexible ultra-

violet (UV) detectors, on polyethylene 2,6-naphthalate (PEN) with active channels of

zinc oxide (ZnO) nanowires and ohmic indium tin oxide (ITO) contacts, are reported

and discussed. The fabricated detector has an average transmittance of 80% in the

visible spectral range and is most responsive at or below 370 nm, the onset of UV light,

with a UV/vis rejection ratio of 1.42 × 103. A five orders of magnitude difference

in the photocurrent, between UV illumination and dark conditions, is also observed.

The single-sided UV response further shows that the PEN substrate performs well

as a UV reflector. The noise analysis on the nanowire UV detector indicates a noise

equivalent power (NEP) and detectivity (D∗) of 5.88 × 10−13 WHz−0.5 and 2.13 ×

109cmHz0.5W−1, respectively.

B.2 Introduction

In recent years, research effort in the field of flexible and transparent electron-

ics has demonstrated the potential to completely revolutionize consumer products

(Javey, 2006; Rogers et al., 2010). Unlike the trend in microelectronics, where scaling

and performance are the driving force, flexible electronics offer the unique possibility

to create integrated devices with multiple functionalities and form factors including

implantable, conformable, and multilayer designs with visible transparency. Wide

112



bandgap UV detectors, especially those based on Zinc Oxide (ZnO), have gained par-

ticular momentum (Soci et al., 2007; Peng et al., 2010; Das et al., 2010; Law and

Thong, 2006) due to the ease of fabrication on both rigid and opaque substrates.

Most recently, a flexible UV detector based on ZnO thin film has been reported (Ji

et al., 2010), however no report exists of a visible-transparent, nanowire (NW)-based

UV detector on a transparent substrate with both transparent active material and

transparent contact material. An “all-visible” transparent UV detector, as described

below, would enable novel applications including the potential to be attached to win-

dows, or atop other devices which require full exposure to visible light. These devices

will eventually further the goals of transparent thin-film electronics, but for now can

be used to control automated blinds on smart-windows and support UV photovoltaics.

Zinc Oxide has been explored as an active material for UV detectors because of its

large band gap that falls in the UV spectral range (370 nm or 3.3 eV). Furthermore,

ZnO NWs grown from a high temperature process are found to be transparent and

mechanically flexible (Zhou et al., 2008), and their one dimensional formation lend

themselves to reduced linear or planar structural defects (Martensson et al., 2004).

Additionally, the likelihood of unwanted trap-state emissions, most notoriously the

green band from ZnO thin films and solution-grown ZnO NWs (Ozgur et al., 2005;

Unalan et al., 2008; Kohan et al., 2000; Liu et al., 2004; Vanheusden et al., 1996), is

reduced. Therefore, these high-quality NWs were used to fabricate fully transparent

and flexible UV detector devices on polyethylene 2,6-naphthalate (PEN) substrates

with indium tin oxide (ITO) contacts. The PEN polymer is chosen for its improved

resistance to oxidation and its ability to withstand temperatures; higher than com-

parable polymers such as polyethylene terephthalate (PET) and polytrimethylene

terephthalate (PTT) (Mackintosh and Liggat, 2004). Furthermore, PEN has the

unique property of exhibiting very low transmittance for shorter UV wavelengths,
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Figure B.1: (a) Scanning electron micrograph of ZnO NWs grown in vertical ar-
ray (inset: top view–scale bar 1 µm) and (b) high resolution transmission electron
micrograph of ZnO NW indicating highly ordered single crystal structure.

specifically below 383 nm in comparison to 313 nm for PET (Scheirs and Long,

2005). This makes PEN a suitable candidate for single-sided detection, with high

transmittance in the visible range and high rejection in a wider UV range.

B.3 Experimental Details

In this study, the NWs were grown by a typical high temperature Vapor-Liquid-

Solid (VLS) process (Greene et al., 2005). Zinc oxide, in high purity powder form,

was mixed with graphite in a 1:1 molar ratio and placed at the center of a tube

furnace (930 ◦C). Silicon (100) substrates, with sputtered ZnO thin film (20-30 nm),

were placed along the tube at the 700 ◦C growth zone. The flow rates of 110 sccm for

argon and 3 sccm for oxygen were maintained at a steady state pressure of 150 Torr.

The Field Emission Scanning Electron Micrograph (FESEM), shown in Figure

B.1(a), exhibits an array of vertically aligned NWs about 3-10 microns in length

with hexagonal ends that are about 200 nm in diameter. Figure B.1(b) is the high
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resolution transmission electron micrograph (HRTEM) of a NW; a well ordered single-

crystal material free of line defects, with d0001 of 0.52 nm are observed. The absence

of deep level defects are further supported by room temperature (295 K) photolu-

minescence (PL) data, collected with a HeCd laser (325 nm line), in Figure B.2. A

strong emission due to the band edge transition, with a full width at half maximum

(FWHM) of 18 nm, and the absence of dominant broad band peaks in the visible

spectral range are clear. The inset in Figure B.2, from low temperature PL (12 K),

demonstrates a focused narrow band edge emission peak at approximately 369 nm.

Figure B.2: Room temperature photoluminescence (PL) of ZnO NW indicating
band edge energy peak and the lack of broad band peaks is attributed to high tem-
perature growth (inset: low temperature PL).

