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ABSTRACT 

The US National Academy of Sciences and The Royal Society have recently 

released a detailed report on the causes and effects of global climate change.1  This report 

states that the Earth’s climate is rapidly changing due to human activity.  Specifically, the 

burning of fossil fuels to satisfy the energy demands of rising global population has 

resulted in unprecedented levels of greenhouse gasses in the atmosphere.  These high 

levels of greenhouse gasses are serving to warm the surface of the planet resulting in 

extreme weather events.  Thus, controlling the atmospheric CO2 level is motivating a 

great deal of scientific research in the area of carbon capture and storage (CCS).  

Despite the great strides being made in the areas of alternative energy and solar-

energy conversion, consumption of fossil fuels for energy generation will likely continue 

into the foreseeable future.  This is primarily motivated by economic factors inasmuch as 

fossil fuels are a proven resource base with robust harvesting and distribution 

infrastructure.2  Presently, there are more than 8,000 stationary CO2 emission sources 

with an annual output of 13,466 megatons of CO2 per year.2  In this context, development 

of systems that ameliorate the output of greenhouse gasses from stationary CO2 sources, 

such as coal and natural gas burning power plants, is urgently needed.   

In this document the utility of sulfur nucleophiles for CCS schemes is explored.  The 

main thrust of the research has been utilizing electrogenerated sulfur nucleophiles to 

capture CO2, which can be electrochemically recovered from the resulting thiocarbonates 

while concomitantly regenerating the masked capture agent.  Further, a temperature 

swing CO2 capture scheme that employs benzylthiolate as the CO2 sorbent is proposed 

and methods of manipulating the release temperature and kinetics were investigated.  
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These reports represent the first application of organosulfur compounds toward CCS 

technologies and there are a number of newly reported compounds.  The appendix 

deviates from the theme of the first four chapters to describe the functionalization of 

poly(2,6-dimethyl-1,4-phenylene oxide) with ferrocene moieties by the copper catalyzed 

azide-alkyne coupling reaction.  This material is discussed within the context of anion 

recognition and sensing applications. 
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CHAPTER 1 

Assessing the Origins and Effects of Atmospheric CO2 on Mean Global Surface 

Temperature.  

As described by Arrhenius in 1896, stable atmospheric carbon dioxide levels are 

essential for maintaining the Earth’s energy balance.3  In an effort to understand the 

environmental conditions that triggered the last ice age, Arrhenius conducted an exacting 

numerical calculation to quantitatively assess the role that heat-absorbing gasses in the 

atmosphere have on the mean global surface temperature.  Based upon his calculations, 

Arrhenius proposed that halving the atmospheric CO2 concentration would result in a 4–5 

oC decrease in the average surface temperature across Europe.  In an effort to explore 

whether such large charges in atmospheric CO2 concentration were possible, Arrhenius 

partnered with Avrid Högbom, who had previously formulated estimates of how 

geochemical processes such as volcano eruptions and CO2 uptake by the oceans affected 

atmospheric CO2 concentration, and by extension the Earth’s climate.4  Högbom and 

Arrhenius found that doubling the atmospheric CO2 would likely result in a 5–6 oC 

increase in mean global surface temperature.5  Rather presciently, Arrhenius and Högbom 

addressed the role that human activity, specifically the burning of coal, could have on the 

mean global surface temperature.  They correctly concluded that anthropogenic CO2 

emissions could indeed affect the climate; however, they drastically underestimated the 

amount of CO2 that humans were capable of producing.  

 Beginning in the early 1980’s the Goddard Institute for Space Studies (GISS) 

began producing data that showed the mean global surface temperature is rising and that 

the increase will continue into the 21st century.6  The most recent GISS data shows that 
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there has been a nearly 1 oC increase in global surface temperature since 1951.7  

Furthermore, The US National Academy of Sciences, The Royal Society, and the 

Intergovernmental Panel on Climate Change have all recently released detailed reports on 

the causes and effects of global climate change.8  Succinctly put, these reports confirm 

the work of Arrhenius and Högbom as to the causes of climate change—the Earth’s 

climate is rapidly changing due to increased atmospheric CO2 concentration.  By 

examining both amount of atmospheric CO2 and the isotopic ratio of atmospheric carbon 

at observation posts in Alaska, California, Hawaii, Christmas Island, Samoa, and the 

South Pole9 Charles Keeling et al. have determined not only that the increase in 

atmospheric CO2 concentration is due to human activity, but also that there is a strong 

correlation between the year-to-year increase in atmospheric CO2 and the amount of 

fossil fuels burned during the preceding year(s).10  The human contribution to the rising 

atmospheric CO2 concentration is summarized by the ubiquitous Keeling curve, which 

plots atmospheric CO2 concentration by year in parts per million (ppm).  At the inception 

of Keeling’s experiment in the late 1950’s, the mean atmospheric CO2 concentration was 

315 ppm; it has risen to 407 ppm as of July 2017.  Lastly, in 2010 a review of papers 

published by 1,300 climate scientist showed that 97% of them accept the anthropogenic 

origin of rising global surface temperatures as fact.11  In other words, there is an 

abundance of scientific data that definitively show anthropogenic CO2 in the atmosphere 

is most directly a result of the burning of fossil fuels to satisfy the energy demands of 

rising global population.  Furthermore, there is broad consensus that this increase in 

atmospheric CO2 is serving to warm the surface of the planet resulting in extreme 

weather events, droughts, and melting of Artic sea ice. 
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In 2011 an estimated 34 billion tons of waste CO2 were generated worldwide, 

with the top five emitters being China (29%), the United States (16%), the European 

Union (11%), India (6%), and the Russian Federation (5%).12  It is important to note that 

although China accounts for nearly one third of the total global CO2 emissions, US per 

capita emissions are more than double that of China at nearly 17 tons CO2 per US citizen 

(compared to 7.2 tons CO2 per Chinese citizen).  Presently, there are more than 8,000 

stationary CO2 emission sources with an annual output of 13,466 megatons of CO2 per 

year.13  The main sources of CO2 pollution are from fossil fuel combustion, flaring of 

waste gas during oil production, and cement production, with coal-fired power plants 

being the largest stationary point-source CO2 emitters.14  Domestically, CO2 emissions 

for both electricity and non-electricity energy generation from fossil fuel consumption 

accounted for 5.63 Gigatons of anthropogenic CO2.15  If catastrophic climate change is to 

be avoided, new technologies that mitigate CO2 emissions from energy-generating 

facilities and that capture CO2 directly from air are urgently needed. 

Strategies for Reducing CO2 Emissions. 

Technologies presently being developed to reduce CO2 emissions can be divided into 

three general categories:  Pre-combustion decarbonization, during-combustion or oxy-

fuel combustion, and post-combustion CO2 capture.  Although the present account 

concerns itself with a novel post-combustion capture strategy, a brief overview of both 

pre-combustion decarbonization and oxy-fuel combustion highlighting the relative 

advantages and disadvantages of each method is prudent.  Pre-combustion 

decarbonization has the advantage of being able to accommodate high CO2 levels and 

separation is facile as compared to the other two methods.  The general paradigm for pre-
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combustion CO2 separation is shown in Equations 1–3.16  Briefly, the fuel is either 

subjected to steam reforming (Eq. 1) or it is gasified (Eq. 2) to produce syngas (a mixture 

of H2 and CO), which is subsequently mixed with water vapor in the water–gas shift 

reaction (Eq. 3) to produce H2 and CO2.  The CO2 is then separated prior to  combustion 

leaving water as the sole combustion product.  Large-scale implementation of pre-

combustion decarbonization is presently unrealistic because both gasification and steam 

reforming are challenging and costly, with both requiring substantial initial capital 

investment.17 

C!H! + 𝑥 H!O  →   𝑥 CO+ 𝑥 + !
!
H!                                                                          (1) 

 C!H! +
!
!

 O!   →   𝑥 CO+ !
!
H!                              (2) 

CO+  H!O  →   CO! + H!                                                                                               (3) 

During-combustion or oxy-fuel combustion employs pure oxygen or oxygen-

enriched air as the combustion medium.  Oxy-fuel processes produce flue gas that is 

much lower in total volume as compared to combustion in air.  Further, these methods 

yield flue gas that is composed of up to 98% CO2 after water vapor is removed, which 

significantly lowers the cost of CO2 separation.18 Oxy-fuel combustion suffers from the 

high cost of pure O2 production, high levels of NOx formation, and the need for improved 

oxyfuel boilers.19 

 In any discussion of post-combustion CO2 capture technologies, there are several 

important points to consider when evaluating potential CO2 separation strategies.20  First, 

any process that employs a commodity chemical as a once-through capture agent is going 

to suffer from a problem of scale.  That is, CO2 is generated in such vast quantities that 
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the capture agent will be quickly exhausted if it is not able to be recycled.  Along this 

line, for any capture process to be widely applicable it must contain a regenerative step to 

recover the capture agent, employ a membrane or membrane-like material for separation, 

or the capture chemical will have to be produced in quantities that exceed the current 

manufacturing capacity of the entire chemical industry.21  Second, any process that 

consumes CO2 as a reactant to produce a non-fuel commodity chemical will quickly 

overwhelm the global demand for said chemical.  In other words, capture processes that 

are inextricably coupled to a chemical transformation of CO2 into a non-fuel commodity 

chemical will necessarily require a strategy for storing the excess product.  Although this 

second point should not be given any consideration with respect to market implications, 

the long-term storage of the CO2 capture product must be taken seriously from a waste 

disposal standpoint, especially if the product is unstable or requires special handling. 

Post-combustion CO2 capture technologies that are presently being developed can be 

broadly thought of as being either physisorption or chemisorption processes.  

Chemisorption is adsorption in which CO2 is sequestered via the formation of chemical 

bonds.  Physisorption processes, on the other hand, are aimed at CO2 capture where no 

significant change in the electronic structure of the involved species occurs.22  One of the 

simplest cases that exemplifies the physisorption of CO2 is simply bubbling the gas into 

water or another solvent where it reaches an equilibrium concentration depending upon 

the Henry’s law constant for said medium.  The gas can then be expelled from the 

medium by heating.  Although there is a large body of work pertaining to physisorption 

processes, many of which show great promise for selective CO2 capture, our work has 

been on a chemisorptive process and that will remain the focus throughout this document. 
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The Chemistry of CO2. 

Before giving several examples of the more well-studied CO2 chemisorption 

technologies, it is important to appreciate the chemistry of CO2.  In its ground state, CO2 

is a 22-electron, linear molecule belonging to the D∞h point group that is a gas at standard 

temperature and pressure.  Although CO2 is nonpolar, as shown in Figure 1, it contains 

two polar C–O bonds, and thus possesses characteristics of a polar species with two sites 

that  behave  quite  differently.   As the  polarity  of  CO2  indicates,  the  carbon  atom   is  

 

Figure 1:  Polarity and resonance structures of linear CO2. 

electrophilic while the oxygen atoms are nucleophilic, with the electrophilicity of carbon 

being greater than the nucleophilicity of each O—thus, CO2 prevalently behaves as an 

electrophile.23  Further information about the behavior of CO2 can be gleaned by 

examining its molecular orbital (MO) structure (Figure 2).24  The HOMO is a degenerate 

set of non-bonding orbitals having e1g symmetry, while the LUMO is a degenerate set of 

π orbitals having e1u symmetry.  Examination of the MO diagram provides an explanation 

for why the direct reduction of CO2 occurs at a very negative potential of –2.9 V vs. SCE.  

Population of the LUMO with a single electron induces a concomitant Jahn-Teller 

distortion where the symmetry of CO2 decreases from D∞h to C2V.  By extending this 

argument in an effort to better understand and conceive of new CO2 capture technologies 

based upon chemisorption, facile binding CO2 at the electrophilic carbon is possible only 

when using quite potent nucleophiles, which are required to induce the same reduction in 

local symmetry. 

