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ABSTRACT

With the maturity of advanced composites as feasible structural materials for various applica-

tions there is a critical need to solve the challenge of designing these material systems for optimal

performance. However, determining superior design methods requires a deep understanding of

thematerial-structure properties at various length scales. Due to the length-scale dependent behav-

ior of advanced composites,multiscalemodeling techniquesmay be used to describe the dominant

mechanisms of damage and failure in these material systems. With polymer matrix fiber compos-

ites and nanocomposites it becomes essential to include even the atomic length scale, where the

resin-hardener-nanofillermolecules interact, in themultiscalemodeling framework. Additionally,

sources of variability are also critical to be included in thesemodels due to the important role of un-

certainty in advance composite behavior. Such a methodology should be able to describe length

scale dependent mechanisms in a computationally efficient manner for the analysis of practical

composite structures.

In the research presented in this dissertation, a comprehensive nano tomacromultiscale frame-

work is developed for the mechanical and multifunctional analysis of advanced composite mate-

rials and structures. An atomistically informed statistical multiscale model is developed for lin-

ear problems, to estimate and scale elastic properties of carbon fiber reinforced polymer compos-

ites (CFRPs) and carbon nanotube (CNT) enhanced CFRPs using information from molecu-

lar dynamics simulation of the resin-hardener-nanofiller nanoscale system. For modeling inelas-

tic processes, an atomistically informed coupled damage-plasticity model is developed using the

framework of continuum damage mechanics, where fundamental nanoscale covalent bond dis-

association information is scaled up as a continuum scale damage identifying parameter. This

damage model is coupled with a nanocomposite microstructure generation algorithm to study

the sub-microscale damage mechanisms in CNT/CFRP microstructures. It is further integrated

in a generalized method of cells (GMC) micromechanics model to create a low-fidelity compu-

i



tationally efficient nonlinear multiscale method with imperfect interfaces between the fiber and

matrix, where the interface behavior is adopted fromnanoscaleMDsimulations. This algorithm is

used to understand damage mechanisms in adhesively bonded composite joints as a case study for

the comprehensive nano to macroscale structural analysis of practical composites structures. At

each length scale sources of variability are identified, characterized, and included in themultiscale

modeling framework.
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Chapter 1

INTRODUCTION

1.1 Background

Advanced composite materials are increasingly becoming the material of choice for many ap-

plications especially in the aerospace,mechanical, and civil industries. Initially developed forniche

applications, such as the jet engine fan blades for the Rolls Royce RB-211 aero-engine in the late

1960s (Ramsden 1968), thesematerials are now being deployed in themanufacturing sector, from

heavy industries such as aircraft manufacturing (a premier example of which is the Boeing 787

dreamliner) to mass produced articles, e.g. cell phone cases and bicycle frames. Even industries

that use conservative design practices are incorporating advanced composites in their material se-

lection repertoire: building and construction fields are utilizing advanced composites in tall build-

ings (Taranath 2016) as well as in modern architectural designs, e.g., in the roof of Apple’s AC2

Auditorium, one of the largest freestanding composite roofs ever made (Hague 2016).

There are numerous reasons for this gradual shift towards increased advanced composite use

over the years. As structural materials, advanced composites exhibit several advantages over tradi-

tional metallic materials in high strength-to-weight ratios, high stiffness-to-weight ratios, multi-

functional capabilities, buckling resistance, and vibrational damping, tonamea few (Daniel,Whit-

ney, and Pipes 1983; Daniel et al. 1994; Jones 1998). Nearly all these advantages originate from

the nature of these material systems, primarily because composite materials can be customized for

their specific applications. Generally, advanced composites aremadeupof one ormore reinforcing

components and a matrix component that binds the reinforcer together to create a single hetero-

geneous material system. The reinforcing component is usually selected to be high strength, high
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Figure 1.1. Advanced composite use in the Boeing 787 Dreamliner

Data Source: (Roeseler et al. 2007); Image Source: (Wikimedia 2012)

stiffness, and low density fibrous materials, such as glass fiber, carbon fiber, and ceramic fiber. The

matrix phase is selected for its binding and manufacturing properties, rather than for its material

properties, and includes material such as polymers, ceramics, and metals. A careful combination

of the reinforcing and matrix phase can lead to material systems that incorporate specific proper-

ties of both the components, including unusually high elastic properties in the direction of the

fibers.
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The ability to engineer such highly customizable material systems has led to a deviation from

traditional design practices and has permitted the introduction of new designs and applications,

as well as a reduction in the weight of materials, thereby overcoming some of the compromises

of limited material choices (Day 2008). A primary example of these novel material systems is

carbon fiber reinforced polymer (CFRP) composites. CFRP composites can be engineered to

produce high strength, light weight, fatigue resistant, fire-retardant materials, particularly suited

for aerospace, naval, wind, and consumer applications (Gay 2014). Recent advances in nanotech-

nology have been exploited to further engineer CFRPs to produce carbon fiber nanocomposites,

such as carbon nanotube (CNT) enhanced CFRPs, demonstrating additional improvements in

mechanical strength, interlaminar fracture resistance, energy absorption, and thermomechanical

properties when compared with CFRPs (Green et al. 2009; Inam et al. 2010; Cho, Daniel, and

Dikin 2008).

However, with the substantial material design space afforded by newmaterials, there is a grow-

ing need to efficiently engineer novel composite materials, tailoring them for particular applica-

tions or optimizing the material structure-property relationship for maximum utility. Although

this may be performed through extensive experimental characterization, the large number of phys-

ical variables and their complex interactions, especially for nanocomposites, makes this approach

infeasible. Hence, an alternative approach must be considered.

1.2 Integrated Computational Materials Engineering

In current engineering practice, assuring short product development cycles is critical for con-

tinued global competitiveness. Such operations have been stimulated by the integration of com-

putational tools at various stages of the product development process. At the product design stage,

computer aided design (CAD) and computer aided engineering (CAE) tools have supported in-

3



(a) Stiffness versus strength

(b) Elastic modulus versus density

Figure 1.2. Material property comparisons

Source: (Lovatt, Shercliff, and Withers 2000) reproduced with permission
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novative design solutions (Robertson and Radcliffe 2009), where robotics and automation tools

have driven increases inmanufacturing productivity (Rigatos 2011). However, materials selection

has generally followed an antiquated structure, involving a simple cost-benefit approach for tradi-

tional materials from a limited materials list, creating a weak link in integrated product develop-

ment. The science of predictive simulations formaterials engineering can fill this gap by providing

computational tools that can automate and optimize the materials selection process, by offering

a-priori knowledge of the behavior of the most appropriate materials at a fundamental level in the

context of the product use. Furthermore, such tools can be utilized to design the material from

the ground up, and specifically for its intended purposes. Such an approach of designing the ma-

terials for the products by taking advantage of material physics and computational tools is called

Integrated Computational Materials Engineering or ICME (National-Research-Council 2008).

An important first step, however, in a successful application of the ICME concept is rigor-

ously establishing the structure-property relationship through a physics based understanding (Ol-

son 2000). Such knowledge can then be consolidated into the development of validated advanced

physics based computational tools that can be used to calculate and predict the associated mate-

rial system behavior using only the basic constituent or process related properties. Such a virtual

computational test bed can lead tominimizing experimental investigations, allow for rapid testing

and parametric studies of various constituent configurations, provide a fundamental understand-

ing of the mechanics of heterogeneous materials, and permit an ICME approach for designing

and optimizing novel materials.

The ICME approach holds special relevance for advanced composites due to the freedom as-

sociated with engineering their basic constituents. For example, since fiber reinforced composites

and nanocomposites typically consist of a large number of operating variables, validated compu-

tational tools can be used to predict their structure-property relationships and can aid in the de-

sign,manufacturing, processing, andoptimizing theutility of thesematerial systems. Additionally,
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such computational predictive approachesmay be used to gain insight into some of themost press-

ing obstacles to advanced composite use in industry, such as the inability to scale nanocomposite

properties with size, which has led to large disparities in observed microscale and structural scale

properties of nanocomposites (Sochi 2012). Issues also continue to persist in exploiting estab-

lishedCFRP components such as the bonded composite joint, due to the lack of a comprehensive

understanding of damage initiation, damage progression, and failure in these materials. In this

specific example, a lack of understanding of material properties has led to the use of mechanical

fasteners when bonded composite material joints are used in primary load-bearing applications,

thus causing ‘overdesign’ of the advanced composite structures. Hence, comprehensive computa-

tional tools may be used to study these types of material behaviors and to determine causes for the

inability to scale material properties with size and the generation of ‘hot-spot’ zones. This capabil-

ity, in turn, would permit designing materials that can utilize their full potential and developing

strategies that help to mitigate and delay failure in advanced composite components.

Although, a strong case exists for developing such computational models, predicting the prop-

erties and behavior of advanced composites using only basic constituent properties can be a fun-

damentally challenging task due to the multiscale nature of these material systems (Kwon, Allen,

and Talreja 2008). For a genuine implementation of the ICME approach for advanced compos-

ites requires investigation of the constituent behavior at various length scales to produce a network

of structure-property relationships. Since the dominant physical mechanisms vary at different ob-

served length scales, eachnode of thismultiscale systemmust be studied independently to produce

a length scale dependent structure-property relationship. However, since implementation of these

material systems generally occurs at the macroscale, the understanding at the various scales must

also be linked together for this methodology to influence thematerial and product design process.

The scientific approach used for understanding and coupling mechanisms at various length scales

and establishing models based on such knowledge is called multiscale modeling (Horstemeyer
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2009), and this approach may hold substantial potential for designing and optimizing advanced

composite materials and composite structural components.

1.3 Multiscale Modeling of Advanced Composites

It is observed that the dominant material structure in advanced composites is distinctly sep-

arate at various length scales due to the inherent heterogeneity of this material system. The ad-

vanced composite structure, which can be considered as the macroscale, is manufactured using

single or multiple laminates that are joined together using various manufacturing processes such

as bonding or riveting. The laminates are in turn manufactured by stacking several laminae to-

gether using a lay-up procedure. The single lamina may have a simplistic unidirectional material

structure, as is commonly used in prepregs, or it may be composed of complex weave geometries.At

the length scale of the lamina, small geometrical and material inconsistencies, such as pockets of

matrix-rich regions, may play a significant role in material behavior, for example, it may create

localized damage ‘hot-spot’ regions, and hence this scale is separately classified as the mesoscale.

The lamina is made up of fiber bundles, individual reinforcing fibers, additional reinforce-

ments, possibly some forms of fiber coating, and the matrix that binds them. The length scale of

the lamina is radically different compared to the length scale of the constituents, which is consid-

ered to be themicroscale. Themicrostructure largely involves the interaction of the reinforcement

and matrix phase, such as the carbon fiber and the epoxy in CFRPs. The microstructure has been

shown to influence bulk composite behavior, and can be practically manipulated to optimize re-

sultant composite properties. Additionally, major sources of stochasticity, such as reinforcement

geometry, matrix curing, and fiber volume fraction are introduced at this phase, accounting for

the experimentally observed spread in material properties that is characteristic of advanced com-

posites (Shaw et al. 2010; Chiachio, Chiachio, and Rus 2012).
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Figure 1.3. Atomistic to structural multiscale modeling scheme

To study the complete spatial domain of the microscale, taking into account the geometry of

each microscale constituent that is significant, while also covering the entirety of the mesoscale

spatial domain would be an infeasible and intractable undertaking. Instead, a more practical ap-
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proach would be to select a periodic portion of the microscale, such that the material response of

the small periodic element is representative of the entire geometry. Hence, there is a need to use

periodic representative unit cells (RUCs) to study the microscale constituents (Sun and Vaidya

1996). The size of a heterogeneous RUC with volume V can be considered appropriate if the

average value of the measured variable from the RUC, ĀRUC , is equal to the measure of the vari-

able for the complete geometry Āgeom (Kanit et al. 2003). The average variable measure from the

RUC can be calculated by ensemble averaging the local measure of the variable,A, over the spatial

domain of the RUC:

ĀRUC =
1

V

∫
V

AdV (1.1)

Finally, themicroscale itself can be deconstructed to themost fundamental length scale appro-

priate for mechanical and structural studies, which would be the atomic scale, where molecules,

chains, chemistry, and chemical bonds play a significant role in determining elastic and inelastic

properties (Lutsko 1988). The basic causes of stochasticity in properties are also observed to orig-

inate at these length scales (Tack and Ford 2008).

Developing a computational framework that incorporates the effects of these relevant length

scales is challenging due to the immense spatial domain covered, the significant variations in local

fields on change of dominant length scale, and the complex interactions of the various scale depen-

dent phenomenon that need to be physically modeled. Conventional computational methodolo-

gies use a top-down approach, employing bulk material analysis or a bottom-up approach using

mean field techniques to predict structural scale composite properties. In top-down bulkmaterial

analyses, such as the smeared material techniques (Hashin 1980; Tsai and Wu 1971), the struc-

tural behavior is evaluated using conventional continuum mechanics approaches, which are then

used to resolve lower scale constituent properties. Most of these techniques limit themselves to the

lamina level, where laminate stresses are decomposed to calculate lamina stresses using laminated

shell theories (Ashton and Whitney 1970) or higher order plate theories (Reddy 1984). The lam-
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ina properties are then progressively discounted by comparing lamina stresses with experimentally

characterized lamina strengths, to create an iterative highly phenomenological methodology. The

microscale may be included by transforming the lamina stresses to microscale constituent stresses

using stress amplification factors calculated through finite element (FE) investigations of the mi-

cro RUC (Jin et al. 2008). The microscale quantities can then be used to perform microscale

damage and failure studies. This is accomplished by extending the previously mentioned iterative

phenomenological methodology to account for microscale constituents rather than the lamina

properties. Such techniques extend the simple maximum stress/strain criterion or the Tsai-Wu

quadratic criterion, to account for fiber failure (Ha, Jin, and Huang 2008) and a plasticity based

procedure, such as modifications of the von Mises failure criterion (Christensen 2007) or higher

fidelity computational plasticity models (Goldberg, Roberts, and Gilat 2005) for matrix damage

and failure. These techniques may also include interface failure and micro-constituent interac-

tions through extensions of the Hashin failure criterion (Camanho and Dávila 2002). The top-

down techniques without microscale additions can be computationally efficient and easily imple-

mented into structural designmethods, and also allow for the design of straightforward validation

experiments. The addition of themicroscale aspect, however, can significantly slow down the com-

putational procedure. Furthermore, the phenomenological basis of this technique can lead to large

bounds on predictions, lack of insight into the intrinsic material physics, and the requirement of

a comprehensive experimental program to supplement the analysis algorithms.

Bottom-up approaches use micromechanics to explicitly incorporate microstructural details

into structural analysis using both analytical and semi-analytical techniques (Qu and Cherkaoui

2006). In these methods, the microlevel and macroscale quantities are connected using phase av-

eraged concentration factors, and are developed through an analysis of themicrostructural details

and some form of homogenization (Buryachenko 2007). For simple microscale geometries, a sim-

plified form of these methods, using a strength of materials approach may be applied to obtain
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explicit relatively simple analytical relations between the elastic properties of the microstructure

constituents and the macroscale composite. In these cases, through an analysis of ideal loading

conditions (e.g., a uniaxial strain field or a uniaxial stress field), the effective properties of the com-

posite can be found as a function of the properties of each individual micro constituent. This is

called a rule of mixtures type approach, classified according to the various assumptions , loading

direction, andmicroscale geometry. Some examples of this type of approach are theHill’s method

(Hill 1963), Voight approximation, (Voigt 1889), Reuss approximation (Reuss 1929), and com-

posite cylinder assemblage (Hashin andRosen 1964). The rule ofmixtures approach is also greatly

expanded in many standard composite texts (Herakovich 1998; Kaw 2005). However, a general

approach to micromechanics is to consider ensemble averaged stresses, which are then related to

the appropriate global or macroscale quantities (Buryachenko 2001), as shown in equation 1.2.

σ̄∼ =
1

V

∫
V

σ∼ dV =
1

V

(∫
Vi

σ∼
i dVi +

∫
Vii

σ∼
ii dVi + · · ·

)
(1.2)

whereσ∼ is the stress, and quantities i, ii, · · · represent the various microstructural constituents.

The effective global or macroscale properties are then a function of the individual properties

of each microscale constituent and related through a phase averaged concentration factor M
≈

or

B
≈

, as shown in equation 1.3 and 1.4.

C̄
≈
= f(C

≈ i
,C

≈ ii
,C

≈ iii
, · · · , vi, vii, viii, · · · )M≈ (1.3)

S̄
≈
= f(S

≈ i
,S

≈ ii
,S

≈ iii
, · · · , vi, vii, viii, · · · )B≈ (1.4)

where C
≈

is the stiffness tensor, S
≈

is the compliance tensor, and v is the volume fraction. These

functions and the relations for the phase averaged concentration factors can then be obtained

using various homogenization schemes and approximations. For example, the Voight and Reuss

approximations can be utilized to obtainM
≈

, orB
≈

as an identitymatrix, respectively. Othermeth-

ods include the Eshelby field that connects the stress and strain fields inside a single inclusion in an

infinitematrix, to the far-field ormacroscale quantities (Eshelby 1957), which has been applied in
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the context of fibrous composites within the self-consistent method (Budiansky 1965; Hill 1965)

and generalized self-consistent method (Huang et al. 1994). The special case of the Eshelby field

with uniform far field strain boundary conditions has also been used to create the Mori-Tanaka

method (Mori andTanaka 1973) and reformulated for fibrous composites (Benveniste 1987). An-

other approach to arrive at themicro-macro relations and explicit analytical equations for concen-

tration matrices is the method of cells technique, which approximates local fields in subcells that

make up the microscale unit cell, by using continuity equations that are true in an averaged sense

(Aboudi 1989) and uses the Taylor’s expansion to form a relation for the concentration matrices

as a function of macroscale quantities. The two-scale and multi-scale asymptotic expansion with

the classical mathematical theory of homogenization has also been used to couple the length scale

dependent parameters and to establish relationships between local-global stress/strain fields (Fish,

Yu, and Shek 1999). Cosserat homogenization (Forest and Sab 1998; Forest 1998), parametric

finite-volume micromechanics (Chen, Urquhart, and Pindera 2005; Pindera et al. 2009), general-

ized differential expansion (Pasternak and Mühlhaus 2005), and strain-gradient homogenization

(Smyshlyaev 2009; Peerlings and Fleck 2004) are further examples of approaches used for the

coupling of multiscale spatial domains, which are expanded in various review papers and books

(Charalambakis 2010; Kalamkarov, Andrianov, Danishevsâ, et al. 2009; Nemat-Nasser and Hori

2013).

Although, such mean field micromechanics techniques provide an analytical or semi-

analytical and mathematically consistent way to couple various scale dependent quantities, they

consistently over or underestimate properties due to the assumption of simplistic RUCs, which

do not particularly account for the stochasticity in the microscale constituent geometries and

properties (Johnston and Chattopadhyay 2013). Furthermore, the study of the nanoscale me-

chanics becomes critical formaterials such as nanocomposites due to the size of the fillermaterials,

which may be around the order of a few molecules. The reinforcing agent may actively interact
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with the molecules of the matrix, leading to unique and novel mechanical states that need to be

accounted for in computational models. These molecular scale mechanisms become especially

important in the investigation of interface effects between constituents, since interface behavior

is a known function of the surface morphology at the nanoscale, and can have significant effects

on the composite material properties (Drzal, Rich, and Lloyd 1983; Evans, Zok, and Davis 1991;

Johnston et al. 2017). Even if current techniques do make use of realistic microscale RUCs, the

interaction of the polymer molecules, the effects of nanofillers such as CNTs at the atomic scale,

and nanoscale mechanics, in general, are entirely ignored.

Recent interest in investigating nanoscale mechanics in structural materials has led to many

studies at the nanoscale using molecular dynamics or MD simulations (Shinoda, Shiga, and

Mikami 2004; Yamakov et al. 2004; Wu 2006). Atomistic simulations were recently used to suc-

cessfully predict epoxymatrix elastic properties (Fan andYuen2007) and the stress-strain response

of epoxy matrix with CNT nanofillers (Frankland et al. 2003). Similar MD simulation studies

that focus on nanoscale mechanics suggest that the unique stress state at the nanoscale in polymer

matrix composites and nanocomposites may cause the observed divergence in experimental and

predicted response at the higher length scales (Subramanian, Rai, and Chattopadhyay 2015; Sub-

ramanian et al. 2015). These studies also show that the stress-strain response at the nano- and the

sub-microscale can be significantly different from the average bulk stress-strain response of poly-

mer matrix composites and nanocomposites. These observations suggest that an accurate elastic

anddamage analysis of thesematerials cannot ignore the nanoscale atomistic contributions. There-

fore, any theoretical framework formodeling thesematerials must resolve and integrate each scale-

dependent constituent, including nanoscale information. Ultimately, the macroscale structural

behavior aggregates the mechanics of all the lower length scale elements, which in turn actively

influences elastic, damage, and failure properties of the composite structure. Hence, the multi-

scale nature of these material systems leads to several material-structure relationships at various
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length scales, all of which interact and cause the final observed structural response. Thorough in-

clusion of thismultiscale nature, alongwith the associated scale-dependent causes of uncertainties

in the analysis of advanced composites is, therefore, critical for accurate prediction of advanced

composite material and component behavior.

1.4 Nanoscale Integration - Challenges

Despite the growing need for multiscale analysis methods for advanced composites incorpo-

rating nanoscale effects, a fundamental challenge associated with the integration of these length

scales is the incompatibility of the basic framework utilized to model atomic systems, which are

considered as discrete systems, and as larger constituents, which can be assumed to be mathemat-

ically continuous. Attempts at such an integrated modeling strategy for the analysis of CFRPs

with atomistic information have met with serious limitations. Such analysis techniques have been

performed using a combination of MD simulations and averaging techniques such as elastic ho-

mogenization based micromechanics (Kundalwal and Kumar 2015a), statistical techniques such

as Monte Carlo methods (Chui and Boyce 1999) or fully continuum mechanics FE approaches

(Fisher, Bradshaw, and Brinson 2002). Homogenization provides reasonably accurate results for

elastic analysis; however, it can lead to imprecise results for inelastic and damage analysis due to

loss of spatial variability in stress and strain fields (Borkowski, Liu, and Chattopadhyay 2013).

Statistical techniques may require an infeasible amount of simulations to accurately characterize

the complete spectrum of the nonlinear behavior, and FE methods cannot accurately capture the

fidelity at the atomic scale due to the breakdown of the assumptions of continuum mechanics.

Recent literature has focused on deriving rigorous mathematical theories for describing the stress

state of heterogeneous media, wherein the nanoscale mechanics is implicitly integrated using var-

ious forms of homogenization, such as the variational asymptotic homogenized micromechanics
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models (Yu andTang 2007;Oskay andFish 2004), eigen deformation based reduced ordermodels

(Bogdanor andOskay 2016; Oskay and Fish 2007), mathematical homogenizedmicromechanics

coupled with diffused damage (Murari and Upadhyay 2012), or ad-hoc mathematical functions

such as the boundary condition free micromechanics theory (Peng and Yu 2015). Since the im-

plicit conditions of the nanoscale mechanics in these methods are bound to certain ideal assump-

tions, they are not generally applicable and may not provide any special insight into the problem

under investigation.

To overcome issues encountered with an implicit nanoscale understanding, some recent stud-

ies have used concurrent coupled FE and MD simulations to capture nanoscale mechanics explic-

itly. In these methodologies, there exists a fine scale and a coarse scale, where these scales directly

couple through a handshake or interface region (Miller and Tadmor 2009). The coarse scale may

be modeled using continuum FE based approaches and the fine scale is modeled using atomistic

approaches. These techniques utilize an energy based governing equation and special forms of

coupling boundary conditions, along with various forms of handshake region models (Talebi et

al. 2014). Some examples of these techniques are the quasicontinuum model (Shenoy et al. 1998;

Tadmor, Ortiz, and Phillips 1996), bridging domain and bridging scale method (Xiao and Be-

lytschko 2004; Wagner and Liu 2003; Qian, Wagner, and Liu 2004), hybrid simulation method

(Luan et al. 2006), and the concurrent AtC coupling (Fish et al. 2007; Badia et al. 2008). Most of

these techniques differ according to the handshake region model that is employed, and the treat-

ment of the continuum region. It is to be noted, however, that the nanoscale mechanics, when

used in these works, utilize empirical force fields that cannot capture fundamental nonlinearities

at the nanoscale such as the covalent bond dissociation of polymer chains (Subramanian, Rai, and

Chattopadhyay 2015). When reactive bond order force fields are used in these methods, the im-

plementation becomes computationally infeasible. Furthermore, it has been shown that there

are certain localized phenomena, such as stress recovery proceeding initial softening and damage
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saturation, which can only be captured by explicitly modeling the nanoscale substructures using

reactive bond order force fields (Subramanian et al. 2015).

The aforementioned drawbacks motivate the development of a multiscale modeling approach

for the elastic and inelastic analysis of advanced composites, such as CFRPs and CNT enhanced

CFRP nanocomposites, which utilize nanoscale information obtained using reactive force fields,

and bridge this to the higher length scale. Furthermore, this approach should also address uncer-

tainty at the various length scales to permit a realistic analysis of these material systems for novel

material development applications or for optimizing material design and performance. As engi-

neering examples and case studies for the application of the developed multiscale approach are

presented, critical challenges associated with advanced composites, such as nanocomposite scala-

bility and damage in composite bonded joints, can then be investigated.

1.5 Objectives

This research is focused on accomplishing the following objectives:

• Develop a stochastic multiscale model for CFRPs and CNT/CFRPs that utilize nanoscale

derived elastic information and variation in the curing degree to efficiently estimate the

composite properties under fundamental uncertainty, and to validate with experimental

observations.

• Develop a thermodynamically admissible bridging technique to efficiently transfer inelas-

tic information from discrete nanoscale MD simulations of the polymer matrix to higher

length scales, and to model using continuum mechanics.

• Investigate the nonlinear effects of the presence of nanofillers such as CNTs in polymerma-

trix under mechanical loading, using the developed atomistically informed damage model;
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investigate causal effects of damage initiation and propagation in polymer matrix in the

presence of CNTs.

• Investigate the variation of piezoresistive properties of the CNTs in the polymer matrix

under damage due to mechanical loading.

• Develop an integrated representative unit cell for the high fidelity analysis of CFRPs and

CNTenhancedCFRPmicrostructures; investigate the effect ofCNTarchitecture on dam-

age initiation and propagation.

• Develop low fidelity physics based damage models to capture global microscale response

and integrate behavior of the constituent interfaces based on nanoscale information; inves-

tigate composite properties under uncertainty.

• Utilize the low fidelity damage models for macroscale integration; investigate mechanical

behavior of practical composite structures, such as composite bonded joints, by using the

low fidelity atomistically informed damage model.

1.6 Outline

This dissertation is organized as follows:

Chapter 2 introduces a modeling framework for the elastic and limited inelastic analysis of

CFRPs and CNT/CFRPs using a novel technique for sampling atomistically derived constituent

properties and applying it to a stochastic composite microstructure. This framework enables the

generationof distributions of composite properties computationally, accountingof various sources

of material uncertainty.

Chapter 3 proposes a thermodynamically admissible constitutive law for thermoset polymers,

based on the framework of continuum damage mechanics (CDM), with the damage evolution

equation developed from the results of elastoplastic MD simulations. This procedure bridges in-
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elastic information from discrete MD simulations to the higher length scale continuum model in

a computationally efficient manner. This framework is benchmarked against classical damage and

plasticity models, and is validated against experiments.

Chapter 4 establishes an algorithm to generate realistic CNT-polymer microstructures. The

concept of embedded meshing is also introduced for effectively modeling CNT-polymer inter-

actions at the sub-microscale. Load transfer and damage mechanisms at the sub-microscale, and

effects of CNT kinematics on damage initiation and propagation, are studied using the atomisti-

cally informed CDM damage model. This chapter also extends the damage analysis framework

to include piezoresistive effects, to study the multifunctional aspect of CNT-polymer matrix un-

der non-pristine conditions. Causal mechanisms for variation in piezoresistive behavior is investi-

gated in this chapter.

Chapter 5 introduces an automated algorithm for the generation of realistic advanced compos-

itemicrostrutureswith orwithoutCNTnanofillers, includingmaterial variability. This algorithm

permits multiple architectures of the CNTs to be generated in the CFRP microstructure, and al-

lows a holistic high fidelity analysis of the composite at the micro, and sub-microscale. As a case

study, two nanocomposite architectures, randomly dispersed CNTs and radially grown CNTs,

are investigated. Additionally, an orthotropic low fidelity damage model, based on the Schapery

theory (Schapery 1990), is derived for capturing the global RVE response.

Chapter 6 details the generation of a microscale model based on the generalized method of

cells (GMC), which integrates nanoscale elastic information, imperfect interfaces where interface

behavior is derived from analogousMD simulations, inelastic mechanisms using the atomistically

informed CDM damage equations, and realistic composite microstructures. The effect of weak

interfaces in the microscale response of CFRP composites is then investigated.

Chapter 7 presents experimental studies on CFRP composite bonded joints in the ‘T’ config-

uration. The experimental data is used to generate the mesostructure of the composite joint. This
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Figure 1.4. Dissertation outline

chapter further elaborates on the development of a multiscale framework that couples the nano-

micro-meso-macroscale models for the inelastic analysis of practical composite components. This
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multiscale modeling technique is further used to simulate the composite bonded joint response.

The simulated data is then compared against the experimental response to ascertain validity of the

developed multiscale model.

Finally, important conclusions derived from this research and possible areas for future studies

that extend upon this work is presented in chapter 8.
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Chapter 2

MULTISCALE ANALYSIS USING DIRECT ATOMISTIC INFORMATION

TRANSFER

2.1 Introduction

Mainstream application of carbon fiber reinforced polymer (CFRP) composites and themore

recently discovered nanocomposites (Sandler et al. 1999) have seen a surge over the last decade in

various industries such as aerospace, automotive, and the consumer application industry. How-

ever, use of these materials continues to be associated with caution and conservative design prac-

tices due to a host of issues (Cantoni et al. 2014; Czél, Jalalvand, and Wisnom 2016; Sochi 2012)

as discussed inChapter 1. One reason thatCFRPcomposite and carbonnanotube (CNT)/CFRP

nanocomposite implementations see limited application is the lack of a complete understanding

of the effects that individual constituents can impart to the bulk properties of the macroscale ma-

terial system (Patel, Rohatgi, and Lee 1993; Fu et al. 1999; Xie, Mai, and Zhou 2005). Addi-

tionally, the multiscale nature of these materials in particular, as discussed in Chapter 1, makes a

straightforward investigation of this phenomenon challenging (Kanouté et al. 2009). Recent stud-

ies have shown that the nanoscale information of CFRP composites is integral to understanding

their material-structure property and can lead to successful strategies for scalingmaterial behavior

from the nano- and microscale to the macroscale, especially in the case of nanocomposites (Sub-

ramanian, Rai, and Chattopadhyay 2015; J. Zhang et al. 2016).