The NWs were transferred onto the PEN substrate using a mechanical slide setup

(Fan et al., 2008). The contacts were photolithographically pattered on each end of

the NWs and an ITO blanket was deposited using an electron-beam evaporator. The

as-deposited ITO is low density, amorphous, and opaque, but after post-liftoff heat

treatment (Han et al., 2006) in oxygen, which was optimized to 150 ◦C for 6 hours, the

ITO progressively became more transparent as shown in the device of Figure B.3(a).
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B.4 Results and Discussion

The current-voltage characteristics of the two-terminal metal-semiconductor-metal

(i.e., ITO-ZnO-ITO) UV detector device are illustrated in Figures B.3(b) and B.3(c).

When illuminated with an UV lamp at 365 nm wavelength and power density of 48

mW/cm2, the current response at 3 V bias demonstrates a low dark current level of 2

× 10−11 A and a high photoconducting current of 6 × 10−6 A. The highly linear trace

at low bias indicates good ohmic behavior due to the ZnO-annealed ITO contact.

Note, annealing the ITO electrodes resulted in the crystallization and densification,

which resulted in the sharp drop in resistivity due to increased mobility (Steckl and

Mohammed, 1980). An 80% transmittance was produced by the annealed ITO con-

tacts, and from four-point probe measurements, a resistivity of 2.85 × 10−4 Ω-cm

was determined. Furthermore, as noted in the logarithmic plot, the photocurrent

increases by about 5 orders of magnitude when the single-NW device is illuminated.

Note, at least 20 devices were tested in this manner with most exhibiting comparable

characteristics. In relation to similar ZnO UV detectors, the result of this work is

superior to reported ratios of illuminated to dark currents (Soci et al., 2007; Peng

et al., 2010; Ji et al., 2010).

The spectral photoresponse of the device was determined using a grating monocro-

mator setup (Newport QE/IPCE) that measured the photocurrent at wavelengths

from 300 nm to 700 nm. The ZnO UV detector was operated in air at a bias of 1.5 V,

applied through a load matching resistor (100 kΩ) and the photocurrent signal (Iph)

was measured with a lock-in amplifier. In addition, a reference photocurrent (Iref )

was also measured using a detector of known responsivity (Rref ). The wavelength

dependence of the photoresponse ( Iph
Iref

x Rref ) is shown in Figure B.4. Note, within

the 360-380 nm range, which parallels the FWHM of the PL data, there is a sharp
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Figure B.3: (a) Fully fabricated visible transparent UV detector after heat treat-
ment (inset: Schematic of nanowire device) (b) IV characteristics under 356 nm UV
illumination (black square) and dark conditions (red triangle), Linear plot and (c)
Logarithmic plot. Note, the differential resistance of the dark current is found from
the inverse slope of the IV characteristics in (b) and is determined to be 1.59×1011Ω

attenuation in the photoresponse. This result further suggests that the fabricated

device performs well as a UV-only detector, as opposed to exhibiting absorption from

impurity levels in the visible range that are typical of low-temperature, solution-grown

ZnO NW detectors. Additionally, the rejection ratio of UV to visible light, defined

as the ratio of the responsivities at 360 nm and 410 nm, is 1.42 × 103 for this fully

visible-transparent UV detector.

Figure B.5a illustrates the novel functionality, enabled by the transparent sub-

strate, in which both the front and back (or reverse) side I-V characteristics of the

NW device on PEN can be determined. The schematic for the test setup is shown

in the right inset and the results indicate that although PEN is transparent in the

visible range, exhibiting an illuminated current level of 56 mA at 1.5 V from the front

side, a significantly reduced performance (0.298 mA) from reverse-side illumination

occurs due to cutoff transmission wavelength of PEN in the lower energy UV range.
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Figure B.4: Measured spectral responsivity of ZnO NW detector at 1.5V bias. Note,
the responsivity at the cutoff wavelength of 360 nm is 2.98×10−7 A/W.

A plot of the device’s response to the dark condition is plotted for comparison. Thus,

the magnitude of reduced current from reverse-side illumination may be attributed to

the reduced transmittance of PEN; specifically, a reduction in transmittance of three

orders of magnitude results in three orders of magnitude difference in the current level

between the front and reverse side illuminations.

The photoconductive gain (G) is an important performance metric used to char-

acterize photodetectors. It is defined as the ratio of the number of electrons collected

to the number of photons absorbed per unit time as follows:

G = Ne−

Nph

=
Iph
e
P
hν

(B.1)

where Iph is the photocurrent at the operating voltage, P is the total power im-

pinging on the wire, h is the bandgap energy of ZnO, and e is the electronic charge.

By geometrically modeling the NW as a cylinder that is exposed on one half, assum-

ing a NW length of 5 µm and a diameter of 200 nm and with an external light power

density of 48 mW/cm2, the photoconductive gain at 3 V was calculated to be 4 ×

118



105. Note, the value of G is quite comparable with other reports at this specified

operating level (Soci et al., 2007); the considerable gain being largely attributed to

(a) reduced electron transit time due to the miniaturized dimensions of the active

NW channel, and (b) the long carrier lifetime brought upon by ZnO NW surface as

explained below (Soci et al., 2007).

The use of ZnO NWs for UV detection was reported by Soci et. al. and the

mechanism for photoconductive gain has been attributed to the high density of surface

trap states; the high surface-to-volume ratio make these trap states a dominant factor.

The trap states apparently stem from adsorbed oxygen molecules that capture free

electrons under no illumination or illumination with sub-band gap energy of ZnO. The

consequent formation of an interface depletion layer with low surface conductivity

leads to the suppressed conductivity under dark conditions. Under UV illumination,

electrons and holes are created within the ZnO NW. The photogenerated holes readily

migrate to the surface to neutralize the charged oxygen molecules. Consequently, the

free electrons, with high carrier lifetimes, directly contribute to the high conductivity

within the depletion-free NW, and can be efficiently collected at the electrode.