 

CO O CO O CO O CO O CO O
δ− δ− δ− δ−δ+ δ+ δ+ δ+
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Figure 2:  Molecular orbital diagram of D∞h CO2. 

Post-Combustion CO2 Capture and Sequestration. 

There is a great deal of effort presently focused upon so-called end-of-pipe 

capture strategies, in which an existing coal or natural gas burning power plant is 

retrofitted with a capture stage at the flue gas output.  Another category of post-

combustion technologies that are gaining traction are direct air capture (DAC) methods.  

Direct air capture for the purposes of climate change mitigation was first proposed in 

1999 by Lackner and has grown to be defined as any method of direct CO2 extraction 

from ambient air.25  One of the key benefits to DAC methods over their end-of-pipe 

counterparts is that there is no requirement that DAC facilities be located in close 

proximity to point source emitters, thus providing an avenue for wide-scale 

implementation of capture strategies that are sensitive to high concentrations of 
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contaminants such as SOx, NOx, and mercury.  Additionally, DAC methods can mitigate 

emissions from distributed sources, which account for 60% of all anthropogenic CO2.26  

Since there is a great deal of overlap in the chemistries of DAC methods and end-of-pipe 

methods a brief discussion of the more mature DAC methods is presented here. 

The vast majority of DAC technologies that are presently being developed are 

sorbent-based.  These methods can employ a diverse array of materials including zeolites, 

metal-organic frameworks (MOFs), activated carbons, supported amines, or aqueous 

hydroxides.27  Direct air capture technologies that utilize aqueous hydroxides have 

received considerable attention due to their low cost and to the high binding affinity of 

hydroxide with CO2.  Two such manifestations are the Kraft process28 and the spray 

tower method developed by Keith.29  Briefly, the Kraft process, which has been used in 

paper manufacturing since the late 1800’s, uses NaOH as the CO2 sorbent to generate 

sodium carbonate.30  The next step is causticization of Na2CO3 with Ca(OH)2 in which 

NaOH is regenerated with concomitant precipitation of CaCO3.  The precipitate is 

transferred to a kiln for calcination where CO2 is released, leaving lime.  Resultant CaO 

undergoes hydration in a slaker, regenerating the Ca(OH)2 needed for the causticization 

step.  Spray towers also employ aqueous hydroxide as the CO2 capture material, and have 

key advantages over packed towers or open pools.  Specifically, the spray provides a 

larger surface area to maximize the amount of air that contacts the capture liquid.  

Additionally, the cost to implement a spray tower system is much less than that for large 

packed towers.  The Kraft process and the spray tower method suffer from significant 

energy losses due to the poor efficiency of the causticization step in the case of the 
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former, and drop coalescence in case of the latter, both of which will need to be 

ameliorated before either can be implemented at the necessary scale. 

 A particularly promising DAC method that utilizes hydroxide ions as the CO2 

sorbent was reported by Shi et al. in 2016.31  In this iteration, hydroxide ions are nano-

confined in an ion exchange resin that has ammonium moieties covalently attached to the 

polymer backbone.  Shi hypothesized that CO2 capture and release is facile due to the 

decrease in water activity in the nanostructured pores of the resin.  The proposed CO2 

capture  reaction  is summarized  in  Equation  4.   When the  number  of water molecules  

CO!
!– ∙ 𝑛H!O ⇌ HCO!

– ∙𝑚!H!O + HO– ∙𝑚!H!O + 𝑛 −𝑚! −𝑚! − 1 H!O       (4) 

CO!
!– ∙ 𝑛H!O + H! ⇌ [HCO!

– ∙𝑚!H!O]            (5) 

2 HCO!
– ∙𝑚!H!O + H! ⇌ CO!

!– ∙ 𝑛H!O + CO! + 𝑚! − 𝑛 − 1 H!O                       (6) 

is small, the reaction equilibrium shifts to the right due to the law of mass action.  The 

hydroxide ions thus produced, in what Shi terms the “dry state,” are the active CO2 

binders.  When the humidity is increased, the reaction equilibrium shifts to the left thus 

instigating CO2 release by the decomposition of carbonate ions as shown in Equations 5 

and 6.  The authors note that inside the matrix the ratio of carbonate to water may be as 

high as 1:1, which facilitates significant driving force for the change in equilibrium 

owing to changes in the degree of ion hydration.  To verify their hypothesis, Shi et al. 

utilized molecular dynamics simulations and found that the nano-confinement of the 

reactants is of paramount importance to this system’s function.  Specifically, the 

simulations showed that the free energy of Equation 4 is negative when the number of 

water molecules is less than 7.  The free energy rapidly reaches a plateau value of 15 kcal 
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mol–1 when the number of water molecules is increased to 60.  These conditions are 

impossible to achieve in saturated Na2CO3 solution, where the ratio of carbonate ions to 

water is 20:1.  That is, it is impossible to achieve the dry state without the aid of the resin 

or another intervening medium. 

Another class of materials that show great promise for selective CO2 capture are 

metal organic frameworks (MOF).  Metal organic frameworks are porous, crystalline 

materials with broad structural and chemical diversity.32  They show many advantageous 

properties for CO2 separation including high thermal and chemical stabilities, large void 

volumes, and low density.  Furthermore, they have been shown to absorb CO2 by both 

physisorption and chemisorption.  A particularly compelling example of the latter is the 

MOF MMEN-Mg2(dobdc), which is a magnesium-containing framework where the CO2 

capture moiety is N,N’-dimethylethylenediamine (MMEN).33  Long et al. have 

demonstrated that MMEN-Mg2(dobdc) is capable of taking up large amounts of CO2 at 

very low partial pressures, that the material can be cycled by heating, and that increased 

humidity does not result in decreased performance.  Furthermore, using X-ray diffraction, 

they were able to elucidate the mechanism of CO2 capture, wherein the nitrogen of the 

tethered MMEN attacks the carbon of CO2 and concomitantly loses a proton to a 

neighboring MMEN.34  The resulting carbamate is stabilized by substitution of the Mg–N 

bond with an Mg–O bond.  Long et al. went on to show how the CO2 adsorption behavior 

of this MOF changes both when Mg is replaced with a variety of metal ions, and when 

MMEN is replaced with a number of amines, thus illustrating the high degree of control 

over CO2 capture properties this particular class of compounds affords. 
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Similar to metal organic frameworks, ionic liquids (IL) also exhibit both 

physisorption and chemisorption of CO2.  Ionic liquids are liquid salts that are liquid at 

low temperature (informally agreed upon as below 100 oC) and that are composed wholly 

of ions.  Similar to MOFs, there is an enormous amount of chemical space with respect to 

ionic liquid design.  Thus, an exhaustive review of the billions of possible ILs is not 

feasible.  The interested reader is directed to the ILThermo Ionic Liquid database,35 and 

to a number of reviews that discuss both first-principles and theoretical approaches to 

making task-specific ionic liquid (TSIL) design more tractable.36  With respect to 

physisorption, Lei et al. have written an excellent review of gas solubility in ionic liquids 

in which they have devoted a great deal of discussion to gasses that are present in flue 

gas, especially CO2.37  Lei notes that while there is ample evidence supporting the 

hypothesis that the ionic liquid anion is the primary factor that governs CO2 

physisorption, there is some evidence to suggest that alkyl chain length on the cation 

plays a significant role as well.  Furthermore cation and/or anion fluorination, cation 

bromination, branched alkyl chains on the cation, and the inclusion of ester or carbonyl 

groups on the cation have all been shown to affect the Henry’s law constants for CO2 in 

ILs, which typically range from 30 to 200 bar.  To add another layer of complexity to 

how CO2 physisorption in ILs is understood, there have been several studies of IL 

mixtures, either with other ILs or with organic solvents, that show CO2 solubility is 

sensitive both to the identity and to the mole fractions of the ILs and solvents involved.38  

Indeed, this is a very active area of research and physisorption of CO2 in ILs is a 

promising remediation strategy. 
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Chemisorption of CO2 in Task-Specific Ionic Liquids. 

Chemisorption of CO2 in ionic liquids is of particular pedagogical utility toward 

understanding CO2 capture by electrogenerated sulfur nucleophiles in ionic liquids that 

will be discussed in later chapters.  Thus, it is prudent to examine several cases of CO2 

chemisorption in ILs facilitated by a nucleophilic site on either the IL anion or the IL 

cation that functions as the CO2 binding site.  The first report of a task-specific IL for 

CO2 chemisorption was published in 2002 by Davis et al. who appended a propyl amine 

functionality to an imidazolium cation.39  Carbon dioxide capture proceeds by the 

pendant amine nitrogen on the cation attacking the electrophilic carbon of CO2, thus 

generating a zwitterionic ammonium carbamate moiety.  A neighboring amine then 

deprotonates the ammonium carbamate, leaving a 1:1 mixture of ammonium–

imidazolium dications and zwitterionic imidazolium–carbamates.  The reaction 

stoichiometry theoretically limits this TSIL to capturing 0.5 mol CO2/IL, which was 

confirmed experimentally by monitoring the molar ratio of CO2 to TSIL over three hours.  

In addition to evaluating the effectiveness of TSILs for CO2 capture by examining the 

molar ratio, gravimetric capacity—defined as the wt% of moles CO2 captured per moles 

of TSIL—is also an important metric to consider.  In this case, the gravimetric capacity 

of Davis’ TSIL was around 7%.  Finally, since the CO2 sorbent must be able to be 

recycled in order for any carbon capture technology to be implemented at the necessary 

scale, it is important to note that CO2 recovery was achieved by heating this TSIL to 80–

100 oC under vacuum for several hours. 

An example of a task-specific ionic liquid in which anionic nitrogen nucleophiles 

serve a dual role as both the CO2 sorbent and the IL anion was reported in 2014 by Seo 



 13	

and coworkers.40   In this report, nitrogen-containing aprotic heterocyclic anions were 

paired with tetraalkylphosphonium cations and each of the resultant ILs were evaluated 

as to their CO2 absorption capacity. In contrast to the work of Davis, each IL investigated 

by Seo was, in theory, capable of binding one CO2 mole per mole of IL.  It was inferred 

that ILs comprised of anions that did not reach unity CO2 capacity did not form stable 

carbamates upon exposure to CO2.   The absorption isotherms that the authors collected 

showed that ILs with indazolide and benzimidazolide anions had strong chemical binding 

toward CO2, with reaction enthalpies ranging between –54 to –48 kJ mol–1.  Seo further 

determined that three anions, 2-methylthio-benzimidazolide, 3-trifluoromethyl-

pyrazolide, and 1,2,3-triazolide did not approach the expected stoichiometry of 1:1, 

reaching only 0.7, 0.6, and 0.3 mol CO2/IL at a pressure of 1 bar CO2, respectively.  

These three anions had reaction enthalpies of between –44 to –37 kJ mol–1, suggesting 

that there is a narrow range of reaction enthalpies where the CO2 binding transitions from 

strong to weak. 

In their follow-up publication, Seo et al. described a series of ionic liquids that 

changed phase from solid to liquid upon exposure to CO2.41  These so-called phase-

change ionic liquids (PCIL) all had anionic nitrogen CO2 capture sites in the form 

benzimidazolide, pyrrolide, or pyrazolide anions, and had either tetraethyl- or 

tetrabutylphosphonium cations.  The authors make the case that these media will have 

significant energetic advantages over other CO2 capture processes in that the enthalpy of 

fusion will act to decrease the thermal energy necessary to decarboxylate the IL anion 

and regenerate the active CO2 capture species; that is, Heat Load for Regeneration = 

ΔHrxn – ΔHfus.  The absorption isotherm of the tetraethylphosphonium benzimidazolide 
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PCIL exhibits a step-change indicating that only a small change in pressure or 

temperature is necessary to release CO2, thus regenerating the capture medium.  Since the 

regeneration step is typically the most energy-intensive in the reported CO2 capture 

technologies, this is an attractive feature of PCILs.  That said, to fully decarboxylate the 

model system, tetraethylphosphonium benzimidazolide, it was necessary to heat the PCIL 

to 70 oC under vacuum.  Another key finding from this report is that the physical 

properties, specifically the melting point, of the carboxylated IL are sensitive to the alkyl 

chain length on the cation.  That is, the tetrabutylphosphonium-based PCILs have lower 

melting points than their tetraethylphosphonium analogs.  Finally, Seo et al. confirm the 

findings from their previous publication—that the reaction enthalpy for the CO2 capture 

reaction can be tuned by changing the identity of, or the substituents on, the IL anion. 

