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ABSTRACT

Fundamental limits of fixed-to-variable (F-V) and variable-to-fixed (V-F) length uni-

versal source coding at short blocklengths is characterized. For F-V length coding, the

Type Size (TS) code has previously been shown to be optimal up to the third-order

rate for universal compression of all memoryless sources over finite alphabets. The

TS code assigns sequences ordered based on their type class sizes to binary strings

ordered lexicographically.

Universal F-V coding problem for the class of first-order stationary, irreducible

and aperiodic Markov sources is first considered. Third-order coding rate of the TS

code for the Markov class is derived. A converse on the third-order coding rate for

the general class of F-V codes is presented which shows the optimality of the TS code

for such Markov sources.

This type class approach is then generalized for compression of the parametric

sources. A natural scheme is to define two sequences to be in the same type class

if and only if they are equiprobable under any model in the parametric class. This

natural approach, however, is shown to be suboptimal. A variation of the Type Size

code is introduced, where type classes are defined based on neighborhoods of minimal

sufficient statistics. Asymptotics of the overflow rate of this variation is derived and

a converse result establishes its optimality up to the third-order term. These results

are derived for parametric families of i.i.d. sources as well as Markov sources.

Finally, universal V-F length coding of the class of parametric sources is considered

in the short blocklengths regime. The proposed dictionary which is used to parse the

source output stream, consists of sequences in the boundaries of transition from low

to high quantized type complexity, hence the name Type Complexity (TC) code. For

large enough dictionary, the ε-coding rate of the TC code is derived and a converse

result is derived showing its optimality up to the third-order term.
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Chapter 1

INTRODUCTION

Data compression is intrinsic to human desire to describe the world without and hence

closely related to the very beginning question of the mankind: “Having observed a

phenomenon, describe it”. Jorma Rissanen’s minimum description length principle

Rissanen (1986) (which is a formalization of Occam’s razor principle), measures the

quality of the description based on the code length with which the data can be

described. The appealing intuition is that, the more regularities in the data permit

shorter code lengths.

Given statistics of the underlying source generating the data, Shannon Shannon

(1948) showed that the entropy of the source is the fundamental asymptotic limit

(as the blocklength approaches infinity) for the code length. In consequence of this,

a new theory arose: the source coding theory. Apart from its very own bearing,

the theory has relevance to many other articulations such as the estimation prob-

lems Rissanen (1984); Weinberger et al. (1994); Ryabko (2009), prediction problems

Rissanen (1984); Merhav and Feder (1998); Ryabko (2009, 1988); Ziv (2002), detec-

tion problems Merhav (2014); Heydari et al. (2016a), inference problems Wainwright

and Jordan (2008); Heydari and Tajer (2017); Heydari et al. (2016b), classification

problems Ziv (2008), etc.

In the traditional source coding doctrine, performance of algorithms are charac-

terized in the limit of large blocklengths. In some modern applications, however, data

is continuously generated and updated, making them highly delay-sensitive. There-

fore, it is vital to characterize the overheads associated with operation in the short

blocklength regime.

1



To evaluate the performance of source coding for blocklengths at which the law of

large numbers does not apply, we need a more refined metric than expected length.

Thus, we use ε-coding rate, the minimum rate such that the corresponding overflow

probability is less than ε. Fundamental limits of ε-coding rate for fixed-to-variable (F-

V) lossless data compression in the non-universal setup are derived in Kontoyiannis

and Verdú (2014), both for i.i.d. as well as Markov sources. In most applications,

however, the statistics of the source are unknown or arduous to estimate, especially at

short blocklengths, where there are constraints on the available data for the inference

task. In the universal setup, a class of models is given, however the true model

in the class that generates the data is unknown. From an algorithmic angle, the

aim of universal source coding is to propose a compression algorithm in which the

encoding process is ignorant of the underlying unknown parameters, yet achieving

the performance criteria.

Analysis of the finite blocklength behavior as well as fine asymptotics of universal

source coding have been considered in Kosut and Sankar (2013, 2014b,a); Tan (2014)

for the class of i.i.d. sources. Similar to the aforementioned works, the universal

source coding scheme in this paper compresses the whole file. Therefore, we relax

the prefix condition Szpankowski and Verdu (2011), and hence the coding scheme is

called the one-to-one code. Imposing the prefix free condition, the ε-coding rate of

the Two Stage code Kosut and Sankar (2014b,a) and that of the Bayes code Saito

et al. (2014, 2015) are also considered in the literature.

The Type Size code (TS code) is introduced in Kosut and Sankar (2013) for

compression of the class of all stationary memoryless sources, in which sequences

are encoded in increasing order of type class size. It is shown that the resulting

third-order term is |X |−3
2

log n bits, where |X | is the alphabet size. Its optimality is

shown in Kosut and Sankar (2014b). Subsequently, a converse bound is derived in
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Beirami and Fekri (2014) for one-to-one average minimax (and maximin) redundancy

of memoryless sources, which consequently shows that the TS code is optimal up to

o(log n) for universal one-to-one compression of all memoryless sources, considering

expected length as the performance metric Beirami and Fekri (2014). However, an

achievable scheme for universal one-to-one compression of parametric sources with

more structure is not provided.

We first consider the universal F-V length compression problem in the finite block-

length regime for the class of first-order stationary, irreducible and aperiodic Markov

sources. We provide performance guarantees for the Type Size code for this model

class. Using the Type Size code, we show that the minimal number of bits required

to compress a length n sequence with probability 1− ε is at most

nH(X2|X1) + σ
√
nQ−1(ε) +

(
|X |(|X | − 1)

2
− 1

)
log n+O(1) (1.1)

where, H(X2|X1) is the conditional entropy of the source, σ is a generalization of the

varentropy to the Markov case, Q(·) is the tail of the standard normal distribution and

|X | is the alphabet size. The first two terms in (1.1) are the same as the non-universal

case Kontoyiannis and Verdú (2014), while the third-order log n term represents the

cost of universality. We further provide a converse, showing that ε-coding rate of any

universal code is lower bounded by (1.1), thus proving that the Type Size code does

at least as well as any universal code for compressing the class of Markov sources. The

proof involves two new ideas compared to the i.i.d. case: (i) We develop tight bounds

on the size of a Markov type class by relating it to Eulerian cycles on a directed graph

and using the BEST theorem (see Lemma 2). (ii) We use a Markov version of the

multidimensional Berry-Esseen theorem Lapinskas (1974), to derive upper and lower

bounds on the tail of the distribution of empirical entropy.

We next consider compression of more structured parametric sources. Type classes
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in Kosut and Sankar (2013); Iri and Kosut (2015); Beirami and Fekri (2014) are based

on the empirical probability mass function (EPMF). In particular, two sequences are

in the same (elementary) type class if they have the same EPMF. Elementary type

classes do not exploit the inherited structure in the model class. To generalize the

notion of a type to richer model classes, we define the point type class as the set of

sequences equiprobable under any model in the class. The size of the point type class

structure is analyzed in Merhav and Weinberger (2004). This natural characterization

of type classes is based on the philosophy that the sequences with the same proba-

bility (under any model in the class) are “indistinguishable”. Such a philosophy has

been employed before in the relevant applications, e.g. the universal simulation Mer-

hav and Weinberger (2004) and the universal random number generation Seroussi

and Weinberger (2015) problems. Perhaps surprisingly, we show that this natural

approach is suboptimal for the universal source coding problem. In this thesis, we

characterize the structure of the type classes in a new fashion for the sake of optimally

compressing exponential families of distributions. We refer to this new approach as

quantized types. We divide the convex hull of the set of minimal sufficient statistics

into cuboids. Two sequences are in the same quantized type class if their minimal

sufficient statistics belong to the same cuboid. Therefore, we show that approximate

indistinguishability leads to optimality for the source coding problem.

We consider F-V length codes for a d-dimensional exponential family of distribu-

tions over a finite alphabet X . For ease of exposition, we first assume, data generated

by the unknown true model in this family is independent and identically distributed

(i.i.d.). We subsequently extend the results to Markov data generation mechanisms.

We provide performance guarantees for the Type Size code for these model classes.

Using the Type Size code, we show that the minimal number of bits required to

4



compress a length-n sequence with probability 1− ε is at most

nH + σ
√
nQ−1 (ε) +

(
d

2
− 1

)
log n+O (1) (1.2)

where H and σ2 are the entropy and varentropy of the underlying source respectively,

Q(·) is the tail of the standard normal distribution and d is the dimension of the model

class. The second-order term is the payoff due to operation in the short blocklengths

while the third-order log n term represents the cost of universality. Precise bounds

on the fourth-order O(1) term is beyond the scope of this thesis. However, analyzing

the fourth-order term is considered in the literature for the related source coding

problems. For example, it is shown in Szpankowski (2008) that the fourth-order term

is either a constant or has fluctuating behavior for average codelength of a binary

memoryless source.

Finally we consider universal variable-to-fixed (V-F) length compression of the

parametric class in the short blocklength regime. A V-F length code consists of a

dictionary of pre-specified size. Elements of the dictionary (segments) are used to

parse the infinite sequence emitted from the source. Segments may have variable

length, however they are encoded to the fixed-length binary representation of their

indices within the dictionary. In order to be able to uniquely parse any infinite

sequence into the segments, we assume the dictionary to be complete (i.e. every

infinite length sequence has a prefix within the dictionary) and proper (i.e. no segment

is a prefix of another segment).

For a given memoryless source, Tunstall Tunstall (1967) provided an average-case

optimal algorithm to maximize average segment length. A central limit theorem

for the Tunstall algorithm’s code length has been derived in Drmota et al. (2010).

Universal V-F length codes are studied in e.g. Krichevsky and Trofimov (1981);

Lawrence (1977); Tjalkens and Willems (1992); Visweswariah et al. (2001). Upper
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and lower bounds for the redundancy of a universal code for the class of all memo-

ryless sources is derived in Krichevsky and Trofimov (1981). Universal V-F length

coding for the class of all binary memoryless sources is then considered in Lawrence

(1977); Tjalkens and Willems (1992), where Tjalkens and Willems (1992) provides

an asymptotically average sense optimal 1 algorithm. Later, optimal redundancy for

V-F length compression of the class of all Markov sources is derived in Visweswariah

et al. (2001). In an attempt to compare performance of V-F length codes with F-V

length codes for compression of the class of all Markov sources, a dictionary construc-

tion that asymptotically achieves the optimal error exponent is proposed in Merhav

and Neuhoff (1992). All previous works, consider model classes that include all distri-

butions within a simplex. However, universal V-F length coding for a more structured

model classes has not been considered in the literature. In this thesis, we character-

ize asymptotics of the ε-coding rate for large enough dictionaries. We provide an

achievable scheme for compressing d-dimensional exponential family of distributions

as the parametric model class. We then provide a converse result, showing that our

proposed scheme is optimal up to the third-order ε-coding rate.

In previous universal V-F length codes, one can define a notion of complexity

for sequences. In Krichevsky and Trofimov (1981); Lawrence (1977); Tjalkens and

Willems (1992); Visweswariah et al. (2001), a sequence with high complexity has

low probability under a certain composite or mixture source. While in Merhav and

Neuhoff (1992), high complexity sequences have high scaled (by sequence length)

empirical entropy. The dictionary of such algorithms then consists of sequences in

the boundaries of transition from low complexity to high complexity. We follow

similar complexity theme to design the dictionary. The sequence complexity in our

1Throughout, “optimality” of an algorithm is considered only up to the model cost term in the
coding rate.
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proposed coding scheme is synonymous to scaled type class size, hence we call it

Type complexity (TC) code. Scaled empirical entropy Merhav and Neuhoff (1992) is

ignorant of the underlying structure of the model class. Therefore, in order to fully

exploit the inherited structure of the model class, we characterize type classes based

on quantized types Iri and Kosut (2016a,b).

We provide performance guarantee for V-F length compression of the exponential

family using our proposed Type Complexity code. We upper bound the ε-coding rate

of the quantized type implementation of the Type Complexity code by

H + σ

√
H

logM
Q−1(ε) +H

d

2

log logM

logM
+O

(
1

logM

)
where H, σ2 are the entropy and the varentropy of the underlying source, respectively,

M is the pre-specified dictionary size, Q(·) is the tail of the standard normal distri-

bution, and d is the dimension of the model class. We then provide a converse result

showing that this rate is optimal up to the third-order term. Our converse proof relies

on the connection between V-F length and F-V length codes observed in Merhav and

Neuhoff (1992), along with a converse result for F-V length prefix codes Kosut and

Sankar (2014a).

The rest of the thesis is organized as follows: In Chapter 2, we consider the

universal F-V length coding of the class of Markov sources. We introduce the finite-

length lossless source coding problem and the related definitions in Sec. 2.1. In Sec.

2.2 we present the main theorem of the Chapter. We present a lemma bounding the

size of a Markov type class in Sec. 2.3. The bounds on the tail of the empirical

entropy along with other preliminary results are also provided in Sec. 2.3. We sketch

the proof of main theorem in Sec. 2.4. We next consider the compression problem for

the parametric family in Chapter 3. We introduce the exponential family and related

7



definitions in Section 3.1. In Section 3.2, we describe quantized type classes and the

variation of the TS code used for optimal performance. In Section 3.3, we present

the main theorem of the chapter, which characterizes the performance of the TS

code using quantized type classes up to third order. We present preliminary results

including a lemma bounding the size of a type class in Section 3.4. We provide the

proof of main theorem in Section 3.5. Extensions to the Markov case is considered in

Section 3.6. We show the suboptimality of the approach based on point type classes

in Section 3.7. Finally the V-F length coding is considered in Chapter 4. In Sec.

4.1, we introduce the exponential family, V-F length coding and related definitions.

Type complexity algorithm is presented in Sec. 4.2. Main result of the chapter is

stated in Sec. 4.3. We present preliminary results in Sec. 4.4. The achievability and

the converse results are proved in Sec.’s 4.5 and 4.6, respectively. We conclude, in

Chapter 5. A number of proofs are given in the appendices.

8



Chapter 2

MARKOV SOURCE

2.1 Preliminaries

Notation: We use P (resp. E) to denote probability (resp. expectation) with

respect to the Markov source parameterized by p̂. All logarithms are with respect

to base 2. Let Mn to be the set of first-order stationary, irreducible and aperiodic

Markov distributions on n-length sequences over the finite alphabet X = {1, . . . , |X |}.

Let P̂ be the set of transition distributions p̂(·|·) on X , which parametrize the class of

Markov sources assuming they are stationary, irreducible and aperiodic. Let p be the

stationary distribution (one letter marginal) of p̂ and we denote two-letter marginal

as p̃(x, y) = p(y)·p̂(x|y), for x, y ∈ X . We consider a universal source coding problem

in which a single code must compress a sequence Xn that is an output of a Markov

source in such a class. The true model p̂(·|·) ∈ P̂ that generates the data is unknown.

For a sequence xn ∈ X n, we use the following notations: ni = |{s ∈ [n] : xs = i}| is

the number of occurrences of the symbol i ∈ X in the string xn = x1 . . . xn, where

[n] = {1, . . . , n}. Likewise,

nij = |{s ∈ [n] : (xs, xs+1) = (i, j)}|

is the number of occurrences of consecutive (i, j) in xn. Note that we adopt cyclic

convention, i.e. xn+1 = x1. Let qxn be the type of xn. Hence we have qxn(i) = ni
n
.

We also define the joint type q̃xn over X 2, as follows: q̃xn(i, j) =
nij
n
. We frequently

omit the subscript xn, whenever it is understood from the context. Let Tq and Tq̃,

be the type class of q and q̃, respectively, i.e. Tq = {xn ∈ X n : qxn = q} and

9



Tq̃ = {xn ∈ X n : q̃xn = q̃}. Define conditional type as: q̂(i|j) =
nij
nj

= q̃(i,j)
q(j)

. We denote

empirical entropies as

H(q) = −
∑
j∈X

nj
n

log
nj
n

(2.1)

and

H(q̃) = −
∑

(i,j)∈X 2

nij
n

log
nij
n
. (2.2)

For notational convenience with a slight abuse of notation we denote H(q̃|q) = H(q̃)−

H(q).

We consider a fixed-to-variable code that encodes an n-length sequence from the

Markov source to a variable-length bit string via a coding function:

φ : X n → {0, 1}∗ = {∅, 0, 1, 00, 01, 10, 11, 000, ...}.

We do not make the assumption that the code is prefix-free. Let l(φ(xn)) be the

number of bits in the compressed binary string when xn is the source sequence. The

figure of merit in this setting is the probability under the true model that the length

of compressed string exceeds a given integer k, given by

εn(k, φ, p̂) = P[l(φ(Xn)) ≥ k].

We gauge the performance of algorithms through the ε-coding rate at blocklength n

given by:

Rn(ε, φ, p̂) = min
{k
n

: εn(k, φ, p̂) ≤ ε
}
.