Figure B.5: (a) Transmittance of bare PEN on a logarithmic scale (inset: schematic
of test setup for illumination) and (b) Current-Voltage characteristics for front (red
arrows on top) and reverse (blue arrows under bottom) side illuminations on device
compared to dark conditions.
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The fabrication of UV detectors on PEN serves as a good application on a win-

dow, for example, when UV detection coupled with the simultaneous blocking of

harmful UV energy from transmission needs to take place. Moreover, exploration

of other polymer substrates, with shorter cutoff wavelengths, could enable detection

on both sides if required. Reports of NW devices fabricated on PET (Zhang et al.,

2009) would allow for photodetection of wavelengths at least 70 nm below PEN and

devices fabricated on PTT (Zhang et al., 2004) would even permit another 60 nm

below PET. The current work on fully visible-transparent application and previous

studies on using ZnO NWs for UV detection may enable a variety of innovative design

architectures in the future.

Finally, two figure of merits characterizing the noise of the fabricated photodetec-

tor, namely the noise equivalent power (NEP) and detectivity (D∗), were also analyzed

at room temperature. It is widely known that defects in ZnO (i.e., Zn interstitials

and O vacancies) give rise to the observed n-type behavior (Banerjee and Chattopad-

hyay, 2005; Xiang et al., 2007; Cao et al., 2007); the device’s dark current is evidence

of free electrons. Shot noise is a consequence of the dark current of the nanowire

detector, and has a noise magnitude of 5.83 × 10−13 WHz−0.5, which exceeds both

the Johnson noise (7.66 × 10−14 WHz−0.5) and 1/f noise at the measured amplifier

bandwidth of 1 kHz. Thus, since the thermally-limited model may not be applicable,

NEP and D* are evaluated using the following relations(Jiang et al., 2007): NEP =

( 1
Rλ

)*(2qId+4kT/Rν)1/2 and D∗ = (A*f)1/2, where Rλ is the responsivity at the se-

lected detection wavelength of 360 nm, q is the elementary electronic charge, Id is the

dark current at the detection bias of 1.5 V, Rv is the device differential resistance, k

is the Boltzmann constant, and A is the device area, and f is the amplifier bandwidth

(Sze and Ng, 2006). Note, Rv and Id from Figure B.3 are 1.59 × 1011 Ω and 9.42

× 10−12 A, respectively. For an exposed surface area (A) of 1.57 × 10−13 m2 and
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Rλ of 2.98 × 10−7 A/W, the room-temperature NEP is found to be 5.88 × 10−13

WHz−0.5 and the corresponding D∗ is 2.13 × 109 cmHz0.5W−1. The NEP of this work

is comparable to thin film UV detectors; this is attributed to the low dark current,

which is also an indication of high quality ZnO nanowires. Typically, thin-film ZnO

UV detectors exhibit higher D∗ compared to NW-based detectors; for unprotected

single-nanowire devices, the lower D∗ may be attributed to more pronounced carrier

trapping and detrapping effects, stemming from a large surface-to-volume ratio, and

consequently a much smaller effective device area (Lu et al., 2007). Here, a summary

of various literature reports for comparison with the current data is given in Table 1.

B.5 Conclusion

Fully visible-transparent and flexible UV detectors have been fabricated and char-

acterized by using high quality ZnO NWs and ITO electrodes on a PEN substrate.

The photoconductive properties on the resultant devices have been thoroughly ex-

amined, which indicate a five orders of magnitude difference in the photocurrent

difference between UV illumination and dark conditions. In addition, the rejection

ratio of the NW devices’ responsivity to both the UV and visible spectrum was found

to be 1.47 × 103, which is quite large and comparable to related reports. The pho-

tocurrent response of the ZnO NW detector to the reverse-side exposure of light was

studied and found to be a function of the cutoff transmittance frequency of PEN.

Combined with the substantial photoconductive gain (G=4 × 105), the fabricated

device performs well as a single-sided and fully visible-transparent UV detector. The

noise analysis of the nanowire UV detector indicates a noise equivalent power (NEP)

and detectivity (D∗) of 5.88 × 10−13 WHz−0.5 and 2.13 × 109cmHz0.5W−1, respec-

tively. A comparison of noise parameters, in detectors employing ZnO in various

geometries, shows the efficacy and potential of NW based devices.
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ZnO material Illuminated/

dark current

(@ 3 V)

Rejection

ratio

(UV/vis)

Photo-

conductive

gain

NEP

(WHz−0.5)

Detectivity

(cmHz0.5W−1)

Nanowire

(Soci et al.,

2007)

7.5×104 4.3 × 101

(air)

2 × 107 NR NR

Thin film

(Ji et al.,

2010)

1.61×103 1.56 × 103 NR NR NR

Nanowire

(Lu et al.,

2007)

20 10 NR 7.89×10−11 1.9×108 @2V

Thin film

(Young et al.,

2007)

104 103 NR 3.17×10−13 2.23×1012@1V

Thin film

(Jiang et al.,

2007)

NR 5×105 NR NR 1.37×1011@3V

Nanowire

(this work)

105 1.42 × 103 4 × 105 5.88×10−13 2.13×109@1.5V

Table B.1: Performance Metrics of ZnO UV Detectors
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APPENDIX C

