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ABSTRACT

The Milky Way galaxy is a powerful dynamic system that is highly efficient at

recycling material. Stars are born out of intergalactic gas and dust, fuse light elements

into heavier elements in their cores, then upon stellar death spread material throughout

the galaxy, either by diffusion of planetary nebula or by explosive events for high

mass stars, and that gas must cool and condense to form stellar nurseries. Though

the stellar lifecycle has been studied in detail, relatively little is known about the

processes by which hot, diffuse gas ejected by dying stars cools and conglomerates in

the interstellar medium (ISM). Much of this mystery arises because only recently have

instruments with sufficient spatial and spectral resolution, sensitivity, and bandwidth

become available in the terahertz (THz) frequency spectrum where these clouds peak

in either thermal or line emission. In this dissertation, I will demonstrate technology

advancement of instruments in this frequency regime with new characterization

techniques, machining strategies, and scientific models of the spectral behavior of gas

species targeted by these instruments.

I begin this work with a description of radiation pattern measurements and their

use in astronomical instrument characterization. I will introduce a novel technique to

measure complex (phase-sensitive) field patterns using direct detectors. I successfully

demonstrate the technique with a single pixel microwave inductance detectors (MKID)

experiment. I expand that work by measuring the APEX MKID (A-MKID) focal

plane array of 880 pixel detectors centered at 350 GHz. In both chapters I discuss the

development of an analysis pipeline to take advantage of all information provided by

complex field mapping. I then discuss the design, simulation, fabrication processes, and

characterization of a circular-to-rectangular waveguide transformer module integrated
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into a circularly symmetric feedhorn block. I conclude with a summary of this work

and how to advance these technologies for future ISM studies.

ii



DEDICATION

I dedicate this dissertation to Boulder Tyrell Davis, who encouraged me to go on

runs, was really patient when I was busy with deadlines, and who was really sad when

I wouldn’t let him eat tennis ball fragments; but who was always there to snuggle,

let me dress him up in costumes, and didn’t mind when I sang to him really really

off-key. You are my sunshine.

iii



ACKNOWLEDGMENTS

Though there are many people that have helped me along my journey though

graduate school, my family and friends have helped the most. Without your support

to keep me from drowning in the craziness and stress of school and work, I would

have never made it to the end. I would like to thank first and foremost my mom, for

proofreading all of my papers since elementary school and for showing up to all of

my events and performances, from soccer games, to band recitals, to ski races, and

to my defense. I would like to thank my dad for escalating April Fool’s day way too

far and for encouraging me to pursue all of my crazy dreams, including being a bear

zoologist, an orthodontist, and even the dream of being an astrophysics instrument

scientist. I thank my brother and sister for helping me have fun during my days off

from school, going on action-packed camping trips, and making fun of Dad when he

was a snow-butt. I thank Garrett for making me coffee in the morning, singing terribly,

learning to ski and teaching me to climb, sometimes listening, and simultaneously

being the SD and the AC. I thank Theresa for being there for me always, even though

we live states apart, and pushing me to get outside and to go backpacking. I want

to acknowledge and thank my mini-support crew in Phoenix, Leslie Rychel, Helen

Burtis, and Mindy Leu. Lastly, I would like to thank Chris Groppi for being not just

an advisor but also a friend.

Professionally, I would like to start by thanking Chris Groppi for all of his advising

and support over the years. You were the embodiment of what it means to be an

advisor and not just a boss, and you worked with me to guide my journey into a

career rather than just a degree. I also thank you for all the opportunities you gave

me for professional growth, from travel for international collaborations to conduct

pioneering research, taking me on conference travel all over the world to highlight

iv



my work, and including me on the STO-2 team to gain hands-on experience with

ballooning observatory integration, flight, commissioning, and operations.

I would like to thank everyone involved in making the ASU School of Earth and

Space Exploration a top-tier interdisciplinary department. I really enjoyed the program,

and I believe SESE and ASU set me up on a path for great success. I especially

need to thank Chris Groppi and Paul Scowen, who organized the weekly Engineering

Coffee. Weekly EC was my favorite aspect of the department and which I valued

highly as a way to broaden my research interests and knowledge. One of the unsung

benefits of those efforts were to realize how broad the astronomical instrumentation

field is, and demonstrate that there are academic and industry partners that value

interdisciplinary skill sets.

To my fellow grad students in the instrumentation group, thank you for all of

the fun conversations and Friday afternoon hangouts. Good luck with your research,

and I hope you know you all are seriously impressive scientists and engineers. I also

want to thank my fellow SESE Grad Council members, with whom I fostered good

relationships that allowed us to be better advocates for student issues. There are

many friends from grad school who were helpful and supportive on my journey, but

none more so than Caleb Wheeler and Natalie Hinkel, who I felt like I could turn to

and trust with any and all discussions, both professionally and personally. I would

like to acknowledge Andy Ryan and Scott Robinson for their support throughout the

years. To all of my other countless friends from ASU, I thank you deeply for making

my time in grad school worthwhile, and wish you success down whatever path life

takes you.

I would like to thank all of my colleagues at SRON in the Netherlands. Without

your collaboration, more than half of this dissertation would not have been possible. I

v



sincerely thank you for the opportunity to work on such an important project and to

spend time mentoring me about MKIDs, Fourier optics, and multi-level data processing.

It is always difficult to walk into another lab and start making progress immediately,

and you were very helpful in making sure I had adequate support resources to make the

most out of my visits. I want to especially thank Willem Jellema, Andrey Baryshev,

and Stephen Yates for their continual support through my two publications. There are

also many at SRON who helped me with these projects, whether they were involved

or not. Those folks include Jochem Baselmans, Lorenza Ferrari, José da Silva, Andrey

Kudchenko, Juan Bueno, Ronald Hesper, and Pieter Dieleman.

Lastly, I thank the STO-2 Antarctic campaign members from both of my seasons

on the ice. I was very glad to be a part of the instrument team, and I want to

thank all for involving me as a graduate student and letting me learn how to work

on large collaborative projects. The team members include PI Chris Walker, Craig

Kulesa, Bill Peters, Darron Hayton, Jenna Kloosterman, Jon Kawamura, Jose V. Siles,

Wouter Laauwen, Brian Duffy, Ruben Domingez, Jian-Rong Gao, Abe Young, and

last but very much not least, Casey Honniball. I also want to thank the members

of the Columbia Science Balloon Facility crew that were helpful in both launching

our mission and having fun around the station, including Garrison Breeding, Spence

McDonald, Cesar Villasana, and Dale Spangler, as well as other fellow McMurdoans

Lisa Marie Johnson, Jules Uberuaga, Amy Varga, Danny Uhlman, Mik Metzler, Mark

’Tubs’ Evans, Gabriel Trilling, Brian & Steph, and the countless other friends and

support crew members that made McMurdo the adventure of a lifetime.

vi



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION TO GAUSSIAN BEAM FORMALISM AND RADI-

ATION PATTERN MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scientific Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Types of Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1.1 Continuum Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1.2 Science from Continuum Spectra . . . . . . . . . . . . . . . . . . . . 6

1.1.1.3 Spectral Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1.4 Science from Emission Spectra . . . . . . . . . . . . . . . . . . . . . . 9

1.2 THz Astronomical Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 What are Radiation Pattern Measurements?. . . . . . . . . . . . . . . . . . . . . 13

1.4 How are Radiation Patterns Measured? . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 The Gaussian-Hermite Field Expression . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Types of Radiation Pattern Measurements . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Intensity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.2 Complex Field Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Analysis Techniques Using Complex Field Measurements . . . . . . . . 31

1.7.1 Standing Wave Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7.3 Beamfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7.4 Near-Field to Far-Field Transformation . . . . . . . . . . . . . . . . . . . 38

vii



CHAPTER Page

2 DEMONSTRATION OF A SINGLE-PIXEL MKID COMPLEX BEAM

PATTERN MEASUREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Experimental System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2 Beam Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.3 Standing Wave Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Gaussian Beam Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Angular Plane Wave Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 COMPLEX FIELD MAPPING OF LARGE DIRECT DETECTOR

FOCAL PLANE ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Phase Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Pre-processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.3 Phase and Amplitude Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.4 On-The-Fly Scanning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Experimental System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Test Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.2 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.3 LO Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



CHAPTER Page

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Map Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1.2 KID Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2.1 Beamfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2.2 Near- to-Far-Field Transformation . . . . . . . . . . . . . . . . . . 94

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 CIRCULAR TO RECTANGULAR THZ WAVEGUIDE TRANSFORM-

ERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 Feedhorn Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.2 Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.3 Oval (Slot) Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Diagonal Horn Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Noise Temperature Measurement System . . . . . . . . . . . . . . . . . . 116

4.4.3 Radiation Pattern Measurement System . . . . . . . . . . . . . . . . . . . 117

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.1 Noise Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



CHAPTER Page

4.5.2 Radiation Pattern Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Science Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

x



LIST OF TABLES

Table Page

2.1 Experimental System Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Single Pixel-Beamfitting Parameters and Fit Values . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 FPA Beamfitting Parameters and Fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Transformer Module Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Noise Temperature Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Waveguide Transformer Module Beamwaist Calculations. . . . . . . . . . . . . . . . . . . 121

xi



LIST OF FIGURES

Figure Page

1.1Multi-Wavelength Eta Carina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Gaussian Beam Propagation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Phase Behavior of Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Idealized Gaussian Beam-Amplitude, Phase, and 3D Pattern . . . . . . . . . . . . . . . 23

1.5 STO-2 Thermal Beam Scanning System and Results . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Complex Field Pattern Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Example of Rotating Polarized Scan Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 Beamfitting to Measurement 2D Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9 Scan Plane to Image Plane Coordinate Transformation Diagram . . . . . . . . . . 37

1.10 Near-Field to Far-Field Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.11 APWS Phase Correction Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.12 Near-Field Spatial Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1 Schematic of Complex-Field Measurement System for Single Pixel Test . . . . . 50

2.2 Timeseries and FFT of MKID Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Optical Model of Single Pixel Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Linearity Results for Single MKID Beam Pattern Test . . . . . . . . . . . . . . . . . . . . . 57

2.5 Complex Field Maps of MKID Test Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Single Pixel Standing Wave Reduction Technique . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Amplitude and Phase Cuts for Single MKID Pixel . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8 Single Pixel Near-To-Far Field Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Experimental Scheme for FPA Complex Field Measurements . . . . . . . . . . . . . . . 72

3.2 FPA Raw Data, Amplitude and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Linearity Verification for AMKID FPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



Figure Page

3.4 Co- and Cross-Polarization Maps of AMKID Array . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 AMKID E- and H-Plane Beamfitting Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 AMKID Gaussian Coupling vs Pixel Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 AMKID Ellipticity vs Pixel Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Z-Fit vs Pixel Position for FPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.9 AMKID Near to Far Field Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10Farfield Beam Pointing Direction vs Pixel Position . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Transformer Module Dimensions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Transformer S11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 S11 for Module with CWG vs. OWG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Transformer Manufacturing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Single-Pixel Transformer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Transformer Beam Scanner Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Feedhorn S11 Simulation Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.8 Tranformer Module Beam Pattern: Simulation, Data, and Fit . . . . . . . . . . . . . . 122

xiii



Chapter 1

INTRODUCTION TO GAUSSIAN BEAM FORMALISM AND RADIATION

PATTERN MEASUREMENTS

1.1 Scientific Motivation

Studies of the interstellar medium (ISM) are compelling to astronomers trying to

understand and contextualize the formation mechanisms of star systems, including

our own solar system and star systems around the galaxy. This research contributes

to the new and exciting field of exo-planetology where astronomers are beginning to

investigate the range of planetary conditions around other stars in the Milky Way.

In order to understand what stellar or planetary system may be like, we must also

understand where the gas and dust that forms these systems originates, how it evolves,

what elements are present and in what ratios, if the chemical abundance is uniform or

localized, and how different chemical species cool and condense into the proto-stellar

system. As we look outward and try to understand galactic evolution, the relationship

between star formation rates, gas mass, and stellar lifecycle can be studied in detail

within our own galaxy, and used as a template by which we can understand distant

galaxies, and study how different feedback mechanisms might produce the myriad of

galaxy types we see in the Universe. We understand that the lifecycle of the interstellar

gas and dust is a recycling process, in which previous stellar generations enrich the

composition of the surrounding ISM with a higher presence of heavy elements, but the

details of this distribution, mixing, cooling, and the conditions for cloud formation
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and phase transformation are relatively poorly understood. Several key questions

remain in this field, such as:

• How do the different phases of ISM clouds form, disrupt, and transition to

subsequent stages?

• How long do the different phases of ISM clouds persist?

• How do ISM clouds interact with their thermal, gravitational, and radiative

environment?

• What is/are the mechanism(s) for cloud growth and collapse? What is the role

of feedback from internal or nearby star formation in this process?

• How does the evolution of an ISM cloud influence further stages of the stellar

life cycle, and particularly the galactic star formation rate (SFR)?

Astronomers can begin to answer these questions by studying the light that the

ISM emits, because light is the only observable parameter of these clouds from our

position on Earth. To understand the physical processes that govern the creation

and evolution of astronomical bodies, we can study how the body interacts with

light emitted from other bodies, or we can study the light emitted by the body itself.

Generally, direct observations are more prescriptive of the physical nature of the

observation target, and are the most useful for deriving the processes that influence

the ISM life cycle. Depending on the intensity, spatial position, and frequency of

different types of light, we can infer many properties of the emitting gas and dust,

including temperature, density, composition, excitation or ionization state, dipole
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alignment, bulk and internal motion or rotation, and more. It is often the case that

light at different frequencies is used to observe different properties of the ISM, such

as different chemical species or different emission mechanisms, combining datasets

can give us a more complete picture of the full system dynamics. This is a process

that involves back-and-forth iterations between models and observations to begin to

answer the questions outlined above. Figure 1.1 gives an example of this process using

data from many frequencies using a suite of satellite, high altitude, and ground-based

instruments.

Though the nature of the ISM have been of interest to the astronomical community

since at least the 1960’s and 1970’s (Saslaw and Gaustad 1969) (Field, Goldsmith, and

Habing 1969) (Parker 1966), (Solomon 1973) (Lovas and Krupenie 1974) (McKee and

Ostriker 1977) (Draine 1978) (Savage and Mathis 1979), the instrumentation capable

of studying light emitted directly from these sources has only become widely viable in

the past ∼ 30 years. Some of the most diagnostic properties of ISM clouds come from

observations within the terahertz (THz) frequency regime, generally defined as ν ∼ 100

GHz-5 THz (λ ∼ 3 mm - 60 µm). Many cold bodies in the ISM have a blackbody peak

in this regime, and it is the location of key cooling emission lines. From a scientific

standpoint, the emission from this regime is considered to be the Far Infrared (FIR),

but from an instrumentation standpoint, the technology has developed by pushing

microwave detectors to very high frequencies. The astronomical understanding of the

ISM has been closely tied with the technological advancement over the past several

decades.
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Figure 1.1. The complex ISM region near Eta Carina. The top panel a) shows an
optical image of the region taken by the European Space Organization’s VLT Survey
Telescope (credit: VPHAS+ Consortium/Cambridge Astronomical Survey Unit). The
binary star Eta Carina is visible in the lower left, and the newborn star cluster
Trumpler 14 is visible up and to the right of the star, just left of the center of the
image. The dark bands obscuring the background emission from the upper right and
sweeping diagonally downwards to the left is very dense gas and dust, also seen in
isolated pockets closer to the Trumpler 14 cluster. Panel b) shows a spectral mosaic
of the same region at 1.9 THz as imaged by the STO-2 mission. Image credit: Volker
Tolls (with permission). The lowest panel shows a composite image of the same
region. Eta Carina is outlined in the gold circle and the location of the Trumpler 14
cluster is outlined in a magenta circle. The contour plot of the spectral mosaic from
panel b) is overlaid in the blue contours, from Seo et. al., (2018, unpublished). The
gold contours show 12CO J = 1→ 0 emission of the same region taken from the
ground-based Mopra telescopeRebolledo et al. (2016). The diffuse emission is from a
far infrared survey of the Carina region taken during the Herschel mission, with data
from Herschel at 350 GHz (red), 1.9 THz (green), and 4.3 THz (blue) (Preibisch
et al. 2012), (Roccatagliata et al. 2013).

4



1.1.1 Types of Emission

1.1.1.1 Continuum Emission

There are two ways in which we can study light emitted from astronomical sources.

The first is continuum emission, which is the blackbody-esque energy radiated from

a body. According to the laws of thermodynamics, all matter that has a physical

temperature radiates energy. A blackbody is an idealized case in which radiated

energy spectrum is defined solely by its temperature. This radiated energy is in the

form of photons (light), and the spectra has a form defined by Planck’s Law given by

Bν(ν, T ) =
2hν3

c2
1

e
hν
kT − 1

(1.1)

where B is the ’spectral radiance’ of the emitted radiation, in units of W
ster m2Hz

, ν

is the frequency of light in Hertz, T is the temperature of the body in Kevin, h is

the Planck constant in JK, c is the speed of light in m/s, and k is the Boltzmann

constant in J/K. The radiance Bν has a peak at a particular frequency ν, which

indicates the temperature of the body T . Because of the strong relationship between

temperature and emission frequency, observations of the peak in continuum emission

are the primary way to study the temperature of an astronomical body. Weins’

displacement law can be used to find the frequency peak of blackbody emission, which

is given by ν = cT/b, where b is a constant, here 2.873 ∗ 10−3 mK. The THz range

corresponds to peak blackbody temperatures between ∼2.5-100 K.
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1.1.1.2 Science from Continuum Spectra

Even though continuum radiation is prevalent throughout the universe, because

Bν decreases as T decreases, cold objects are dim. Because all objects that have

energy emit this radiation, continuum emission is an excellent way to study cold,

diffuse objects that are neither very reflective or emit radiation by other mechanisms.

In order to study these bodies, instruments have wide bandwidths centered on the

(known or expected) peak of the thermal emission spectrum of the body of interest.

A wider bandwidth collects more photons, helping to make dim objects observable.

Continuum emission is well suited to take wide-field images of cold dust. Studies

have been conducted to survey large regions of the galactic plane to identify and

characterize the position and orientation of cold, dusty ISM clouds, and determine

how they interact with their surrounding environment. Dust emits as an approximate

thermal blackbody with an emission peak proportional to its size as well as physical

temperature. The APEX-Microwave Kinetic Inductance Detector (A-MKID) camera

(Otal 2014) commissioned for the APEX telescope in Chile is one example of a mission

to study ISM clouds in the Milky Way with continuum detectors. If a polarizing

modulation scheme is introduced in the instrumentation, the polarization orientation

of a wide-field source can map magnetic field lines in a medium or from distant

background sources. The Balloon Large Aperture Stratospheric Telescope-The Next

Generation (BLAST-TNG) (Galitzki et al. 2014) aims to observe the importance of

galactic field lines in suppressing star formation in dense clouds. It is important to

study the dust within the Milky Way to better understand how dust can influence the

observations of more distant galaxies. The Stratospheric Terahertz Airborne Receiver

for Far-Infrared Exploration (STARFIRE) (Aguirre 2015) aims to study dust-obscured
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star forming galaxies (DSFGs) in the nearby Universe. Dust is important for both

ISM studies and throughout the Universe, because the dusty ISM is a foreground

source that can obscure observations of the Cosmic Microwave Background (CMB).

1.1.1.3 Spectral Emission

The second way that an astronomical body can radiate energy is through spectral

emission. Spectral emission occurs when a physical processes emits radiation at a

single frequency. Spectral emission is commonly referred to as an emission line. Under

idealized conditions, this emission will approach a delta function on a plot of intensity

vs frequency. Emission lines are important to study because each spectral line is

unique to a physical process, and we can use it to uniquely identify the presence of a

particular chemical species within the emitting source.

Because an emission line has a well-defined rest frequency, the spectral line can be

used to track the motion of the host body. The Doppler shift of the emission line can

tell us how fast the object is moving along our line of sight. Furthermore, if the line

is very highly resolved, astronomers can study the profile shape to understand the

source’s internal motion. In the case of ISM clouds, all or part of the cloud may be

rotating, or there may be turbulent motion within the cloud due to external forces

acting upon it. Careful modeling of the cloud is needed to separate frequency shifts

that may be due to cloud motion versus other factors that might affect the profile

shape, such as the presence of magnetic fields or thermal broadening.

There are many forms spectral emission, but two mechanisms are prevalent in

the ISM. The first is when asymmetric molecule emits radiation as it rotates. A

classic example is for carbon monoxide, a diatomic molecule found in relatively large
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quantities in the cold ISM. Because the C and O molecules have different masses, the

center of mass is not in the middle of the molecular bond, which is where the center

of charge is located (CO is a neutral molecule). Because of this tiny offset, as the CO

molecule rotates, the center of charge moves back and forth along the line of sight. A

moving charge will emit photons, and so the rotating molecule will radiate.

As is the case with individual electrons orbiting the nucleus of an atom, the rotation

states of a molecule are quantized. The rotation states of a molecule are defined by

the J parameter, and radiation occurs when a molecule transitions from a higher

rotation state to a lower state. In this example, the lowest rotational emission line for

CO is the [12C16O]J = 1→ 0 transition, which will produce a photon at ν=115 GHz

(λ=2.6 mm). The rotational emission of the [CO]J = 3→ 2 transition occurs at 350

GHz, and was the primary target of the 64-pixel SuperCam instrument (Kloosterman

et al. 2014).

An atom or molecule tends to be more opaque (better absorber) to radiation with

a wavelength that is approximately equal to its physical size. Because of this, hot gas

can cool by radiating energy at rotational frequencies that the CO molecule is not

likely to re-absorb. Within the ISM, a classic scenario is that a CO molecule may be

excited by the absorption of a UV photon or collision with another atom or molecule,

and rotate at several progressive de-exciting rotational states before finally reaching

the ground state (no rotation). A cloud can cool by this process if the radiated energy

exceeds the incident and internal energy.

This rotational emission can be used to study the coldest and most dense proto-

stellar ’clumps’ of gas. Though H2 is by far the most abundant species in these regions,

it is not an asymmetric molecule, and therefore has no permanent dipole moment and

does not emit strongly at these frequencies. In order to probe the cloud mass, the
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intensity of the CO emission can be used to determine the abundance of CO, and the

total cloud mass can be estimated by the n(CO)/n(H2) ratio.