2.2 Main Result for the Markov Source

For the class of all memoryless sources over finite alphabets, the fixed-to-variable

Type Size (TS) code is introduced in Kosut and Sankar (2013), which sorts sequences

based on the size of the elementary type class from smallest to largest and then

encodes sequences to variable-length bit-strings in this order. More precisely, define
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the support set of a sequence as the set of observed symbols in it. The output of the

encoder consists of a header that encodes the support of a sequence and a string that

maps sequences to binary strings based on the size of the type class of Xn, among all

sequences with the support set indicated in the header. That is, if two sequences xn

and yn have the same support and |Tq(xn)| ≤ |Tq(yn)|, then l(φ(xn)) ≤ l(φ(yn)), where

q(xn) is the type of xn and Tq(xn) is the type class of xn. The third-order coding rate

of the TS code is derived in Kosut and Sankar (2013) and its optimality is shown in

Kosut and Sankar (2014b). In this section, we assume a stationary Markov model is

in force and derive the coding rate of the Type Size code for this generalized source

model. The following theorem gives the optimal rate up to third order for the class of

first-order stationary, irreducible and aperiodic Markov sources, and states that the

Type Size code achieves this rate.

Theorem 1. Assume a first-order stationary, irreducible and aperiodic Markov source

as the underlying model. For a given ε > 0, we have

inf
φ

sup
p̂∈P̂

[
Rn(ε, φ, p̂)−H(X2|X1)− σ√

n
Q−1(ε)

]
=

(
|X |(|X | − 1)

2
− 1

)
log n

n
+O

( 1

n

)
(2.3)

where H(X2|X1) is the conditional entropy of p̂ and

σ2 = lim
n→∞

E
[( 1√

n

n∑
i=1

(
− log p̂(Xi+1|Xi)−H(X2|X1)

))2]
. (2.4)

Moreover, the Type Size code achieves the infimum in (2.3) for all distributions p̂.

2.3 Preliminary Results

2.3.1 Variance of Occurrence

The following lemma will be needed to prove our main result. The lemma derives

the growth rate of variance of number of occurrences of single letters.
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Lemma 1. Let 1A be the indicator function of the event A, i.e. 1A(x) = 1 if x ∈ A

and 0 otherwise. Then

Var(nj) = Var
(∑
i∈[n]

(1Xi=j)
)

= Θ(n).

Proof. Let Xi be i’th source outcome. Let Zi be the indicator vector of Xi, i.e.,

if Xi = j ∈ X , then Zi = ej, where ej is a vector of size |X | with 1 in the j-th

position and zero elsewhere. Since Xi follows a Markov chain process, so does Zi.

Let P(Xi = j) = pj, j = 1, ..., |X | and p = (pi) be the stationary distribution of the

Markov source. Let W = (wij) be the transition probability matrix of Xi. It is shown

in Anderson (1989) that

Cov
(
Zi,Z

T
i−s
)

=
(
WT

)s
E, s = 0, 1, ...

where E = Dp − ppT , in which Dp is a diagonal matrix with i-th diagonal element

being pi. Let N =
∑n

i=1 Zi. We have

Var (N) = Var

(
n∑
i=1

Zi

)

=
n∑
i=1

Var(Zi) + 2
∑
i<j

Cov
(
Zi,Z

T
j

)
=

n∑
i=1

Var (Zi) + 2
∑
i<j

(
WT

)j−i
E. (2.5)

The first term in (2.5) is Θ(n). We now find the asymptotics of the second term. We

have ∑
i<j

(WT )j−iE =

(
n−1∑
i=1

n−i∑
s=1

(
WT

)s)
E

=

n−1∑
i=1

n−i∑
s=1

 |X |∑
j=1

σjujv
T
j

sE (2.6)

=

n−1∑
i=1

n−i∑
s=1

u1v
T
1 +

|X |∑
j=2

σsjujv
T
j

E

(2.7)
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where in (2.6), the singular value decomposition of WT is employed, with uj and vj as

the right and left eigenvectors of WT (resp.) corresponding to singular value σj. Since

the Markov source is irreducible and aperiodic, therefore, σ1 = 1 and σj < 1 for j > 1.

Note that the stationary distribution of the Markov chain is u1 =p= (p1, · · · , pn),

and v1 = e = (1, ..., 1) is the all-ones vector. Since

(u1v
T
1 )E = (peT )(Dp − ppT ) = ppT − ppT = 0

therefore, (2.6) vanishes exponentially. Lemma then follows.

2.3.2 Markov Type Class Size

The BEST theorem van Aardenne-Ehrenfest and de Bruijn (1987) counts the

number of Eulerian circuits in a simple graph based on the number of arborescences

in the graph. Based on BEST theorem’s proof and a counting argument, Davisson

et. al. Davisson et al. (1981) derived a lower bound for the size of a Markov type

class, where their corresponding graphs are not necessarily simple. We use the same

counting argument to derive a more refined result. The following lemma upper and

lower bounds the size of a Markov type class. It gives a tighter bound than Davisson’s

result in certain regimes.

Lemma 2. If there exists a constant γ > 0, such that nij ≥ γni, for all i, j ∈ X with

nij > 0, then size of the Markov type class of type q̃ is bounded as

nr(q̃)−
|X |∑
j=1

|X |∑
i=1

1

12nij
+

1

12

|X |∑
j=1

1

nj + 1
− |X | log γ ≤ log |Tq̃|

≤ nr(q̃)−
|X |∑
j=1

|X |∑
i=1

1

12(nij + 1)
+

1

12

|X |∑
j=1

1

nj
+ log |X |

where

r(q̃) = H(q̃|q) +
1

2n

|X |∑
j=1

log nj −
1

2n

|X |∑
j=1

|X |∑
i=1

log nij −
|X |(|X | − 1)

2n
log (2π) (2.8)

is the common part of the lower and upper bounds.
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Proof. Lower Bound: Let xn = x1x2 · · ·xn be the observed sequence. We associate

a directed multi-graph G = (V,E) to xn as follows. The vertices V of G correspond

to the distinct symbols in xn. We assume n is large enough such that we see all

the alphabet letters in the observed sequence, hence V = X . Given type q̃ with

nxy = nq̃xy, the set of arcs E in G contains nxy arcs from node x to y for each pair

(x, y) ∈ X 2. We say y is parent of x. Note that each sequence xn ∈ Tq̃ corresponds to

a Eulerian path on all n edges in G. Let Eul(G) be the set of Eulerian circuits. Since

Eulerian circuits are invariant to cyclic permutations of the edges while sequences are

not, the number of elements of the type class is not exactly the same as the number

of Eulerian circuits, but it is certainly true that |Eul(G)| ≤ |Tq̃|.

Note that, unlike in the BEST theorem, we allow parallel edges, so we cannot use

the proof of the BEST theorem exactly. We first convert G to a simple graph (allowing

self loops) G′, by merging all parallel edges into a single edge. Now, following essential

argument of the BEST theorem, we fix a vertex u ∈ V (G′) and one of its outgoing

edges, say e1. We can think of this step as fixing the starting point of the Eulerian

circuit. We then find a spanning tree, S, of G′ rooted at u (in graph terminology this

is an arborescence of G′ rooted at u). For any vertex v with out-degree dv, we label

the outgoing edges of v arbitrarily from 1, · · · , dv, while if v 6= u we reserve number

dv to the only arc belonging to S, and for v = u we reserve number 1 to e1. As

shown in van Aardenne-Ehrenfest and de Bruijn (1987); Davisson et al. (1981), any

distinct labeling corresponds to an Eulerian circuit in G, by beginning with e1 and

always traveling along the outgoing edge with lowest remaining label from the current

vertex. For notational convenience let xj,S, be the parent of node j in S. Note that

for each vertex j ∈ X , since the label of the outgoing edge of j in S is fixed, we can

label other outgoing edges of j through (nj − 1)! arrangements. However, For any of

the node j’s parents, say i, in any such labeling the nji! permutations of labelings of

14



the parallel edges between j and i result in a same Eulerian circuit. The same, for

all the (njxj,S − 1)! permutations of the edges (which are not in S) between j and

xj,S. Therefore, the number of Eulerian circuits correspond to the spanning tree S

and this specific labeling is given by

|X |∏
j=1

(nj − 1)!

{
∏

i=1
i 6=xj,S

(nji!)}(njxj,S − 1)!
. (2.9)

Since there is at least one spanning tree S, for any S, (2.9) constitutes a lower bound

on |Tq̃|. Using Stirling’s formula, we may further lower bound (2.9) in a manner

independent of S by

|X |∏
j=1

(nj − 1)!

{
∏

i=1
i 6=xj

(nji!)}(njxj,S − 1)!
=

|X |∏
j=1

( nj!∏
i=1 nij!

· njxj,S · n−1
j

)

≥
|X |∏
j=1

( √
2πn

nj+
1
2

j 2
−nj+ 1

12(nj+1)∏|X |
i=1

√
2πn

nij+
1
2

ij 2
−nij+ 1

12nij

· njxj,S · n−1
j

)

≥ 2
nH(q̃|q)+

∑
j

(
1
2

lognj+
1

12(nj+1)

)
−
∑
i,j

(
1
2

lognij+
1

12nij

)
+|X | log γ

(2π)
|X|(|X|−1)

2

(2.10)

where we used the assumption that njxj,S ≥ γnj for all j ∈ X . The lower bound on

the type class size follows.

Upper Bound: It is shown in Davisson et al. (1981) that |Tq̃| ≤ |X |
∏|X |

j=1
nj !∏|X|
i=1 nji!

.

Using the same approach as in deriving the lower bound, one may bound the factori-

als using the Stirling formula Csiszár and Körner (1982), to derive the upper bound

on the type class size as follows:

|X |Π|X |j=1

nj!

Π
|X |
i=1nji!

≤ |X | · Π|X |j=1

√
2πn

nj+
1
2

j 2
−nj+ 1

12nj

Π
|X |
i=1

√
2πn

nji+
1
2

ji 2
−nji+ 1

12(nji+1)

=
|X |

(
√

2π)|X |·(|X |−1)
· 2

−nH(q)+n logn+ 1
2

∑|X|
j=1 lognj−n+

∑|X|
j=1

1
12nj

2
−nH(q̃)+n logn+ 1

2

∑|X|
j=1

∑|X|
i=1 lognij−n+

∑|X|
j=1

∑|X|
i=1

1
12(nij+1)

.

Lemma follows.
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Corollary 1. If we sort sequences based on the empirical entropy and encode them

in this order, we obtain the same result.

2.3.3 Bounds on Empirical Entropy

We first show the following refined version of delta method Cramér (1999) which

is a Markov version of Proposition 1 in MolavianJazi and Laneman (2013).

Proposition 1. Let Ui for i = 1, . . . , n be zero-mean, first-order, stationary, irre-

ducible and aperiodic Markov chain of random vectors in Rm with finite third moment

E(‖Ui‖3). Let f : Rm → R be a function with uniformly bounded second-order partial

derivatives in a m-hypercube neighborhood of 0 with side length at least 1
4√n . Let j be

the vector of first-order partial derivatives of f at 0, i.e. jr = ∂f(u)
∂ur

∣∣∣
u=0

. Let Vn =

Cov( 1√
n

∑n
i=1 Ui) and σ2

n = jTVnj. Let V∞ = limn→∞Vn and σ2
∞ = limn→∞ σ

2
n. Fix

a positive constant α. There exists B such that for any δ such that |δ| ≤ α,∣∣∣P[f( 1

n

n∑
i=1

Ui

)
≥ f(0) +

σ∞√
n
δ
]
−Q(δ)

∣∣∣ ≤ B√
n
. (2.11)

Proof. We first normalize the function f as follows. Let R be the Cholesky decom-

position matrix of Vn, so that R is upper triangular and Vn = RTR. Moreover

R−TVnR
−1 = I, where I is the identity matrix. Note that ‖Rj

σn
‖2 = jTVnj

σ2
n

= 1.

Thus we may define an orthogonal matrix A whose first column is Rj/σn. Now let

f̃(w) = 1
σ∞

[f(RTAw) − f(0)]. Thus we may write f(u) = f(0) + σ∞f̃(A−1R−Tu).

In particular

P
[
f
( 1

n

n∑
i=1

Ui

)
≥ f(0) +

σ∞√
n
δ
]

= P
[
f̃
( 1

n

n∑
i=1

Wi

)
≥ δ√

n

]
where we have defined Wi = A−1R−TUi. Defining W̄ = 1

n

∑n
i=1 Wi we note that

Cov(W̄) = 1
n
I. Moreover, by our choice of A, we have ∇f̃(w) = 1

σ∞
ATRj = σn

σ∞
e1

where e1 = (1, 0, . . . , 0)T . Let r(w) = f̃(w) − σn
σ∞
w1. Let B =

{
w : ‖RTAw‖∞ ≤
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1
4√n

}
. By Taylor’s theorem, for all w ∈ B we have |r(w)| ≤ c0‖w‖2, where c0 =

supw∈Bmaxl∈[m]

∑m
p=1

1
2

∣∣∣ ∂2f̃(w)
∂wl∂wp

∣∣∣. By the assumption of uniform boundedness of the

second-order partial derivatives of f , c0 is finite. Thus for all w ∈ B we have f̃(w) ≥
σn
σ∞
w1 − c0‖w‖2. We may write

P(f̃(W̄) ≥ δ/
√
n) ≥ P(f̃(W̄) ≥ δ/

√
n,W̄ ∈ B)

≥ P(
σn
σ∞

W̄1 − c0‖W̄‖2 ≥ δ/
√
n,W̄ ∈ B)

≥ P(
σn
σ∞

W̄1 − c0‖W̄‖2 ≥ δ/
√
n)

− P(W̄ /∈ B)

= P(W̄ ∈ C)− P(W̄ /∈ B) (2.12)

where we have defined

C =
{

w ∈ Rm :
σn
σ∞

w1 − c0‖w‖2 ≥ δ/
√
n
}
. (2.13)

We may bound the second term in (2.12) using Chebyshev’s inequality by

P
(
W̄ /∈ B

)
= P

( 1

n

n∑
i=1

Wi /∈ B
)

= P
( 1

n

n∑
i=1

A−1R−TUi /∈ B
)

= P
(∥∥∥ 1

n

n∑
i=1

Ui

∥∥∥
∞
>

1
4
√
n

)
≤

m∑
s=1

P
( 1

n

n∑
i=1

Ui(s) >
1
4
√
n

)

≤
m∑
s=1

Var
(

1
n

∑n
i=1 Ui(s)

)
1√
n

= O
( 1√

n

)
. (2.14)

where for the last line we show in AppendixA (Claim 1) that Var
(

1
n

(∑n
i=1 Ui(s)

))
=

O( 1
n
) for all s = 0, . . . ,m− 1, where Ui(s) is the sth component of Ui. Now consider
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the first term in (2.12). Using Lapinskas’ Lapinskas (1974) version of the Berry-Esseen

theorem, and defining Z ∼ N (0, I), since Cov(
√
nW̄) = I and C is convex, we have

P
(
W̄ ∈ C

)
≥ P

(
Z/
√
n ∈ C

)
− B′√

n
= P

( σn
σ∞

Z1√
n
− c0

n
‖Z‖2 ≥ δ√

n

)
− B′√

n

= P
( σn
σ∞

Z1 −
c0√
n
‖Z‖2 ≥ δ

)
− B′√

n

= P
( σn
σ∞

Z1 ≥ δ
)
− P

(
δ <

σn
σ∞

Z1 ≤ δ +
c0√
n
‖Z‖2

)
− B′√

n

= Q
(σ∞
σn
δ
)
− P

(σ∞
σn
δ < Z1 ≤

σ∞
σn
δ +

σ∞
σn

c0√
n
‖Z‖2

)
− B′√

n
(2.15)

where B′√
n

is as in Equation (3) in Theorem of Lapinskas (1974). We show that the

second term in (2.15) isO( 1√
n
). Let pS be the distribution of a chi-squared distribution

with m degrees of freedom. Thus ‖Z‖2 ∼ pS. We may write the second term in (2.15)

as ∫ ∞
0

P
(σ∞
σn
δ < Z1 ≤

σ∞
σn
δ +

σ∞
σn

c0s√
n

∣∣∣‖Z‖2 = s
)
dpS(s). (2.16)

For any i, let Si = 2π(i+1)/2

Γ((i+1)/2)
, so that Sir

i is the surface area of the i-sphere of radius r

(note that i denotes the dimension of the manifold of the sphere, not the dimension

that the sphere sits in). Conditioning on ‖Z‖2 = s, Z is uniformly distributed on the

(m− 1)-sphere of radius
√
s. For any 0 ≤ a ≤ b, we may write

P
(
a < Z1 ≤ b

∣∣ ‖Z‖2 = s
)

=
Vol(z : a < z1 ≤ b, ‖z‖2 = s)

Sm−1s
m−1

2

(2.17)

where Vol denotes the (m− 1)-dimensional Lebesgue measure. The volume in (2.17)

may be upper bounded by
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Vol
({

z : a ≤ z1 ≤ b, a2 + z2
2 + · · ·+ z2

m = s
}

∪
{
z : z1 = b, s− b2 ≤ z2

2 + · · ·+ z2
m ≤ s− a2

})
= (b− a)Sm−2(s− a2)

m−2
2 +

∫ √s−a2
√
s−b2

Sm−2t
m−2dt

≤ (b− a)Sm−2s
m−2

2 +

∫ √s−a2
√
s−b2

Sm−2(
√
s)m−2dt

=
[
b− a+

√
s− a2 −

√
s− b2

]
Sm−2s

m−2
2 .

Thus

P
(
a < Z1 ≤ b

∣∣ ‖Z‖2 = s
)
≤
[
b− a+

√
s− a2 −

√
s− b2

] Sm−2

Sm−1

√
s.