VAPOR-TRANSPORT SYNTHESIS AND ANNEALING STUDY OF

ZNXMG1−XO NANOWIRE ARRAYS FOR SELECTIVE, SOLAR-BLIND UV-C

DETECTION

C.1 Abstract

This work uniquely reports the synthesis of ZnxMg1−xO nanowires and submi-

cron columns by utilizing a traditional carbothermal reduction process toward form-

ing ZnO nanowire ultraviolet detectors, while simultaneously utilizing Mg3N2 as the

source of Mg. To investigate the relationship between Mg content in the ZnO lattice

and the cutoff wavelength for high spectral responsivity, the nanowires were annealed

in a series of designed conditions, while chemical, nanostructural, and optoelectronic

characteristics were compared before and after treatment. Post-anneal scanning elec-

tron micrographs revealed a reduction of the average ensemble nanowire dimensions,

which was correlated to the modification of ZnO lattice parameters stemmin from

Zn2+ dissociation and Mg2+ substitution (confirmed via Raman spectroscopy). Anal-

ysis of cathodoluminescence spectra revealed a blue-shift of the peak alloy band edge

emission along with a red-shift of the ZnO band edge emission; and both were found to

be strong functions of annealing temperature. The conversion of Zn2SiO4 to Mg2SiO4

(in O2) and MgSiO3 (in Ar), was found to correspond to transformations (shifting

and scaling) of high energy luminescence peaks, and was confirmed with XRD anal-

ysis. The tunability of the cutoff photodetection wavelength was evaluated as the

nanowire arrays exhibited selective absorption by retaining elevated conduction un-

der high-energy UV-C irradiation after thermal treatment, but exhibiting suppressed
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conductivity and a single order of magnitude reduction in both spectral responsivity

(Rλ) and photoconductive gain (G) under UV-A illumination. Noise analysis revealed

that the variation of detectivity (D∗) depended on the regime of ultraviolet irradiation,

and that these variations are related to thermal noise resulting from oxygen-related

defects on both nanowire and substrate surfaces. These results suggest a minor de-

sign tradeoff between the noise characteristics of thermally treated ZnMgO nanowire

array UV detectors and the tunability of their spectral sensitivity.

C.2 Introduction

Ultraviolet, solar-blind communication systems that exploit atmospheric scatter-

ing to propagate signals toward a non-line of sight (NLOS) receiver (with ranges on

the order of kilometers) have been examined extensively, yet the detectors in these

receiver systems have largely been dominated by bulky and costly photomultiplier

tubes (PMT) (Chen et al., 2008; El-Shimy and Hranilovic, 2012; Yang et al., 2014).

Semiconductor-based deep-UV detectors have consequently become of great inter-

est due to their potential advantages of producing low-cost, low-power-consumption,

highly scalable solutions. While ZnO nanowire-based photodetectors have been heav-

ily investigated, this material system only exhibits a cutoff detection corresponding

to the band edge energy of ZnO in the UV-A spectrum (3.10-3.94 eV) (Ting Li et al.,

2001; Collins et al., 2002; Cui et al., 2016). Substitutional doping of Mg with ZnO, on

the other hand, has been described as a means of engineering the bandgap of a ternary

ZnxMg1−xO system as high as a 5.8 eV for solar blind photodetectors (Tang et al.,

2010; Liu et al., 2010; Lange et al., 2011; Vanjaria et al., 2016). Although Mg has been

reported as a feasible dopant to ZnO (due to the similar ionic radii of Zn2+ and Mg2+)

(Hwang et al., 2004; Liu et al., 2005), Mg/ZnO alloy systems have also shown to phase

segregate for high Mg content (Huso et al., 2007). Thus, the development of reliable
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techniques toward synthesizing aligned ZnO nanowires, and appreciably incorporat-

ing Mg during synthesis is of great significance. Prior work investigating ZnMgO

nanostructures have been reported based on deposition methods, which have ranged

from: molecular beam epitaxy (Pietrzyk et al., 2014), metal-organic chemical vapor

deposition (Kim et al., 2011; Thierry et al., 2012), pulsed-laser deposition (Polyakov

et al., 2009), hydrothermal techniques (Liu et al., 2010; Shimpi et al., 2009), RF mag-

netron co-sputtering (Kar et al., 2008), and vapor-phase transport (Zhou et al., 2009;

Tang et al., 2010; Vanjaria et al., 2016). The vapor-phase transport technique, yields

highly crystalline nanostructures and is a relatively straightforward synthesis route,

able to encompass equilibrium formation in one step, rather than necessitating ex-situ

incorporation. Additionally, understanding the changes in optical and physical prop-

erties due to post-growth thermal treatment of ZnMgO nanowires is of importance

toward tuning the cutoff wavelength for solar-blind photodetectors.

In this study, ZnMgO nanowires and submicron columns were synthesized on Si via

two equilibrium processes occurring simultaneously: (1) the carbothermal reduction

of ZnO and (2) the incorporation of Mg from dissociated Mg3N2, which to the best

knowledge of the authors has not been reported. Furthermore, a controlled study

varying annealing environment and annealing temperature was conducted, demon-

strating an evolution of the chemical, spectral, and optoelectronic properties of the

synthesized ZnMgO nanostructures. Assessed both before and after thermal treat-

ments, these modified characteristics were investigated via Field Emission Scanning

Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray

diffraction (XRD), Raman spectroscopy, cathodoluminescence (CL), and current-

voltage (I-V) behavior. The structural changes of ZnMgO nanowires manifested as

modifications of aspect ratio, while also correlating to modified estimates of Mg in-

corporation due to each annealing condition. Analysis of spectral responsivity and
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Anneal

Environment

Anneal

Temperature (◦C)

2θ Peak

(100) Plane

2θ Peak

(002) Plane

c (Å) a (Å)

Control Control 31.71708287 34.39533709 5.21 3.25

Ar 650 31.86748429 34.40787054 5.21 3.24

Ar 900 31.96775190 34.52067161 5.19 3.23

O2 650 31.86748429 34.50813816 5.19 3.24

O2 900 31.99281881 34.62093923 5.18 3.23

Table C.1: Lattice Parameter modification of ZnMgO wires as a function of anneal-
ing condition

photoconductive gain between treatment and control groups was conducted under

dissimilar ultraviolet regimes to numerically compare the differences within detector

performance. By exploiting these controlled reaction kinetics from thermal annealing,

enhanced selective filtering of high energy UV-C absorption on the nanowire ensemble

is demonstrated, accompanied by suppressed conductivity under UV-A illumination.