The second type of emission spectra occurs when a valence electron spontaneously

transitions between hyperfine states. For certain atoms, the valance electron can be

either in a spin up or spin down state. However, the spin down state is slightly less

energetic than the spin up state, and electrons prefer to be in the lowest available

state. Given enough time, a spin up electron will spontaneously transition to the

spin down state and emit a photon to get rid of the excess energy. The most well-

known type of this emission is the 21 cm hyperfine transition of the hydrogen atom

[HI], which is the most accessible probe of the cosmological “Dark Ages” (Bowman

et al. 2018). Within the ISM, the hyperfine transition of singly ionized carbon

[CII] occurs at ν=1.9 THz (λ=158 µm) (Goldsmith et al. 2012). Because of its

prevalence through many ISM phases and cloud types, this emission line is the target

of several astronomical studies. The Stratospheric Terahertz Observatory (STO)

balloon mission, for which instrumentation in this dissertation was developed, had

one frequency channel dedicated to this line.

1.1.1.4 Science from Emission Spectra

Independent of the emission mechanism, highly resolved spectral profiles can be

used to probe a variety of different properties of the emitting material. Firstly, since

the mechanisms for radiation are highly specific to particular states of individual

molecules, the detection of a particular emission feature confirms the presence of that

chemical species in the ISM cloud. Furthermore, for the processes described above,

there is one photon emitted per transition, the intensity of the emision is proportional
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to the total abundance N of that species, usually defined as a column density along

the line of sight (denoted by n = N/σ, where σ is the area of the column. For distant

observations, σ is proportional to the telescope’s beam size).

Not all of the present atoms/molecules of that species may emit a photon within

the range of observation. The likelihood of a particular transition to occur de-

pends on many other parameters, both the fundamental rate coefficients—which

are quantum-mechanical descriptions of the likelihood for excitation or de-excitation

(Au`, Bu`, B`u, Cu`, etc) for various mechanisms—as well as parameters of the cloud

environment, including the kinetic and excitation temperature of the gas, whether the

gas is in thermal equilibrium or not, the radiation background, the density of the cloud.

For a more thorough understanding of how these parameters relate to each other, see

Walker (2015b), Tielens (2005), and Goldsmith et al. (2012). Through laboratory

measurements that probe the rate coefficients and extensive modeling using radiative

transfer numerical solvers, a representative synthetic spectra can be fit to the observed

data by tweaking the environmental factors to “back out” a cloud’s properties.

There are some physical drivers of emission spectra that make the observation

more precise at determining certain cloud parameters than others. For example, the

density of the observed species within the cloud can influence the intensity of the

observed radiation. Since the emitted radiation from a particular emission mechanism

can be re-absorbed by a different atom or molecule as an excitation process, the chance

of a photon escaping the cloud will (generally) decrease as the density of that species

increases. This process is described by the optical depth of the radiation, which is

given by the equation

τν = ln

(
Φi
e,ν

Φt
e,ν

)
(1.2)

where τν is the frequency dependent optical depth, and Φx
e,ν is the spectral radiance
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incident (x = i) (in this case, from within) or transmitted (x = t) through the cloud,

respectively. Optical depth is not a unit of distance, but is a relationship showing

how likely a photon is to escape the cloud without being reabsorbed or scattered.

From an observational standpoint, the optical depth of the cloud is the number of

scattering or absorption events a photon will encounter as it travels from the back of

the cloud until it escapes along the line of sight. An optical depth of 1 means that a

photon emitted from the back of the cloud will encounter only one absorption event

on its way out of the cloud. In practical terms, this means the astronomer can see the

back of the cloud. If τ > 1, photons emitted from the back of the cloud are either

re-absorbed or scattered out of the line of sight, so the astronomer cannot see all the

way through the cloud (only photons from the surface layer of the the cloud make it

to the astronomer).

In the case of τ �1, a cloud is said to be optically thick. In that case, the

astronomer can only see the surface layer of the cloud, and the intensity of the

emission is not representative of the total number of atoms/molecules along the line

of sight (n). However, since a high optical depth occurs in dense clouds, the species

is likely to be in thermal equilibrium with its surroundings, meaning the excitation

temperature of the gas is the same as the thermal temperature. Therefore, optically

thick emission features are diagnostic of the thermal properties of a cloud.

Conversely, when τ �1, a cloud is said to be optically thin, and the astronomer

can see all the photons radiated throughout the cloud. In this case, the intensity of

the spectral feature is proportional to the column density n. Because the different

emission conditions are prescriptive of different cloud parameters, it is often the case

that multiple emission features from different chemical species can be combined to get

a more complete understanding of the cloud environment and dynamics. A classic
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example of this is the simultaneous observation of [12CO] versus [13CO], the former

being (generally) optically thick and the latter being optically thin, due to the relative

abundances of the different isotopes of Carbon.

1.2 THz Astronomical Instrumentation

Astronomers design instruments to meet specific sensitivity, field of view, and

resolution requirements suitable to study the scientific question at hand. Once the

instrument is assembled, it must be tested to determine how well it matches the

designed performance. The optical properties of the individual components must be

calibrated to model the behavior of the complete assembly, and careful alignment during

system integration is necessary to ensure maximum sensitivity and resolution. There

are many figures of merit to characterize the optical performance of an instrument,

but this dissertation will focus on measuring the instrument’s radiation pattern in

several ways for multiple receiver configurations as a way to check system alignment

and optical efficiency.

Because of the reciprocity theorem (Balanis 2005) the sensitivity pattern (beam)

of an instrument in a receiving mode is the same as the beam of light that would

emerge from the system when used as a transmitter, and it is often convenient to think

of a receiver’s sensitivity as a beam emerging from the instrument. When thinking

of the radiation pattern in this way, it can also be referred to as a beam pattern

measurement. In the THz regime, the photon’s wavelength λ is comparable to the

detector device’s physical dimensions. Rather than treating the photon as a point-like

particle, full quantum-mechanical analysis must be applied, where a photon is treated

as a quantized but dispersed field (with a wave-like nature).
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Here, I will loosely refer to a system involved in capturing light as an instrument,

and the specific device used for converting a photon into a voltage signal I will refer

to as the detector. A detector is not often directly exposed to the optical environment

of the instrument, and is coupled to free space with an antenna, typically a lenslet or

feedhorn mounted in front of the detector chip. As a fundamental optical element, I

will generally refer to this configuration as a detector sub-assembly. An instrument

is designed to consist of a detector sub-assembly followed by other optical elements,

namely lenses, mirrors, and apertures, before exiting a telescope and looking out to

space. Generally, a receiver system refers to the optical elements of an instrument

minus the telescope primary and secondary mirrors, though the term is imprecise. I

will do my best to keep this nomenclature consistent throughout this dissertation, and

I will try to make the distinction clear when I find it necessary to deviate from this

plan.

1.3 What are Radiation Pattern Measurements?

At its most basic level, a radiation pattern measures the sensitivity of a receiving

instrument as a function of angle from the principle axis of the optical system. The

end result is a dataset consisting of (x, y, z, S) data points, where (x, y, z) define a

measurement grid and S is the signal measured on the detector chip. Here I use S as

a general output term. In most instances, S is a voltage read out by some mechanism,

but depending on the operation principle of the instrument, it can be proportional to

the input frequency or the total power in the beam.

The choice of coordinate axes is arbitrary, so the grid points (x, y, z) can easily be

transformed into other coordinate systems. Scans in a 1D line are sufficient for many

13



applications, though full 2D or 3D scans provide more accurate measurements of the

device parameters. Unless otherwise noted, this dissertation will assume a 2D planar

beam pattern measurement scheme this scheme is widely used and is a good balance

of scanner system simplicity and analysis depth. A planar scanning strategy can either

be a point-by-point map where the scanned component is stationary for a sufficient

integration time at each point, or the scanned component can move continuously in

an on-the-fly scan pattern and the data can be re-gridded onto a uniform scan pattern

(Kovacs 2008) .

The detector output S can be either real or complex valued. Chapters 2 and 3

will demonstrate how S can be sampled as a timeseries of voltage readings which can

later be transformed to a complex value proportional to the electric field component

of a receiver beam at each point in the scan pattern. A beam pattern is useful for

measuring the relative change in S across the scan plane, so generally the value of

S at any point is not used as an exact calibration measurement. Most often, S is

normalized to a point in the scan plane, usually at the center of the coordinate system.

A radiation pattern is used to characterize the instrument for astronomical use.

They measure the performance metrics that determining its ability to meet the

scientific requirements of the observations. The main figures of merit a beam pattern

can measure are:

1. A radiation pattern measurement is analogous to measuring a beam’s ‘shape’

and ’size’. The beam ’shape’ or spatial pattern is used to calibrate the absolute

brightness of a point source depending on its position within the beam, and the

beam size determines the resolution of the telescope. Irregularities in the shape

of the beam can be used to diagnose misalignments between elements of the

optical system or manufacturing errors of the receiver components.
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2. The beam pattern is a way to measure the degree of coupling to a point source,

which is a measure of the sensitivity of the instrument. The efficiency of the

system is referred to as the throughput of the system, measuring what fraction of

photons that hit the primary mirror make it to the detector. Maximum sensitivity

is achieved when there are no optical losses through the instrument. Beam

patterns on the ground or in the lab can diagnose focusing errors, reflections, or

misalignments that introduce losses into the system.

3. A beam pattern measurement can also determine the pointing direction of the

optical elements, referred to as the boresight angle of the beam. The boresight

angle of the detector is measured relative to the optical axis of the telescope’s

primary mirror, most often measured using spherical coordinates with an origin

at the focal plane. Typically, instruments are designed to have a boresight angle

of zero, though this may not be the case for array instruments, off-axis optical

configurations, or special circumstances where a beam does not fill the primary

mirror. It is important to ensure proper alignment to ensure the telescope is

aimed at the target.

4. Lastly, for array instruments, the beam pattern measurement is used to determine

the imaging properties of the array. The beam pattern measurements can look

at beam shape, sensitivity, and pointing direction as a function of pixel position.

One important factor is how well the beams overlap as they appear on the sky,

also referred to as the filling factor of the image. This determines whether a

single pointing will fully capture and astronomical image or if the instrument

will have to shift or dither to fully sample an image.

Because we may be interested in how the beam behaves as it travels through

the optical system, and not just at one particular measurement point, we fit the
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measurement of S at each position (x, y, z) to a known propagating electromagnetic

field function. The field function is a mathematical equation that can be used to model

how the beam will be affected by the presence of other optical system elements, and

determine the final field of view after emerging from the telescope’s primary mirror.

1.4 How are Radiation Patterns Measured?

A radiation pattern measurement can be performed in a laboratory setting or while

the instrument is in use. For astronomical cameras, the radiation pattern is usually

measured with the camera in the receiving mode, though for special circumstances

it may be more convenient to measure parts of the optical system in a transmitting

mode (again, possible due to the reciprocity theorem). Both the thermal and optical

environment around the camera can affect the measured radiation pattern, so for

accurate results most measurements are made in a carefully controlled environment.

For example, in the THz frequency regime, absorbing materials are not widely available,

so scattering materials are usually coated on surfaces surrounding the optical system.

Scattering dilutes the incoming radiation and reduces the fraction of light that is

eventually scattered back into the optical path.

To take a beam pattern measurement, either a source or the receiver element is

mounted on a mechanical scanning system. S is recorded as a function of the scanner

position. Most often, an emitting source probe is mounted on a planar scanning system

and scans are made in a Cartesian coordinate grid, though for some applications

cylindrical or spherical scans are used. Nyquist sampling theorem (Landau 1967)

(Zhu 1992) (Lüke 1999) proves that the maximum step size between scan points of

λ/2 is required for a complete description of the beam. However, scans at smaller

16



step sizes (oversampling) can extract more information from the measurement, for

example reflections and beam steering (Weisstein 2014) . Step sizes as small as λ/10

or smaller are not uncommon for single pixel measurements. For large focal planes of

many pixels there is a trade off between number of sampling points across the field of

view and system stability over long scan durations.

The simplest scan mode is a planar Cartesian scan plane with a step-and-integrate

mode, where the source probe is stationary for a set period of time at each (x, y) point

in the scan plane before moving to the next (x, y) point. One potential disadvantage of

this system is that time is lost as the scanner moves and stabilizes at each point. For

wide-field instruments that require lots of (x, y) points, this ’dead time’ can dominate

the scan duration. In chapter 3 we therefore adopt a on-the-fly (OTF) scanning

strategy. In this mode, the source probe is in constant motion across the scan plane,

and data is recorded continuously at the detector. The X/Y motion stage position

is time stamped, and the data output must be correlated to the stage motion in

post-processing. The data is then averaged with other nearby samples and gridded

onto a scan plane at regular intervals.

1.5 The Gaussian-Hermite Field Expression

In the THz frequency regime, the wavelength of the received radiation is comparable

to the dimensions of the optical elements it interacts with, the telescope beam will

suffer diffraction effects such that ray tracing is no longer valid as it is in the optical

regime. Instead, the beam is better modeled as a Gaussian function, and so instrument

scientists often choose to design their optical systems using Gaussian optics principles.

This is also a matter of convenience, because in Fourier optics a Gaussian beam
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transforms to another Gaussian beam, allowing a single set of equations to describe

the beam at all points in the optical system.

In order to take advantage of the diagnostic power of a beam pattern measure-

ment, the measured beam pattern is fit to a fundamental field function so that the

instrument’s performance can be modeled and verified. This section will describe

the Gauss-Hermite function in detail, and section 1.7.3 will discuss the method used

throughout this dissertation to take a measurement of S(x, y, z) and fit it to this

function. Other field functions can describe the nature of beams in this frequency

regime, for example a truncated Bessel function (Functions et al. 2012), (Yousif and

Melka 1997), but are not considered in this dissertation.

A Gaussian function, in terms of a 2D power function P , has a centralized peak Po

at a centroid location xo, and falls off exponentially and symmetrically as a function

of distance ±x from the centroid location. Therefore, P (xo) = Po and

P (x) = Po exp

(
−2

x2

ω(z)2

)
(1.3)

where ω is the width of the function measured from the central axis at z, defined as

the point where the power amplitude drops to 1/e of the on-axis strength (so where

P (x) = Po/e). Here we have adopted an (x, z) planar coordinate system. The term

ω is referred to as the beam radius, since it is measured from the axis defined by

xo. A convenient reference point for a Gaussian function is the point z at which the

function of P (x) is dropped by a factor of two. We refer to this point as the full

width at half maximum (FWHM) point. In dB scale, this value occurs at the -3 dB

point of the beam. The relationship between the FWHM and the beam radius is

FWHM = 2
√

2ln(2) ω(z).

In an optical system, we now consider not a 2D Gaussian power function but a

3D propagating electromagnetic field, so P → ~E, where ~E describes a sensitivity
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pattern (the beam). The field ~E is complex, meaning it has both real and imaginary

components. At any field point ~E(x, y, z) = α ± iβ, the amplitude of the beam is√
α2 + β2, and the phase of the beam is arctan (β/α).

~E(x, y, z) =

(
2

πωxωy

) 1
2

exp

[(
− x2

ωx2
− y2

ωy2

)
− 1i

(
πx2

λRx

+
πy2

λRy

− φ0,x

2
− φ0,y

2

)]
(1.4)

The terms ωx, ωy, Rx, Ry, φx, and φy can all be re-written in terms of ωo and z

using the following equations:

ωn(z) = ω0,n

[
1 +

(
λz

πω0,n
2

)2
] 1

2

(1.5)

Rn(z) = z +
1

z

(
πω0,n

2

λ

)2

(1.6)

φ0,n(z) = tan−1
(

λz

πω0,n
2

)
(1.7)

where the subscript n can indicate either the x or y axis. Therefore, a Gaussian

beam observed in an arbitrary measurement plane can be described by the fundamental

parameters ω0,x, ω0,y, and z.

The full mathematical field function of a propagating Gaussian beam in a 3D

Cartesian coordinate system can be described by the first-order Gaussian Hermite

polynomial, given in the equation (1.4). Here, we ignore the time dependence of the

equation, which is required for beam propagation but is not measured with a radiation

pattern measurement and so is not discussed in this dissertation. A full discussion of

Gaussian beam propagation is the subject of Goldsmith (1998).

Gaussian beams do not converge into a single focal point, but rather come to

a narrowest convergence point at the focal plane. The radius of the beam at that
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Figure 1.2. Upper panel shows a 1D Gaussian beam as it propagates along the z axis.
The beam at the focal plane z0 initially has a beam waist ω0 which peaks along the
optical axis. As the beam moves along z, the beam radius ω(z) gets larger, and the
peak amplitude decreases. In the lower panel, we look at the beam along the yz plane.
The solid lines represent the amplitude of the beam, and the dashed lines show the
phase front of the beam. The phase radius R is clearly referenced to a point behind
the focal plane. This figure is reproduced from (Goldsmith 1998), with permission.
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location is called the beam waist ω0, indicated in the lower panel of figure 1.2. As

the beam propagates outward from this position, the amplitude peak of the Gaussian

beam spreads out, getting wider and less prominent, so the beam radius becomes a

function of the distance z from the focal point, ω(z).

The lower panel of figure 1.2 shows the phase of the emerging beam is constant

over a spherical surface of a radius R. The location of the phase center is not the

location of the beam the waist ω0. If we call the beam waist location z = 0⇒ z0 then

the phase center is located at negative z, or z < 0. However, as z →∞, in equation

(1.6) we see that R→ z, and thus the phase center approaches zo for large values of z.

Breaking down equation (1.4), we see that that the fundamental parameters are

independent along the x̂ and ŷ axis. This allows us to fit for beam asymmetries.

The beam waist ω0 can differ along the x̂ and ŷ axis, so ω0,x 6= ω0,y. The ratio of

ω0,x/ω0,y is a measure of the beam’s ellipticity. Phase centers that are not aligned

along the optical axis are described as astigmatic beams. Note here that a beam

ellipticity implies astigmatism, though the two terms refer to different characteristics

of the beam. The difference in distance between the phase centers of the beam is

measured by the term δzx,y, using the notation presented in Jellema (2015). The z

terms in equations (1.5)-(1.7) can be substituted for z ± δzx,y for one axis in the case

of astigmatic beams.

We also see that (1.4) can be separated into a scalar term and an exponential

term. The scalar term is a normalizing factor such that the integrated power in the

beam adds to unity. The exponential term can be broken down further into real

and imaginary terms. The real parts of the exponential term describe the amplitude

behavior of the beam, and the imaginary parts of the exponential term describe the

phase behavior of the beam. Looking first at the real (amplitude) terms of exponential
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Figure 1.3. Representation of the phase terms of equation (1.4) as referenced to a
phane at zref . Figure reproduced from (Goldsmith 1998), with permission.

in equation (1.4), we see that the first term determines the shape of the Gaussian

beam.

Looking towards the phase (imaginary) exponential terms, the spherical phase

fronts are described by the phase front R, which measures the the distance between

the phase center and the reference plane at zref along the optical axis. The terms

Rx(z) and Ry(z) describe the phase radius of each component of the wave in the xz

and yz planes, respectively. Note that the phase surface in the plane at zref is only

equal to Rx at a single point, which is the center of the plane at (x = 0, y = 0, zref).

Elsewhere in the plane (x 6= 0, y 6= 0, zref ), the phase surface is delayed by the factor

φx(x, z) and φy(y, z), as represented in figure 1.3.

The upper two panels of figure 1.4 shows an ideal Gaussian beam at the reference

plane zref as viewed from a point further on the optical axis. In the ideal case

Rx = Ry ⇒ Rx,y and φx = φy ⇒ φx,y. We would see the phase peak at this point with

a symmetrical (spherical) roll-off as a function of distance r =
√
x2 + y2 from the axis.
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Figure 1.4. The upper two panels show the amplitude (left) and phase (right) of an
idealized fundamental Gaussian beam produced using equation (1.4), both as viewed
in a 2D plane perpendicular to the optical axis (i.e. from zref ). The lower panel shows
a 3D projection of a Gaussian beam in amplitude only (CST Microwave Studio 2016).

The plane shows concentric rings, where each ring shows a phase ‘jump’ from − π/2 to

+ π/2.

For Gaussian beams, there is a natural distinctive boundary between two regions

closer and further from the beam. As seen in the amplitude (solid lines) in the lower

panel of figure 1.2, close to the beam waist there is a region where the amplitude does

not vary significantly as a function of distance, and the beam is roughly collimated.

However, in that region, the phase of the beam is changing rapidly with z, beginning

as planar at the beam waist and becoming more curved as the beam travels in z. At

some distance, the phase reaches its maximum curvature, after which the propagating
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beam spreads out and approaches a flat phase front. The location of the minimum

radius of curvature is called the confocal distance, given by the equation

zc =
πω0

2

λ
(1.8)

where zc is the confocal distance.

In approximate terms, the near-field region of the beam is where the beam is

roughly collimated in amplitude but varying widely in phase as a function of z,

and the far-field region is where the beams begin to be consistent, well-defined, and

approximated as plane waves. The distinction becomes important for radiation pattern

measurements because the beam can behave very differently when measured in each

region. However, there are advantages to measuring the beam in either the near field

or far field as discussed in section 1.7.4.

There is no precise cutoff distance that distinguishes the near and far fields, but

the confocal distance of Gaussian beams agrees with generally agreed-upon values

(see Goldsmith 1998, section 2.2.4). A more rigorous explanation involves the reactive

near-field, where the presence of evanescent modes dominates. Evanescent modes are

solutions to the field function that do not propagate, and decay exponentially as a

function of z. However, there is a region very near the radiating element (the reactive

near field, z / λ) where the signal contained in these fields is still significant enough

that these modes affect the beam pattern.

Further into the near field, sometimes referred to as the Fresnel region, the beam

is still diffracting with itself, causing rapid change in the waveform shape as a function

of distance. This region is so named after the Huygens-Fresnel Principle, which states

that each point on an arbitrary waveform is a secondary source of its own spherical

waveform. To find the shape of a new, secondary waveform at some forward distance,

the contribution of all points at the primary waveform must be summed for each
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point on the secondary waveform, including amplitude decay and phase delay of

each contributing wave along the propagation distance to the point on the secondary

waveform. The diffraction caused by the interaction between all of the waveforms

leads to significant change in the beam pattern as a function of distance. After some

distance, these effects become negligible, and the far-field radiation pattern dominates.

1.6 Types of Radiation Pattern Measurements

Radiation patterns can be measured as intensity (measuring amplitude only, or

total power) or as complex field patterns (amplitude and phase). Both types of

measurements allow the data to be fit to a fundamental beam function and can

determine the beam’s pointing direction. The trade-off between the two types of

measurements is the simplicity of experimental components with the accuracy to

which the beam shape and pointing can be determined.