Composite and nanocomposite materials also display a significant amount of scatter, in re-

sponse to mechanical loading, due to several sources of uncertainty (Vu-Bac et al. 2015; Mesogi-

tis, Skordos, and Long 2014; Sriramula and Chryssanthopoulos 2009). Some of these sources
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are related to manufacturing and production, and may be minimized through careful quality as-

surance (QA) practices. However, a significant amount of stochasticity is introduced into these

systems inherently due to the nature of the constituents themselves. The polymer constituent,

for example, when used as the matrix displays complex physical and chemical behavior that can

result in large local variations in properties. These variations are largely considered a product of

atomic scale mechanisms (Subramanian et al. 2015). Additionally, in the case of nanocomposites,

nanofillers interact with the polymer molecules creating even larger variations, while introduc-

ing uncertainties arising from the dissimilarities in nanofiller geometry (Subramanian, Rai, and

Chattopadhyay 2015). The carbon microfiber constituent, on the other hand, is associated with

generally stable material properties, but exhibit significant geometric variations at the microscale

(Kadla et al. 2002).

In general, manufacturing processes and the practical conditions of production cycles lead to

nonsingular randomness in fiber volume percentages at the mesoscale. Although any one of these

sources of uncertainty can individually lead to an order N effect on the material properties, at

the macroscale all these sources come to interact with each other. As a result, the total uncer-

tainty at the structural scale becomes amplified, leading to an observed NM effect on material

properties. Experimental programs tasked to quantify these uncertainties can be daunting due to

the statistically significant amounts of sample testing required, in addition to the associated ex-

penses in composite characterization. To address the above-mentioned challenges, thus, provides

the motivation to develop a multiscale model, which incorporates nanoscale information and as-

sociated uncertainties,N1
nano, N

2
nano, N

3
micro, N

4
micro · · ·NM etc. at each length scale, such that

the computed composite bulk properties are a function of the atomistic phenomenon as well as

the stochasticities at various length scales. Such a frameworkwould significantly reduce validation

experiments at the macroscale, and allow optimization of material performance from the ground

up.
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2.2 Molecular Model

Although novel experimental techniques such as transmission electron microscopy (Wang,

Poncharal, and De Heer 2000), atomic force microscopy (Larsen et al. 2002), and spectroscopy

(Misra et al. 2006) have been used to gain nanoscale information of composite material systems,

they involve cumbersome preparatory work and expensive experimental stages. Recent advances

in nanoscale material system modeling have provided the scientific community with a straight-

forward alternative to such experimental procedures, to characterize atomic systems. However,

it is noted that the maturity of these modeling methods are attributed to the above mentioned

state-of-the-art experimental techniques, which are used for thorough validation of the models

(Hackett, Manias, and Giannelis 1998; Best et al. 2001; Best et al. 2003; Robach et al. 2003).

From amaterials point of view, the fundamental modeling approach is derived from quantumme-

chanics (QM)-based methods, which explicitly model the probabilistic quantum behavior of the

electrons, and establishes a first-principles technique for characterizing the relationship between

atomic structure and its chemical relationships (Atkins and Friedman 2011). However, due to

the nature of this approach it is computationally expensive and impractical for systems with more

than a few atoms. A ‘higher’ level of theoretical methods, known as molecular dynamics (MD),

utilize the equations of motion (Newton’s laws) for individual atoms, and use empirical potentials

to model atom interactions (Hoover 1986; Humphrey, Dalke, and Schulten 1996). The kinemat-

ics of the system is solved by considering anN-Body problem, with each atom being a single point

body; the kinetics are then approximated using empirical constitutive equations that may or may

not have been derived from quantummechanics calculations (Car and Parrinello 1985; Rapaport

et al. 1996). Hence, MD simulations provide a platform for modeling large atomic systems con-

taining greater than 10,000 atoms, with reasonable accuracy and computational feasibility.

In this work, MD simulations of the polymer system, Di-Glycidyl Ether of Bisphenol F
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Figure 2.1. The MD unit cell

Source: (Subramanian, Rai, and Chattopadhyay 2015)

(DGEBF) and Di-Ethylene Tri-Amine (DETA), with and without CNTs are performed in the

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). LAMMPS is a classical

MD simulation code (Plimpton, Crozier, and Thompson 2007) developed and maintained by

Sandia National Laboratories.1 The tubular single walled CNTs are modeled in the NanoEngi-

neer Toolbox with terminal hydrogen atoms, with diameter ranging between 1 to 2 nm and aver-

age length of 60 nm. The periodic matrix unit cell consists of the resin and hardener molecules

with randomly dispersedCNTs and a total atom count larger than 100,000. Themost appropriate

classical force field used to calculate the kinetics of themolecular system for the polymer in the lit-

eraturewas found to be theMerckMolecular Force Field (MMFF) (Halgren 1996), and is applied

here. The appropriateness of this force field is based on comparisons of a few experimental param-

eters, as found through equivalent MD simulations of this resin system with the MMFF (Koo

et al. 2014). To correctly account for bond, angle, dihedral deformations among bonded interac-

1It is to be noted that the atomistic model presented in this section was developed by Ms. Nithya Subramanian.
All MD simulations are credited to her.
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tions, and improper out-of-plane distortions of the CNTs, a combination of the Optimized Po-

tential for Liquid Simulations (OPLS-AA) parameter set (Jorgensen, Maxwell, and Tirado-Rives

1996) and the Consistent Valence Force Field (CVFF) parameter set (Zang et al. 2009) is used

to describe the kinetics of the nanotubes. Additionally, the non-bonded Van der Waals forces are

simulated using the classical Lennard-Jones potential, and Coulombic forces are modeled using

the Coulumb potential (Verlet 1967).

Table 2.1. Chemical details of the resin and hardener

Type Name Constituent Weight (g mol−1) Chemical Formula
Epoxy resin DGEBF 313 C19H20O4

Hardener DETA 103 C4H13O6

An important aspect of the epoxy system for practical use in composites is the curing pro-

cess, wherein, the resin and hardener form crosslinking covalent bonds under excitation through

temperature and pressure (Tillet, Boutevin, and Ameduri 2011). It is well known that the phe-

nomenon of epoxy curing and properties of the polymer, and consequentially the composites, are

strongly related (Loos and Springer 1983). At the atomic scale, this process of curing is largely

affected by kinematics and molecule location, which can be efficiently calculated using MD simu-

lations. The ‘crosslinking degree’ or the ‘conversion degree’, which is a measure of the epoxy cure,

can then be defined in the atomic unit cell as the ratio of fully formed crosslinked bonds to the

theoretical maximum crosslinked bonds between the resinmolecules and the hardener molecules.

In this work, mechanical investigations of the polymer and nanopolymer unit cells are preluded

by curing simulations, where the unit cells are randomly generated and crosslinking degree of the

unit cell is then calculated. Since this technique requires a mechanism for simulating bond forma-

tion, a cut-off based bond formation technique is used. The covalent bond between appropriate

resin and hardener molecules is assigned when these molecules reach a cut-off distance equivalent

to the Van der Waals radius, a value calibrated to experimental curing degrees (Koo et al. 2014).
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Additionally, temperature and pressure are controlled using the Nose-Hoover thermostat and a

Berendsen barostat. Following the computational curing process, theMDpolymer and nanopoly-

merunit cell is used as a virtual testbed to calculatemechanical properties. ElasticYoung’smodulus

is calculated through uniaxial simulations, and by measuring the gradients of the stress-strain re-

sponse, uniform hydrostatic pressure is applied to characterize bulk modulus. Shear modulus is

then calculated as a function of the other elastic constants through an isotropic assumption.

Although the above-mentioned simulation process models the elastic behavior, inclusion of

inelastic phenomenon would require calculating the response of covalent bonds that are much

farther from their equilibriumbond length. These types of calculations cannot be performedusing

the quadratic form of the classical force fields, and would require dissociation or saturation of

the bond response after reaching a critical bond length (Brenner et al. 2002). Such behavior can

be simulated using bond order force fields for which the ReaxFF reactive bond order force field

for hydrocarbons (Van Duin et al. 2001) with appropriate bond order based potential parameter

sets (Li and Strachan 2011; Singh et al. 2013) is used in this work to simulate the inelastic bond

response of the epoxy-resin and CNT atomic system.

2.3 Elastic Information Bridging

The schematic for the methodology for transferring material property information, consoli-

dated from MD simulations of the polymer and nanopolymer systems is shown in Figure 2.2. As

described in section 2.2, MD simulations can be used tomodel the fundamental curing process of

the hardener and the epoxy resin, which is stochastic by nature; the cured atomic unit cell can then

be used to run virtual mechanical tests. Through these computational exercises, the probability of

crosslinking for a spectrum of conversion degrees can be calculated, which can further be used to

find a probability distribution of mechanical properties. Since the atomistic simulations provide
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Figure 2.2. Atomistic information sampling framework for continuum modeling
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a distribution of most likely material properties, this information serves as an input to the con-

tinuum matrix model. The mechanical properties obtained from the MD simulation of DGEBF

(Di-Glycidyl Ether of Bisphenol F) epoxy resin and DETA (Di-Ethylene Tri-Amine) hardener is

shown in Figure 2.3, as computed by Subramanian et al (Subramanian, Rai, and Chattopadhyay

2015). Due to the linear nature of this relationship within the domain of realistic crosslinking

degrees, a linear model is chosen to represent the elastic property variation with crosslinking and

is shown in equation 2.1.

ECD = 0.0159(CD) + 1.566 (2.1)

where CD is the crosslinking degree and E is the Young’s modulus in gigapascals. Since the

crosslinking degree is inherently a probabilistic term, the distributional version of thesemodels, as

opposed to the deterministic version need to be introduced. LetµCD be themean of the crosslink-

ing degree and σCD be the standard deviation. Then the deterministic equation 2.1 can be rewrit-

ten with stochastic terminologies as:

EµCD
= 0.0159(µCD) + 1.566 (2.2)

And a probabilistic version of equation 2.2 would require the introduction of appropriate seman-

tics for the input variable as displayed in equation 2.3.

ECDprob
= 0.0159(CD(µCD, σCD)) + 1.566 (2.3)

For a similar crosslinking degree versus mechanical properties relationship, in the case of

nanocomposites, the CNT weight fractions have to be accounted for in the sampling scheme.

The frequency spectrum of the crosslinking degree, and the Young’s modulus variation withCNT

weight fraction, as observed fromMD simulations of the resin-hardener-CNT system is shown in

Figure 2.4. As expected, inclusion of theCNTs changes thematerial properties; however, it is also

found that the inclusion of the CNTs causes a shift in crosslinking degree distribution (Subrama-

nian, Rai, and Chattopadhyay 2015). This shift, along with the change in CNT weight fraction,
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(a) Distribution of crosslinking degree

(b) Variation of Young’s Modulus with crosslinking

Figure 2.3. Atomistically derived material properties of polymer matrix

Source: (Subramanian, Rai, and Chattopadhyay 2015)

has to be accounted for in a single equation, which can then be used for sampling properties at the

microscale. For this reason, a probabilistic second order polynomial model for material property

variation with CNT weight fraction is constructed as displayed in equation 2.4.

ECNT = −0.03837(νCNT (µCNT , σCNT )
2)+0.95096(νCNT (µCNT , σCNT )+2.4459 (2.4)

whereECNT is the Young’s modulus of the nanopolymer in gigapascals, νCNT is the weight frac-

tion of the CNT, µCNT is the mean of the CNT weight fraction, and σCNT is the standard de-

viation of the weight fraction. The weight fraction is considered a stochastic term, with a fixed
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standard deviation of 0.25% since electron microscopy images from reported literature on CNT-

enhanced nanocomposites indicate large variations in weight fraction of CNTs within polymer

matrix (Bose et al. 2009; Menzer et al. 2011). The mathematical relationship between the CNT

weight fraction and its effect on the crosslinking degree was seen to be best modeled using a

quadratic relationship, described by the following equation:

µCD = 0.50056(νCNT (µCNT , σCNT )
2)− 9.5905((νCNT (µCNT , σCNT )) + 66.324 (2.5)

A change in the Young’s modulus of the nanopolymer caused by variations in the crosslinking

degree, as well as the CNT weight fraction, would require the Young’s modulus calculated from

equation2.4 to be adjusted by the variation in crosslinking degree. This canbe done bymultiplying

ECNT to the normalized neat epoxy variations due to crosslinking degree. The Young’s modulus

of a nanopolymer unit cell can hence be found using the following consolidated equation:

Eunit = ECNT

ECDprob

EµCD

(2.6)

A similar procedure can be used to estimate the remaining material properties, such as the

bulk moduli and shear moduli. Figure 2.5 shows the variation of these properties for the polymer

system, as calculated from the MD simulations. Since the atomic simulations for the polymer

shows that the material is isotropic for a multi-thousand molecule system, the Poisson’s ratio and

the shear modulus can be calculated from the elastic relations for isotropic materials, which is

mentioned in equation 2.7 for reference.

E = 2G(1 + νp) = 3K(1− 2νp) =
9KG

3K +G
(2.7)

where νp is the Poisson’s ratio,G is the shear modulus, andK is the bulk modulus.
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(a) Distribution of crosslinking degree

(b) Variation of Young’s Modulus with CNT weight
fraction

Figure 2.4. Atomistically derived material properties of polymer matrix with CNTs

Source: (Subramanian, Rai, and Chattopadhyay 2015)

2.4 Microscale Continuum Modeling

To bridge the properties obtained from atomistic simulations consolidated in equation 2.6 to

the higher length scale, a 3D stochastic microscale continuum model is developed within the fi-

nite element (FE) framework using the commercial FE package ABAQUS. Figure 2.6 displays the

discretized FE model of an advanced composite microstructure, suitable for elastic investigations.

Variants of thismodel are generated inABAQUSusing scripting procedures and an algorithm that
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(a) Variation of bulk modulus of polymer from MD
simulations

(b) Variation of shear modulus of polymer from MD
simulations

Figure 2.5. Variation of additional elastic properties from MD simulations

Source: (Subramanian, Rai, and Chattopadhyay 2015)

perturbs the values of the stochastic variables. The sampling of variations from the probability dis-

tribution functions (PDFs) of the input variables enables eachmodel execution to contain unique

values pertaining to matrix material property and fiber geometry. In the current investigation,
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Figure 2.6. FE microscale discretization of the microscale RUC

large number of models are generated and executed to accurately characterize the distribution of

responses.

The microscale model presented in this chapter accounts for stochasticity in fiber placement,

geometry, and volume fraction by varying the fiber center position within a range of a single

fiber/matrix unit cell and the dimensions of the single fiber/matrix unit cell. Hence, the assem-

bled multi-fiber microstructure essentially resembles multiple eccentric single fiber/matrix unit

cells, as seen in Figure 2.8. Though stochasticity in fiber placement is present, the fiber centers are

bound within its unit cell, which leads to a reduced representation when compared to realistic mi-

crostructures. Since it has been shown that reduced representations are sufficient for the stochastic

analysis of elastic properties of composites (Borkowski, Liu, and Chattopadhyay 2013), realistic

microstructures, in terms of fiber placement, was not modeled in this investigation for computa-

tional simplicity. To provide realistic properties for the fiber volume fraction and fiber geometry,

the uncertainty in these variables are characterized based on results from confocal microscopy in-

vestigations performed on an IM7/EPON862 laminatemicrostructure using the Zeiss LSM con-

focal microscope. The IM7/EPON 862 sample was manufactured through a wet-layup process,

and cured in a vertical axis heated press under a common cure cycle. The microstructure samples
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were placed in an epoxy puck, and polished using varying abrasive materials. The distributions of

the stochastic parameters are found to be near-Gaussian in nature, and a Kolmogorov–Smirnov

(KS) test is performed to confirm and justify the normality of the distributions. The characteris-

tic parameters related to the uncertainty in fiber volume fraction and fiber diameter, calculated

from the microstructural study, are reported in Table 2.2. The material properties of the fiber is

assumed to be linear-elastic orthotropic, and the variation in properties is assumed to follow a nor-

mal distribution based on standard tests and data presented in manufacturer data sheets for the

IM7 fiber system (Hexcel 2016).

Table 2.2. Parameters of the Gaussian distributions for the fiber stochastic variables

Property Mean σdev
Fiber Volume Fraction 71.75% 4.67%
Fiber Diameter 6.99 µm 0.3209 µm

The variation in material properties of the polymer matrix and the nanopolymer with dis-

persed CNTs is included by sampling material properties using equation 2.3 or 2.6, respectively.

The matrix properties are sampled and can then be applied stochastically to achieve spatial varia-

tion in properties of the matrix. This methodology simulates uneven curing of the polymer and

sub-microscale variations in crosslink between the resin and the hardener. The microscale model

assumes perfect adhesion between the fiber and the matrix at the interface. Although, this tech-

nique can model the uneven curing of the epoxy, the random nature of the material property gen-

erationmay lead to unphysical variation in values in neighboringmatrix cells. To avoid unrealistic

gradients in the material properties between neighboring matrix cells, some degree of correlation

in these properties must be observed. Hence, the Pearson’s correlation coefficient (PCC) is used

to constrain the neighboring material properties. The PCC is a statistical measure of correlation

between any two variables and may have a value between ±1. This technique is applied by num-

bering all the matrix cells and generating the material properties such that the PCC after every
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N cells alternate between 0.5 and −0.5. A PCC of ±0.5 provides a compromise between fun-

damental randomness of material properties and correlation between neighboring subcells. The

formula used for the PCC in this case is:

r =

∑N
i=1(xi − x̄)(Eunit,i − Ēunit)√∑N

i=1(xi − x̄)2

√∑N
i=1(Eunit,i − Ēunit)2

(2.8)

where r is the PCC which can take the value ±0.5, x is the number of matrix sections, x̄ is the

mean of the total number of matrix sections. The comparison between the variation in material

property for 1000 epoxy sections generated using the completely random technique and the cor-

related technique withN = 50 can be seen in Figure 2.7.

Figure 2.7. Variation in material property in 1000 epoxy sections

For investigating the uniaxial response of the composite microstructure, it is important to

replicate the periodicity of the unit cell geometry. The microstructure model exhibited in Figure

2.6 represents a small unit of the composite structure, and its edges are considered to be infinitely

replicable. This periodicity can be simulated using periodic boundary conditions (PBCs) at the

continuum level tomitigate size effects arising from the arrangement of multiple fiber-matrix unit

cells, and to significantly reduce the computational expense of simulating larger representative unit
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Figure 2.8. Microstructure geometry

cells (RUCs). The PBCs are derived by considering the applied strain increment as an additive

formof the averaged strain increment and a periodic strain increment (Pellegrino,Galvanetto, and

Schrefler 1999). Hence, the PBCs for a volume∂V can be implemented using equation 2.9, which

is periodic on ∂V where ui are the displacements at the boundary of the cell that lead to changes

inmicrostructure behavior, and upi are the periodic displacements that do not play a part in global

deformations. Equation 2.9 can be rewritten in a discretized form suitable for implementation

in the FE framework (Segurado and Llorca 2002), and is displayed as equation 2.10, where the

elements Dij correspond to the global strains, and P1 and P2 represent a set of symmetrically

opposite points on the RUC. It is to be noted that the indices in these equations correspond to

the indicial notation used in continuum mechanics (Heinbockel 2001). In ABAQUS, equation

2.10 is applied as equation constraints on every nodal pair along all three degrees of freedom, using

fictitious reference points for each face (Barbero 2013). To facilitate the application of the PBCs,
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the geometry is meshed using a swept mesh control system, which generates nodes on collinear

symmetrically opposite points of the RUC.

ui = Dijyj + upiu
p
i (2.9)

ui(P2)− ui(P1) = Dij (yj(P2)− yj(P1)) (2.10)

Additionally, this methodology also simplifies the application of a uniaxial displacement field,

since the PBC equation constraints can bemodified for the loading direction to include a positive

net global displacement, along with the period components. The global response of the unit cell

is then calculated by ensemble averaging over the unit cell spatial domain. The microscale model

hence determines the effectivematerial property of themicroscaleRUCbymeasuring the gradient

of the stress-strain response, which is obtained by calculating the effective resistance force to a

small applied displacement. The mesh for the microstructural FE analysis consists of hexahedral

elements, and its complexity depends on the fiber placement in each unit cell. Figure 2.9 shows

the results of the mesh convergence studies for determining the optimum number of elements

required. The edge seed length refers to the distance between two nodes (ABAQUS 2013). The

extensivemesh convergence study leads to an optimum seeding size of 0.6 along the fiber direction

( 85,000 elements) and a seeding size of 0.95 transverse to the fiber direction ( 30,000 elements).

Figure 2.9 shows a comparison of stress contours of an RUC with 4 × 4 × 4 unit cell with

perfectly ordered geometry and an RUC of similar size with microstructure variability. The com-

parison is a clear indication that geometric perturbations lead to local variations in stress. The

changes in fiber geometry and location produce a redistribution of stresses, and regions with very

low polymer cross-linking degree may serve as stress concentration hot spots.

To estimate the deterministic accuracy of the developed microscale continuum model, the

computed material properties from a single run with only mean values of the included sources of

uncertainty applied are comparedwithmaterial property data fromavailable literature for a system
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(a) Mesh convergence forE1

(b) Mesh convergence forE2

Figure 2.9. Mesh convergence study

containing IM7 fiber and the 8552 epoxy system. For validation, only neat epoxymodels are used,

and a deterministic mean volume fraction of 0.6 is applied. The models show good comparison

with experimentally observed properties for both E1 and E2 obtained from the literature and is

reported in Table 2.3.

Table 2.3. Comparison of predicted elastic moduli of the composite system with literature data

Tensile Modulus Literature (GPa) Model Prediction (GPa) Error (%)
E1 (Fiber Dir) 164 (σdev=11.85) 165.3595 0.83
E2 (Transverse Dir) 12 (σdev=1.7) 12.81481 6.79

The stochastic microscale model is then used to determinematerial properties under all major
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(a) Perfectly ordered microstructure

(b) Disordered microstructure

Figure 2.10. Comparison of stress contours

sources of aleatory uncertainties by collecting the responses over various model executions. These

multiple responses are consolidated to obtain a distribution of material properties. The homoge-

nized properties, obtained from over 600 independently perturbed FE simulations, are compiled

to generate variational histograms, as shown in Figures 2.11, 2.12, and 2.13. It is to be noted that
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the RUCs containing fibers embedded in CNT-enhanced polymer are modeled with the weight

fraction of theCNT in each section of thematrix phase sampled around a specificmean value (1%

or 3%). Statistical parameters derived from the histogram data sets are outlined in Table 2.4 and

compared with experimentally observed uncertainties for the neat-epoxy sample.

Figure 2.11. Histograms of neat epoxy/fiber material properties

Figure 2.12. Histograms of 1% weight fraction CNT-epoxy/fiber material properties

In Table 2.4 it can be seen that the elastic properties in the direction of the fiber (E1) does

not show much variability with addition of CNTs. Load in the direction of the fibers is largely

carried by the fibers and is only slightly reinforced by the CNTs. Additionally, since the CNTs

are assumed to be randomly dispersed, the overall reinforcement effect compared to the elastic
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Figure 2.13. Histograms of 3% weight fraction CNT-epoxy/fiber material properties

properties of fiber in the E1 direction is minimal. In the transverse axis, however, an increase

of 10.4% in the average transverse modulus (E2) of the RUC with an addition of 1% CNT by

weight is observed. Furthermore, an increase of 22% in transversemodulus of theRUCis observed

when the weight fraction of CNT in the matrix is increased to 3%. Since the matrix is the major

load carrying constituent in the transverse axis, the reinforcing effect of the CNTs is significant.

The elastic property contrast between the CNTs and the matrix, which is generally in the order

of terapascals, leads to increased stiffness in the overall nanomatrix when compared to the neat-

epoxy matrix. However, this analysis assumes perfect bonding between the CNTs and the matrix,

which may be appropriate for small deformation elastic analyses. This hypothesis will be tested

thoroughly in Chapter 6 which studies the role of imperfection in interfaces.

An interesting effect of the stochastic analysis is the probability of decrease in elastic properties

with the addition of CNTs as compared to the maximum transverse elastic modulus of the neat

epoxy. Intuitively, it seems appropriate to assume that any addition ofCNTs to the neat-epoxyma-

trix will always be associated with increased elastic properties compared to the neat-epoxy matrix.

This would be expected in a deterministic analysis where the new properties of the nanomatrix

is seen as proportional to the amount of added fillers. A stochastic analysis, on the other hand,

allows for the study of non-intuitive cases, e.g., matrix consisting of poorly cured epoxy with low
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Table 2.4. Results from stochastic microscale continuum model

Wf CNT in matrix (%) MeanE1 (GPa) MeanE1 Literature (GPa) Error (%)
0 163.4 164 0.367
1 164.8 - -
3 165.3 - -

Wf CNT in matrix (%) σdev inE1 (GPa) σdev inE1 Literature (GPa) Error (%)
0 11.483 11.85 -3.196
1 11.511 - -
3 10.783 - -

Wf CNT in matrix (%) MeanE2 (GPa) MeanE2 Literature (GPa) Error (%)
0 11.73 12 2.301
1 12.95 - -
3 14.31 - -

Wf CNT in matrix (%) σdev inE2 (GPa) σdev inE2 Literature (GPa) Error (%)
0 1.5358 1.7 -10.691
1 1.7845 - -
3 1.7341 - -

weight fraction of CNTs compared with well cured neat-epoxy matrix. In this case, the nanoma-

trix mixture will display lower elastic properties when compared to the neat-epoxy sample. The

histograms and datasets in Figures 2.11, 2.12, and 2.13 demonstrate the probability of obtaining

lower properties in the nanomatrix when compared to the neat-epoxy matrix. A ratio of sets cal-

culation from this data, shown in equation 2.11 and 2.12, indicates the probability of achieving a

lower transverse tensile modulus, even with the addition of higher weight percentage of CNT to

the epoxy matrix. It is observed thus that when the elastic properties of the matrix and probable

conversion degrees are calculated using MD simulations in a random sample, there is a 24.51%

probability of encountering lower material properties in a 1% weight fraction CNT-epoxy mix-

ture when compared to the neat epoxy. This probability decreases to 5.26% when 3% weight

fraction CNT nanopolymer is compared with 1% CNT weight fraction mixture.

P1(LowerE2) =
E2(Mean 1% Weight Fraction CNT)

Max(E2(No CNT))
= 0.2451 (2.11)
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P2(LowerE2) =
E2(Mean 3% Weight Fraction CNT)
Max(E2(1% Weight Fraction CNT))

= 0.0526 (2.12)

In summary, the elastic microscale RUC model with stochastic matrix material properties ob-

tained from MD simulations, and with varying fiber volume fractions and random fiber geome-

tries, results in predictions of the composite material properties that are in close agreement with

the experimental data, which takes into consideration both mean values and standard deviations.

Furthermore, these results also demonstrate that the stochastic simulations are in closer alignment

with experimental data when compared with the deterministic simulations. Modeling the inher-

ent uncertainty naturally present in experiments is, therefore, critical for accurate predictions of

the elastic response of advanced composites.

2.5 Limited Inelastic Simulations

Figure 2.14. Nonlinear stress-strain response with direct inelastic atomistic information for neat
epoxy

To characterize the plastic behavior of the composite and nanocomposite, the inelastic infor-

mation fromMD simulations is directly applied to the FEmodel using the strain hardening phase
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Figure 2.15. Nonlinear stress-strain response with direct inelastic atomistic information for
epoxy with 1% weight fraction CNT

Figure 2.16. Nonlinear stress-strain response with direct inelastic atomistic information for
epoxy with 3% weight fraction CNT

beyond the yield point of the polymer and nanopolymer. The yield point is computed using MD

simulations with bond order based reactive force field, as detailed in Section 2.2. The stress-strain

curve from this calculation is then used to define the material properties of the microscale model

wherein plasticity is defined explicitly based on the physics arising at the atomistic length scale.

The stress-strain curve from MD simulations is normalized and applied as a hardening tabular
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input to a generic ABAQUS elasto-plastic material model. The MD stress-strain response was ex-

plicitly calculated for 0%, 1%, 2%, 3%, 4%, and 5%CNTs byweight fractions. Since the stochastic

microstructure and model generation algorithm for the nanocomposite assigns a distribution of

CNT weight fractions, the continuum stress-strain response for the particular weight fraction

was obtained from the appropriate MD stress-strain response using linear interpolation, with the

assumption that all the interpolation points on different loading paths are characterized by the

same number of steps on the same plastic surface (Pellegrino, Galvanetto, and Schrefler 1999).

The generation of the geometry and elastic properties for the inelastic models, including the effect

of stochasticity in the various uncertain variables, remains the same as discussed in the previous

sections.

The stress-strain response obtained from the non-linear microscale model for the neat com-

posite, 1% weight fraction nanocomposite, and 3% weight fraction nanocomposite, can be seen

in Figures 2.14, 2.15, and 2.16, respectively. It is observed that significant inconsistencies and

variations are present in the failure of theE1 simulations. The loss of mesh objectivity due to the

application of a kinetic hardening model with softening tabular inputs leads to an ill-defined ma-

terial state, which causes uncertain failure in the E1 direction. Moreover, the response in the E2

direction also seems unrealistic, compared to experimental observations, since the post-peak soft-

ening was not captured. Hence, this model cannot be used to extract any meaningful predictions

or insight into the non-linear processes in advanced composites under mechanical loading at the

continuum length scale. An alternate methodology will have to be developed using parameters,

observed at the atomic scale, that may be scaled to identify damage at the higher length scales in a

consistent manner.
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2.6 Summary

Thedirect transfer of information, from atomistic to the continuum scale, can have substantial

benefits in increasing accuracy of predictions in elastic property predictions of advanced compos-

ites. In this chapter, a statistical methodology was developed to transfer linear elastic information

from atomic scale MD simulations of the resin-hardener-nanofiller system into microscale finite

elementmodels of the CFRP andCNT/CFRP system. Sources of variabilities were also included

in themodeling framework toobtaindistributionof properties, which allowed aprobabilistic anal-

ysis of possible material properties. The analysis prediction of both mean the standard deviations

of the composite properties was observed to be in close agreement with experimental values. Us-

ing this modeling technique, possible distribution of elastic properties of theCNT/CFRP system

were obtained.

Although this methodology proved accurate for predictions of linear elastic properties, it was

observed that the inelastic information could not be directly transferred due to fundamental dif-

ferences in the time-scale and length-scale of the MD simulations and the FE simulations. Addi-

tionally, in the inelastic domain, the definition of stress from MD simulations does not remain

consistent with nodal stresses calculated using FE (Subramaniyan and Sun 2008). Since MD sim-

ulations are based on energy formulations, utilizing energetically driven information transfer tech-

niques may lead to a more consistent theoretical basis for information bridging and address the

challenge of inconsistent definitions of parameters that are transfered. Hence, this motivates the

development of an energy driven, thermodynamically admissible framework for transferring in-

elastic information from MD simulations to the continuum model for damage and non-linear

analysis of advanced composites.
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Chapter 3

CDM BASED ATOMISTICALLY INFORMED DAMAGE FORMULATION

3.1 Introduction

The coupling of inelastic molecular dynamics (MD) information with continuum scale mod-

eling is a challenging problem due to fundamental differences between the two techniques. Com-

putational limitations add a second layer of complexity to a straightforward implementation of

coupledMD-continuummethodologies. MDsimulationmethods involvemodeling ofmolecules

as point objects, which then form the discrete basis for creating a numerical model. Continuum

approaches, by definition, assume the continuous functions of the governing variables. This as-

sumption leads to a limiting of the maximum size of the finite element (FE) models that may be

considered, wherein the integration points would have to be represented by a minimum of a few

thousand molecules to be valid. As a result, large computations are needed for direct coupling

between MD simulations and FE models. Section 1.1 shows recent studies that have considered

concurrent and semi-concurrent coupled FE and MD simulations to explicitly capture nonlinear

nanoscale mechanics (Talebi et al. 2014). However, the nanoscale mechanics when used in these

works utilize empirical force fields that cannot capture fundamental nonlinearities, such as bond

breakage of polymer chains at the nanoscale (Subramanian et al. 2015). When reactive bond or-

der force fields are used in these methodologies, the implementation becomes computationally

infeasible. Furthermore, it has been shown that there are certain localized phenomena, such as

stress recovery that follows initial softening and damage saturation in nanopolymers (see Figure

3.1) and that can only be captured through explicit modeling of the nanoscale substructures using

reactive bond order force fields (Subramanian, Rai, and Chattopadhyay 2015).
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Figure 3.1. Stress-strain response of CNT nanopolymers from MD simulations with reactive
force fields

Source: (Subramanian, Rai, and Chattopadhyay 2015)

The continuum damage mechanics (CDM) approach has shown promise in modeling inelas-

tic and damage response in materials. CDM has its roots in metal plasticity, but has been de-

veloped for many other applications, such as ceramic matrix composites in a multiscale frame-

work (Shojaei et al. 2014) and to describe micro-crack distributions in the form of a fourth order

damage-included fabric tensor (Voyiadjis and Kattan 2006). Similarly, the Internal State Vari-

ables (ISV) concept, used to describe the present state of the material, is seen as compatible with

the CDM framework (Horstemeyer and Revelli 1997). Recent work on modeling polymer plas-

ticity using ISVs, defined from fundamental molecular phenomenawithout utilizing approximate

ad-hocmathematical functions, was shown to be highly successful in modeling large-deformation

compressive behavior in thermoplastics (Bouvard et al. 2010). Thus, an arrangement involving

CDM and ISVs offers the scope and potential to implement continuum-based inelastic functions

influenced by MD simulations and polymer mechanics as a way to express the damage state of

both matrix and nanopolymer and to arrive at an inelastic analysis of advanced composites.