Additionally, analysis of detector noise characteristics demonstrated that their vari-

ation from ultraviolet irradiation was linked to the increase of thermal noise from

increased oxygen-related defects, presenting potential performance tradeoffs.

C.3 Experimental Details

ZnMgO nanowires were synthesized using a vapor phase transport method com-

prised of a carbothermal reduction of ZnO in tandem with the dissociation of Mg3N2

as the source of Mg. In a single zone reaction tube furnace, a ceramic boat contain-

ing a 1:1 molar ratio mixture of ZnO and graphite powder (total 3 g) was placed

upstream to another ceramic boat containing 10 g of Mg3N2 powder. Silicon (100)

substrates were cleaned in piranha solution (70% H2SO4, 30% H2O2) and were treated

using a buffered oxide etchant (BOE, 2% HF). Subsequently, a thin 10 nm ZnO film

127



Figure C.1: Schematic of reaction mechanisms forming ZnMgO nanowires, along
with structural and chemical modifications from thermal treatment.

was sputtered (Lesker PVD 250) atop substrates to form a catalyst seed. The sam-

ples were then cleaned using acetone, isopropanol, and water before being positioned

downsteam relative to the source materials. The tube furnace was evacuated and

brought to 500 ◦C. Upon reaching the target temperature, Ar was introduced to the

system at a flow rate of 87.4 sccm, while maintaining a steady state pressure of 150

Torr throughout the process. At a rate of 500 ◦C/hour, the furnace temperature con-

tinued increasing up to 1100 ◦C, upon which the temperature was held for 24 minutes.

In the final 10 minutes of this growth period, O2 was introduced to the system at
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a flow rate of 7.5 sccm. Finally, the system was allowed to cool naturally, with-

out gas flow, under vacuum. This process produced a conformal, coarse, light-gray

deposition consisting of nanowire and submicron columnar growth on the substrate

surface. The sample was then cleaved into 5 equally sized pieces, four of which were

sealed in separate quartz ampoules of Ar and O2 environments. The sealed samples

underwent a unique combination of thermal annealing (650 ◦C and 900 ◦C), with a

fixed anneal time of 30 minutes (conditions summarized in Table 1). In all cases,

a reflective metallic reduced Zn deposit (confirmed with EDX) was found to have

condensed along the ampoule walls. The four samples, along with the unnannealed

“control” case, were morphologically characterized with a field emission scanning elec-

tron microscope (FESEM, Hitachi S4700-II, excitation 15 kV). Post-growth analysis

of nanowire size distributions was conducted by tracing radial and axial dimensions of

a sample size of approximately n=1000 nanowires, for each treatment group, along 9

equally spaced sample regions (corners, edges, center) within imageJ (image process-

ing) software. Relative Mg content was determined using an Energy-dispersive X-ray

spectroscopy (EDX) attachment by sampling the aforementioned regions along each

sample surface, at an excitation energy of 15 kV. Modification of crystal structures

was determined with a High Resolution X-ray Diffractometer (PANalytical XPert

PRO XRD, κα1=1.540598 Å, κα2=1.544426 Å). Ultraviolet luminescence spectra

were ascertained using a JEOL JSM 630 SEM with an attached cathodoluminescence

(CL) system, operating at an excitation current of 0.5 nA for UV-A analysis and 2

nA for UV-C analysis. Raman spectra were gathered with a Renishaw InVia spec-

troscopy system with a 100× objective lens, using a laser source of λ = 488 nm.

Finally, conductance modification subject to UV illumination (UVP EL Series Lamp,

45 mW/cm2) were determined with a Kiethly 4200 Semiconductor Analyzer System

within a “light-tight” micromanipulator probe-station, utilizing tungsten-tipped soft
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Figure C.2: (a) SEM Micrograph of ZnMgO nanowire array (inset: zoomed view of
single wire) (b) EDX Mapping of grown nanowires, uncovering spatial resolution of Zn,
Mg, and O2 constituents (c) Left: Measured size distributions (top: diameter, bottom:
length) of nanowires for each anneal treatment group. Right: sample micrograph of
traced nanowire lengths, post-anneal. (d) Elemental atomic ratio as a function of
anneal temperature and anneal gas

probes. Post-experimental processing of data which included cleaning, analysis, and

visualization were performed in R language with the ggplot2 library.