1.6.1 Intensity Measurements

An intensity measurement uses a single source scanned in front of the receiver.
The source can be either a monochromatic or broadband (typically thermal) source.
Thermal sources are relatively easy and inexpensive find, and are therefore the most
common type of source probe used for intensity measurements. Thermal beam scans
are useful in that they can be implemented and analyzed quickly to characterize the
beam characteristics of the instrument. It may also be desirable to characterize a
broadband detector with a broadband source to determine the behavior of the beam
as it will be utilized in-situ (see discussion in Murphy et al. (2010)).

Thermal beam measurements can be made with either hot or cold sources. In

the former case, the thermal source must be significantly hotter than the background

environment so that the detector can measure an excess of photons radiating from the
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Figure 1.5. The right panel shows the beam scanning apparatus used to take thermal
beam scans using a liquid nitrogen cold load with a aperture plate. A chopper wheel
was mounted between the aperture plate and the bottom of the cold load. The
Styrofoam cup is not very emissive at the frequency of observation (ν = 1.9 THz) so
an Eccosorb pad was placed in the cup. This particular measurement was made using
a mixer-based detector in a bolometric mode, and the sensitivity to thermal changes
was weak. The resulting beam pattern is therefore very coarse and suffers from
significant noise. However, the aim of this measurement was to determine the
position of the beam relative to the center of the cryostat window, and this
measurement was sufficient to make that determination.

probe. In the latter case, a target submerged in a cold bath may be used as a source,

and the detector measures an absence of photons radiating from the probe. In either

configuration, if the detector’s sensitivity to thermal changes is small, a chopper wheel

can be inserted in the optical path. The chopper blade spins at a set frequency, and

the detector output S is fed into a lock-in amplifier at the same frequency, which can

boost the signal above the noise floor by several dB. The scanning system and beam

pattern measurement taken for the STO-2 mission using a cold load configuration is

shown in figure 1.5.

In order to fully constrain the boresight angle of a beam with power-pattern
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measurements, at least two 2D planar scans must be taken at different different

distances z1, z2 from the detector sub-assembly. If the scanning system moves exactly

along the optical axis, the location of the beam maximum in each scan plane relative

to the scanner system coordinates can be used to fit a line between the measurement

planes, tracing the pointing direction. For a perfectly symmetrical beam, a pointing

offset will make the beam appear progressively more elongated as the measurement

plane moves further away from the focal plane. The same effect is measured when

the scan plane is not normal to the beam axis, thus it is critical to ensure axial

alignment of the scan system to the focal plane to measure the beam offset. Several

techniques may be used for accurate alignment precision, such as optical alignment or

very accurate mechanical alignment systems. A fundamental beam asymmetry will

maintain a relative ellipticity over the successive scan planes, such that asymmetry

can be distinguished from pointing offset if axial alignment is ensured.

Nyquist sampling theorem also limits the physical aperture of the source that

samples the field. At the plane of measurement at distance z, the aperture of the

source can not be larger than half of the e-folding diameter. As will be discussed in

section 1.5, for a Gaussian beam this radius is ω(z), so the aperture of the source can

be no larger than ω(z)/2. Additionally, the source should resemble an isotropic radiator.

For thermal sources this requirement can be made by placing the source behind an

aperture plate.

1.6.2 Complex Field Measurements

The other beam pattern measurement technique is to measure the complex field

parameters of the beam. The complex field parameter α ± iβ sampled over the
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Figure 1.6. Example of a measured complex field pattern of a Gaussian beam receiver.
The left panel shows the amplitude pattern and the right panel shows the phase
pattern. The beam measured here is highly truncated at the aperture of the optical
system, and suffers from diffraction effects that give rise to significant side lobe
amplitude seen in the left panel.

scan plane can be translated into the amplitude and phase response of the receiver.

Figure 1.6 gives an example of an amplitude and phase pattern measured from an

astronomical instrument. A complex field measurement requires a coherent source,

where the amplitude and phase of the time-varying electric field emitted by the source

probe varies as a sinusoidal function over time. To measure a complex field parameter,

the detector must respond to the change in amplitude of the incoming signal as a

function of time, and S(t) is recorded for a fixed duration. The peak in the FFT of the

signal S(t) is the complex field parameter. The full field pattern thus measures the

electric field in the scan plane ~E(x, y, z), where the field E is a vector field by virtue

of being complex valued. At low frequencies (∼10-1000 MHz) a single coherent source

with an output ~E(t) ∝ sin(2πft) of may be scanned in front of a coherent receiver.

Though a detector chip can respond to the time-varying E-field oscillation at

THz frequencies, the signal S(t) is generally too fast to be recorded by commercially
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available analog-to-digital converters. A solution is to use a heterodyne technique

(Karpen and Mohr 1966), where two monochromatic, coherent sources are combined

in front of the receiver system, generally with a simple thin-film beamsplitter or with

a Fabret-Perot diplexer. The two sources are offset in frequency by a small amount

∆f , one of which is scanned in front of the receiver at fRF and the other is used as a

stationary local oscillator (LO) at fLO.

If the detector is a non-linear device, the detector will respond in such a way that

the voltage output is modulated at different harmonics of the two input tones. If we

choose the difference frequency to be within the response time of the detector, the

voltage output of the device will be given by equation (1.9) (ignoring other mixer

products) (Walker 2015b).

V (t) ' sin(2πfRF t) sin(2πfLOt) =
1

2
cos [2π (fRF − fLO) t]− 1

2
cos [2π (fRF + fLO) t]

(1.9)

where

fLO = fRF + ∆f (1.10)

All non-linear mixing devices have mixer products at both the upper (fLO + fRF )

and lower (fLO − fRF ) sidebands. Single sideband detectors are suppress one of

these signals (usually the upper sideband), which is the most common receiver type.

Double-sideband receivers that can record both the sum and difference frequency

are preferred as they recover more of the input signal, though the receiver system is

significantly more complex. In either case, the voltage output of the detector chip is a

modulated signal at the lower intermediate frequency (fIF = ∆f). As one source is

scanned in the optical path of the receiver, the amplitude and phase of the IF signal

will change as a function of the receiver’s beam pattern.
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In the THz frequency regime, it is not often trivial to find two coherent sources,

which add significant cost and complexity to the measurement apparatus. Source

probe compensation techniques are possible for coherent measurements made close to

the focal plane of the system (Leach and Paris 1973), (Paris, Leach, and Joy 1978),

(Spang et al. 2010). With this compensation, the size of the aperture of the source

probe can be larger than that required for incoherent beam scans.

However, these patterns offer several advantages over intensity beam measurements.

Broadband measurements ‘smear’ out diffraction effects and standing waves because

these frequency-dependent effects add incoherently in the optical path of the receiver,

which can make side lobes appear larger or increase the overall noise level of the system.

By measuring the complex field pattern at a monochromatic frequency, diffraction ef-

fects are present and so can be appropriately accounted for. Furthermore, most optical

simulation software solves Maxwell’s equations at discreet frequency steps, meaning

they simulate the beam at one particular frequency. A monochromatic measurement

is therefore the best comparison between the measurement and simulation.

Most importantly, a complex beam pattern is a more sensitive measurement of

the fundamental beam parameters. By fitting in phase and amplitude, the measured

pattern can be modeled in more degrees of freedom by a fundamental propagating

function. We can see from equation (1.4) that amplitude-only measurements only fit for

the first part of the exponential term, but complex fields can fit for the imaginary terms

as well, which is an additional 4 degrees of freedom. This advantage is particularly

useful for characterizing new detectors or feed types where it is desirable to directly

compare a beam to its electromagnetic simulations.
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1.7 Analysis Techniques Using Complex Field Measurements

A significant advantage to complex versus direct field measurements is that the

intensity, beamwidth, and pointing direction are measured simultaneously, so only a

single scan plane is required to determine basic beam characteristics. A single complex

field pattern can be propagated and recreated at any plane along the optical axis,

and so the scan can be conducted at arbitrary planes in the optical path, including in

the near-field. This way, the beam pointing direction can be found by propagating

the beam mathematically, rather than by measuring it in multiple separate planes as

with intensity measurements. Complex or compact optical systems may only have

one plane accessible to a beam scanning system, and thus being able to characterize

the beam from a single scan plane is ideal.

Limitations in source probe output power at THz frequencies make it very difficult

to achieve full end-to-end optical system characterization including a telescope’s

primary and secondary mirror. For example, let us use the definition of the far-field

boundary in (1.8) but replace ωo with D, the diameter of a telescope’s primary mirror.

For a telescope with a 1-meter primary operating at a wavelength of λ = 1mm, the

far-field boundary occurs at 1 km away from the telescope aperture. Typical output

power of source probes in this regime are not adequate to overcome the atmospheric

attenuation at such long distances, making this measurement impractical from a

technological as well as experimental configuration standpoint.

Though a single complex beam scan can characterize an instrument’s sensitivity

pattern, pointing direction, and coupling efficiency, higher-level information can be

extracted for full beam characterization by conducting two sets of measurements at

two scan planes using a singly polarized source probe. Two sets of scans are conducted
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each at distance z1 and z2 = z1 ± λ
4
, where the choice of z can be located either

in the near- or far-field of the instrument. The quarter-wave offset in distance can

be used to correct for optical standing waves introduced between the between the

source probe and the optical system (i.e. standing waves between the source probe

and cryostat). At each plane, after the first measurement the source probe is rotated

by 90◦ and the beam pattern is re-measured, which can later be used to fit for the

co- and cross-polarization axis of a receiver beam. Each of these techniques will be

discussed in detail below.

1.7.1 Standing Wave Reduction

The principle used in this dissertation to remove standing waves can, to first order,

eliminate the effects of optical standing waves throughout the optical system by virtue

of the principle of linear superposition. In post-processing of the data from the two

scan planes z1 and z2, we effectively cancel the standing waves using the equation 1.11

~Ecomp =
~E(z1) + ~E(z2)e

± iπ
2

2
(1.11)

where ~E(z1), ~E(z2) are the complex fields measured at each scan plane, and ~Ecomp

is the compensated field. The exponential term will be negative for z2 further from

the receiver than z1, and positive otherwise. When the two maps are co-added, a wave

traveling parallel to the optical axis will have a phase shift of π
2
, but a standing wave,

traveling twice the distance, will have a phase shift of π. These waves will cancel

while the primary beam is simply averaged together. ~Ecomp can be used for further

post-processing. A more detailed description of this technique can be found in Jellema

2015.
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Figure 1.7. Example of a scan plane recorded at an arbitrary polarization orientation
with respect to the co- and cross-polarization orientation of the instrument. A
complex field measurement allows the measured scan plane to be rotated
mathematically, and a fitting function can rotate the scan plane until the signal in
the cross-polarization field is minimized.

1.7.2 Polarization

For either single or dual-polarization selective pixels, it is important to distinguish

the co- and cross-polarization component of the beam pattern to accurately fit for the

fundamental beam parameters. In principal, the co- and cross-polar beam pattern can

be measured with only two scans at orthogonal polarizations of a singularly-polarized

source probe. This is generally true for both intensity and complex field measurements,
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though for intensity measurements the source probe must be precisely aligned with

each of the field components, which may be unknown. The advantage of complex field

measurements is that the source probe can be aligned in any orientation with respect

to the actual co- and cross-polarization axis of the detector beam, and the exact co-

and cross-polarization axes are fit for each pixel individually in post-processing.

During the measurement, the scanned source is first mounted with the polarization

aligned to one principal axis of the stage. The resulting measurement is the field

pattern ~Eh, where the subscript denotes the measurement is made with the source

probe at a particular polarization (here h is used to identify a horizontal polarization,

though the source probe polarization alignment can be arbitrary). The source is

subsequently rotated by 90◦ on a high-precision rotary stage before mapping ~Ev. In

post-processing, the measured fields can be projected onto arbitrary axes, and a

minimization algorithm can be applied to solve for the transformation that minimizes

power in the cross-polar field | ~Ex|. The orthogonal axis is thus the co-polar field

component ~Ec. Figure 1.7 shows a simple illustration of this transformation. This

technique allows straightforward measurement of the fields ~Eh and ~Ev without time-

intensive calibration between the scan plane and image plane. By doing so, we

fit the fields ~Ec and ~Ex for each pixel independently across the focal plane. The

transformation is a simple matrix rotation of the two fields by a rotation angle θ,

which can be described by the equation: . ~Ec

~Ex

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


 ~Eh

Aeiφ ~Ev

 (1.12)

Assuming a low cross-polarization magnitude, the coupling between the source

probe and the detector will be greater for the probe orientation more aligned to

the co-polarization axis, and the absolute power contained in one axis (| ~Eh|) will be
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higher than the other (| ~Ev|). The term Aeiφ scales the two maps relative to each

other to correct for this effect, as well as correcting for system drifts between the two

measurements. Here A is the amplitude scale factor and φ is a relative phase offset

between the two measurements ~Eh and ~Ev. The values of A and φ are calculated

for each transformation angle θ using a Nelder-Mead minimization function with

initial guess values taken from the center of each measurement, such that Aguess =

Re[ ~Eh(x, y = 0)]− Re[ ~Ev(x, y = 0)] and φguess = Im[ ~Eh(x, y = 0)]− Im[ ~Ev(x, y = 0)].

1.7.3 Beamfitting

Section 1.5 presented an overview of Gaussian beam formalism, and this section

will describe the technique to fit a radiation pattern measurement to equation (1.4).

This is achieved by calculating the degree of coupling between the measured complex

field ~Em (possibly after processing detailed above) to an idealized beam ~Eideal by

equation (1.13)

c00 =

∫∫
~Eideal ~E

∗
mdxdy∫∫ √

~E2
idealdxdy

∫∫ √
~E2
mdxdy

(1.13)

where ~Eideal is the result of equation (1.4). The beamfitting algorithm initiates ~Eideal

using the designed of parameters ωo,x, ωo,y at the nearest focal plane and propagates

the idealized beam forward to zm, the measurement plane. Gaussicity is the maximum

fraction of coupled power into a fundamental Gaussian beam which best approximates

the measured field. Gaussicity η can be calculated from the coupling parameter by

η = |c00|2. The coupling loss between the measured beam and the idealized beam is

this value subtracted from unity, or ε = 1− η = 1− |c00|2.
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Figure 1.8. Comparison between a measured near-field beam pattern and the
Gaussian beam ψ00 produced by equation (1.4). The upper panels show the 2D data
and the lower panels show 1D cuts in the E- and H-plane. The blue dotted lines are
the measured data and the dashed red lines are the fit data. The red circle in the
upper two amplitude panels indicates the FWHM beam width.

If instead we do not assume the beam parameters ωo,x, ωo,y and want to fit for the

values ωx(z), ωy(z), we can search the parameter space using a minimization function

operating on the coupling loss parameter ε. The minimization function uses ’seed’

values as initial guesses of the beam parameters, computes the value of ~Eideal from

these values, propagates the beam forward to the image plane, calculates the coupling

loss coefficient between the measurement and fit data, and iterates over the parameter

space until a convergence criteria is met. Figure 1.8 shows a comparison between

an example of a measured beam pattern and the best-fit beam produced with this

technique.

The minimization function can be specified depending on the degree of freedom

given to the search criteria. An unbounded Nelder-Mead (Nelder and Mead 1965)
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Figure 1.9. Demonstration of a Gaussian beam in a reference frame x, y, z, and a
measurement plane with a misaligned coordinate system x′, y′, z′. The idealized
Gaussian beam parameters must be transformed from the x′, y′, z′ to the x, y, z
system before the overlap integral can be performed. The blue lines show the beam
amplitude, and red dashed lines show the spherical phase fronts. The primed and
unprimed coordinate systems are shown in relation to their origin and are also
superimposed to the right of the beam diagram.

minimization function can efficiently probe the parameter space and has a low chance

of getting stuck into local rather than global minima. Chapter 3 takes the output

parameters of that function to use as an initial guess for a non-linear least-squares

minimization function (Marquardt 1963), which is also unbounded. The least squares

algorithm allows us to more easily find the confidence intervals for the solution set of

beam parameters.

It is important to note that the radiation pattern is measured relative the axis

from the center of the coordinate system set by the measurement plane, which may

not be along the principle axis of the receiver if there are lateral or rotational offsets

between them. These offsets will skew the measurement plane relative to the image

plane and can cause a beam to appear astigmatic or asymmetrical if not properly

accounted for. One way to correct for this is to very precisely align the coordinate

system of the scan plane to the optical axis of the receiver. Doing so requires high

precision metrology of the apparatus prior to the measurement. However, as was

37



shown with Jellema (2015), the frequency dependence of the optical behavior of a

system can cause apparent misalignments in a beam scanning system, even if properly

aligned using laser metrology.

A better course of action adopted in this dissertation is to mathematically fit for

the lateral and rotational offsets of the scanner system with respect to the optical

plane. In the beam fitting algorithm, following the example set forth in Jellema

(2015), an idealized beam is initiated in an arbitrary coordinate system with lateral

offsets xoff , yoff , zoff and rotated by θEul1, θEul2, θEul3 with respect to the scan plane.

This new coordinate system x′, y′, z′ is used to propagate an idealized, fundamental

Gaussian beam ψ00. The angles θEul1, θEul2, θEul3 are Euler-rotation angles (Piovan

and Bullo 2012). Figure 1.9 shows the coordinate system transformation described

here.

1.7.4 Near-Field to Far-Field Transformation

One advantage of complex field radiation pattern measurements is the ability

to propagate the measurement plane either forwards or backwards through optical

elements to arbitrary planes along the principle axis. This is especially helpful for

the ability to transform a measurement from the near-field into the far-field, and vice

versa. A few phase-less measurement techniques have been demonstrated to solve

for the far-field antenna pattern from near-field data, but these techniques are either

susceptible to finding erroneous solutions or require additional measurement planes

(Isernia, Leone, and Pierri 1996), (Tkadlec and Nováček 2005).

There are two methods used to perform a near-to-far field transformation. The

first is based on a Modal Expansion technique as described in Balanis (2005). The
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second technique is based on the angular plane wave spectrum representation (APWS)

(Novotny, Frimmer, and Reimann 2016), (Teyssier et al. 2008), (Tong et al. 2003),

(Tervo and Turunen 2002), (Hollis and Ecker 1973) and will be described here. Though

the APWS method of beam propagation is a highly accurate and representative, it is

still only an approximation, in the same way a Fourier transform approximates an

original function.

The APWS technique is analogous to a 2D Fourier transform converting a timeseries

measurement to a frequency. In a 1D Fourier transform, a function is represented

by an infinite series of sine (or cosine) functions. The sine functions each have an

independent magnitude, frequency and phase offset, and the superposition of the

infinite series of sine and cosine functions approaches a perfect description of the

original function. For the 2D case, rather than breaking up a function into a infinite

series of sines and cosines, the function is broken down into an infinite series of plane

waves. The series of plane waves is the Fourier transform of the near-field measurement

~Enf , and the series is represented by the variable ~A, after the Angular Plane Wave

spectrum method (though in some sources it may be referred to as Ê, as is common

to designate a Fourier pair).

We perform a 2D FFT of the complex field ~Enf measured in the near-field to find

the APWS using the equation

~A(kx, ky) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

~Enf (x, y, z = 0)e−i(kxx+kyy)dxdy (1.14)

The field ~Enf contains all the information about how a beam’s sensitivity, pointed

along the optical axis ẑ, varies as a function of spatial coordinates across the plane.

In the reciprocal space, the Fourier field ~A contains the information of the beam’s

sensitivity as a function of angle, and all of the plane waves are co-aligned at the

origin. From an optics standpoint, the field ~A represents the pupil plane (aperture) of
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an optical system, where each point in the object plane fills the aperture, but has an

individual pointing direction.

In the spectrum, all of the plane waves share the same wavelength (frequency),

but each wave is pointed in a different direction and has a different vector length,

proportional to the magnitude of the field in that direction. An individual wave is

described by its propagation vector ~k, which is pointed in the direction of propagation,

which is normal to the plane, and has units of 1/m. The individual propagation vector

can be projected onto a set coordinate system, so the pointing direction of each plane

wave can be referenced to the original coordinate axis. We can then describe the

propagation vector using ~k = kxx̂+ kyŷ + kz ẑ, where the angle defined by tan(ky/kx)

describes the pointing angle of the beam, and kz represents the propagation along the

ẑ axis (more later).

The angular resolution (the wavenumber spectrum points) of the plane waves

making up ~A is dependent on the sampling of the ~E field in the measurement plane.

From a sampling of the complex field over the x̂ and ŷ coordinate system at regular

grid spacing of dx and dy, we can construct a grid of M × N points such that

−M
2
≤ m ≤ M

2
− 1 and −N

2
≤ n ≤ N

2
− 1. Nyquist sampling theorem places an upper

limit on the spacing of the grid points dx, dy of λ/2 in order to properly reconstruct

the field. The extent of the sampling plane M,N is typically reaches at least -30 dB

from the amplitude maximum of the beam.

The values of the wavenumber spectrum points (angles) on the grid in Fourier

space are:

kx =
2πm

Mdx
(1.15)

ky =
2πn

Ndy
(1.16)
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Figure 1.10. The upper two panels show the amplitude (left) and phase (right) of ~Enf
and the lower two panels show the transformed field ~A = ~Eff . This figure uses the
same dataset that will be the subject of chapter 3.

In some references, because of the analogy to 1D Fourier transforms between time

domain sampling and frequency, the coordinates are referred to as ’spatial frequencies’,

though this can lead to some confusion because we ignore temporal dependence in

the plane wave representation. So when viewing the field ~A(kx, ky) in a 2D map, the

value of | ~A| is proportional to the intensity of the wave at each grid point (kx, ky),

where each grid point represents the angle or pointing direction tan(ky/kx) across the

2D plane. Figure 1.10 shows a comparison between the near-field and APWS-fields.

So far we have only discussed the plane wave spectrum as a stationary field, located

at the measurement plane. We now consider the z dependence of the spectrum. This
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is represented by the kz ẑ term in the propagation vector ~k. In order to propagate the

plane wave spectra to an arbitrary plane located at z 6= 0, the field must be multiplied

by a propagation factor e±ikzz such that

~A(kx, ky, z) = ~A(kx, ky)e
±ikzz (1.17)

where

kz = ±
√
ko

2 − kx2 − ky2 (1.18)

and

ko =
2π

λ
(1.19)

In order to satisfy the Helmhotz equation, the two solutions for ±kz from equation

(1.18) must be superimposed. The first solution is for +kz, which represents plane

waves propagating (radiating) forward to z > 0. The second solution is for −kz, which

represent evanescent waves which radiate into the hemisphere z < 0. In the forward

direction, these waves decay, and asymptotically approach zero magnitude well before

reaching ∼ zc.