Note that for the probability in (2.16), a = σ∞
σn
δ and b = σ∞

σn
δ + σ∞

σn
c0s√
n
, so b− a =

σ∞
σn

c0s√
n

and
√
s− a2 −

√
s− b2 ≤ σ∞

σn
c0s√
n

for sufficiently large n. Thus (2.16) may be

upper bounded by∫ ∞
0

dpS(s)
σ∞
σn

2c0√
n

Sm−2

Sm−1

√
s =

σ∞
σn

2c0Sm−2√
nSm−1

E(‖Z‖)

=
σ∞
σn

2c0Sm−2√
nSm−1

√
2

Γ(m+1
2

)

Γ(m
2

)

=
σ∞
σn

√
nc0(m− 1)√

πn

= O
(

1√
n

)
where we have used the mean of a chi distribution and the definition of Si. We show

in Appendix A (Claim 3) that σ∞−σn
σn

= O( 1√
n
), hence using Taylor series expansion,

we have

Q
(σ∞
σn
δ
)

= Q
(
δ +

σ∞ − σn
σn

δ
)

= Q
(
δ
)

+
C√
n

for a constant C. Repeating the entire argument with −f playing the role of f gives

the opposite inequality.
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Lemma 3. Fix positive constant ℘. For any distribution in P̂,∣∣∣P(H(q̃|q) > ℘
)
−Q

(√n
σ

(℘−H(X2|X1))
)∣∣∣ ≤ A√

n
(2.18)

where A is a constant not depending on n.

Proof. We use Proposition 1. We define Ui ∈ R|X |2 for i = 1, . . . , n as follows. We

index Ui’s by tuples, where each component of Ui corresponds to an element of X 2.

Now let Ui(x, y) = 1 − p̃(x, y), if (Xi, Xi+1) = (x, y) and −p̃(x, y) otherwise. Since

the Markov chain {Xi} is stationary, irreducible and aperiodic, so is {Ui}. Clearly

E(Ui) = 0 for i = 1, . . . , n. Let us denote Ū = 1
n

∑n
i=1 Ui. Let us define f : R|X |2 → R

as follows:

f(u) =
∑

(x,y)∈X 2

(
u(x, y) + p̃(x, y)

)
· log

u(x, y) + p̃(x, y)∑
z∈X

(
u(z, y) + p̃(z, y)

) .
Observe that H(q̃|q) = f(Ū). Finally, in Appendix B (Claim 4) we show that for

this choice of Ui’s and f(·), σ2
∞ = σ2. Applying Proposition 1 now completes the

proof.

2.3.4 Laplace’s Approximation

We have the following theorem for the integral of manifolds. We refer the reader

to (Wong, 1989, Chap. 9, Th. 3) for a detailed proof.

Theorem 2. Wong (1989) Let D be a d-dimensional differentiable manifold embedded

in Rm and f and g be functions that are infinitely differentiable on D. Let

J(n) =

∫
D

g(x) exp−nf(x) dx. (2.19)

Assume that: (i) the integral in (2.19) converges absolutely for all n ≥ n0; (ii) there

exists a point x∗ in the interior of D such that for every ε > 0, ρ(ε) > 0 where

ρ(ε) = inf{f(x)− f(x∗) : x ∈ D and |x− x∗| ≥ ε}
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and (iii) the Hessian matrix A =
(

∂2f
∂xi∂xj

) ∣∣∣
x=x∗

is positive definite. Let F ∈ Rm×d be

an orthonormal basis for the tangent space to D at x∗. Then

J(n) = exp−nf(x∗)

(
2π

n

) d
2

g(x∗)|F TAF |−
1
2

(
1 +O

(
1

n

))
.

2.4 Proof Sketch of Main Result for Markov Source

Proof of Theorem 1 is similar to its i.i.d. version Kosut and Sankar (2013, 2014b,a)

which deviates from it due to differences in the Lemmas 2 and 3 with their counter-

parts in Kosut and Sankar (2013) and Kosut and Sankar (2014b), respectively. We

omit details of the proof for space.

Achievability: First note that by Lemma 1, one can show that the probability

that the assumption of Lemma 2, does not hold vanishes as O( 1
n
). Now, Lemmas

2 and 3 allow us to bound the CDF of the size of the empirical type class Tq̃. In

particular, we can show that P
[

log |Tq̃ |
n

> τ
]
≤ ε, where

τ = H(X2|X1) +
σ√
n
Q−1(ε) +

( |X |
2
− |X |

2

2

) log n

n
+O

(
1

n

)
.

Thus the rate achieved by the Type Size code can be upper bounded by calculating

the total number of sequences in type classes with size no larger than 2nτ . The log of

this number of sequences can be upper bounded by

nτ +
(
|X |2 − |X | − 1

)
log n+O(1).

Substituting for τ yields the desired achievable bound.

Converse: The converse is proved using a uniform mixture p̄ of all Markov distri-

butions with fixed entropy rate. An application of a finite blocklength converse from

Kontoyiannis and Verdú (2014) can be used to bound the rate in terms of the CDF

of − log p̄(Xn) with respect to the distribution p̄. Applying Laplace’s approximation

allows us to bound this CDF in terms of the CDF of the empirical entropy, which in

turn is bounded using Lemma 3.
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2.5 Two Stage Code

Two-Stage code Cover and Thomas (2006) is a well-known approach to encode

strings from an unknown source. In the first stage, type of the sequence is encoded.

Subsequently, in the second stage the index of the sequence, among all sequences with

the described type class in the first stage, is encoded. For the i.i.d. data generation

mechanism, third-order coding rate of a two-stage code wherein the first stage is

a fixed-length code and the second stage is an optimal variable-length code for each

type class is derived in Kosut and Sankar (2014b,a). Denote Φ2S as the n-length Two-

Stage code. Let Pn(X ) be the number of types with alphabet X . By construction,

the ε-rate achieved by this code is given by Kosut and Sankar (2014a)

Rn(Φ2S , ε, pθ∗) =
1

n

(
dlog |Pn(X )|e+ k∗(ε)

)
(2.20)

where

k∗(ε) = min

{
k :

∑
τ c∈Tc

P(Tτ c)

∣∣∣∣1− 2k+1 − 1

|Tτ c|

∣∣∣∣+ ≤ ε

}
. (2.21)

Following the same steps as in Kosut and Sankar (2014b,a), we derive the third-

order coding rate of the Two-Stage code for the Markov case as stated in the following

Theorem.

Theorem 3. For the Two-Stage code with fixed-length first stage,

R(Φ2S
n ; ε, p) = H(X2|X1) +

σ√
n
Q−1(ε) +

|X |(|X | − 1)

2

log n

n
+O

(
1

n

)
. (2.22)

Proof. The proof is the same as in Kosut and Sankar (2014a), and we omit it due to

similarity.
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Chapter 3

PARAMETRIC SOURCE

3.1 Problem Statement

Let Θ be a compact subset of Rd with non-empty interior. Probability distribu-

tions in an exponential family can be expressed in the form Merhav and Weinberger

(2004)

pθ(x) = 2〈θ,τ (x)〉−ψ(θ) (3.1)

where θ ∈ Θ is the d-dimensional parameter vector, τ (x) : X → Rd — the crux of our

parametric approach — is the vector of sufficient statistics and ψ(θ) is the normalizing

factor. Let the model class P = {pθ, θ ∈ Θ}, be the exponential family of distributions

over the finite alphabet X = {1, · · · , |X |}, parameterized by θ ∈ Θ ⊂ Rd, where d

is the degrees of freedom in the minimal description of pθ ∈ P in the sense that no

smaller dimensional family can capture the same model class. The degrees of freedom

turns out to characterize the richness of the model class in our context. Compactness

of Θ implies existence of a constant upper bound ℘ on the norm of the parameter

vectors, namely ‖θ‖ ≤ ℘ for all θ ∈ Θ. We denote the (unknown) true model in force

as pθ∗ . Pθ, Eθ and Vθ denote probability, expectation and variance with respect to pθ,

respectively. All logarithms are in base 2. Instead of introducing different indices for

every new constant C1, C2, ..., the same letter C is used to denote different constants

whose precise values are irrelevant.

From (3.1), the probability of a sequence xn drawn i.i.d. from a model pθ in the

exponential family takes the form Merhav and Weinberger (2004)
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pθ(x
n) =

n∏
i=1

pθ(xi)

=
n∏
i=1

2

〈
θ,τ (xi)

〉
−ψ(θ)

= 2

{
n
[〈
θ,τ (xn)

〉
−ψ(θ)

]}
(3.2)

where

τ (xn) =

∑n
i=1 τ (xi)

n
∈ Rd (3.3)

is a minimal sufficient statistic Merhav and Weinberger (2004). Note that τ (x) and

τ (xn) are distinguished based upon their arguments.

We consider a fixed-to-variable code that encodes an n-length sequence from the

parametric source to a variable-length bit string via a coding function

φ : X n → {0, 1}∗ = {∅, 0, 1, 00, 01, 10, 11, 000, · · · }.

We do not make the assumption that the code is prefix-free. Let l(φ(xn)) be the

number of bits in the compressed binary string when xn is the source sequence. We

gauge the performance of algorithms through the ε-coding rate at blocklength n given

by

Rn(ε, φ, pθ∗) := min

{
k

n
: Pθ∗

[
l(φ(Xn)) ≥ k

]
≤ ε

}
.

3.2 Type Size Code

For the class of all memoryless sources over a finite alphabet X , the fixed-to-

variable TS code is introduced in Kosut and Sankar (2013), which sorts sequences

based on the size of the elementary type class from smallest to largest and then

encodes sequences to variable-length bit-strings in this order. More precisely, define

the support of a sequence as the set of observed symbols in it. The output of the
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encoder consists of a header that encodes the support of the sequence and a body

that maps sequences to binary strings based on the size of their type class, among

all sequences with the support set indicated in the header. That is, if two sequences

xn and yn have the same support and |Txn| ≤ |Tyn|, then l (φ(xn)) ≤ l (φ(yn)), where

Txn is the type class of xn.

We borrow the spirit of the TS code, yet our approach for parametric sources

departs from that of Kosut and Sankar (2013) in two ways

1. Rather than defining type classes based on the EPMFs, we use quantized type

classes, which are based on the neighborhoods of the minimal sufficient statis-

tics.

2. We omit the header encoding the support of the observed sequence. This header

is unnecessary given the assumption that Θ is compact, because under this

assumption, for any distribution in P , each letter x ∈ X occurs with some

probability bounded away from zero. Thus, all letters are likely to be observed

for even moderate blocklengths.

We first define quantized type classes for the purpose of compressing the exponential

family. We cover the convex hull of the set of minimal sufficient statistics T =

conv {τ (xn) : xn ∈ X n}, into d-dimensional cubic grids — cuboids — of side length

s
n
, where s > 0 is a constant. The union of such disjoint cuboids should cover T . The

position of these cuboids is arbitrary, however once we cover the space, the covering is

fixed throughout. We represent each d-dimensional cuboid by its geometrical center.

Denote G(τ 0) as the cuboid with center τ 0, more precisely

G(τ 0) :=
{
z + τ 0 ∈ Rd : − s

2n
< zi ≤

s

2n
for 1 ≤ i ≤ d

}
(3.4)

where zi is the i-th component of the d-dimensional vector z. Let τ c(x
n) be the center
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s
n←− −→

T

•
τ (xn)

•
τc(x

n)
G(τc(x

n))

Figure 3.1: Quantized Types

of the cuboid that contains τ (xn). Let us denote Tc as the set of cuboid centers, i.e.,

Tc = {τ c(xn) : xn ∈ X n}.

We then define the quantized type class of xn as

Txn := {yn ∈ X n : τ (yn) ∈ G (τ c(x
n))} (3.5)

the set of all sequences yn with minimal sufficient statistic belonging to the very same

cuboid containing the minimal sufficient statistic of xn (See Figure 3.1).

Since quantized type classes are represented by the cuboids and consequently the

cuboid centers, we may interchangeably use Tτ0 as the type class with corresponding

cuboid center τ 0. Hence, Tτ c(xn) is the same as Txn .

Two sequences within the given type class are indistinguishable from the coding

perspective. The sequence indistinguishability introduced in this paper is reminis-

cent of the Balasubramanian’s model indistinguishability Balasubramanian (2005).

In contrast to the sequence indistinguishability approach where the space of mini-

mal sufficient statistics is partitioned into cuboids, in a model indistinguishability

approach one may partition the source space. Asymptotics of the model indistin-
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guishability approach is derived in Rissanen (1996), where the maximum likelihood

estimate is quantized to some precision by being the center of a cuboid. However,

in their setup, the quantized code has the same logarithmic term as the maximum

likelihood code with no quantization (See also Rissanen (2001)). For parametric TS

code, the type class structure in Merhav and Weinberger (2004), corresponds to the

point type approach, wherein no quantization is done; i.e. s = 0. In this limit, the

size of the type class in Merhav and Weinberger (2004) depends on the dimension d′

of the derived lattice space (Merhav and Weinberger, 2004, Eq.A3) rather than the

model parameter dimension d. We return to this issue in Section 3.7, wherein we

show that using point types, the TS code achieves a third-order rate of
(
d′

2
− 1
)

log n,

which is not tight enough for our purposes due to the fact that d′ is in general larger

than d.

As a direct consequence of our TS code construction, we have the following finite

blocklength achievable bound; it constitutes a modification of Theorem 3 in Kosut

and Sankar (2013).

Theorem 4. Kosut and Sankar (2013) For the TS code

Rn(ε, φ, pθ∗) =
1

n
dlogM(ε)e (3.6)

where

M(ε) = inf
γ:Pθ∗( 1

n
log |Tτc(Xn)|>γ)≤ε

∑
τ c∈Tc:

1
n

log |Tτc |≤γ

|Tτ c|. (3.7)

3.3 Main Result

Let H(pθ) = Eθ
(

log 1
pθ(X)

)
and σ2(pθ) = Vθ

(
log 1

pθ(X)

)
be the entropy and the

varentropy of pθ. The following theorem exactly characterizes achievable ε-rates up

to third-order term, as well as asserting that this rate is achievable by the TS code.
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Theorem 5. For any stationary memoryless exponential family of distributions pa-

rameterized by Θ,

inf
φ

sup
θ∈Θ

[
Rn(ε, φ, pθ)−H(pθ)−

σ(pθ)√
n
Q−1(ε)

]
=

(
d

2
− 1

)
log n

n
+O

(
1

n

)
(3.8)

where the infimum is achieved by the TS code using quantized types.

Example 1. For the class of all i.i.d. distributions d = |X | − 1, and Theorem 5

reduces to the result in Kosut and Sankar (2013).

3.4 Auxiliary Results

Define

θ̂ (τ ) = arg max
θ∈Θ

(〈θ, τ 〉 − ψ(θ)) . (3.9)

Note that since the Hessian matrix of ψ(θ), ∇2 (ψ(θ)) = Covθ (τ (X)) is positive defi-

nite, the log-likelihood function is strictly concave and hence the maximum likelihood

θ̂(τ ) is unique.

For notational convenience, we may omit the dependencies on τ and τ c in θ̂ (τ (xn))

and θ̂ (τ c(x
n)), and simply denote them by θ̂(xn) and θ̂c(x

n), respectively.

The next lemma provides tight upper and lower bounds on the type class size.

Beside its exclusive bearing, it is a main component of the achievability proof.

Lemma 4 (Type Class Size). Let κ = ℘
√
d

2
. For large enough n, the size of the type

class of xn is bounded as

r(xn)− 2κs+ C ′ ≤ log |Txn| ≤ r(xn) + 2κs+ C

where

r(xn) = − log pθ̂c(xn)(x
n)− d

2
log n+ d log s

is the common part of the upper and lower bounds and C,C ′ are constants independent

of n.
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Proof. For notational convenience, when it is clear from the context, we may suppress

the arguments in τ c(x
n) and G(τ c(x

n)) and denote them simply as τ c and G(τ c).

Motivated by (Merhav and Weinberger, 2004, Eq. A2), we bound |Txn| as follows:

Pθ̂c(xn) {τ (Xn) ∈ G (τ c(x
n))}

max
yn:

τ (yn)∈G(τ c(xn))

Pθ̂c(xn)(y
n)

≤ |Txn| ≤
Pθ̂c(xn) {τ (Xn) ∈ G (τ c(x

n))}
min
yn:

τ (yn)∈G(τ c(xn))

Pθ̂c(xn)(y
n)

. (3.10)

Let nG(τ c) = {nz : z ∈ G(τ c)} . It is clear that

Pθ̂c(xn) {τ (Xn) ∈ G(τ c)} = Pθ̂c(xn) {nτ (Xn) ∈ nG(τ c)} .

Exploiting the result in (Stone, 1967, Corollary 1), we have

Pθ̂c(xn) {nτ (Xn) ∈ nG(τ c)} =
sd

(2πn)
d
2 |Σ| 12

e−
(nτc−nµc)·Σ

−1·(nτc−nµc)
2n + o

(
n−

d
2

)
(3.11)

where µc and Σ are the mean and the covariance (resp.) of τ (X) under θ̂c(x
n). To

proceed, we show that µc = τ c. We have

θ̂c(x
n) = arg min

θ∈Θ

(
D(pθ̂c(xn)‖pθ) +H(pθ̂c(xn))

)
= arg max

θ∈Θ
Eθ̂c(xn)

(
log pθ(X)

)
= arg max

θ∈Θ
Eθ̂c(xn)

(
〈θ, τ (X)〉 − ψ(θ)

)
= arg max

θ∈Θ
〈θ,µc〉 − ψ(θ).