Motivated by the above requirements for damage modeling in polymers and nanopolymers,
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this chapter proposes a constitutive law for thermoset polymers based on the CDM framework

and in conjunction with a damage evolution equation that is developed from elastoplastic MD

simulations results using the reactive force fields. The proposed method allows a physical descrip-

tion of damagemechanisms based on the fundamental nanoscale damage simulations of a polymer

matrix. A set of constitutive equations are then derived using a thermodynamic framework, as pro-

posed by Coleman and Gurtin (Coleman and Gurtin 1967), as well as a classical CDM method-

ology, as described by Lemaitre (Lemaitre 1985). Additionally, hardening equations are based on

polymer physics, wherein special consideration for volumetric damage and stress triaxialities are

applied.

3.2 Thermodynamics and Damage Mechanics

To fully understand themethods discussed herein outlining the derivation of the atomistically

informed damage model for thermoset polymers, a number of related concepts will need to be

reviewed. This section discusses the thermodynamics of inelastic processes, the concept of ISVs,

and introduces continuum damage mechanics. For any given body of volume V and surface ∂V ,

considered to be a closed system and existing in an equilibrium state, the internal energyE can be

characterized as:

E =

∫
V

eV dV (3.1)

where eV is the internal energy per unit volume. For such a body the first law of thermodynamics,

using the principle of energy conservation as the basis, states that any change in internal energy of

the body has to equal the added heatQ and workW done on the body. The differential form of

this law can be presented as:

dE = dQ+ dW (3.2)

The second law of thermodynamics states that for such an enclosed system as the body under
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investigation, the total entropy may never decrease; it can remain equal in the case of reversible

systems, and it will increase for irreversible processes. This law can be reformulated for contin-

uum mechanics applications as the Clausius-Duhem inequality (Gurtin and Williams 1966), the

differential form of which is shown below:

ρη̇ ⩾ −∇ ·
( q
T

)
+
ρs

T
(3.3)

where ρ is the mass density of the body, η is the entropy per unit mass, q is the heat flux vector, T

is the absolute temperature, and s is any energy source per unit mass. In this notation, the time

derivative of a variable A is presented as Ȧ. To use the Clausius-Duhem inequality for the pur-

pose of constructing material constitutive equations, equation 3.3 needs to be expressed in terms

of internal energy and the Cauchy stress σ. Using the product rule for the divergence operator,

equation 3.3 can be rewritten as:

ρη̇ ⩾ − 1

T
∇ · q − q · ∇

(
1

T

)
+
ρs

T
(3.4)

Simple manipulation of the divergence operator on 1
T

yields:

ρη̇ ⩾ − 1

T
∇ · q + 1

T 2
q · ∇T +

ρs

T
= − 1

T
(∇ · q − ρs) +

1

T 2
q · ∇T (3.5)

Equation 3.2, which shows the balance of energy, can be written for continuum mechanics

applications as:

ρė− σ : ∇v = −(∇ · q − ρs) (3.6)

where e is the internal energy per unitmass (specific internal energy) and v is the velocity gradient.

Substituting equation 3.6 in 3.5 and after rearranging some terms, the following expression can be

easily arrived at:

ρ(ė− T η̇)− σ : ∇v ⩽ −q · ∇T
T

⇒ σ : ϵ̇− ρ(ė− T η̇)− q · ∇T
T

⩾ 0 (3.7)
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where the velocity gradient has been substituted with the time derivative of strain ϵ̇ for small dis-

placements. Equation 3.7 represents the standard Clausius-Duhem inequality used in continuum

mechanics applications.

Usable material constitutive models are formulated through set(s) of nonlinear time deriva-

tive differential equations with primary variables being the strain rate (leading to flow equations

with the inelastic strain rate as the variable) and some ISVs. Within this framework, ISVs homoge-

nize certain lower length scale phenomena that cause changes in the internal energy of the system

and essentially represents these effects at the length scale being explicitly investigated. An example

of an ISV is an all-encompassing damage variableD, which may reflect the effects of microscale

damage, such as void growth andmicrocracks at themacroscale. Materialmodelsmay have various

such ISVs to characterize different phenomenon, e.g., hardening, back stress, grain slip, and poly-

mer crazing, all of which depend on the inelastic behavior that needs to be reproduced. However,

the critical step required for successful integration of the ISVs into the governing equations is the

derivation of ISV evolution, obtained from particular scalar potentials (Stamm1993). These ther-

modynamic potentials can be defined for equilibrium states, which are determined by the values

of the ISVs and the observable variables. One such potential is theHelmholtz free energy that pro-

vides a measure of useful work obtained from an enclosed system in equilibrium and isothermal

isobaric conditions. For such systems, the Helmholtz free energy can be defined as:

ψ̄ ≡ E − TS (3.8)

Using the definition of internal energy and its relation with ev (shown in equation 3.1) and e, the

time derivative of the Helmholtz specific free energy ψ can be shown to be equal to the rate of

change of the specific internal energy:

ψ̇ = ė (3.9)

Hence, the rate of change of the Helmholtz specific free energy can be used interchangeably with

the rate of change of the specific internal energy for a body under all conditions described above.
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These potentials can now be used to characterize inelastic processes of a material system in a ther-

modynamically consistent form by substitution into theClausius-Duhem inequality equation 3.7

for complete applicability with material response formulations.

σ : ϵ̇− ρ(ψ̇ − T η̇)− q · ∇T
T

⩾ 0 (3.10)

Additionally, the inelastic processes are defined as caused by the thermodynamic forces asso-

ciated with each of the ISVs, thereby creating a change in the potential due to a variation in the

ISV. The thermodynamic force applicable to each ISV can then be calculated as the gradient of

the change in potential due to a change in the ISV.

A =
∂ψ

∂B
(3.11)

Equation 3.11 shows an example of the thermodynamic affinity calculation or the thermodynamic

forceA associatedwith an ISVB, which creates an inelastic phenomenon characterized by change

in thepotentialψ. The evolution laws for the ISV Ḃwill thenhave tobe formulated such that these

phenomena may agree with experimental observations. Thus, equations 3.10 and 3.11 provides

the basic thermodynamic framework for the construction of viable nonlinear material models.

One of the main causes of nonlinear processes in any material under standard static loading

conditions is intrinsic damage that occurs over various length scales under the application of en-

ergy (Ju 1990). A pristine continuum macroscale body may see the introduction and growth of

nano- and microscale discontinuities such as voids and microcracks under mechanical loading.

Such discontinuities may be studied using the framework of fracture mechanics; however, due

to the random by which these damages are generated, the number of ‘cracks’ that will need to

be studied simultaneously and the complex damage paths involved, make the fracture mechanics

framework difficult to employ. As an alternative, the theoretical background of continuum dam-

age mechanics (CDM) may be applied to such problems in a far more effective manner. CDM

studies the homogenized effects of such nano- and microscale damages at the macroscale using
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a state variable defined as damage. Additionally, an understanding of this damage variable can

be developed from the previously discussed thermodynamics of irreversible processes, which pro-

vides a firm practical basis for the CDM theory. An explanation of this damage variable as well as

theoretical principles of CDM are presented next in this section.

Figure 3.2. Damaged RUC and an equivalent pristine RUC

For the purposes of understanding the CDM concept, consider a representative unit cell

(RUC) with a volume at least an order of magnitude larger than the largest ‘damage’ or disconti-

nuity, as shown in Figure 3.2. Since the body that the RUC represents is under traction loading,

the RUC will also experience mechanical stress. For simplicity, a uniaxial stress state in the RUC

can be considered, which can be calculated by the component of the force normal to the surface

of the RUC, Fn = Fn̂. The uniaxial stress can then be measured by:

σ =
Fn

∆A
(3.12)

where∆A is the area of the RUC under consideration, and n̂ is the normal vector to∆A. How-

ever, due to the discontinuities presented by the voids, microcracks, and othermicroscale damages,

the effective area∆A∗ that resists the applied forceFn will undoubtedly be less than theRUCarea
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∆A. Let∆AD be the aggregate total area consumed by the discontinuities that do not play a role

in resisting the applied load. The ratio of the damaged area to the total area then represents the

level of ‘pristiness’ of the RUC. Under the assumption that the discontinuities are isotropic and

scattered in a random fashion, this ratio can be defined as a scalar damage variableD, which can

be written as:

D = lim
∆A→0

∆AD

∆A
(3.13)

It can easily be seen that the scalar variableD is bounded between 0 and 1, withD = 0 represent-

ing a completely pristine material and D = 1 representing complete deterioration of the RUC.

However, in realistic cases there exists a value of damage less than unity that will cause large scale

coalescence of damage leading to macroscale failure. This critical damage factor is represented by

Dc.

With the introduction of damage, it is observed that the stress on the RUC cannot be mea-

sured using equation 3.12, which does not account for the reduction in area due to the discontinu-

ities. The mechanical resistance in the damaged RUC can instead be measured using the effective

uniaxial stress σ∗ that accounts of the reduction in area.

σ∗ =
Fn

∆A−∆AD

=
Fn

∆A
(
1− ∆AD

∆A

) (3.14)

Substituting equation 3.13 and 3.12 in 3.14, the following expression is obtained:

σ∗ =
σ

1−D
(3.15)

Equation 3.15 is the primary equation relation of the effective stress concept, which relates the

stresses in a damaged body to the stresses in a pristine body, along with themeasure of the damage

variable. This concept permits the calculation of stresses in a damaged body by studying the pris-

tine body, as long as an independent physical relationship to calculate the damage variable can be

found.
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Figure 3.3. The strain equivalence principle

An additional concept that is used in CDM applications to facilitate the derivation of govern-

ing equations is the principle of strain equivalence. This principle along with the equivalent stress

concept allows the constitutive equations of the pristine material to be used for studying the dam-

aged material, as long as the effective stress is used. The principle of strain equivalence states that

the strain in a damaged material is equal to the strain in a pristine material, as long as the damage

and effective stress is taken into consideration in the constitutive equations.

ϵe =
σ∗

E
=

σ

E(1−D)
=

σ

E∗ (3.16)

where ϵe is the elastic strain,E is the elasticmodulus of the pristinematerial, andE∗ can be consid-

ered to be the effective elasticity modulus of the damaged material such thatE∗ < E. The effec-

tive elasticmodulus homogenizes the reduction in area∆A−∆AD due to the presence of discon-

tinuities, and allows the use of traditional constitutive models with reduced stiffness that may be

characterized through physical models or they may be phenomenologically measured through ex-

periments. Figure 3.3 illustrates the concept of strain equivalence. The various concepts discussed

in this section provides the necessary background material required for deriving the atomistically

informed damagedmodel, which has firm rooting in the thermodynamics of irreversible processes

and CDM. The next section presents the formulations of the proposed damage model.
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3.3 Continuum Formulations

3.3.1 Coupled Damage-Plasticity Theory

The continuum description for damage analysis uses the CDM concept, the formulations

for which have been classically derived by Lemaitre (Lemaitre 2012) and Chaboche (Chaboche,

Boudifa, and Saanouni 2006). Since these formulations are based on a thermodynamic framework

as defined byColeman andGurtin (Coleman andGurtin 1967) the free energy has to be specified.

TheHelmholtz specific free energy is assumed to be a function of the following state variables: the

elastic strain ϵ∼
e, the isotropic damage variable D, and the internal strain like variable associated

with chain movement and hardening/softening ξ. 2 The hardening variable is explained further

in the following sections. The expression for the Helmholtz free energy is:

ψ =
1

ρ0
ψ̄(ϵ∼

e, D, ξ) (3.17)

where ρ0 is the original density. The total strain can be decomposed into the elastic and plastic

strains through an additive decomposition such that:

ϵ∼ = ϵ∼
e + ϵ∼

p (3.18)

It is to be noted that this work uses the small strain assumption; however, the additive decomposi-

tion can still be used in a finite strain framework using updated Lagrangian formulations. In this

case the elastic strain tensor becomes equivalent to a hypoelastic formulation in agreement with

the Green-Naghidi stress rate (Jeridi, Laiarinandrasana, and Sai 2015).

By recalling equation 3.10, the Clausius-Duhem inequality can be reduced for isothermal iso-

2The notation for second order tensors and fourth order tensors used in this chapter are A∼ and A
≈

respectively.
All other variables can be considered to be scalar.
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baric conditions, such that Ṫ = 0 and∇T = 0, which leads to the following relation:

σ∼ : ϵ̇∼ − ρψ̇ ⩾ 0 (3.19)

The classical arguments made by Coleman (Coleman and Gurtin 1967) allows the derivation of

the Cauchy stress from the Helmholtz potential, since the Cauchy stress happens to be the ther-

modynamic force or thermodynamic affinity associated with the state variable ϵe as mentioned in

equation 3.11. With this knowledge and with equation 3.17, the Cauchy stress can be defined

from the thermodynamic potentials as:

σ∼ = ρ
∂ψ

∂ϵ∼
e
=

ρ

ρ0

∂ψ̄

∂ϵ∼
e

(3.20)

Substituting equation3.17, 3.18, and3.20 in equation3.19, the following inequality canbe arrived

at:
ρ0
ρ
σ∼ : ϵ̇∼

p − ∂ψ̄

∂D
Ḋ − ∂ψ̇

∂ξ
ξ̇ ⩾ 0 (3.21)

Thegradients can be substitutedwith conjugate thermodynamic force variables such that equation

3.21 can be simply written as:

ρ0
ρ
σ∼ : ϵ̇∼

p + Y Ḋ − kξ̇ ⩾ 0 (3.22)

which is the intrinsic dissipation inequality. Y and k are the thermodynamic affinities associated

with damageD and the internal strain due to chain entanglement in the polymer ξ respectively.

The associated thermodynamic affinities are then defined as:

Y = − ∂ψ̄

∂D
and k =

∂ψ̄

∂ξ
(3.23)

The negative sign associated with Y is present to ensure that the dissipation inequality is always

satisfied.

The free energy term can be additively decomposed to a term that is defined by the elastic

energy and a term defined by the hardening variable, since both damage and elastic strain operate
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on the elastic energy term.

ψ̄ = ψ̄e + ψ̄k (3.24)

The elastic term of the free energy can be further expanded as:

ψ̄e =
1

2
ϵ∼
e : σ∼ (3.25)

where σ will have to be replaced by the effective stresses as mentioned in equation 3.15. Substitut-

ing the effective stresses, and utilizing the strain equivalence principle as formulated in equation

3.16, the following relation for the elastic energy term can be obtained:

ψ̄e =
1

2
(1−D) ϵ∼

e : L
≈
: ϵ∼

e (3.26)

where L
≈

is the stiffness matrix. To expand the hardening variable, a quadratic hardening free en-

ergy term is assumed as:

ψ̄k =
1

2
Ckξ

2 (3.27)

whereCk is amaterial parameter that represents the internal stresses developedby chainmovement

and entanglement. The complete expression for the specific free energy can now be written as:

ψ =
1

ρ0
(ψ̄e + ψ̄k)− TS =

1

2ρ0
(1−D) ϵ∼

e : L
≈
: ϵ∼

e +
1

2ρ0
Ckξ

2 − TS (3.28)

where the specific absolute temperature T and specific entropy S is also present due to the defini-

tion of the Helmholtz free energy as mentioned in equation 3.8. However, these variables do not

play a large part in the governing equations as can be seen in the final expressions.

A straightforward methodology to deal with density differences due to various phenomenon,

such as void nucleation and growth is to associate it with damage due to volume changes using a

dependent variableDv (Chaboche, Boudifa, and Saanouni 2006):

ρ

ρ0
= 1−Dv (3.29)
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Substituting equation 3.28 and 3.29 in equation 3.20 provides a relation for Hooke’s law for the

non-pristine material and is expressed as:

σ∼ = ρ
∂ψ

∂ϵ∼
e
= (1−Dv)(1−D)L

≈
: ϵ∼

e (3.30)

The thermodynamic affinities defined in equation 3.23 can also be further expanded using equa-

tion 3.28 as:

Y = − ∂ψ̄

∂D
=

1

2
ϵ∼
e : L

≈
: ϵ∼

e (3.31)

k =
∂ψ̄

∂ξ
= Ckξ (3.32)

The total plastic potential ϕ governing material behavior assumes plastic, damage, and hard-

ening potentials ϕp,D and ϕξ . The plastic potential is chosen such that the effects of damage and

volumetric change are also considered:

ϕ = ϕp,D(
ρ0
ρ
σ∼ , k,D,Dv) + ϕξ (3.33)

The plastic potentialϕ also known as the yield function, is chosen as amodification of the classical

Lemaitre yield function (Lemaitre 1985):

ϕ =
ρ0
ρ

σ∗
eq

1−D
− k − σy ⩽ 0 (3.34)

where σy represents the yield stress. The scalar equivalent stress σ∗
eq is formulated such that hy-

drostatic stresses can be considered. Hence, a combination of the first and second invariants is

taken using a variable elliptic form as used in works of Green and Besson (Green 1972; Besson

and Guillemer-Neel 2003) and Chaboche (Chaboche, Boudifa, and Saanouni 2006):

σ∗
eq =

√
J(σ∼)

2 + αf(D,Dv)I(σ∼)
2 (3.35)

where α is the degree of ellipticity and is taken to be 0.5 in this work. f(D,Dv) is a function of

the damage parameters used to couple the yield functionwith the associated damage. In this work,
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this function is assumed to be varying only with volumetric damage and specified as f(D,Dv) =

D0+Dv , whereD0 is a small phenomenological constant used to couple hydrostatic stresses with

the deviatoric components even when Dv is 0. When α is 0, the yield function reduces to the

classical Lemaitre form.

3.3.2 Evolution of State Variables

The plastic strain evolution equation can be obtained using the classical plasticity normality

conditions. We can denote the plastic strain rate as:

ϵ̇∼
p = λ̇

∂ϕ

∂(ρ0
ρ
σ∼)

=
λ̇

1−D

∂σ∗
eq

∂σ∼
(3.36)

where the viscoplastic multiplier is obtained using the Peric formulations (Peric 1993) and is

shown below:

λ̇ =
1

K

[(
ϕ+ σy
σy

) 1
n

− 1

]
(3.37)

where K and n are the viscoplastic constants.

To evaluate the internal strain evolution due to chain entanglement requires an inclusion of

polymer chain mechanics. In general, it is understood that the physics of polymer hardening are

vastly different from that of metals due to the nature of polymeric materials; as such, the physics

of polymer chain motion and entanglement is simulated with an internal strain like quantity. The

evolution of the internal strain due to chain entanglement, ξ, is described by evolution equations

formulated by Anand and Gurtin (Anand and Gurtin 2003). The equation, as simplified by Bou-

vard et al. (Bouvard et al. 2010), is described as follows:

ξ̇ = h0

(
1− ξ

ξ∗

)
λ̇ ξ̇∗ = g0

(
1− ξ∗

ξsat

)
λ̇ (3.38)

The evolution equation for the internal strains describes obstacles to chain movements such as

chain entanglement points. The internal strain produced due to these obstacles and the resultant
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entanglement canbe representedby the term ξ. Theenergy barrier that opposes chainmovement is

described by the term ξ∗. Asmore chains escape the entanglement points, there is a lowering of the

energetic barrier resulting from the increased cooperative motion of chains. Hence, ξ∗ decreases

as ξ increases until the saturation point ξsat is reached. h0 and g0 are the associated hardening

moduli. The internal stresses due to chain entanglement in the polymer network can then be

evaluated using:

k =
∂ψ̄

∂ξ
= Ckξ (3.39)

Figure 3.4. Representative BDE density progression with applied strain

The damage evolution formetals is generally adopted to be a simple nonlinear power law func-

tion of Y due to the simplicity and effectiveness of this functional form for metallic materials.

However, damage physics in polymers is vastly different from damage mechanisms in metals and

requires a separate evolution equation that considers the kinetics of polymer damage. To account

for the physics of polymer damage, damage evolution is instead chosen to surrogate theMD simu-

lations of fundamental damage occurring in the polymer. For thermoset polymers, under isother-
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Figure 3.5. Damage evolution for a spectrum of crosslinking degrees

mal conditions, and at operating temperatures below the glass transition temperature, the energy

variations due to successive bond breakages at the atomistic scale have shown to be related to dam-

age at the continuum level (Subramanian, Rai, and Chattopadhyay 2015).

Figure 3.4 shows the progression of bond disassociation energy (BDE) density undermechan-

ical loading calculated using MD simulations as described in section 2.2. The BDE density is an

approximation of fundamental damage occurring at the atomic scale due to successive covalent

bond breakage. To account for the observed damage kinetics, a sigmoidal damage evolution law,

with parameters varying according to crosslinking degree, is used following the BDE trend ob-

served in MD simulations. It is shown in Chapter 2 that the polymer stiffness is a function of

the crosslinking degree (Subramanian et al. 2015). Additionally, at low crosslinking degree, i.e.,

low curing, the polymer exists in a viscous state where damaging the material requires application

of minimal energy. At a high crosslinking degree, i.e., high curing, the polymer is stiff requiring

higher application of energy to damage. Hence, the damage evolution equation is chosen such that

it reflects the change of the nature of damage with change in crosslinking degree, and expressed
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as:

Ḋ =
λ̇

2
·

[
sgn(χ) · −(1− η)|χ| − |χ|

−2(1− η)|χ|+ (1− η)− 1
+ 1

]
(3.40)

where sgn() is the signum function and χ is defined as:

χ = 2

(
Y

Y0

) 1
2(1−η)

− 1 (3.41)

η is the crosslinking degree and Y0 is a material parameter associated with the maximum energy

required to begin damaging thematerial. Figure 3.5 shows the variation of nominal rate of damage

Ḋ(λ̇ = 1) versus normalized elastic energy Y
Y0

.

Finally, the evolution of the dependent volumetric damage parameter is simply obtained

through the equations of mass conservation of volume changes induced due to plasticity. It can

be expressed as:

Ḋv = (1−Dv) tr(ϵ̇∼
p) (3.42)

where the trace of the plastic strain rate is considered.

3.3.3 Yield Stress Variation with Crosslinking

Since, the analysis presented in the previous section considers variation of material behavior

with the polymer crosslinking degree, a relationship between yield stress σy and crosslinking de-

gree η needs to be determined. In this work, the relationship is found through experimental char-

acterization. The experimental procedure for testing the polymer dog-bone samples as detailed by

Fard et al. (Fard, Liu, and Chattopadhyay 2011) was followed. Uniaxial quasi-static test of flat

dog-bone specimen made from Epon E863 Resin and Epi-Cure 3290 hardener (100/27 weight

ratio) was performed. To find the relationship between crosslinking degree and yield stress, spec-

imens with varying total cure times were tested under uniaxial tension until failure. The curing

times for the tested specimens are shown in Table 3.1. Since the specimen are cured for varying
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amounts of time, the hypothesis is that each specimen will also have varied crosslinking degrees,

since the crosslinking degree is a function of the curing time and temperature. The temperature

during the cure process was maintained to be constant and all the samples were cured at the same

temperature to control one of the variables; hence, the temperature is not considered to be a curing

variable.

Table 3.1. Specimen Cure Times

Specimen Number Curing Time (Hours)
Specimen 1 6.5
Specimen 2 7
Specimen 3 7.5
Specimen 4 8

Figure 3.6. Yield stress vs. crosslinking degree

The yield stress of each specimen was measured using the 0.2% method, where the yield stress

is considered to be the point where a line, originating at 0.2% strain and parallel to the elastic re-

sponse, bisects the experimentally observed stress-strain response. Additionally, the elastic mod-

ulus was calculated using standard procedures for uniaxial tests, by measuring the gradient of a
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linear model that fits the elastic response. Using equation 2.1 and the curing times reported in Ta-

ble 3.1, the crosslinking degree for each specimen was back-calculated. The relationship between

crosslinking degree and the corresponding yield stress was observed to be linearly dependent and

can be seen in Figure 3.6. The following linearmodelwas found to be the closest fit to the observed

response:

σy = 37.495η + 56.249

This model replaces the yield stress σy in equation 3.34, which makes the crosslinking degree the

primary variable that drives tunable parameters. However, the crosslinking degree cannot be arbi-

trarily applied to fit experimental data, since the crosslinking degree is an experimentally charac-

terizable material parameter.

3.4 Verification and Validation

Table 3.2. Damage Model Parameters

η .19 h0 2
ϵ̇ .005 per sec g0 1
K 15 ξsat 0.08
n 2.5 ξ0 0.12
σy 63.375 MPa Ck 2.8 GPa
Y0 .12 MPa

For verification of the proposed damage model, it is benchmarked against a widely used classi-

cal porous plasticity model and a classical CDMmodel available in literature, namely, the Gurson

model asmodified byTvergaard andNeedleman (Tvergaard andNeedleman 1984), and the classi-

cal Lemaitre CDM model (Lemaitre 1985, 2012). Realistic material parameters for an aerospace

grade polymer are applied to the Gurson-Tvergaard-Needleman(GTN)model. Subsequently, the

Lemaitre CDM model is fitted to match the GTN model by changing the values of parameters
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associated with Lemaitre’s damage evolution law. Following this, the proposed model is provided

with the same parameters as applied to the Lemaitre CDM model. To ensure a similar basis for

comparison, all three models use the same hardening definition as explained in section 3.3, and

additional parameters are detailed in Table 3.2. The specific parameters used in the GTN and

Lemaitre CDM model are detailed in Table 3.3. The classical Lemaitre damage evolution equa-

tion used in this section is expressed as:

Ḋ =
(Y
S

)s

(1−D)−β+1λ̇ (3.43)

Table 3.3. Model Parameters

GTN Lemaitre
η 0.19 η 0.19
σy 63.75 MPa σy 63.75 MPa
q1 1.5 S 1× 107J/m3

q2 1.0 s 1.0
q3 1.0 Y .12 MPa
fc 0.1 β 1.0
fF 0.4
fN 0.08
µN 0.05
sN 0.01

The comparison of the three models can be seen in Figure 3.7. It is observed that the GTN

model underestimates initial damage until the critical porosity volume fraction is reached. The

critical porosity volume fraction can be a phenomenological parameter and is hard to define, espe-

cially for polymers. The classical CDM model overestimates damage due to the exponential dam-

age evolution function, which generally estimates metal physics accurately; however, the model

does not successfully capture polymer damage kinetics. The atomistically informed damagemodel

developed in section 3.3 shows the same trend as the classical models until substantial nonlinear-

ity is observed, followed by stable damage evolution. This trend seems to correlate with physical
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Figure 3.7. Model benchmarking

evidence of slow initial damage evolution, followed by a faster rate as cracks coalesce, and subse-

quently followed by a slower rate as the damaged state saturates. The comparisons with classical

models provide a verification of the atomistically informed damage model, which can now be

tested for validity by comparison with actual experimental observations.

Figure 3.8. Open-hole specimen details

Validation of the atomistically informed damage model is performed by comparing the pre-
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Table 3.4. Open-hole specimen dimensions

Dimensions C D L LO T W WO
Values (mm) 3.5 58.5 32.5 97.5 3.5 13 26

dictions from numerical simulations with the derived damage model to the observed local and

global strain response of a polymer open-hole tension experiment. To perform the experiment,

appropriate specimens were manufactured using Epon E863 Resin and Epi-Cure 3290 hardener

(100/27 weight ratio). The design and manufacturing of the specimen, as well as experimental

procedure is based on ASTM standard D638 (ASTM-D638-14 2014), as modified by Yekani

Fard et al. (Fard, Liu, and Chattopadhyay 2011) for the testing of open-hole polymer specimens

under uniaxial tension. Specimen details are presented in Table 3.4 and Figure 3.8.

(a) Unloaded configuration (b) Failed specimen

Figure 3.9. Open-hole test specimen displaying speckle pattern

To begin the testing process, the specimen is gripped at the ends using hydraulic grips in an

MTS mechanical testing machine. 3-D Digital Image Correlation (DIC) was used to measure
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the displacement and strain field contours on the surface of the open-hole test specimen. The

DIC system takes digital images during the experiment and then tracks a random speckle pattern

shown in Figure 3.9, which is painted on the surface of the specimen to calculate relative and rigid

body displacements. The displacement field is then post-processed to obtain corresponding strain

fields. The stereo-vision capabilities of DIC ensures a highly accurate in-plane and out-of-plane

displacement and strain measure of a surface.

Figure 3.10. FE model stress contours in the 11 direction

The specimen was tested in displacement control at a rate of 1mm per minute to ensure quasi-

static conditions. The displacement and strain field calculations were performed only for the stem

portion of the test coupon, as shown in Figure 3.8. Rigid body displacement of the specimen from

the DIC results was used to calculate and ensure minimal grip slip. A numerical model of the

specimen is generated inABAQUS, a commercial FE package, and then virtually tested under the

same conditions as the experiment. The formulations presented in section 3.3 are implemented in

ABAQUS using a user sub-routine with damage model parameters detailed in Table 3.2 and then

applied to the polymer material. The numerical model is meshed with 1550 3-D C3D8R solid
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Figure 3.11. FE model damage contours

brick elements with reduced integration. A finer mesh is generated near the hole to capture the

stress concentration effects. Only the stem portion of the experimental specimen is modeled. The

boundary conditions emulate the experiment with the bottom surface constrained in 11 direction

(for orientation see Figure 3.8) and a displacement applied at the upper surface in the positive 11

direction under quasi-static conditions.

The stress contours in the loading direction (σ11) obtained from the FE simulation are shown

in Figure 3.10, where the classical stress concentration contours around the open-hole can be ob-

served. The damage contours in Figure 3.11 show a clear cross localization pattern at the onset of

nonlinear behavior around the region. Figure 3.12 shows the comparison of the far field strain be-

tween the experimental results and the FE model versus the applied displacement. The reported

strain is an average value measured at a few points far away from the hole and in the loading direc-

tion (ϵ11) which is shown as section A in Figure 3.10. To maintain a fair comparison, the strains

were measured at the same points in the FE model as the DIC images of the experiment. It can
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Figure 3.12. Far-field strain comparison of experiment and model

Figure 3.13. Near-field strain comparison of experiment and model near hole

be seen that nonlinearity in far field strains and complete fracture of the specimen were captured

reasonably well by the model.