In order to propagate the APWS spectrum from z = 0 to an arbitrary measurement

plane at z 6= 0, we multiply the spectrum ~A by the correct propagation factor for the

direction we want to propagate. We can then re-create the field at the new plane

plane with an inverse FFT:

~E(x, y, z) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

~A(kx, ky)e
±ikzze−i(kxx+kyy)dkxdky (1.20)

From equation (1.20) we see that the APWS field (the Fourier transform of the ~E

field in the measurement plane) is sufficient to describe the field at all points in the

(x, y, z) coordinate space.
In the special case of being interested in propagating to the far-field at z →∞, we

can take advantage of the Method of Stationary Phase to find a shorthand solution
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Figure 1.11. An example of applying the phase correction of equation 1.21 to a
far-field transformation. The right two panels show the amplitude projection which
remains constant, and the left two panels show the phase transformation. The top
left panel shows the phase of the plane wave spectra as viewed edge-on, and the lower
left panel shows the phase when viewed after shifting the phase angle to align with
the projection axis.

for the far-field ~E(x, y, z →∞). A rigorous description of this method can be found
in Born and Wolf (1994) but is outside the scope of this dissertation. The method
of stationary phase makes the approximation that as the beam diverges from the
near field, in the very far-field the plane waves from all other pointing directions
cease to influence the point in question (x, y, z). Thus at z = ∞, the field point is
only influenced by a single plane wave from the near field. All of the other plane
waves destructively interfere and cancel each other by the time they reach the far
field. The effect of this approximation is that the Fourier transform of the near field
measurement becomes the far-field radiation pattern ~E(x, y, z) ≈ ~A(kx, ky).

If the near-field measurement includes data from an array instrument with many

beams, the amplitude maximum of any non-central beam will not be in the center

of the measurement plane. Because of this, the transformation will propagate from

the center of the scan plane rather than the center of each beam, and the initial far
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Figure 1.12. The upper two panels of this plot show a full 2D planar scan of a
880-pixel focal plane array. Data was recorded individually for each pixel, and the
near-field data in amplitude (right) and phase (left) from a representative pixel is
shown. A 2D Hanning window centered on the amplitude maximum of the near-field
beam is applied in the upper two panels of this figure. The lower two panels show the
far-field transformation. Any residual diffraction is likely an artifact of the optical
system of the array and not from the analysis pipeline.

field transformation will show an edge-on view of a plane wave pattern which appears

’striped’. We mathematically correct for this projection by shifting the phase by the

equation

~Eff = ~Eff ∗ exp [i (kxxo + kyyo + kzzo)] (1.21)

where (kx, ky, kz) are the coordinate axis in the far field and (xo, yo, zo) are the

coordinates of the central peak found in the near-field, with zo = 0. The effect of this

phase shift is to re-center the k-space coordinate system at the amplitude maximum

before transforming into the far field. The effect of this shift can be seen in the two

right panels of figure 1.11.
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Additionally, we can use spatial filtering techniques in the near-field measurements

to remove truncation effects in the far-field pattern. Though a single pixel measurement

will end sufficiently in the noise floor of the radiation pattern, for focal plane array

measurements significant off-axis signal, such as stray light reflections in the device

substrate, can produce a diffraction pattern in the far-field transformation. We can

reduce this effect by applying a circularly-symmetric spatial mask to the near-field

data. Figure 1.12 shows the near-field data from a single pixel in an array with the

spatial mask applied to the near-field data. The far field data has had the phase

correction of (1.21) applied.
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Chapter 2

DEMONSTRATION OF A SINGLE-PIXEL MKID COMPLEX BEAM PATTERN

MEASUREMENT

Abstract

As was discussed in the previous chapter, complex-field radiation pattern

measurements can characterize an astronomical instrument in more parameters

or figures-of-merit than can incoherent beam pattern measurements. For THz

astronomical instruments based on incoherent detectors, such as Microwave

Kinetic Inductance Detectors (MKIDs), or Transition Edge Sensors (TESs),

most instruments have only used intensity mapping techniques by necessity,

since MKIDs or TESs do not inherently record phase information from the

incoming signal.

Both of these detector types rely on a fundamentally different read-out

scheme than their heterodyne counterparts. In a TES, a photon that hits a tiny,

superconducting bolometer sitting in a thermal bath at a constant temperature

Tc, causes the detector to transition from superconducting to normal material.

When it does so, the bias electronics record a change in voltage proportional

to the change in temperature of the detector. In order to read out hundreds

of pixels across the array, each pixel is sampled at a different time t in a cycle

across all pixels, which is referred to as time-domain multiplexing. However,

this process is slow and is not scalable to very large arrays if the time to sample

all pixels across the array starts to become slower than the response time of the

detector.
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A relatively new read-out scheme was developed for MKID arrays. Instead

of being sampled individually in time, each pixel is capacitively coupled to a

transmission line at an individual frequency. The read-out electronics generate a

tone at the coupling frequency of each pixel. When a photon hits the LRC circuit

of a MKID, the kinetic inductance of the superconducting device changes, which

causes a phase shift in the tone coupled to the transmission line (read-out line).

This process is called frequency domain multiplexing. The sampling frequency of

each pixel is then determined by the sampling rate of the ADC in the backend of

the read-out electronics, and can be scaled to arrays of thousands of pixels and

used with devices that have fast response times. Because of this success, some

newer TES arrays have incorporated frequency domain multiplexing schemes.

Particularly for TES and MKID detectors with frequency-domain multiplex-

ing systems, the fast read-out time can be utilized to make a complex field radi-

ation pattern measurement technique. This chapter describes a proof-of-concept

demonstration on how to set up a measurement system to record both amplitude

and phase response of a single MKID pixel in an astronomical instrument. These

are the first results of complex field radiation pattern measurements of direct

detectors, though a similar two-source measurement system was used to record

the coherence sensitivity of MKIDs in (C. Thomas and Withington 2012).

Complex field beam patterns require sampling of the E-field of a receiver in

both amplitude and phase. MKIDs have no inherent phase response to incoming

radiation and are thus classified as direct detectors. We map the amplitude and

phase patterns of the detector beam profile by adapting a two-source heterodyne

technique. The testing strategy recovers the E-field phase information by creating

a reference signal to trigger data acquisition. At each x, y point in the scan

plane, a timeseries recording of the total power incident on the MKID array

at a set phase point in the reference signal is triggered, such that the phase
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offset between the reference and acquired signals is proportional to the phase

response of the receiver beam. The reference is generated by mixing two slightly

offset low frequency signals from the output of the synthesizers used to drive

two coherent sub-mm sources.

Of note here is that in other literature, a ’receiver’ generally refers to a

particular type of detector (the device that converts photons into current);

namely, one based on a heterodyne mixer principle. Therefore, heterodyne

devices such as Superconductor-Insulator-Superconductor (SIS) mixers or Hot

Electron Bolometer (HEB) mixers, which both naturally record amplitude and

phase, are referred to as receivers. A ’detector’ then generally refers to a device

that just responds to total incident power, so MKIDs and TESs are considered

detectors. However, these terms are imprecise, and as this chapter points out,

sensitivity to phase is not a property of the chip, it is more correctly a property of

the entire electrical scheme to record voltage signals per pixel. This dissertation

will continue to refer to a ’receiver’ as a subset of components that make up an

astronomical instrument (generally, a detector chip, optical feeding element, and

the possible addition of mirrors, lenses, and apertures excluding the telescope

primary or secondary mirrors), and will refer to a detector as any device type

that actually performs the conversion of photons into voltage signals. This

convention makes it easier to distinguish between different levels of component

assembly, especially when referring to properties applicable to both mixing and

incoherent detectors, though I apologize in advance for any confusion.

2.1 Background

MKID detectors measure the change in kinetic inductance of a superconducting

resonator upon photon absorption, causing a detectable phase shift in the detector
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readout (Day et al. 2003),(Zmuidzinas 2012), (Baselmans 2012). This process is sen-

sitive only to the total power of the incident electric field, and therefore KIDs are

incoherent detectors. Typical beam pattern characterization thus relies on scalar

(amplitude only) detection of a source scanned in the main beam of the receiver

(S. Yates et al. 2014), most often with a thermal source and optical chopping. The

advantage of these systems is that they are low-cost and easy to implement.

A coherent beam measurement characterizes the beam emerging from the last

optical element in the chain, and that beam is influenced by all optical elements

preceding it. If the optical system is characterized well enough (i.e. amplitude

and phase distortion per element), a coherent beam scan can differentiate between

errors in the fundamental beam provided by the detector, alignment errors in the

optical system, or misalignment of the beam measurement system to the optical axis

(Teyssier et al. 2008), (Jellema 2015), (Naruse et al. 2009). Furthermore, measure-

ments of the complex field parameters are required to de-convolve the beam produced

by the source probe from the measured field, which is common practice when available.

Phase measurements allow for compensation of standing waves and multiple reflections

in the optical system, which are common and usually a dominant source of error for

beam pattern measurements of heterodyne detectors.

2.2 Methodology

The strategy we developed to measure complex beam patterns of MKID detectors

is based on heterodyne receiver characterization. In general, this technique requires

at least one monochromatic, coherent source to illuminate the receiver; for amplifier-
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Figure 2.1. Schematic of complex-field measurement system for single MKID pixel
demonstration. The high frequency RF is labeled in red and the low frequencies are
indicated in green.

Table 2.1. Experiment System Frequencies
Location f
Synth1 14.166500000 GHz
Synth2 14.166500400 GHz
RF 339.995009600 GHz
LO 339.995000000 GHz
IF 9600 Hz
Ref 400 Hz

List of the frequencies used for the heterodyne beam scanning system outlined in
figure 2.2
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based detector systems, only one source is necessary, but for mixer-based detectors a

second coherent, source is used. This second source is referred to as the local oscillator

(LO). The LO may be injected optically by a beamsplitter located in the optical path

of the receiver, or may be injected directly (for example, through a waveguide port in

the detector block). For this particular demonstration using a MKID, we employ a

two source technique with quasi-optical LO injection shown in figure 2.1.

In principle, the source signal can be scanned in front of the MKID in a planar,

cylindrical, or spherical pattern. The results we present here are based on 2D planar

scans. The amplitude and phase response of the detector changes as a function of

position of the source probe. Typically only relative measurements are of interest, so

the scan data is normalized by a set point in the measurement, usually the grid center.

Phase and amplitude maps as a function of position define the beam pattern of the

device under test (DUT). The frequencies used in this demonstration are shown in

table 2.1. A more detailed description of the heterodyne measurement theory can be

found in Yaghjian (1986) and Hollis and Ecker (1973).

The LO and source probe are offset in frequency by a small value δf , and are

quasi-optically coupled together with a beamsplitter in the foreground of the receiver.

The LO is kept stationary while the source signal is mounted on an X/Y motion

stage. The received signal at the detector is modulated at the difference of the two

frequencies, according to equation (2.1), where we ignore terms outside the detector

read-out bandwidth.

SRO(t) ∝ |
~Esource|2

2
+
| ~ELO|2

2
+ | ~Esource|| ~ELO| cos [2π (fsource − fLO) t+ δφ] (2.1)

In this equation SRO is the timeseries signal of the detector, | ~Esource| and | ~ELO| are
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Figure 2.2. Timeseries measurement of the amplitude of the IQ mixer-based readout
signal at the central point in the measurement scan (a) and FFT (b). We plot the
real part of the FFT output |SRO|.The signal in (a) is modulated at 9600 Hz, which
shows up as a strong peak in a single frequency bin in (b).

the electric field amplitudes of the source probe and LO sources, fsource and fLO are the

source probe and LO frequencies, t is time and δφ is the relative phase shift between the

two signals. The two signal input frequencies are related by fsource = fLO − δf . Here

it is important to distinguish the similarities and differences between the modulation

we create in the MKID detectors versus a true heterodyne measurement. Similar to

a coherent heterodyne beam map, we convert the detector readout signal SRO to a

complex field parameter. At each x, y point in the scan plane, the SRO is recorded

over a time T , where T is proportional to an integer number of waveforms triggered
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by a reference signal. The peak in the Fourier transform (FFT) of SRO is the complex

field parameter α± iβ at x, y. Figure 2.2 shows the timeseries recorded at the central

grid location of our measurement plane, as well as the FFT of that series.

In a heterodyne mixer, the response time of the device is fast enough to respond to

the time-varying E-field amplitudes, and the phase response of the detector matches

the input signals. The response is fast enough to generate higher and lower ordered

mixing products. For an MKID detector, SRO is proportional to the number of

quasi-particles generated in the resonant circuit by the incident field. The time

constant of this response, defined by superconducting properties like quasi-particle

lifetime, is not fast enough to respond directly to the incident field at THz frequencies.

The phase of the incident field is lost when converting the intensity signal into the

time-varying quasi-particle density, and the phase of the read-out modulation is no

longer related to the two coherent sources. This is why the phase referencing system

is required to properly reproduce the phase pattern of the device’s response. The

quasi-particle density is modulated (responds to) the difference frequency δf at the

multiplication frequency IF, which can be chosen to fall within the bandwidth of the

read-out electronics and is so recorded. No higher order mixer products are tracked by

the MKID response, so there is no need for additional filtering or supression of these

signals in the detector system. We use the IF notation for the multiplied difference

frequency (modulation frequency) of SRO due to its similarity to the conventional

heterodyne receiver’s output signal, though the mechanism for its generation and loss

of phase coherence makes it considerably different in the case of a direct detector.

In the back-end electronics, SRO ⇒ θMKID, where θMKID is the phase of the

complex in-phase and quadrature (IQ) signal used as the data acquisition technique

for this experiment. This adds to an additional phase offset is introduced by the IQ
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mixer, which is not referenced to the incoming optical signals. We therefore need to

remove this effect with a phase reference system, described below.

The reference signal is created by splitting the signal from the LO and source probe

synthesizers (at low frequency), combining them with a double-balanced harmonic

mixer, and then feeding that signal as a trigger into the data acquisition module,

also illustrated in figure 2.1. Data acquisition of SRO is triggered by a positive zero

crossing of the reference signal. The relative phase offset of the detected signal to

the reference signal (here we chose to measure phase offset from zero for convenience)

encodes the phase response of the KID detector.

In order to Nyquist sample the modulated MKID signal, the data acquisition

(DAQ) system must have a sampling rate of at least 2× fIF . In principal, fIF can

be any positive value of Hz. Practical limitations for fIF are the read-out rate of

the DAQ, especially for arrays with multiplexed readout schemes. 1/fIF must also be

longer than the response time of the superconducting KID resonator. Lower values

for fIF may be used for devices with a slow response time, but there is a trade-off

since higher offset frequencies decrease the 1/f noise in the system.

2.3 Experimental System

The DUT in this experiment was a meandering λ/4 hybrid Al-NbTiN supercon-

ducting MKID array, similar to the device in (Janssen et al. 2013) except using a

sapphire substrate instead of silicon. We tested the geometrically-centered pixel of a

4×4 array. The detector was fed by a twin-slot antenna that sits beneath a 2 mm

diameter laser-machined silicon lens array coupled to the device substrate.

The array was mounted in a dual stage 4He-3He cryostat reaching 250 mK. The

54



Figure 2.3. Optical system schematic of the 4He-3He cryostat. Not pictured is the
beamsplitter with the injected LO signal. In this diagram you can see the
measurement plane is inside the focal plane emerging from the ellipsoidal mirror.

cold optics consisted of a Gaussian beam telescope (see for example Goldsmith (1998))

made of two hyperbolic high density polyethylene (HDPE) lenses of focal length 25

mm and separated by twice the focal distance. One lens was directly mounted on the

array housing and another was mounted to the 4 K shield. An cold stop (aperture)

was placed in between the lenses, limiting the opening angle to an f/2 beam, or 14◦

half opening angle.

There was misalignment between the two lenses due to curvature in the 4 K plate,

which also caused misalignment to the elliptical mirror of order 3 mm. For these

reasons, the position of the elliptical mirror was adjusted to give the most symmetric

3 dB beam shapes for all pixels, trading the on-axis aberration performance for better

off-axis performance. A system diagram is shown in figure 2.3.

We used a modified ALMA band 9×24 chain as the stationary LO source

(Baryshev, Hesper, and Wild 2015). The scanned signal source was a harmonic gen-

erator based on a superlattice device set to maximize the output power of the 12th

harmonic of the input frequency (Paveliev et al. 2012). To reach our desired frequency

we fed the harmonic generator with an active frequency doubler. The spectral output

of this device was checked with a Michelson Fourier transform spectrometer to ensure
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there were no undesired harmonics within the bandpass of the receiver. A low phase

noise cable connected the scanned source to the synthesizer. The LO source used

a split-plane diagonal feedhorn and the signal source used a recessed open-ended

rectangular waveguide probe.

The read-out system used a IQ detection technique to measure changes in the

transmitted phase of a microwave signal that passes through a common feedline coupled

to each MKID in the array, based on the principle described in (Day et al. 2003). We

used data acquisition rate of 500 kS/s which limited our Nyquist sampling frequency

to 250 kHz. At each point in the scan plane, a 300 point timeseries was acquired, and

80 timeseries were averaged to produce the signal shown in figure 2.2a. The phase

and amplitude are taken from the peak in the FFT, shown in figure 2.2b. Though

somewhat arbitrary, the reference frequency of 400 Hz was chosen to ensure the

modulation at high frequency (9.6 kHz) fell sufficiently below the Nyquist limit and

the response time of the MKID at ∼30 kHz.

With this experimental system, simultaneous measurement of the beam patterns

of multiple KID detectors in an array configuration is possible, with a multiplexing

acquisition system and appropriate re-imaging optics as necessary. This proof-of-

concept demonstration used only a single pixel for simplicity of the system configuration

and computational processing. In principle, there is no significant difference in the

measurement technique between scans of a single pixel versus an array.
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Figure 2.4. Amplitude response of the receiver taken multiple times over the same x
cut while varying the source probe input power (a). Panel (b) compares the input
power to output power for each scan. We see there is excellent agreement for input
signals greater than ∼40 dB.

2.4 Results

2.4.1 Linearity

We measured the linearity of the DUT by making a series of cuts across the

measurement plane while varying the input power to the signal source such that the

amplitude response of the DUT was reduced. In each cut we measure the response

over a relative signal source input power range of 50 dB. The detected power scans

are shown in figure 2.4(a) and shows that the shape of the central lobe of the beam

remains the same for over the full power range demonstrating excellent linearity of

the KID. By comparing the measured cuts at low power levels one can accurately

determine the source power of each cut. This subsequently allows the recovery of the

linearity plot of the system shown in figure 2.4(b). For the beam scans presented in

this manuscript, the source power was kept at 17.5 dBm for maximum stability and

signal to noise ratio. corresponding to the -1.3 dBm line in figure 2.4(a).
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Figure 2.5. Amplitude (a, c) and phase (b, d) measurements of the beam pattern of
the KID receiver. The top two panels (a, b) are the measurement with zero z offset,
and the bottom two (c, d) were taken after the scanned source was shifted by a
distance of z=220 µm.

2.4.2 Beam Scans

The amplitude and phase maps of the data collected using the above technique

are presented in figure 2.5. The upper two scans were taken at a fixed distance from

the cryostat, whereas the lower two scans were obtained by displacing the source by a

distance of λ/4 from the original measurement plane. This axial offset was introduced

to compensate for the effects of standing waves, as will be discussed in section 2.4.3.

We have achieved a ∼40 dB dynamic range in the amplitude scans. The Gaussian
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Figure 2.6. X-cut (a) and Y-cut (b) of the standing wave reduced amplitude map.
The red and blue lines show the two cuts at δz = 0µm and δz = 220µm, respectively,
and the solid black line is the compensated signal.

beam can be clearly recognized in figure 2.5 (a) and (c), and (b) and (d) clearly reveal

the spherical phase fronts of the diverging beams as the phase increases from the

phase center outwards. The annular structure is caused by ‘jumps’ where the phase

wraps from−π to +π. Generally, the phase signal degrades where the noise floor is

reached in the amplitude maps.
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2.4.3 Standing Wave Compensation

Monochromatic measurements are particularly susceptible to standing waves, where

reflections off of surfaces in the beam path can either constructively or destructively

interfere with the incoming signal and cause a ‘ripple’ effect in the beam pattern. We

find a strong standing wave effect discernible in the x and y cuts shown in figure

2.6, most notable at the peak of the central lobe. To correct for this, we employ the

quarter wave offset technique, described in section 1.7.1 using equation (1.11).

Figure 2.6 shows the central E-plane and H-plane cuts through the measured data,

illustrating that the compensated signal is much smoother than either the ∆z = 0 µm

or ∆z = 220 µm maps. For this demonstration we manually moved the source probe

for the z-offset with a micrometer mounted to the X/Y stage. Signal stability between

the two maps could be increased by using a XYZ scanner that automatically takes

the offset data before the system drifts significantly.

2.5 Gaussian Beam Analysis

To calculate the fundamental Gaussian beam parameters of the detector, we

perform a normalized overlap integral in equation (1.13) to search for the best-fit

fundamental Gaussian mode ~Eideal given by equation (1.4) as discussed in section 1.5.

This method works by using an initial guess of the three free beamfitting parameters in

(1.4) (ωo,x, ωo,y and the term characterizing the phase center offset in x̂ and ŷ, δzx,y) and

producing an idealized Gaussian beam at the nearest focal plane of the optical system.

As outlined in section 1.7.3, we correct for any offsets in the measurement system

by producing the idealized beam in a new coordinate system with translational and
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Figure 2.7. Comparison of the central H-plane cut of the measured field ~Em to the
fitted Gaussian ~Eideal in amplitude (a) and phase (b). The phase fit between the
measurement and idealized beams is very tight in the region of strong amplitude
signal but falls off as the signal-to-noise level of the measurement increases. We see
here that the phase center is not well aligned with the amplitude maximum of the
beam. We believe this is caused both by a significant stray-light signal within the
device substrate as well as a misalignment of the silicon lenslet array feeding the
device.

rotational offsets to the measurement plane. The translational offsets are characterized

by x-offset, y-offset, and z-offset, and the rotational offsets are characterized by the

Euler rotation angles θEul1,θEul2,θEul3 .