To more fully explore the chemical space of task-specific ionic liquids for CO2 

sequestration, we now turn away from ionic liquids containing nitrogen nucleophiles and 

examine cases where an alkoxide serves both as the TSIL anion and as the CO2 capture 

nucleophile.  In their 2010 publication, Wang et al. report that phenol, α–

(trifluoromethyl)benzyl alcohol (TFBA), trifluoroethanol (TFE), and 

hexafluoropentanediol (HFPD) can be paired with a superbase,42 and that the resulting 

acid–base reaction yields TSILs that are competent for CO2 capture.43  While the TSILs 

that contain the conjugate bases of TFBA, TFE, and HFPD as the anion all show CO2 

capture at, or slightly above their theoretical limits, the phenoxide-based permutations 

show CO2 capture slightly below 0.5 moles of CO2 captured per mole of TSIL, or 

roughly half that expected by the reaction stoichiometry.  This result was confirmed in a 

2011 study by the same authors in which the CO2 capture medium was made by pairing 
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phenoxide anions with trihexyl-(tetradecyl)phosphonium cations.44  Experimental results 

show that the absorption capacity for this TSIL is 0.5 mol CO2/mol TSIL, and the 

theoretical absorption enthalpy is 46.7 kJ mol–1.  These data suggest that phenoxide is a 

lackluster CO2 capture species as compared to some of the reported nitrogen anion 

TSILs, having an absorption enthalpy between the strong- and weak-binding limits 

established by Seo.40 

Manipulation of the CO2 absorption characteristics, particularly the absorption 

enthalpy, of phenoxide-based task-specific ionic liquids was shown to be quite facile.  In 

order to establish a set of criteria to aid in the design of TSILs for CO2 capture, Wang 

examined the relationship between the absorption enthalpy and the basicity of the ionic 

liquid anions.44  The authors found that anions whose conjugate acids have higher pKa 

have both higher CO2 capacity and absorption enthalpy without concomitant increases in 

viscosity, which would hinder the absorption kinetics.  Although the trihexyl-

(tetrdecyl)phosphonium phenoxide ionic liquid did not fit the trend (the pKa of phenol in 

DMSO suggested that the absorption capacity would be higher than reported), the 

paradigm that Wang established in this initial report was employed to guide follow-up 

phenoxide-based ionic liquid CO2 capture strategies.  To wit, Wang et al. studied 

eighteen different trihexyl(tetradecyl)phosphonium phenoxide ionic liquids where they 

appended the phenoxide with various electron-donating (EDG) and electron-withdrawing 

(EWG) groups.45  The authors again found that the CO2 absorption capacity increased 

with an increase in the pKa of the phenoxide conjugate acids (see footnote).46  The 

authors also employed density functional theory (DFT) calculations and found that the 

more negative the Mulliken charge on the oxygen atom of the phenoxide anion, the more 
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negative the absorption enthalpy i.e. the stronger the CO2 binding.  For example, 4-

methoxyphenoxide has a Mulliken charge of –0.7062 on the oxygen atom and an 

absorption enthalpy of –51.4 kJ mol–1; whereas 4-nitrophenoxide has a Mulliken charge 

of –0.6187 on the oxygen atom and an absorption enthalpy of –17.1 kJ mol–1.  Thus, 

Wang illustrates that it is possible to transition between the strong- and weak-binding (or 

no binding, as in the case of 4-nitrophenoxide) motifs by varying the substituents on the 

ionic liquid anion. 

In the context of the preceding discussion where the pKa of the ionic liquid anion 

conjugate acid is correlated to the CO2 absorption properties, it is worthwhile to more 

closely examine the role of strongly basic ionic liquid anions.  Specifically, it can be 

readily assumed that more basic ionic liquid anions have the potential to participate in 

unwanted side reactions.  An example of this phenomenon was reported by Gohndrone et 

al. who examined CO2 capture in phosphonium 2-cyanopyrrolide ionic liquids.47  Using a 

combination of spectroscopic and computational data, Gohndrone found that, in addition 

to attacking the electrophilic carbon of CO2, 2-cyanopyrrolide is a strong enough base to 

deprotonate the α-carbon on the butyl(triethyl)phosphonium cation at elevated 

temperature.  Resulting phosphonium ylides then went on to attack CO2 producing a 

zwitterionic carboxylate, which was characterized by both IR and NMR.  The authors 

argue that carboxylate stabilizes the zwitterion, and they provide Møller–Plesset 

calcuations to support their claim.  Importantly, Gohndrone does not observe this same 

behavior when the IL cation is trihexyl(tetradecyl)phosphonium, and hypothesizes that 

the bulk of the alkyl chains on the cation effectively restrict access to the α-carbon.  In a 

follow-up article by the same group, phenoxide anions are paired with 
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trihexyl(tetradecyl)phosphonium cations and the CO2 absorption mechanism is 

characterized by both IR and NMR spectroscopies.48  In this case, the bulky 

phosphonium cation was able to be deprotonated at the α-carbon and CO2 absorption 

proceeds through the phosphonium ylide as described in their previous publication.  In 

both cases, the possibility of deprotonation at the β-carbon in a Hoffman-type elimination 

reaction is not examined.  Despite this omission, the possibility of strongly basic anions 

participating in this type of chemistry should not be ignored.  In this case, the Hoffman 

elimination reaction would yield a phosphine, which as been shown to be a CO2 capture 

agent in studies where tris(mesityl)phosphine acts as the Lewis base in frustrated Lewis 

pairs for CO2 reduction.49  In either case, it is clear that one must consider cation–anion 

interactions when designing TSILs for CO2 capture. 

A particularly salient example of the importance of cation–anion interactions in 

TSILs for CO2 capture can be seen in cases where imidazolium is the IL cation.   In these 

cases, several groups have found that the imidazolium cation is the precursor to N-

heterocyclic carbenes (NHC), which are carbon nucleophiles that have been shown to 

attack the electrophilic carbon of CO2.  The reactivity of NHCs toward CO2 was first 

investigated by a number of groups in the late 1990’s and early 2000’s.  These early 

reports were not geared toward CO2 capture, per se.  Rather, they sought to either fully 

characterize the imidazolium carboxylates,50 or to asses the role of imidazolium 

carboxylates both in catalytic olefin metathesis51 and in group transfer reactions.52  

Further, several papers from the Louie group around the same time detailed the synthesis 

and characterization of a wide array of imidazolium carboxylates on which they 

performed thermal gravimetric analysis (TGA) in order to fully understand how the 
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imidazolium substituents affect the decarboxylation temperature.53  Their findings show 

that the steric bulk of the N-substituent(s) is of primary importance, more so than 

electronic structure, with NHCs that have bulkier substituents on the nitrogen atoms 

exhibiting lower decarboxylation temperatures.  It was in the context of these studies that 

in 2005 Maginn postulated that the absorption of CO2 in 1-butyl-3-methylimidazolium 

acetate may proceed via carboxylation of the imidazolium cation.54    

Following these initial reports, in 2011 Gurau et al. published their article 

regarding the chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic 

liquids, where they provided substantial evidence of the imidazolium carboxylate in the 

ionic liquid.55  There have been numerous subsequent studies that have endeavored to 

understand the mechanism of CO2 absorption by imidazolium-based ionic liquids.56  

Brennecke and coworkers have proposed that there are two distinct pathways for CO2 

chemisorption in imidazolium ILs.56d  The first is the rather obvious case where the IL 

anion acts as a nucleophile and attacks the electrophilic carbon of CO2.  The second is the 

combined process where the imidazolium is deprotonated at the bridgehead carbon by the 

IL anion, and the resultant NHC attacks the CO2 carbon.   There is general agreement that 

in acetate-based ionic liquids the carbene is generated by deprotonation of the bridgehead 

carbon by the acetate ion.  Indeed, in these ILs the product acetic acid has been identified 

by IR, NMR, and Raman spectroscopies.56b  Although there is still some question as to 

how the competing interactions between anion–cation, anion–CO2, and cation–CO2 affect 

the overall absorption capacity in these materials,57 it is abundantly clear that in 

imidazolium-based ionic liquids nucleophilic attack by NHCs account for at least some of 

the CO2 uptake.  This was further confirmed in a series of articles from the Feroci 
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laboratory that show imidazolium TSILs with anions that lack a basic site—specifically 

tetrafluoroborate—may be utilized for CO2 capture where the NHC is generated 

electrochemically at 60 oC.58  Despite the general agreement that NHCs in imidazolium 

ionic liquids are competent for CO2 capture, there are lingering questions as to their 

efficacy.  Specifically, in a very recent article by Mei et al. it was shown that CO2 

absorption in imidazolium ILs can be improved by suppressing NHC formation.59  In 

other words, the authors propose that interference by NHCs has a deleterious effect on 

the CO2 absorption capacity in imidazolium ILs, and designing systems in which CO2 is 

attacked solely by the ionic liquid anion is beneficial.   

Carbon Dioxide Chemisorption by Monoethanolamine. 

Of the chemisorptive post-combustion methods for CO2 capture that have been 

reported, there is only one that has been implemented on the pilot scale:  chemical 

absorption using monoethanolamine (MEA).  Flue gas scrubbing by aqueous MEA has 

been shown to capture and release CO2 with a minimum of initial expense.13a, 13c  

Furthermore, utilizing amine scrubbing it is possible to capture 90% of the CO2 from flue 

gas.60  However, recovering high-purity CO2 is costly and requires replenishing or 

replacing the capture agent. Achieving this degree of CO2 capture results in a 21% power 

loss (170 kJ mol CO2
–1), which translates to a 44% increase in generating cost per 

MWh.60  Though this may seem to be an insurmountable economic barrier to 

implementing amine scrubbing at scale, recent polling has shown that the average U.S. 

citizen will accept a 13% increase in electricity cost to support a national clean energy 

standard.61  One final cost-based impediment to MEA scrubbing is the parasitic loss of 

the amine capture agent, which can amount to as much as 2 kg per ton CO2.13a, 13c  
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Along that line, and of greater importance than the economic obstacles, are the 

barriers to implementation at scale due to the environmental impacts of amine-based 

capture methods.  Research in this area is incomplete; however, one can a priori identify 

a number of potential environmentally harmful outcomes to large-scale amine scrubbing.  

Of primary concern is the potential for what are termed “fugitive emissions” that could be 

deleterious to human health and to the environment.62  Fugitive emissions is the term 

given to the release of process fluids and materials, untreated flue gas, treated gas that 

contains unidentified compounds, adsorption solvents, corrosion inhibitors, degradation 

products, and chemical additives whose impacts to human health and environment are not 

fully understood.62  In addition to fugitive emissions, since reclaiming the capture species 

requires heating, there is the potential for a large amount of recovered waste during the 

reclamation step due to unwanted side reactions.  Since it is appropriate to view CO2 

remediation in the context waste management, capture technologies that generate waste 

products that require special handling and/or storage would be counterproductive.   

Finally, there is a strong likelihood that amine sorbents could lead to highly toxic 

nitrosamines being formed in the atmosphere from either the emitted amine or degraded 

amine products.63   

Summary and Dissertation Outline. 