Figure 3.13 shows the strain evolution (ϵ11) around the field of the hole. These strains were

measured as an average value taken from section B in Figure 3.10. The local area around the hole
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Figure 3.14. Comparison of model (left) and experimental (right) strain contours at 50% final
load

experiences increased stresses due to the concentration effects and, at larger crosshead displace-

ments, this leads to concentrated plasticity and damage in the polymeric material relative to the

far field regions. This phenomenon is exhibited as nonlinearly increasing strains in Figure 3.13.

The slight mismatch around 5% strain is attributed to the plasticity algorithm, which depends

on the plastic potential activating the damage formulations. This mismatch can be corrected by

taking better measures of the yield point for the damage formulation and, in future work, will be

evaluated based on MD simulations of the polymer. The strain contours in the loading direction

(ϵ11) from the experiment, as captured by the DIC software, is then compared against the strain

contours from the FE model in Figure 3.14 and Figure 3.15. It can be seen that the model closely

follows the experimental results in the far field regions as well as at the local region around the

hole. The model successfully captures the nonlinear increase in strains and the resulting fracture

due to local plasticity and damage, which are the essential characteristics of the open-hole test.
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Figure 3.15. Comparison of model (left) and experimental (right) strain contours at 95% final
load

3.5 Damage Model Predictions for Neat Polymer

This section presents results and predictions from the proposed damage model for neat poly-

mer. Figure 3.16 shows the comparison of the damage model to a uniaxial tension experiment.

From the experimental values, it is possible to calculate the crosslinking degree by performing an

inverse calculation for the modulus using equation 2.1. The crosslinking degree was calculated to

be η = .19 in the performed experiments. This value was used as input to the damage model,

and the rupture criteriaDc, which is defined as the percentage of damage at which global material

failure occurs, was set to be 2.5%. Figure 3.18 shows the predictions of the model withDc set to

30%. Similar parameters as in the simulations performed in the previous section are used for the

damage model and are detailed in Table 3.2.
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Figure 3.16. Model and experiment comparison withDc = 2.5%

Figure 3.17. Simulated stress-strain response for varying crosslinking degree

3.5.1 Variation with Crosslinking Degree

The variation of stress-strain response with crosslinking degree is shown in Figure 3.17. At

low crosslinking degrees the model predicts greater post yield behavior as compared to higher
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Figure 3.18. Stress-strain response withDc = 30%

crosslinking degrees, where the post yield region decreases considerably. The maximum ultimate

strength is reached at about 60% crosslinking, subsequent to which, there is a rapid decrease in

ultimate strength. At extremely high crosslinking degrees, the model predicts a behavior wherein

the material fails with almost no post yield response similar to a brittle material response.

3.5.2 Evolution of Internal State Variables

The evolution of the damage variableD and the damage evolution Ḋ is shown in Figure 3.19a

for two extreme values of the crosslinking degree at Dc = 2.5%. It is observed that at lower

crosslinking degree, the damage evolution is slower, whereas at higher crosslinking degree, damage

evolution is rapid. This trend implies that at lower crosslinking degree, a larger post yield response

can be expected while smaller post yield region can be expected for higher crosslinking degree as

seen in Figure 3.17. Figure 3.19b shows the damage variablesD and Ḋ for crosslinking degree η =
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(a) Damage parameters at η = .05 and η = .95
withDc = 2.5%

(b) Damage parameters at η = .19 with
Dc = 30%

(c) Hardening parameters at η = .05 and
η = .95 withDc = 2.5%

(d) Hardening parameters at η = .19 with
Dc = 30%

Figure 3.19. State variable evolutions

.19 andDc = 30%. The effects of the sigmoidal damage evolution on the damage variable can

be seen in these figures. The initial increase in damage evolution is caused by initiation of damage

and is followed by a nonlinearly increasing damage profile, which can be attributed to progressive

damage. This state leads to a peak in damage evolution causing a saturated state of damage in

the material. Following the peak, there is a decrease in the rate of damage which consequently

decreases damage accumulation.
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3.5.3 Evolution of Hardening Parameters

The evolution of the hardening parameters are shown in Figure 3.19c. It can be seen that ξ∗

decreases as ξ increases until eventually the saturation values are reached. ξ displays the internal

strain due to chain entanglements and obstacles to chainmovement. As chainmovement increases

and the associated energy increases; the barrier to this movement, displayed by ξ∗ decreases, lead-

ing tomore chainmovement and continued decrease of chain entanglement. At lower strains this

phenomenon is a major cause of hardening and softening in polymers (Anand and Gurtin 2003;

Bouvard et al. 2010). Figure 3.19d shows the hardening parameter evolution for η = .19 and

Dc = 30%. This figure clearly illustrates the state at which saturation has been attained, and

hence there is an equalization of ξ and ξ∗.

3.6 Summary

This chapter introduced the development of, and formulations for a constitutive law for ther-

moset polymers based on theCDMframework and in conjunctionwith a damage evolution equa-

tion that is developed from elastoplastic MD simulations results using reactive force fields. This

thermodynamically admissible framework uses various ISVs to definematerial damage, hardening,

and volumetric damage, based on MD simulations of covalent bond breakage under mechanical

loading, polymer physics, and stress triaxialities respectively. The developed damage formulations

were rigorously benchmarked with classical plasticity algorithms and validated by predicting the

inelastic mechanisms observed in open-hole tests.

Since these formulations utilize the energy form of the inelastic information obtained from

MDsimulations, it does not display the drawbacks observed in section 2.5. In this form, successful

inelastic information transfer between the nanoscale and continuum scale has been shown to be
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possible in a computationally efficient manner. Additionally, the atomistically informed damage

model was also used to provide insight into the manner of damage accumulation in neat polymer.

In the subsequent chapter, the CDM based atomistically informed damage model is applied for

the study of the inelastic behavior in carbon nanotube enhanced nanopolymers, nanocomposites,

and carbon fiber reinforced polymer composites.
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Chapter 4

DAMAGE AND MULTIFUNCTIONAL MECHANISMS IN CNT NANOPOLYMERS

4.1 Introduction

The use of carbon nanotubes (CNTs) for structural and multifunctional nanotechnology ap-

plications is an area of growing scientific interest (Thostenson, Ren, andChou2001; Yu andKwon

2009). In particular, nanocomposites that use CNTs as reinforcing nanofillers in the polymer

matrix have been shown to exhibit superior multifunctional properties under controlled environ-

ments (Balazs, Emrick, and Russell 2006), such as improved stiffness (Dean et al. 2006), in-situ

damage sensing (Datta et al. 2015), precise thermal management (Biercuk et al. 2002) and in-

creased toughness (Coleman et al. 2006), thus presenting potential for unique applications. How-

ever, a critical obstacle preventing the integration of nanostructures into practical applications is

the inability to scale the performance gains and multifunctional capabilities of nanocomposites

for commercialization purposes (Sochi 2012). In other words, a deep divide remains between

the theoretical predictions and the experimental observations of the mechanical, strength, and

damage properties of CNT-nanocomposites at the macroscale. These differences translate into

limitations, e.g., minimal increase in fracture characteristics (Gojny et al. 2004; Qiu et al. 2007)

and low strength and fatigue life compared to predicted values (Y. Ren et al. 2004). Such discrep-

ancies have been attributed to geometrical inconsistencies in the CNT composition at the sub-

microscale, such as lack of alignment, agglomerations and poor dispersion of the CNTs (Wicks,

Villoria, andWardle 2010) that are not accounted for inmostmacroscale theoretical formulations.

Limited efforts have been devoted to a comprehensive analysis of the cause of these discrepancies.

Recent studies have also shown that the local nanoscale and sub-microscale stress-strain response
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of nanocomposites can significantly differ from the average bulk response, with the local stress-

strain response around the filler material indicating stress concentration sites (Subramanian et

al. 2015). Such localized sub-microscale responsemay lead to accelerated damage initiationwhich

may account for the difference in theoretical and predictedmacroscale response in thesematerials.

Additionally, there remains a lack of literature focusing on the change in multifunctional abil-

ities of nanocomposites in the damaged state. It has been shown that material degradation in

CNT-nanocomposites can lead to substantial nonlinear effects in the multifunctional properties

(Thostenson and Chou 2008). A thorough understanding of the relationship between damage

state of nanocomposites and its mechanical and electrical properties is necessary to improve the

capabilities of these material for applications such as in-situ sensing of damage initiation, propaga-

tion, and onset of failure in composite structures. Most computational studies limit their domain

to elastic regimes to study the piezoresistive behavior of the CNTs in nanopolymers using finite

element based techniques (X.Ren et al. 2015) or global electrical resistance change under strain us-

ing simulated electrical circuits basedon apercolationnetworks (Shimamura, Yasuoka, andTodor-

oki 2007). Representative unit cell (RUC) approaches have also been used as 3D resistor network

models to predict the electrical properties of CNT nanocomposites at and after percolation (Hu,

Masuda, et al. 2008) as well as purelymacroscale continuum and fracturemechanics techniques to

study measurement sensitivities (Gallo and Thostenson 2015). However, there remains a lack of

literature focusing on the post-yield and damage behavior of CNT infused nanocomposites, and

change in multifunctional abilities in the damaged state. Since the multifunctional phenomenon

in nanocomposites have sub-microscale origins, understanding variations of these properties with

change in material state requires comprehensive multiscale models that include physics based for-

mulations of coupled electro-mechanical constitutive relations, as well as damage initiation and

progression.

The previous chapter detailed the development of an atomistically informed continuum dam-
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age mechanics (CDM) based formulation that captures polymer damage under isothermal condi-

tions and within operating temperatures lower than the glass transition temperature. This chapter

details the application of the atomistically informed damage model to a CNT/polymer system

to achieve a sophisticated understanding of the load transfer, damage initiation, and propagation

in CNT nanocomposites at the length scale of the filler material and its effects at the microscale.

The developed damage law is applied to an RUC consisting of bulk polymer, and a sizable number

of CNTs, which are explicitly modeled and randomly oriented. Additionally, a coupled electro-

mechanical formulation is developed, coupling the induced and mechanical strain as a function

of the applied global and local strain due to damage, to accurately model piezoresistivity of the

nanocomposite. Such a methodology can provide new insights into damage trends, crack initi-

ation, and propagation at the sub-microscale of CNT nanocomposites, as well as, explain the

phenomenon of piezoresitivity variations under material degradation at the sub-micro and mi-

croscale.

4.2 Microscale Nanocomposite Modeling

The damage theory detailed and validated in Chapter 3 is incorporated into a microscale

model to investigate themicroscale and sub-microscale, load transfer and damage effects ofCNTs,

in a polymer matrix. A microscale RUC of the polymer is generated in the finite element (FE)

framework and CNTs are inserted into the polymer model by explicitly modeling them using a

vertex generation algorithm, in the FE global coordinate system. Two arrangements of CNTs: (i)

randomly dispersed and (ii) entangled agglomerates, which are shown in Figure 4.2, are generated

and studied in detail. The randomly dispersedCNTarrangement is indicative of a nanocomposite

system wherein the CNTs are thoroughly mixed in the matrix. A realistic composition of CNTs

in a randomly dispersed arrangement involves CNTs that may or may not be uniformly spaced
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apart from each other, but will not form entangled agglomerates. However it may be possible for

local bunching of a fewCNTs (< 10CNT) to take place. Entangled agglomerates aremodeled as

dense spheres of CNTs (> 100CNT) as they are generally observed under transmission electron

microscopy images (J. Li et al. 2007). The CNTs are randomly generated, by assigning a coordi-

nate (xi, yi, zi)j , to each vertex, where i denotes the vertex number and j denotes the CNT. The

vertices of the CNTs are calculated using the transformation formula:

xj1 = LCNT

√
1− ϕ2 cos(θ)

yj1 = LCNT

√
1− ϕ2 sin(θ)

zj1 = LCNTϕ

(4.1)

where (xi, yi, zi)j are the coordinates of the vertices of the CNT in the global coordinate system

of the FE model, θ = 2πα, ϕ = 2α− 1 andα is randomly generated with a value between 0 and

1. LCNT is the length of a CNT segment. The agglomerated CNT arrangement is generated by

constraining the first vertex of the CNT such that it remains inside a sphere with the radius equal

to the agglomerate radius, ragg. The agglomerate radius is chosen to be one fourth of the RUC

dimensions in this work, to include as much of a far field effect as possible, while maintaining

computational economy. The first vertex of the CNT in the entangled agglomerate arrangement

can then be calculated using:

xj1 = ragg cos(θ) sin(cos
−1(ϕ))

yj1 = ragg sin(θ) sin(cos
−1(ϕ))

zj1 = ragg cos(cos
−1(ϕ))

(4.2)

The remaining vertices of the CNT are calculated using the random vertex generation formula de-

scribed by equation 4.1. Unlike the agglomeration case, all the vertices in the randomly dispersed

arrangement are generated using equation 4.1.

Figure 4.1 shows a schematic of theCNT generation algorithm. The schematic contains 3 seg-

ments and four vertices for illustrative purposes, however, the generatedCNT geometries contain
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Figure 4.1. Schematic of the CNT generation algorithm

Table 4.1. Table of CNT Properties

CNT Length 0.5 µm
CNT Dia 9 nm

Type Single Walled
Elastic Modulus 475 GPa
Poisson’s ratio .35

7 segments with 8 vertices per CNT, along with 3D waviness. This vertex generation algorithm is

used to calculate the vertices for 2000CNTs leading to a total of 16000 vertex points per FEmodel

of the micro RUC. The randomized transformation formula imparts waviness to the CNTs, thus

creating realistic CNT geometries rather than perfectly straight idealized CNT geometries. In

fact the waviness, radius, length and material properties of the CNTs can be controlled to model

either fully stochastic CNT systems or ordered ideal CNT arrangements. The number of CNTs

in a model remains constant at 2000. The unit cell dimensions are varied in order to alter the

weight fraction of the CNTs in the micro RUC. The material properties and dimensions of the

CNTs are obtained fromRomanov et al. (V. S. Romanov et al. 2015) and are reported inTable 4.1.

The generatedmodels for the randomly dispersedCNT arrangement and the agglomeratedCNT

arrangement, can be seen in Figures 4.2a and 4.2b respectively. Three dimensional truss elements

are used to model the CNTs with 8 nodes per CNT, since the nanotubes only provide structural

reinforcement in the matrix, and also since investigating the stress variation through the CNTs is

not of interest in this study.

The nanocomposite model, generated using the algorithm described above, is irregular and

difficult to mesh using conventional techniques. Hence, the approach of embedded elements is
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(a) Randomly dispersed CNT arrangement

(b) Entangled agglomerate CNT arrangement

Figure 4.2. CNT Mesh

used to achieve the meshing required in this case (Dolbow and Harari 2009). The embedded

element technique allows the constraining of the nodal translational degrees of freedomof a group
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of elements that lie embedded in a group of host elements. In this technique, the embedded nodal

degrees of freedom are appropriately interpolated from the values of the nodal degrees of freedom

of the host elements (ABAQUS 2013).

Figure 4.3. Schematic of the embedded element technique

A schematic of the embedded technique is displayed in Figure 4.3. In this schematic, the host

element is made of nodes A-B-C-D and nodes 1-2 belong to the embedded element. The displace-

ment of node 1 is calculated by appropriate weight factors determined based on the geometric

location of node 1 in the host element and hence, is mainly influenced by the displacements of

nodes A-B. Similarly, node 2 displacement is mainly influenced by the displacements of nodes

C-D. Consequentially, the displacement field of the host element is influenced by the presence

of the embedded element and its stiffness properties. The embedded element displacements are

therefore obtained without the need for intermediate nodes, as would be the case in a conven-

tionally meshed model. In the general case, assuming two bodies B1 and B2 subjected to finite

deformation, such thatB1 is entirely embedded withinB2, their movements will be coincidental

at their interface. This automatically assumes displacement and traction continuity through the

shared boundary. Then the embedded technique is used to find a kinematic coupling operatorR

such that:

R · u∂B1 = u∂B2 (4.3)

R = F (ρB1 , CB1 , ρB2 , CB2) (4.4)
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whereCB∗ is the elastic tensor of thematerialsB∗, ρB∗ is the density of thematerialB∗, andu∂B∗

is the boundary displacements of the materialB∗.

The method of embedded elements has been utilized and thoroughly benchmarked for the

simulation of CNTs in polymer by Romanov et al. (V. Romanov et al. 2013; V. S. Romanov et

al. 2015). A simple demonstration of themethod can be performed for a singleCNT in an infinite

polymer matrix modeled using the embedded element method. The stresses from this model can

be compared with the analytical solution for a slender cylindrical reinforcement in infinite matrix

as formulated by theCox equation (Lacroix et al. 1992). According to this equation the axial stress

along the cylindrical reinforcement is given by:

σr = Erϵ

[
1−

cosh
(
2nx
d

)
cosh(ns)

]
(4.5)

where σr is the axial stresses in the reinforcement,Er is the Young’s modulus in the axial direction

of the reinforcement, and d is the diameter of the reinforcement. The comparison of the stress

measures obtained from the analytical solution of the Cox’s equation, and the embedded mesh

numerical solution is shown inFigure 4.4. Good comparisonwith the analytical solution indicates

applicability of the embedded meshmethod for the analysis of nanocomposites with randomized

CNTs in a polymer matrix.

The polymer model is generated using 5000 elements of 8-noded 3-D solid C3D8 brick ele-

ment, and used as the host mesh within which, the CNT elements are embedded. The transla-

tional degrees of freedom of the embedded elements are constrained to the response of the poly-

mer mesh. This technique provides a computationally efficient means of generating a compli-

cated nanocomposite model while minimizing the total degrees of freedom. Furthermore, peri-

odic boundary conditions are applied to the edges of the nanocomposite model to simulate the

periodic behavior of the RUC according to equation 2.10
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Figure 4.4. Comparison of analytical and embedded mesh solutions of axial stresses in CNT
within infinite matrix

4.3 Modeling of Piezoresistivity

Recently, there has been an increased interest in developing computational techniques for the

mechanical and multifunctional analysis of CNT nanocomposites. This interest as been mainly

driven by recent successes in demonstrating nanocomposites as embedded strain sensors for in-situ

real time strain and damage sensing (Hu et al. 2010; Kang et al. 2006; Datta et al. 2015). Such a

sensing system can lead to the development of self-sensing smart structures that can be inspected

remotely in real time for structural integrity in methodologies such as Structural Health Moni-

toring (Neerukatti et al. 2014). However, to develop such a system it is of foremost importance

to understand the mechanism of piezoresistivity in CNT nanocomposites. Much experimental

work has been conducted to study the electro-mechanical properties of CNT nanocomposites. It

has been experimentally proven that a minimum amount of volume fraction of CNTs, known as

percolation, is required to form conductive paths leading to significant electrical effects (Meincke

et al. 2004). Furthermore, it has also been shown that the piezoresistivity is nonlinear at higher ap-
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plied strains (Hu et al. 2010) and under damage (Datta et al. 2015) and in these works one of the

major contributors to the nonlinearity was hypothesized to be the tunneling effect. Ultrasonic

tests of failed CNT nanocomposites have shown CNT pullouts leading to the hypothesis that

the inherent piezoresistivity of the CNTs should not be a major piezoresistive mechanism due to

low load transfer to the CNTs after pullout (Hu et al. 2011). However, a methodical scrutiny of

these mechanisms can only be practically performed through studying multiscale models that can

recreate the electro-mechanical coupling under damage.

Thepiezoresistivity ofCNTnanocomposites ismainly drivenby twoprimarymechanisms: (i)

inherent CNT piezoresistivity (Kang et al. 2006; Dharap et al. 2004; Zhang, Suhr, and Koratkar

2006), and (ii) the electron tunneling effect (Park, Kim, and Youngblood 2008; Hu, Karube, Yan,

et al. 2008; Wichmann et al. 2009; Hu et al. 2010). Electron tunneling is a quantum mechanical

effect which leads to the creation of a tunneling current path between a barrier that violates clas-

sical mechanics. This occurs due to the probabilistic wavelike properties of electrons that allows

non-zero probabilities of an electron moving through an obstructing energy barrier. CNTs have

been known to demonstrate electron tunneling effects (Gau, Kuo, and Ko 2009) especially when

present as reinforcing fillermaterials within nanocomposites. The electron tunneling effect, which

is a function of the distance between the CNTs, can be modeled using the Simmon’s equation for

tunneling resistance (Simmons 1963). This closed-form relation between neighboring CNT dis-

tance and the resistance between the nanotubes is based of the theory of electric tunnel effects for

asymmetric junctions and provides a relationship for the electron flow between electrodes that are

separated by a sufficiently thin insulating film. Using the Sommerfield model and the Wentzel–

Kramers–Brillouin approximation, the approximate expression for the tunneling current density

between an electrode-interface-electrode system is found to be:

J = J0

{
λ exp

(
−A1

√
λ
)
− (λ+ eV ) exp

(
−A1

√
λ+ eV

)}
(4.6)

where J is the current density in the electrodes, h is the Planck’s constant, e is the electron charge,

88



V is the voltage between the electrodes, d is the distance between the electrodes,m is the mass of

the electron, λ is the height of the electrical tunneling barrier which is around 0.5 eV to 2.5 eV

for epoxy (Hu et al. 2011) and where

J0 =
e

2πh
· 1

(βd)2
(4.7)

A1 =
4πβd

h

√
2m (4.8)

β = 1− 1

8λ2d

∫ d
2

− d
2

[λ (x)− λ]2 dx (4.9)

In this case, it is assumed that the barrier is almost equal and the thickness of the interface is

constant. The general equation 4.6 can be reduced for low voltages V ≈ 0 such that:

J =
e2

h2d

(√
2mλ

)
V exp

(
−4πd

h

√
2mλ

)
(4.10)

Making use of the basic relations between current density, voltage, and resistance J = I
A

and

V = I ×Rtunnel, the tunneling resistance is then found to be:

Rtunnel =
h2d

Ae2
√
2mλ

exp

(
4πd

h

√
2mλ

)
(4.11)

whereRtunnel is the tunneling resistance andA is the cross-sectional area of the tunnel. This equa-

tion can be modified for resistivity as:

ρtunnel
1

ρtunnel
0

≈ exp

{
4π
√
2mλ

h
d0

(
d1
d0

− 1

)}
(4.12)

where ρtunnel is the local electrical tunneling resistivity, d0 is the distance between CNTs before

straining, and d1 is the distance between CNTs after straining. Since the local strain field can be

used to calculate d1 (Yasuoka, Shimamura, andTodoroki 2010), the damaged induced local strain

field can hence, be used to measure the changes in tunneling resistivity. From this relationship, it

can easily be seen that a nonlinear coupling between damage and strain will lead to nonlinearity

in the evolution of tunneling resistivity under damage as well.
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The second mechanism involved in piezoresistivity of CNT nanopolymers is the inherent

piezoresistivity shown by individual CNTs. A single CNT is inherently piezoresistive, wherein

an applied strain causes the carbon-carbon bond lengths to change, which in turn causes electrical

property variations in the CNT. This mechanism can be modeled by coupling the CNT strain to

the piezoresistivity of the CNTs (Ren and Seidel 2013) as:

∆ρ
∼

CNT = G
≈
: ϵ∼

CNT (4.13)

where G
≈

is a tensor of the piezoresistive strain coefficients. Approximate values for these coeffi-

cients were numerically calculated by Ren and Seidel (X. Ren et al. 2015). The effective piezore-

sistivity of the RUC is then obtained using ensemble averaging of the individual piezoresistivities

from the two mechanisms.

4.4 Mechanical and Piezoresistive Response Under Damage

Microscale RUCs of the polymer matrix with periodic boundary conditions and embedded

CNTs, generated using theCNTgeneration algorithm, aremodeled and inserted into a bulk poly-

mer model using the embedded mesh technique. The results of the microscale model with the

nanopolymer RUC under quasi-static uniaxial tensile loading, are presented here. The model is

simulated in the commercial FE Package ABAQUS with the damage equations implemented as a

user material subroutine. The simulations are conducted under a constant strain rate of 0.005

strain per second to ensure quasi-static conditions.Unless otherwise mentioned, the measured

stress is in the loading direction (σ11). The local stress-strain response is obtained by measuring

the local stress (σl
11) versus the local strain (ϵl11). The global stress-strain response is obtained by

ensemble averaging the stress (σ11) and strain (ϵ11) values for the whole model.

Figure 4.5 shows the comparison of damage contours between a model that contains neat

epoxy and a model containing CNTs in an epoxy polymer. The neat polymer model shows con-
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(a) Isotropic damage contour with no CNTs

(b) Local damage contours due to presence of CNTs

Figure 4.5. Anisotropy in damage due to heterogeneity

stant damage signifying a homogeneous isotropic damage profile, while the nanopolymer model

shows localized damage. The sub-microscale damage concentration is caused due to the presence

of CNTs which cause local damage, and which may lead to stochastic damage initiation sites, and
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accelerated damage progression. The significance of the CNTs as damage initiators are studied

further.

4.4.1 Localized Response and Averaged RUC Behavior

Figure 4.6. Global stress-strain response of the RUC compared with stress-strain response of
local regions around the CNT

Figure 4.6 exhibits the global stress-strain response of a 1% weight fraction CNT-polymer

RUC compared to the stress-strain response of a local region around a single CNT. As seen from

Figure 4.6, the local stress-strain response in the vicinity of the CNTs exhibit an initial drop in

stress followed by a recovery phase. The local response around the CNTs displays a similar trend

as seen in molecular dynamics (MD) simulations of the CNT-polymer RUC as shown in Figure

3.1. However, it is observed that the global response of the RUC does not show the recovery

phenomenon observed in the MD results. The inelastic response predicted by the continuum

model in the vicinity of theCNT, and the response from theMDmodel, exhibit a highly localized

behavior, while the global response displays a more spatially averaged response. This implies that
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there is high spatial variation in the stress-strain response within the RUC and that, although

the average response demonstrates isotropic behavior, locally the RUCdisplays highly anisotropic

behavior.

Figure 4.7. Damage evolution in the continuum model at local regions around the CNT
compared with local stress-strain response

The characteristic stress-strain trend at local CNT-rich regions, labeled ’Local response’ in

Figure 4.6, can be explained from parallel discrete and continuum viewpoints. From a nanoscale

perspective, the initial elastic region of the stress-strain curve indicates the stretching of bonds in

the CNTs and the polymer chains due to mechanical deformation. The yield point followed by

softening which leads to the first dip in the stress-strain curve as seen in Figure 3.1 corresponds

to bond scission of the weaker covalent bonds. Subsequently, the polymer chains become taut

andmolecular chain sliding initiates, resulting in the hardening observed in the stress-strain curve

previously referred to as the recovery phase. Thefinal stress drop indicates successive bonddissocia-

tion in themolecular system resulting in failure. From the continuumperspective, the stress-strain

response can be explained by the local damage evolution trend shown in Figure 4.7. The damage

curve shows a peak that corresponds to the first drop in stress seen in the local stress-strain curve

of Figure 4.6. After the initial peak, the damage rate decreases and then evolves at a controlled
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rate. This explains the drop in stress at higher strains past the recovery phase seen in the local

stress-strain curve. The high stiffness provided by theCNTs allow a large amount of the load to be

carried locally by the CNTs until a point is reached where there is a separation between the CNT

group and the polymer around it. This corresponds to the first peak in the damage evolution curve

in Figure 4.7 and the corresponding dip in the local stress-strain curve seen in Figure 4.6. After the

separation occurs, amoremeaningful and natural load division occurs between theCNTs and the

polymer, and further damage occurs as a normal progression of cracks in the flawed material. The

post-load redistribution stage can be observed after the peak in the damage evolution curve. This

similarity in the inelastic MD response and the local continuum response provides further indi-

rect evidence that successful sub-microscale inelastic information transfer, between MD and FE

simulation, for nanopolymers is possible using the atomistically informed damage methodology.

4.4.2 CNT Configuration Effects

The randomly dispersed CNT arrangement shown in Figure 4.2a can be scanned at the sub-

microscale tomake certain local patterns of CNTs apparent using virtual voxels. The voxels isolate

a sub-volume of the nanocomposite material so that local CNT patterns can be discerned and

studied apart from the larger mass that is shown in Figure 4.2a. Each voxel contains around 5-15

CNTs. Due to the random nature of the arrangement in Figure 4.2a, some of these voxels are

denser than others. This simulates highly dispersed CNTs within an epoxy volume. The pattern

of CNTs observed within these sub-volumes can then be reduced to three configurations.

A schematic of the three configurations is shown in Figure 4.8. Configuration 1 represents a

sub-volume containing approximately uniformly dispersedCNTs, arranged symmetrically within

the sub-volume. The CNTs do not bunch together and are approximately equally spaced apart.

Configuration 2 represents a sub-volume that contains a relatively large amount of CNTs. These
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Figure 4.8. Schematic of the CNT configurations in the randomly dispersed CNT model

CNTs lie very close to each other forming local bunches. However, the CNTs are nearly symmet-

ric with respect to each other within the sub-volume such that there is an even spatial variation in

stiffness. Configuration 3 represents sub-volumes that are surrounded by a single bunch of CNTs

asymmetrically present within the cubic sub-volume. This configuration exhibits a relatively large

matrix rich area and an uneven spatial variation in stiffness within the sub-volume. It is impor-

tant to note that the bunched CNTs referenced in this section do not represent agglomeration.

In this case a bunch of CNTs contains a small number (< 10) while agglomerations contain a

relatively larger number of CNTs (> 100). Additionally, a few other patterns were observed such

as sub-volumes with zero CNTs, however, such sub-volumes were rare and not studied indepen-

dently. Figure 4.9 exhibits representative images for each configuration from themodel. Thebeam

rendering option in ABAQUS was utilized to show the cylindrical geometry in these images.

Figure 4.10 shows the difference between the global loading direction stress-strain response

of the microscale nanocomposite RUC and the local stress-strain response at the sub-microscale

around the CNT nanofillers within the nanocomposite. The local response of the sub-volumes is

the averaged response for similar configurations surveyed within the larger mass. It was observed

that local configurations of the CNTs at the sub-microscale significantly affected the local stress-

strain behavior and the damage characteristics. Configuration 1 exhibits themost delayed damage

initiation and damage progression relative to the other configurations. The stress-strain response
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(a) Configuration 1

(b) Configuration 2

(c) Configuration 3

Figure 4.9. Representative CNT configurations images from the CNT model

of configuration1 is similar to the responseobserved locally near a singleCNTinananocomposite

where the CNTs are ideally structured and spaced apart. This response also complements the

previous assertion that the stress-strain response of a single CNT in a polymer network exhibits a

96



unique trend of an initial peak followed by softening, a recovery phase, and secondary softening

up to failure. The unique stress-strain response displayed by configuration 1 is only possible due

to the spacing and symmetric structure of this configuration. Furthermore, this also suggests that

the MD simulation of a CNT polymer unit cell represents an ideally spaced CNT structure due

to the periodic conditions applied at the edges of the MD unit cell.