Equation (1.13) determines the degree of coupling between the idealized beam

and the measured complex field. We use the algorithm described in 1.7.3 to iterate

over the Gaussian beam parameters to find those that produce the lowest coupling

loss factor (1-|c00|). The results of this analysis are summarized in table 2.2. We
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Table 2.2. Gaussian Beam Parameters and Fit Values
Fitting Parameter Initial Value Measured
|c00| (unitless) 1.0 0.803
1-|c00| (unitless) 0.0 0.197

ωo,x 10.0 11.6
ωo,y 10.0 10.0
δzx,y 0.0 -0.16
x -24.0 -10.0
y -26.0 -20.0
z -760 -600

θTB1 (◦) 0.0 0.028
θTB2 (◦) 0.0 -0.017
θTB3 (◦) 0.0 0.16

Gaussian beam parameters and coordinate system transformation values minimized
to produce an optimal model Gaussian beam from the measurement data. All values
given in mm unless otherwise stated.

calculate the Gaussicity of the receiver’s beam to be 80.3%, which matches decently

to the 85% coupling predicted by antenna-lens simulations. It is likely that the 19.7%

loss is scattered into higher order modes. There is also some loss due the presence

of remaining standing waves that were not removed in section 2.4.3. These standing

waves are most likely due to reflections within the cryostat from a defocused pupil

and a tilt on the elliptical mirror.

We believe that there are significant optical performance degradation arising from

the specific architecture of the DUT and misalignment of optical elements within the

cryostat, which may include a standing wave on the device substrate and misalignment

of the lens antenna. A complete and qualitative comparison of the measured and

expected optical performance of this device requires full characterization and control

of the optical system geometries to within fractions of a wavelength. It also requires

rigorous electromagnetic modeling of the preliminary and experimental lens-antenna

system, which will not be available until the physical nature of the device is better
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understood and constrained. This level of characterization was not the primary

purpose of this experimental demonstration. A methodical characterization of the

optical performance of this new device is suggested for follow-up research but lies

beyond the scope of this paper.

2.6 Angular Plane Wave Spectrum Analysis

We use equation (1.14) to transform the near-field map to the plane wave spectrum,

and use the analysis outlined in sectio 1.7.4 to find the spectrum points and far-field

beam pattern. Figure 2.8 shows the plane wave spectrum amplitude and phase

plots for this dataset. We retain signal to noise ratio of ∼30 dB. The far-field map

has recovered the Gaussian amplitude profile and the spherically symmetric phase

structure. There is an introduction of rings, discernible in the amplitude map, which

we attribute to diffraction from the propagation from the near-to-far fields rather

than a side-lobe signal, since there is no evidence for such highly symmetric side

lobes from the near-field map. The diffraction pattern could be suppressed by an

apodizing spatial mask in the near-field before the transformation, following equation

(??). However, this would also suppress the stray-light (off-axis) signal present in this

measurement, which is useful in this case for characterizing the optical environment

within the cryostat. The peak offset in the APWS amplitude is in excellent agreement

with the fitted Gaussian beam tilt angles, listed in table 2.2, both in sign as well as

magnitude, illustrating that the key optical system properties can be consistently

extracted from a single complex beam map.

63



Figure 2.8. The paraxial far field of the measured data. Amplitude is shown in (a)
and phase is shown in (b). The phase is clearly recovered by the transformation, and
we see that the signal degradation in the phase measurement traces the low signal in
the amplitude measurement. There is significant diffraction effects present in both
maps, but we believe some of this can be removed by spatially filtering the near-field
data.

2.7 Conclusions

In this chapter we have unambiguously demonstrated a complex measurement

technique using a MKID detector, which is in principle suitable for other direct detector

instrument types. This new technique provides measurement accuracy suitable to

determine the primary beam characteristics of interest for receiver characterization.

The phase preservation through APWS analysis, agreement to the predicted Gaussicity,
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and the agreement between the beam angles and derived from the overlap integral

analysis and the APWS analysis verifies the system reliability. Future analysis of this

dataset will be useful in diagnosing the optical misalignments of this optical system,

and the monochromatic measurements can be directly compared to discreet frequency

optical simulations.

Though complex beam measurements have an increase in cost and complexity

in electrical components compared to scalar measurements, the advantage in the

capability of performing multiple diagnostic tests from a single scan, making the

required scan area significantly smaller, make this measurement technique valuable for

most instruments. Importantly, a single scan at a fixed position in z simultaneously

finds the beam waist and focal position of the receiver. We will continue this work

by understanding the optical performance of each element in the receiver chain and

completing the analysis of the end-to-end system, with detailed comparisons of the

measurement to electromagnetic simulations. Follow-up work for other instrument

analyses are already underway to take this system and use it as a diagnostic tool both

from a device and an instrument perspective, as well as scaling the analysis pipeline

to measure a full detector array.
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Chapter 3

COMPLEX FIELD MAPPING OF LARGE DIRECT DETECTOR FOCAL PLANE

ARRAYS

Abstract

As a follow up to the previous chapter in which we demonstrate a complex

field measurement of a single pixel MKID receiver, we scaled the system hardware

and processing pipeline to analyze the response of an entire focal plane array

instrument. The system architecture described in sections 3.2.1 , 3.2.2, and 3.3.3

is tailored for direct detector instruments, but section 3.4.2 are useful to any

complex field array measurements, either direct-detector or mixer based.

A significant part of the development of the analysis pipeline presented here

relies on streamlining the code as much as possible to reduce the computation

time of the analysis steps running over several gigabytes worth of data. Many

of the analysis pipeline steps had to be re-written to vectorize the analysis

routines, eliminating some processes that had originally run using ’for loops’.

The original pipeline was written in Matlab (Inc. 2016) software, and used a

method of assigning ’global variables’ to pass data in between functions such that

the minimization algorithm did not change the data, only the analysis variables.

However, this approach does not allow for parallel processing techniques because

there can only be one global variable assignment to the code directory. Instead,

the code for this pipeline was rewritten to use a nested-function approach, which

does allow for parallel processing.

Another consideration of the analysis pipeline is to make the analysis steps

flow seamlessly between each segment, but also be able to run independently.
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Each segment is designed such that it can handle datasets with arbitrary scan

plane dimensions, pixel counts, and sampling frequencies. The only steps

individualized to the specific nature of the input dataset is the first step in

the pipeline, and the pixel matching routine to combine the two polarization

datasets. With little software finessing the pipeline should handle data from

many instruments and read-out electronics systems.

3.1 Introduction

Astronomical survey instruments naturally progress towards large focal plane

cameras with wide-field optics schemes. Visible light cameras have achieved pixel

counts in the hundreds of megapixels or more. At lower frequencies, both microwave

kinetic inductance detector (MKID) array (Day et al. 2003), (Baselmans 2012),

(Doyle et al. 2008) and transition-edge sensor (TES) (Irwin and Hilton 2005),

(Romani et al. 1999), (Beyer 2010) array cameras are being developed and ap-

proaching kilo-pixel detector counts. In the sub-millimeter regime, each detector can

no longer be considered as a ’light-bucket’ that captures incident photons with a

calibrated base efficiency, and thus the coupling mechanism to each individual pixel

must be taken into consideration when calibrating the data for image processing.

Characterizing large array instruments in this regime presents a unique challenge

to conventional calibration techniques. Some of the next big scientific questions can

be addressed with widefield instruments but require breakthroughs in sensitivity

and polarization accuracy of these arrays. For example, the next generation of

CMB mapping missions envisioned for both ground and space-based CMB-S4 need

unprecedented pointing knowledge, sensitivity, and polarization selectivity to detect

or set limits on the energy in primordial B-modes of CMB photon polarization
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(Abazajian et al. 2016). For imaging instruments studying extended sources, such

as the polarization of thermal emission from dusty molecular clouds as the grains

align to the galactic field lines (Galitzki et al. 2014), (Dober et al. 2016), accurate

pointing knowledge of the beams is necessary to fully reconstruct the astronomical

image. However, as the field of view increases, it becomes increasingly difficult to

ensure uniform alignment accuracy, stability, and coupling to calibration sources when

characterizing the instrument prior to deployment. New characterization techniques

are called for to address these scientific questions (see Abitbol et al. 2017, section 4.6).

Broadband (direct) detectors are phase insensitive, so the full on-sky

beam patterns have traditionally been measured with thermal (incoherent)

sources (Murphy et al. 2010), typically in the far field of the instrument. How-

ever, complex field mapping offers several advantages not available to thermal beam

scans. The phase pattern of a detector element probes the optical path length

difference measured in a plane normal to the principle axis of the instrument. To

determine the fundamental Gaussian beam parameters, the complex field can be fit

to a model function, and can in principle be used to obtain offsets in the phase center

along the E- and H-planes. The scan plane can be located at any place along the

optical axis, for instance in the near-field of a telescope’s focal plane. Complex field

measurements can also accurately predict an instrument’s coupling to a telescope.

Most commercially available optical modeling software can solve only for monochro-

matic beam patterns. Complex field measurements are naturally monochromatic and

therefore allow the measured response to be compared directly to simulation data,

which is not influenced by instrument/measurement effects . The most common type

of instrument effect is the presence of standing waves. This scanning strategy and

analysis pipeline we preset removes the first-order standing waves introduced between
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the source probe and the optical system (i.e. standing waves between the source probe

and cryostat) by moving the source probe by a quarter wave offset in z between two

measurement scans. A standing wave will have a 180◦ phase shift between scan planes,

and will cancel itself when averaged during post-processing.

Because optical standing waves and alignment errors between the scan system and

the instrument can be corrected and removed during post processing, we reduce the

number of measurement scans required to calculate the bore-sight angle for the array.

Doing so eliminates the need for extensive metrology to ensure alignment of the probe

system. Additionally, the complex field parameters measured in an arbitrary plane

can be propagated either forwards or backwards through optical elements to arbitrary

planes along the principal axis (see discussion in (Jellema 2015)).

Coherent beam pattern measurements are standard for missions using hetero-

dyne receivers, and have been used to characterize Flagship-class missions such as

IRAM, Herschel, and ALMA (Tong, Paine, and Blundell 1994), (Tong et al. 2003),

(Carter et al. 2002), (Jellema 2015), (Naruse et al. 2009), (Baryshev, A. M. et al. 2015).

A two-source coherent detection approach to beam characterization of direct-

detector instruments in the sub-millimeter regime was first presented in C. N. Thomas

and Withington (2013) where the phase difference between the two sources was

modulated to create interference fringes detected by a commercial power meter. An

alternate approach was presented in Davis et al. (2017) using a quasi-heterodyne

technique where the two coherent sources are coupled in front of the FPA with a

passive beamsplitter. The two sources are slightly offset in frequency, and the optical

difference or ’beat’ frequency modulates the detector response. By tuning the beat

frequency to fall within the response time of the read-out system, the modulation

can be tracked in the time domain and the complex field parameters can be acquired
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through a FFT of the response signal. The beam map is the resulting amplitude and

phase of the FFT peak as a function of pixel position. Because direct detectors are

not true mixing devices, the phase of the incoming signal is not preserved through

the readout system. Therefore, to properly reconstruct the phase pattern of the

measurement, the detector response must be referenced to the drive signal. We

produce this reference tone by splitting the drive signal at low frequency and passing

one branch from each source to a low frequency harmonic mixer. The phase of the

reference signal is used to calibrate the detector response signal in post-processing.

Though originally demonstrated using MKID detectors, the principle applies to TES

arrays as well as other direct detectors, provided that they have sufficiently fast

response time.

The work presented in Davis et al. (2017) demonstrated detailed analysis on only

a single pixel of a 3×3 array. For wide-field optical systems, maintaining the required

level of calibration stability over a long scan duration drives the need for modifications

to the experimental apparatus, system configuration, and analysis pipeline. Firstly, a

new optical injection scheme is necessary to uniformly illuminate the array with the

local oscillator (LO) source. The phase referencing system was modified to be read

continuously on a calibration tone in the read out system rather than triggering data

acquisition. We also use an on-the-fly (OTF) scanning strategy in order to minimize

the scan duration as compared to a step-and-integrate scan strategy. Additionally,

updates to the post-processing pipeline required implementing parallel processing

tools to streamline the analysis.

We demonstrate an additional processing step detailed in 1 in the analysis pipeline

to extract the co- and cross-polarization radiation patterns from the measurement

data. This is a new technique we did not employ in chapter 2. By measuring the
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complex field patterns we are able to take two scans in orthogonal directions that

are at an arbitrary rotation angle with respect to the image plane. The co- and

cross-polarization fields were extracted individually for each pixel by re-projecting

the two orthogonal measurement planes onto a rotated coordinate system until the

signal is the co-polarization field is maximized (and the signal in the cross-polarization

field is minimized). The aim is for this characterization scheme to help address the

characterization improvements called for in Abitbol et al. (2017).

3.2 Methods

The analysis methods originally proposed in (Davis et al. 2017) is both computa-

tionally expensive and was plagued by system drifts over the scan duration set by

the point-by-point integration scanning strategy. To scale the technique to kilo-pixel

array characterization, we adapted both the hardware implementation and software

processing techniques for phase referencing to more rapidly acquire the timestream

signal from each individual pixel. By transitioning to an on-the-fly (OTF) scanning

strategy we reduced the scan duration from 20 hours to 4 hours per scan, leading

to significantly improved phase stability over the course of a measurement. We also

include the details of the co- and cross-polarization finding algorithm in this section.

3.2.1 Phase Acquisition

Phase patterns of direct detectors can be measured by modulating the detector

readout in the time domain, using the interference of two coherent RF sources at

gridded intervals across a scan plane, as shown in figure 3.1. In this experiment, the RF
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Figure 3.1. Electrical and optical coupling scheme. The two local oscillators (LO) are
driven at ×32 of the frequency from two signal generators (SG), one at 11.25 GHz
while the second is offset by ∆f =17.66Hz. The power and polarization of LO1 is
controlled via two polarizers, while a 150mm focal length lens is used to optimize the
coupling over the field of view. The difference signal is mixed together, and used to
modulate the MKID readout. This is then extracted in software, giving the phase
reference and allowing phase noise correction. The attenuators and directional
coupler optimize the linearity of the reference signal and reduces leakage of one LO
signal into the other.

signals are generated using a multiplier chain (Local Oscillator LO1) and a harmonic

mixer (LO2). Each LO chain outputs a signal at the Mth (here 32nd) harmonic of

the drive signal, here 11.26 GHz, such that the RF frequency is ∼ 360 GHz. The

two synthesizers are driven with a small offset frequency (∆f ∼ 17.66 Hz), which

produces a intermediate frequency (IFoptical = 565 Hz) through coherent modulation

of the quasiparticle number in the MKID pixel.

Multiplexing for the array under test is based on a frequency domain read-out
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scheme, where each MKID is coupled at a individual frequency in the range 4. . .8 GHz

to a transmission line. A signal generator produces a frequency comb with all the

tones for each device, plus an additional set of extra tones (blind tones) that are

uncoupled. These blind tones are used to remove electrical system drifts and aid

calibration. To extend the complex beam pattern measurements from a signal pixel to

a multiplexed readout, we use the phase reference to directly modulate the multiplexed

MKID readout (Rantwijk et al. 2016).

The phase reference signal is generated as in (Davis et al. 2017) by splitting a

signal from the two drive synthesizers at low frequency and mixing the signals with a

double balanced mixer, generating a IFref = ∆f . The mixer is driven in the linear

regime to accurately translate the reference and noise from the synthesizers whilst

minimizing higher order harmonic generation. A second double-balanced mixer is

used to upconvert IFref → IFopt and encode it onto the blind tones. The power in the

second mixer is optimized to keep it in the linear regime, while an isolator is added in

series to reduce reflections off the mixer. The phase reference can then be extracted

from the blind tones in pre-processing (described in section 3.2.2) before the blind

tone correction is applied. It is important to note that the phase reference gives no

stray contribution to the measured optical signal; the blind tone correction suppress

the phase reference signal on the KID tones, while the phase reference is at ×32 lower

frequency than the optical signal.

3.2.2 Pre-processing Pipeline

The multiplexed readout (Rantwijk et al. 2016) samples the MKID signals at a rate

of 1.271 KHz, and can read out ∼500 MKIDs and 100 extra blind tones. The choice of
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using a offset frequency of ∆f ∼ 17.66 Hz synchronizes the reference frequency with

the data acquisition rate, such that the period of one reference waveform is an integral

number of samples. We calibrate the signal so that it is proportional to absorbed power

with the following steps: 1) performing a blind tone correction to remove cable phase

delay and system readout drifts (Rantwijk et al. 2016); 2) maximizing the signal-to-

noise ratio and giving a first order linearizion by calibrating the complex phase plane

relative to the MKID resonance circle (Gao et al. 2007); and 3) finally calibrating a

signal of relative frequency shift to the MKID resonance (Bisigello et al. 2016), which

is proportional to the incoming power (Calvo, M. et al. 2013).We use the average of

the uncalibrated blind tones for the phase reference signal.

For each pixel, the data recorded in the time domain is separated into blocks

corresponding to a single position of the source probe in the scan plane. The length

of each block is set to the period of one full reference waveform (0.56 ms). A complex

fast-Fourier transform (FFT) of each block is performed, where the output resembles

a delta function at the frequency bin corresponding to the optical modulation IFopt

(565 Hz). A FFT of the phase reference at the same source probe location is performed,

with the signal appearing in the bin corresponding to IFopt (17.66 Hz). The phase of

the reference signal is then multiplied by M = 32 and subtracted from the detector

FFT phase. This produces the fully corrected complex field point at each location in

the scan plane. Long term drifts in amplitude and phase of the system are measured by

periodically returning to a reference position during the scan, which are interpolated

and then subtracted from the interleaving points in the scan plane.
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Figure 3.2. Full pre-processed complex field map for a representative pixel located at
the center of the array. The data shown is shown for the Eh polarization, and has not
yet been processed to find the co- and cross-polarization axis. The array under test
has a stray-light absorbing mesh fabricated in the device substrate to minimize
reflections between pixels; however, there is still significant coupling to the pixel even
at the array edge. The rotation of the scan plane with respect to the instrument
principle x̂ and ŷ axis is clearly visible. The extent of the scan plane past the edges of
the array is both to reach a -30 dB minimum in the radiation pattern of the edge
pixels but also to allow spatial filtering for the beamfitting and far-field
transformation pipeline processes, described later in sections 3.4.2.1 and 3.4.2.2.

3.2.3 Phase and Amplitude Noise

At each point in the scan plane, the optical modulation of the moving source

probe ~ELO2 and stationary LO ~ELO1 will modulate the power response of the detector

according to equation (3.1):

Pdet(x, y) ≈ |
~ELO1|2

2
+
| ~ELO2|2

2
+ | ~ELO1|| ~ELO2|cos(2πM∆f + ∆φ) (3.1)

where ~ELOi is the E-field generated by each of the two sources. Here we assume

that the ~ELO2 field represents the convolution between the source probe and the

optical system’s radiation pattern at each point in the scan plane. The first two terms

of equation (??) correspond to DC offsets, from direct the coupling of the sources
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to the detector. The last term describes the optical modulation due to the coherent

interference of the two sources.

The noise is this measurement, to first order, is dominated by noise on the optical

sources and will scale linearly with the signal strength. Therefore, the best signal-

to-noise ratio is reached where ~ELO1 ≈ ~ELO2 , else the noise will become dominated

by the DC terms. Increasing ~ELO1 to increase the modulation depth will degrade

the noise performance. Additional noise from the setup stability (eg. beamsplitter

vibration) will be, to first order, added to the ~ELO2 term, which is the static source

coupled via the beamsplitter.

From equation (3.1) we see that the power response of the detector is proportional

to the amplitude of the E-field produced by the source probe. To obtain the power

beam pattern, the E-field magnitude and thus the instrument power response must be

squared. This has the effect of squaring the power dynamic range of the complex-field

measurement compared to a direct measurement using a single optical source with the

same source power. Here we achieve unprecedented signal to noise for a direct detector

instrument, with a (detector) noise floor of <-55 dB compared to beam maximum.

The source noise is dominated by the phase and amplitude noise from the synthe-

sizers, which has a 1/f2 frequency dependence. Direct detectors tend to be slow, as high

on-chip integration improves the sensitivity. Therefore, only low IFoptical frequencies

will fall within the read-out bandwidth of the detector, leading to the measurement

noise being dominated by synthesizer stability. The noise can be estimated from

the specifications of the synthesizers used in our experiment. At 10 GHz, only 1 Hz

from the drive frequency, the synthesizer noise specified from the manufacturer was

-44 dBc/Hz. This leads to an expected experimental noise, assuming the sources are

equal in power, of 2× 322 higher, or −10 ∼ dBc/Hz, or 0.1 rad/
√
Hz. The full software
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phase correction using the phase reference further reduces this to 40 mrad/
√
Hz, showing

the phase reference also corrects a significant amount of phase noise. This corresponds

to RMS setup stability of order of 11 µm/
√
Hz, for the optical wavelength of 833 µm.

After phase correction, measured standard deviation of phase noise varies with
√

time,

which is a Gaussian noise term (rather than 1/f). Amplitude noise does not scale

this way, so it is 1/f limited. Excess phase noise prevents complex data analysis,

and will smear out the amplitude signal. Typically, a reasonable requirement on the

measurement phase noise is . λ/25 which is equivalent to ∼ 20 % loss (Ruze 1966).

We reach that limit here in 0.22 s of acquisition, which sets the limits on the scanning

speed.

3.2.4 On-The-Fly Scanning Strategy

The scanning strategy and integration time must be optimized to ensure accurate

beam reconstruction and amplitude and phase stability. Nyquist sampling of the

beam patterns corresponds to points in the scan plane spaced by the half of the

full-width half maximum (FWHM) beamsize at the focus. However, higher angle

information—for example ghosts, reflections, and beam steering—can be extracted by

oversampling and looking at the far field beam patterns, see section 3.4.2.2. Quick

diagnostic scans can be done at Nyquist spacing, but the full data presented here is

oversampled by a factor of 2 at FWHM/4 grid spacing, which corresponds to a 1 mm

spacing over a 260×260 mm scan plane.

The simplest scan mode is step-and-integrate, where the source probe is stationary

for a set period of time at each x, y point in the scan plane before the scanner moves

to the next x, y point. However, this strategy suffers from ’dead time’ as the scanner
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moves. For widefield instruments that require lots of x, y points, this dead time can

dominate the scan duration. We therefore adopted a partial OTF scanning strategy

which proceeds as follows: At a given x position the scanner is scanned slowly in y;

the scanner then moves to the next z position and repeats the y-scan (in order to

remove optical standing waves in post-processing); then the scanner rapidly returns to

a drift reference position (to enable long term drift removal); and finally the scanner

moves to the next x position and repeats the process.

A slow scan speed of 8 mm/s was used, giving 0.125 s integration per mm, equivalent

to 2 reference waveforms (blocks). Each scan in y takes∼35 s. Synchronization between

the scanner and data acquisition is done in software via an Ethernet connection, but

faster scan rates can be done with a hardware trigger (see Baryshev, A. M. et al. 2015).