As this introduction illustrates, there is a need for energy efficient and 

environmentally benign CO2 capture strategies that can be implemented at the necessary 

scale.  In the context of the reviewed technologies, we may establish several criteria that 

must be met for any potential postcombustion chemisorption CO2 capture strategy to be 

viable.  First, there must be a regenerative step that recycles the capture agent.  Once-
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through capture strategies are not realistic because the massive quantities of CO2 that are 

emitted would quickly overwhelm the manufacturing capacity for any chemical sorbent.  

Second, any end-of-pipe capture technology must be immune to degradation and/or to 

passivation by other compounds that are present in flue gas.  These include, but are not 

limited to, SOx, NOx, mercury, oxygen, and water vapor.  Third, the sorbent must be 

environmentally benign due to the possibility of fugitive emissions.  Escaped capture 

agent or degraded capture agent products must be either easily sequestered or not 

susceptible to unwanted side reactions that occur in the environment to produce 

potentially toxic substances.  Finally, any capture strategy that is coupled to a chemical 

transformation of CO2 must either produce a commodity chemical that is highly 

desirable, or the process must minimize the reaction products, especially if those products 

require special handling and/or storage.  Ideally, captured CO2 could be recycled into fuel 

to create a carbon-neutral energy supply. 

In Chapter 2, this document provides an in-depth review of electrochemical 

strategies for CO2 capture.  As a brief prelude, DuBois et al. have proposed 

electrochemical pumping as an energy efficient carbon dioxide capture method64 that 

employs a redox-active molecule that, in one if its oxidation states, strongly binds CO2.  

Upon oxidation (or reduction) the binding constant for CO2 of the redox-active species 

drastically decreases, thereby releasing the CO2.  To estimate the energy requirements for 

CO2  capture  from  flue  gas  utilizing  electrochemical  pumping,  we  may employ Eq. 7  

∆G = RT ln !!
!!

                                (7) 

where ΔG is the change in free energy, R is the ideal gas constant, T is the absolute 

temperature, pf is the final partial pressure of CO2 recovered from the initial partial 
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pressure of CO2, pi.  Isobaric recovery of pure CO2 concentrated to 1 atm at 293 K from 

flue gas containing 8 (natural gas burning) to 14% (coal burning) carbon dioxide requires 

a theoretical minimum energy input of 6.2 kJ mol CO2
–1 and 4.8 kJ mol CO2

–1, 

respectively.  Conversion of these free energy values to applied potential is accomplished 

the aid of Eq. 8 

∆G = −nF ∆E                  (8) 

where n is the number of electron moles and F is Faraday’s constant.  Assuming that the 

system requires one electron mole per mole of CO2 captured, the theoretical minimum 

applied potential for electrochemical pumping is 64 mV for natural gas burning power 

plants and 50 mV for coal burning power plants.  Overpotential and cell resistance losses 

may be reasonably estimated as necessitating an additional 0.3 V of applied potential, and 

mass-transfer effects within the cell may likewise be estimated as inducing a 20% loss in 

efficiency.65  Accounting for these effects leads to an estimated energy cost for 

electrochemical pumping of 43.9 kJ mol CO2
–1 for natural gas plants and 42.2 kJ mol 

CO2
–1 for coal plants.   

In the next chapter, proof of concept for an electrochemical CO2 pump that 

employs electrogenerated sulfur nucleophiles is presented.  We describe a model 

compound, benzyldisulfide, and demonstrate both electrochemical CO2 capture and 

release.  At glassy carbon cathodes in the ionic liquid 1-butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)-imide ([BMP] [TFSI]), this system is best formulated as a 

two-electron process with potential inversion.  Briefly, the organic disulfide is 

electrochemically reduced by one electron, which populates an antibonding orbital.  This 

results in rupture of the S–S bond and the formation of one thiolate anion and one thiyl 
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radical.  The radical is reduced at a potential that is far more positive than that of the 

disulfide, so it quickly gains one electron to yield another thiolate.  Electrogenerated 

thiolates are potent nucleophiles that can attack CO2 at the electrophilic carbon to 

produce thiocarbonates.  At the anode, thiocarbonates undergo a one-electron Kolbe 

oxidation to yield an unstable neutral radical, which rapidly decomposes to CO2 and 

sulfur radicals.  These sulfur radicals then couple to yield the original disulfide, thereby 

regenerating the masked CO2 capture agent.  It will be shown that the electrochemical 

pumping of CO2 using the disulfide–thiolate–thiocarbonate system in ionic liquids is a 

strong candidate for an end-of-pipe CCS technology. 

As a follow-up to the initial study of benzylthiolates as CO2 chemisorbents, 

Chapter 4 details the possibility of utilizing waste heat from power generating facilities to 

drive the CO2 capture–release process.  Toward that end, a number benzylthiolates with 

various alkali metal cations were synthesized and a crystal structure of the 15-crown-5 

sodium benzylthiolate was obtained.  Benzylthiocarbonates were then produced by 

exposing the benzylthiolates to CO2 in a methanol–THF solution.  Results from thermal 

release experiments show that the temperature and kinetics for CO2 release are strongly 

dependent upon the identity of the cation.  In some instances, the benzylthiolate salt 

survived heating to 250 oC, thus demonstrating the utility of this approach as a carbon 

capture strategy.  It was further shown that tetrabutylphosphonium benzylthiolate is an 

ionic liquid at room temperature that solidifies upon exposure to CO2.  The CO2 is 

liberated by placing the solid under vacuum at room temperature, which generates a pure 

CO2 stream while concomitantly reclaiming the active CO2 sorbent.  This example is 

similar to the phase change ionic liquids discussed previously; however because exposure 
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to CO2 results in solidification rather than liquefaction, this example will not have the 

same energetic benefits due to the enthalpy of fusion.   

In the Appendix the functionalization of poly(2,6-dimethyl-1,4-phenylene oxide) 

(PPO) with pendant ferrocene moieties via the copper catalyzed azide–alkyne coupling 

(CuAAC) reaction and the electrochemical properties of the functionalized polymer is 

presented.  The primary findings of the study are twofold:  The first part details the 

synthesis the effect that copper(II) ions resulting from the CuAAC reaction have on the 

product if they are not removed during workup.  Specifically, copper ions can coordinate 

to the nitrogen of the triazole ring to act as crosslinks making the product polymer an 

insoluble, blue mass.  A model compound, 4-butyl-1-(phenylmethyl)-1H-1,2,3-triazolyl-

copper(II)-acetate was prepared and fully characterized so that the spectroscopic data 

could be compared to the functionalized polymer.  In the second part of the study, the 

electrochemical properties of the ferrocene-functionalized PPO was investigated by 

cyclic voltammetry.  Findings from these experiments show that the electrochemical 

response of polymer films is sensitive to the nature of the electrolyte, specifically the size 

of the electrolyte anion.  These results are discussed within the context of anion sensing 

and recognition applications. 
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CHAPTER 2 

Abstract 

Understanding the chemistry of carbon dioxide is key to effecting changes in 

atmospheric concentrations.  One area of intense interest is CO2 capture in chemically 

reversible cycles relevant to carbon capture technologies.  Most CO2 capture methods 

involve thermal cycles in which a nucleophilic agent captures CO2 from impure gas 

streams (e.g. flue gas), followed by a thermal process in which pure CO2 is released.  

Several reviews have detailed progress in these approaches.  A less explored strategy uses 

electrochemical cycles to capture CO2 and release it in pure form.  These cycles typically 

rely on electrochemical generation of nucleophiles that attack CO2 at the electrophilic 

carbon atom, forming a CO2 adduct.  Then, CO2 is released in pure form via a subsequent 

electrochemical step.  In this chapter, electrochemical cycles for CO2 capture and release, 

emphasizing electrogenerated nucleophiles are reviewed. Some advantages and 

disadvantages inherent in this general approach are discussed. 

––––––––––––––––––––– 

The relentless increase of atmospheric CO2 concentrations driven by the 

cumulative effects of combustion of carbon-based fuels has driven a tremendous level of 

research activity in the chemistry of CO2.  With the goal of effecting change in the 

trajectory of atmospheric CO2 concentrations, a primary area of recent focus has been the 

capture of CO2 either from point sources like coal- or natural gas-fired power plants 

(point source emitters) or directly from the atmosphere (direct air capture).  A number of 

different approaches have been explored.  These have been extensively reviewed, with 

detailed analyses describing chemical principles, energy efficiencies, economics, and 
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technical readiness levels.66  A variety of different types of chemical reactions with CO2 

have been explored in this context. Most of these chemistries rely on the use of a potent 

nucleophile to react with and capture CO2 in the form of some type of adduct, which is 

later decomposed in some way to release CO2, regenerating the capture agent.  One of the 

more well-studied chemistries based on this tactic employs an amine reagent such as 

monoethanolamine (MEA) which acts as a nucleophile, attacking CO2 at the electrophilic 

carbon center thereby forming a carbamate. Equation 9 summarizes this process. 

2 HO CH! !NH! + CO!   ↔ HO CH! !NH!! + HO CH! !NHCO!
– + heat         (9) 

As shown, two equivalents of the amine are required to capture one equivalent of 

CO2 in the form of a carbamate (RNHCO2
–).  Equation 9 also shows that the reverse 

process, in which CO2 is released (e.g. for permanent storage, use as a chemical 

feedstock, enhanced oil recovery, etc.), requires an increase in temperature to break the 

N–C bond.  The amount of thermal energy required is exacerbated by the fact that the 

MEA process is typically operated under aqueous conditions, meaning that significant 

energy is also required to heat the aqueous solution in which the capture chemistry is 

contained.  Under these conditions the energy required for recycling the MEA capture 

agent can consume between 14 and 30% of the output of a typical power plant, greatly 

impacting the economics of the capture process.66c  As a result, though this process has 

been studied for many years and demonstrated at pilot scale, it is unlikely to ever be 

implemented on a broad scale.  Similar to the MEA process, amines immobilized within a 

variety of matrices also have been shown capable of CO2 capture.  For these cases, the 

energy required for regeneration of the free capture agent scales with the heat capacity of 

the matrix, which can be substantially lower than that for the aqueous MEA solutions 
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described above.67  Coupled with the design of new capture agents that release CO2 at 

lower temperatures, these approaches may enable use of waste heat for the regeneration 

cycle, which could substantially change the energy and economics of the process 

compared to the MEA case.  Nevertheless, the approaches described above all require 

substantial input of thermal energy for regeneration of the capture agent, which limits 

energy efficiency. 

 A fundamentally different approach employs electrochemical processes to drive 

the capture and release reactions.  The use of electrochemistry for separation of carbon 

dioxide from complex gas streams has a long history, and has enjoyed a recent 

resurgence in activity.  In this Perspective, we describe several different approaches that 

have been explored.  Because electrochemical CO2 capture–release systems employ a 

variety of conditions, and consequently have quite different energy efficiencies and 

economics, they are not equally applicable in all settings.  Our focus here is not to 

identify the best situation for each approach, but rather to identify some common themes 

among them that can be used to inform future research efforts in the area.  We focus 

especially on the use of electrogenerated nucleophiles to capture CO2. 

 The prospective use of electrochemical systems for CO2 capture and release leads 

to the identification of preferable characteristics for the reagents and the 

(electro)chemical processes in such schemes.  These characteristics stem first and 

foremost from a desire to minimize the energy required for the “round trip” capture and 

release processes, but also include other considerations such as controlling (i.e. “tuning”) 

the strength of CO2 binding, and minimizing side reactions or other parasitic processes 
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that interfere with the capture and release chemistry.  Given these and other constraints, 

one can formulate a list of the characteristics desired in such a scheme: 

• A small potential difference between the electrochemical capture and release 

processes, to minimize energy consumption and cost of energy 

• Relatively rapid electron transfer kinetics for the electrochemical steps  

• Tunability of the binding constant for CO2 with the capture agent, to maximize 

the efficiency of the process 

• Relative insensitivity of the nucleophilic capture agent to dioxygen and water, 

since these are typically present in gas streams from which CO2 would likely be 

captured 

• Use of electrolyte media for the capture–release cycle that are low cost or are not 

lost during the cycle (e.g. use of volatile organic solvents is not likely to be 

attractive because of evaporative losses, thus favoring aqueous electrolytes or 

non-volatile media like ionic liquids) 

• Design of capture and release mechanisms that avoid highly reactive 

intermediates that might become involved in unwanted side reactions that 

consume the capture agent 

As we will see below, the electrochemical cycles described to date all suffer from one or 

more deficiencies with regard to these characteristics.  However, one hopes that helping 

focus the broader community on these issues will bring forward better alternatives. 