That is, θ̂c(x
n) is the maximum likelihood estimate for µc and (by definition (3.9)) τ c.

However, in order to be the maximum likelihood estimate, it must be that the deriva-

tive of the log-likelihood function is 0, hence ∇ψ(θ̂c(x
n)) = µc and ∇ψ(θ̂c(x

n)) = τ c.

Therefore µc and τ c are equal. Due to (3.11) and µc = τ c, there exist constants C,C ′

such that, for large enough n,

d log s− d

2
log n+ C ′ ≤ log pθ̂c(xn){τ (Xn) ∈ G(τ c)} ≤ d log s− d

2
log n+ C. (3.12)
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On the other hand

log pθ̂c(xn)(x
n) = n

[
〈θ̂c(xn), τ (xn)〉 − ψ

(
θ̂c(x

n)
)]
.

Therefore

max
yn:

τ (yn)∈G(τ c(xn))

log pθ̂c(xn)(y
n) ≤ log pθ̂c(xn)(x

n) + 2κs (3.13)

and

min
yn:

τ (yn)∈G(τ c(xn))

log pθ̂c(xn)(y
n) ≥ log pθ̂c(xn)(x

n)− 2κs (3.14)

where we used ‖θ̂c(xn)‖ ≤ ℘ and the fact that if τ (xn) and τ (yn) belong to the same

cuboid, then ‖τ (xn)− τ (yn)‖ < s
√
d

n
. Plugging (3.12,3.13,3.14) in (3.10), the lemma

follows.

Corollary 2. For large enough n, the size of the type class of xn with corresponding

cuboid center τ c is bounded as

nf(τ c)− 6κs− C ′′ ≤ log |Tτ c | ≤ nf(τ c)

where, C ′′ = C − C ′ and

f(τ ) = −〈θ̂(τ ), τ 〉+ ψ
(
θ̂(τ )

)
− d

2n
log n+

d log s

n
+

3κs

n
+
C

n
. (3.15)

We appeal to the following normal approximation result in order to bound the

CDF of the type class size (in the achievability proof) and further CDF of the mixture

distribution (in the converse proof) with that of the normal distribution.

Lemma 5 (Asymptotic Normality of Information). Fix a positive constant α. For a

stationary memoryless source, there exists a finite positive constant A, such that for

all n ≥ 1 and z such that |z| ≤ α,∣∣∣∣∣Pθ∗
{
− log pθ̂(Xn)(X

n)− nH
√
nσ

> z

}
−Q(z)

∣∣∣∣∣ ≤ A√
n

(3.16)
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where H := H(pθ∗) and σ2 := σ2(pθ∗), are the entropy and varentropy of the true

model pθ∗, respectively.

Proof. See Appendix C

The following lemma provides a guarantee in approximation of pθ̂(xn)(x
n) with

pθ̂c(xn)(x
n), which allows us to use the Lemma 5 in the achievability proof.

Lemma 6 (Maximum Likelihood Approximation). Let κ be defined as in Lemma 4.

We have

log pθ̂(xn)(x
n)− log pθ̂c(xn)(x

n) ≤ 2κs.

Proof. See Appendix D.

We need the following machinery lemmas for the achievability proof.

Lemma 7. There exists a Lipschitz constant K0 independent of n, so that for any

minimal sufficient statistics τ 1 and τ 2,

|f(τ 1)− f(τ 2)| ≤ K0‖τ 1 − τ 2‖. (3.17)

Proof. See Appendix E.

Let ω = log |X |−H
5

. Without loss of generality, we may assume that the true model is

non-uniform distribution, otherwise TS code (like any other rational code) is obviously

optimal. Therefore, ω > 0. Let 0 ≤ λ < H + ω, and ρ(λ) = Vol {τ : f(τ ) ≤ λ} be

the volume of the sub-level sets.

Lemma 8. There exists a Lipschitz constant K1 so that for all 0 ≤ a, b < H + ω,

|ρ(a)− ρ(b)| ≤ K1|a− b|.

Proof. See Appendix F.
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For our converse proof, we will need the regular value theorem (Balasko, 2009,

Prop. 2.3.2) from manifold theory (see also (Robbin and Salamon., 2011, Theorem

9)), stated as follows.

Theorem 6. Let M and N be smooth manifolds of dimensions m1,m2 with m1 ≥ m2.

Let η0 : M −→ N and b ∈ N be such that for any a ∈ η−1
0 (b), the Jacobian matrix of

η0 at a is a surjective map from M to N . Then, η−1
0 (b) is a (m1 −m2)-dimensional

manifold.

We have the following Laplace’s approximation theorem for the integral of mani-

folds. We refer the reader to (Wong, 1989, Chap. 9, Th. 3) for a detailed proof. In

the converse proof, we use the Laplace’s approximation to bound the self information

of the mixture distribution.

Theorem 7 (Laplace’s Approximation). Kosut and Sankar (2014b) Let D be a

d̃−dimensional differentiable manifold embedded in Rm and η1(·) and η2(·) be func-

tions that are infinitely differentiable on D. Let

Z(n) =

∫
D

η2(x)e−nη1(x)dx (3.18)

Assume that: (i) the integral in (3.18) converges absolutely for all n ≥ n0; (ii) there

exists a point x∗ in the interior of D such that for every ε > 0, ξ(ε) > 0 where

ξ(ε) = inf {η1(x)− η1(x∗) : x ∈ D and |x− x∗| ≥ ε}

and (iii) the Hessian matrix E =
(
∂2η1(x)
∂xi∂xj

) ∣∣∣
x=x∗

is positive definite. Let F ∈ Rm×d̃ be

an orthonormal basis for the tangent space to D at x∗. Then

Z(n) = e−nη1(x∗)

(
2π

n

) d̃
2

η2(x∗)
∣∣F TEF

∣∣− 1
2

(
1 +O

(
1

n

))
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3.5 Proof of Theorem 5

3.5.1 Achievability

In this subsection we bound the third-order coding rate of the quantized imple-

mentation of the TS code. We continue from the finite blocklength result in Theorem

4, and evaluate its asymptotic performance.

For the constants C and A in Lemmas 4 and 5, let

γ = H +
σ√
n
Q−1

(
ε− A√

n

)
− d

2n
log n+

d

n
log s+

4κs

n
+
C

n
. (3.19)

Denote

pγ := Pθ∗
[

log |TXn| > nγ
]

(3.20)

= Pθ∗
[

log |Tτ c(Xn)| > nγ
]
.

We have

pγ ≤ Pθ∗
[
− log pθ̂c(xn)(X

n) > nH +
√
nσQ−1

(
ε− A√

n

)
+ 2κs

]
(3.21)

≤ Pθ∗
[− log pθ̂(xn)(X

n)− nH
√
nσ

> Q−1
(
ε− A√

n

)]
(3.22)

≤ Q
(
Q−1

(
ε− A√

n

))
+

A√
n

(3.23)

= ε

where (3.21) follows from Lemma 4 and (3.19), (3.22) is from Lemma 6, and (3.23)

is a consequence of Lemma 5. Since for γ in (3.19), we have pγ ≤ ε, therefore it

satisfies the constraint of (3.7). We can therefore, bound M(ε) defined in (3.7), with

this choice of γ. Fixing ∆ = 1
n
, we have
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M(ε) ≤
∑
τ c∈Tc:

1
n

log |Tτc |≤γ

|Tτ c |

≤
∑
τ c∈Tc:

f(τ c)− 6κs+C′′
n

≤γ

2nf(τ c) (3.24)

=
∞∑
i=0

∑
τ c∈Tc:
f(τ c)∈Ai

2nf(τ c)

≤
∞∑
i=0

|{τ c ∈ Tc : f(τ c) ∈ Ai}| · 2nγ+6κs+C′′−ni∆ (3.25)

where (3.24) is from Corollary 2 and Ai =
(
γ + 6κs+C′′

n
− (i+ 1)∆, γ + 6κs+C′′

n
− i∆

]
.

The rest of the proof is similar to Kosut and Sankar (2013), however we continue the

proof for completeness. We have

|{τ c ∈ Tc : f(τ c) ∈ Ai}| =
∑
τ c∈Tc:
f(τ c)∈Ai

Vol (G(τ c))(
s
n

)d (3.26)

=
1(
s
n

)dVol

 ⋃
τ c∈Tc:
f(τ c)∈Ai

G(τ c)

 (3.27)

≤ 1(
s
n

)dVol

 ⋃
τ∈T :f(τ )∈Ai

G(τ )


where (3.26) results from Vol (G(τ c)) =

(
s
n

)d
, (3.27) follows from disjointness of the

cuboids. If τ ∈ G(τ c), then ‖τ − τ c‖ ≤ s
√
d

2n
and consequently by Lemma 7

|f(τ )− f(τ c)| ≤ K0 ·
s
√
d

2n
:= K2

s

n
(3.28)
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where K2 = K0

√
d

2
. Therefore, for a = γ + 6κs+C′′

n
− (i+ 1)∆,

|{τ c ∈ Tc : f(τ c) ∈ Ai}| ≤
1

( s
n
)d
· Vol

( ⋃
a<f(τ )≤a+∆

G(τ )
)

≤ 1

( s
n
)d

Vol
({
τ : f(τ ) ∈

(
a−K2

s

n
, a+ ∆ +K2

s

n

]})
(3.29)

=
1(
s
n

)d [ρ(a+ ∆ +K2
s

n

)
− ρ

(
a−K2

s

n

)]
(3.30)

where (3.29) is from (3.28). In order to continue from (3.30), recall ω = log |X |−H
5

.

Observe that by (3.19) , a+K2
s
n

+∆ ≤ H+ C√
n
, for a positive constant C. Since ω > 0,

H+ C√
n
< H+ω for large enough n. Similar argument shows that 0 ≤ a−K2

s
n
< H+ω.

Therefore boundary conditions of Lemma 8 are satisfied. Continuing from (3.30) and

using Lemma 8, we then have

|{τ c ∈ Tc : f(τ c) ∈ Ai}| ≤
K1(
s
n

)d · [∆ + 2K2
s

n

]
. (3.31)

Applying (3.31) to (3.25), we obtain

M(ε) ≤
∞∑
i=0

K1

( s
n
)d
·
[
∆ + 2K2

s

n

]
· 2nγ+6κs+C′′−ni∆

=
nd

sd
·
[
∆ + 2K2

s

n

]
· 2nγ+6κs+C′′ · K1

1− 2−n∆
.

From (3.19) and since s > 0 is a constant and ∆ = 1
n
, we obtain

logM(ε) ≤ nH + σ
√
nQ−1(ε) +

(
d

2
− 1

)
log n+O(1).
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3.5.2 Converse

For a parameter vector θ ∈ Θ, define J(θ) = nH(pθ) + σ(pθ)
√
nQ−1(ε). We first

rewrite the entropy function as follows:

H(pθ) = −
∑
x∈X

pθ(x) log pθ(x)

= −
∑
x∈X

pθ(x) (〈θ, τ (x)〉 − ψ(θ)) (3.32)

= −〈θ,Eθ(τ (x))〉+ ψ(θ)

= −〈θ,∇ψ(θ)〉+ ψ(θ) (3.33)

where (3.32) is from (3.1) and (3.33) is from Eθ(τ (x)) = ∇ψ(θ) Jordan (2003). Taking

derivative of (3.33) with respect to θ, we obtain

∇H(pθ) = −θ∇2ψ(θ). (3.34)

Since ∇2ψ(θ) = Cov(τ (X)) is positive definite, (3.34) vanishes only at the uniform

distribution θu = (0, · · · , 0). Since Θ has nonempty interior, let θ0 be a point in the

interior of Θ with J(θ0) 6= J(θu). Define

Θ0 := {θ ∈ Θ : J(θ) = J(θ0)} .

As θu /∈ Θ0, ∇H(pθ) is nonzero for all parameters θ ∈ Θ0. Therefore, for large enough

n, ∇J(θ) is also nonzero for all θ ∈ Θ0. Hence, the Jacobian of J(·) at any point in

the set J−1(J(θ0)) is a surjective map from Θ0 to R. Theorem 6 then implies that Θ0

is a (d− 1)-dimensional manifold.

In order to prove the converse, it suffices to show that

sup
θ∈Θ0

Rn(ε, φ, pθ) ≥
J(θ0)

n
+

(
d

2
− 1

)
log n

n
−O

(
1

n

)
.
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Let p(xn) be the mixture distribution with uniform prior among n-length i.i.d.

distributions with marginals parametrized by Θ0, i.e.

p(xn) =
1

Vol(Θ0)

∫
θ∈Θ0

pθ(x
n)dθ (3.35)

where Vol(·) is the d-dimensional volume. For any γ > 0, applying Theorem 3 in

Kosut and Sankar (2014b) gives

ε+ 2−γ ≥ inf
θ∈Θ0

Pθ (ιp(X
n) ≥ k + γ) (3.36)

where ιp(X
n) := − log p(Xn) is the self information of the mixture distribution. We

then provide a lower bound for the self information. We may rewrite (3.35) as

p(xn) =
1

Vol(Θ0)

∫
θ∈Θ0

2−g(θ)dθ

where g(θ) := − log pθ(x
n). Since Θ0 is a (d − 1)-dimensional manifold, application

of the Laplace’s approximation of integrals (Theorem 7) yields

p(xn) =
1

Vol(Θ0)
2−g(θ̂)

(
2π

n

) d−1
2 ∣∣F TEF

∣∣− 1
2

(
1 +O

(
1

n

))
(3.37)

where θ̂ := θ̂(xn) is the maximum likelihood estimate of θ for xn. Continuing from

(3.36) for a constant C > 0, we obtain

ε+ 2−γ

≥ inf
θ∈Θ0

Pθ (ιp(X
n) ≥ k + γ)

≥ inf
θ∈Θ0

Pθ
(
− log pθ̂(X

n) +
d− 1

2
log n+ C ≥ k + γ

)
(3.38)

= inf
θ∈Θ0

Pθ

(
− log pθ̂(X

n)− nH(pθ)√
nσ

≥
k + γ − d−1

2
log n− C − nH(pθ)√

nσ

)

≥ Q

(
k + γ − d−1

2
log n− C − nH(pθ)√

nσ

)
− A√

n
(3.39)
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where (3.38) is due to (3.37) and the definition of g(·), while (3.39) is from Lemma

5. Setting γ = 1
2

log n and rearranging gives

k

n
≥ inf

θ∈Θ0

H(pθ) +
σ(pθ)√
n
Q−1

(
ε+

A+ 1√
n

)
+

(
d

2
− 1

)
log n

n
+
C

n
.

Recalling that H(pθ) + σ(pθ)√
n
Q−1(ε) is fixed at J(θ0)

n
for all θ ∈ Θ0 and that k

n
=

maxθ∈Θ0 Rn(ε, φ, pθ), theorem follows.

3.6 Parametric Markov Class

We now consider extensions to the class of parametric Markov models. Let M

be the exponential family of first-order, stationary, irreducible and aperiodic Markov

sources, parametrized by a d-dimensional parameter vector θ ∈ ΘM ⊂ Rd. Transition

probabilities of the distribution pθ ∈M has the following exponential structure

pθ(xi|xi−1) = 2〈θ,τ (xi−1,xi)〉−ψ(θ) (3.40)

where τ : X × X → R is the vector of sufficient statistics.

Similar to Merhav and Neuhoff (1992), we assume that the initial source symbol x0

is fixed and known to both the encoder and the decoder. From (3.40), the probability

of a sequence xn drawn according to the first-order Markov source pθ ∈ M in the

exponential family takes the form

pθ(x
n) =

n∏
i=1

pθ (xi|xi−1)

=
n∏
i=1

2〈θ,τ (xi−1,xi)〉−ψ(θ)

= 2n[〈θ,τ (xn)〉−ψ(θ)]

where τ (xn) =
∑n
i=1 τ (xi−1,xi)

n
∈ Rd is a minimal sufficient statistic. Through the same

approach as in Section 3.2, we partition the convex hull of the space of minimal suffi-

38



cient statistics into cuboids of side length s
n

defined as in (3.4). We then characterize

quantized type classes as in (3.5).

Let

H(pθ) = lim
n→∞

1

n
Eθ
[
log

1

pθ(Xn)

]
(3.41)

and

σ2(pθ) = lim
n→∞

1

n
Vθ

[
log

1

pθ(Xn)

]
(3.42)

be the entropy and the varentropy rate of the Markov process parametrized by θ,

respectively. The following theorem characterizes the fundamental limits of universal

one-to-one compression of parametric Markov sources, as well as asserting that the

TS code is optimal up to the third-order term.

Theorem 8. For any first-order, stationary, irreducible and aperiodic Markov expo-

nential model class parametrized by ΘM

inf
φ

sup
θ∈ΘM

[
Rn(ε, φ, pθ)−H(pθ)−

σ(pθ)√
n
Q−1(ε)

]
=

(
d

2
− 1

)
log n

n
+O

(
1

n

)
.

where the infimum is achieved by the quantized type class implementation of the TS

code.