A crosscheck of the software trigger was performed by checking OTF and step and

integrate beam pattern cross-cuts of the array. A scan at a z offset of λ/4 enables

first-order standing wave removal (Davis et al. 2017), and further improves phase

and amplitude noise. The measurements we present are taken near the focal plane,

where the phase front is flat except for phase jumps at the sidelobes. Further from

the image plane, the wavefront will be more spherical, and care must be taken that

the phase does not change rapidly over each measurement block, or it will not be

correctly sampled.
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3.3 Experimental System

3.3.1 Test Array

To demonstrate the effectiveness of our measurement and analysis technique, we

measured the complex field patterns of a representative wide field, high pixel count,

direct detector array. Our choice was the APEX Microwave Kinetic Inductance

Detector (A-MKID), developed for the APEX telescope on the Atacama Plateau in

Chile (Otal 2014). Its primary mission is to survey the nearby galaxy to study the

formation and disruption of interstellar medium (ISM) clouds. AMKID serves as a

complimentary instrument to identify interesting sources for follow-up target studies

using high resolution observations, such as with ALMA. AMKID is separated into two

frequency bands, with he higher band centered at ν = 850 GHz. The low frequency

band centered at ν = 350 GHz is an 880-pixel, single polarization MKID array with a

15′ by 15′ field of view. Each frequency band consists of 4 MKID sub-arrays, and one

spare sub-array for L-band is characterized in this analysis.

Each individual pixel is a meandering MKID with a twin-slot coupling antenna.

The pixels are hexagonally packed with a pitch of 2 mm on a chip measuring 60.8×62

mm. The antenna is fed by a silicon lens mounted to the front of the array. A stray

light absorber is integrated into the chip, giving good imaging capabilities. More

details on the chip fabrication and results are presented in S. J. Yates et al. (2017).

The dynamic range from the technique presented here was essential in identifying the

mitigation of the on-chip stray light problem.

The array uses a readout scheme with an intermediate frequency (IF) bandwidth

of 4.2-7.8 GHz broken up into two sections, each with 2 GHz bandwidth. The readout
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(Rantwijk et al. 2016) currently only has 2 GHz of bandwidth, which with only one

readout available on site requires two separate measurements to readout the entire

array. The channels are interleaved in a spiral pattern to help eliminate cross-talk to

adjacent pixels on the array (Baselmans, J. J. A. et al. 2017).

3.3.2 Optics

To test the technique, the test array was mounted at 250 mK in an optical cryostat

designed to test sub-arrays for the A-MKID instrument. The system optics is a wide

field camera, made from an aberration compensated (Murphy 1987) optical relay of

magnification M=3 using four active mirrors and three fold mirrors. The active mirror

surface shape is optimized from an initial parabolic shape to biconic, to give low

aberration, distortion performance with a designed Strehl ratio greater than 0.99 over

the entire field of view (FOV). It consists of two separate mirror relays, one internally

mounted at 4 K and one mounted externally. The fold mirrors rotate the array by ∼

30 deg but give access to a horizontal image focal plane for testing. The array image

size is 180×180 mm, which is slightly smaller than the FOV. Scan are done in an xy

plane which is 30 deg rotated with respect to the array, so we need to scan 260mm by

260mm to get the entire FOV.

The optical band is selected by a filter stack. Note, there is required > 60 dB of

optical attenuation of the out-of-band radiation power, dominated by infra-red. This

is achieved with multiple infra-red filters, but it is necessary also to block stray light

leaks and self emission from filter heating. A cold aperture (pupil) limits the opening

angle on the array to 14 deg, or a focal length to diameter (f#) ratio of 2 at the array.

More details on the cryostat and filtering are presented in S. J. Yates et al. (2017).
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3.3.3 LO Injection

To measure all pixels simultaneously, the static optical source LO1 needs to be

coupled to the entire array. However, with the folded optics there is not enough space

to couple LO1 at the image focal plane. These problems are here solved by weakly

coupling LO1 with a thin film beamsplitter at a position near the image of the pupil

in the warm optics. Here, all beams overlap spatially, but have different steering or

boresight angle. The beamsplitter reflects < 10 % of the beam, and we ensure that

the reflected beam and transmitted non-reflected power from LO1 are terminated on

a 300 K load. A lens is used between the LO and beamsplitter to match the beams,

while a defocus allows optimization of coupling across the entire array. Additionally,

two polarizers are added to fix the LO polarization and allow tunability of the source

power: the LO1 source power is ∼ 10 µW, while the power per pixel is ∼10 pW, so

even weakly coupled to 1000 pixels the LO power needs further control. Variation in

the coupling of LO1 across the array varies the individual pixel’s beam pattern signal

strength, however in the presented data the entire FOV has sufficient signal to noise

to enable full beam fitting and data analysis.

3.4 Analysis

The analysis pipeline we create for the complex field maps described here can be

broken into three main stages : 1) pre-processing of the raw data output readout

system and FFT processing to the complex field points across the scan plane, as

described above in section 3.2.2; 2) preliminary map processing via performing a

linearity analysis between the two polarized scan planes, the elimination of standing
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waves, and making co- and cross-polarization maps, described in section 3.4.1; and 3)

optical analysis of the processed maps including Gaussian beam fitting and near-to-far

field transformation described in section 3.4.2.

3.4.1 Map Processing

3.4.1.1 Linearity

The radiation pattern of the FPA was measured twice resulting in the measurements

~Eh and ~Ev, where the subscripts h and v refer to the polarization of the source probe

aligned horizontally and vertically with respect to the scan plane, respectively. In the

data presented here, the source was aligned close to the co-polarization for one scan

and close to the cross-polarization for the second scan. We keep the convention of the

subscripts h and v to avoid confusion with the fields ~Ec and ~Ex, which refer to the

processed co- and cross-polar field maps.

Because of the close alignment to the co- and cross-polarization axis, the power

absorbed by each detector for the ~Eh polarization orientation was significantly stronger

than when the source was more aligned towards the cross-polarization axis ~Ev.We

therefore performed a linearity check on the response of the detector as the drive power

for the source probe was increased within this range. We scanned a representative

central pixel for several linear cuts across the scan plane while decreasing the source

probe power between each cut. Figure 3.3 shows that as the power decreases, we see

excellent linearity across the peak and main side lobes of the beam. We conclude that

the source power offset between the two scans of ~Eh and ~Ev will result in a linear

scaling factor between the two maps. From scans across a representative pixel in the
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Figure 3.3. Three separate measurements of scanning across one pixel. For each
measurement, the power of source Lo1 was reduced relative to the first by the amount
given in the legend. The top panel shows the measurements in dB relative to their
maximum response; the lower panel the amplitude response of versus the first high
power measurement. The difference between measurements shows the measurements
to be linear within standard deviation of order . 10%, limited by the optical source
noise.
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middle of the focal plane, we find that we need to increase the drive power of the

source probe by ∼ 17.8 dB to measure the same absolute power at the detector.

Using these results for field mapping, we increased the drive power to the source

probe by 17.8 dB for the ~Ev source probe orientation so that there was enough detected

power to produce the same signal-to-noise ratio in each map. However, to properly

determine the co- and cross-polarization axis, the absolute power in each map needs

to be properly represented since the algorithm minimizes | ~Ex|. Therefore, we scale

| ~Eh| by +17.8 dB before fitting the values of A and φ according to equation (1.12).

A then becomes a scaling parameter to encompass the coupling difference between

the source and detector at each orientation, and also is adjusts for the relative power

levels received by each individual pixel across the array, since the value 17.8 dB was

found by scanning only one pixel.

3.4.1.2 KID Matching

As part of the start-up routine and calibration process for the FPA, the KID

frequencies are re-calibrated between each measurement scan. This calibration is

automatic as part of the start-up routine for the array because the resonant frequency

of each device can shift due to different thermal or optical loading within the cryostat.

Additionally, for each polarization measurement the optical source power was tuned

to optimize signal to noise. The consequence of that step for this analysis was that

the KID pixel read-out frequencies differ between the ~Eh and ~Ev scans, which caused

problems because the only way a pixel is identified in the raw output is by read-out

frequency.

Therefore, a processing step is introduced to match individual pixels between the
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~Eh and ~Ev datasets. We use a two-step matching technique that finds the closest

match in frequency between the two scans but does a follow-up check on the location

of the amplitude maximum. For the two scans, we first set a frequency tolerance level

for disparity between the two measurements, νtol = ±10 kHz. An algorithm takes

each KID pixel frequency from one scan and searches for a match within ±νtol. If a

match is found, the algorithm then calculates the central peak position of both maps,

and determines if they fit within a distance tolerance ±dtol, where dtol = ±8 mm. If

more than one match is found within νtol, the best match between dtol is selected as a

match, otherwise the algorithm exits with no match. With an initial pixel count of

732 pixels, the routine matches 718 pixels corresponding to a matching yield of 98.1

%.

3.4.1.3 Polarization

The analysis pipeline uses a minimization algorithm to determine the rotation

angle to project the scan planes onto the co- and cross-polarization axis of the image

plane. This algorithm is based on the principles outlined in section 1.7.2, and uses a

Nelder-Mead minimization function (Nelder and Mead 1965) acting upon the scale

factor Aeiφ. The pipeline’s polarization function gets passed a initial value for A and

φ, and solves equation (1.12) over a set range of projection angles θproj. The function

exits when it converges on a solution that minimizes the total power in the cross-polar

radiation pattern | ~Ex|. Initially, a subset of 100 pixels in the center of the FPA were

fed into the algorithm in the range −π
2
< θproj <

π
2
with increments of π

180
. Once

the average projection angle was found we ran the algorithm over the full array but

narrowed the projection angle range to −π
6
< θproj < 0 with increments of π

360
.
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Figure 3.4. Near field co-polarization (upper two panels) and cross-polarization
(bottom two) panels. The left two panels show the amplitude, scaled to the peak of
the co-polarization map, and the right two panels show the phase structure. The
image has been cropped to a square 8x the beamwidth centered on the amplitude
peak in the co-polarized map to cut out the wide-field noise.

Because the raw data maps were scanned over a large field of view relative to the

individual beam size (as seen in figure 3.2) and include an elevated off-axis signal,

we select only a inner portion of the raw data map to pass to the fitting routine. To

find the best size for the selected region, we centered a box of scan coordinates with

side length ` = ω(z) ∗ bw, where bw = 5...10, around the amplitude maximum of the

beam. At the edges of the array, the region size of `× ` points is maintained but is

shifted to begin at the edge of the scan plane, meaning that the amplitude centroid

of the map may not be in the center of the selected region. Because of this, the raw

data scan extends well beyond the edge of the field of view of the array, and only a

small fraction of pixels have centroid positions significantly far from the center of the

selected region.
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We pass this scan region to the co-and cross-polarization finding algorithm over a

subset of 10 KID pixels and calculated the average integrated | ~Ex| as a function of bw.

We found the difference between integrated | ~Ex| (scaled by the area of the selected

region) as a function of bw did not vary significantly, and so we chose bw = 8 as a

trade-off between region size and computational time. This area is large enough to

include at least 2 phase wraps in the selected scan region, which is used to determine

whether these points were actual wraps caused by the spherical phase roll-off or from

nulls in the amplitude map where phase jumps due to the sign change in the complex

field map.

In order to minimize | ~Ex|, the amplitude centroid of the two maps ~Eh and ~Ev must

be co-aligned as accurately as possible. The raw data maps were gridded onto a 1 mm

spacing, but this sampling was too course to see the fine detail of the cross-polarized

maps. We then linearly interpolated the data onto a 0.2 mm grid spacing and used a

cross-correlation routine to find the amplitude centroid offset between the two map

orientations. The co- and cross-polarization finding algorithm uses a circular shift to

co-align the two datasets, for the selected region surrounding the amplitude maximum.

The angle θproj is determined for each pixel individually. Doing so allows us to

search for trends in cross-polar angle as a function of pixel position across the array,

such as a misalignment of the lenslet array to the MKID array. We find that the

average rotation angle across the array is θproj = −14.9 ± 0.1◦ . Figure 3.4 shows

the resulting ~Ec and ~Ex fields of a central array pixel in both amplitude and phase

after the above routine was performed. The cross-polar maximum was -21.3 ± .9 dB

below the co-polar field maximum on average across the array. After the projection

angle was fit for the region `× ` for each pixel, the projection was scaled to the entire

region of 260 × 260 mm.
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Table 3.1. Beamfitting Parameters and Fits
Fitting Parameter Initial Value Average

ωo,x (mm) 3.25 3.59±0.03
ωo,y (mm) 3.25 3.54±0.03
x (mm) xNFmax –
y (mm) yNFmax –
z (mm ) -1.0 -33.6±0.6
θTB1 (◦) 0.0 0.2134±0.0005
θTB2 (◦) 0.0 0.2843±0.0005
θTB3 (◦) 0.0 0.5± 0.2

The beamfitting parameters used to calculate the Gaussicity of the individual pixel
beams. The middle column shows the value used to seed the initial minimization
algorithm, and the right column shows the average values and uncertainties across
the array.

3.4.2 Data Analysis

3.4.2.1 Beamfitting

In the co- and cross-polar extraction pipeline process, the input full range pre-

processed maps were clipped to a region around the amplitude centroid, interpolated

to a finer grid sampling, and then the ~Ev was circularly shifted to match the other

polarization. The shifted data was passed to the co-and cross-polar projection finding

algorithm. Because the scan region encompassed in the original region of size `

terminates in the noise floor of the amplitude map, the effects of circularly shifting

the maps do not significantly affect the beamfitting routine. However, since the data

was interpolated to a fine grid sampling, the region contained a large number of scan

points and it was computationally expensive to process the entire array. To ease the

computational burden, we further clipped the data to a new region of size `′. The

size of `′ was determined by testing the same subsample of pixels and analyzing the
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Figure 3.5. Cuts in both the Ê(left) and Ĥ (right) planes of the near-field 2D
co-polarized beam patterns, | ~Ec,meas|, as presented in figure 3.4. We also plot the
results of the fitting function | ~Ec,fit|, which is the first order Gaussian function |ψ00|,
and the beam pattern cross-cuts from optical simulations | ~Ec,sim|. The simulated
patterns include the effects of the truncation of the beam on the secondary mirror
and more fully simulate the optical properties of the receiver system. We see a strong
null in the measured cross-polar pattern | ~Ex,meas|, showing that we recover the
cross-polar pattern after re-projection. The measured cross-polar peak is 15 dB
higher than simulated | ~Ex,sim|. This is likely caused by coupling to stray-light in the
device substrate as well as residual cross-polarization signal from the stationary
source probe pattern. However, at a peak value of ∼ -28 dB, this level of measured
cross-polarized signal is good for a fabricated instrument.

beamfitting parameters as a function of region size, starting with a severely clipped

size of bw = 4 and increasing in size until the beam parameters converged to a stable

value at bw = 7.2 corresponding to a box of size 33.8 × 33.8 mm centered on the

amplitude maximum of the beam.

The beamfitting analysis routine used in our pipeline is a scaled version of that pre-

sented in (Davis et al. 2017) and (Jellema 2015), following the procedure described

in section 1.7.3. It fits for the fundamental beam parameters ωo,x, ωo,y by creating a
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new coordinate system at location x, y, z and rotated with respect to the scan plane

by θTB1, θTB2, θTB3 from which to propagate an idealized, fundamental Gaussian beam

ψ00. The angles θTB1, θTB2, θTB3 are Tait-Bryan angles. A minimization function

takes the set of initial seed parameters to set a coordinate system an Gaussian beam,

propagates the beam forward to the image plane, calculates the coupling loss coefficient

between the measurement and fit data, and iterates over the parameter space until a

convergence criteria is met.

Here, we use a two-step minimization approach that optimizes the search for a

global minima over the parameter space but efficiently solves for the uncertainties in the

fit parameters. Initially, we use an unbounded Nelder-Mead (Nelder and Mead 1965)

minimization function to solve for equation (1.13), which can efficiently probe the

parameter space and has a low chance of getting stuck into local rather than global

minima. We use the output parameters of that function to use as an initial guess

for a non-linear least-squares minimization function (Marquardt 1963), which is also

unbounded. The least squares algorithm allows us to more easily find the confidence

intervals for the solution set of beam parameters. In order to process the entire

array efficiently, the beamfitting algorithm of the pipeline was re-optimized to run

using parallel processing techniques. This was possible because the fitting routine is

independent to each pixel. The search routines both used a nested function approach

to pass the measurement data into the minimization routine without being optimized

as a fitting parameter. The beamfitting step of the data processing pipeline can run

in under two hours when running on four parallel threads.

Table 3.1 shows the initial values used to seed the minimization algorithm used

for beamfitting, as well as the average of the final fit values for all 718 matched

pixels. Initial parameters for the beam characteristics were taken from an idealized,
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symmetric first order Gaussian beam with a magnification at the image plane of 3.0

and perfect alignment between the scan plane and image plane. The exception to this

is the fit in z. During testing of a small subset of pixels, we found that setting this

parameter initially to zero caused the algorithm to get stuck in an unrealistic local

minimum at z = 0, meaning the scan plane was precisely located at the focal plane

of the optics system. We therefore seed it with an initial distance of 1 mm, and it

converged to the global minimum near -33 mm.

Figure 3.5 shows the results from the beamfitting analysis for a representative

pixel. Here we show only the amplitude of the co-polar map, though we also fit

the phase map. We include the measured data | ~Ec| as well as the magnitude of the

idealized first-order Gaussian beam | ~Eideal| from equation (1.4). We also include the

results of optical simulations using the parameters from lens-antenna simulations in

CST (CST Microwave Studio 2016) which were then ported into GRASP (GRASP

2017) for full end-to-end beam pattern simulation. The fit in both amplitude and

phase is shown both across the region selected for the array as well as for a cut in both

the E-and H-plane. Because we use a first order Gauss-Hermite polynomial for fitting,

we do not fit for side lobes. We discuss the choice of fitting function in section 3.5.

Figure 3.6 show the coupling coefficient between the co-polar map and the first-

order Gaussian beam. Optical simulations predicts a 85% coupling (Zemax 2017).

We see no significant trend between coupling and pixel position, although we have

eliminated pixels for which the beamfitting algorithm did not converge to a solution,

which typically signifies crosstalk in the beam.

Initial testing of the beamfitting algorithm included another independent parameter,

used when processing the data presented in Davis et al. (2017). This value parametrizes

the beam’s astigmatism, which is the offset between the phase centers in the x and y
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Figure 3.6. This plot simultaneously shows the beam ellipticity and coupling
coefficient for each pixel across the array. We have filtered out all pixels for which the
beamfitting algorithm does not converge. The shape of each beam is proportional to
ωx and ωy at the distance z fit for each pixel according to the coordinate system
transformation outlined in section 3.4.2.1. The color of each beam is proportional to
the coupling value c00 from equation (1.13).

direction (parameter δzx,y as defined in (Jellema 2015)). However, when analyzing the

beamfitting equation, we find that the function is fairly insensitive to the z parameter,

where a 10 mm change in z produces only a ∼ 1% change in the beam coupling.

Upon further inspection, we found that the minimization function was oscillating

between two minima for different values of z and δzx,y, thus these two parameters are

not sufficiently independent for the level of noise present in this dataset. Thus, we

removed this parameter from the fitting routine and kept the fit in z only. We still

solve for the beam ellipticity by independently fitting the beam along the x and y axis,

to find ωx and ωy. The ellipticity as a function of pixel position is shown in figure 3.7
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Figure 3.7. Ellipticity as a function of pixel position across the array. Each pixel is
represented by a uniform circle, and the color of each pixel is related to the ellipticity.
We do see a trend across the array, from ωy > ωx toward the bottom half of the array,
and ωy < ωx trending towards the upper half of the array. The origin of this trend is
still unclear.

Figure 3.8. Projection of the z-fit parameter as viewed from the XZ (right) plane and
YZ (left) plane. Again, the color of each pixel is related to the coupling percentage.
The results of this plot demonstrate there is a slight defocus on order of 3 cm of the
measurement plane with respect to the external optical focal plane.
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Figure 3.8 shows the value of the fit in z as a function of pixel position. The

mean fit distance was -33 mm. This fitting parameter is effectively the distance of

the measurement plane from the focal plane of the optical system, fit individually for

each pixel. At this distance we are just outside the confocal distance of ∼ 20 mm.

We do not see a flat focal plane, rather there is a spread of ± 6 mm. However, as

we described earlier, the sensitivity of the algorithm is only weakly coupled to the

distance in z, and this spread falls within the noise level of the fitting algorithm.

3.4.2.2 Near- to-Far-Field Transformation

We take advantage of the external focus of the AMKID optical system to measure

the complex beam pattern in the near field. We then solve for the far field beam pattern

following an angular plane wave spectrum technique detailed in section 1.7.4, which is

accomplished with a Fast Fourier transform (FFT). Instead of clipping the data in a

boxed region as for the beamfitting pipeline process, we apply a circularly symmetric

Hanning window function over the full 260 × 260 mm co-polar map. The windowing

region is centered on the amplitude maximum and has a radius of rHann = 24 mm.

Because we use the full scan plane data to transform the near field data, the

amplitude maximum is not at the center of the measurement plane. Because of this,

the transformation will propagate from the center of the scan plane rather than the

center of each beam, and the far field transformation will show a phase tilt which

appears ’striped’. We mathematically correct for this projection by shifting the phase

by equation (1.21).

The upper two panels of figure 3.9 show the far field amplitude and phase of

the co-polar field, and the bottom two panels show the amplitude and phase of the
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Figure 3.9. Far field radiation patterns of the representative MKID pixel. The upper
two panels are the co-pol far field, lower two panels show the cross-pol far field. The
left two panels are the amplitude patterns and the right two are the corrected phase
patterns. We recover a null in the central region of the cross-polar amplitude map,
demonstrating that we do indeed fit for the proper cross-polarization field even at an
elevated signal compared to the design.

cross-polar field. The far-field pattern represents the illumination of the beams at

the aperture stop of the optical system (ie the secondary mirror of the telescope).

Though it appears to be mostly flat, the field in the central amplitude region of the

co-polar far-field projection is a truncated Gaussian with an edge taper of >∼-5 dB

on average across the array. The array under test was designed with a -3dB taper,

to enable oversampling of the focal plane (Griffin et al. 2015). We see some very-low

level diffraction effects present in the amplitude of the co-polarization maps from the

high truncation of the beam at the optical pupil of the instrument.
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Figure 3.10. The black arrows overlaid on the central dots point in the direction of
the boresight angle. The length of the arrow is proportional to the magnitude along
the pointing direction, but scaled by a factor of 25 to be visible across the plot. The
color of each pixel is proportional to the coupling % of the pixel, and does not
correlate to the pointing direction. The beams have to be scaled by a large factor to
show the pointing direction, demonstrating that overall the beams are very well
aligned to the optical axis.