C.4 Results and Discussion

Figure C.2(a) shows the scanning electron micrograph (SEM) of the as-synthesized

ZnMgO nanowire arrays, with a zoomed view of a single nanowire in the inset. The

wires exhibited a vertical (yet regularly offset by a slight angle) growth pattern with

a characteristic coarse surface texture. Energy-dispersive X-ray spectroscopy (EDX)
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mapping in Figure C.2(b) further revealed the elemental composition of the nanowires,

confirming the incorporation of Mg. As seen in Figure C.2(d), EDX quantification

analysis shows that the Mg content relative to Zn extends as high as 15% upon the

initial synthesis. A growth mechanism that accounts for the carbothermal reduction

of ZnO with a Mg3N2 source yields reaction products of ZnxMg(1−x)O, ZnO, MgO,

and Zn2SiO4, as illustrated in Figure C.1. Upon subjecting the nanowires to each

anneal condition, the average relative composition of Mg in all anneal cases widens

in variance, and is most pronounced when annealed in O2 at 900 ◦C. In this case,

the median Mg content relative to Zn is found to be approximately 24%, as shown

in Figure C.2(d). Similarly reported behavior has indicated that the alloying Mg

content reaches saturation due to phase segregation, despite larger annealing temper-

atures (Liu et al., 2010). From Figure C.2(c) the effect of annealing on nanowire size

(diameter and length) does not ostensibly appear pronounced, however an analysis of

variance (ANOVA) coupled with a pairwise Tukey’s range test confirms a statistically

significant reduction in the distributions of both nanowire dimensions, especially for

higher temperature (see supporting information Table S.1 and S.2). This reduction

is explained by a modification of the underlying ZnO nanostructure, with Zn2+ va-

porizing and dissociating from the nanowire (Lamoreaux et al., 1987), allowing Mg2+

to occupy the vacancies and integrate within the crystal lattice. As presented in

Figure C.2(d), this process is evidenced by a decrease of relative Zn:O content for all

nanowire arrays, while Mg content is found to increased relative to Zn, post-anneal.

In a similar study, Kim et al. describe coating MgO nanowire surfaces with particle-

like ZnO crystallites that sinter upon annealing, giving rise to increased dimensions

(Kim et al., 2007), and was further attributed to an increase in oxygen vacancies that

allowed for the relaxation of interfacial strain (Shimpi et al., 2010). In our work, we

find that the ZnO lattice consumes Mg2+, and nanowire dimensions decrease as the
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Figure C.3: (a) Compiled XRD Spectra of as-synthesized nanowires (labeled as
control) and all nanowire anneal conditions. (b) Zoomed view of ZnO peaks emerging
from the (100) plane and (c) ZnO (002) plane

atomic exchange kinetics are reversed.

Presented in Figure C.3(a) are the x-ray diffractograms (XRD) of all annealed

ZnMgO nanostructure arrays, along with the as-synthesized case (labeled as con-

trol). From the diffraction pattern of the as-synthesized nanowires, characteristic

peaks associated with ZnO, Zn2SiO4, and MgO (JCPDS 05-0664, JCPDS 00-024-

1469, and JCPDS 04-0849, respectively) can be observed (which indicates a slight

degree of phase segregation between wurtzite ZnO and cubic MgO phases). Because
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the nanostructures retain hexagonal form, cubic MgO is not as predominant a re-

action product as ZnO. Additionally, the formation of Zn2SiO4 is largely confined

to the substrate, as confirmed by EDX mapping. As shown in Figures C.3(b) and

C.3(c), annealing results in a right-shift of the ZnO a-axis corresponding to the (100)

plane (2θ = 31.7◦), as well as the ZnO c-axis corresponding to the (002) plane (2θ

= 34.4◦), by as high as ∆2θ = 0.3◦ in both cases (Note: the presence of bimodal

peaks arises from dissimilar κα excitation energies emitted from the diffractometer).

Principally, the combined effect of a smaller electronegativity and electronic radius

of Mg2+ (Pauling electronegativity: 1.31 and 0.57 Å radius) to that of Zn2+ (Pauling

electronegativity: 1.65 and 0.60 Å radius) facilitates the formation of the Mg—O

bond and leads to the decrease of observed lattice parameters (Liu et al., 2005; Singh

et al., 2011; Wei et al., 2012; Das et al., 2013; Saha et al., 2015). Thus, Mg2+ is

effectively substituting Zn2+ without significantly modifying the ZnO nanowire crys-

tal structure, which further explains the reduced nanowire size distributions from

Figure C.2(c). However, when these modified lattice parameters are scaled up to

the average nanowire dimensions, we find that this phenomenon alone does not com-

pletely account for the observed reduction in array aspect ratio. Instead, reduced

radial and axial dimensions also stem from Zn2+ dissociating completely from the

nanowires, which is especially evident at high temperatures; and is supported by Zn

deposits found along the sealed ampoule walls. Nonetheless, a summary of the 2θ

peak shifts and lattice parameters is presented in Table C.1. In addition to shifts

of ZnO related peaks, new peaks emerge due to reactions on the substrate surface

when annealed at high temperatures. Annealing in inert Ar results in the formation

of MgSiO3 (enstatite, JCPDS 01-088-1924), whereas annealing in reactive O2 results

in the formation of Mg2SiO4 (forsterite, JCPDS 01-079-1490). Notably, the diffrac-

tion pattern and luminescence spectra of these mineral forms are a strong function of
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Figure C.4: (a) Compiled Raman Spectra of control group and all anneal conditions
(b) Extracted 1LO Phonon shift extracted from Raman spectra as a function of
temperature

crystal structure and imperfect stochiometry, and these results are further discussed

in the context of cathodoluminescence analysis.