Proof. Let Yi = (Xi−1, Xi) be a random vector defined by overlapping blocks of {Xn}.

Since Xn form a Markov chain, so does {Yn}. The proof follows the same lines as

those in the proof of the parametric i.i.d. class P , with τ (Yn) playing the role of

τ (Xn). The only deviations from the memoryless proof occur in lines (3.11), (3.23)

and (3.39). As a counterpart of the i.i.d. ratio limit theorem of (3.11) for a Markov

sources, we may use Theorem 8 of Korshunov (2001), which states that

pθ̂c(xn) {nτ (Y n) ∈ nG(τ c))} =
sd

(2πn)
d
2 |Σ| 12

e−
〈(x−nµ)Σ−1,x−nµ〉

2n + o
(
n−

d
2

)
where Σ and µ are the covariance and mean of the stationary distribution of the

Markov chain, respectively. Finally (3.23) and (3.39) can be derived from the Markov
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version of the normal approximation inequality stated below. The proof is the same

as in Appendix C.

Lemma 9 (Asymptotic Normality of Information). Fix a positive constant α. For a

first-order, stationary, irreducible and aperiodic Markov source, there exists a finite

positive constant A′ such that for all n ≥ 1 and z such that |z| ≤ α,∣∣∣∣∣Pθ∗
{
− log pθ̂(Xn)(X

n)− nH
√
nσ

> z

}
−Q(z)

∣∣∣∣∣ ≤ A′√
n

(3.43)

where H := H(pθ∗) and σ2 := σ2(pθ∗), are the entropy and varentropy rate of the true

model, pθ∗, respectively.

The rest of the proof is the same as the i.i.d. case and we omit it due to similarity.

Example 2. For the class of all first-order stationary, irreducible and aperiodic

Markov sources d = |X | (|X | − 1), and Theorem 8 reduces to the result in Iri and

Kosut (2015).

3.7 Type Size Code with Point Type Classes

In this section we analyze the performance of the point type class implementation

of the TS code. For a sequence xn ∈ X n, define the point type class containing xn as

Txn = {yn ∈ X n : pθ(x
n) = pθ(y

n) for all θ ∈ Θ} (3.44)

the set of all n-length sequences yn ∈ X n equiprobable with xn, simultaneously under

all models in P . Consequently, (3.2) enforces two sequences to be in the same type

class if and only if their minimal sufficient statistics are equal. Hence, from a geometric

perspective, point type classes correspond to zero sidelength s = 0 in Figure 3.1, i.e.

type classes are points in the space of minimal sufficient statistics. We first review
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the derivation of the size of a point type class from Merhav and Weinberger (2004).

We then provide upper and lower bounds for the asymptotic rate of the TS code with

point type class implementation, showing that the TS code performs strictly worse

for s = 0 in terms of third-order coding rate.

Let τ (x)[j], j = 1, · · · , d, be the j-th component of the d-dimensional vector

τ (x). For any index j = 1, · · · , d, there exists a fixed real number β[j][0] and rj

pairwise incommensurable real numbers β[j][t], t = 1, · · · , rj, such that regardless

of the observed sample x ∈ X , τ (x)[j] can be uniquely decomposed as Merhav and

Weinberger (2004)

τ (x)[j] = β[j][0] +

rj∑
t=1

β[j][t]L̃(x)[j][t] (3.45)

where L̃(x)[j][t], t = 1, · · · , rj, are integers depending on the sample x through

τ (x)[j]. The decomposition (3.45) defines a unique one-to-one mapping between

the real-valued τ (x)[j] and rj integers L̃(x)[j][t]. Concatenating the corresponding

unique integers L̃(x)[·][·], each d-dimensional vector τ (x) corresponds to a unique

integer-valued vector L̃(x) ∈ Z
∑d
j=1 rj . For all j = 1 · · · d, we may choose without loss

of generality β[j][0] = τ (1)[j]. With this choice we always have L̃(1) = (0, · · · , 0)T .

Let d′, which is called the dimensionality of the type class in Merhav and Wein-

berger (2004), be the rank of the matrix L̃ =

[
L̃(2)− L̃(1) · · · L̃(|X |)− L̃(1)

]
.

Therefore, there are d′ linearly independent rows in L̃. Let the indices of the lin-

early independent rows be i1, · · · , id′ . For any x ∈ X , define d′-dimensional vector

L(x) as L(x)[j] = L̃(x)[ij] for j = 1 · · · d′. Since the other rows are linear combina-

tion of the independent rows, we can denote this transformation as L̃ = RL, where

R is a
∑d

j=1 rj × d′ matrix and L is a full-rank d′ × (|X | − 1) dimensional matrix

L =

[
L(2)−L(1) · · · L(|X |)−L(1)

]
. Since L̃(1) = L(1) = 0, there is a one

to one correspondence between L(x) and L̃(x) and consequently between L(x) and

τ (x).
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Note that d′ ≥ d, and in many cases the inequality is strict. The main finding of

this section is that d′ is the critical dimension for the behavior of the TS code under

point type classes, rather than d. Since d′ may be larger than d, the performance of

the TS code with point type classes may be strictly worse than that with quantized

type classes.

Let b be a d × 1 column vector containing β[j][0]’s for j = 1, · · · , d and A is a

d×
∑d

j=1 rj block diagonal matrix containing β[j][t]’s in (3.45). For real-valued vector

` ∈ Rd′ , let τ (`) = b + AR`. For a constant C > 0 to be defined later, define f0(`)

as follows:

f0(`) = − 1

n

(〈
θ̂(τ (`)), τ (`)

〉
− ψ

(
θ̂(τ (`))

))
− d′

2n
log 2πn+

C

n
(3.46)

= − 1

n

(〈
θ̂(b + AR`),b + AR`

〉
− ψ

(
θ̂ (b + AR`)

))
− d′

2n
log 2πn+

C

n
.

(3.47)

For a sequence xn, define L(xn) similar to (3.3) as

L(xn) =

∑n
i=1L(xi)

n
(3.48)

and let L = {L(xn) : xn ∈ X n} be the set of lattice points. Throughout, L ∈ Zd′ de-

notes an integer-valued lattice point, while ` ∈ Rd′ denotes real-valued d′-dimensional

vector.

The size of a point type class is derived in Merhav and Weinberger (2004), which

we reproduce it in Appendix G for completeness. Moreover, we show that the third-

order term in their result is a constant to obtain the following lemma.

Lemma 10. For large enough n, the size of the point type class containing xn with

L(xn) = L, is bounded as

nf0(L)− 2C ≤ log |Txn| ≤ nf0(L) (3.49)

where C is the constant in (3.46, 3.47).
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Proof. See Appendix G.

The following is our main theorem for this section, characterizing the exact per-

formance of the TS code with point type classes up to third-order.

Theorem 9. Let φ0 be the point type class implementation of the TS code. The

ε-coding rate of φ0, for all θ ∈ Θ is given by

Rn(ε, φ0, pθ) = H(pθ) +
σ(pθ)√
n
Q−1(ε) +

(
d′

2
− 1

)
log n

n
+O

(
1

n

)
. (3.50)

Proof. The achievability proof is similar to Section 3.5, hence we only highlight the

differences. Again for simplicity, we denote H = H(pθ∗) and σ = σ(pθ∗) as the entropy

and the varentropy of the underlying model pθ∗ , respectively. Let

γ′ = H +
σ√
n
Q−1

(
ε− A√

n

)
− d′

2n
log (2πn) +

C

n
. (3.51)

We now show that for this choice of γ′, pγ′ ≤ ε, where pγ′ is defined as in (3.20). We

have

pγ′ = Pθ∗ [log |TXn| > nγ′]

= Pθ∗
[
− log pθ̂(x

n)− nH
σ
√
n

> Q−1

(
ε− A√

n

)]
(3.52)

≤ Q

(
Q−1

(
ε− A√

n

))
+

A√
n

(3.53)

= ε

where (3.52) follows from (3.49, 3.46, 3.51) by noticing that

f0(L) = − 1

n
log pθ̂(xn)(x

n)− d′

2n
log (2πn) +

C

n

for any xn with L(xn) = L, and (3.53) is an application of Lemma 5.

Recall that there is a one-to-one correspondence between Txn and L(xn), hence

we can denote Txn as TL(xn). Furthermore, once xn is understood from the context,
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we simplify TL(xn) and rewrite it as TL. We can then reformulate the equation for

M(ε) in (3.7) for point type classes. We can achieve this, simply by replacing τ c(X
n)

with L(xn) as the representative of the type class.

We then bound M(ε) in (3.7) with the choice of γ′ in (3.51). Through the same

approach as in Subsection 3.5.1, one can show that

M(ε) ≤
∞∑
i=0

|{L ∈ L : f0(L) ∈ A′i}| · 2{nγ
′+2C−ni∆} (3.54)

where A′i =
(
γ′ + 2C

n
− (i+ 1)∆, γ′ + 2C

n
− i∆

]
and C is the constant in (3.49). We

now evaluate |{L ∈ L : f0(L) ∈ A′i}|. Define a 2-norm ball of radius r around a point

`0 ∈ Rd′ as

Br(`0) =
{
` ∈ Rd′ : ‖`− `0‖ < r

}
. (3.55)

In the sequel we use L as the lattice points in L, while we reserve the notation ` for

points in the convex hull of L which we denote by L = conv(L). Observe that for any

two different points L1,L2 ∈ L, ‖L1−L2‖ ≥ 1
n
, and therefore, B 1

2n
(L1) and B 1

2n
(L2)

are disjoint. Since the convex hull L is a d′-dimensional space, there exists a constant

C > 0 (its precise value is π
d′
2

2d′Γ( d
′
2

+1)
Ren (1994)) such that

Vol
(
B 1

2n
(L)
)

=
C

nd′
. (3.56)

Therefore

| {L ∈ L : f0(L) ∈ A′i} | =
∑
L∈L

f0(L)∈A′i

nd
′

C
Vol
(
B 1

2n
(L)
)

=
nd
′

C
Vol

 ⋃
L∈L

f0(L)∈A′i

B 1
2n

(L)

 (3.57)

≤ nd
′

C
Vol

 ⋃
`∈L

f0(`)∈A′i

B 1
2n

(L)

 .
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where (3.57) follows from disjointness of the balls. Proceeding as in Subsection 3.5.1,

it is straightforward to show that for a constant C > 0

| {L ∈ L : f0(L) ∈ A′i} | ≤ Cnd
′−1. (3.58)

The rest of the proof is similar to the Subsection 3.5.1, which we omit due to similarity.

We now provide a converse for the performance of the Type Size code with point

type classes. We can rewrite the corresponding finite blocklength result (3.7) for point

type classes as

M(ε) = inf
γ′:pγ′≤ε

v(γ′), (3.59)

where pγ′ is defined as in (3.20) and

v(γ′) =
∑
L∈L:

1
n

log |TL|≤γ′

|TL|. (3.60)

Notice that v(γ′) is non-decreasing function of γ′, while pγ′ is non-increasing function

of γ′. Therefore, if for some γ′0, pγ′0 > ε, then one can conclude that

M(ε) ≥ v(γ′0). (3.61)

We then show that pγ′0 > ε for the following choice of γ′0

γ′0 = H +
σ√
n
Q−1

(
ε+

A+ 1√
n

)
− d′

2n
log (2πn)− C

n
(3.62)

where A is the constant in Lemma 5 and C is the constant in (3.49). Indeed

pγ′0 ≥ Pθ∗
[
− 1

n
log pθ̂(Xn)(X

n)− d′

2n
log (2πn)− C

n
> γ′0

]
(3.63)

= Pθ∗
[
− log pθ̂(Xn)(X

n)− nH
σ
√
n

> Q−1

(
ε+

A+ 1√
n

)]
(3.64)

> ε (3.65)
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where (3.63) is from the type class size bound (3.49) and the definition of pγ′0 in

(3.20), (3.64) is from the choice of γ′0 in (3.62), and (3.65) is a consequence of Lemma

5. Continuing from (3.61), we may write

M(ε) ≥
∑
L∈L

1
n

log |TL|≤γ′0

|TL|

≥
∑
L∈L

f0(L)≤γ′0

2nf0(L)−2C (3.66)

where (3.66) exploits the bounds for the type class size (3.49). For ∆ = 1
n
, (3.66) can

simply be lower bounded as follows by restricting the summation to L in A0, where

A0 = {L ∈ L : γ′0 −∆ < f0(L) ≤ γ′0}

M(ε) ≥ |A0| · 2nγ
′
0−n∆−2C . (3.67)

We now provide a lower bound on |A0|. Let Ã0 = {` ∈ L : γ′0 −∆ < f0(`) ≤ γ′0}.

Lemma 11. There exists a constant C such that

Vol
(⋃

`∈Ã0
B 1

2n
(`)
)

Vol
(⋃

L∈A0
B 1

2n
(L)
) ≤ C. (3.68)

Proof. See Appendix H.

We then have

|A0| =
∑
L∈A0

Vol
(
B 1

2n
(L)
)

Vol
(
B 1

2n
(L)
)

= Cnd
′ ∑
L∈A0

Vol
(
B 1

2n
(L)
)

(3.69)

= Cnd
′
Vol

( ⋃
L∈A0

B 1
2n

(L)

)
(3.70)

≥ nd
′
Vol
(⋃

`∈Ã0
B 1

2n
(`)
)

C
(3.71)
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where (3.69) follows from (3.56) (recall that the letter C may denote different con-

stants), (3.70) is due to disjointness of the balls, and (3.71) is a consequence of Lemma

11. Define,

ρ0(λ) = Vol{` ∈ L : f0(`) ≤ λ}. (3.72)

We need the following technical lemma, which we prove in Appendix I.

Lemma 12. There exists a positive constant K4, such that for all γ′0 −∆ ≤ λ ≤ γ′0

we have ∣∣∣∣ ddλρ0(λ)

∣∣∣∣ ≥ K4.

Recalling the definition of Ã0, we may continue from (3.71) and write

|A0| ≥
nd
′

C
Vol
(
∪`:γ′0−∆<f0(`)≤γ′0B 1

2n
(`)
)

≥ nd
′

C
Vol ({` : f0(`) ∈ (γ′0 −∆, γ′0]}) (3.73)

=
nd
′

C
(ρ0(γ′0)− ρ0(γ′0 −∆)) (3.74)

≥ nd
′

C
K4∆ (3.75)

where (3.73) is by lower bounding the volume of the ball-covering of Ã0 by the volume

of Ã0 itself, (3.74) is from the definition of ρ0 and (3.75) is from Lemma 12.

Continuing from (3.67), we have

M(ε) ≥ nd
′

C
K4∆ · 2nγ′0−n∆−2C (3.76)

= Cnd
′−12nγ

′
0−2C−1 (3.77)

where (3.76) is from (3.75), and (3.77) is from ∆ = 1
n
. Replacing γ′0 by (3.62), we

obtain

logM(ε) ≥ nH + σ
√
nQ−1(ε) +

(
d′

2
− 1

)
log n+O(1).
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3.8 Two Stage Code

Using the same steps as in Kosut and Sankar (2014b), we derive the asymptotic

third-order coding rate of the Two-Stage code for compression of parametric sources

as stated in the following theorem.

Theorem 10. The overflow coding rate of the Two-Stage code for compression of

a d-dimensional parametric exponential family of distributions P, with i.i.d. data

generation mechanism is given by

Rn(Φ2S , ε, pθ∗) = H(pθ∗) +
σ(pθ∗)√

n
Q−1(ε) +

d

2

log n

n
+O(

1

n
) (3.78)

Proof. First we derive the number of types in the parametric model setup of section

3.1. Number of type classes is the number of cuboids in the partition of space T . We

cover T by cuboids of sidelength h
n
. Number of such cuboids (number of type classes)

is thus bounded as

|Pn(X )| ≤
(‖τmax‖+ h

n
)d − (‖τmin‖ − h

n
)d(

h
n

)d = CT n
d

where CT is a constant independent of n. Hence

log |Pn(X )| ≤ d log n+O(1)

Thus the number of bits required for the first stage is d log n+O(1). The rest of the

proof is similar to Kosut and Sankar (2014a), and we omit it due to similarity.
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Chapter 4

VARIABLE TO FIXED LENGTH CODING

4.1 Problem Statement

Let Θ be a compact subset of Rd. Probability distributions in an exponential

family can be expressed in the form Merhav and Weinberger (2004)

pθ(x) = 2〈θ,τ (x)〉−ψ(θ) (4.1)

where θ ∈ Θ is the d-dimensional parameter vector, τ (x) : X → Rd is the vector

of sufficient statistics and ψ(θ) is the normalizing factor. Let the model class P =

{pθ, θ ∈ Θ}, be the exponential family of distributions over the finite alphabet X =

{1, · · · , |X |}, parameterized by θ ∈ Θ ⊂ Rd, where d is the degrees of freedom in

the minimal description of pθ ∈ P , in the sense that no smaller dimensional family

can capture the same model class. The degrees of freedom turns out to characterize

the richness of the model class in our context. Compactness of Θ, in turn, implies

existence of uniform bounds 0 < pmin, pmax < 1 on the probabilities, i.e.

pmin ≤ pθ(x) ≤ pmax ∀θ ∈ Θ,∀x ∈ X . (4.2)

From (4.1), the probability of a sequence x` = x1 · · · x` drawn i.i.d. from a model

pθ ∈ P in the exponential family takes the form Merhav and Weinberger (2004)

pθ(x
`) =

∏̀
i=1

pθ(xi)

=
∏̀
i=1

2〈θ,τ (xi)〉−ψ(θ)

= 2`[〈θ,τ (x`)〉−ψ(θ)] (4.3)
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where

τ (x`) =

∑`
i=1 τ (xi)

`
∈ Rd (4.4)

is a minimal sufficient statistic Merhav and Weinberger (2004). Note that τ (x) and

τ (x`) are differentiated based upon their arguments. We denote the (unknown) true

model in force as pθ∗ . Pθ, Eθ and Vθ denote probability, expectation and variance

with respect to pθ, respectively. We denote the set of all finite length strings over X

as X ∗. We denote the generic source string of unspecified length as x∗ ∈ X ∗. Let

x`x`
′

be the concatenation of x` and x`
′
. All logarithms are in base 2. Instead of

introducing different indices for every new constant C1, C2, ..., the same letter C may

be used to denote different constants whose precise values are irrelevant.