Once the phase correction has been applied, we find the phase center in angular

coordinates kx, ky by setting all coordinates of the co-polar map with amplitude > −10

dB to unity and nulling all coordinates with amplitude < −10 dB. We then average

all the coordinates with signal to find the central coordinates of the beam, which

correspond to the boresight angle of each pixel fitted in the far field. The angle as a

function of pixel position is shown in figure 3.10.

3.5 Results

The far-field co-polarized beam map confirmed the secondary edge taper of only -3

dB, verifying the optical design of the system at planes other than the measurement
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plane. Where possible, we take advantage of fitting routines and mathematical field

transformations to achieve a complete radiation pattern measurement to find the

co- and cross-polar patterns and beam pointing angles from two measurement scans

(though for this antenna under test the readout equipment had only enough bandwidth

to read out half of the array per measurement scan, thus requiring a total of four

scans).

As a result of the complex field radiation pattern measurement, the AMKID array

was measured with a dynamic range of >50 dB, a factor of 2-3 orders of magnitude

improvement over similar radiation pattern measurements taken using only a thermal

source. Initial complex field pattern measurements of an early fabrication run of

the AMKID array revealed the presence of a -40 dB optical surface wave. The

surface wave was removed by adding an absorbing mesh for subsequent fabrication

run (S. J. Yates et al. 2017). The results we present here are measurements from an

array fabricated with an absorbing mesh in the substrate. Our results show a decrease

in the magnitude of the surface wave to ∼-50 dB. Complete removal of the surface

wave can potentially improve the dynamic range even further.

This pattern found in both the near field beamfitting and far field pattern confirms

the fact that the beams are only somewhat Gaussian in nature; the highly truncated

beams are therefore dominated by diffraction effects through this stop. The choice to

fit for a Gaussian beam stems from the desire to know the coupling to a point source

for each individual pixel. In this analysis with the AMKID array, the fundamental

beam produced by the lenslet array was designed to produce more Gaussian beams,

but the significant truncation at the pupil degrades the Gaussian coupling produced

at the image plane. It is therefore important to propagate the beams from the near-

field into the far-field to check the edge taper at the secondary in order to accurately
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characterize the performance of the array. This step is only effective with complex-field

measurements.

We could in principle recover different information about the optical system by

fitting for a diffracting function, for example, a first order truncated 2D Bessel

function (Yousif and Melka 1997), (Functions et al. 2012), (Lucas and Stone 1995).

The framework presented here is easily adaptable to other fitting functions while

maintaining an approximately equal degree of computer processing time. The memory

allocation requirements for the beamfitting step in the processing pipeline scale with

the number of fitting variables used by the particular equation.

In the fitting algorithm we present, six variables are used to transform coordinate

systems between the scan plane and image plane, and two variables are beam param-

eters. Two additional beam parameters were used to fit for the real and imaginary

energy contained in the field when using the least-squares fitting routine, and another

beam parameter describing beam astigmatism was removed from this analysis due to

the ambiguity between distance to the focal plane and the distance to the beam phase

center. This ambiguity is partially caused by the presence of the residual surface wave

in the array substrate, so for arrays with more stray-light absorption or anti-reflective

coatings, this parameter can be added back to the processing pipeline.

The most computationally expensive task in the processing pipeline is the step to

match the MKID readout timeseries to the phase reference (blind tone) signal and

convert the timeseries into a complex field measurement. This step is also the most

significant data reduction. The limitations of this system are set by the memory and

processing power of the machine running the analysis. The data here was reduced in

post-processing and was performed on a modest system on a desktop machine. It is

possible to conceive of a bench-top environment to run this processing in real time,
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but since these results are useful for laboratory characterization only, it may not be

practical to implement.

This level of detailed analysis will be crucial to ascertain the accuracy of instrument

fabrication when looking to the future of space missions using direct detectors with

thousands to hundreds of thousands of pixels. For example, the next generation

of CMB mapping satellites envisioned for CMB-S4 need unprecedented pointing

knowledge to detect or set limits for the energy in primordial B-modes of CMB

photon polarization. For imaging instruments studying extended sources, accurate

pointing knowledge of the beams is necessary to fully reconstruct the source. The

technique we present here is a highly accurate and efficient measurement of the co-

and cross-polarization fields of an instrument and can be located at any scan plane

convenient for in-situ beam scanning.

3.6 Conclusions

A phase mapping technique for direct detector arrays has been demonstrated and

has sufficient sensitivity and accuracy to determine fundamental beam parameters of

the individual pixels as well as the optical performance of the system. New analysis

techniques were included in a data reduction pipeline for beam pattern characterization

of direct detector arrays, including extracting co- and cross polarization maps from

data scanned with an arbitrary source probe polarization orientation and near-to-far

field optical propagation.
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Chapter 4

CIRCULAR TO RECTANGULAR THZ WAVEGUIDE TRANSFORMERS

Abstract

The best way to understand interstellar cloud processes is to study the light

emitted directly from the cloud. Indirect methods, for example by studying the

extinction of light emitted from background sources, can be very challenging

to separate the background environment and radiation conditions from the

properties of the cloud. Instead, we use heterodyne cameras to study the

spatial and spectral information of interstellar clouds as they cool and condense.

Ballooning missions in particular offer a unique opportunity to study the lifecycle

of interstellar clouds because at ballooning altitudes of ∼ 40 km (125,000 ft), the

observation platform is above 99% of the Earth’s water vapor, which absorbes

a significant fraction of the light entering Earth’s atmosphere in the THz

regime, limiting the spectral coverage and depth of observations for ground-

based observatories. Survey missions are especially advantageous from ballooning

platforms because they offer ample observing time dedicated to a single science

case and have modest budgets so new detector technology in the THz regime

can be tested without the rigorous testing common to satellite missions.

According to Plank’s law in equation (1.1), most astronomical bodies emit

blackbody radiation within the THz range of the spectra. Though this emission

is great for studying astronomical sources, it can be problematic from an instru-

mentation standpoint, since the environment around a telescope, and even the

telescope’s optical components themselves, will emit THz radiation that adds

noise to the sky signal along the optical path. Instrument scientists are aware of
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this phenomenon, and use an equivalent thermal noise to characterize all sources

of noise in a system, due to blackbody radiation or not. Various sources of

electronic noise are typically converted into units of noise temperature, which is

the equivalent noise of a resistor at a temperature T over a bandwidth B = ∆ν.

In order to observe an astronomical target, the incoming radiation from that

source must obtain a sufficiently high signal-to-noise ratio over the accumulated

thermal noise added to the optical path of the instrument, characterized as Tsys.

The radiometer equation gives the relationship between observation bandwidth

∆ν, integration time τint, and the telescope and receiver’s Tsys

σRMS =
kTsys√
∆ντint

(4.1)

where σRMS is one standard deviation above the RMS of the Gaussian noise

floor of the instrument, and k is a constant equal to 1 or 2, depending on

the instrument type (see Walker 2015b, chapter 8). Cooling emission lines of

clouds in the THz frequency regime are relatively weak, so high signal-to-noise

observation requires a long integration time. Ballooning missions have only

modest primary mirror diameters (≈1 meter or so) and low pixel counts (single

pixel up to 2×2 arrays demonstrated on-sky), so the best way to improve signal

is to make each individual pixel as sensitive as possible.

There are several ways to achieve high pixel sensitivity, but one easy and cost

effective approach is to have highly efficient feedhorns that funnel photons from

the observatory’s optical system and onto the detector chip. For the original

proposal of the Stratospheric Terahertz Observatory (STO-2) mission, the focal

plane of Hot Electron Bolometer (HEB) detectors was baselined to use diagonal

feedhorn profiles. These profiles are cost effective to manufacture by direct-metal

micro-machining processes, which is a lot faster and cheaper than other methods

such as electroforming or etching. However, a diagonal feedhorn suffers from
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a 15% sensitivity loss (only 85% of incident photons are detected) because the

feedhorn couples to cross-polar radiation, which contributes to the noise in the

detector.

The motivation for this work is based on instrument development to survey

large regions of the galaxy in the astrophysically important [CII] cooling line

of the interstellar medium at 158 µm (1.905 THz) Goldsmith et al. 2012. Line

emission surveys do not require receivers with large fractional bandwidth, but

do require the highest mapping speed and spectral resolution available. Thus, it

becomes important to develop technologies that can expand large focal plane

arrays of heterodyne receivers.

The technology discussed in this chapter has been used for several missions

to design feedhorns for heterodyne HEB arrays, at multiple frequencies and

with multiple feedhorn profiles, including STO-2, the Galactic/extragalactic

Ultra-long duration Stratospheric Terahertz Observatory (GUSTO), and Super

Heterodyne Array for Space Terahertz Applications (SHASTA) missions. This

chapter introduces a method for integrating a circular-to-rectangular waveguide

transformer into the feedhorn block, such that the transformer can be machined

from within the aperture of the feedhorn. Micro-machining is much more cost

effective than electroforming, making large arrays quick and relatively inexpensive

to manufacture. The micron-sized dimensions and tolerances of these horns

require new fabrication techniques. Consideration of the machining processes

ensure the designs are easily repeatable and can be scaled from engineering

models to large arrays with hundreds to thousands of pixels.
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4.1 Background

Recent terahertz (THz) heterodyne instruments for astronomical research have

utilized horn-coupled receiver devices (Walker 2015a; Bernasconi et al. 2010; Risacher

et al. 2016; Dober et al. 2016). For astronomical receivers, it is generally desirable

to use a feedhorn to maximize signal coupling to the detector and minimize cross-

polarization. Many of these receivers are designed to use rectangular waveguide feeds.

This criteria has been used to determine the feedhorn profile. Many instruments have

adopted diagonal feedhorns as a standard profile due to their machinability and low

cost to manufacture (Johansson and Whyborn 2000). Diagonal horns intrinsically

have rectangular waveguide feeds, so they integrate easily with rectangular waveguide

fed detector chips. However, diagonal horns suffer in efficiency because of their high

cross-polarization component, which can be as high as 15%.

Corrugated feedhorns offer some of the highest sensitivity and lowest cross-

polarization (Robertson et al. 2016) but conventional manufacture via electroforming is

both costly and time consuming, making them impractical for large array instruments.

Other feedhorn profiles, such as Pickett-Potter horns (Pickett et al. 1984) or multi-flare

angle horns (Chahat et al. 2015), offer a simpler fabrication process compared to

electroformed horns and have lower cross-polarization than diagonal horns, and so are

more suitable for low-cost submillimeter array instrumentation.

Both of these feedhorn profiles have circular exit waveguides, so a waveguide

transformer is required to integrate them with rectangular waveguide-fed devices.

We aim to create a feedhorn module that can integrate with rectangular waveguide-

fed detectors, is comparable in performance to a corrugated feedhorn, and uses a
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fabrication technique that is within the budgetary and schedule constraints required

to manufacture large focal plane arrays.

Circular-to-rectangular (CTR) waveguide transformers (WGT) in the THz fre-

quency range have been produced using direct-metal micro-machining techniques, as

reported in Chahat et al. 2015. Two conventional strategies exist for integrating direct-

metal micro-machined CTR WGTs into a receiver chain: machining the transformer

onto a separate thin plate inserted between the feedhorn and the detector block, or

integrating the transformer with the feedhorn block using a split-block technique. In

the former case, the transformer segments become increasingly difficult to manufacture

at short wavelengths. As an example, the 1.9 THz transformer presented here is

only 46 µm thick. A plate of this thickness is susceptible to buckling or warping

from being held rigidly in the machine while cutting the transformer. With multiple

receiver segments, the mated system is more susceptible to misalignment between the

transformer, the detector housing, and the feedhorn blocks. In the latter case, using a

conventional split-horn fabrication technique introduces the potential of misalignment

between the two halves of the split-block upon mating.

We present a better solution of integrating the CTR WGT directly into the

monolithic feedhorn module, making all machining cuts directly from the aperture

side of the block. One advantage of this technique is that it decreases machining

time because the part can be inserted into the machine workspace and remain in

place for all or most machining passes. Each time a part is removed and reinserted

into the workspace, a new reference calibration of the machine’s positioning system

relative to features on the part must be made. The reference calibration can be on the

order of a few to tens of microns. Such large deviations can lead to alignment errors

between the waveguide segments, and these errors scale with increasing frequency and
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the number of individually machined pieces. In contrast, modern milling machines

can reliably hold alignment accuracies to <5 µm during a machining pass with a

single reference calibration. Thus, the machining strategy presented here can decrease

machine worktime and maximize alignment between waveguide elements, helping

to advance future instrumentation in the THz regime towards heterodyne arrays of

hundreds to thousands of pixels.

4.2 Module Design

There are several feedhorn profiles with circular waveguide feeds that meet the

criteria for having high sensitivity, low cross-polarization, and are capable of being

made with direct metal manufacturing processes. The optical performance of these

feedhorns is well-documented, and is outside the scope of this paper. We therefore have

chosen a feedhorn profile to use as a proof-of-concept demonstration, and concentrate

our analysis on the design and performance of the CTR WGT.

The design of the CTR WGT is itself conventional, but we use the novel approach

of integrating the segment at the rear of the receiver feedhorn by machining it directly

from within the feedhorn aperture. We will therefore discuss the details of the

manufacturing technique as well as comparing the performance of the integrated

feedhorn-transformer module to diagonal feedhorns, which have comparable machining

complexity and scalability to large focal plane arrays.
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4.2.1 Feedhorn Selection

We choose Pickett-Potter feedhorns as the horn profile for this demonstration. Our

design is the same as that introduced in Pickett et al. 1984 scaled to λo = 158µm,

and the exact values are listed in Table 4.1. CST simulations of the feedhorn have a

FWHM beamwidth of 12.3◦, -32.6 dB side lobe levels, and cross-polarization coupling

of -32.2 dB relative to the main beam. The fractional bandwidth is approximately 10%,

which is suitable for emission line surveys. Pickett-Potter horns have a flat-topped

conic profile, allowing them to be machined with tools that are custom-ground but do

not require electroforming, adhesives, or etching methods. Other direct machined horn

profiles are suitable for this module, such as multi-flare horns Chahat et al. 2015, but

the increase in bandwidth of these horns is not necessary for emission line studies and

may not generally justify the increased complexity and customization of the tooling

required for fabrication.

4.2.2 Transformer Design

The design of the CTR WGT is based on Stuchly and Kraszewski 1965, with the

dimensions of the cross section scaled in frequency for operation at 158 µm. The

feedhorn choice defined the input CWG dimensions at the input of the CTR WGT.

This design was chosen over other CTR WGT designs (Rosenberg, Bornemann, and

Rambabu 2002; Zhao et al. 2016; Holzman 2005; Munir and Musthofa 2011; Pawlan

2015) because the features get progressively smaller from the circular to rectangular

waveguide, allowing all features to be machined from a single side of the feedhorn
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Figure 4.1. Critical dimensions of the model of the waveguide circuitry of the
transformer module as seen (a) looking down the optical axis, (b) cut across the
profile, and (c) an isotropic view looking down the aperture of the Pickett-Potter
feedhorn (c). Dimensions of these features are listed in Table 4.1. The red dashed
circle in (a) shows a corner of the transformer that does not have the corner fillet, to
demonstrate the difference between the idealized transformer and the edge-rounding
required by the manufacturing technique. Similarly, the idealized rear WG would be
rectangular instead of oval.

block. Figure 4.1 shows a diagram of the transformer profile, including the circular

waveguide exiting the feedhorn.

The dimensions of the CTR WGT were optimized in both HFSS (High Frequency

Structure Simulator) (HFSS 2014) and Computer Simulation Technology (CST) (CST

Microwave Studio 2016) simulation packages. The design objectives were to produce

a transformer with S11 below -20 dB across the 10% bandwidth of the Pickett-Potter

feedhorn. Since the input reflection of Pickett Potter horns is well constrained, we

chose to optimize only the transformer, circular waveguide, and rear waveguide (see

section 4.2.3).

In both simulation packages, we initially optimized the transformer dimensions

atfmr, the circular radius of the curved edges along the width of the transformer, btfmr,

the straight edges along the height of the transformer, and `tfmr, the transformer
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Table 4.1. Transformer Module Dimensions
Design Dimension (mm) Machined (mm)
Dhorn 1.011 1.015
Dstep 0.205 0.208
Lhorn 1.678 1.669
DCWG 0.161 1.159
`CWG 0.048 0.060
atfmr 0.117 0.114
btfmr 0.093 0.098
`tfmr 0.046 0.035
aOWG 0.100 0.108
bOWG 0.050 0.053
`OWG 0.060 0.081

The designed and as-machined dimensions of the feedhorn-transformer module. The
as-machined dimensions were verified using a microscope with sub-micrometer
precision. The tested unit was measured without cutting it open, so there is ± 0.005
mm uncertainty in the measurements due to diffraction of optical light within the
horn.

length, for the minimum achievable input reflection S11 at the frequency of interest (1.9

THz). The two packages returned slightly different optimized transformer dimensions.

The differences between simulation packages can arise from several factors, including

the differences in convergence criteria and meshing algorithms. There may also be

difference arising from the fact that CST is time domain solver, which is more suited

to represent the scattering parameters across the full bandwidth of the module, but

HFSS is a frequency domain solver, which is more suited to finding a solution at a

single frequency of interest. We averaged the two optimization results together to

produce the dimensions presented in table 4.1. We then re-simulated the module in

both packages with the averaged dimensions to ensure there was a -20 dB S11 across

the frequency bandwidth of the Pickett-Potter horn (1.7-2.1 THz). Figure 4.2 shows a

comparison between the S11 optimized using each software package. At 1.905 THz,

HFSS finds a S11 of -33.6 dB, and CST finds a S11 of -34.6 dB.
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Figure 4.2. Comparison of the S11 parameter between CST and HFSS. The red
dashed frequency indicates the rest frequency of the CII line at 1.905 THz. Both
simulations include the circular waveguide in front of the transformer and an oval
waveguide feeding a rectangular waveguide behind the transformer. We included the
oval to rectangular transition to simulate the feedhorn-transformer module mated to
a receiver block with a rectangular waveguide feed.

4.2.3 Oval (Slot) Waveguide

A consequence of machining the transformer from within the aperture of the

feedhorn is that the rear waveguide must be cut with the endmill along the optical

axis. In figure 4.1a, the endmill making the waveguide (WG) feature would be sticking

out of the page, and it is possible to see how the circular tool cannot make a 90◦

corner as would be required for a rectangular WG. As a result, the cross section of the

exit waveguide changed from rectangular to oval. Similarly, this constraint required

us to round (fillet) the edges between the straight and curved transformer walls. The
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Figure 4.3. Comparison of the S11 parameter between a module with a CWG,
transformer, and RWG (top curve) and the S11 of a module with a CWG,
transformer, OWG, and lastly a RWG (bottom curve). The dimensions of the
transformer in both curves are those presented in Table 4.1

dashed circle in figure 4.1.a shows the idealized edge, and all other edges are shown

with the fillet. The radius of the fillet is determined by the radius of the endmill used

to make the cuts. In this case the radius was 22 µm, slightly smaller than btfmr/2 so

that there was room to drive the tool while making the cut.

We simulated the effects of using an oval waveguide (OWG) rather than rectangular

waveguide (RWG) using CST. We first simulated just the CWG and transformer

leading directly into a 0.1x0.05 mm RWG, where the RWG dimensions were set by

our test detector (see section 4.4). We then inserted an OWG segment between the

transformer and the RWG to simulate the transformer module connected to a block

with a RWG leading to the detector chip. Figure 4.3 shows the comparison of the
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Figure 4.4. Endmills used for the manufacture of the feedhorn-transformer module.
The left-most tool is a custom-ground tapered bit ending in a flat step, used for
machining the Pickett-Potter feedhorn. The right-most tool is a standard 40 µm
diameter endmill that was ground to recess the neck of the tool to fit within the horn
aperture. For comparison, the middle endmill shows a standard tool with no
specialized necking.

input reflection between the module mated directly to a rectangular waveguide versus

a module with an oval waveguide mated to a rectangular waveguide. The module

with the OWG inserted performs better than the direct transition to RWG because

we have optimized the transformer dimensions to the OWG rather than the RWG

transition. Though not the original intent, the OWG is itself a CTR WGT, as was

demonstrated in Pawlan (2015), and so the performance increase when the OWG is

included is not surprising.
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4.3 Fabrication Techniques

It is possible to machine all waveguide circuitry from the aperture of the Pickett-

Potter horn with just three tools; one custom tapered tool with a flat end for the

feedhorn (shown on the left of figure 4.4), and two additional modified endmills for

the CWG and transformer/OWG segments (one shown on the far right side of figure

4.4). To achieve the proper dimensions at 1.9 THz, the horn tool was ground at a 6.5◦

half angle and the tip was flattened to match the diameter of the step between the

horn and the CWG. The endmill used to cut the CWG is slightly smaller in diameter

than the CWG (here 150 µm) at the exit of the feedhorn, and the endmill used to cut

the transformer and the OWG has a diameter less than that of the short dimension

of the output OWG (here 40 µm). The diameter of these endmills is standard but

both were recessed at the tool neck in order to fit in the horn aperture. The recessing

was done at the Jet Propulsion Laboratory by grinding the tool at the appropriate

clearance angle.

The length of each waveguide segment of the module was designed to be as

short as possible to minimize attenuation. Short machining depths also minimizes the

possibility of breaking the thinner, necked endmills in the waveguide during fabrication.

The main drawback to machining all features from the front of the block is that it

is at risk of leaving machining chips on any step between the progressively smaller

features along the optical axis (the steps from top to bottom in figure 4.1.b).

One alternative machining strategy is to machine the exit RWG from the back of

the feedhorn block. Doing so requires that the block be taken from the base, flipped,

and re-mounted in the machine. Each time the part is remounted, the alignment of

the block to the spindle axis must be re-calibrated, costing significant machining time
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and creating the possibility for misalignment. Instead of referencing the location of

the rear waveguide to a corner of the block, misalignment can be mitigated by drilling

a guide hole down from the bottom of the transformer segment before flipping the

part, and using centering microscope to re-align the machine’s coordinate system to

the guide hole.

In this process the smallest diameter endmill does not require a recessed neck in

order to fit within the aperture of the horn. The benefit of this is that the endmill is

more rigid, increasing the expected tool lifetime. Machining the OWG from the back

of the horn is a trade-off because as the endmill pushes down into the transformer

segment, it may push material into the transformer and leave burrs on the step

between the two segments, causing unwanted reflections at the transition. We chose

this method to manufacture the test horn to avoid modifying the 40 µm endmill.