Figure 4.10. Stress-strain response for different configurations of CNTs

Configuration 2 shows early damage relative to configuration 1 and also displays faster damage

evolution leading to accelerated local failure. This occurs due to the large stiffness differential be-

tween the CNT bunches and the surrounding matrix. However, configuration 2 shows relatively

better load transfer compared to configuration 3, due to the proximity of neighboring CNTs and

display better damage characteristics than configuration 3. Configuration 3 shows earliest damage

initiation relative to the other configurations and rapid damage evolution due to the large stiffness

differential between CNT-rich and CNT-free area. Configuration 3 contains a large matrix rich

zone which causes the significant spatial stiffness differential and poor load transfer characteris-

tics, since this configuration also lacks neighboring CNTs, leading to rapid damage escalation and

local failure. The global microscale response can also be seen in Figure 4.10 which is the aggre-

gate response of all the local configurations, including the representative ones presented in this
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section. It is observed that the global response is markedly different compared to the various local

responses due to the complex sub-microscale mechanics and interactions that influence the local

response.

4.4.3 Agglomeration Effects

Figure 4.11. Chosen points about the agglomerate

The microscale nanocomposite model with entangled CNT agglomerate arrangement is

tested in ABAQUS under the same conditions as the randomly dispersedCNTmodel. The stress

variations in the matrix of the agglomerate nanocomposite model is studied. It is observed that

the matrix within the agglomerate displays a stress free condition while the matrix surrounding

the agglomerate is under high tensile stress. Since, the matrix is present throughout the agglomer-

ate in this model, this would physically represent a state of high degree of wetting leading to high

permeability of the polymer within the entangled CNT agglomerate.

In order to better understand the stress variation and damage progression in the matrix con-

stituent around the agglomerate, a set of 8 points were chosen such that points 1-3 appear at the

98



Figure 4.12. Stress at chosen points

Figure 4.13. Damage at chosen points

immediate exterior of the agglomerate, points 4-5 appear at the interphase of the agglomerate and

thematrix, and points 6-8 appear in the interior of the agglomerate. The chosenmeasuring points

permits the study of the spatial transition of stress fields in the matrix from the exterior of the in-

terphase to the interior. A schematic of the chosen points relative to the agglomerate is shown in

Figure 4.11. The local stress response compared to the globally applied strain at each of the cho-

sen measuring points is also recorded and exhibited in Figure 4.12. The stress is measured in the

direction of loading and is local to the measuring point.
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A transition in the stress field in the matrix is apparent with the zones exterior to the agglom-

erate exhibiting the unique stress-strain response discussed previously. The zone exterior to the

agglomerate boundary contains loose strands of CNTs. These are the ends of the CNTs entan-

gled within the agglomerate. At the sub-microscale these strands can represents equally spaced

CNTs. The interphase zone (the agglomerate boundary) is relatively more CNT-dense than the

agglomerate exterior and the stress field transitions in the matrix to a brittle-like nature in this

zone. The stress field in the matrix inside the agglomerate is minimal or nonexistent due to the

high concentration of CNTs in this region. The CNTs dominate the load transfer mechanism

within the agglomerate and produces a stress free condition in the matrix. Figure 4.13 displays

the damage in the matrix at each of the chosen measuring points and can be used to visualize the

transition in damage evolution between the matrix at the agglomerate exterior and the interior.

It is observed that maximum damage occurs at the interphase region between the matrix and the

agglomerate. This damage profile indicates a separation of the polymer and the agglomerate sur-

faces leading to crack formation, concentrated around the interphase region. These microcracks

lead to rapid damage propagation leading to global failure. Experimental work on CNT-epoxy

systems have shown similar results, with CNT agglomerates acting as stress concentration and

damage initiation sites (Zhou et al. 2008). Thus, entangled agglomerates in close contact could

lead to interaction of the microcracks forming at this region and the consequent rapid failure of

the overall system.

4.4.4 Variation with Weight Fraction of CNTs

The global failure stresses and strains with respect to change in weight fraction of CNTs is

presented inFigure 4.14. The increase inweight fraction ofCNTs causes increased brittle response

with higher failure stress but lower failure strain. An increase in weight fraction of CNTs leads to
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an increase in the amount of various sub-optimal sub-micro configuration of CNTs. Though the

larger number ofCNTs leads tohigher global elastic properties, the randomness of orientation and

larger sub-optimal sub-microCNT configurations lead to an increase in ’hotspot’ areas compared

to lower CNT weight fraction material. These hotspot areas combine with larger differentials in

internal stresses in the polymer to cause faster damage initiation and propagation in the material

leading to lower failure strains for higher weight fraction of CNTs.

4.4.5 Variation of Piezoresistivity with Damage

As can be seen fromFigure 4.15, considerable nonlinearity in piezoresistivity is observed once

damage initiates in the nanocomposite. This is explained by the mechanics of the damage state,

and their impact on the inherent and tunnelingmechanisms of piezoresistivity. Since the first peak

in damage evolution occurs due to the large difference in load distribution between the CNTs

and the surrounding polymer, the separation of the polymer from the CNT surfaces leads to only

slight local displacement between theCNTs. Locally theCNTs are not displaced at this stage and

since the electron tunneling effect, asmodeled by equation 4.12, depends on the distance between

the CNTs, a large change in piezoresistivity is not observed. Further loading leads to a sustained

evolution of damage which suggests damage propagation within the epoxymatrix leading to large

local displacements around theCNTs. The considerable displacement introduced betweenCNTs

contributes to a large increase in piezoresistivity. Similar responses have been observed in exper-

imental studies of nanopolymer as strain sensors. Figure 4.17 shows the results of the resistance

variation with respect to applied strain in a GFRP composite with embeddedCNTnanopolymer

(Datta et al. 2015). The resistance variation of the nanopolymer was studied explicitly using con-

tact electrodes in-situ. The highly non-linear post-damage resistance change was clearly observed,

as predicted by the coupled piezoresistive-damage model. Thus, the nonlinearities in piezoresis-
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(a) Failure stress variation with weight fraction of
CNTs

(b) Failure strain variation with weight fraction of
CNTs

Figure 4.14. Variation of failure properties with weight fraction

tivity seen in these experimental studies can be attributed to the complex mechanism of damage

initiation and propagation in nanocomposites.

To gain further insight into the phenomenon of piezoresistivity variations with damage, each

of the two modeled piezoresistivity mechanisms, the inherent and tunneling resistivity, are stud-

ied separately as visualized in Figure 4.17. The low tunneling resistivity at low strains is attributed
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Figure 4.15. Variation of piezoresistivity under strain

to the saturated conductive paths formed by the randomly oriented CNTs and the low amount of

displacement between the CNTs at low global strains. Hence, before substantial damage occurs

in the nanocomposite, the change in piezoresistivity is driven by inherent piezoresistivity of the

CNTs. Similar trends were also reported by Ren and Seidel for randomly orientedCNTs (X. Ren

et al. 2015). However, after substantial damage occurs, the stresses on the CNTs decrease due to

load redistribution which lowers the effects of the inherent piezoresistivity. Hence, material dam-

age can cause a critical change in piezoresistivemechanismswithin the nanocomposite. Moreover,

the local displacements between theCNTs lead to loss of conductive pathswhich further increases

the resistivity of the nanocomposite. Due to this reason, the inherent piezoresistivity mechanism

becomes largely redundant at large global strains, while the tunneling effect dominates.
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Figure 4.16. Resistance variation with strain in embedded nanopolymer sensor

Source: (Datta et al. 2015) reproduced with permission

4.5 Summary

This chapter demonstrated a framework for explicitly modeling CNT-epoxy nanocomposites

containing atomistic information at the continuum scale. It was shown that using this framework,

inelastic information transfer from MD to FE simulations can be performed in a relatively effi-

cientmanner for nanocomposites. Furthermore, use of this technique exhibited the complex local

damage phenomenon that occurs at the sub-microscale in nanocomposites which may have criti-

cal consequences at the higher length scales. In particular, it was observed that the most desirable

material response is obtained when the CNTs are spaced evenly apart from each other, however

this is difficult to achieve in practice. The least desirable response occurs when small bunches of

CNTs form asymmetrically in a matrix rich region. This phenomenon emphasizes the need to

include local information in the study of CNT nanocomposites. This also highlights the need

for effective CNT dispersion during the manufacturing of CNT nanocomposites. Furthermore,
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Figure 4.17. Piezoresistivity due to inherent and tunneling mechanisms

CNT agglomerates were seen to produce a stress-free region in the interior and cause a radial sep-

aration between the polymer and the agglomerate surfaces due to the large spatial variation in

stiffness between the agglomerate and the polymer.

Additionally, damage was also linked to multifunctional effects of the nanopolymer and the

intimate coupling of these two phenomenon was explicitly studied. A considerable change in

piezoresistivity in nanocomposites was seen to be introduced due to damage; this is attributed to

the local displacements introduced between the CNTs which hinders the electron tunneling phe-

nomena. The driving mechanism for piezoresistivity in the CNT nanocomposites before damage

appears to be the inherent piezoresistivity. After substantial damage occurs, the electron tunneling

piezoresistivity increases and the inherent piezoresistivity decreases causing a switch in piezoresis-

tive mechanisms. Such a simulation of local-global coupled multifunctional analysis at the sub-

microscale and microscale respectively, was previously not possible without a concurrent MD-FE
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simulation which are highly resource intensive and possess limited potential. The next chapter

introduces an additional micro fiber component to model and study non-linear effects in carbon

fiber reinforced polymer (CFRP) composites and CNT enhanced CFRP composites.
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Chapter 5

MULTIFIDELITY MODELING OF ADVANCED COMPOSITE

MICROSTRUCTURES

5.1 Introduction

Carbon fiber composites reinforced with a polymer matrix containing carbon nanotubes

(CNTs), have shown improvements in mechanical strength, interlaminar fracture resistance, en-

ergy absorption, and thermomechanical properties (Green et al. 2009; Inam et al. 2010; Cho,

Daniel, and Dikin 2008) compared to traditional carbon fiber reinforced polymer (CFRP) com-

posites. However, it has been observed that the nanocomposite properties do not scale linearly

with size, with large disparities in microscale and structural scale properties, such as stiffness and

failure strengths, that have been shown to exist (Sochi 2012). As discussed in Chapter 4, such dis-

crepancies have sub-microscale origins, relating to carbon nanotube geometry, nanotube concen-

trations, and the mechanics of the polymer and nanofiller. To mitigate the foregoing drawbacks,

advances in nanotechnology have been exploited to engineer novel CNT architectures such as

nanoforests (Y. Zhang et al. 2006), which utilize appropriate substrates to grow highly aligned

dense mats of CNTs, fuzzy fibers (Garcia, Hart, and Wardle 2008) that contain CNTs radially

grown on the microfibers, and CNT ropes (Chou et al. 2010), which utilize ultra-long strands

of CNTs as a replacement for microfibers. Particularly, the fuzzy fiber architecture has shown in-

creased in-plane strength, interlaminar shear strength, and fracture properties (R. Li et al. 2015).

However, the observed improvement in properties due to the addition of the CNTs is generally

lower than the predicted theoretical values (Kundalwal and Kumar 2015a).

Possible causes for the discrepancies between experimental results and theoretical predictions
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are the modeling approaches utilized for predicting material properties or behavior, which may

not be appropriate for a complex heterogeneous material system such as the CNT/CFRP. As

mentioned inChapter 1, bulk analysis techniques andmean fieldmicromechanical techniques do

not consider the sub-microscale mechanics, leading to unreliable predictions. Additionally, con-

ventional CFRP analyses with atomistic integration, which are performed by a combination of

molecular dynamics (MD) simulations and averaging techniques such as elastic homogenization

basedmicromechanics (Kundalwal andKumar 2015b), statistical techniques such asMonteCarlo

methods (Chui and Boyce 1999) or a fully continuum mechanics finite element (FE) approach

(Fisher, Bradshaw, and Brinson 2002), cannot be applied for inelastic analyses, or are computa-

tionally inefficient for large systems. Hence, this chapter describes a novel multiscale framework

wherein each constituent of theCNT/CFRPmaterial system is explicitlymodeled and assembled

into a realistic microscale RUC using the FE method. The matrix constituent is modeled using

a physical damage evolution law developed in Chapter 3. Since the CNTs are modeled explic-

itly, a thorough post-linear investigation of the interaction between the CNTs, matrix, and the

microfiber constituent can be performed. Such a study can provide insight into the load transfer

mechanism, and damage initiation and propagation phenomenon in randomly dispersed CNT

nanocomposites and radially grown fuzzyfibernanocomposites at the sub-micro andmicro length

scales. Additionally, a surrogate orthotropic material model, based on the Schapery potential the-

ory (Schapery 1990), that reproduces the nanopolymer behavior, is also formulated. Thismaterial

model can be calibrated with the response obtained from the high fidelity nanocomposite model

and applied along with various microscale frameworks to replicate the global behavior of the high

fidelity RUC, hence achieving a robust and computationally efficientmethod for performingmul-

tiscale studies that can be easily adopted for structural analysis.
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5.2 Microscale High Fidelity Model

5.2.1 Constituent Models

To perform an accurate high fidelity analysis of the CNT embedded CFRP system, all three

constituents of the CNT/CFRP nanocomposite, (i) microfiber (ii) polymer (iii) CNTs, need

to be generated individually, and combined in a single RUC. Additionally, such a methodology

would also require the inclusion of deterministic or stochastic geometric and material properties.

Since, MD simulations of polymer curing yields a distribution of most likely crosslinking degree,

and the associated relationship between the crosslinking degree and material properties, the FE

polymermatrixmodel can be designed to incorporate this information. The FEmodel of the poly-

mer constituent is divided spatially into multiple sections, with a stochastically assigned crosslink-

ing degree in each section, sampled from the distributions obtained through MD simulations.

This algorithm ensures stochastic spatial variation of material properties in polymer unit cells to

represent non-uniform curing as discussed in section 2.3. The polymer matrix model, including

the various subsections, is displayed in Figure 5.1a.

The microfibers are generated using the hard-core model to recreate experimentally observed

carbon fiber composite microstructures (Borkowski, Liu, and Chattopadhyay 2013). The hard-

core algorithm randomly perturbs perfectly ordered square packed circular fibers within the

boundaries of the square RUC region until a microstructure resembling a random fiber pattern is

achieved. The random perturbations are performed repeatedly in a brute force step-by-step man-

ner and avoids fiber overlap by rejecting any step perturbation that causes interference. Hence,

each fiber has an equal likelihood of residing at any location of the RUC as long as that location is

devoid of other fibers. Periodicity of theRUC ismaintained using continuity conditions enforced

when the fiber passes over the RUC boundary. To ensure adequate resemblance with experimen-
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tally obtained microstructures, statistical measures such as the Ripley’s K-function and pair distri-

bution function are utilized. The perturbation of the orderedmicrostructures are carried out until

the statistical measure of randomness obtained from the simulated microstructure is equal to the

measure obtained from microstructures of CFRP samples generated through microscopy studies.

Figure 5.2 compares an experimental microstructure and the hard-core simulated microstructure.

(a) Polymer model with spatial variation in material
properties

(b) Simulated fiber microstructure
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(c) Simulated randomly dispersed CNT architecture

(d) Simulated radially grown CNT architecture

Figure 5.1. Microstructure constituents

Additionally, the material properties that are assigned to each fiber, are sampled from a Gaussian

distribution to represent variation in fiber material. An example of the simulated FE microstruc-

ture used in the analysis can be seen in Figure 5.1b.

The CNTs can be generated using the transformation algorithm, as described in section 4.2.

However, to generate consistent CNT architectures, the CNT vertices must be examined for vi-
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(a) Experimental microstructure

(b) Hard-core simulated microstructure

Figure 5.2. Comparison of experimental and computational microstructure

ability. Such as in the case of the randomly dispersed architecture, vertex coordinates xi, yi, zi

is rejected if it is occupied by a microfiber, or if it is outside the bounds of the RUC. In the case

of the radially grown architecture, vertex x1, y1, z1 for each CNT is constrained to remain on

the circumference of the microfiber while the other vertices are restricted according to the same
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constraints as the randomly dispersed architecture. Figures 5.1c and 5.1d show an example of the

simulated randomly dispersed CNT architecture, and the fuzzy fiber CNT architecture. The ma-

terial properties and dimensions of the CNTs are reported in Table 4.1. Three-dimensional truss

elements with 8 nodes perCNTare chosen tomodel the nanotubes since theCNTs provide struc-

tural reinforcement in thematrix only and the stress variation through theCNTs is not of interest

in this study.

Figure 5.3. Final assembled model

To automate the task of creating and analyzing the nanocomposite model, a stand-alonemod-

ule called theCOmputationalNanocomposite ANalyzer (CONAN) is developed as aMATLAB

graphical user interface. This module generates RUCs of nanocomposites or traditional compos-

ites using only the material properties and basic geometric properties of the constituents, which

can be input as mean values for deterministic analyses, or as a distribution, for stochastic analyses.
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Furthermore, the module provides the user with the options for generating realistic microstruc-

tures, or generating ordered ideal microstructures. The inputs required for CONAN are detailed

here. For the generation of the microfiber, the mean radius of the fiber is required. Optionally,

the standard deviation of the fiber radius can also be provided for generating microfibers with

stochastic radii. Such information can be gathered from microstructures of the target fibers ob-

tained using microscopy or from the manufacturer datasheets. Additionally, elastic properties of

the fiber are required as an input andmay be entered as a mean value or as a Gaussian distribution.

Elastic properties of the fiber can be obtained frommaterial datasheets or from single fiber tension

tests. The fiber failure stress may be entered for simulating fiber breakage. The size of the represen-

tative unit cell (RUC) is controlled by entering the volume fraction of the fiber, and the required

number of fibers that need to be generated, with aminimum of one and recommendedmaximum

of one hundred. The CNT submodule requires the elastic properties, the weight fraction in per-

centage and certain geometric properties. The length, waviness and diameter of the CNTsmay be

controlled appropriately to simulate long tubes, short tubes, wavy tubes and straight tubes. Ad-

ditionally, the user may choose the configuration of the CNTs, which are randomly dispersed or

radially grown around the microfibers. CNTs as fiber coating may be simulated by using a com-

bination of a radially grown arrangement with high waviness (V. S. Romanov et al. 2015). The

module generates Python scripts, using the input data, which is further used to create the corre-

sponding FE models in the commercial FE software ABAQUS. Several loading conditions such

as tension in the fiber direction, tension in the transverse direction, in-plane shear and transverse

shearmay be simulated. Themodule also applies periodic boundary conditions, iterativelymeshes

the system to ensure minimum degree of freedom, applies the embedded mesh conditions as de-

tailed in section 4.2, and runs the FE jobs automatically. The user may also change solver parame-

ters such as the time increments, total step time, and size of output files. Figure 5.3 shows the final

assembled model. The module can also be used to post-process the FE model internally which au-
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tomatically reports the overall stress-strain data, maximum stress, modulus of the unit cell for the

corresponding loading direction, and damage contours at certain loading points, along with plots

for data visualization. Additionally, the module is self-contained and only requires the ABAQUS

solver and MATLAB libraries.

5.2.2 Microstructure Analysis

As a case study for microstructure analysis, the microscale RUCs with random and radially

grownCNT architectures and 0.1%weight fraction ofCNTs are generated using the high fidelity

model generation algorithm detailed above. These RUCs are loaded transverse to the fiber, corre-

sponding to the positive x-axis in Figure 5.3, under quasi-static conditions up to complete failure

or untill the end of the simulation.

Figure 5.4. Comparison of stress-strain response

Figure 5.4 compares the stress-strain response of theCNT/CFRPmodels with radially grown

and randomly dispersed CNT architectures respectively. It is seen that the randomly dispersed

CNT architecture displays slightly higher stiffness compared to the radially grown architecture.
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However, the radially grown architecture showsdelayeddamage initiation and slower propagation

of damage compared to the randomly dispersed configuration. This observation is consistent with

existing experimental literature (Wicks et al. 2014), where radially grown CNTs displayed better

fracture properties than randomly dispersed CNT nanocomposites and traditional composites.

An attempt to understand this phenomenon is undertaken by investigating the damage trends,

local stress hot spots, and the sub-microscale stress state at the interacting region between the

CNT and the matrix.

Figure 5.5 depicts the progression of damage in the polymer and the state of stress in the nan-

otubes in a nanocomposite model with randomly dispersed CNTs at various stages of loading.

Figures 5.5b, 5.5d, and 5.5f illustrate the axial stress state of the CNTs, where the blue end of the

spectrum shows zero stress conditions and red colors of the spectrum shows tension. All nega-

tive stresses are visualized in black color; hence all CNTs visualized as black are in compression.

Since the maximum compression stresses are significantly lower than maximum tensile stresses,

all negative stresses are chosen to be visualized as black for clarity. The stress state is measured

along the axial direction of the tube in the corresponding CNT local coordinate system, which

allows the visualization of the local stress state of each CNT under a global transverse load. Fig-

ure 5.5b shows that at strains below the elastic limit, local regions that are relatively matrix rich

display higher local stresses corresponding to stress concentration zones. Furthermore, since they

are randomly oriented, the CNTs that are most favorably oriented in the loading direction carry

the highest load; yet, note that the majority of the CNTs are loaded and activated, leading to an

almost uniform stress distribution among the CNTs with stress gradients occurring in matrix rich

zones. Additionally, some CNTs are also noted to be in compression due to the Poisson’s effect

during extension.

The contours displayed in Figure 5.5a, 5.5c and 5.5e, depict the damage state in the matrix,

with blue representing zero damage and red indicating completely damaged/failed elements. Fig-
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(a) Polymer damage state at 0.5%
strain

(b) CNT stress state at 0.5% strain

(c) Polymer damage state at 7% strain (d) CNT stress state at 7% strain

(e) Polymer damage state at 12%
strain

(f ) CNT stress state at 12% strain

Figure 5.5. Randomly dispersed CNT architecture under loading

ure 5.5c describes the beginning of damage in the structure, initiating at the local stress concentra-

tion zones. The authors have previously demonstrated that local volume concentration difference
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between the CNTs and surrounding matrix in nanopolymer can lead to local stress concentration

zones, which accelerates damage progression due to the stiffness difference between theCNT and

the polymer matrix (Rai et al. 2017). A similar phenomenon is observed in the current model of

the nanocomposite, with stress concentration regions occurring at matrix rich zones that contain

relatively large volume concentration gradients of CNTs. Figure 5.5e shows the final damage state

of the nanocompositewherein failure is caused due tomatrix cracks. It can be inferred fromFigure

5.5f that thematrix cracks lead toCNTpullout in the cracked region. Additionally, the stress state

in the CNTs around the crack zone is reduced due to energy dissipation. The CNT pullout also

leads to further increase in volume concentration gradients of CNTs, which subsequently leads

to further acceleration of the rate of damage. Hence, the randomly dispersed CNT architecture

does not take advantage of the unique mechanical properties of the CNTs, thereby leading to a

rapid decay of the material after damage saturation.

Figure 5.6 illustrates the progression of damage in the polymer and the state of stress in the

CNTs in a nanocomposite model with radially grown CNTs at various stages of loading. Fig-

ure 5.6b depicts the state of stress in the CNTs within the elastic limit. It is observed that fewer

CNTs are activateddue to the directionality effects; however, the activatedCNTs are under higher

stresses than in the randomly dispersed architecture. TheCNTs transverse to the loading direction

are under high compression stresses due to the Poisson’s effect. The high stresses on the activated

CNTs may lead to failure or buckling of the CNTs. In contrast, the CNTs in the randomly dis-

persed architecture are relatively less susceptible to failure, since more CNTs contribute to the

load sharing process and thus, the average stress on each CNT is lower. Hence, the quality of

CNTs play a significantly larger role in the radially grown architecture. It is also observed that

regions that display the largest changes in volume concentration of CNTs lead to stress concentra-

tion zones. Regions with thin volumes of matrix between the microfibers, surrounded by CNTs,

show significant stress concentrations. Figure 5.6c demonstrates that the damage initiates and
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(a) Polymer damage state at 5% final
strain

(b) CNT stress state at 5% strain

(c) Polymer damage state at 60% final
strain

(d) CNT stress state at 60% final
strain

(e) Polymer damage state at 99% final
strain

(f ) CNT stress state at 99% final
strain

Figure 5.6. Radially grown CNT architecture under loading
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propagates around these stress concentration zones. However, Figure 5.6d shows that the CNTs

surrounding the damage path continue to be loaded even after significant polymer damage. This

is indicative of CNT bridging, which is possible due to the directionality of the CNTs in the ra-

dially grown architecture. CNT bridging slows the crack growth rate in the nanocomposite, thus

changing the damage profile compared to the randomly dispersed architecture. Figure 5.6e shows

the damage state of the nanocomposite near failure. Like the randomly dispersed architecture,

the nanocomposite fails due to matrix cracks; however, it is observed that the damaged regions

are strictly contained around the CNTs corresponding to the stress concentration zones. Unlike

the radially grown architecture, the randomly dispersed architecture displayed significant volu-

metric damage. The radially grown architecture displayed a concentrated damage area around the

circumference of the microfibers. This damage mechanism leads to the conclusion that the cracks

originate around theCNTmatrix interphase zones, which is supported by previous research (Sub-

ramanian et al. 2015; Rai et al. 2017; Rai, Subramanian, and Chattopadhyay 2017). Hence, the

architecture of the CNTs can be used to control the directionality of originating damage and its

progression. Figure 5.6f also shows that the CNTs around the crack path are deactivated and in a

stress-free condition, indicating CNT pullout.

5.3 Orthotropic Surrogate Model

The high fidelity model of the CNT/CFRP material system described in the previous sec-

tion provides a direct numerical simulation (DNS) of the nanocomposite and hence allows for a

thorough study of local interactions between the three main constituents at the micro and sub-

microscale. Such studies are important to realize microstructure kinetics and kinematics which

assists in material development studies and fundamental understanding of the mechanics of het-

erogeneous media. However, performing multiscale studies which involve macroscale elements,
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concurrently with high fidelity models of themicroscale at each FE integration point, can be com-

putationally prohibitive. Since an efficient multiscale structural analysis would require only the

RUC response at themicroscale, without the local sub-microscale information, it is advantageous

to reproduce the global microscale RUCbehavior without running the high fidelityDNS.Hence,

a low fidelity orthotropic damage model based on the Schapery potential theory is developed in

this section, which can be calibrated with the DNS of the polymer or the CNT-polymer mixture

applied in a conventional micromechanics techniques, to rapidly evaluate the microscale RUC

response of the composite or nanocomposite material.

The progressive damage theory is based on the work potential model (Schapery 1990) which

considers the total strain energyU to be the sum of the elastic strain energy densityWe and dissi-

pated strain energy densityWd such that:

U = We +Wd (5.1)

The dissipated strain energy,Wd describes the material or geometric irreversible processes occur-

ring at the micro or nanoscale that causes nonlinearity in the material response. Wd can be de-

scribed using a set of i internal state variables Si, that can account for all the irreversible processes

occurring within the system. The thermodynamic force Fi responsible for producing these struc-

tural changes due to ISV Si can be obtained by measuring the gradient ofWd due to the change

in ISV Si.

Fi =
∂Wd

∂Si

(5.2)

Additionally, it should also be noted that the second law of thermodynamics does not permit

healing of the material and by definition an irreversible process cannot be reversed. Using the

second law of thermodynamics, the following inequality is established (Rice 1971):

FiṠi ⩾ 0 (5.3)
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For isotropic materials accounting for a single damage source, such as polymer matrix micro-

damage, the dissipated strain energy can be represented using a single ISV, Si=1 = S (Pineda et

al. 2009). However, damage in orthotropic material systems can be directionally dependent and

hence, will require a separate ISV for each strain element ϵ11, ϵ22, ϵ33, ϵ12, ϵ23, ϵ31. The dissipated

strain energy can then be expressed as:

Wd =
i=6∑
i=1

Si (5.4)

Si = δisi (5.5)

where si is a state variable that will be defined explicitly and δi is an activation function which is

used to activate the appropriate ISV at the existence of strain in that direction. It can be expressed

as:

δ1 =


1 when |ϵ11| > 0 and

0 when |ϵ11| = 0

...

δ5 =


1 when |ϵ13| > 0 and

0 when |ϵ13| = 0

δ6 =


1 when |ϵ12| > 0 and

0 when |ϵ12| = 0

(5.6)

It has been shown that the total strain energy density is stationary with respect to the changes

in ISVs associated with damage and structural processes (Schapery 1990, 1989), such that:

∂U

∂Si

= 0 (5.7)

Substituting equation 5.1 and 5.4, in equation 5.7, the following expression can be obtained:

∂We

∂Si

= −1 (5.8)
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Equation 5.8 can be used to apply bounds on the evolution of the ISVs by combining it with equa-

tion 5.3 and using the definition of Fi which leads to the following evolution law:

Ṡi ⩾ 0 (5.9)

Using the chain rule, equation 5.8 can be further written as:

∂We

∂Si

=
∂We

∂si
· ∂si
∂Si

(5.10)

The second term in equation 5.10 can be obtained by differentiating equation 5.5 with respect to

Si, which is found to be:
∂si
∂Si

=
1

δi
(5.11)

which can be substituted in equation 5.10 and the result of which can be substituted in equation

5.8 to obtain:
∂We

∂si
= −δi (5.12)

Equation 5.12 represents a systemof equations that describe the evolution of the state variables

on the application of any form of strain energy. The elastic strain energy as a function of strain for

a general orthotropic system is:

We =
1

2

(
C11ϵ

2
11 + C22ϵ

2
22 + C33ϵ

2
33 + C44ϵ

2
23 + C55ϵ

2
13

+ C66ϵ
2
12 + C12ϵ11ϵ22 + C13ϵ11ϵ33 + C21ϵ22ϵ11

+ C23ϵ22ϵ33 + C31ϵ33ϵ11 + C32ϵ33ϵ22

) (5.13)

where Ci=1−6,j=1−6 are elements of the stiffness matrix of the material system. The system of

equations represented in equation 5.12 can be reduced to a single equation for isotropic materials,

where S1 = S2 · · · = S6 = S
6

such that Wd = S, and δ is always 1 to avoid triviality. Such

a case leads to the original equations for isotropic materials as derived in previous works (Pineda

et al. 2009; Johnston 2016). Since Cij is dictated by the state variables si, it can be functionally
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expressed as Cij = f(s1, · · · , s6). These functions can be chosen appropriately to model the

selected material system, for example, Pineda et al. used a polynomial function to describe the

dependence of the elastic constants with the state variables (Pineda et al. 2009). In the current

work, a second order polynomial function is used such that:

Cij =C
1̇
ij + C 2̇

ijs1 + C 3̇
ijs2 + C 4̇

ijs3 + C 5̇
ijs4 + C 6̇

ijs5 + C 7̇
ijs6+

C 8̇
ijs

2
1 + C 9̇

ijs
2
2 + C 1̇0

ij s
2
3 + C 1̇1

ij s
2
4 + C 1̇2

ij s
2
5 + C 1̇3

ij s
2
6

(5.14)

whereC k̇
ij are constants. The independent constants can be selectively calibrated depending on the

application of the model and can also be dramatically reduced using symmetry conditions if they

exist. As can be seen from equation 5.14, any strain in a certain direction may produce changes in

thematerial properties in the non-dominant directions, the amount of which is governed by equa-

tion 5.12. For example, application of any loading in the transverse (22) direction will activate

the state variable s2, which then produces a change in all the material constants. This methodol-

ogy simulates the reduced ability of the material to resist loads in non-dominant directions as a

consequence of damage in the dominant direction.