The presence of Mg2+ behaving as a substitutional ion in a fundamentally ZnO

nanostructure is suported by the Raman spectrogram shown in Figure C.4(a). In-

creasing temperature shifts the peak position of the 1LO phonon mode from approx-

imately 585 cm−1 to 605 cm−1, as summarized in Figure C.4(b). The modification

of the 1LO peak position is found to be a greater function of temperature than that
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Figure C.5: (a.1) Raw cathodoluminescence spectra at low-energy ultraviolet range
(UV-A) near the ZnO band edge with (a.2) normalization of peak intensity and ex-
tracted peak intensities of (a.3) ZnMgO alloy and (a.4) ZnO. (b.1) Cathodolumines-
cence Spectra at higher-energy ultraviolet range (UV-C) highlighting (b.2) MgSiO3
and Mg2SiO4 formation from 170-190 nm peak shift and (b.3) Zn2SiO4 dissociation
at 230 nm with reduced peak intensity as a function of temperature and annealing
gas environment.

of the ambient gas environment, and is attributed to temperature-sensitive contribu-

tions from the LO mode of MgO (Huso et al., 2014) at 720 cm−1. Prior studies have

reported that the maximal Mg content that the ZnO crystal can accommodate is

30%, corresponding to a Raman shift (Huso et al., 2015) of 615 cm−1. A model that

maps Raman shift to Mg content was developed by Huso et al. utilizing fine control

of Mg in sputtered ZnO thin films to explain a bowing feature in the Raman spectral

response (Ye et al., 2007). By cross-referencing the change in 1LO peak position to

this model, as well as the modification of 2θ peak diffractions of ZnO, the estimated

Mg content incorporated is demonstrably increased via annealing, and agrees with

EDX analysis.

The cathodoluminescence (CL) spectra of all ZnMgO wires were measured both
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in the UV-A range, presented in Figure C.5(a.1), and in the UV-C range, presented

in Figure C.5(b.1). While the relative intensity of the band edge of ZnO (≈380 nm)

dominates all other peaks across the spectrum, the intensity of the peak is found to

decrease with increasing annealing temperature, given the same level of CL excita-

tion current. This is attributed to the increased formation of O2 defects along the

wires, leading to an increased green-band emission (see supporting information Figure

S.1). The higher energy UV-C cathodoluminescence response, as presented in Figure

C.5(b.1), was normalized to the peak at 156 nm, corresponding to the bandgap of

MgO. From the normalized response, the relative intensities of two other peaks can be

compared: specifically those between 165-183 nm (linked to the band energy ranges of

Mg2SiO4 and MgSiO3) (Shankland, 1968; Stashans et al., 2010) and at 230 nm (linked

to the band energy of Zn2SiO4) (Mishra et al., 1991; Karazhanov et al., 2009). The

progressive attenuation of the Zn2SiO4 peak intensity, shown in Figure C.5(b.3), and

the increase of the Mg2SiO4 and MgSiO3 peak intensity, shown in Figure C.5(b.2),

illustrate a relative exchange in composition, directly resulting from dissimilar anneal

environments. Because molecules of Zn tend toward vapor pressures lower than that

of Mg, ZnO nanostructures and Zn2SiO4 will more preferably dissociate into Zn2+,

O2, and SiO4−
4 at higher anneal temperatures (Lamoreaux et al., 1987). Isolated

orthosilicate ions must therefore react to form a forsterite molecules with Mg, or

equilibrate into silica if reaction-limited. As previously discussed, Zn deposits were

found along the sealed ampoules, which indicate a vaporization and dissociation of

Zn2+ from the nanowire arrays. As O2 is a reactive gas, Zn2SiO4 is found to have

completely converted into Mg2SiO4 (Shankland, 1968). This is validated by the fact

that the relative CL peaks associated with Mg2SiO4 rise considerably under an oxi-

dizing environment, until forming a close shoulder to the MgO band edge (in other

words, exhibiting a distinct species, rather than coalescencing with MgO). Annealing
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Figure C.6: Current-Voltage measurement of ZnMgO NW photodetector as a func-
tion of illumination conditions for nanowires that were (a) initially grown and (b)
received thermal treatment at 900 ◦C in O2

in Ar reduces the relative peak intensity of the Zn2SiO4 peak to approximately 75%

of its original level, and in the inert environment, must only react with MgO in a

kinetically-limited manner to form half as much (molar ratio) of MgSiO3 (Stashans

et al., 2010) (see reactions of both anneal environments in Figure C.1). Mishra et

al. have described a modification of the orbital symmetries t1 and t2 of SiO4−
4 ions,

which have been influenced by the oxidizing reactions mechanics, contributing to a

range of orthosilicate ion peak position shifts found in Figure C.5(b.1). These re-

sults are illustrated in Figure C.1, and summarize the complex reaction kinetics of

Zn2+ dissociation in conjunction with silicate formation as a function of the annealing

environment.

Current-Voltage measurements were conducted vertically across the nanowire ar-

rays for the as-synthesized case, shown in Figure C.6(a), and for samples annealed at

900 ◦C in O2, shown in Figure C.6(b). Measurements were conducted in the dark and

in the presence of UV-A (365 nm) and UV-C (254 nm) monochromatic illumination.

The photoconductive properties of ZnO nanowires have long been attributed to the

size effect of nanostructures, in correspondence with the adsorption/desorption of O2

molecules along the nanowire surface leading to surface band bending and reducing
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channel resistivity (Soci et al., 2007; Yu et al., 2012a; Xie et al., 2014). The control

case exhibited a negligible difference in conductance regardless of UV illumination

wavelength, which suggests that band-to-band transition along the ZnO band edge

largely contributes to its photoconductive behavior. However, in the annealed case,

UV-A photoconduction is suppressed due to the increased formation of Zn vacancies,

as evidenced by the attenuation of the peak ZnO band-edge luminescence, from in

Figure C.5(a.1). Specifically, the conductance was found to increase by almost 2 or-

ders of magnitude (126 times) when illuminated with a UV-C source, as compared

to a lower energy UV-A source, in which the annealed nanowire array only exhibited

an increase of conduction by a factor of 11.