Figure 4.5 shows the as-machined single pixel receiver assembly. The feedhorn

block is connected to the detector backend. A SMA connector coming out of the back

can be seen for scale. Two guide pins spaced on the flange ensured precise alignment

to the mixer backend. The horn is located in the middle of a 20 mm square block of

C145 Tellurium copper alloy.

In figure 4.5b, we see some detectable burs and machining chips visible along the

edge of the oval waveguide, though none protrude excessively into the waveguide

cavity. We check for reflections caused by these small machining artifacts with

radiation pattern measurements, discussed in sections 4.4.3 and 4.5.2. We also see

a small rotation between the transformer and the OWG, occurring because during

the manufacture of this test unit, not all machining passes were performed in a single

step. We believe that the machining process described above will reduce this error.
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Figure 4.5. (a) Single pixel feedhorn-transformer module connected to the thicker
mixer backend. The small circle in the center of the block is the aperture of the
Pickett-Potter feedhorn. The green dotted circles highlight the holes to mount the
receiver assembly to the cold work surface, the magenta dot-dash circles highlight the
screws that connect the feedhorn and detector blocks, and the solid blue circles
highlight the alignment guide pins. (b) Looking down the aperture of the horn at the
flat surface between the transformer and the oval waveguide. The outer feature is the
edge of the transformer and the inner feature is the OWG. The two black ovals
highlight the presence of machining artifacts, either burrs or stray machining chips, at
the step between the transformer to oval waveguide. (c) The bowtie structure at the
bottom of the waveguide is the hot electron bolometer (HEB) detector device,
mounted in the detector block and mated with the feedhorn- transformer module.
The orientation of the HEB is aligned to the short dimension of this panel.

Despite this rotation, in figure 4.5c, we see good alignment of the detector chip to the

optical axis of the horn.

4.4 Measurement System

Though the design requirements we used for the transformer module rely on

optimal S11 performance, it is impractical to measure the return loss directly, mainly

because there are no standard vector network analyzers available at 2 THz. Instead,

we measure the performance of the integrated module using noise temperature and

radiation pattern measurements.

The noise temperature of the receiver assembly is partially determined by the
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return loss of the transformer, although there are contributions to this number from

the return loss of the feedhorn, noise from the HEB, cryogenic low noise amplifier, and

warm intermediate frequency (IF) chain. We can separate out the noise contribution

from the system by performing a comparative measurement between two frontend

blocks, each with different feedhorn profiles but both mated to the same detector chip

and IF electronics. We have chosen diagonal feedhorns as a comparative feedhorn

profile for this analysis due to their similarity in timescale and simplicity of fabrication,

and the fact that they do not need a CTR WGT to mate with RWG-fed receiver

blocks. There is lingering uncertainty in the contribution to the noise temperature

between the feedhorn profiles used for this comparison, so we estimate the relative

difference of the feedhorn return loss using simulations of each module.

We use the radiation pattern measurements as a secondary way to verify the

machining technique. By itself, the radiation pattern is mostly influenced by the

feedhorn. In conjunction with the dimension analysis via microscope, these measure-

ments check that the offset of the oval waveguide and the small burs and chips left

from the fabrication process—seen in figure 4.5b do not create obvious distortions in

the radiation pattern. We are therefore interested only in the general shape of the

radiation pattern and if, to first order, it matches the expected beam radius.

We tested the feedhorn-transformer modules by mating them to detector backend

blocks containing Niobium Nitride (NbN) hot electron bolometers (HEBs). The

HEBs were scaled from the design presented in Boussaha et al. 2011 to operate at

1.9 THz. The backend block design uses input RWGs and quarter-wave backshorts.

Typical devices have a noise temperature of 900 K when used as a mixer device at

this frequency.
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4.4.1 Diagonal Horn Design

The dimensions of the diagonal horn are scaled in frequency to 1.9 THz from the

design presented in Johansson and Whyborn 2000, resulting in the principle feedhorn

dimensions a = 0.38 mm and L = 3.6 mm. This feedhorn was machined using a

split-block fabrication technique, and was designed with the same interface connections

to the HEB detector block as the Pickett-Potter feedhorn module. This way, the

two front-end blocks were interchangeable so that the exact same device was used to

measure the noise temperature of both receiver assemblies.

In order to minimize the waveguide attenuation within the receiver front-ends,

both front-end blocks were designed to minimize length of each waveguide segment.

Intrinsically, a diagonal feedhorn has a longer horn length than a Pickett-Potter

feedhorn of the same beam waist, and consequently had a longer feedhorn module.

Therefore, to keep the HEB at the same position relative to the cryostat window, we

machined two sets of alignment holes with the appropriate offset distance to mate the

receiver assemblies to the cryostat mounting structure.

4.4.2 Noise Temperature Measurement System

The dual side band (DSB) noise temperature was calculated using the Callen-

Welton Y-factor method (Callen and Welton 1951). The noise temperature was

measured with the receiver pumped by a 1.9 THz Schottky-diode based multiplication

chain (Siles et al. 2012). A grid beamsplitter placed in the optical path of the receiver

coupled 10% of the multiplication chain signal to the receiver beam. Inside the

cryostat there are no optical elements between the window and the receiver assembly.

116



Eccosorb pads at 300 K and 77 K were manually inserted in the source path of the

system. The intermediate frequency of the receiver was 1.5 GHz with a bandwidth of

500 MHz. A power meter was attached to the IF connection from the receiver, and

multiple hot/cold cycles of the thermal sources were averaged together.

4.4.3 Radiation Pattern Measurement System

Figure 4.6 shows a block diagram of the test bench used to measure the radiation

pattern of the feedhorn. For this experiment, we used the devices as direct detectors

due to the simplicity of the experimental system, in comparison to using a two source

heterodyne technique. The receiver assembly was mounted in a liquid helium-cooled

cryostat that was placed on a rotating stage. The HEB location relative to the front

of the cryostat is known from both CAD models and direct measurements with the

cryostat open, and we used that knowledge to manually align the HEB to the stage’s

rotation axis. A thermal break consisting of an insulating Mylar sheet was inserted

between the receiver mount and cold work surface to keep the HEB just below its

critical temperature, Tc = 9 K, and fine temperature adjustment was controlled by a

resistive heater mounted to the interface block between the cold work surface of the

cryostat and the back-end block. An external bias system and read-out electronics

were connected to the HEB through a hermetic flange on the cryostat lid.

The radiation pattern measurements were conducted using the same source probe

as in the noise temperature measurements. For this test the source was mounted

directly in front of the receiver cryostat. We inserted a stationary wire grid between

the cryostat and the test source to eliminate the cross-polarization from the source

signal. We electrically modulated the source signal using a square wave generator.
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Figure 4.6. Block diagram of the radiation pattern measurement system. Note that
the horn profile and HEB image are not to scale relative to the other system
components. The small HEB image in the receiver assembly was adapted from
Boussaha et al. 2011

The current output from the modulated HEB was fed to a lock-in amplifier referenced

to the square wave generator. The amplified signal was recorded as a function of the

rotation angle θ.

4.5 Results

4.5.1 Noise Temperature

Simulation results of the input reflection loss from a Pickett-Potter and diagonal

feedhorn at 1.9 THz can be seen in figure 4.7. We see that the Pickett-Potter horn
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Table 4.2. Noise Temperature Measurements
Source Frequency
(THz)

Potter Horn Noise
Temp. (K)

Diagonal Horn Noise
Temp. (K)

1.84 840 840
1.87 780 780
1.89 925 925

The dual side band (DSB) noise temperature of the Pickett-Potter
feedhorn-transformer module compared to the diagonal feedhorn module. The
uncertainty in each measurement is TN = ±30 K. Measurements were taken with the
multiplication chain tuned to three different frequencies. The noise temperature
presented here is the average of several Y-factor measurements taken with each
feedhorn module.

has a better performance across the band, but the diagonal horn has a lower S11 at

the center frequency (-22.55 dB and -25.41 dB for the diagonal and Pickett Potter

horns, respectively). We found the S11 of the waveguide circuitry, simulated in figure

4.2, to be below -32 dB in both CST and HFSS.

Table 4.2 shows the noise temperature calculated from Y-factor measurements

comparing the Pickett-Potter-transformer feedhorn modules to the diagonal feedhorn

modules. There was no distinguishable difference between the noise temperature

between the diagonal horn and the Pickett-Potter feedhorn modules at all three

source frequencies. The lowest noise temperature occurred slightly lower than the rest

frequency of the [CII] emission line at 1.87 THz.

We expect a lower noise contribution from the Pickett-Potter feedhorn module

horn varying between 2-5 dB at all three source frequencies. We would expect the

contribution to the noise temperature from the machining errors of the transformer

segment and oval waveguide to scale linearly frequency. It is highly unlikely that

the machining errors would scale perfectly to match the difference in input reflection

between the diagonal and Pickett-Potter feedhorn modules. Instead, we can reasonably
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Figure 4.7. Simulated S11 of both a Pickett-Potter feedhorn (solid) and a diagonal
feedhorn (dashed). The transformer and exit waveguide of the Pickett-Potter
feedhorn was not included in these simulations. The three vertical lines indicate the
frequency of the source for the noise temperature measurements.

conclude that the dominant noise contribution is coming from elsewhere in the system,

likely from the mixer itself.

This result shows that the feedhorn-transformer modules we present do not con-

tribute significantly to the noise performance of stat-of-the-art receiver systems.

Though this method does not measure the performance of the module independently,

it does demonstrate the suitability of the design for large scale emission line survey

missions.
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Table 4.3. Beamwaist Calculations
z (cm) ω0 (cm)
121.9 0.287
152.4 0.296
203.2 0.310
Average 0.298
GRASP 0.287
CST 0.288
Theory 0.281

There is a ±0.050 mm uncertainty in ω0 at all three scan planes, mostly due to the
uncertainty of ±5 mm uncertainty in z. The calculated beamwaist is slightly larger
than the theoretical value for all three measurement scans. This was expected since
we do not correct for the beam size of the source probe.

4.5.2 Radiation Pattern Measurements

Three scans of the radiation pattern were made by rotating the cryostat with a

one-second integration at each point along the cut. We measure the radiation pattern

at three distances z between the source probe aperture and the cryostat window. From

each measurement scan, we first fit the beam to a first-order Gaussian profile and find

the beam radius ω(z). We then calculate the initial beam waist at the aperture of the

feedhorn, ω0 at distance z using the following equation from Table 2.3 in Goldsmith

1998:

ω2
0 =

ω(z)2

2

1±

[
1−

(
2λz

πω (z)2

)2
]0.5 (4.2)

where ω0 is the beamwaist, and ω (z) is the beam diameter at distance z . We use a

first- order Gaussian fitting routine to calculate ω0 from the raw data at all three

scan planes. The measured beamwaists show good agreement to the theoretical

beamwaist of ω0 = 1.78λ = 0.288 mm from Pickett et al. 1984.
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Figure 4.8. Measurement data (solid), first order Gaussian fit (dotted), and
GRASP-simulated (dashed) radiation patterns of the feedhorn module. The
measurement data was scaled such that the fit peaks at 0 dB. The -3 dB points are
indicated by a horizontal dashed line in each plot.

In figure 4.8 we show the measured data from the radiation pattern measurements,

a first order Gaussian fit to the data, and a simulated radiation pattern including the

feedhorn and waveguide circuitry using GRASP (GRASP 2017).

Though the measurement data in figure 4.8 shows significant ‘ripple’ across the scan,

the shape of the ripples is consistent between measurement planes. This consistency

indicates that these ripples are most likely caused by standing waves in the system

rather than spurious reflections caused by debris within the module. Despite the

standing wave effect, the qualitative beam shape agrees well with simulations, as is

summarized in table 4.3. We see that the fit and GRASP data agree with each other

to at least the -3 dB level. Beyond that, the data agrees much better to the GRASP

simulation than it does to the Gaussian fit. As the distance between the source and

the receiver increases, the agreement between the simulation and measured beam

pattern degrades, which we expect as the signal to noise ratio also decreases.

We do not see excessive beam distortion or boresight error as we trace the beam

from one scan plane to the next. We show here that the manufacturing process used

to fabricate these horns is reliable and does not negatively influence the beam pattern.
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4.6 Conclusions

We have modeled, fabricated, and tested a CTR WGT, that can be easily machined

directly into a feedhorn block. The advantages of an integrated architecture are a

more precise alignment of waveguide circuitry features by reducing the number of

times the milling machine must be referenced to the feedhorn block, and minimizing

the machining time by implementing a monolithic rather than split feedhorn block.

The performance of the integrated transformer is comparable to that of conventionally

machined feedhorn profiles, and the implementation of the integrated blocks do not

decrease the performance of the feedhorn profile chosen for a particular module. These

new technological advances can serve as a pathway toward the implementation of

cost-effective large monolithic focal plane array units.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Science Motivation

Instrumentation development and characterization techniques presented in this

dissertation are designed to enable better astronomical studies of ISM clouds with

new frequency coverage and either high spectral resolution or large field of view. In

order to better understand the origins of our Sun and our solar system, we need to

understand how the gas and dust from previous generations of stars is recycled. We

can do this by looking out into our Milky Way galaxy and studying nearby ISM cloud

formation and disruption in detail. By studying the light in the THz frequency regime

emitted directly from these clouds, we can study their formation processes, how they

interact internally and with their surrounding environment, and how both new stars

and external factors lead to their disruption. These studies can help give context to

our the uniqueness of the formation of our solar system and help us to understand

our place in the Milky Way galaxy and beyond.

Widefield cameras using broadband detectors do not match the spectral resolution

of heterodyne instruments, but serve a complementary purpose to the study of ISM

processes. These cameras can study astronomical clouds with a large spatial extent

in order to best study cloud morphology. For example, there is an ongoing scientific

debate as to how much the presence of turbulence within a cloud disrupts ongoing or

future star formation. Widefield cameras with high spectral resolution can look for

turbulent flows that can indicate recent or ongoing disruption. Additionally, wide field
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cameras can take large surveys of ISM clouds. These surveys can be used to build

up a statistical representation of clouds, by looking at a distribution in terms of size,

age, thermal or radiation environment, interactions with other clouds or proximity to

different types of stars, or spatial distribution throughout the galaxy.

Heterodyne instruments have the finest spectroscopic resolution in the THz fre-

quency range, though with the pixel counts of the most state-of-the-art instruments

they have a lower spatial resolution than widefield instruments. Spectroscopic instru-

ments are able to detect the presence of different chemical species in these clouds

as well as probe their thermal and kinematic properties. Combining the detailed

chemical, thermal, and kinematic information provided by heterodyne instruments

with the high spatial resoultion of other widefield images, we can piece togeter a model

of how clouds form, evolve, and are recycled by the Milky Way.

Both heterodyne and direct detector instruments can help us study the properties

of exoplanets. Near-infrared MKID cameras have been recently comissioned to work

in conjunction with advanced adaptic optic systems and caronagraphs to surpress

starlight from a host star in order to directly image exoplanets. The advantage that

MKIDs offer over other direct detector instruments is that they have fast read times

and are very close to being read-noise free. Heterodyne measurements help inform

studies of exoplanets by studying the early protostellar environment of potential

exoplanetary systems. In order for rocky planets to exist, there must be a sufficient

absolute abundance of heavy elements present in the surrounding medium. As we

better understand how these molecules form in the diffuse interstellar medium and

are processed dense clouds before the star formation process begins, we can better

model solar system processes based on the mechanics of the initial environment.

The device and system-level characterization techniques presented in this dis-
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sertation help scientific studies by improving sensitivity and pointing knowledge of

the cameras used for these missions. Beam pattern measurements can reconstruct

the on-sky sensitivity pattern and further improve sensitivity by characterizing (and

helping to remove) optical losses due to reflections or misalignment of elements in

the receiver system. The waveguide transformer module described in chapter 4 helps

improve sensitivity by eliminating potential misalignment and losses due to mismatches

between receiver sub-assembly components. It also allows detector devices requiring

rectangular feeds to use low-cross-pol sensitive feedhorn profiles, which can eliminate

up to a 15% noise factor introduced at the feedhorn.

5.2 Future Work

The radiation pattern analysis pipeline developed through chapters 1-3 of this

dissertation are useful for instrument characterization of both direct detector and

heterodyne instruments. A pipeline that can handle arbitrarily large sapling planes

and data types will be useful to have so that future measurements can focus more on

instrument analysis rather than pipeline development. The measurement techniques

introduced in this dissertation will help future beam pattern measurements be more

precise and informative at diagnosing problems in an instrument’s optical system. One

of the main challenges to adapting the pipeline for future datasets will be coordinating

the time-stamp between the scanner system and the data acquisition system, which is

a minor challenge solved in software post-processing. Future improvements to this part

of the analysis pipeline can streamline the process and being less memory-intensive,

for example by windowing the timeseries of each dataset to more easily find a match

between the position data and detector response. Lowering the end-to-end processing
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time of a new dataset, a beam mapping system can be put in place in the optical

path, and the pattern can be remeasured after adjustments are made to the system

components to ensure maximum optical efficiency through the instrument.

The characterization technique described in chapters 2 and 3 is suitable to meet

the characterization requirements for new advanced suites of direct-detector array

instruments. Particularly for instruments where polarization sensitivity is important—

potentially for CMB measurements but also for magnetic field polarization studies,

dust polarization, and more—the ability to characterize co-polar and cross-polar

sensitivity patterns for an array will allow tighter uncertainty limits in the scientific

data. Future work on using this characterization technique is to push the frequency

limits both higher and lower than the demonstrated performance, use it with new

detector types, and characterize dual-polarization selective devices.

Both datasets in chapters 2 and 3 were measured at 350 GHz. Scaling up to

higher frequency is possible with multiplication chains with sufficient output power

to ’pump’ the detector. Tests at 850 GHz are already underway to characterize the

high frequency channel of the A-MKID instrument. Scaling up in frequency presents

a technological challenge because the response time of the detector becomes a factor.

This can be mitigated with appropriate selection of IFopt frequency, where the 1⁄f noise

decreases for higher IFopt, though it must be sufficiently lower than the response time

of the detector. There may be a practical limit to how high in frequency this technique

can be used due to the instrument read-out technique. Infrared or X-ray MKID arrays

are coming on to the instrumentation scene, but these instruments are not read out

continuously. Instead, they are individual photon counting devices, and the coherent

modulation technique, the foundation principle of the complex beam mapping scheme,

cannot be applied.
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However, for lower frequencies, the mapping technique we introduce should have

little challenge being implemented. Indeed, the technique itself stems from applications

in microwave detectors, and has only been relatively recently demonstrated in the THz

regime. Polarization selective devices at 150 GHz, for CMB experiments and potential

uses by the Office of Naval Research, are currently fabricated and could be a potential

application of this technique (McCarrick et al. 2017). For MKIDs, the phase reference

scheme presented in chapter 3 is easy to implement because it does not require any

new software updates to the read-out electronics of the instrument. The data may

need to be manipulated at the entry point to the post-processing pipeline according

to the specific data format from a new instrument, but the subsequent analysis steps

are designed to link together through the subsequent analysis steps. Additionally, the

hardware integration is achieved by simply inserting a power combiner in the read-out

electronics (in addition to the other hardware required by the scanning system) so is

relatively easy to implement with existing architecture.

In order to apply this technique to TES arrays, consideration must be made

to accommodate the time constant tc of these detectors. TES detectors have been

demonstrated for multiple instruments with tc ∼ 1 ms (Abitbol et al. 2017). It is

conceivable, then, for the optical modulation to be detected if it is placed at fairly

low IFopt frequency, for example, at ∼100 Hz. In chapter 2 we use an IFopt of only

400 Hz. Lower frequencies have a higher 1/f noise, which may limit the number of

arrays where this technique will be effective, depending on other noise contributions

to the system.

Another challenge for characterizing TES arrays is a new suitable phase referencing

system will be necessary. For a single pixel receiver, triggered acquisition is suitable,

following the referencing scheme presented in chapter 2. However, for array instruments,
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the phase referencing scheme presented in chapter 3 is specific to MKID detectors and

cannot be used for TES arrays, even when using a frequency domain multiplexing

scheme. A triggered technique is possible, though the scan duration using a step-and-

integrate scanning strategy used with this acquisition mode makes the data output

excessively large. A potential solution could be to have a separate detector for the

IFref signal that is timestamped appropriately to do a time comparison between the

scanner system, reference signal, and TES signal in post-processing.

The direct metal-machining of feedhorn-integrated waveguide transformer modules

presented in chapter 4 are already incorporated into the design of future missions

that are in the proposal phase. These missions include Astrophysics Stratospheric

Telescope for High spectral Resolution Observations at Submillimeter-wavelengths

(ASTHROS) proposed for an APRA balloon mission and the Stratospheric Heterodyne

Array System for Terahertz Astronomy (SHASTA) that will be submitted as a facility

instrument for SOFIA. A SHASTA feedhorn module has been fabricated that uses a

multi-flare angled horn profile rather than a Pickett-Potter feedhorn. The machining

accuracy of the milling machine used in fabrication has designed features for use up

to 4.7 THz, including a phase grating and ortho-mode transducer at those frequencies.

At 63 µm, the smaller dimension of the rear oval waveguide at the exit would be 36

µm, which is barely within the size range of the smallest commercially available end

mills of 30 µm.

Additionally, micro-machined monolithic horn arrays for use with MKID or TES

arrays can benefit from these horn modules. Horn coupled devices for S4 instruments

will likely not need a transformer since they are designed to be dual-polarization

detectors and will probably have circular waveguide feeds. However, missions like

AMKID, NIKA and others that use twin-slot antennas as on-chip absorbers could use
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feedhorns for wide field imaging of ISM clouds or other objects. TES array cameras

can also use these feedhorn profiles, perhaps for upgrades to the cameras on the South

Pole Telescope.

One potential avenue for invesitgating the optical quality of these modules is to

make a S11 measurement. The standard way to make this measurement would be

using a vector network analyzer (VNA) as a source probe and receiver, with calibrated

feedhorns such as a open-ended waveguide. One of the calibration feeds can then

be swapped for a single pixel module for the measurement. However, this can be a

challenging endeavor since there are not many calibrated VNAs that work up to these

frequencies. Commercial companies are making extenders that reach the THz range,

so there is potential for this type of measurement to be conducted at a few facilities

that specialize in high frequency devices.

As astronomers dive deeper into answering the remaining questions of ISM evolu-

tion, instruments of all types are scaling to larger and larger arrays. The focus of this

dissertation has been to address some of the challenges on the instrumentation side,

to make large format arrays feasible and practical without sacrificing performance,

timescale, or budget. With more advanced receiver systems, we can better understand

the uniqueness of Earth and the Universe around us.
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