5.3.1 Subcell Micromechanics

The proposed low fidelity Schapery damage model can now be used to replicate the CNT-

epoxy nanomatrix response calibrated with the high fidelity explicit model of the CNT-epoxy sys-

tem. However, this canonly be used to analyze thematrix properties of the composite or nanocom-

posite material. Since global loads are applied to the composite material system, a framework for

decomposing the global loads to fiber and (nano)matrix properties must be utilized for the appli-

cation of the (nano)matrix surrogate. Several micromechanics techniques have been discussed in

Chapter 1 that perform this decomposition through the use of a concentration factor, relating

global properties to the microscale constituent properties. One such micromechanics framework
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Figure 5.7. Unitcell discretization in the subcell method

Source: (Zhu 2006)

is the 3D subcell model (Zhu, Chattopadhyay, and Goldberg 2006; Zhu 2006) that discretizes a

perfectly ordered square unit cell with a central circular fiber into 32 subcells. Perfect fiber-matrix

interfacial bonding is assumed. These subcells are governed by 32 independent sets of constitutive

properties which are all related along with the global loads through appropriate sets of continu-

ity conditions that create a combination of Voight and Reuss approximations. The actual analysis

considers symmetry conditions and explicitly develops these equations for 8 subcells thatmake up

one quarter of the unit cell, as illustrated in Figure 5.7. In this framework, subcells 2, 3, 4 and 5, 6,

7 are connected through a system of equations and homogenized as intermediate subcells A and

B respectively. Then the subcells 1, 8, A, and B are related through another system of equations to

create a homogenized composite constitutive model that describes the global composite response.

In this manner, the global initial and boundary conditions can be used to perform a global-local
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analysis for each individual subcell. Since subcells 3, 4, 6, 7, and 8 describe matrix behavior, the

material properties for these subcells can be defined using the Schapery model to incorporate the

high-fidelity matrix response.

Since the individual subcell mechanics is a function of the subcell geometry, a relationship

between subcell geometry and experimentally measurable parameters can make the analysis prac-

tically viable. The volume fraction Vf of composites, defined as the volume ratio of the fiber to

that of the unit cell, can be measured using simple microscopy studies and can be easily related to

the subcell geometry variables d1, d2, d3, and d4. Assuming the radius of the fiber isRf and unit

length of the unit cell cube (1 × 1 × 1), the cylindrical volume of the fiber equals the volume

fraction.

πR2
f = Vf ⇒ Rf =

√
Vf
π

(5.15)

To relate the four subcell variableswithVf , four distinct equations are requiredwhich are obtained

by considering the subcell geometries such as:

(d1 + d2)
2 + (d1 + d2)

2 = R2
f Radius of the fiber

d1 + d2 + d3 = Rf Radius of the fiber

2 (d1 + d2 + d3 + d4) = 1 Unit length of the unit cell

4(d1 + d2)
2 + 8(d1d2) = Vf Volume fraction of the fiber

(5.16)

The subcell miromechanics theory performs intermediate homogenization of the subcell 2,

3, 4 by assuming appropriate continuity conditions for relating the homogenized properties of

subcell A, σ̇(A) and ϵ̇(A), with properties of the individual subcells, σ̇(2,3,4) and ϵ̇(2,3,4). These

conditions are expanded as:

ϵ̇
(2)
11 = ϵ̇

(3)
11 = ϵ̇

(4)
11 = ϵ̇

(A)
11

A1σ̇
(2)
11 + A2σ̇

(3)
11 + A3σ̇

(4)
11 = σ̇

(A)
11

(5.17)
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A3σ̇
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22 = σ̇

(A)
22
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22 = σ̇
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22
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(4)
22 = ϵ̇

(A)
22

A5ϵ̇
(2)
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(3)
22 = ϵ̇

(A)
22

(5.18)
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(A)
33
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(A)
33
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33 = ϵ̇

(3)
33

A3ϵ̇
(4)
33 + A4ϵ̇

(3)
33 = ϵ̇

(A)
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(5.19)
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12 = σ̇

(3)
12 = σ̇

(4)
12 = σ̇

(A)
12

2A1ϵ̇
2
12 + 2A2ϵ̇

3
12 + 2A3ϵ̇

4
12 = 2ϵ̇A12

(5.20)

σ̇
(2)
13 = σ̇
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13 = σ̇

(A)
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2A1ϵ̇
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13 = 2ϵ̇A13

(5.21)
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(3)
23 = σ̇

(A)
23
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(A)
23

2A5ϵ̇
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(A)
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(5.22)
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A1 =
d1d3

(d1 + d2)(d3 + d4)

A2 =
d1d4

(d1 + d2)(d3 + d4)

A3 =
d2

(d1 + d2)

A4 =
d1

(d1 + d2)

A5 =
d3

(d1 + d2)

A6 =
d4

(d1 + d2)

(5.23)

Similar formulations can be used to relate subcell B properties, σ̇(B) and ϵ̇(B), with properties of

the individual subcells, σ̇(5,6,7) and ϵ̇(5,6,7). Finally, the homogenized properties of the single unit

cell material, σ̇(u) and ϵ̇(u), can be related with properties of the individual subcells, σ̇(1,8,A,B) and

ϵ̇(1,8,A,B). However, the continuity conditions do not provide the complete set of equations to

fully define local properties with the global properties. The constitutive relations can be used to

obtain a fully analytical relation for the local-global analysis. The constitutive relations for the

fiber subcells 1, 2, and 5 are:

ϵ1,2,5ij = Sf
ijklσ

1,2,5
kl (5.24)

where Sijkl is the transversely isotropic compliance tensor used to describe the carbon fiber ma-

terial. The constitutive relations for the matrix subcells 3, 4, 6, 7, and 8 are determined from the

Schapery theory. Finally the unit cell constitutive response can be written as:

ϵuij = Su
ijklσ

u
kl (5.25)

where the compliance tensor for the unit cell Su
ijkl is a function of the geometric and material

properties of the subcells, obtained using the continuity equations and the subcell constitutive

relations. The homogenized unit cell tensorial relations, then, provide the bridging between the

global and local properties in a framework consistent with the theory of elasticity.
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Using such a methodology, incorporating the surrogate Schapery model with a computation-

ally rapidmicromechanics framework, allows the investigation of the effects of thematrix phase as

well as the fiber phase as a function of applied global loads, and permits the application of classical

macroscale failure theories to perform a coherent computationally efficient multiscale study that

may involve the structural scale. It is to be noted that since the matrix phase response is calibrated

with the high fidelity atomistically informed model, the nanoscale influences are implicitly ac-

counted for in the surrogate low fidelity Schaperymodel of theCNT-epoxy system. However, the

local sub-microscale information from the high fidelity model is lost and only the global RUC re-

sponse of the CNT-epoxy system is bridged. The sectional micromechanics model then accounts

for in-plane deformations, out of plane normal deformations, and transverse shear deformations,

allowing for 3D characterization and analysis.

5.3.2 Low Fidelity Parametric Analysis

Table 5.1. Calibration parameters for the polymer Schapery model

C 1̇
11 2.383E9 C 1̇

12 1.021E9 C 1̇
66 1.362E9

C 2̇
11 10151 C 2̇

12 101025 C 2̇
66 634

C 3̇
11 91632 C 3̇

12 101025 C 3̇
66 634

C 4̇
11 91632 C 4̇

12 245 C 4̇
66 1249

C 5̇
11 1.0 C 5̇

12 1.0 C 5̇
66 1.0

C 6̇
11 1.0 C 6̇

12 1.0 C 6̇
66 1.0

C 7̇
11 1.0 C 7̇

12 1.0 C 7̇
66 1.0

C 8̇
11 1.05 C 8̇

12 0.012 C 8̇
66 0.0045

C 9̇
11 1.95 C 9̇

12 0.012 C 9̇
66 0.0045

C 1̇0
11 1.95 C 1̇0

12 0.002 C 1̇0
66 0.0045

C 1̇1
11 0.001 C 1̇1

12 0.001 C 1̇1
66 0.001

C 1̇2
11 0.001 C 1̇2

12 0.001 C 1̇2
66 0.001

C 1̇3
11 0.001 C 1̇3

12 0.001 C 1̇3
66 0.001

To perform the low-fidelity equivalent of the DNS model, the matrix phase is represented
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using the equations derived in Section 5.3. Both the polymer matrix as well as the nanopolymer

matrix can be approximated. Asmentioned in Section 5.3, thismodel can be calibratedwith exper-

imental or simulated response of standard characterization tests. Figure 5.8 shows the calibration

of the Schaperymodelwith the response of a uniaxial quasi-static tensile test of a flat dogbone spec-

imenmade from Epon E863 Resin and Epi-Cure 3290 hardener (100/27 weight ratio). Table 5.1

lists the constants for the calibrated Schapery model. The number of constants is reduced due to

the isotropic nature of the polymer as well as the intended application of this model, which is uni-

axial transverse loading of the CFRP composite. The calibrated model can be used to represent

thematrix constitutive equations in the subcell micromechanics to simulate global fiber-matrix re-

sponse. A comparison of the subcell CFRP unit cell response with the calibrated damage model,

and quasi-static CFRP tests under transverse loading (Gilat, Goldberg, and Roberts 2002) can be

seen in Figure 5.9. The Schapery model determines the damage state in the matrix phase and the

overall unit cell failure is determined by the modified Hashin’s criteria (Johnston 2016). Average

total computational time for the transverse loading case was fount be 8.23 seconds and for the

transverse shear case was found to be 22.51 seconds, computed on a regular desktop computer. It

can be seen that with the combination of an independently calibrated Schapery model and the

subcell micromechanics theory, the global response of the CFRP can be predicted.

The Schapery surrogate is further calibrated with the atomistically informed damage model,

to capture polymer damage through a model-only methodology. In this case, experimental cali-

bration of the Schapery model is completely avoided. Figure 5.10 shows the comparison of the

predicted transverse stress-strain response of the CFRP composite modeled using the methodol-

ogy developed in this chapter and various popular damage models. In this case the matrix is mod-

eled using the developed Schapery surrogate calibrated with the atomistically informed damage

model. ‘Hashin-Macro’ refers to linear elastic simulations of a CFRP specimen with macro level

elastic properties calculated using rule of mixtures and the Hashin failure theory applied at the
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Figure 5.8. Calibration of Schapery model with experimental polymer response

Figure 5.9. Comparison of experimental CFRP response under transverse loading and polymer
subcell/Schapery model

structural scale (Hashin 1980). The ‘Pineda-Macro’ model refers to a macro level CFRP model

with a combination of Hashin’s failure theory and the work energy based matrix damage model

developed by Pineda et al (Pineda et al. 2009). The ‘Damage-Multiscale’ model refers to a sec-

tional micromechanics based analysis with a 3D progressive failure theory applied to the polymer

at the micro scale along with the Hashin’s failure theory at the macro scale (Johnston 2016). The
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Figure 5.10. Comparison of experimental CFRP response under transverse loading and polymer
subcell/Schapery model

‘current damage model’ refers to the framework developed in this chapter. It can be seen that the

multiscalemodels performbetter than themacroscale-onlymodels and the current damagemodel

further improves upon previous multiscale models. Global failure of the CFRP system was cap-

tured with higher accuracy which is attributed to the complementary application of microscale

damage and macroscale failure models.

Further insight into the failure process and the performance of the damage model can be

gained by studying the stresses in the matrix subcells. Figure 5.11 shows the transverse stresses

in each matrix subcell versus the applied strain. It is observed that subcell 3 is the first to begin

damaging and to fail. This is attributed to the fact that subcell 3 is in the loading plane and neigh-

bors a fiber subcell. Hence, the large stress gradient causes damage accumulation faster in subcell

3 compared to the other subcells. Similarly, it is observed that subcell 4 fails next. However there

is only a slight difference in failure stresses between subcell 4, 7 and 8. The stress gradients are

slightly higher in subcell 4 due to the neighboring subcell being a fiber subcell, hence subcell 4
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Figure 5.11. Comparison of stresses in the various subcells

fails before 7 and 8. Subcell 7 is oriented away from the loading plane compared to subcell 4 and

hence subcell 4 fails before subcell 7. It is also observed that subcell 6 does not fail before global

failure and this can be attributed to the geometry of the unit cell and the location of subcell 6

which is the farthest away from the loading plane.

Characterizing CFRP composites in the in-plane directions is relatively straightforward, how-

ever characterizing the shear stress response can be quite complex. In general, validated compu-

tational methods have been used to characterize CFRPs in the 1-3 and 2-3 directions. Two pop-

ular methods are finite elements (Barbero 2013) and multiscale analysis model using generalized

method cells (MAC/GMC) (Arnold et al. 1999). Figure 5.13 shows the comparison of the cur-

rent sectional model with the Schapery damage formulation compared to a finite element simula-

tion of unit cell usingABAQUS and aMAC/GMC simulation of a fiber centered unit cell. Good

comparison between all three models is observed, however the damage sectional model is seen to

simulates the nonlinearity in the material at larger strains.

Stochastic simulations are also carried out that lead to a spectrum of behavior depending on
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Figure 5.12. Progression of damage in the subcells in clockwise order

the uncertainty in the geometric or material variables. The probability distributions for the uncer-

tain variables, which is assumed to be only the volume fraction, Vf , and the crosslinking degree of

the polymer, η, are used to perform the analysis. For a composite system manufactured with IM7

fiber andDi-Glycidyl Ether of Bisphenol F (DGEBF)-based resin system using standardmanufac-

turing processes, it is found that the fiber volume fraction shows a Gaussian distribution with an

average of 63.9% and a standard deviation of 2.21% (Johnston 2016). Additionally, fundamental

variation in crosslinking in the polymer can be calculated from MD simulations for the DGEBF

resin system as discussed inChapter 2. The average and standard deviation of the crosslinking vari-

ation is calculated to be 56.02% and 4.11%, respectively (Subramanian, Rai, and Chattopadhyay

2015). These two random variables, approximated using normal distributions, can be randomly

sampled and applied as input to the subcell model to compute the distribution of nanocompos-

ite CFRP response under uncertainty. The simulations are performed in aMonte Carlo approach,
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Figure 5.13. Comparison of transverse shear strain response between various models

Figure 5.14. Distribution of transverse stress strain response under stochastic parameters

wherein 1000 simulations of theCFRP sectionalmodel were run for two cases: transverse loading

and transverse shear.

Figure 5.14 shows the stress-strain response space for the transverse loading condition. The

modeling response is also compared with experiments from Gilat et al (Gilat, Goldberg, and
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Roberts 2002). It is observed that lower elastic response corresponds to higher failure strains and

vice versa. It is also observed that the response is fairly tight for the applied input variation in

parameters until up to larger applied strains.

Figure 5.15. Distribution of response under shear loading and stochastic parameters

Figure 5.15 shows the stress-strain response space for the transverse shear case. It is observed

that considerably higher nonlinearities are expected for elastically stiffer response. A large spread

in response is also predictedwhich is contrary to the observation in the transverse loading response.

The existence of considerable nonlinearities and the large spread in the prediction of their occur-

rence should discourage the use of deterministic simulations of shear behavior for design purposes.

For the analysis of the CNT/CFRP system, the Schapery model must be calibrated to the

nanopolymer response. High fidelity nanopolymermodels can be generated using the framework

described in section 5.2.2, without the incorporation of the microfibers. The Schapery model can

then be used to represent the CNT-epoxy system, and applied as the matrix phase in the subcell

micromechanics. This provides a ’model-only’ methodology for the analysis of nanocomposites,

avoiding experimental calibrationof the Schapery damagemodel. Figure 5.16displays the compar-

ison of the high fidelity dispersed CNT/CFRP model response and the Subcell/Schapery model
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Figure 5.16. Comparison of nanocomposite CFRP response from direct numerical simulation
and nanopolymer Schapery/Subcell model

response under uniaxial transverse loading. The Subcell/Schapery model captures all the essen-

tial characteristics of the RUC global response as obtained from the high fidelity model, while

utilizing significantly decreased computational time. However, the local sub-microscale informa-

tion, which can be computed using the high fidelity models, is lost using the low fidelity Sub-

cell/Schapery methodology. However the significant computational efficiency allows parametric

studies of the CNT/CFRP system while considering the various causes of uncertainties, such as

variation in volume fraction and polymer curing.

Uncertain variables and characteristics used for the stochastic analysis of theCFRP system are

also used for the stochastic analysis of the nanocomposites. Figure 5.17 exhibits the result of 1000

simulations of the subcell model with randomly sampled crosslinking and volume fraction infor-

mation. The CNT-epoxy matrix is represented using the previously calibrated Schapery model

and computes the degradation of the nanomatrix phase. The figure show a spectrum of response

for the dispersed CNT/CFRP system and it can be observed that, although the elastic response
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Figure 5.17. Stochastic nanocomposite CFRP response under transverse loading

of the material does not present large variabilities, the damage and failure response is associated

with significant stochasticity.

5.4 Summary

In this chapter, a methodology for direct numerical simulations and low-fidelity, surrogate,

nanocomposite modeling and analysis were detailed. These tools were used to generate nanocom-

posites with CNTs as nanofillers for deterministic and stochastic studies with various levels of

detail. For microstructural analysis, the high-fidelity direct numerical simulation was used to

understand the phenomenon of damage in dispersed and radially grown CNT/CFRP systems.

Since the high-fidelity model is coupled with the previously developed multiscale damage formu-

lation that utilizes atomistic information of the polymer chain motion and covalent bond dissoci-

ation, an accurate investigation at the submicroscale could be performed. Through the analysis of

CNT/CFRPs it was demonstrated that the CNT architectures may be engineered to direct dam-
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age for greater nanocomposite mechanical performance. Furthermore, the work potential theory

was extended to account for orthotropy and damage history, and was applied as a low fidelity sur-

rogate constitutive model for the polymer and CNT-epoxy matrix that was calibrated with the

high-fidelity models. By using the Schapery model as a surrogate in combination with 3D subcell-

based micromechanics techniques, the CNT/CFRP unit cell response under uniaxial transverse

loading was reproduced with significantly increased computational efficiency. It was shown that

such models can be easily adapted for probabilistic and parametric studies.

With the developed low fidelity modeling techniques, bridging the microscale with the

macroscale for structural analysis becomes a possibility. Since the microscale derives its proper-

ties and damagemechanics fromnanoscale events, a successful nano-micro-macro bridging frame-

work may now be developed. However, all techniques presented so far assumes perfect interfaces

between the fiber and the matrix. The next chapter presents a technique to incorporate imperfect

interfaces in the multiscale analysis methodology where the physics of the imperfection of inter-

faces is incorporated from MD studies of the fiber-matrix interface. Introduction of the physics

of imperfect interfaces to the atomistically informed damage model permits the development of

a comprehensive analysis framework for advanced composite structures.
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Chapter 6

ATOMISTICALLY INFORMED MODELING OF IMPERFECT FIBER-MATRIX

BONDING

6.1 Introduction

The previous chapters 2-5 introduced several modeling strategies for predicting the linear and

nonlinear properties of advanced composites under a primary assumption of perfect bonding be-

tween the fiber and the matrix. It is inherently assumed that perfect continuity of displacements

and tractions occur through the interface of the fiber and the matrix such that:

uf

∣∣∣
∂V −

= um

∣∣∣
∂V +

Tf

∣∣∣
∂V −

= Tm

∣∣∣
∂V +

(6.1)

where u is the displacement, T is the traction, and ∂V (+,−) signifies a section next to the interface

on the matrix side or fiber side respectively. However, two arguments persist against this assump-

tion: (i) At the coupon level, experimental investigations find that the fiber-matrix interfacial

properties can determine global composite response. Several experiments have been performed

to characterize the fiber-matrix interfacial strength in composites through single fiber pushout

and pullout tests, and have reported a traction separation type behavior at the interface (Wagner,

Nairn, and Detassis 1995; Zhandarov and Mäder 2005; Sha et al. 2014). This type of behavior is

characteristic of interfacial separation, and hence plays a role in the composite global elastic prop-

erties, as well as precursors to damage initiation and propagation. (ii) At the atomic length scale,

several high resolution microscopy studies of the interface indicate irregular surface interlocking

of the matrix chains with the carbon substructure of the microfibers (Cooper and Chyung 1987;

Pietak et al. 2007). At this length scale, fiber-matrix bonding is a function of microfiber surface
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irregularity and of the crosslinking dynamics of the resin and hardener polymer chains. For real

systems, perfect bonding cannot be achieved without significant engineering of the carbon-resin-

hardener system. As a result, imperfect bonding conditions must be included in any realistically

advanced composite modeling framework.

Modeling of imperfect bonding in advanced composites is challenging due to the associated

length scale, difficulty in experimentally characterizing interfacial properties for model calibra-

tion, and the complicated physical mechanisms that lead to interfacial degradation. Past studies

have attempted composite analyses with imperfect bonding by assuming interfacial strength as a

variable within standardmicromechanics techniques, and by empirically determining the relation-

ship with unidirectional composite strength (Reifsnider 1994). Such techniques can be further

expanded by implicitly computing the interfacial strength through cohesive zone methods and

elaborate material constitutive behavior (Souza, Allen, and Kim 2008). However, the cohesive

zone method is intricately reliant on the assumed traction-separation law and many studies have

concentrated on investigating the most appropriate traction-separation behavior for modeling ad-

vanced composites. Bi-linear, quadrilateral, and functionally varying traction-separation laws have

been applied to various degrees of success (Wang et al. 2011; B. Zhang et al. 2010). Some studies

have also considered the interface between the fiber matrix to contain non-zero thickness, thus

essentially converting it into an interphase (Asp, Berglund, and Talreja 1996). In such studies,

the thickness of the interphase is varied until the microscale properties can be calibrated with

experimental observations. Though such techniques provide a viable methodology for introduc-

ing imperfect bonding concepts in composite analysis techniques, they are entirely dependent on

calibration with large-scale coupon testing or assumptions of interfacial behavior. Hence, these

techniques provide limited insight into the interfacial properties and their relationship with the

macroscale composite response.

Since the width of the fiber-matrix interface is in the order of a few nanometers, the interfacial
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behavior is controlled by the molecular interactions at this zone. A focus of significant research

recently has been on the nanoscale characterization of the interfacial properties through analytical

and computational modeling techniques in lieu of expensive experimental methods. Fundamen-

tal first-principle approaches such as ab-initio quantum chemistry and density functional theory

have been used to calculate particulate interfacial properties andmixing properties through phase-

diagrams innanocomposites (Ginzburg andBalazs 1999). However, these approaches continue to

provide limited use due to their high computational requirements. Fully continuum approaches

for interfacial analysis provide some interesting insights (Jiang et al. 2006; Wagner 2002); how-

ever, these techniques are critically limited by the breakdown of the continuum assumption at this

length scale. MD approaches have been far more successful in calculating bulk properties that can

be easily scaled tohigher length scales for comprehensive composite analyses. Course-grainedMD

models have been used to calculate carbonnanotube (CNT)matrix interfacial properties for func-

tionalized nanocomposites (Odegard, Frankland, and Gates 2005). MD simulations have also

been used to characterize the elastic properties of the non-zero thickness interphase between the

fiber and matrix, which is then upscaled using micromechanics techniques (Johnston et al. 2017).

Tooffset thepresumednature of traction-separation laws in theprevious studies, and to take advan-

tage of the atomistically dominated nature of this mechanism, MD simulations have additionally

been used to deduce the fundamental traction-separation between CNT and matrix interfaces

(Namilae and Chandra 2006).

The aforementioned background motivates the inclusion of imperfect interface effects in the

analysis of advanced composites, with nanoscale parameters characterized through MD simula-

tions. Atomic models provide the appropriate resolution for investigating the nanoscale domi-

nated interface effects and the continuum scale analysis permits up-scaling of these mechanisms.

This chapter briefly describes the MD model for analyzing the traction-separation behavior of

fiber-matrix interfaces, which is then integrated into a continuum GMC imperfect interface
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framework. The deterministic and stochastic effects of imperfect interfaces on composite mi-

crostructures are then analyzed.

6.2 Atomistic Simulation of the Interphase

The atomistic model is generated under the same conditions as described in section 2.2. The

fiber/matrix interface is modeled as a separate phase to simulate molecular interactions between

the carbon atoms of the microfiber and the resin and hardener molecules. The surface roughness

of the carbon fiber is attributed to the semi-crystalline nature of the material; hence the carbon

fiber is modeled by stacking several hydrogenated graphene layers with voids. This effectively sim-

ulates the defects in the microfiber through irregular stacking, which also models the mechani-

cal/chemical entanglement and interlocking of the polymer molecules at the fiber surface.3

The epoxy resin and hardener molecules are introduced into the system such that roughly half

the volume of the RUC is occupied by the graphene layers and the other half is occupied by the

polymer molecules. As described in section 2.2 the curing of the epoxy and hardener molecules is

simulated numerically, which allows the polymer molecules to populate the voids on the carbon

fiber surfaces. This entanglement roughly simulates the bonding process of the polymermolecules

to the microfiber surface. To decrease the computational requirements, periodic boundary con-

ditions (PBCs) are applied in the fiber direction (z axis) and transverse to the fiber direction (y

axis), effectively simulating an infinite plate with a thin film of polymer molecules (see Figure 6.1

for reference axis). TheRUCdimension after application of the PBCs is 13×10×5nm3 totaling

58,000 atoms.

Three loading cases are investigated: (i) matrix pullout where load is applied to the matrix in

3It is to be noted that the atomistic model presented in this section was developed by Ms. Nithya Subramanian.
All MD simulations are credited to her.
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Figure 6.1. Carbon fiber surface and a hydrogenated graphene layer

Source: (Subramanian, Rai, and Chattopadhyay 2017)

the x direction which simulates fiber/matrix disbond under tensile loads; (ii) matrix shear where

load is applied in the y direction, which simulates interface failure under fiber rotation; (iii) fiber

pullout where load is applied on the fiber in the z direction. The objective of this model is to

characterize the interface behavior especially in the non-linear regions; hence the traction forces

required to separate the interfaces is studied. Reactive force fields are used tomodel the fundamen-

tal covalent bond dissociation during the interface separation. Five random atomic configurations

are tested for each case and the averaged response of these configurations are collected for analysis.

Figure 6.2 shows the traction-separation behavior observed under matrix pullout loading. A

linear traction-separation relationship is observed under an initial elastic regime, followed by the

dissociation of the weakest covalent bonds. Load redistribution among the remaining bonded

pairs leads to hardening until the global maxima is reached signifying failure of the interface. Fric-

tional sliding after failure leads to secondary resistance and renewal of the hardening response until

complete failure of the system occurs. It can be observed that the traction-separation behavior can
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Figure 6.2. MD simulation of interface failure under matrix pullout

Source: (Subramanian, Rai, and Chattopadhyay 2017)

be approximately modeled using a bimodal Gaussian function. The traction-separation response

of the matrix shear loading case can be seen in Figure 6.3, which also exhibits an initial elastic

response. The failure of physical entanglement between the carbon fiber voids and the polymer

molecules leads to the nonlinear response, which slowly softens with continuous covalent bond

dissociations. A trapezoidal relationship may be used to analytically approximate this behavior.

Figure 6.4 illustrates the traction-separation response for thefiber pullout case. The linear response

is disturbed due to the failure of the mechanical entanglement between the carbon fiber defects

and the polymermolecules. The nonlinear response is then characterized by smooth sliding of the

polymer system along the carbon fiber similar to the dynamic frictional sliding mechanism. The
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Figure 6.3. MD simulation of interface failure under matrix shear

Source: (Subramanian, Rai, and Chattopadhyay 2017)

resistance against this sliding motion slowly deteriorates due to continual bond dissociation. As

in the case of matrix shear, a trapezoidal relationship can be used to approximate the fiber pullout

interfacial behavior.

Using MD simulations, the nanoscale characterization of the interfacial behavior can be per-

formed; however, for the analysis of practical composite structures these properties need to be

effectively used at the next length scale. The following section introduces the generalized method

of cells (GMCs) micromechanics framework and develops a methodology for incorporating the

MD characterized interfacial properties between the fiber and matrix to simulate atomistically

consistent imperfect bonding.
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Figure 6.4. MD simulation of interface failure under fiber pullout

Source: (Subramanian, Rai, and Chattopadhyay 2017)

6.3 Generalized Method of Cells with Imperfect Interface

TheMethodofCells (MOC) is a semi-analytical approach for estimating the volume-averaged

phase concentration tensors through the analysis of a periodic repeating unit cell (RUC) for two-

phased materials. The RUC comprises of four subcells, which is assumed to completely form the

macroscale structure under a periodic assumption (Aboudi 1989). The analytical formulation

is arrived at by the appropriate use of displacement and traction continuity through neighbor-

ing subcells and equilibrium equations. The primary disadvantage of the MOC approach is the

limited amount of subcells which only permit the analysis of idealized microstructures with two

phases. However, theMOCapproach can be generalized for a completely arbitrary representative

unit cell (RUC) called the GeneralizedMethod of Cells (GMC) (Aboudi 1996; Aboudi, Arnold,

and Bednarcyk 2012). The generalized approach is suitable for the analysis of completely ran-
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dom composite microstructures with multiple phases. Additionally, the approach can be easily

applied as a supplemental analysis for structural finite element techniques to perform concurrent

multiscale studies. This section illustrates the general concepts, the governing equations, and the

semi-analytical formulations of the concentration tensors derived from the GMC approach.

Figure 6.5. GMC element orientations and geometry

Assuming a periodic microstructure can fully define the macroscale composite material on in-

finite repetition, the microstructure can be approximated as a parallelepiped RUC of dimension

d×h× l itself comprising ofNα×Nβ ×Nγ parallelepiped subcells of dimensions dα×hβ × lγ .

Each subcell may be defined by independent material properties, however, it is assumed that con-

tinuity of tractions and displacements between neighboring subcells is always maintained. It is

further assumed that the subcells are in static equilibrium. Under these conditions, the RUC
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behavior is approximately defined by the volume averaged behavior of its subcells. To find this

exact relationship, the subcell behavior is analyzed. Before performing such an analysis a local

subcell orientation needs to be constructed, as shown in Figure 6.6. The local coordinate system

(x̄
(α)
1 , x̄

(β)
2 , x̄

(γ)
3 ) is so introduced such that its origin always remains at the center of the subcell

(αβγ). To maintain periodicity, neighboring subcells are defined using the following nomencla-

ture:

α̂ =


α + 1 α < Nα

1 α = Nα

(6.2)

β̂ =


β + 1 β < Nβ

1 β = Nβ

(6.3)

γ̂ =


γ + 1 γ < Nγ

1 γ = Nγ

(6.4)

Figure 6.6. Local subcell orientations and neighboring subcell nomenclature
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The general subcell displacements u(αβγ)i are assumed to be first order linear expansions of the

subcell center displacement i terms of (x̄(α)1 , x̄
(β)
2 , x̄

(γ)
3 ).4

u
(αβγ)
i = w

(αβγ)
i (x) + x̄

(α)
1 χ

(αβγ)
i + x̄

(β)
2 ϕ

(αβγ)
i + x̄

(γ)
3 ψ

(αβγ)
i (6.5)

wherew(αβγ)
i (x) quantifies the subcell center displacement components,χ,ϕ, andψ are mapping

variables thatmap the dependences ofu(αβγ)i on the local subcell coordinates, and the bold dimen-

sional variables x is a vector of the global coordinate system (x1, x2, x3).

In theGMCapproach, the displacements between subells are assumed to be continuous, how-

ever this continuity is applied in an averaged sense. Perfectly continuous displacements between

subcells can be denoted by:

u
(αβγ)
i

∣∣∣
x̄
(α)
1 = dα

2

= u
(α̂βγ)
i

∣∣∣
x̄
(α̂)
1 =− dα̂

2

(6.6)

However, this continuity may also be applied in an averaged sense for the surface ∂V =

dx̄
(β)
2 dx̄

(γ)
3 . Such application does not fulfill continuity at every point, however, any violations

average out to zero over the surface ∂V .