The original motivation of applying electrochemistry to CO2 separation dates 

back to the need for removal of carbon dioxide from breathing gas mixtures on manned 

space flights.68  These early efforts were based on molten carbonate fuel cell (MCFC) 
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systems that were reconfigured into molten carbonate CO2 concentrators (MCCC). 

Carbon dioxide production by MCFC’s is zero due to equal amounts of CO2 being 

consumed (Equation 10) and generated (Equation 11) at the cathode and anode, 

respectively (net shown in Equation 12).  Thus, fuel cell operation effectively serves to 

remove CO2 from complex gas streams and concentrate it at a different location.  This 

chemistry represents one of the more mature electrochemical approaches to CO2 

separation, and interest in these types of systems has recently been rekindled.69  A typical 

MCCC uses two gas-breathing electrodes separated by a ceramic membrane impregnated 

with a molten carbonate salt.  Use of this class of electrolyte necessitates operation at 

very high temperatures, typically near 650 oC.  Carbon dioxide is captured at the cathode 

where O2 is reduced, driving CO3
2– formation from reaction between the resulting oxide 

species, O2–, and CO2. The anode gas feed is typically hydrogen, although methane may 

also be used as the fuel for the overall process.69c  The latter is an attractive option for 

CO2 separation from flue gas generated by natural gas-burning power plants.  Hydrogen 

is oxidized at the anode to produce protons that react with CO3
2– yielding steam and CO2, 

both of which exit the cell through the anode exhaust. The cell reactions are given by 

equations 10–12: 

Cathode: ½ O2 + CO2 + 2 e– ↔ CO32–                    (10) 

Anode:  H2 + CO32– ↔ H2O + CO2 + 2 e–               (11) 

Net:   H2 + ½ O2 + CO2, cathode ↔ H2O + CO2,anode                   (12) 

The overall energetics and practical utility of this approach are strongly impacted by the 

high temperatures required to achieve reasonable transport rates for CO3
2– across the 

membrane separator in the cell, which is typically an electrically insulating ceramic such 
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as lithium aluminate.  Also, this approach does not produce a pure CO2 stream, instead 

giving a mixture of CO2 and H2O. 

 Carbon dioxide separation can also be achieved using electrochemically 

controlled pH swings as the primary driver for CO2 capture and release. These systems 

exploit the responsiveness of the thermodynamic equilibrium of CO2 hydration to small 

pH changes.  An increase in pH at a cathode drives capture of CO2 as either HCO3
– or 

CO3
2–, depending on the operating pH. Transport of the trapped CO2 equivalents occurs 

either by physically pumping the process fluid or by electromigration of the carbonate or 

bicarbonate anions.  Release occurs at an anode where acidic conditions are created, 

leading to regeneration of free CO2.  Several different approaches have been used to take 

advantage of pH swings for CO2 separation.  For example, bipolar membranes (BPM’s) 

have been used as part of an electrodialysis scheme.70  In another manifestation, 

electrodeionization has been employed, where both BPM’s and cation exchange 

membranes were utilized to concentrate a ~15% CO2 simulated flue gas stream to >98% 

CO2 in the recovery stream.71  Water electrolysis can also be used, though this process 

requires a minimum of 1.23 V to drive the pH changes.72  A unifying feature of these 

approaches is the use of applied potentials to drive CO2 capture via OH– generation and 

CO2 release via H+ generation. 

 An alternative method that also takes advantage of the pH sensitivity of the CO2 

hydration equilibrium uses the redox chemistry of quinones to generate pH changes.  

Here, the 2,6-dimethylbenzoquinone/2,6-dimethylhydroquinone redox couple has been 

used as part of an active liquid membrane system to pump CO2.73  In this approach, 

reduction of quinone to hydroquinone at a gas-breathing cathode leads to proton 
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Electromigration drives bicarbonate across the cell to the anode.  Oxidation of 

hydroquinone at the anode releases protons producing a local pH decrease, which drives 

production of CO2 from HCO3
–, leading to CO2 exit from the gas-breathing anode.  The 

use of catalysts was explored to improve the kinetics of the quinone redox process, 

though complications from water electrolysis resulted due to the large applied potential 

across the cell. 

 A number of groups have explored CO2 capture using potent electrochemically 

generated nucleophiles resulting from reduction of organic redox compounds. These 

electrogenerated nucleophiles bind to the electrophilic carbon center in CO2, forming 

some type of stable adduct species.  The key to this approach is the dramatic change in 

the  CO2  binding  constant  of  the  reduced  species  as  compared  to  its  oxidized redox  

 

Scheme 1.  Sequence of reactions showing the capture of CO2 by electrochemically 
reduced 9,10-phenanthrenequinone (PAQ) proposed in Ref. 74. 
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partner.  This requires that reduction produce substantial electron localization in the 

reduced product, thereby enhancing its nucleophilicity.  Subsequently, CO2 is released by  

oxidation of the CO2 adduct at a different location, regenerating the organic reactant and 

producing a pure CO2 stream.  The first demonstration of this type of electrochemically 

driven adduct formation using electrogenerated nucleophiles was by Mizen and 

Wrighton.74  Rather than using the redox chemistry of quinones to instigate a pH change, 

they showed that reduction of 9,10-phenanthrenequinone (PAQ) in aprotic media in the 

presence  of  dissolved CO2  produced  a bis(carbonate), [PAQ⋅2CO2]2–.  Scheme 1 shows  

the sequence of reactions they proposed for this system, which ultimately produces the 

bis(carbonate) shown at the lower right of the scheme.  The trapping of CO2 in this case 

relies on the electrochemical reduction of the parent quinone to produce a quinone anion 

radical with substantial electron density on the quinone oxygen.  It is this nucleophilic 

species that attacks CO2 at the electrophilic carbon.  The initial adduct formed is reduced 

at a more positive potential than the PAQ parent, leading to further reduction and 

subsequent capture of a second equivalent of CO2.  This stepwise scheme ultimately 

produces the bis(carbonate) adduct shown in Scheme 1.  This bis(carbonate) could be 

subsequently oxidized by two electrons, regenerating the parent quinone and releasing 

two equivalents of CO2.  Thus, electrochemical reduction of the parent quinone produces 

a potent nucleophile that reversibly captures CO2 with a ratio of one electron required per 

equivalent of CO2 captured. 

 Scovazzo et al. used a different quinone to show that this same type of reductive 

nucleophilic trapping and oxidative release could be used to separate CO2 from gas 
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mixtures.75  They used 2,6-di-tert-butyl-1,4-benzoquinone (DtBBQ) as the precursor to 

the quinone radical anion that served as the capture agent.  Unlike the case studied by 

Mizen and Wrighton, this quinone required injection of two electrons to capture one 

equivalent of CO2.  This limits the Faradaic efficiency compared to the case for PAQ.  

Other workers also have explored the use of quinones as trapping agents for CO2 capture. 

Apaydin and coworkers used thin insoluble films of the industrial pigment quinacridone 

immobilized on an indium-doped tin oxide electrode to demonstrate electrochemical CO2 

capture by the quinone radial anion, with release driven either electrochemically or 

thermally.76  Hatton and coworkers used 1,4-naphthoquinone dissolved in the ionic liquid 

1-ethyl-1-methylimidazolium tricyanomethanide to separate CO2 from gaseous 

mixtures.77  Interested readers should refer to Reference 77 for a schematic of the cell 

they employed for this purpose.  As for the cases described above, CO2 is captured by the 

radical anion of 1,4-naphthoquinone and released by oxidation of the stable adduct.  

Hatton also showed that this type of chemistry can be incorporated into a membrane 

format due to the very low vapor pressure of the ionic liquid.  This demonstrates that this 

type of chemistry can be deployed in a separation format that may be technologically 

relevant. 

In addition to quinone-based nucleophiles, other electrogenerated nucleophiles 

also can be used for CO2 capture.  Ishida et al. described an electrochemical cycle in 

which reduction of N-propyl-4,4’-bipyridinium (PB+), a monoalkylated (quaternized) 

bipyridinium species, in the presence of CO2 led to formation of a CO2 adduct.78  The 

mechanism is shown in Scheme 2.  It involves a disproportionation of the one-electron 

reduced neutral radical, PB⋅, to give PB+ and the two-electron reduced product PB–. This 
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fully reduced compound then reacts with CO2 to give a previously unreported type of 

nitrogen-bound CO2 adduct.  This adduct is somewhat similar to previously reported 

carbamates, though it is derived from reduction of a mono-quaternized bipyridinium 

compound.  The adduct was characterized electrochemically and spectroscopically, and 

its stability was verified using molecular orbital theory calculations.  Ishida also showed 

that electrochemical oxidation of PB-CO2
- by two electrons caused the release of CO2,  

 
Scheme 2.  Mechanism of reversible CO2 capture by electrochemically reduced N-
propyl-4,4’-bipyridinium (PB+) proposed in Ref. 78.  
 
regenerating the parent PB+ species.  Thus, the capture and release was shown to be 

chemically reversible.  As for the DtBBQ case, capture of one equivalent of CO2 requires 

injection of two equivalents of electrons.  This is because one-electron reduction of PB+ 

produces a PB⋅ neutral radical in which the newly injected electron density is highly 

localized in the quaternized ring (as shown in Scheme 2).  Thus, the PB⋅ radical is not 

sufficiently nucleophilic to capture CO2.  However, because the subsequent reduction of 

PB⋅ to PB– is only a few hundred mV more negative than the first reduction and because 

the binding of CO2 to PB– is highly favorable, the disproportionation is driven by adduct 

formation. 
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 Our laboratory recently described a related type of chemistry in which the one-

electron reduction of 4,4’-bipyridine (Bipy) produces the Bipy– anion radical, which 

rapidly binds CO2.79  Electrochemical oxidation of the resulting Bipy-CO2
– adduct 

concomitantly regenerates the Bipy parent and releases CO2.  The cyclic voltammetric 

behavior for Bipy in absence and presence of CO2 is shown in Reference 79.  In the 

absence of CO2, Bipy is reduced at –2.3 V in a reversible one- electron process, 

producing the Bipy– radical anion, which is oxidized on the subsequent positive-going 

scan near –2.2 V.  When CO2 is present, the reduction potential of Bipy is shifted to less 

negative potential due to the rapid reaction between the reduction product, Bipy–, and 

CO2 to form an adduct.  On the subsequent, positive-going scan, a new oxidation peak is 

observed which corresponds to oxidation of Bipy-CO2
–.  The stoichiometry for the 

process reveals that one equivalent of electrons is required for each equivalent of CO2 

captured.  The first reduction generates a highly nucleophilic radical anion that reacts 

with CO2 in a nearly activationless process, with a very large second order rate constant 

(>108 M–1 s–1).79  The resulting bipyridinyl radical-N-carboxylate adduct is likely 

oxidized at the radical center, which is expected to have facile kinetics due to a lack of a 

substantial reorganization barrier (i.e. no bond breaking and little solvent 

reorganization).80  This produces a zwitterionic intermediate that decarboxylates with a 

first order rate constant in the range of 1010 to 1011 s–1, according to high-level 

computational studies.79  Thus, in this case, both the oxidative electron transfer step and 

the decarboxylation are extremely fast, which is an attractive feature for any CO2 

separation scheme. 
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 The oxidation potential of Bipy-CO2
–is substantially positive of the oxidation 

potential of the Bipy– radical anion.  In part, this shift can be thought of as a reflection of 

the stability of the N–C bond between Bipy– and CO2 in the adduct. In other words, an 

energetic penalty for dissociating the adduct must be paid during oxidation.  The 

difference in the peak oxidation potentials between Bipy– and Bipy-CO2
– is 0.85 V.  This 

value is in reasonable agreement with the calculated binding energy of 73 kJ mol–1 for the 

capture of CO2 by Bipy– using quantum chemical calculations, reinforcing the notion that 

breaking the N–C bond between the ring system nitrogen and CO2 requires additional 

energy input for the oxidation process of the adduct.  The overall energy cost for the 

capture and release cycle is governed by the difference in reduction and oxidation 

potentials at which capture and release occur, –2.0 V and –1.3 V, respectively.  Thus, the 

binding energy of CO2 to Bipy– is seen to be a substantial factor in the total energy 

requirement of the capture–release cycle. 