We consider V-F length codes, where we first parse the source sequence using a

parsing dictionary D of a pre-specified size |D| = M . Dictionary strings (segments)

which we denote by {x∗1, · · · , x∗M} may have different lengths. Once a segment x∗ ∈ D

is identified as a parsed string, it is then encoded to its lexicographical index within

D using logM bits. As it does not hurt our analysis, we ignore rounding logM to

the closest integer.

We assume D is complete, i.e. any infinite length sequence over the alphabet has

a prefix in D. In addition, we assume D is proper, i.e. there are no two segments

one being prefix of the other. Completeness along with properness of D, implies that

any long enough sequence has a unique prefix in the dictionary. Every complete and

proper dictionary can be represented with a rooted complete X -ary tree in which

every internal node has X child nodes. Let us label each of the |X | edges branching

out of a node with different letters from X . Each node corresponds to the string of

edge-labels from the root to the node. One can then correspond internal nodes of

the tree to the prefixes of the segments, while leaf nodes correspond to the segments

themselves.
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Let D be the dictionary of a V-F length code φ. Let X∗ ∈ D be the random first

parsed segment of the source output X∞, using the dictionary D. Let `(X∗) be the

length of X∗. Denote `φ(X∞) = `(X∗). We gauge the performance of V-F length

code φ with a dictionary D of size M , through the ε-coding rate given by

RM(ε, φ, pθ∗) := inf

{
R : Pθ∗

(
logM

`φ(X∞)
≥ R

)
≤ ε

}
= inf

{
R : Pθ∗

(
logM

`(X∗)
≥ R

)
≤ ε

}
(4.5)

Our goal is to analyze behavior of RM(ε, φ, pθ∗) for large enough dictionary size M .

4.2 Type Complexity Algorithm

In this section, we propose the Type Complexity (TC) algorithm. For a sequence

x` ∈ X ∗, define its quantized type complexity S(x`) as

S(x`) = log |Tx` |+
d

2
log ` (4.6)

where Tx` is the quantized type class of x` defined in (3.5). Our designed dictionary

D, consists of sequences in the boundaries of transition from low quantized type

complexity to high quantized type complexity. More precisely, for a positive constant

γ to be specified in Section 4.5.1, x` = (x1, x2, · · · , x`) is a segment in the dictionary

if and only if

S(x`) ≥ γ and S(x`
−1

) < γ (4.7)

where x`
−1

= (x1, x2, · · · , x`−1).

From construction, it is clear that D is proper, and furthermore monotonicity of

S(x`) implies completeness of D. Intuitively, sequences with high type complexity

contain more information, implying that the type complexity (TC) code compresses

more information into a fixed budget of output bits, which is the promise of the

optimal V-F length code.
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We note that there is a freedom in defining type classes in (4.6). Different charac-

terization of type classes, leads to different performances. We show that the quantized

type is the relevant characterization of type classes for optimal performance.

4.3 Main Result

Let H(pθ) = Eθ
(

log 1
pθ(X)

)
and σ2(pθ) = Vθ

(
log 1

pθ(X)

)
be the entropy and the

varentropy of pθ, repectively. The following theorem exactly characterizes achievable

ε-rates up to third-order term, as well as asserting that this rate is achievable by the

TC code using quantized types.

Theorem 11. For any stationary memoryless exponential family of distributions pa-

rameterized by Θ,

inf
φ

sup
θ∈Θ

[
RM(ε, φ, pθ)−H(pθ)− σ(pθ)

√
H(pθ)

logM
Q−1(ε)−H(pθ)

d

2

log logM

logM

]

= o

(
log logM

logM

)
(4.8)

where the infimum is achieved by the TC algorithm using quantized types.

Example 3. For the class of all binary memoryless sources d = 1, and the third-order

term in (4.8) matches with the redundancy in Tjalkens and Willems (1992).

4.4 Preliminary Results

Define

θ̂ (τ ) = arg max
θ∈Θ

(〈θ, τ 〉 − ψ(θ)) . (4.9)

Note that since the Hessian matrix of ψ(θ), ∇2 (ψ(θ)) = Covθ (τ (X)) is positive defi-

nite, the log-likelihood function is strictly concave and hence the maximum likelihood

θ̂(τ ) is unique.
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The next lemma (Iri and Kosut, 2016a, Lemma 1) provides tight upper and lower

bounds on the type complexity.

Lemma 13 (Type Complexity). For large enough `, the quantized type complexity of

x` is bounded as

− log pθ̂(x`)(x
`) + C1 ≤ S(x`) ≤ − log pθ̂(x`)(x

`) + C2 (4.10)

where C1, C2 are constants independent of `.

The type complexity bounds in the previous lemma, are springboards to the fol-

lowing bounds on the lengths of the dictionary segments.

Corollary 3 (Segment Length). For any long enough x` ∈ D, we have

` <
−γ + C1

log pmax

+ 1 (4.11)

Proof. For any long enough x` ∈ D, (4.7,4.10) yields

− log pθ̂(x`−1 )(x
`−1

) + C1 < S(x`
−1

) < γ

Hence pθ̂(x`−1 )(x
`−1

) > 2−γ+C1 . Since for all θ ∈ Θ, pθ(x
`−1

) ≤ p`−1
max, upper bound

follows.

Therefore, one can find positive constant C3 > 0, such that for any x` ∈ D

` < C3γ. (4.12)

The following lemma shows that, one single observation does not provide much

information.

Lemma 14. Let x`+1 = (x1, · · · , x`, x`+1) = x`x`+1. For a constant C4 > 0

− log pθ̂(x`+1)(x
`+1)− (− log pθ̂(x`)(x

`)) ≤ C4 (4.13)
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Proof. We have

− log pθ̂(x`+1)(x
`+1)− (− log pθ̂(x`)(x

`)) =

max
θ

[
(`+ 1)(ψ(θ)− 〈θ, τ (x`+1)〉)

]
−max

θ

[
`(ψ(θ)− 〈θ, τ (x`)〉)

]
(4.14)

≤ max
θ

[
(`+ 1)ψ(θ)− (`+ 1)〈θ, τ (x`+1)〉 − `ψ(θ) + `〈θ, τ (x`)〉

]
(4.15)

≤ C (4.16)

where (4.14) is from the definition (4.9), (4.15) exploits the fact that for any two

functions g1(θ), g2(θ)

max
θ
g1(θ)−max

θ
g2(θ) ≤ max

θ

(
(g1 − g2)(θ)

)
,

and finally (4.16) follows from |τ (x`)− τ (x`+1)| ≤ C
`

for some constant C.

We appeal to the following normal approximation result from Kontoyiannis and

Verdú (2014); Saito et al. (2014), in order to bound the percentiles of the type com-

plexity in the achievability proof.

Lemma 15 (Asymptotic Normality of Information). Kontoyiannis and Verdú (2014);

Saito et al. (2014) Fix a positive constant α. For a stationary memoryless source,

there exists a finite positive constant A, such that for all n ≥ 1 and z such that

|z| ≤ α, ∣∣∣∣Pθ∗ {− log pθ∗(X
n)− nH√

nσ
> z

}
−Q(z)

∣∣∣∣ ≤ A√
n

(4.17)

where H := H(pθ∗) and σ2 := σ2(pθ∗), are the entropy and the varentropy of the true

model pθ∗, respectively.
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4.5 Achievability

4.5.1 Dictionary Size Enforcements

We would like to set γ in (4.7) as high as possible, to compress as much information

as we can to a fixed budget of output bits. On the other hand, pre-specified dictionary

size enforces upper bounds on γ. In this subsection, we set γ in (4.7), such that the

dictionary size does not exceed M .

LetN`+1 be the number of dictionary segments with length `+1. For any x`+1 ∈ D,

it must certainly hold that S(x`+1−1
) < γ. Motivated by (Merhav and Neuhoff, 1992,

Eq. 3.12), we obtain the following bound

N`+1 ≤ |X |
∑

T
x`
∈T`:

S(x`)≤γ
∃x`+1∈X such that S(x`x`+1)>γ

|Tx` |

≤ |X |2γ−
d
2

log `|A| (4.18)

where (4.18) is from (4.6,4.7,4.10) and

A = {T ∈ T` : ∃x` ∈ T with S(x`) ≤ γ and ∃x`+1 such that S(x`x`+1) > γ}. (4.19)

We show in the Appendix J that |A| = `d−1. Hence

N`+1 ≤ |X |2γ−
d
2

log ``d−1

= |X |2γ`
d
2
−1. (4.20)

We then upper bound the dictionary size as follows

|D| =
C3γ∑
`=0

N`+1 (4.21)

≤ |X |2γ
C3γ∑
`=0

`
d
2
−1 (4.22)

≤ C2γγ
d
2 (4.23)
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where (4.21) is from (4.12), (4.22) follows from (4.20), and (4.23) is from upper

bounding the summation with an integral where C > 0 is a generic constant whose

precise value is irrelevant. Finally, in order to guarantee that the quantized type

complexity dictionary (4.7), does not contain more than M segments, it suffices to

set γ such that

logC + γ +
d

2
log γ ≤ logM. (4.24)

One can show that, there exists a positive constant C > 0, such that the following

choice of γ, satisfies (4.24)

γ = logM − d

2
log logM − C. (4.25)

4.5.2 Coding Rate Analysis

In this subsection, we derive an upper bound for the ε-coding rate of the quantized

type implementation of the TC algorithm. To this end, we upper bound the overflow

probability as follows

P
(

logM

`(X∗)
> R

)
= P

(
`(X∗) <

logM

R

)
= P

(
∃` < logM

R
: S(x`) ≥ γ

)
(4.26)

≤ P
(
∃` < logM

R
: − log pθ̂(x`)(x

`) ≥ γ − C2

)
(4.27)

≤ P
(
∃` < logM

R
: − log pθ∗(x

`) ≥ γ − C2

)
(4.28)

= P
(
− log pθ∗(x

logM
R ) ≥ γ − C2

)
(4.29)

= P

− log pθ∗(x
logM
R )− logM

R
H

σ
√

logM
R

≥
γ − C2 − logM

R
H

σ
√

logM
R


≤ Q

γ − C2 − logM
R
H

σ
√

logM
R

+
A√
logM
R

(4.30)
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where (4.26) is from (4.7), (4.27) is from (4.10), (4.28) is from pθ∗(x
`) ≤ pθ̂(x`)(x

`),

(4.29) holds since for x` a prefix of x`+1, − log pθ∗(x
`) ≤ − log pθ∗(x

`+1), and (4.30)

is an application of Lemma 15. In the Appendix K, we show that for the rate R

specified below, (4.30) and subsequently the overflow probability falls below ε

R = H + σ

√
H

logM
Q−1(ε) +H

d

2

log logM

logM
+O(

1

logM
). (4.31)

Due to (4.5), RM(ε,D, pθ∗) ≤ R. This completes the achievability proof.

4.6 Converse

We first introduce some notations relevant to F-V length codes. Recall that any

F-V length code φFV is a one-to-one mapping from a set of words of variable length

W(φFV) to binary strings. For an infinite length sequence X∞ emitted from the source,

let

`(φFV(X∞)) := `(φFV(X∗0 )) (4.32)

where X∗0 ∈ W(φFV) is a word of the code φFV that is a prefix of X∞.

Let φVF be an arbitrary V-F length code with M codewords and length function

`VF(·). Let R be the ε-coding rate of φVF. We show that

R ≥ H + σ

√
H

logM
Q−1(ε) +H

d

2

log logM

logM
− C log log logM

logM
. (4.33)

It is shown in Merhav and Neuhoff (1992) that, for any V-F length code φVF

with M codewords and length function `VF(·), one can construct a F-V length prefix

code φFV with 2
logM
R codewords (i.e. fixed input length is logM

R
) and length func-

tion `FV(·), such that the event
{
`VF(X∞) < logM

R

}
for φVF is equivalent to the event

{`FV(X∞) > logM} for φFV, where for simplicity `FV(X∞) := `(φFV(X∞)).
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Therefore we have

P
(

logM

`VF(X∞)
> R

)
= P

(
`VF(X∞) <

logM

R

)
(4.34)

= P
(
`FV(X∞) > logM

)
(4.35)

= P

(
`FV(X∞)

logM
R

> R

)
. (4.36)

Hence, P
(

logM
`VF(X∞)

> R
)
≤ ε implies

P

(
`FV(X∞)

logM
R

> R

)
≤ ε. (4.37)

Define the ε-coding rate R(φFV, ε, p) of the F-V length code φFV as (Kosut and Sankar,

2014a, Eq. 8)

R(φFV, ε, p) = min

{
R0 : P

(
`FV(X∞)

`(X∗0 )
> R0

)
≤ ε

}
.

Note that `(X∗0 ) = logM
R

. Hence (4.37) implies

R ≥ R(φFV, ε, p). (4.38)

Converse for fixed-to-variable prefix codes (Kosut and Sankar, 2014a, Theorem 16),

in turn implies

R(φFV, ε, p) ≥ H +
σ√
logM
R

Q−1(ε) +
d

2

log logM
R

logM
R

−O

(
log log logM

R
logM
R

)
. (4.39)

Combining (4.38,4.39) yields

R ≥ H +
σ√
logM
R

Q−1(ε) +
d

2

log logM
R

logM
R

− C

(
log log logM

R
logM
R

)
. (4.40)

Through a similar iterative approach as in Appendix K, one can show that (4.40)

leads to (4.33).
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Chapter 5

CONCLUSION

We derived the fundamental limits of fixed-to-variable (F-V) length as well as variable-

to-fixed (V-F) length universal source coding at short blocklengths. We first showed

the optimality of the previously introduced Type Size code for F-V compression of

Markov sources. We proceeded by considering the universal compression of the d-

dimensional exponential family of distributions. We proposed the quantized Type

Size code, where type classes are associated with cuboids in the grid partitioning the

space of minimal sufficient statistics. We showed that the quantized Type Size code

achieves the optimal third-order term
(
d
2
− 1
)

log n for compression of d-dimensional

exponential family of distributions. Further, the naive point type class approach

is considered, where two sequences are in the same type class if and only if they

have the same probability under any distribution in the exponential family. In the

point type class scenario, each point (rather than a cuboid) in the set of minimal

sufficient statistics defines a type class. The third-order term of the point type class

approach is shown to be exactly (d
′

2
− 1) log n, where d′ is the dimension of the lattice

vector representation of the sufficient statistic. Since d′ is in general larger than

d, our findings reveal that the model class dimension d — rather than the lattice

dimension d′ — is the relevant dimension for optimal performance. This is a more

intuitive result, because it is much easier to understand the role of d as opposed to

d′. Moreover, d is a more robust parameter compared to d′; changing the model

parameters infinitesimally (i.e. from rational to irrational) can change d′, but not d.

For a more general parametric family without any information on the minimal

sufficient statistics, one may partition the parameter space into cuboids and define
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two sequences to be in the same type class if and only if their maximum likelihood

estimates belong to the same cuboid. One interesting future direction of this work is

analyzing performance of such approach. As this work does not consider computa-

tional complexity of implementing the compression algorithms, an alternative future

direction is to consider the blocklength-storage-complexity tradeoff. Finally, the lossy

version of this research is also an interesting possible future direction.

Finally, we derived the fundamental limits for universal variable-to-fixed length

coding of the d-dimensional exponential family of distributions in the non-vanishing

error regime. We proposed a quantized type complexity algorithm that achieves the

optimal third-order coding rate. Our algorithm along with prior V-F length codes

follow a similar underlying theme; dictionary consists of sequences in the boundaries

of transition from low to high complexity. One of the future directions of this work

is to probe the diametric opposition to the complexity dogma revealed in this paper,

if possible at all. Studying the behavior of the non-prefix codes is also considerably

interesting for future work.
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APPENDIX A

PROOF OF THE CLAIMS IN PROPOSITION 1
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We have used Claims 1 and 3 over the course of the proof of Proposition 1, which
we provide their proof here.

Claim 1. Var
(

1
n

(∑n
i=1 Ui(s)

))
= Θ( 1

n
) for all s = 0, . . . ,m− 1, where Ui(s) is the

s-th component of Ui.