Rλ = ∆I
PA

(C.1)

G =
(∆I
e

)
/

(
P

hν

)
(C.2)

The spectral responsivity (Rλ) and photoconductive gain (G) are key figures of

merit that distinguish photodetector systems. These figures are defined by the rela-

tionships expressed in eq. (C.1) and (C.2), where ∆I represents the difference between

the photocurrent and dark current, P is the irradiation power, A is the area impinged

by photons on the top surface of the nanostructures, hν is the illumination energy,

and e is the elementary electronic charge (Yu et al., 2012a). The results of both per-

formance characteristics are summarized in Table C.2 for treated and untreated cases,

compared between UV-A and UV-C illumination. In agreement with the observed

changes in photoconduction, the most notable differences in Rλ and G occur for UV-A

illumination (λ=365 nm), in which at least a single order of magnitude difference is

estimated between the as-grown (Rλ|λ=365 = 1.70×10−5 (A/W), G|λ=365 = 5.79×10−5)
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Photodetection Metric As-Synthesized Annealed

Rλ|λ=365 (A/W) 1.70×10−5 1.78×10−4

Rλ|λ=254 (A/W) 2.20×10−4 2.15×10−4

G|λ=365 5.79×10−5 9.85×10−4

G|λ=254 9.47×10−4 1.05×10−3

NEP|λ=365 (WHz−0.5) 1.02×10−8 1.56×10−9

NEP|λ=254 (WHz−0.5) 7.91×10−10 1.46×10−9

D*|λ=365 (cmHz0.5W−1) 3.10×109 2.03×1010

D*|λ=254 (cmHz0.5W−1) 4.00×1010 2.17×1010

Table C.2: Comparison of photodetection performance and noise metrics between
as-grown and thermally treated ZnMgO nanowires as a function of ultraviolet illumi-
nation energy

and annealed cases (Rλ|λ=365 = 1.78×10−4 (A/W), G|λ=365 = 9.85×10−4), illustrating

a suppression of UV-A photoconduction in the nanowire ensemble. Likewise, these

figures do not change appreciably with UV-C illumination.

NEP = (1/Rλ)(2qId + 4kT/Rv)1/2 (C.3)

D∗ = (Af)1/2/NEP (C.4)

To further investigate detection performance disparities, detector noise charac-

teristics were calculated in order to distinguish the sensitivity of ZnMgO nanowires

before and after thermal anneal. Noise equivalent power (NEP) and detectivity (D∗)

were evaluated according to eq. (C.3) and (C.4), where k is Boltzmann’s constant, T

is the absolute ambient temperature, Id is the dark current for a specified operating

voltages, Rv is the device differential resistance, and f is the amplifier bandwidth

(taken as 1 kHz in this analysis) (Sze and Ng, 2006). Along with detector perfor-
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mance characteristics, detector noise metrics are also summarized in Table C.2, and

demonstrate a reduction of NEP for UV-A illumination (due to decreased spectral

sensitivity), whereas a slight increase in NEP is observed for UV-C illumination. As

highly sensitive detectors tend to exhibit low NEP and high D∗, the sensitivity of

ZnMgO detectors increases in conjunction with suppressed photoconductive gain at

λ=365 nm. Because annealing was found to reduce Zn content from the nanowire

system, electrons from ZnO become less effective at band-to-band transitions, which

diminishes the effect of surface band-bending from oxygen desporption (Feng, 2012).

On the substrate surface, the formation of Mg2SiO4 results in stochiometricly het-

erogeneous MgO films, thereby increasing thermal noise. Annealing in oxygen was

shown to increase the incidence of O2 related green-band defects (see supporting infor-

mation Figure S.1), which contribute directly to thermal agitation of charge carriers

(Hsu et al., 2004; Djurǐsić et al., 2007; Lee et al., 2015). However, this NEP increase

is negligible in comparison to the modification of spectral sensitivity under UV-A

illumination, which suggests a minor design tradeoff between noise and tunability.

C.5 Conclusion

In conclusion, high-quality ZnMgO nanowires have been synthesized utilizing a

novel growth mechanism that incorporates Mg dissociated from Mg3N2, in tandem

with the carbothermal reduction of ZnO. Modification of the size characteristics,

crystal lattice properties, and spectral response from annealing were found to be

internally consistent with measured Mg content. In particular, EDX, Raman, and

CL revealed a spectral evolution for each treatment group of nanowire arrays, giving

rise to increased Mg2+ incorporation, along with the dissociation of Zn2+. Statistical

inference (ANOVA paired with Tukey’s Range Test) was undertaken to discern a

reduction of nanowire dimensions, and was cross-referenced to a modification of the
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ZnO lattice parameters, as well as the formation of Zn vacancies.

Suppressed photoconductivity under UV-A illumination with retained photocon-

ductivitiy under high energy UV-C illumination was observed for samples post-

thermal treatment. An order of magnitude difference for both spectral responsivity

and photoconductive gain between the annealed and control cases confirms the tun-

able filtering of high energy ultraviolet spectral responsivity. Increased thermal noise

from the high temperature O2 anneal process was associated with the increase of

oxygen-related defects contributing to thermal agitation, which may present a design

tradeoff in integrating ZnMgO as solar blind detectors. Thus, these results indicate

that synthesized ZnMgO nanowires demonstrate promising selective UV-C detection

capabilities, in which controlled post-synthesis thermal treatment may effectively tune

for selective, high-pass, solar-blind ultraviolet detection.
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