 Both the quinone- and bipyridine-based approaches discussed above suffer from 

two undesirable characteristics of these nucleophilic capture agents, namely sensitivity to 

protonation and sensitivity to dioxygen.  With regard to the former, the chemical cycles 

described above were all carried out under aprotic conditions.  This is a strict 

requirement, because the reduced products are all susceptible to protonation, which 

would decrease their nucleophilicity, thwarting the desired reaction with CO2.  In other 

words, when protons are available, they out-compete CO2 for the newly created 

nucleophile, preventing formation of a stable CO2 adduct.  The strong basicities of the 

reduced quinone and bipyridine species thus represent significant disadvantages of these 

species when considering their use in CO2 capture and release cycles.  The second issue 
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stems from sensitivity to dioxygen.  Both the quinone radical anions and the reduced 

bipyridine species react rapidly with dioxygen.79, 81  This consumes the newly created 

nucleophile, rendering it unavailable for reaction with CO2.  Furthermore, under aprotic 

conditions the initial product of these unwanted reactions reaction is superoxide, which 

participates in complex chemistry with CO2.82  Also of concern in any quinone-based 

CO2 capture system is the possibility of the Kolbe-Schmidt ortho-carboxylation reaction, 

which would render CO2 release impossible.83  Thus, while interesting from an academic 

standpoint, neither the quinone-based nor the bipyridine-based capture-release cycles are 

likely to be technologically applicable. 

Another strategy for using redox reactions to generate nucleophiles capable of 

capturing CO2 was described by Hatton and coworkers.84  In a process known as 

Electrochemically Mediated Amine Regeneration, Hatton employed the electrochemical 

reduction of Cu(II) ethylenediamine complexes to Cu0 metal as a means to release the 

ligand, thereby generating free nucleophilic amines as the active CO2 capture agents.  

The free amine binds to CO2, producing a zwitterionic ammonium-carbamate adduct.  

The cycle operates as follows. A solution of diamine is exposed to CO2 in a purge 

chamber.  After the adduct is formed, the fluid is pumped to the anode chamber. 

Oxidation of a copper anode produces Cu2+, which binds to the diamine, displacing CO2. 

The cycle is completed by plating Cu2+ in a cathode compartment, regenerating the free 

diamine for another cycle.  The chemistry of this approach relies on the very strong 

binding of the diamine to the metal center, which facilitates release of CO2 via cleavage 

of the N–C bond.  The process was studied in some detail, with authors arguing that CO2 

separation could be achieved at an energy cost of less than 100 kJ mol–1 using this type of 
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approach.84b  This compares favorably with the 170 kJ mol–1 reported from a thorough 

analysis of the MEA process.66c  

DuBois et al. have also proposed the use of transition metal complexes for 

electrochemical CO2 pumping.85  In this paradigm, the transition metal complex has an 

exposed CO2 binding site (a nitrogen or oxygen atom) on one of the ligands.  Reduction 

or oxidation of the complex changes the electron density on the binding sites, thereby 

increasing or decreasing, respectively, the binding affinity for CO2.  Of the compounds 

studied, which contained Fe, Co, or Ru, binding sites were separated by one, two, or five 

atoms from the redox active metal center.  Only the one-atom compound, a 

cyclopentadienyl indenyl Co3+ complex with an oxygen atom binding site on the indenyl 

ligand, showed any CO2 capture activity.  In another use of metal complexes, DuBois and 

coworkers described a copper complex that reversibly binds carbonate in the Cu(II) redox 

state and releases it in the Cu(I) state.86  This interesting chemistry relies on capture and 

release of CO2 in the form of carbonate under aqueous conditions.  They demonstrated a 

small scale separation experiment, showing that this chemistry could be used to pump 

CO2 from a 10% concentration in a mixed gas input stream up to approximately 75% in 

the exit stream. 

We recently described a new type of chemistry for CO2 separation based on the 

potent nucleophilicity of thiolates.87  We demonstrated this chemistry using 

benzylthiolate as a trapping agent for CO2, generating a newly reported sulfur-bound 

benzylthiocarbonate  species.   In  this  approach,  the  two-electron  reduction  of benzyl- 



 39	

 
Scheme 3.  Simplified scheme showing CO2 capture by electrogenerated sulfur 
nucleophiles from the parent disulfide. 
 
disulfide (BDS) produces two equivalents of benzylthiolate.  This species is a potent 

nucleophile that reacts with CO2 to give S-benzylthiocarbonate.  Scheme 3 shows a 

simplified reaction sequence for this process.  The binding constant for this CO2 capture 

process was calculated to be -66 kJ mol–1.87  Terminal thiocarbonates of this type have 

been reported previously only a few times,88 and there are no previous descriptions of 

their electrochemical behavior.  This stable CO2 adduct can be electrochemically 

oxidized, releasing CO2 and regenerating the parent disulfide, BDS.  As shown in 

Scheme 3, each thiolate captures one CO2, meaning that one electron is consumed for 

each CO2 capture and release event.  This is similar to the PAQ and Bipy cases described 

above, and contrasts with the DtBBQ case which required two electrons per CO2 

captured.  Electrochemical of the capture-release cycle with BDS in the absence of CO2 

can be found in Reference 87.  Briefly, in the absence of CO2, after disulfide reduction at 

–2.2 V, thiolate oxidation occurs on the subsequent scan at –0.8 V.  In the presence of 

CO2 a new oxidation wave is observed at –0.3 V that corresponds to thiocarbonate 

oxidation.  As in the case for Bipy–CO2
– discussed above, the difference in peak potential 

between thiolate and thiocarbonate oxidation, 0.5 V, is consistent with the CO2 binding 

constant of 66 kJ mol-1, and reflects the strength of the S–C bond. 
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 The disulfide–thiocarbonate capture–release process is complicated by the 

detailed nature of the disulfide–thiolate redox mechanism.89  Equations 13-15 describe 

the disulfide reduction, which consumes two electrons to produce two equivalents of 

thiolate.  Equations 16 and 17 describe thiolate reoxidation to a thiyl radical intermediate, 

RS⋅, followed by radical-radical coupling to regenerate the disulfide.  This same thiyl 

radical is likely produced when the thiocarbonate is oxidized, leading to CO2 release and 

coupling  to regenerate the disulfide.   These  equations  show  that  the  disulfide-thiolate  

RSSR + e– ↔ RSSR–                        (13) 

RSSR– ↔ RS⋅ + RS–               (14) 

RS⋅ + e– ↔ RS–               (15) 

RS– ↔ RS⋅ + e–               (16) 

2 RS⋅ ↔ RSSR               (17) 

redox couple is not microscopically reversible, i.e. the reaction paths in the reduction and 

oxidation processes are not the microscopic reverse of each other.  The disulfide–

thiocarbonate capture–release cycle is further complicated by the extremely slow 

heterogeneous electron transfer rate of disulfides.90  Together, these issues lead to very 

large peak-to-peak separations between the potentials at which CO2 is captured (–2.2 V) 

and released (–0.8 V).  Thus, while the thiolate species is a potent nucleophile, capable of 

rapid capture of CO2 with a high binding energy for CO2 of –66 kJ mol–1, this chemical 

system is not ideal for CO2 capture because of the large potential difference between the 

capture and release processes.  Further, unwanted side-reactions of the thiyl radical 
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represent an issue that should be further explored.  Nevertheless, these types of thiolates 

are more attractive than the quinone- and bipyridine-based nucleophiles in part because 

they are much less basic, and therefore less susceptible to protonation if water is present. 

 We next briefly discuss the energetic requirements for CO2 capture and release 

using electrochemical cycles such as those described here.  As discussed by Scovazzo et 

al.,75 the thermodynamic minimum for capture and release of CO2 depends on the initial 

(pi) and final (pf) pressures for the process according to: 

ΔG = RT ln(pf/pi)              (18) 

|ΔE| = RT [ln(pf/pi)] / n F             (19) 

where F is the Faraday constant, n is the number of electrons involved in the capture-

release cycle and the other constants have their usual meaning.  For a typical case of 

separation from flue gas (e.g. assuming 10% CO2 at 1 atmosphere) and delivery to a pure 

gas stream at 1 atmosphere, Equation 18 gives a minimum energy cost of 5.7 kJ mol–1 

and an expected potential difference between the capture and release redox processes of 

0.06 V.  This difference in potential can be directly compared with the peak potential 

differences described above for CO2 capture and release, for example, 0.7 V for the Bipy 

case (Scheme 2) and 1.4 V for the benzyldisulfide case (Scheme 3).  Thus, the intrinsic 

energy requirements for a CO2 separation cycle are small compared to the cases 

described above.  This is because of the large CO2 binding constants for the quinone, 

bipyridine  and  thiolate  nucleophiles  that  have  been  studied.    The  implication is that  
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Figure 3.  Square scheme for a generic CO2 capture agent where P is a reducible 
precursor to the active CO2 capture species, N.  They convention that horizontal steps 
involve electron transfer and vertical steps involve chemical transformations has been 
adopted. 
electrogenerated nucleophiles with much smaller binding constants will be needed to 

more closely match experimental results with the constraints imposed by 

thermodynamics.  Further, real experimental systems will have other issues, notably 

including resistive (IR) losses due to limited electrolyte conductivity between the anode 

and cathode.  These IR losses are also observed in redox flow batteries and comprise one 

of the primary design criteria for such systems.91 

 One can use a square scheme to consider the efficiencies of electrochemical CO2 

capture and release.  Figure 3 shows such a scheme for a generic capture agent where we 

have adopted the convention that horizontal steps involve electron transfer and vertical 

steps involve capture or release of CO2.  Here P is a reducible precursor, N– is the 

nucleophilic  capture agent, N–CO2
– is the CO2 adduct, and N–CO2

‡ represents a putative 

intermediate species generated by oxidation of the adduct.  In this scheme, reduction of P 

produces N–, which rapidly captures CO2 to form the adduct, N–CO2
–.  Oxidation of this 

adduct results in CO2 release and regeneration of the precursor.  The oxidation of N–

CO2
– which produces P and free CO2 can occur in a stepwise or concerted manner. 
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Square schemes have been fruitfully employed in discussions of complex electrochemical 

mechanisms.  A key reason for studying such processes is to differentiate between 

concerted and stepwise mechanisms.  This is important because concerted pathways can 

bypass high energy intermediates that may be present in stepwise mechanisms.  However, 

as pointed out by Savéant and coworkers, this may lead to sluggish kinetics due to the 

larger contribution of bond breaking to the electron transfer barrier.92  

 The square scheme in Figure 3 can be used as a framework to consider the Bipy 

case described above, where the P/N– redox process (i.e. Bipy/Bipy–) is known to be 

extremely fast.80  Further, CO2 capture by N– is also very fast, as is the oxidative 

decarboxylation.  Thus, the processes leading to CO2 capture and release in this case are 

quite facile, and, based on the kinetics, the Bipy capture-release cycle appears quite 

attractive.  However, this system also has a serious drawback, which results from the very 

high binding constant of CO2 to Bipy–.  This high binding constant results in a significant 

positive shift in the oxidation potential for N–CO2
– (Bipy-CO2

–) compared to N– (Bipy–), 

leading to a large potential difference between the capture and release processes.  Thus, 

even though the Bipy system has attractive kinetic features, the N–CO2
– adduct is simply 

too stable for this cycle to be practical.  Further, the fast reaction between Bipy– and 

dioxygen is also a serious issue for this nucleophile, both due to consumption of the 

Bipy– nucleophile and production of the reactive superoxide species. 