∫ hβ
2

−
hβ
2

∫ lγ
2

− lγ
2

(
u
(αβγ)
i

∣∣∣
x̄
(α)
1 = dα

2

)
dx̄

(β)
2 dx̄

(γ)
3 =

∫ hβ
2

−
hβ
2

∫ lγ
2

− lγ
2

(
u
(α̂βγ)
i

∣∣∣
x̄
(α̂)
1 =− dα̂

2

)
dx̄

(β)
2 dx̄

(γ)
3

(6.7)

Applying the averaged continuity concept to the subcell displacements in equation 6.5 the follow-

ing relationship for displacements between subcells can be obtained:

w
(αβγ)
i +

1

2
dαχ

(αβγ)
i = w

(α̂βγ)
i − 1

2
dα̂χ

(α̂βγ)
i (6.8)

Equation 6.8 is a first order relationship between the center displacements of adjacent subcells.

These relations can be further reduced to an equation with variables from only the original subcell

(αβγ) by expanding the neighboring subcell displacements w(α̂βγ)
i using the Taylor’s expansion.

4Indicial notations are used in this section
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Summing all these relations in the operating dimension 1, 2 · · · , Nα, the following equation can

be obtained:
Nα∑
α=1

dαχ
(αβγ)
i = d

∂

∂x1
w

(1βγ)
i (6.9)

Similar expansions and summing in the other operating dimensions leads to:

Nβ∑
α=1

hβϕ
(αβγ)
i = h

∂

∂x2
w

(α1γ)
i (6.10)

Nγ∑
α=1

lγψ
(αβγ)
i = l

∂

∂x3
w

(αβ1)
i (6.11)

The Taylor’s expansion can also be used for the next step of relations in equation 6.8 which on

subtraction with the original equation 6.8 leads to:

∂

∂x1
w

(αβγ)
i =

∂

∂x1
w

(α̂βγ)
i

∂

∂x2
w

(αβγ)
i =

∂

∂x2
w

(αβ̂γ)
i

∂

∂x3
w

(αβγ)
i =

∂

∂x3
w

(αβγ̂)
i

(6.12)

However, the set of relations described by equation 6.12 can only be true if the subcell displace-

ments are all related by a common displacement variablewi:

∂

∂xj
w

(αβγ)
i =

∂

∂xj
wi (6.13)

This relationship proves that the total stress and strain components for a subcell are independent

of the subcell orientations and are constant for each subcell. No spatial gradients of the stress and

strain exist within a subcell and the volume averaged stress and strain quantities are equal to the

point field measures:

ϵ̄
(αβγ)
ij = ϵ

(αβγ)
ij

σ̄
(αβγ)
ij = σ

(αβγ)
ij

(6.14)

151



It should be noted that the infinitesimal strain definition in the subcell orientations is used in this

analysis:

ϵ
(αβγ)
ij =

1

2

(
∂iu

(αβγ)
j + ∂ju

(αβγ)
i

)
(6.15)

Thevolume averaged strain in the compositematerial cannowbe obtained through the discretized

form of the ensemble averaging technique such that:

ϵ̄ij =
1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγϵ
(αβγ)
ij (6.16)

6.3.1 Imperfect Subcell Interfaces

In cases of imperfect interfaces between subcells, the displacement continuity equation 6.6

should be modified to account for the interfacial displacement jumps due to imperfect bonding.

Assuming a jump in displacement at the interfaces to be proportional to the interfacial stresses and

using the relations in equation 6.14, the continuity equation for subcells with imperfect interfaces

can be expressed as:

u
(αβγ)
i

∣∣∣
x̄
(α)
1 = dα

2

+R
(αβγ)
1i σ

(αβγ)
1i = u

(α̂βγ)
i

∣∣∣
x̄
(α̂)
1 =− dα̂

2

(6.17)

where the loss factor is represented usingRij . A similar procedure as represented in equations 6.8-

6.12 can be followed with the imperfect interfacial continuity equation to prove equation 6.13

for the imperfect bonding case. However the ensemble averaged composite strains will need to be

adjusted for the displacement jump losses.

ϵ̄ij =
1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγϵ
(αβγ)
ij − 1

2dhl

∫ ∫
l

{[ui]nj + [uj]ni} dI (6.18)

where [ui] are the interfacial displacement jumps at interface I , and ni are the unit normal vectors

to the interfaces. Since the displacement jump at the interfaces are proportional to the interfacial
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stresses, the second part of equation 6.18 can be formulated as:∫ ∫
I

[uI ]nI dI = −
Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

∫ hβ
2

−
hβ
2

∫ lγ
2

− lγ
2

R
(αβγ)
11 σ

(αβγ)
11 dx̄

(β)
2 dx̄

(γ)
3

= −
Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

hβlγR
(αβγ)
11 σ

(αβγ)
11

(6.19)

Using these derived properties, equations 6.8, 6.13, 6.18, and 6.19 can be combined to form a

tractable relation between the composite global strain ϵ̄ij and the subcell local strains ϵ(αβγ)ij as:

Nα∑
α=1

(
dαϵ

(αβγ)
11 +R

(αβγ)
11 σ

(αβγ)
11

)
= dϵ̄11, β = 1, · · · , Nβ

γ = 1, · · · , Nγ

(6.20)

Nβ∑
β=1

(
hβϵ

(αβγ)
22 +R

(αβγ)
22 σ

(αβγ)
22

)
= dϵ̄22, α = 1, · · · , Nα

γ = 1, · · · , Nγ

(6.21)

Nγ∑
γ=1

(
lγϵ

(αβγ)
33 +R

(αβγ)
33 σ

(αβγ)
33

)
= dϵ̄33, α = 1, · · · , Nα

β = 1, · · · , Nβ

(6.22)

Nα∑
α=1

Nβ∑
β=1

(
dαhβϵ

(αβγ)
12 + hβR

(αβγ)
12 σ

(αβγ)
12 + dαR

(αβγ)
21 σ

(αβγ)
21

)
= dhϵ̄12

γ = 1, · · · , Nγ

(6.23)

Nβ∑
β=1

Nγ∑
γ=1

(
hβlγϵ

(αβγ)
23 + lγR

(αβγ)
23 σ

(αβγ)
23 + hβR

(αβγ)
32 σ

(αβγ)
32

)
= hlϵ̄23

α = 1, · · · , Nα

(6.24)

Nα∑
α=1

Nγ∑
γ=1

(
dαlγϵ

(αβγ)
13 + lγR

(αβγ)
13 σ

(αβγ)
13 + dαR

(αβγ)
31 σ

(αβγ)
31

)
= dlϵ̄31

β = 1, · · · , Nβ

(6.25)
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To maintain generality, each subcell may be associated with an independent anisotropic compli-

ance tensor S(αβγ)
ijkl . This leads to the subcell constitutive equation:

ϵ
(αβγ)
ij = S

(αβγ)
ijkl σ

(αβγ)
kl (6.26)

The subcell constitutive equation 6.26 allows to form a general relation between the local and

global strains which can be represented in the matrix form for convenience as:

ϵ(αβγ) = A(αβγ)ϵ̄ (6.27)

where A(αβγ) is a bridging tensor that allows the computation of strains in every subcell if the

global composite strains are known, and vice-versa. The bridging tensor is a function of the subcell

material properties, subcell geometry, the loss factors, andRUCgeometry. On the computationof

subcell strains, the inverse of equation 6.26 can be used to find subcell stresses which on ensemble

averaging leads to the global composites stresses. Hence, the general global composite material

constitutive equation can be written as:

σ̄ = C∗ϵ̄ (6.28)

whereC∗ is the phase averaged concentration tensor that is used to represent the general compos-

ite material as a phase averaged quantity of individual subcell materials and geometry. The general

relation for the phase averaged stiffness concentration is:

C∗ =
1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγC
(αβγ)A(αβγ) (6.29)

whereC(αβγ) is the subcell stiffness tensor.

C∗ is an analytical relation between the subcell properties and the global composite material

which allows rapid computation of the local response given the global response (and vice-versa) as

well as analytical homogenization of the composite material properties. Additionally, the GMC

formulations are not limited to any number of subcells and are triply periodic. This permits the
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analysis of 2D and 3D materials with complicated microstructures. Calculation of local subcell

response can then be used for local damage and failure analysis and evaluation of microstructure-

property relations at the higher lengths scale. The analytical formulations of the concentration

tensor also lead to exact solutions for equation 6.29 that prevents the need for any form of con-

vergence studies, as in the case of numerical homogenization techniques. This leads to significant

gains in computational time required for implementation of the GMC method.

The introductionof imperfect interfaces also allows the customizationofmicrostructureswith

imperfect bonding between phases. However, in the current framework the loss factors are eval-

uated by calibration of subcell properties to attain the experimentally observed global composite

response. This empirical relationship is difficult to justify since global properties may be affected

by factors other than the interfacial weaknesses. In section 6.2 the interface properties were explic-

itly studied at the atomic scale disregarding any possible higher length scale mechanisms that may

interfere with the interfacial response. The loss factors can now be evaluated through the atomic

studies of the interface, which ensures that the physics of imperfect bonding between subcells and

the evaluated parameters are consistent.

The continuity between imperfectly bonded subcells maybe written as:

u
(αβγ)
i

∣∣∣
x̄
(α)
1 = dα

2

+ u
j,(αβγ)
i

∣∣∣
x̄
(α)
1 = dα

2

= u
(α̂βγ)
i

∣∣∣
x̄
(α̂)
1 =− dα̂

2

(6.30)

where uji is the jump discontinuity between subcells due to the imperfect bonding. This quantity

produces interfacial stresses which is calculated through the loss factorsRij as presented in equa-

tion 6.17. In the case of fiber/matrix interfaces, a common assumption is that the interface is very

thin compared to the fiber and matrix phases. Under a thin interface assumption, the loss factors

causing fiber pullout, matrix pullout, and matrix shear are the only parameters of significance. If

the fiber is oriented in the (11) direction, then only the loss factors R(αβγ)
11 , R(αβγ)

12 , and R(αβγ)
13
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need to be evaluated. According to the definition of the loss factors, they can be represented as:

{
R

(αβγ)
11 R

(αβγ)
12 R

(αβγ)
13

}
=

{
u
j,(αβγ)
1

σ
(αβγ)
11

u
j,(αβγ)
2

σ
(αβγ)
12

u
j,(αβγ)
3

σ
(αβγ)
13

}
(6.31)

The traction-separation relation for interfacial debonding can be generally written as:

Ti =
uji
uj,Ci

Tmax
i F (Ψ,Φ,Θ) (6.32)

whereuj,C is the critical separationwhere failure occurs,Tmax
i is themaximum traction that can be

applied at the interface and is the globalmaxima of the traction-separation curve, andF (Ψ,Φ,Θ)

is a functionwith dependenciesΨ in the fiber pullout direction,Φ in thematrix pullout direction,

and Θ in the matrix shear direction which can be used to describe the nature of the interface

response. For a very thin interface of thickness hI and unit length, the general traction-separation

relation can be instead written as an approximate constitutive equation for the interface:

σij =
ϵij
ϵCij

σmax
ij F (Ψ,Φ,Θ) (6.33)

Substitution of equation 6.33 into equation 6.31, the loss factors for each subcell (αβγ) can be

evaluated.

{
R

(αβγ)
11 R

(αβγ)
12 R

(αβγ)
13

}
= hI

{
ϵ
C,(αβγ)
11

σ
max,(αβγ)
11 F (Ψ)

ϵ
C,(αβγ)
12

σ
max,(αβγ)
12 F (Φ)

ϵ
C,(αβγ)
13

σ
max,(αβγ)
13 F (Θ)

}
(6.34)

The values for ϵC ,σmax, andF (Ψ,Φ,Θ) can be obtained from theMDstudies of the fiber pullout,

matrix pullout, and matrix shear, illustrated in Figures 6.2, 6.3, and 6.4 respectively. Using this

methodology, continuum mechanics is used to approximate the effects of imperfect bonding at

the microscale and the consequent effects at the higher length scale, however MD simulations are

used to estimate the interfacial response at the nanoscale which is applied as parameters in the

continuum definition. Through this hierarchical-concurrent hybrid approach, interfacial physics

is ensured to be consistent at each length scale while maintaining high computational efficiency.
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6.3.2 Generating the Microstructure RUC

Thehomogenization approach inGMC is primarily dependent on theRUC subcell character-

istics as evident in equations 6.20-6.25. The accuracy of the composite properties is directly related

to the subcell geometric variables, dα, hβ , lγ , the subcell material properties C(αβγ)
ijkl , and the sub-

cell interface loss factorsR(αβγ)
ij . Due to the significance associated with the RUC, it is important

to design the RUC representation of the microstructure with accuracy. Although it is possible to

design the RUCmanually, this task becomes very cumbersome if realistic microstructures, such as

the one illustrated in Figure 5.2a, need to be discretized into subcells. Simplemicrostructuresmay

be meshed into a GMC ready RUC through simple shape discretization algorithms (Johnston

2016), however such approaches are limited to certain geometries. These approaches also tend to

produce an ineffective number of subcells for non-standard geometries whichmay significantly in-

crease computational time without proportionally increasing the accuracy of the solution. Hence,

an automated approach for designing the RUC for any general microstructure geometry should

be developed for an accurate GMC analysis.

ThegeneralGMChomogenizationmethodology is developed for rectangular subcellswith in-

dependent subcell geometriesdα,hβ , lγ . On the assumption that a two-phaseRUC is constructed

with subcells of equal sizes in the in-plane directions such that:

d1, d2, · · · , dα, · · · , dNα = d,
Nα∑
1

dα = Nα d = d

h1, h2, · · · , hβ, · · · , hNβ
= d,

Nβ∑
1

hβ = Nβ d = h

l1, l2, · · · , lγ, · · · , lNγ = l,

Nγ∑
1

lγ = Nγ l = l

(6.35)

which can lead to a visual and algorithmic similarity between the organization of digital images

and themicrostructural RUC for doubly periodicmaterials. Furthermore, if we assume cubic sub-
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cells with d = l then there exists a visual and algorithmic similarity between the organization

of digital voxels and the microstructural RUC for triply periodic materials. Since random mi-

crostructures of continuous fiber composites are considered to be doubly periodic, the similarity

with digital images is further explored.

Figure 6.7. Digital image array representation of fiber-centered RUC

Digital machines convert images into an array of integer data (Gonzalez, Woods, et al. 1992).

These arraysmay be a simple 2Dmatrix in the case of gray-scale two tone images, or can be complex

higher dimensional arrays that contain information onpixel location, color tone, shade, brightness

etc. Considering the simple case of two tone gray-scale images, the digital image comprises of a

2D integer matrix corresponding to pixel color tone. White tonemay be represented by 0 and the

black tone by 1. A larger matrix of 1’s and 0’s corresponds to a smoother picture which also con-

sumes higher memory and a smaller matrix corresponds to ‘pixelated’ course images that consume

minimal memory. Figure 6.7 illustrates the digital image integer array representation of a single

fiber RUC system. The integer array provides a ready-made solution for generating the RUCs

with each pixel converted into a subcell with dimensions d × d × l, and the material properties

chosen according to the pixel tone. In the case of the fiber-centered digital representation shown

158



in Figure 6.7, the integer value 1 corresponds to fiber and 0 corresponds to the matrix.

P (αβγ) =


1, Fiber material properties

0, Matrix material properties
(6.36)

whereP is the value of the pixel tone which represents thematerial (fiber ormatrix), and the fiber

is assumed to be oriented along the 11 direction. This system can be easily generalized to any two-

phase microstructure saved in a gray-scale 2 tone digital image format. Furthermore, the fineness

of the RUC mesh can be controlled by increasing or decreasing the image matrix size. However,

it should be noted that the matrix size cannot be larger than the available pixels in the original

image. The 75×75 subcell RUC generated using this image processing technique for a simulated

random microstructure can be seen in Figure 6.8.

Figure 6.8. GMC RUC of a random microstructure

The image processing based meshing algorithm hence provides a convenient solution for gen-

erating microstructural RUCs for random configurations of two-phase doubly periodic material

systems. Furthermore, the 2D digital image array also permits easy detection of interfaces by scan-

ning for variations in pixel tone. Changes in pixel tones signify a change in material, which can
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Figure 6.9. Detection of interface subcells

then be marked as a material interfacing subcell.

P (αβ̂γ) − P (αβγ) =


1, Fiber/matrix interface subcell

0, No interfaces

−1, Matrix/fiber interface subcell

(6.37)

P (αβγ̂) − P (αβγ) =


1, Fiber/matrix interface subcell

0, No interfaces

−1, Matrix/fiber interface subcell

(6.38)

Interfacing subcells will be assigned non-zero values of R11, R12, and R13, while all non-

interfacing subcells will be assigned null values for Rij . This process is illustrated in Figure 6.9,
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which shows the detected interface subcells of a random microstructure in red. The RUC can

now be analyzed under static loading conditions for material response with explicit consideration

for weak interfaces.

6.4 Effect of Interface at the Microstructure

The approach detailed in the previous section is implemented in FORTRAN using a MAT-

LAB preprocessor that generates the random microstructure RUC. The analysis is performed us-

ing average values for fiber volume fraction andmatrix properties to compute the deterministic re-

sponse, as well as with distributions for these variables to determine the stochastic response. The

RUC size is controlled at 75 × 75 subcells and the applied constant strain rate is 0.001 strains

per second to ensure quasi-static conditions. Fiber properties are assumed to be linear-elastic or-

thotropic and are based on standard tests and data presented in manufacturer data sheets (Hexcel

2016) and detailed in Table 2.2. The matrix properties and damage parameters are presented in

Table 3.2.

Figure 6.10. Uniaxial stress-strain response in the fiber direction
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The effect of the weak interface on elastic response of the composite material is investigated

first. For the analysis of uniaxial elastic response in the fiber direction, a uniaxial strain is applied

in the fiber (11) directionwith stress-free boundary conditions in the non-loading directions. The

global stress in the 11 direction is then compared against applied strain (σ̄ vs. ϵ̄), where the slope

of this curve is considered to be the uniaxial elastic modulus in the fiber direction. The 11 stress-

strain response can be seen in Figure 6.10 and it is apparent that the weak interface does not play

a significant role in determining elastic properties in the fiber direction of the composite mate-

rial. The reason for this effect can be deduced by reviewing the fiber-pullout mechanism as com-

puted by the nanoscale study shown in Figure 6.4. The general elastic effect of the interface can

be idealized as a spring like structure connecting the fiber and the matrix substructure as visual-

ized in Figure 6.11. Under perfectly bonded conditions, the interface behaves as a spring with

an infinite spring constant (= ∞) where perfect continuity in displacements and tractions are

observed between the fiber and the matrix. However, under weak interface conditions the ideal-

ization will consist of a spring with a real non-imaginary spring constant (> ∞) causing loss in

displacement and traction continuity between the fiber and the matrix. Failed interfaces could be

visualized as a spring with 0 spring constant. It can then be concluded that as the spring constant

increases (stiffer springs) the response of the interface approaches perfect bonding behavior. The

atomic simulations of the fiber-pullout shows the stiffest linear response leading to an almost per-

fect bonding-like behavior. Hence, the weak interface does not affect the elastic properties of the

composite in the fiber direction.

Table 6.1. Comparison of 11 elastic modulus from GMC, linear FE, and literature

Method E1 (GPa) Error relative to literature (%)
Literature 164 (σdev=11.85) -
GMC with perfect interface 165.343 0.8123
GMC with imperfect interface 164.89 0.5398

The elastic properties obtained using the GMC perfect/imperfect interface model is com-
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Figure 6.11. Idealization of the interface

pared with literature values and is reported in Table 6.1. It is interesting to note that the imper-

fect interface leads to a .27% decrease in elastic modulus compared to the perfect interfacemodel,

which brings it closer to the experimentally observed value by .2725%.

The response under transverse normal loading is also measured with and without the inter-

face effects. The interface effects lower the elastic response of the composite system by 7.93% as

can be seen in Figure 6.12. Using the spring analogy, and referring to the nanoscale matrix pull-

out studies in Figure 6.2, the mechanism for the lowered elastic response can be understood. The

nanoscale simulation of the matrix pullout produces a ductile-like response with reduced stiffness

as compared tomatrix shear and fiber pullout. This leads to a compliant behavior that reduces the

stiffness of an ideal and perfectly bonded composite system in the transverse direction. Figure 6.13

exhibits the comparison of the predicted transverse response by the GMC model with interface

effects, the subcell model with damage but perfect bonding utilized in section 5.3.1, and experi-

mental data from Gilat et al (Gilat, Goldberg, and Roberts 2002). There appears to be excellent
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Figure 6.12. Uniaxial stress-strain response under normal loading transverse to the fiber direction

convergence of the elastic response between the experimental data and the predicted values from

theGMCmodel with imperfect interface. Although, the subcell model performed reasonably, an

8.3% error remained in the elastic property predictions. This result proves that the imperfect in-

terface physics plays a significant role inmaterial behavior and this condition should be employed

whenever possible for accurate analysis of material properties. Furthermore, it also shows the via-

bility of using nanoscale models to accurately characterize the interfacial properties.

The effects on the nonlinear regime can also be investigated to reveal insights into damage

and failure mechanisms. The progression of damage in the microstructure under transverse nor-

mal loading can be seen Figure 6.14, which is simulated by applying the atomistically informed

damage model, developed in Chapter 3, for evaluating the local response σ(αβγ)
ij and ϵ(αβγ)ij . The

application flow is similar to the one used in the subcell model in section 5.3.1. The global prop-

erties are converted to subcell response using the GMC concentration tensor C∗. The subcell

response is scrutinized for damage using the dissipation inequality, and if the subcell enters into

the damage phase, the state variables are updated appropriately. Homogenization of the modified

subcell response then provide the updated global response. Figure 6.14 shows progression of dam-
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Figure 6.13. Comparison of predictions and experimental transverse response

age in the subcells under global transverse normal loading in the 22 direction. Damaged subcells

are shown in red, healthy subcells in blue. The predictions show the classic propagation of trans-

verse splitting cracks that travel from fiber to fiber under mechanical loading (Kashtalyan and

Soutis 2000). It can be noted that similar damage progression and transverse splitting was also

predicted through a purely numerical finite element approach (see Figure 5.5) and through the

purely analyticalmicromechanics subcell approach (see Figure 5.12). The analytical technique did

not deliver significant local resolution at the fiber/matrix length scale and could not simulate ran-

dom microstructures explicitly. However, the analytical technique showed high computational

efficiency. The numerical finite element (FE) approach does not exhibit any limitations towards

local resolution or explicit microstructure integration. However, the penalty for higher resolu-

tion is an exponential increase in required computational power, which remains high even for

simplistic models. The GMC approach combines the advantages of the numerical and analytical

techniques, with a package that allows explicit generation of random microstructures, provides

reasonable local field resolutions, and that consumes moderate computational resources even for

nonlinear analysis of large microstructures. Hence, the approach developed in this chapter fulfills
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Figure 6.14. Progression of damage in matrix under transverse normal loading

the requirement for practical multiscale models and provides deep insight into advanced com-

posite material performance in the linear and non-linear regime, while also being deployable for

macroscale modeling.

In addition to the advantages described above, theGMCapproach also includes the possibility

of performing stochastic analysis by introducing random variables with characterized uncertainty.

Section 5.3.2 described a methodology for incorporating the volume fraction and the polymer

crosslinking degree as random variables, with the randomness in volume fraction characterized

through microscopy studies, and randomness in crosslinking degree characterized from stochas-
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tic MD simulations. A similar approach is used in this section, where the volume fraction, which

is used to control themicrostructure, is randomly sampled from the normal distribution of experi-

mentally observed values, and the crosslinking degree for eachmatrix subcell is randomly sampled

from the normal distributions presented in Chapter 2. The material response for at least 500 mu-

tually independentmicrostructures with interface effects are then analyzed usingGMC.Themax-

imum and minimum bounds for the response in the transverse normal direction is illustrated in

Figure 6.15b with an equivalent comparison obtained from the subcell model from section 5.3.2

and the experimental response from Gilat et al (Gilat, Goldberg, and Roberts 2002).

The comparisons in Figure 6.15 clearly show the effect of the weak interface, where even a

minimum response from the subcell model was unable to capture the experimentally observed

elastic properties. The predictions from the GMC approach bounds the experimental observa-

tion, further exhibiting the appropriateness of this approach and the importance of utilizing the

imperfect bonding hypothesis. At the nonlinear regime, the GMC model shows increased plas-

tic flow before failure for low elasticity samples while high elasticity samples show limited plastic

flow representing a brittle response. The plastic flow for low elasticity samples is affected by the

(a) Stochastic response using the subcell method
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(b) Stochastic response using GMC with interface effects

Figure 6.15. Stochastic analyses under transverse normal loading with the atomistically informed
damage model

imperfect bonding due to increased ductility presented by the weakening of the fiber matrix inter-

face. However, after comparisons with the subcell approach it can be inferred that weak interfaces

do not contribute critically towards the nonlinear response; the significance is limited to a slight

increase in plastic flow under low elasticity conditions. Additionally, the bounds for elastic and

inelastic response are found to be relatively tight.

The stochastic response investigation is also performed for transverse shear loading. Figure

6.16 shows the comparison of the stochastic analysis of material response under transverse shear

loading using the subcell model with perfect interface and the GMC approach with imperfect

bonding. Both approaches make use of the atomistically informed damage model to predict dam-

age in the matrix. Although there is a slight decrease in the elastic response due to the weak inter-

face, the main significance of imperfect bonding can be seen in the nonlinear regime. The subcell

model in Figure 6.16a exhibits an unrealistic material response at high strains. This occurs due

to the perfect bonding between the fiber and matrix that allows load distribution between these
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two constituents until damage in the matrix. Due to the lower shear modulus of the matrix as

compared to the elastic modulus, failure of the matrix constituent, under transverse shear strain,

can only occur with the introduction of considerable energy. Hence, under a perfect interface

assumption the composite system cannot fail until high strains are reached. This mechanism is

not consistent with experimental observations since the primary mechanism of damage initiation

under such conditions is through fiber/matrix interface failure, which in turn revokes the fiber

contribution to the load distribution, thus leading to rapid failure of the matrix. Since the GMC

approach utilizes an imperfect interface characterized for matrix shear, the fiber/matrix interface

damage is simulated, leading to rapid system failure. The prediction of this response is seen in Fig-

ure 6.16b, where failure of the composite system occurs at practical levels of strain (as compared

to Figure 6.16a). Minimal plastic flow is observed for stiffer samples, while a moderate amount of

plastic flow is seen for compliant samples, even though the plasticity displayed is much lower than

under transverse normal loading. After the fiber/matrix interface failure, the load redistribution

onto the surface of the matrix quickly depletes its load carrying capabilities, resulting in minimal

plastic flow after interface failure.

(a) Stochastic response using the subcell method
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(b) Stochastic response using GMC with interface effects

Figure 6.16. Stochastic analyses under transverse shear loading with the atomistically informed
damage model

6.5 Summary

This chapter introduced the concept of weak bonding between the fiber matrix interfaces,

whichmotivates the need to incorporate this effect in themathematical analysis of advanced com-

posites. Due to the nanoscale nature of these interfaces, the characterization of these interfacial

effects through atomic modeling was reviewed. This chapter also introduced the semi-analytical

GMC approach for homogenizing complex triply periodic microstructures. This methodology

wasmodified to include imperfect interface effects characterized by theMD simulations for a con-

sistent modeling approach of the weak interface between the fiber and matrix. Finally, advanced

composite microstructures were analyzed using this GMC approach under stochastic conditions

to investigate the effect of the weak interface on the elastic and inelastic material response. The

analysis revealed the importance of including weak interfaces for accurate predictions of the elas-

tic response of composites. Furthermore, it also displayed the need for introducing weak interface
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effects for the inelastic analysis of these material systems, especially under shearing conditions,

which may lead to fiber/matrix interface failure. Simulating such mechanisms can have consider-

able effects in predicting the composite system response. It was observed that composite system

failure may be inadequately modeled without the weak interface effects. This is especially impor-

tant for shear loading due to the complexities involved in experimentally characterizing the mate-

rial response. Hence models that can predict this response can be of great use to design engineers.

To demonstrate the usability of suchmodels, the next chapter will utilize the developedmultiscale

framework with imperfect interfaces for the analysis of practical composite structures.
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Chapter 7

MULTISCALE MODELING FRAMEWORK FOR ANALYSIS OF BONDED

COMPOSITE STRUCTURES

7.1 Introduction

A primary objective of the research presented in this dissertation is the integration of elastic

and inelastic nanoscale information in multiscale nano-to-macro analysis of advanced compos-

ites, such as carbon fiber reinforced polymer (CFRP) composites and carbon nanotube (CNT)

enhanced CFRPs. The previous chapters 2-6 discussed development of a novel methodology for

bridging the nano-, submicro-, and microscale as well as elastic and inelastic information for the

analysis of advanced composite microstructures. These methods include high and low fidelity

damage models that factor in the effects of a weak fiber/matrix interface. which were validated

against experiments and numerical benchmarks. In this chapter, a multiscale framework for the

structural analysis of practical composite components is detailed, integrating the previously de-

veloped nano- to microscale bridging techniques for a comprehensive multiscale study of damage

initiation and failure. Specifically, the adhesively bonded composite joint will be used as a case

study in this investigation.

Adhesive bonding of composite components offers numerous benefits, over traditional join-

ing methods like riveting and fastening. Advantages of adhesive bonding include improved stress

distribution in bonded joints, increased joint stiffness, increased vibration damping, and fewerme-

chanical fasteners andfillers, resulting in reducedweight and the ability to join dissimilarmaterials

(Brotherhood, Drinkwater, and Dixon 2003; Allin 2002). These benefits have made adhesively

bonded composite joints increasingly popular for aerospace industry applications. However, due
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Figure 7.1. Components of the T-joint

to a lack of appropriate material models as well as comprehensive damage initiation, progression

and failure criteria, mechanical fasteners (bolts) are often introduced when adhesively bonded

structures are used in primary load-bearing applications. This current conservative design practice

leads to the ‘overdesign’ of composite structures.

Primary service- and environment-induced damages in composite bonded joints include crack

initiation and propagation along the interface, cracking within the adhesive layer (cohesive fail-

ure), adherent failure, adhesive failure, or a combination of these issues (Yarrington et al. 2005).

Inmost of the reported failuremodels, cohesive and adhesive failures are seen as indistinguishable

(Brotherhood, Drinkwater, and Guild 2002) due to the difficulties associated with the modeling

of the bondline, interfacial stresses, and stress singularities. Investigation of the response of the

structure at the bondline is important since containing failures within the adhesive layer is pre-

ferred in adhesive joint design. The bonding layer is susceptible to defects including gross defects

(e.g. debonding and cracking), poor cohesion, and poor adhesion. Based on these risks associated

with predicting the strength and residual life of bonded joints, adhesive bonding is not extensively

used even though it is highly desirable for major structural components in military and commer-

cial aircrafts.