Proof. It suffices to show that Var
(∑n

i=1 Ui(s)
)

= Θ(n). Note that Var
(∑n

i=1 Ui(s)
)

for s = 0, . . . ,m− 1, correspond to the diagonal entries of Var
(∑n

i=1 Ui

)
. We have

Var(
n∑
i=1

Ui) =
n∑
i=1

Var(Ui) + 2
∑
i<j

Cov(Ui,Uj). (A.1)

The First term in A.1 is Θ(n). Since Ui’s are from an irreducible and aperiodic
Markov chain, using the same approach as in Lemma (1) one can show that the
second term in A.1 vanishes exponentially.

Let us denote

Ûi =
m∑
r=1

jrUi(r)

where Ui(r) is the r-th component of Ui. Throughout this appendix, let Ui satisfy
the assumptions of Proposition 1. Also let

αs = Cov
(

Ûi, Ûi+s

)
.

Claim 2. There exists a constant ρ < 1, such that αs < ρs.

Proof. Let G be an m-indicator vector, with ith component being Gi = ji. Ob-
serve that αs = Cov

(
GTUi,G

TUi+s

)
= GT cov(Ui,Ui+s)G. Using the same ap-

proach as in Lemma 1, since Ui’s are irreducible and aperiodic, one can show that
Cov (Ui,Ui+s) decreases exponentially and hence αs decreases exponentially as well.

Claim 3.
σ∞ − σn
σn

= O(
1√
n

) (A.2)
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Proof. We have

σ2
n = jTVnj =

∑
r,r′

jrVn(r, r′)jr′

=
∑

r,r′∈[m]

jrCov
( 1√

n

n∑
i=1

Ui(r),
1√
n

n∑
i=1

Ui(r
′)
)
jr′

=
∑

r,r′∈[m]

jrE

[(
1√
n

n∑
i=1

Ui(r)

)(
1√
n

n∑
i=1

Ui(r
′)

)]
jr′

= E

( 1√
n

m∑
r=1

n∑
i=1

jrUi(r)

)2
 .

Hence, we have

nσ2
n = E

( m∑
r=1

n∑
i=1

jrUi(r)

)2


= E

( n∑
i=1

Ûi

)2


=
∑
i,j

αj−i

=
n∑
i=1

α0 +
∑
i<j

2αj−i

= nα0 +
n−1∑
i=1

2(n− i)αi.

Therefore,

σ2
n = α0 +

n−1∑
i=1

2(
n− i
n

)αi. (A.3)

Taking the limits of (A.3), we obtain

σ2
∞ = α0 +

∞∑
i=1

2αi. (A.4)
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Subtracting (A.3) from (A.4) yields

∣∣∣σ2
∞ − σ2

n

∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

2(
i

n
)αi +

∞∑
i=n

2αi

∣∣∣∣∣
≤

√
n∑

i=1

2√
n
|αi|+

n−1∑
i=
√
n+1

2|αi|+
∞∑
i=n

2|αi|

≤ 2√
n

∞∑
i=1

|αi|+
∞∑

i=
√
n+1

2|αi|

≤ 2ρ

(1− ρ)
√
n

+
2ρ
√
n+1

1− ρ

= O(
1√
n

).

Claim follows by recalling from Claim 1 that σn = Θ(1).
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Claim 4.
σ2
∞ = σ2. (B.1)

Proof. First note that Ū((x, y)) = q̃(x, y)−p̃(x, y). Since Ui’s are indexed with tuples
(x, y) ∈ X 2, so does j in the statement of the proposition. With the choice of U and
f(·) in the proof of Lemma 3, we have

j(x,y) =
∂f(ū)

∂ū(x, y)

∣∣∣
ū=0

=
∂f(ū)

∂q̃(x, y)

∣∣∣
q̃=p̃

= − log p̃(x, y)− 1 + log

(∑
x

p̃(x, y)

)
+
q̃(x, y)

q̃(x, y)

= − log p̃(x, y) + log

(∑
x

p̃(x, y)

)

= − log p̃(x, y) + log p(y) = − log
p̃(x, y)

p(y)
= − log p̂(x|y). (B.2)

Observe that

σ2
n = jTVnj =

∑
(x,y),(x′,y′)∈X 2

j(x,y)Vn

(
(x, y), (x′, y′)

)
j(x′,y′) (B.3)

where

Vn

(
(x, y), (x′, y′)

)
= E

[( 1√
n

n∑
i=1

UT
i (x, y)

)( 1√
n

n∑
i=1

UT
i (x′, y′)

)]
= nE

[(
q̃(x, y)− p̃(x, y)

)(
q̃(x′, y′)− p̃(x′, y′)

)]
. (B.4)

Plugging (B.2) and (B.4) in (B.3) yields

σ2
n =

∑
(x,y),(x′,y′)∈X 2

(− log p̂(x|y)) · nE
[
(q̃(x, y)− p̃(x, y))

(
q̃(x′, y′)− p̃(x′, y′)

)]
· (− log p̂(x′|y′))

= nE
[( ∑

(x,y)∈X 2

q̃(x, y)(− log p̂(x|y)) +
∑
x,y

p̃(x, y) log p̂(x|y)
)2]

= nE
[( 1

n

n∑
i=1

− log p̂(xi+1|xi)−H(X2|X1)
)2]

= E
[( 1√

n

n∑
i=1

(
− log p̂(xi+1|xi)−H(X2|X1)

))2]
.

Hence, limn→∞ σ
2
n = σ2.
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Define
e(τ ) = −max

θ

(
〈θ, τ 〉 − ψ(θ) + 〈θ,∇ψ(θ∗)〉

)
. (C.1)

Fuethermore, denote U i(x
n) = τ (xi) − µ for i = 1, · · · , n, where µ = Eθ∗ [τ (X)].

Therefore, U i(X
n)’s are zero-mean with finite covariance. First, observe that

1

n
log pθ̂(x

n) = −max
θ
〈θ, τ (xn)− µ〉 − ψ(θ) + 〈θ,µ〉 (C.2)

= e

(
1

n

n∑
i=1

U i(x
n)

)
(C.3)

where (C.2) is from (3.9), and since µ = ∇ψ(θ∗) Jordan (2003), (C.3) follows from
(C.1,3.3). We then show that e(0) = H. Equating the derivative with respect to θ
of the expression inside the parenthesis with zero, we find that θ∗ is the maximizing
parameter in (C.1). Therefore

e(0) = −
(
− ψ(θ∗) + 〈θ∗,∇ψ(θ∗)〉

)
(C.4)

= −
(
− ψ(θ∗) + 〈θ∗,Eθ∗ (τ (X))〉

)
(C.5)

= −Eθ∗
(
− ψ(θ∗) + 〈θ∗, (τ (X))〉

)
= −Eθ∗

(
log pθ∗(X)

)
(C.6)

= H

where (C.4) is from (C.1), (C.5) is an exponential family property Jordan (2003),
and (C.6) is from (3.1). Application of the Proposition 1 in Iri and Kosut (2015)
completes the proof.
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We show that log pθ̂(xn)(x
n) is constant away from log pθ̂c(xn)(x

n). Recall that

log pθ̂(xn)(x
n) = nmax

θ

[
〈θ, τ (xn)〉 − ψ(θ)

]
.

For ease of notation, when it is clear from the context, we denote τ c(x
n) as τ c, and

similarly we remove the argument in θ̂c(x
n) and simply denote it as θ̂c. Since τ (xn)

is in a cuboid of side length s
n

with center τ c, we have ‖τ (xn)−τ c‖ ≤ s
√
d

2n
. We hence

have ∣∣∣〈θ̂c, τ (xn)
〉
−
〈
θ̂c, τ c

〉∣∣∣ =
∣∣∣〈θ̂c, τ (xn)− τ c

〉∣∣∣
≤ ‖θ̂c‖‖τ (xn)− τ c‖

≤ ℘
s
√
d

2n
=
κs

n
(D.1)

where (D.1) exploits the fact that ‖θ‖ ≤ ℘, for all θ ∈ Θ, including θ̂c. Therefore

log pθ̂c(xn)(x
n) = n

[〈
θ̂c, τ (xn)

〉
− ψ

(
θ̂c

)]
≥ n

[〈
θ̂c, τ c(x

n)
〉
− κs

n
− ψ

(
θ̂c

)]
(D.2)

= nmax
θ

[
〈θ, τ c(xn)〉 − κs

n
− ψ(θ)

]
(D.3)

where (D.2) follows from (D.1) and (D.3) is from the definition of θ̂c. Using the fact
that for any two functions g1(θ), g2(θ)

max
θ
g1(θ)−max

θ
g2(θ) ≤ max

θ

(
(g1 − g2)(θ)

)
(D.4)

we obtain

log pθ̂(xn)(x
n)− log pθ̂c(x

n) ≤ nmax
θ

[
〈θ, τ (xn)〉 − ψ(θ)

]
− nmax

θ

[
〈θ, τ c(xn)〉 − κs

n
− ψ(θ)

]
(D.5)

≤ nmax
θ

[
〈θ, τ (xn)− τ c〉+

κs

n

]
(D.6)

where (D.5) exploits (D.3), and (D.6) is from (D.4). Similar to (D.1), one can show
that 〈θ, τ (xn)− τ c〉 ≤ κs

n
. Lemma then follows.
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Let
l(τ ) = max

θ
(〈θ, τ 〉 − ψ(θ)) . (E.1)

Noticing that ‖∇f(τ )‖ = ‖∇l(τ )‖, in order to show the Lipschitzness of f(τ ) in
(3.15), it suffices to show that l(τ ) is a Lipschitz function of τ . We first show that

‖∇l(τ )‖ = ‖θ̂(τ )‖. Due to (3.9)

l(τ ) = 〈θ̂(τ ), τ 〉 − ψ
(
θ̂(τ )

)
.

Hence, taking gradient with respect to τ

∇l(τ ) =
((
∇θ̂(τ )

)
τ + θ̂(τ )

)
−∇θ̂(τ )∇θ̂ψ

(
θ̂(τ )

)
=
((
∇θ̂(τ )

)
τ + θ̂(τ )

)
−∇θ̂(τ )Eθ̂(τ )(τ (X)) (E.2)

= θ̂(τ ) (E.3)

where (E.2) follows from ∇θ̂ψ
(
θ̂(τ )

)
= Eθ̂(τ ) (τ (X)) Jordan (2003), and (E.3) fol-

lows from Eθ̂(τ )(τ (X)) = τ (see the proof of Lemma 4). Lemma follows by recalling

that ‖θ̂(τ )‖ ≤ ℘.
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Let K = {τ ∈ T : f(τ ) ≤ λ} and Kc = T \K. We first show that Kc is a convex
body. A sub-level set of f(·) is a sub-level set of −l(·) defined as in (E.1). Therefore,
it is enough to show that sub-level sets of l(·) (i.e. Kc) are convex. Maximum of
linear functions of τ is a convex function, therefore l(·) defined in (E.1) is a convex
function of τ . Since the sub-level sets of a convex function are convex, Kc is a convex
body.

In order to show that ρ(λ) (= Vol (K)) is Lipschitz, we provide an upper bound
for the absolute value of its derivative | d

dλ
ρ(λ)|. Let us denote the surface area of a

convex body Kc as (Hug and Weil, 2010, Section 3.3)

S(Kc) = lim
ε→0

V (d)
(
Kc +B(ε)

)
− V (d)(Kc)

ε
(F.1)

where V (d)(·) is the d-dimensional volume, B(ε) is the d-dimensional unit ball and
addition in Kc + B(ε) is the Minkowski’s sum Hug and Weil (2010). Let us denote
Kcε = {τ ∈ T : f(τ ) > λ− ε}. We have

d

dλ
ρ(λ) = lim

ε→0

ρ(λ)− ρ(λ− ε)
ε

= lim
ε→0

(Vol(T )− ρ(λ− ε))− (Vol(T )− ρ(λ))

ε

= lim
ε→0

Vol(Kcε)− Vol(Kc)
ε

. (F.2)

Let us assume ε → 0+; the case where ε → 0− is handled similarly. Let τ 1 ∈ Kcε.
From the Taylor series expansion of f(τ 2) in the vicinity of τ 1 with distance at most
‖τ 2 − τ 1‖ ≤

√
ε, we obtain

f(τ 2) = f(τ 1) + 〈∇f(τ 1), τ 2 − τ 1〉+ ∆ (F.3)

where |∆| ≤ Cf‖τ 1 − τ 2‖2, for a constant Cf independent of n. Let

τ 2 = τ 1 + ε
(1 + Cf )∇f(τ 1)

‖∇f(τ 1)‖2
. (F.4)

With this choice of τ 2, we obtain

f(τ 2) = f(τ 1) + ε(1 + Cf ) + ∆

≥ f(τ 1) + ε+ εCf − Cf‖τ 1 − τ 2‖2

≥ f(τ 1) + ε (F.5)

> λ− ε+ ε (F.6)

= λ

where (F.5) follows form ‖τ 2 − τ 1‖ ≤
√
ε, and (F.6) is a consequence of τ 1 ∈ Kcε.

Hence τ 2 ∈ Kc. Since τ 1 ∈ Kcε was arbitrary, we have Kcε ⊂ Kc + B
(
ε(1+Cf )

‖∇f(τ1)‖

)
.
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Therefore, one can upper bound (F.2) in terms of the surface area (F.1) as follows:∣∣∣∣ ddλρ(λ)

∣∣∣∣ ≤ (1 + Cf )S(Kc)
‖∇f(τ 1)‖

for all τ 1 ∈ Kε. (F.7)

Since Kc, T are convex bodies and Kc ⊂ T , consequently S(Kc) ≤ S(T ) (Hug and
Weil, 2010, Theorem 3.2.2). Since X is finite, therefore T is a bounded set, which
yields S(Kc) ≤ S(T ) <∞.

From the proof of Lemma 7 in Appendix E, we have ‖∇f(τ 1)‖ = ‖θ̂(τ 1)‖. That
translates (F.7) into∣∣∣∣ ddλρ(λ)

∣∣∣∣ ≤ (1 + Cf )S(Kc)
‖θ̂(τ 1)‖

for all τ 1 ∈ Kε. (F.8)

We finally show that ‖θ̂(τ 1)‖ is bounded away from zero. Let τ u be such that θ̂(τ u) =

(0, · · · , 0) (subscript u stands for the uniform distribution.). Since ω = log |X |−H
5

> 0

and f(τ ) = − 1
n

log pθ̂(τ )(x
n)−Θ

(
logn
n

)
, we have that

f(τ u) ≥ log |X | − ω, for large enough n. (F.9)

From boundedness of T , we have

Tmax := max {‖τ‖ : τ ∈ T } <∞.

Therefore
∥∥∥∇ψ (θ̂(τ )

)∥∥∥ = ‖Eθ̂(τ (X))‖ ≤ Tmax is bounded. Hence ψ
(
θ̂(τ )

)
is a Lip-

schitz function of θ̂(τ ) with Lipschitz constant Tmax. Hence if
∥∥∥θ̂(τ )− θ̂(τ u)

∥∥∥ ≤ ω
Tmax

,

then
∣∣∣ψ(θ̂(τ ))− ψ(θ̂(τ u))

∣∣∣ ≤ ω and furthermore by the Cauchy-Schwarz inequality∣∣∣〈θ̂(τ )− θ̂(τ u), τ
〉∣∣∣ ≤ ω. Therefore, if

∥∥∥θ̂(τ )− θ̂(τ u)
∥∥∥ ≤ ω

Tmax
, then

|f(τ )− f(τ u)| ≤
∣∣∣〈θ̂(τ ), τ

〉
−
〈
θ̂(τ u), τ u

〉∣∣∣+
∣∣∣ψ (θ̂(τ )

)
− ψ

(
θ̂(τ u)

)∣∣∣
≤ 2ω (F.10)

where (F.10) follows from θ̂(τ u) = (0, · · · , 0), |〈θ̂(τ ) − θ̂(τ u), τ 〉| ≤ ω. Finally, for
large enough n and for all τ 1 ∈ Kε, it holds that

f(τ 1) ≤ λ+ ε

< (H + ω) + ω (F.11)

= log |X | − 3ω. (F.12)

where (F.11) follows from λ < H +ω and the fact that since ε→ 0, ε < ω and (F.12)
is from the definition of ω. From (F.9) and (F.12), we have |f(τ 1)− f(τ u)| > 2ω for

all τ 1 ∈ Kε. Hence by (F.10), we must certainly have
∥∥∥θ̂(τ 1)− θ̂ (τ u)

∥∥∥ > ω
Tmax

. On

the other hand θ̂(τ u) = (0, · · · , 0), which entails that
∥∥∥θ̂(τ 1)

∥∥∥ > ω
Tmax

. This yields a

positive lower bound, independent of n, for the denominator in (F.8).
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The one-to-one mapping between τ (x) and L(x), subsequently defines a one-
to-one mapping between τ (xn) and L(xn), which consequently defines a one-to-one
correspondence between the point type class Txn and L(xn). Therefore, for any
parameter value θ ∈ Θ, it holds that Merhav and Weinberger (2004)

|Txn| =
Pθ{L(Xn) = L(xn)}

pθ(xn)
. (G.1)

Since L(xn) can be written as a sum of integer (lattice) random vectors L(xi) (Eq.
(3.48)), exploiting the local limit theorem of Borovkov and Mogulskii (1999) to bound
the numerator in (G.1), yields Merhav and Weinberger (2004)

log |Txn| = − log pθ̂(xn)(x
n)− d′

2
log 2πn− 1

2
log detM

[
θ̂(xn)

]
+ o(1) (G.2)

where θ̂(xn) is the maximum likelihood estimate of θ for xn and M [θ] denotes the
covariance matrix of the random vector L(X) where X is drawn from pθ.