One can use similar thinking to consider the disulfide-thiocarbonate CO2 

separation cycle discussed above.  There are two issues to consider.  First, the potential 

difference between the capture step (RS– generation followed by CO2 capture to form the 

adduct) and the release step (thiocarbonate oxidation) is roughly 2 V for this case. This 
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represents an energy input of roughly 200 kJ mol–1 for the roundtrip capture-release 

cycle, larger than the value of 170 kJ mol–1 for the benchmark MEA process.  Second, 

based on the slow electron transfer kinetics for the disulfide reduction,90 the 

thiocarbonate oxidation kinetics are also expected to be sluggish.  Disulfide reduction by 

one electron results in substantial molecular reorganization, specifically the elongation, 

and eventual cleavage, of the S–S bond.  In fact, in this case the inner reorganization 

energy contributes >60% of the total reorganization energy.90  If the situation is similar 

for the Kolbe-like thiocarbonate oxidation (i.e. substantial S-C bond elongation, and 

ultimate cleavage), one might anticipate sluggish kinetics for the thiocarbonate oxidation.  

Thus, both the energy efficiency and the rate parameters for the disulfide-thiocarbonate 

cycle are likely to be poor compared to other systems. 

The above considerations offer suggestions regarding the search for better 

nucleophilic capture agents that are suitable for electrochemical CO2 separation cycles.  

Such capture agents must possess reversible redox reactions, lack of sensitivity to 

dioxygen and protonation and, most importantly, have a CO2 binding constant that better 

matches the thermodynamic minimum energy required for the separation in the target 

application (see equations 18 and 19).  Both the Bipy and disulfide–thiocarbonate 

systems discussed above suffer from overly large binding constants between the 

electrochemically generated nucleophiles and CO2.  Thus, one desires an ability to tune 

the interaction between N– and CO2 to better match the intrinsic energy requirements for 

the separation process.  It may be useful in this regard to make use of existing scales for 

nucleophilicity, such as that developed by Mayr, even though these are kinetic metrics.93  

It would be especially useful to add CO2 to the list of electrophiles used to develop such a 
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scale, so that predictions could be made as to the expected reactivity of a wide range of 

nucleophiles toward CO2.  Ultimately, the potential utility of electrochemical approaches 

to CO2 separation based on electrogenerated nucleophiles will depend on the ability to 

tune the CO2 binding constants for redox couples with suitable properties.  At present, the 

design space for new capture agents is relatively unexplored. 
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CHAPTER 3 

Abstract 

 We describe a new electrochemical cycle that enables capture and release of 

carbon dioxide.  The capture agent is benzylthiolate (RS–), generated electrochemically 

by reduction of benzyldisulfide (RSSR).  Reaction of RS– with CO2 produces a terminal, 

sulfur-bound monothiocarbonate, RSCO2
–, which acts as the CO2 carrier species, much 

the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. 

Oxidation of the thiocarbonate releases CO2 and regenerates RSSR.  The newly reported 

S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by 1H and 

13C NMR, FTIR and electrochemical analysis.  The capture-release cycle is studied in the 

ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP 

TFSI) and dimethylformamide (DMF).  Quantum chemical calculations give a binding 

energy of CO2 to benzyl thiolate of –66.3 kJ mol-1, consistent with the experimental 

observation of formation of a stable CO2 adduct.  The data described here represent the 

first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate 

–––––––––––––––––––– 

Climate impacts from high atmospheric CO2 concentrations due to carbon-based 

fuel combustion continue to drive high levels of research activity in carbon capture and 

sequestration (CCS).94 A number of approaches have been described for carbon capture, 

both at point sources such as power plants (postcombustion CO2 capture) and directly 

from the atmosphere (direct air capture). Many of these approaches rely on chemical 

interaction between an electron rich nucleophile and CO2 to form some type of adduct. 

One of the best known approaches in this vein involves reaction of amines with CO2 to 
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give carbamates.95 This chemistry can be carried out in basic aqueous solutions 

containing amines, with amines immobilized onto various types of solid supports, or with 

other solid or liquid media containing amine groups, such as ionic liquids.95 In most such 

cases the release of CO2 to recycle the capture agent requires heat. Few other chemistries 

have been described that enable reversible CO2 capture. Thus, there is interest in 

exploring new methods for CO2 capture. In addition, there is a broader need to more fully 

explore the chemistry of CO2, and especially to explore the chemistry of compounds that 

form adducts with CO2. 

Several research efforts have explored approaches to capture CO2 using 

electrochemically generated nucleophiles. Mizen and Wrighton demonstrated that 

electrochemical reduction of quinones  under aprotic conditions produces radical anions 

capable of CO2 capture at the quinone oxygen, producing aromatic carbonates.74  They 

also showed that the resulting carbonates could be electrochemically oxidized, 

regenerating the quinone species and releasing CO2.  This stimulated a number of groups 

to explore CO2 capture using quinones.75-77  In a related approach, release of amine 

ligands from Cu(II) amine complexes by electrochemical reduction to Cu metal can be 

used to drive CO2 capture via carbamate formation, connecting the traditional amine 

capture agent approach with the superior energetics inherent in electrochemical 

cycling.84a  In a recent report, we examined the reaction between 4,4’-bipyridine radical 

anion (which can be produced either electrochemically or photochemically) and carbon 

dioxide, demonstrating formation of a unique N-bound CO2 adduct species.79  One 

electron oxidation of the adduct releases CO2 and regenerates 4,4’-bipyridine.  All of 

these systems demonstrate chemically reversible electrochemical capture and release of 
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CO2. Their common theme is that electrochemical reduction of a precursor is employed 

to either directly generate or cause the release of a potent nucleophile that is capable of 

attacking the electrophilic carbon atom in CO2, thereby forming an adduct.  A subsequent 

oxidation process leads to CO2 release and regeneration of the precursor to the capture 

agent.  For the quinone and bipyridine cases, release is accomplished by oxidation of the 

adduct itself. 

We describe here a new chemistry for electrochemical CO2 capture and release 

that employs reduction of organic disulfide precursors to generate thiolate species that are 

potent nucleophiles toward CO2.  We show that benzylthiolate can bind CO2 to form a 

sulfur-bound thiocarbonate and that subsequent oxidation of the thiocarbonate leads to 

release of CO2 and regeneration of the disulfide.  We are aware of only a few previous 

reports of S–bound terminal thiocarbonates,88b, 88c, 96 and no previous reports of their 

electrochemical properties.  In most of this study, the electrochemical capture and release 

of CO2 is pursued in ionic liquid media.  A substantial literature exists on capture of CO2 

using ionic liquids containing amines and other nucleophilic functional groups.97  Their 

low volatility and suitability as electrochemical solvents makes ionic liquids especially 

useful as supporting electrolytes in the present study.  In some experiments we also 

employ dimethylformamide (DMF) as solvent, demonstrating the broader applicability of 

this chemistry to more traditional solvents.  The reasonable solubilities of benzyldisulfide 

in BMP TFSI and DMF (106 mM and 2 M, respectively) allow for facile electrochemical 

and synthetic experimentation. 

 Figure 4 shows a cyclic voltammogram (CV) of the reduction of benzyldisulfide 

(BDS) in  BMP  TFSI  at  a  concentration  of  20 mM.   Reduction  gives  a  well-formed 
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Figure 4. Cyclic voltammetry of 20 mM benzyldisulfide in BMP TFSI IL; working-
glassy carbon electrode (GCE), reference and counter- Pt, scan rate-10 mV/s. 

voltammetric wave with a peak potential near –2.2 V. This overall two-electron reduction 

process is as expected for reduction of organic disulfides, producing two equivalents of 

the corresponding thiolate.98  Oxidation of the benzylthiolate that is produced is seen on 

the return scan as an oxidation wave with a peak potential of –0.7 V.  The significant 

difference between the peak currents for disulfide reduction and thiolate oxidation is 

likely due to significant differences in diffusion coefficients for these two species.  A 

similar phenomenon has been previously reported for the dioxygen/superoxide and 

ferrocene/ferrocenium redox couples in ionic liquids, and attributed to significantly lower 

diffusion coefficients for charged species compared to neutrals.99  The large peak 

separation between disulfide reduction and thiolate oxidation results from the fact that 

this redox mechanism is not microscopically reversible.  We explored the mechanism of 

this process in some detail previously for a related disulfide/thiolate redox couple.89  

Briefly, reduction initially produces the RSSR– radical anion.  This species dissociates to 

produce one equivalent each of RS– and RS⋅ (i.e. thiolate and thiyl radical).100  The rapid 

electrochemical reduction of RS⋅ produces a second equivalent of RS–.  On the 
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subsequent positive-going scan oxidation of the thiolate initially produces RS⋅, two of 

which rapidly couple to regenerate the parent disulfide.  Subsequent work has confirmed 

the mechanistic aspects of this redox process, as well as providing more details about the 

nature of the dissociative electron transfer of the disulfides.101  For the present purposes, a 

key feature of the disulfide reduction is that it produces thiolates, which are well known 

as potent nucleophiles, and have been previously reported to react with CO2 to give S–

bound thiocarbonates.88b, 88c, 96 

 Figure 5 shows the results of several experiments in 20 mM BDS in BMP TFSI in 

which the concentration of dissolved CO2 was serially increased by increasing the CO2 

partial pressure in a purging gas stream comprising a mixture of N2 and CO2.  As [CO2] is 

increased, the benzylthiolate oxidation peak at –0.7 V is decreased.  At the same time, a 

new  oxidation  peak  appears  at  –0.3 V.   As  will  be  shown  further  below,   this  new  
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Figure 5. Cyclic voltammetry of 20 mM benzyldisulfide in BMP TFSI IL with different 
concentrations of CO2; N2 (purple), 3 mM CO2 (blue), 4 mM CO2 (red), 5 mM CO2 
(green), 100 mM CO2 in absence of BDS in IL (black); working-GCE, reference and 
counter - Pt, scan rate -10 mV/s. 
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oxidation peak corresponds to oxidation of S-benzylthiocarbonate, RSCO2
–. This is the 

first  report  of electrochemical  behavior  for  a  terminal  S-bound thiocarbonate species.   

Figure 5 also shows a background CV at a glassy carbon electrode in pure BMP TFSI at 

100 mM CO2 but containing no BDS, demonstrating that CO2 is electrochemically 

inactive at glassy carbon over the potential range shown in the CV.  For comparison, 

Figure S7 shows the chemically irreversible reduction of CO2 at Au over this same range 

of potentials, demonstrating a large reduction peak for CO2 at –2.3 V.  The lack of CO2 

electroactivity at glassy carbon over this potential range is likely due to the absence of 

strong adsorption at this surface.  We take advantage of this lack of reactivity to explore 

the interactions between thiolates and CO2 without interference by direct CO2 reduction.  

The observation that 5 mM CO2 is sufficient to completely eliminate the oxidation 

response from 40 mM benzylthiolate (produced by reduction of 20 mM BDS) is 

attributed to the much faster diffusion of CO2 than benzylthiolate in the IL, similar to the 

discussion above regarding dissimilar diffusion coefficients.99  In other words, the rapid 

diffusive transport of CO2 to the region near the electrode allows a 5 mM CO2 solution to 

provide sufficient CO2 to completely consume the higher concentration of 

electrochemically generated thiolate through formation of the thiocarbonate. 