Numerous methodologies have been reported for the mechanical and failure analysis of ad-
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hesively bonded joints including closed-form analytical equations, numerical methods, and phe-

nomenological models based on experiments. The elementary shear lag analysis and resulting

closed-form analytical equations for lap joints with simple geometries have led to the develop-

ment of scarfing (local thickening of the adhesive layer) to alleviate peel stresses in bonded joints

(Volkersen 1938; Cornell 1953; Hart-Smith 1973). However modern joints cannot be analyzed

with simplistic assumptions and require the introduction of complex joint geometries, damage

and plasticity, and complex stress states for an exhaustive analysis. Numerical methods, such as

variational techniques and finite element (FE) analysis have been used for performing damage

and failure analysis of various bonded joints including a benchmark investigation of CFRP single

lap joints conducted by Diaz et al (Harris and Adams 1984; Diaz et al. 2010). Through these

techniques it was systematically proved that the elastic properties of the adhesive material have

considerable impact on the response of single lap joints (You et al. 2008). Since then, several dam-

age modeling techniques have been demonstrated for integration with FE analysis such as analyt-

ical fracture mechanics ( J-integral method), numerical fracture mechanics (virtual crack closure

technique and extended FE method), continuum mechanics and plasticity approach, and cohe-

sive zone modeling. The continuum and plasticity damage mechanics approaches homogenize

the properties of the adherends, adhesives, and the adherend/adhesive interface while capturing

composite damage usingmacro level failure criteria (Fish andYu 2001; Ghosh, Bai, andRaghavan

2007). Such treatments do not account for the multiscale nature of damage evolution and lead to

a phenomenological understanding of damage and failure.

Numerical fracture mechanics techniques such as the extended FE method has been used to

model crack propagation andpredict the fracture behavior of thin structural epoxy adhesive bonds

under tension; however, due to the assumed nature of energy dissipation, unphysical crack prop-

agation was reported (Campilho et al. 2011). The virtual crack closure technique was also used

to simulate damage propagation in a CNT-enhanced adhesive layer of a composite T-joint, and
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although this technique showed some success in predicting crack propagation, it was limited by

difficulties in convergence and the requirement of a-priori knowledge of the crack path. Hence,

it could not be used for general investigations and was limited to certain configurations of the

bonded joint with known damages (Hasan, Chattopadhyay, and Liu 2014). Additionally, linear

elastic fracturemechanics formulations cannot be easily integrated with plastic flow and plasticity

calculations by definition, which can considerably complicate failure analyses.

The above discussion presents a clear rationale for a multiscale approach that offers accurate

damage and failure analyses of bonded composite joints and that can accommodate complex joint

geometries while integrating the elastic/plastic characteristics of the thin adhesive bondline. In

this chapter, amultiscalemodeling approach is developed to assess themechanical property degra-

dation, damage, and failure in adhesive bonded composite joints under mechanical loading. This

is accomplished by introducing a concurrent framework that integrates the previously developed

atomistically informed multiscale damage model and the imperfect interface generalized method

of cells (GMC) micromechanics technique. GMC permits a comprehensive nano- to structural

level analysis while accounting for thematerial constituents and interfaces. Additionally, this mul-

tiscale framework is validated using experimental observations at the global scale and mesoscale

whereby global load-displacement response and mesoscale strains are compared at the ‘hot-spot’

regions. This study effectively addresses existing technology gaps that impede the widespread use

of adhesively bonded joints in structural applications.

7.2 Experimental Investigation of T-joints Under Pull-off Loading

This section describes the manufacturing, testing, and characterization process used in the

experimental investigation of damage and failure mechanisms in adhesively bonded composite

T-joints under pull-off loading. In the experimental set up, the T-joints weremachined from com-
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Figure 7.2. Plain weave fabric plies

posite stiffened panels manufactured using the wet layup process. To construct the stiffened pan-

els, plies were cut from IM7 carbon fiber plain weave fabrics to which the resin-hardener mixture

(EponE862Resin and Epi-Cure 3290 hardener at a 100/27weight ratio) was applied for uniform

wetting of the ply. This process was used to generate the laminate stack. The composite laminates

were placed between U-shaped aluminum molds and a surface plate, and subsequently clamped

as shown in Figure 7.3. The base skin laminate was manufactured using three plies. Each section

of the web was also manufactured using three plies, such that the web totals six plies, and the web

+ skin section totals six plies. The wet, clamped, pre-cure composite structure was then placed in

a vertical heated press to cure under a standard cure-cycle for IM7/Epoxy composite laminates.

Vertical pressure was applied by a hydraulic press and horizontal pressure, applied on the web sec-

tion, was maintained through the mechanical clamps during the curing process. Following the

curing stage the stiffened panel was sectioned using a diamond tipped cutting saw to generate the
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Figure 7.3. Clamped pre-cure stiffened panel within mold

T-joint geometries, which were also drilled using diamond tipped drill bits to generate the end-

holes. The dimensions of the T-joint geometry are detailed in Figure 7.4. The filler region, which

encompasses the interface of the web plies, fillets, and the skin plies, were further sectioned for

microscopy investigations.

In order to conductmicroscopy studies, amicroscopy-ready specimen preparation stage is nec-

essary. The sectioned filler region, which plays a significant role in the mechanical response of the

T-joint, was placed in an epoxy-cured holding puck and polished using amultistage polishing pro-

cess. The polishing stages include grinding the face of the specimen using an abrasive sheet under

constant pressure and gradually increasing grit sizes. The final stage of the polishing process re-

quires grinding the face using a diamond suspended solution for ultra-fine polishing. This process

is performed for microscopic clarity, ease of handling, and generating an even surface topology at
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Figure 7.4. T-joint dimensions

Figure 7.5. Preparation for the polishing stage

the microscale. The Zeiss LSM 780, confocal microscope was then used to study the mesostruc-

ture of the samples under fluorescent light and the DAPI filter. The natural fluorescence of the

epoxy matrix was used to enable a high contrast characterization of the mesostructure of the filler

region.

Figure 7.7 shows the filler region of the epoxy-matrix T-joint under fluorescence microscopy.
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Figure 7.6. Zeiss LSM 780 confocal microscope used for microscopy of the T-joint specimens

It was observed from the microscopy images that the skin plies crimped during the curing process,

possibly due to hydrodynamic pressures in the matrix of the filler region from vertical forces ap-

plied by the hydraulic press. Large matrix gaps, along with a differential in winding rates between

thewebplies at the fillet regions, were also observed. It is necessary to include suchdeviations from

the ideal filler geometry in simulated T-jointmodels to accurately recreate the structural response,

particularly since these deviations may cause a shift from ideal failure mechanisms.

The composite bonded T-joints were tested in the tension pull-off configuration. The tests

were performed on a Test-resources universal testing machine, with a 5000N load cell. The
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Figure 7.7. Filler region of the T-joint under confocal microscopy

crosshead displacement and the load cell force response was recorded and analyzed. The web of

the T-joint was gripped in the Test-resources mechanical grips, with marks noting the grip ends

in order to measure any slipping of the grip. To ensure pure tension conditions with fixed flange

edges, the fixture was designed with screwed in platforms. The T-joint flanges were fixed in posi-

tion during the duration of the test such that there was no rigid motion at the flange ends. The

loading and boundary constraints are schematically illustrated in Figure 7.9. Three dimensional

digital image correlation (DIC) was used to measure the displacement and strain field contours

on the face of the T-joint specimens. The DIC system tracks a random speckle pattern painted

on the face of the specimen, as shown in Figure 7.10, and uses this random grid of speckles to

calculate relative and rigid body displacements. The displacement field is then post-processed to

obtain corresponding strain fields. The stereo-vision capabilities of theGOMARAMIS 5MDIC

system, used in these tests, allow accurate in-plane and out-of-plane displacementmeasurement as
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Figure 7.8. T-joint pull-off test setup

well as strain on the face of the T-joints. The pull-off tests were performed at a displacement rate

of 1 mm per minute, to ensure quasi-static testing conditions. A total of seven specimens were

tested, out of which two were discarded due to measurement errors. Figure 7.8 displays the test

setup with the DIC system and the T-joint in focus.

Figure 7.11 exhibits the load-displacement response for the testedT-joint specimens. The end

of the load-displacement curves displayed inFigure 7.11 corresponds to thepresence ofmacroscale

cracks in the T-joint. Although the joint can bear mechanical loads until complete separation

of the web and the skin occurs, structural failure of the joint is largely considered to transpire

during first ply separation. Figure 7.12 shows the strain contours in the loading direction from

the DIC system at damage initiation. It can be observed from the strain contours that the initial
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Figure 7.9. Loading and boundary conditions

Figure 7.10. Speckle pattern on the face of the T-joint

cracks begin at the fillet rather than the middle of the filler region, as may be predicted based on

the idealized geometries of the T-joint filler. This can be due to a combination of the skin ply

crimp and the large epoxy region between the fillet plies. The crimped ply reinforces the epoxy

filler and leads to the creation of the fillet as the region of lowest resistance to damage. The fillet

region damage then causes cracks to propagate along the fillet, leading to eventual debonding of

the bonded joint.

The experimental data obtained in this section provides a benchmark for T-joint models,

which need to reproduce the mechanisms observed during pull-off testing of the adhesively
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Figure 7.11. T-joint load-displacement response under pull-off loading

Figure 7.12. DIC strain contours in the direction of loading

bonded composite T-joints. At the macroscale, an accurate T-joint model must display the same

load-displacement curve seen in Figure 7.11 with minimum calibration, and at the mesoscale, the

fillet region damage characteristics must be captured. Further investigations at the microscale can

then be conducted to understand the damage mechanisms occurring at the fiber/matrix length

scale, which may provide insights for manufacturing superior composite T-joints.
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7.3 Multiscale Structural Analysis Framework

The multiscale model for the analysis of bonded T-joints developed in this section consoli-

dates information from the previous chapters to create a nano-to-macroscale analysis framework,

schematically shown in Figure 7.13. The atomistic information generated in chapters 2, 3, and

4 informs the matrix behavior, and the microscale model developed in chapters 5 and 6 models

the microstructure. The T-joint macro- and mesoscale details are affected by the mesoscale and

structural information, as presented in section 7.2.

The 3D full-scale T-joint geometry is generated in ABAQUS using the actual measured di-

mensions of sample 1. The geometry is created in four parts: (1) the web, (2) the left base and

flange, (3) the right base and flange, and (4) the filler region, which is assembled to create the

complete geometry. The four individual parts are exhibited in Figure 7.14. Assembly of the parts

automatically ties adjacent nodes such that the assembled model is numerically equivalent to a

single part model. The three planar parts 1, 2, and 3, resemble a composite laminate with six plies.

These parts are idealized as a set of perfectly rectangular composite plies with constant thickness

and linear elastic orthotropic properties. Additionally, the plies are also assumed to be perfectly

bonded with negligible interfaces such that no matrix-rich regions exist in these parts. The ideal-

ization of the fringe parts allow for higher computational efficiency of the T-joint model and is

justified since the experiments did not indicate any substantial damaging mechanisms in these ar-

eas. However, a multiscale approach is utilized to obtain the elastic properties of these composite

plies.

The elastic properties of the composite plain weave fabric ply can be fully defined by its stiff-

ness or compliance matrix. Typically, these properties are obtained through a series of mechanical

coupon tests that measure uniaxial response in various normal and shear directions, and that can

be analyzed to estimate the elastic constants (Carlsson, Adams, and Pipes 2014). Although such
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Figure 7.13. Atomistic to structural multiscale modeling scheme
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Figure 7.14. T-joint parts before assembly

experimental efforts can be avoided for unidirectional and standard composite plies using tradi-

tional micromechanics, the mesostructure of the fabric weave complicates application of these

mathematical techniques. In this case, a two-step homogenization process is required where the

first step homogenizes the fiber/matrix system and the second stage homogenizes the plain weave

geometry into aplywithorthotropic properties. Thismultistephomogenization canbeperformed

with the GMC framework developed in chapter 6.

To estimate the elastic properties of the plain weave ply, a fiber/matrix GMC mesh, similar

to Figure 6.9, is generated with transversely isotropic IM7 fiber properties (Hexcel 2016) and

isotropicmatrix properties relating to a crosslinking degree ofη = 0.19. Thefiber volume fraction,

measured by image processing of ply section microscopy images, is controlled at 63.4%. A linear

elastic GMC analysis is then performed on the fiber/matrix mesh to obtain the stiffness matrix of

the homogenized fiber/matrix representative unit cell (RUC).A secondGMCmesh, representing

the checkerboard geometry of a plain weave ply, is then generated with the subcell material prop-

erties derived from the fiber/matrix GMC analysis. Two forms of subcells are repeated to form

the plain weave RUC, one subcell representing fibers running in the primary direction, and the
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second subcell representing fibers running in the transverse direction. The homogenized stiffness

matrix of the fiber/matrix system is then rotated 90 degrees to obtain the stiffness matrix for the

subcell with transverse fibers. A schematic of this multiscale estimation process is shown in Figure

7.15 where x−y− z is themicroscale coordinate system and 1−2−3 is the ply level coordinate

system, and direction z corresponds to 2while direction x corresponds to 3. To avoid overly com-

pliant elastic properties of the homogenized laminadue tohomogenization errors (Bednarcyk and

Arnold 2000), multiple suchRUCs are repeated in the thickness directionwith the location of the

subcells shifted in each layer. This leads to a primary homogenization process in the 11 direction

followed by the homogenization process in the 22 direction with subcells that have comparable

elastic properties. A linear elastic GMC analysis, performed on the plain weave RUC, reveals the

composite ply elastic properties. Table 7.1 details the stiffness matrices obtained at each step. The

ply elastic properties are then applied to the FE part models.

Table 7.1. Stiffness matrices after GMC homogenization

Stage-1 microscale stiffness matrix (1010 Pa)
2.5601 0.4466 0.4466 0 0 0
0.4466 2.5601 0.4053 0 0 0
0.4466 0.4053 5.0245 0 0 0

0 0 0 1.8355 0 0
0 0 0 0 1.8355 0
0 0 0 0 0 1.0887

Stage-2 ply stiffness matrix (1010 Pa)
1.2390 0.1032 0.1032 0 0 0
0.1032 1.6543 0.0793 0 0 0
0.1032 0.0793 1.6543 0 0 0

0 0 0 0.9178 0 0
0 0 0 0 0.6834 0
0 0 0 0 0 0.6834

The FE filler region part (part 4) is developed using greater detail since experimental investi-

gations suggest this region to be a critical section; namely, where damage initiates and accumu-

lates before structural failure. The face of the model is constructed by tracing the mesostructure
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Figure 7.15. Two step homogenization to estimate fabric properties

obtained from confocal microscopy (see Figure 7.7) using multiple spline functions. Special con-

sideration is applied to recreate the matrix-rich regions and the weave geometry, including the

fabric crimping. This geometry re-creation allows a thorough analysis of the regions and permits

investigation of damage mechanics caused by commonly occurring manufacturing irregularities.

Since the geometry consists of separate matrix and composite regions, two material property defi-

nitions are used to describe thematerial relations. Thematrix-rich regions utilize the atomistically

informed damage model described in chapter 3 with η = 0.19, and the composite region is asso-

ciated with the multiscale GMC model developed in chapter 6. The matrix-rich regions behave

as pure polymer materials with the CDM equations detailing the initiation and accumulation of

damage. Perfect bonding between the matrix rich regions and the composite plies are assumed.
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TheGMCmethod is applied to the composite plies using a FORTRANsubroutine to define a

custommaterial property definition. The subroutine is activated by ABAQUS at each integration

point and at each solver iteration of the composite ply mesh. The process of generating a random

fiber GMC mesh is similar to the steps described above for the elastic property investigations.

However, based on the need to study damage in the filler region, the polymer subcells of theGMC

mesh use the atomistically informed damage model. Hence, GMC in the composite plies of the

filler region run concurrently with the macroscale model, connecting the nonlinear microscale

fiber/matrix properties to the mesoscale filler region kinematics. This linking process creates a

two-way coupling of properties, schematically shown in Figure 7.16. As the microscale properties

degrade, this causes macroscale degradation, which ultimately coalesces along the path of least

resistance to create a fracture path. The newly generated fracture path may lead to debonding,

delamination, or structural failure. It should be noted that the coordinate system for the GMC

equations is ordered along the subcell edges; hence, the integration point strains that are passed

into the VUMAT subroutine by the FE solver is rotated from the element coordinate system to

the GMC coordinate system to maintain consistency.

Figure 7.16. Damage and failure interaction

The loading and boundary conditions applied to the assembled FE model mimic the experi-

ment and is equivalent to Figure 7.9. The right and left flange edge displacements are constrained,
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and loading is applied as a displacement condition to the top of the web edge at a rate of 0.01

mm per second up to a total of 1000 seconds. This ensures a total displacement of 10 mm at

quasi-static loading rates, which is determined by monitoring the inertial energies. The loading is

applied through a reference point that is kinematically tied using TIE constraints to the nodes of

the web top edge. Thismakes it convenient tomeasure system reaction forces by recording the ref-

erence point history variables. Parts 1, 2, and 3, which represent the planar composite laminates,

aremeshedusing1, 080C3D8 linear hexahedral brick elementswith linear elastic orthotropicma-

terial property definitions. Each ply is modeled individually by sectioning the laminate geometry.

The filler region is meshed using 10, 040 C3D10 quadratic tetrahedral elements due to the com-

plicated nature of the geometry. The geometry is meshed using an iterative algorithm to avoid any

regions with poormesh qualities. The user subroutine VUMATwithGMC integration is used to

define thematerial property definitions for theC3D10 elements belonging to the composite plies,

and the user subroutine VUMAT with just the atomistically informed damage model is used to

define the material property definitions for the C3D10 elements belonging to the matrix. The re-

sulting input file is solved in double precision using the ABAQUS explicit solver and the IFORT

environment.

7.4 Model Validation

The results of the macroscale FE model is post-processed in the ABAQUS visualizer. How-

ever, the results of the microscale GMC mesh is obtained separately in a CSV file written by the

VUMAT user subroutine and post-processed in MATLAB. To validate the FE macroscale model,

the load-displacement curve obtained from the T-joint pull-off simulation is compared to exper-

imental results exhibited in Figure 7.11. This comparison is used to confirm if the homogenized

physics of the T-joint has been reproduced in the models. To calculate the load-displacement
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curve of the T-joint model, the reaction forces and applied load at each time step is extracted

from the history variable associated with the reference point tied to the web edge. Since the ref-

erence point simulates the function of the loading arm, the displacement of the reference point

replicates the crosshead data obtained from experiments under the assumption that no grip slip

occurs during the test. The reaction forces at the reference point then is a physical average of the

reactions observed at this point, resulting from the applied load and the constraints at the flange

end. Based on this, the reaction forces at the reference point are able to model the readings of

the load cell from the experiments. Figure 7.17 exhibits a comparison of the reaction forces ver-

sus applied displacement obtained from the T-joint model of sample-1 and the load cell reading

versus crosshead displacement obtained from the pull-off testing of sample-1. It should be noted

that the only parameter calibrated for better comparison is the fiber elastic properties, which is set

at 289 GPa. This is found to be 4.7% higher than the mean elastic properties for IM7 fiber and

is well within the observed standard deviation of IM7 fiber properties (Hexcel 2016). The cali-

brated model hence captures the general homogenized macroscale physics of the T-joint which

permits the comparison of the response at specific localized regions to ensure simultaneous local

validation.

Figure 7.17. Comparison of load-displacement curves for sample-1 obtained from model and
experiment
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Since the experiments indicated the filler region to be the ‘hot-spot’ region, the response in this

area is comparedwith theT-jointmodel. By usingDIC, the local strains at the filler regionwas ob-

tained during the pull-off experiment as a full-field strain contour in the loading direction, which

is compared to the strain contours obtained from the filler region part of the T-joint FE model.

Figure 7.20 illustrates this comparison. The limits of the contour spectrum are maintained to be

the same for the model and the DIC results in order to arrive at a valid comparison. A reason-

able similarity between the experimental strain contour results and the model is observed, with

the high strain ‘hot-spot’ regions replicated in the model. During the pull-off experiments, the

T-joints were observed to fail along the interface of the filler region (see Figure 7.18) and com-

posite plies, with damage initiating at the fillet ends. This corresponds to the ‘hot-spot’ regions

observed in the DIC strain contours. Such a mechanism is not predicted when idealized T-joint

geometries are considered with flat base plies, perfectly radial fillets, and a triangular matrix filled

filler region. In such cases, the bending of the base plies and the fillet plies leads to predictions

of a large compressive stress in the middle of the filler region (Gleich, Van Tooren, and Buekers

2002). Application of structural failure theories then anticipate damage initiation at the center of

the filler region, which results in incorrect damage and failure predictions. An example of such a

stress contour is shown in Figure 7.19 where an idealized T-joint geometry is subjected to pull-off

loading. Accumulation of compressive stresses at the filler region can also be observed in these ge-

ometries. Such discrepancies between experimental observations and theory have led to the use of

cohesive zone models, where the cohesive elements are applied at the interface of the fillet plies to

study fracture behavior (Xu et al. 2016). However, studies that use cohesive zones require a-priori

knowledge of the fracture path, which in turn limits the use of these techniques. In comparison,

the analysis framework developed in this chapter can predict the fracture path, which can then be

used in combination with fracture mechanics techniques to analyze separation of surfaces.

The FEmodel is also able to predict interface differentials in strain at the borders of composite
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Figure 7.18. T-joint after failure and separation of base ply

ply/matrix regions. Due to the large material property gradients between the composite plies and

the matrix, strain differential exists between these regions, which is largely homogenized by the

DIC algorithm. Due to the limited region of interest, resolution, and available focus, the DIC

algorithm homogenizes the calculated strain over the region of interest leading to a larger spread

of strain contours. Such errors have been demonstrated through multiscale DIC studies, which

have shown that themesoscaleDIC contours can significantly differ fromhigher length scaleDIC

contours due to resolution homogenization for structures with a multiscale geometry (Koohbor,

Ravindran, and Kidane 2015). Additional errors, known as edge errors, are also introduced at

the edges of the DIC window. Such a disadvantage does not exist in the FE model since each

component is modeled separately with appropriately applied material properties that allow the

measurement of stress and strain gradients between specific regions and the resulting interfacial
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Figure 7.19. Loading direction strain contours in the filler region of an idealized T-joint
geometry

damage. Further investigations at the microscale can now be initiated to study the microscale

damage mechanisms at various locations by extracting the GMC stress-strain-damage results at

specific integration points of the FE model.

7.5 Microscale Investigation of Damage in T-joints

Since each integrationpoint in theFEmodel is represented as a randommicrostructure, which

ismodeledusingGMC, thefiber/matrix response at the ‘hot-spot’ regions canbe explicitly studied.

Three regions of interest (see Figure 7.20) along the fillets and the base are chosen to be studied in

detail: (i) region ‘A’ on the left fillet ply where the structural damage initiates; (ii) region ‘B’ on the

right fillet ply; (iii) region ‘C’ on the bottom ply. The GMC data at these integration points are

extracted from the FE material subroutine outputs and post-processed in MATLAB. The stress

and strain data exhibited in this section are oriented along the GMC coordinate system, where in

the 11 direction is along the fiber, and the 22 and 33 directions are perpendicular.
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Figure 7.20. DIC and FE comparison of loading direction strain contours in the filler region of
sample-1

TheRUCdamage canbe arrived at by ensemble averaging the damage value of each subcell due

to its scalar nature. Figure 7.21 shows a comparison of themean damage in theRUCsbelonging to

left fillet ply, the right fillet ply, and the bottom ply. The left fillet ply displays considerable damage

in the micro RUC, the right fillet ply experiences mild damage, while the bottom ply remains
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Figure 7.21. Comparison of microscale RUC damage along filler regions

relatively pristine. This is directly related to the strain state of these regions, as can be seen in Figure

7.20, where the left fillet ply experiences substantially larger strains due to the geometry of the filler

regions and associated field concentrations. The nature of the damage can also be visualized by

observing the damage contours in the RUCs, displayed in Figure 7.22. The contours of damage

in the left fillet ply RUC suggests subcell degradation due to local strain concentrations as well

as volumetric matrix damage, while the right ply damage contours exhibit minimal volumetric

damage. The bottom ply does not show any local damage suggesting that this region remains

within the elastic limit when macroscale damage initiates in the T-joint.

Although, the RUC damage contours provide an interesting visualization of property degra-

dation at the microscale, the RUC stress-strain response needs to be studied to infer causal mech-

anisms of damage. Due to the degree of damage in the left fillet ply, the associated RUC is studied

further. A comparison of the RUC stress state can be seen in Figure 7.23, which shows that the

in-plane shear stress and the in-plane normal stress in the fiber direction is dominant in this region.

Hence, the stress-strain response in these directions are chosen for further investigation. To under-

stand the progression and consequence of damage in the RUC, the subcell stress and strain con-
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Figure 7.22. Comparison of subcell damage contours along filler regions

tours are compared at the elastic limit and just before structural failure, as in Figure 7.24. Stresses

and strains in the two dominant directions, namely, the normal direction along the fiber and the

in-plane shear along the fiber and matrix, are compared. In the elastic regime, a homogeneous

strain contour can be observed in the normal and shear directions. Due to the substantial elastic

property variation between the fiber and the matrix in the 11 direction, the stress contours clearly

show the stress gradients between the fiber subcells and the matrix subcells. Alternatively, it can

be seen that a much lower variation between the shear properties of the fiber and the matrix leads

to relatively mild homogenized stress gradients in the shear stress contours. However, in the non-

linear regime, it is observed that the matrix damage leads to large strain gradients in the RUC

due to property degradation, which in turn leads to existence of stress risers along the fiber/matrix

interfaces, signifying fiber shear pullout.
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Figure 7.23. Comparison of microscale RUC damage along filler regions

The effect of damage can also be seen in the difference between the shear stress contours at the

elastic and in-elastic regimes, where the damage causes stress-risers not initially present, thereby

leading to further damage accumulation, and providing an explanation for the exponential trend

of the mean RUC damage curves, as illustrated in Figure 7.22. A similar comparison in the 11

direction shows gradients in the strain contours at the in-elastic regime, but the large elastic prop-

erty variations between the fibers and the matrix lead to the fiber system handling most of the

mechanical load, and not contributing further to the mean RUC damage. It can construed that

the microscale region at the fillet undergoes fiber pullout as a result of the local shearing of the

fiber and the matrix when the T-joint is subjected to pull-off loading. Experimental studies on

mechanical loading of T-joints have also revealed similar fiber pullout mechanisms under local

shear, resulting in failure of ply and ply interfaces, as well as delaminations that progress to final

structural failure (Cui 2014). Processing techniques such as fiber-coatings that reinforce the inter-

face and resist in-plane fiber shearing, can then be used to engineer T-joints with capabilities for

higher energy absorption by resisting shear damage at the microscale.
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Figure 7.24. Comparison of stress and strain subcell contours in the elastic regime and before
structural failure
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7.6 Summary

Motivated by the need for a modeling approach for the length-scale dependent damage and

failure analysis of bonded composite joints, this chapter presented a multiscale composite struc-

tural analysis framework that also integrated several of the concepts presented in earlier chap-

ters. Due to the requirement of accommodating complex joint geometries while integrating the

elastoplastic characteristics of the thin adhesive bondline, this framework utilized a concurrent

approach wherein the macroscale geometry is modeled using FE and the microscale constituents

aremodeled using the previously developedmicroscale randomfiberGMCmodel with imperfect

interfaces. Furthermore, the atomistically informed damage model is used to simulate damage

initiation and propagation in the matrix, and the GMC model is also used to calculate the elastic

properties of the laminates.

To validate the model, T-joint pull-off tests were performed with DIC to measure the global

load-displacement response and the local full field strain response at critical areas of the T-joint.

The manufactured T-joints were also subjected to a confocal microscopy study for characteriz-

ing microscale parameters and for recreating the mesoscale filler region explicitly in the FE model.

Close agreement of the load-displacement response, obtained from theFEmodel and experiments,

was observed confirming that the global elastic and geometric properties of the T-joint was suc-

cessfully captured. Furthermore, agreement in the local strain fields at the filler region, between

the FE model and the experimental DIC results, were also achieved. The multiscale model suc-

cessfully predicted ‘hot-spot’ damage initiation areas along the filler region, a phenomenon that

cannot be captured using idealized single-scale finite elementT-jointmodels. Themicroscale anal-

ysis of the composite regions in the damage initiation zone showed that damage and failure largely

occur due to fiber shear and consequent fiber pull-out, leading to macroscale composite failure.

Hence, it was demonstrated that through such multiscale modeling efforts, constituent behavior
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at ‘hot-spot’ regions can be analyzed, providing critical insight into possible material processing

requirements. Such efforts can then lead to the development of stronger, tougher, and damage-

resistant composite structures.
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Chapter 8

CONTRIBUTIONS AND FUTURE WORK

8.1 Contributions

The research presented in this dissertation was primarily motivated by a lack of practical tech-

niques to couple molecular scale information with structurally focused multiscale models for the

analysis of advanced composite materials and components. To address this gap in literature, sev-

eral atomistically informedmutiscale analysis techniquesweredeveloped in thiswork for the linear

and nonlinear analysis of advanced composite structures. Summarizing the major contributions

of this work, the following achievements are noted:

1. A stochastic multiscale model for carbon fiber reinforced polymers (CFRPs) and carbon

nanotube (CNT) CFRPs that utilizes nanoscale derived elastic information and variation

in the curing degree to efficiently estimate the composite properties under fundamental

uncertainty was developed and validated with experimental observations.

2. A thermodynamically admissible bridging technique to efficiently transfer inelastic infor-

mation from discrete nanoscale MD simulations of the polymer matrix to higher length

scales was developed using the framework of continuum damage mechanics (CDM) and

validated with experiments.

3. The nonlinear effects of the presence of nanofillers such as CNTs in polymer matrix un-

der mechanical loading, using the developed atomistically informed damage model was

investigated which led to the understanding of fundamental damage processes at the sub-

microscale.

4. The variation of piezoresistive properties of the CNTs in the polymermatrix under damage

202



due tomechanical loadingwas studiedwhich led to the explanationof various piezoresistive

mechanisms.

5. An algorithm to generate integrated representative unit cells (RUCs) for the high fidelity

analysis of CFRPs and CNT enhanced CFRP microstructures was developed and studied

to explain damage processes under mechanical loading.

6. Low-fidelity physics based damage models with subcell based micromechanics was devel-

oped that capture global microscale response and integrate behavior of the constituent in-

terfaces based on nanoscale information.

7. The low-fidelity models were integrated with macroscale finite element models to investi-

gate mechanical behavior of practical composite structures, the adhesively bonded compos-

ite T-joints, using a comprehensive nano-to-macro multiscale framework.

With these achievements, the research presented in this dissertation advances the state of the art

in multiscale modeling of advanced composite structures, which can be utilized to design optimal

material systems leading to a material-by-design approach in composite applications.

8.2 Future Work

Although this research presents practical methods for nano-to-macro multiscale modeling of

advance composites, several topics can be further expanded for an in-depth understanding of lin-

ear and nonlinear mechanisms in these material systems. Additionally, the developed models can

be used for parametric studies or combined with mathematical optimization to generate optimal

material systems for any given conditions. The following future work topics are suggested for

advancing this research: (i) the atomistically informed damage model developed in Chapter 3

considers only a sigmoidal bond disassociation energy (BDE) density trend. This tendency was

observed through molecular dynamics simulation of Di-Glycidyl Ether of Bisphenol F and Di-
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Ethylene Tri-Amine system. A general formulation for rate of damage Ḋ can be developed ap-

plicable for any material system; (ii) the low-fidelity models, including the subcell model and the

generalized method of cells (GMC) model, may be reformulated within an optimization frame-

work to investigate the optimal parameter values, which will expedite the calibration process; (iii)

the validated structural analysis framework for adhesively bonded composite joints introduced in

Chapter 7 can be further utilized to create a parametric study of various T-joint geometries and

their mechanical response. This methodology can be used to investigate other built-up structural

systems; (iv) the GMC model, which currently considers neat polymer matrix with an imperfect

fiber interface, can be extended to include CNTs and other nanofillers. With this extension, it

will be possible to study the effects of nanofillers in structural components.
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