We show that absolute value of the third term in (G.2),
∣∣∣12 log detM

[
θ̂(xn)

]∣∣∣, is

upper bounded by a constant CM > 0 independent of n. Constant upper bound

Cu > 0, for detM
[
θ̂(xn)

]
follows from Hadamard’s inequality (R.A. Horn, 2012,

corollary 7.8.3). For the lower bound, since detM [θ] is a continuous function of θ
over a compact domain Θ, it attains a minimum at a point in the parameter space,
say θ̈ ∈ Θ. Let P̈ be a diagonal (|X | − 1) × (|X | − 1) matrix with diagonal entries

P̈ ii = Pθ̈ (X = i+ 1) for i ∈ X , and p̈ be a column vector with p̈i = Pθ̈ (X = i+ 1)
for i ∈ X . We have

M(θ̈) = Eθ̈
(

[L(X)] [L(X)]T
)
− Eθ̈ ([L(X)]) (Eθ̈ ([L(X)]))T

=
∑
x 6=1

pθ̈(x)L(x)L(x)T −

(∑
x 6=1

pθ̈(x)L(x)

)(∑
x6=1

pθ̈(x)L(x)

)T

(G.3)

= LP̈LT − (Lp̈) (Lp̈)T

= L(P̈ − p̈p̈T )LT (G.4)

where (G.3) follows recalling that L(1) = 0. We then show that
(
P̈ − p̈p̈T

)
is

non-singular. Observe that

det(P̈ − p̈p̈T ) = (1− pT P̈−1
p̈)detP̈ (G.5)

=
(

1− (pθ̈(2) + · · ·+ pθ̈(|X |))
)

detP̈

= pθ̈(1)detP̈

= pθ̈(1)pθ̈(2) · · · pθ̈(|X |)
≥ p

|X |
min (G.6)
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where (G.5) is from Matrix determinant Lemma Harville (1997), while existence of
a constant pmin in (G.6) such that pθ̈(x) ≥ pmin ∀x ∈ X follows from compactness
of Θ and structure of the exponential family (3.1). Since L is full rank and rank of
a matrix is invariant under multiplication by a non-singular matrix, (G.4) implies

detM
[
θ̈
]
> 0. Positivity of detM

[
θ̈
]
, in turn provides a positive constant lower

bound Cl for detM
[
θ̂(xn)

]
. Let CM = 1

2
max{| logCl|, | logCu|} and C = CM + 1 be

the constant in the lemma. Finally, lemma follows by noticing that

log pθ̂(xn)(x
n) = n

[〈
θ̂(τ (L)), τ (L)

〉
− ψ

(
θ̂(τ (L))

)]
for any xn with L(xn) = L.
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Similar to the Appendix E, one can show that f0(`) is a Lipschitz function of `.
Therefore, for a Lipschitz constant K5 > 0, we have ‖f0(`) − f0(L)‖ ≤ K5‖` − L‖.

Let R :=
|X |∑
i=1

‖L(i)‖. We first show that

AR :=

{
` ∈ L : γ′0 −∆ +

K5R

n
< f0(`) ≤ γ′0 −

K5R

n

}
⊆
⋃
L∈A0

BR
n

(L). (H.1)

For an arbitrary ` ∈ AR, since AR is a subset of the convex hull of L, one can find
real non-negative numbers ai, i = 1, ..., |X | such that

|X |∑
i=1

ai = 1 (H.2)

and

` =

|X |∑
i=1

aiL(i). (H.3)

For an index j, let ni = bnaic for i = 1, ..., j and ni = dnaie for i = j + 1, ..., |X |. We
claim one can choose the index 0 ≤ j ≤ |X | (j = 0 corresponds to ni = dnaie for all

i) such that
∑|X |

i=1 ni = n. Observe that for j = 0, we have
∑|X |

i=1 ni ≥ n, while for

j = |X |,
∑|X |

i=1 ni ≤ n. Incrementing j by one, decreases the integer
∑|X |

i=1 ni by at
most one. The claim then follows.

It is clear that ni’s satisfy the following condition as well

|ni − nai| < 1, ∀i = 1, ..., |X |. (H.4)

Let xn ∈ X n be any sequence with empirical probability mass function
{
ni
n

}
. Observe

that

L(xn) =
1

n

|X |∑
i=1

niL(i) ∈ L.

Therefore one obtains

‖`−L(xn)‖ ≤ 1

n

|X |∑
i=1

|ni − nai| · ‖L(i)‖ (H.5)

<
1

n

|X |∑
i=1

‖L(i)‖ (H.6)

=
R

n
(H.7)

where (H.5) follows from (H.3) and the Cauchy-Schwarz inequality, (H.6) follows from
(H.4). Therefore ` ∈ BR

n
(L(xn)). We then show that L(xn) ∈ A0. From (H.7) and

the Lipschitzness of f0(·) we have

f0(`)− K5R

n
≤ f0 (L(xn)) ≤ f0(`) +

K5R

n
. (H.8)
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From (H.8,H.1) and since ` ∈ AR, we obtain

γ′0 −∆ < f0 (L(xn)) ≤ γ′0 (H.9)

which confirms L(xn) ∈ A0. Since for an arbitrary ` ∈ AR, we are able to find
L(xn) ∈ A0 within a distance of R

n
, (H.1) follows.

We continue by observing the following

Vol

( ⋃
`∈AR

B 1
2n

(`)

)
≤ Vol

( ⋃
L∈A0

B 2R+1
2n

(L)

)
(H.10)

≤ (2R + 1)d
′
Vol

( ⋃
L∈A0

B 1
2n

(L)

)
(H.11)

where (H.10) is from (H.1) and a geometrical observation (triangle inequality) that
if a point is within a distance 1

2n
of a point in AR, it is certainly within a distance

R
n

+ 1
2n

of a point in A0, (H.11) follows since scaling the radius of an sphere by a
constant, changes its volume by a constant multiplicative factor.

Given (H.11), to prove the lemma it is enough to show that for some constant
C > 0,

Vol
(⋃

`∈Ã0
B 1

2n
(`)
)

Vol
(⋃

`∈AR B 1
2n

(`)
) ≤ C. (H.12)

Observe the following

Vol

⋃
`∈Ã0

B 1
2n

(`)

− Vol

( ⋃
`∈AR

B 1
2n

(`)

)
(H.13)

≤ Vol

(
` : f0(`) ∈

(
γ′0 −∆− K5

2n
, γ′0 +

K5

2n

])
(H.14)

− Vol

(
` : f0(`) ∈

(
γ′0 −∆ +

K5R

2n
, γ′0 −

K5R

2n

])
(H.15)

= ρ0

(
γ′0 +

K5

2n

)
− ρ0

(
γ′0 −∆− K5

2n

)
+ ρ0

(
γ′0 −∆ +

K5R

2n

)
− ρ0

(
γ′0 −

K5R

2n

)
(H.16)

≤ C

n
(H.17)

where (H.14) is an upper bound for the first term in (H.13) noticing the definition
of Ã0 and Lipschitzness of f0(·), (H.15) is from lower bounding the volume of the
ball-covering of AR (second term in (H.13)) by the volume of AR itself, (H.16) is
from the definition of ρ0(·), and (H.17) is from Lipschitzness of ρ0(·) and recalling the
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choice of ∆ = 1
n
. Therefore

Vol
(⋃

`∈Ã0
B 1

2n
(`)

)
Vol
(⋃

`∈AR B 1
2n

(`)
) ≤ Vol

(⋃
`∈AR B 1

2n
(`)
)

+ C
n

Vol
(⋃

`∈AR B 1
2n

(`)
)

= 1 +
C

nVol
(⋃

`∈AR B 1
2n

(`)
)

≤ 1 +
C

n
(
ρ0

(
γ′0 − K5R

2n

)
− ρ0

(
γ′0 −∆ + K5R

2n

)) (H.18)

≤ 1 +
C

K4(K5R + 1)
(H.19)

where (H.18) is by lower bounding the volume of the ball-covering of AR by the
volume of AR itself, along with the definition of ρ0(·), and (H.19) is an application
of Lemma 12 as well as recalling the choice of ∆ = 1

n
. This proves (H.12), and the

lemma follows.
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APPENDIX I

PROOF OF LEMMA 12: LOWER BOUND ON | D
Dλ
ρ0(λ)|
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Denote K0 = {` ∈ L : f0(`) ≤ λ} and Kc0 = L\K0. Furthermore, let us denote
K0,ε = {` ∈ L : f0(`) ≤ λ+ ε}. We have

d

dλ
ρ0(λ) = lim

ε→0

ρ0(λ+ ε)− ρ0(λ)

ε

= lim
ε→0

Vol(K0,ε)− Vol(K0)

ε
. (I.1)

Let `1 be an arbitrary point in K0. Let

`2 = `1 +
ε

2

∇f0(`1)

‖∇f0(`1)‖2
. (I.2)

From Taylor series expansion, we have

f0(`2) = f0(`1) + 〈∇f0(`1), `2 − `1〉+ ∆0 (I.3)

where |∆0| ≤ Cf0‖`1 − `2‖2, for a constant Cf0 which is independent of n. First
observe from (I.2) that, since ε → 0 is infinitesimal, `2 resides in the vicinity of `1

with distance at most

‖`2 − `1‖ <
√

ε

2Cf0
. (I.4)

With the choice of `2 in (I.2), we have

f0(`2) < f0(`1) +
ε

2
+
ε

2
(I.5)

≤ λ+ ε (I.6)

where (I.5) follows from (I.2,I.3,I.4), and (I.6) is a consequence of `1 being a point in

K0. Therefore `2 ∈ K0,ε. As a conclusion for all `1 ∈ K0, `1 + ε
2
∇f0(`1)
‖f0(`1)‖2 ∈ K0,ε. That

translates into the following subset relationship

K0 +B

(
ε

2

∇f0(`1)

‖f0(`1)‖2

)
⊂ K0,ε. (I.7)

Continuing from (I.1) we have

∣∣∣∣ ddλρ0(λ)

∣∣∣∣ ≥ lim
ε→0

Vol
(
K0 +B

(
ε
2
∇f0(`1)
‖∇f0(`1)‖2

))
− Vol(K0)

ε
(I.8)

≥ S(K0)

2‖∇f0(`1)‖
(I.9)

=
S(K0)

2‖θ̂(`1)‖
(I.10)

≥ S(K0)

℘
(I.11)
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where (I.8) is a consequence of (I.7), (I.9) is due to the definition of the surface area
in (F.1), (I.10) is derived similar to (E.3), and finally (I.11) is from the fact that for
all θ ∈ Θ, we have ‖θ‖ ≤ ℘.

It remains to provide a positive constant lower bound for S(K0) independent of
n. We first show that in the range γ′0 −∆ ≤ λ ≤ γ′0, there exists a positive constant
lower bound for Vol(K0). Since

Υ(`) := − 1

n

(〈
θ̂(τ (`)), τ (`)

〉
− ψ

(
θ̂ (τ (`))

))
(I.12)

= − 1

n

(〈
θ̂(b + AR`),b + AR`

〉
− ψ

(
θ̂(b + AR`)

))
(I.13)

is a continuous function of ` over a compact domain L, it attains a minimum at a
point, say `∗ ∈ L. This minimum is certainly less than or equal to the minimum of
Υ(`) over L, which is attained at a point say L∗. For any θ ∈ Θ, we have

Υ(`∗) ≤ Υ(L∗)

≤
∑
xn

pθ(x
n)

(
− 1

n
log pθ̂(xn)(x

n)

)
(I.14)

≤
∑
xn

pθ(x
n)

(
− 1

n
log pθ(x

n)

)
(I.15)

= H(pθ) (I.16)

where (I.14) follows since Υ(L∗) = − 1
n

log pθ̂(yn)(y
n) for some yn ∈ X n with L(yn) =

L∗, more precisely

Υ(L∗) = min
xn∈Xn

− 1

n
log pθ̂(xn)(x

n)

and the minimum value of a function is less than or equal to its weighted average
with respect to any weighting, (I.15) is from pθ̂(xn)(x

n) ≥ pθ(x
n).

Recall H := H(pθ∗) as the entropy of the underlying model. We provide a positive
lower bound, independent of n for δ defined as follows:

δ := H −Υ(`∗). (I.17)

We assume that the underlying model is not the lowest entropy model in the class,
i.e. H > minθ∈ΘH(pθ). Since H(pθ) is a continuous function of θ over a compact
domain, minθ∈ΘH(pθ) is achieved for a model in the class, say θmin ∈ Θ. We then
have

δ ≥ H −H(pθmin) (I.18)

> 0 (I.19)

where (I.18) follows from (I.17) and since (I.16) is true for any θ ∈ Θ including θmin,
(I.19) is from the assumption that H > minθ∈ΘH(pθ).

Similar to the Appendix E, one can show that f0(`) is a Lipschitz function of `
with Lipschitz constant K5 > 0. For any ` ∈ L with ‖`− `∗‖ ≤ δ

2K5
, we have
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f0(`) ≤ f0(`∗) +K5 ·
δ

2K5

(I.20)

= Υ(`∗)− d′

2n
log (2πn) +

C

n
+
δ

2
(I.21)

= H − δ − d′

2n
log (2πn) +

C

n
+
δ

2
(I.22)

< H − δ

3
(I.23)

< γ′0 −∆ (I.24)

≤ λ (I.25)

where (I.20) follows from the Lipschitzness of f0(·) with Lipschitz constant K5, (I.21)
is from (I.12,3.46), (I.22) is from the definition of δ in (I.17), (I.23) holds for large
enough n, and (I.24) holds for large enough n, recalling the choices of γ′0 in (3.62)
and ∆ = 1

n
, and (I.25) is due to the range of λ. Therefore, from the definition of K0,

we obtain the following relation{
` ∈ L : ‖`− `∗‖ ≤ δ

2K5

}
⊂ K0.

Hence

Vol(K0) ≥ Vol

({
` ∈ L : ‖`− `∗‖ ≤ δ

2K5

})
= C

(
δ

2K5

)d′
(I.26)

≥ C

(
H −H(pθmin)

2K5

)d′
(I.27)

where (I.26) is from the fact that the intersection of the sphere ‖` − `∗‖ ≤ δ
2K5

and

L is independent of n and only depends on the constellation of L, and (I.27) is from
(I.18).

Finally, since sphere has the smallest surface area among all shapes of a given
volume, therefore a positive constant lower bound on Vol(K0), implies a positive
constant lower bound on S(K0). More precisely, recalling the equations for the volume
and the surface area of a d′-dimensional sphere (Ren, 1994, Eq. 1.5.1), we have

S(K0) ≥ C

(
H −H(pθmin)

2K5

)d′ 2
√
πΓ
(
d′

2
+ 1
)

Γ
(
d′+1

2

) .
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APPENDIX J

PROOF OF |A| ≤ `D−1
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Observe that the type complexity bound (4.10), implies the following subset rela-
tionships{
T ∈ T` : ∃x` ∈ T with S(x`) < γ

}
⊆
{
T ∈ T` : ∃x` ∈ Ty` with − log pθ̂(x`)(x

`) + C1 < γ
}

(J.1){
T ∈ T` : ∃x` ∈ T such that ∃x`+1 with S(x`x`+1) > γ

}
⊆
{
T ∈ T` : ∃x` ∈ Ty` such that ∃x`+1 with − log pθ̂(x`x`+1)(x

`x`+1) + C2 > γ
}
.

(J.2)

Hence Lemma 14 along with (J.1,J.2) and the definition of A, imply existence of
positive constants C,C ′ > 0 such that

A ⊆
{
T ∈ T` : ∃x` ∈ T with γ − C2 − C5 < − log pθ̂(x`)(x

`) < γ − C1

}
.

On the other hand it is shown in (Iri and Kosut, 2016a, Eq. 32) that∣∣∣{T ∈ T` : ∃x` ∈ T with γ − C2 − C5 < − log pθ̂(x`)(x
`) < γ − C1

}∣∣∣ ≤ `d−1.

This completes the proof.
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APPENDIX K

SOLVING FOR R IN THE ACHIEVABILITY
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In order for (4.30) to be less than or equal to ε, it must hold that

γ − C2 −
logM

R
H ≤ σ

√
logM

R
Q−1

ε− A√
logM
R

 .

Taylor expansion of Q−1(·) yields

R ≤ H + σ

√
R

logM
Q−1(ε) +R

d

2

log logM

logM
+

C

logM

for some constant C. We then solve for R, iteratively. Assuming M is large enough,
one can show that R ≤ H + δ1 with δ1 = o(1). Next, one can show that δ1 ≤
σ
√

H
logM

Q−1(ε) + δ2 with δ2 = o
(

1√
logM

)
, where Taylor expansion of

√
H + δ1 is

employed. Finally, one can show that δ2 ≤ d
2
H log logM

logM
+ δ3, where δ3 = O

(
1

logM

)
.
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