 The reversibility of the uptake of CO2 by thiolate and release by thiocarbonate 

oxidation was also examined. Figures S8 and S9 show that the new thiocarbonate 

oxidation peak at -0.3 V can be caused to appear or disappear simply by purging a BDS 

solution in BMP TFSI with a CO2-rich or N2-rich gas stream, respectively, prior to a 

cyclic voltammetric scan over the disulfide reduction wave. This shows that the CO2 

capture and release cycle is chemically reversible under the conditions of these 
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experiments. Figure S10 shows the scan rate dependence of the capture and release cycle 

at a concentration of CO2 sufficiently high to consume all of the thiolate produced during 

the reduction. The discussion of the Figure in the Supporting Information describes the 

mechanistic details of the adduct formation, revealing that it is not a simple EC type of 

mechanism due to the complexity of the RSSR reduction pathway.102 

In order to show that the oxidation peak at –0.3 V is caused by a thiocarbonate 

species, the voltammetry of authentic samples of benzylthiolate and  S-

benzylthiocarbonate were directly compared.  Figure 6 shows the results of cyclic 

voltammetric experiments in which authentic samples of the P4444
+ salts of benzylthiolate 

and  S-benzylthiocarbonate were sequentially added to DMF supporting electrolyte in 

equimolar  amounts.  Preparation  and  characterization of these samples are described  in 
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Figure 6.  Cyclic voltammetry of 30 mM P4444

+ RS–  (blue) and 30 mM P4444
+ RSCO2

–  
(black) in 0.1 M TBAP in DMF; working-GCE, reference and counter - Pt, scan rate- 50 
mV/s 
 
Supporting Information. As can be seen, the two species exhibit different oxidation 

potentials. The benzylthiolate oxidation peak is observed at –0.1 V.  The S-

benzylthiocarbonate oxidation peak is observed at +0.4 V, shifted in the positive direction 
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by 0.5 V compared to the thiolate oxidation peak.  Figure S11 shows the CV for an 

equimolar solution of the P4444
+ salts of benzylthiolate and S-benzylthiocarbonate in P4444 

TFSI.  Again, one can see that the two species are oxidized at different potentials, though 

the broadness of the peaks in this much higher viscosity IL makes the individual 

responses less resolvable.  The results in Figures 6 and S11 are consistent with the 

interpretation that the new oxidation observed in Figure 5 when CO2 is dissolved into the 

IL solution is due to the appearance of a thiocarbonate species that is more difficult to 

oxidize than the thiolate. 

 To further demonstrate uptake and release of CO2 for this system, we performed 

bulk electrolysis experiments in which purge gases were swept through the cell to 

monitor CO2 uptake and release using a non-dispersive CO2 gas sensor downstream from 

the cell.  In Figure S12 we show the results of a reductive bulk electrolysis of 

benzyldisulfide in the presence of a flowing stream of 350 ppm CO2 in N2.  The figure 

shows that CO2 in the purge gas stream is completely consumed when reductive current 

is passed in the working electrode chamber, which produces benzylthiolate that 

subsequently reacts with CO2.  In Figure S13 we show the results of a quantitative 

oxidative bulk electrolysis of a sample of S-benzylthiocarbonate.  In this experiment, we 

monitor the evolution of CO2 during oxidation by sweeping it from the cell in a stream of 

pure N2 and detecting it downstream.  The right plot in the Figure shows that moles of e- 

(from the oxidative charge) and moles of CO2 released (from integration of the sensor 

signal) are equal within experimental error.  Except for a short lag time due to the transit 

time to the detector, the CO2 release is seen to be coincident with the accumulation of 

oxidative charge.  This plot shows clearly that CO2 release in this experiment is due to 
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oxidation of the thiocarbonate, and that one equivalent of CO2 is released for each 

equivalent of oxidative charge.  Taken together, the results confirm that electrochemical 

generation of benzylthiolate in the presence of CO2 produces S-benzylthiocarbonate.  

Oxidation of this thiocarbonate releases CO2 and regenerates the disulfide, which can be 

observed on the following negative-going scan via its reduction as evidenced by the 

continuous scans in Figures S8 and S9.  These observations show that oxidation of a 

terminal S-bound thiocarbonate is similar to the well-known Kolbe oxidation of organic 

carboxylates, where oxidation results in decarboxylation.103  Thus, these results are 

consistent with the electrochemical capture and release of CO2 as mediated by the 

disulfide/thiocarbonate redox couple. 

Quantum chemical calculations at the B3LYP/aug-cc-pVQZ level were also used 

to understand the nature of the interaction between the thiolate and CO2 and the stability 

of the thiocarbonate.  Figure 7 shows the results of such a calculation done at the 

B3LYP/aug-cc-pVDZ level on S-benzylthiocarbonate. Calculations at this level of theory 

 
Figure 7.  Quantum mechanical calculation of S-benzylthiocarbonate done at 
B3LYP/aug-cc-pVQZ level. S (yellow), O (red), H (light gray), C (dark gray). 
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were found to yield good agreement with experimental enthalpies of sulfur containing 

compounds.104  The figure shows the minimized geometry of the thiocarbonate (upper 

structure).   The  C–S bond length is 1.999 Å, and the enthalpy calc-ulated for the binding 

of CO2 to the thiolate is –66.3 kJ/mol.  This enthalpy for binding shows formation of a 

stable S-bound terminal thiocarbonate for this case.  These respective quantities are 

within the range expected for C-S single bonds and for other stable CO2 adducts.105  The 

OCO bond angle of 136.7° indicates considerable rehybridization around carbon resulting 

from strong interaction with the sulfur center.  Thus, the quantum chemical calculations 

support the formation of a stable S-bound thiocarbonate from the reaction between 

benzylthiolate and carbon dioxide.  

Figure 7 also shows the minimized geometry of the thiocarbonate after removal of 

one electron.  The S–CO2 bond length is dramatically elongated at 3.603 Å, and the OCO 

bond angle is increased to 178.7o.  These values confirm that there is essentially no 

bonding interaction of the CO2 moiety with the S atom after oxidation, consistent with 

the release of CO2 after oxidation.  Figure S14 shows the HOMO and HOMO-1 electron 

density maps for the thiocarbonate.  These orbitals are quasi-degenerate,106 and show 

significant bonding electron density between the S atom and the carboxylate C atom.  

Thus, one electron oxidation should lead to destabilization of the S–C bond.  This is 

similar to C–C bond cleavage leading to decarboxylation in Kolbe oxidation products, 

such as H3CCO2⋅, the acetyloxyl radical.107  In summary, these computational studies 

support the experimental results showing the formation of a stable terminal thiocarbonate 

from reaction of benzylthiolate and CO2.  They also show that thiocarbonate oxidation 

results in cleavage of the S–CO2 bond, producing a benzyl thiyl radical (two of which 
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will then couple to form disulfide) and free CO2.  This is similar to the oxidative 

dissociation of CO2 previously reported for the adduct between the 4,4’-bipyridine radical 

anion and CO2, where oxidation from the HOMO leads directly to N–C bond scission and 

release of 4,4’-bipyridine and CO2.79  More extensive calculations on a range of benzyl 

and phenyl thiocarbonate derivatives, to be reported elsewhere, reveal that the energy for 

binding of CO2 to the RS– species depends on the electron density on the sulfur atom in 

RS–, implying that the enthalpy of CO2 binding can be tuned through judicious choice of 

structural features on RS–. 

We have demonstrated a completely new type of chemically reversible, 

electrochemical process for capture and release of CO2 based on an organic 

disulfide/thiocarbonate redox couple. These data also comprise the first report of the 

electrochemical behavior for terminal S-bound thiocarbonates.  Quantum chemical 

calculations are consistent with the capture of CO2 by RS–, producing a stable 

thiocarbonate, and release of CO2 after oxidation of the thiocarbonate.  Additional 

experiments are underway to explore CO2 separations based on this chemistry. 

–––––––––––––––––––– 
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CHAPTER 3 SUPPLEMENTARY INFORMATION 

Experimental Details 

General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a nitrogen atmosphere.  Solvents were purified and dried according to 

literature procedures,108 degassed by four successive freeze-pump-thaw cycles, and stored 

in the glovebox.  Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., degassed by four successive freeze-pump-thaw cycles and stored in 

the glovebox.  All other reagents and starting materials were purchased from commercial 

vendors and used without further purification unless otherwise noted.  Compressed gas 

cylinders were furnished by Praxair, Inc.  

Physical Methods 

1H and 13C NMR spectra were collected on Varian 400 and 500 MHz NMR 

spectrometers. The 13C NMR spectrum of tetrabutylphosphonium S-benzylthiocarbonate 

was collected on a Brüker Ultra-Shield 600 MHz NMR spectrometer equipped with a 

cryoprobe. 1H and 13C NMR spectra are reported in parts per million relative to 

tetramethylsilane, using the residual solvent resonances as an internal standard.109 FTIR 

measurements were performed on a Brüker Alpha spectrometer equipped with a diamond 

ATR. Residual water content of solvents and ionic liquids were measured with a Mettler 

Toledo C20 Coulometric KF Titrator. Electrochemical measurements were performed 

with a CH Instruments 618C Electrochemical Analyzer. Cyclic voltammograms were 

acquired using a glassy carbon working electrode, platinum counter electrode, and 

platinum quasi-reference electrode either in the glovebox or under a complex gas stream 



 58	

consisting of dinitrogen, carbon dioxide, and/or dioxygen. All potentials are referenced to 

this Pt quasi-reference electrode, which was used in preference to conventional reference 

electrodes to prevent contamination of the supporting electrolyte by compounds that 

typically leach from other reference half cells. For comparison, the ferrocene/ferrocenium 

redox couple is observed at +0.20 V on this reference scale. Gas mixtures were generated 

from compressed gas cylinders whose output was controlled with Cole-Parmer PRM1-

010547 gas flow regulators and measured using an Agilent Technologies ADM 2000 

Universal Gas Flowmeter. 

For bulk electrolysis experiments, a modified H-cell was used with airtight gas 

ports. The electrodes comprised a 1 cm x 2 cm x 0.3 cm glassy carbon working electrode, 

Pt mesh counter electrode and Ag/AgCl reference electrode. CO2 measurements were 

made using a K-30 CO2 sensor (www.co2meter.com). Specific details are given for the 

individual experiments described below. 

Computational Details 

Calculations using density functional theory (DFT) were carried out using the 

Becke gradient-corrected exchange functional and Lee−Yang−Parr correlation functional 

with three parameters (B3LYP) and the 6-31+G*, aug-cc-pVDZ, and aug-cc-pVQZ basis 

sets using the ORCA and Gaussian suites of programs.110 Calculations at this level of 

theory have been found to yield energies and spectroscopic parameters comparable to 

those obtained with higher levels of theory.104, 111  
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Syntheses 

Tetrabutylphosphonium benzylthiolate 

For a typical experiment, 5.1906 g of tetrabutylphosphonium hydroxide solution 

(40 wt. % in H2O, 7.5 mmol) was added to a Schlenk flask equipped with a stir bar and 

placed under vacuum overnight.  The resulting white solid (tetrabutylphosphonium 

hydroxide) was then placed under a dinitrogen atmosphere and a 12.5 mL volume of 

methanol was added to the flask via syringe.  After stirring for one hour, 1.1 mL of 

benzylthiol (9.4 mmol) that had undergone four successive freeze-pump-thaw cycles was 

added via syringe to the clear, stirring solution.  The solution was allowed to stir under 

nitrogen for a minimum of four hours, then placed under vacuum at 50 oC overnight.  The 

product was isolated as a clear, viscous liquid in quantitative yield.  1H NMR (500 MHz, 

CDCl3) in Figure S1:  δ = 7.31–7.27 (m, 5 H), 3.73 (s, 2 H), 1.69–1.63 (m, 8 H), 1.56–

1.52 (m, 8 H), 1.44–1.39 (m, 8 H), 0.94–0.91 (t, J = 7.30 Hz, 12 H).  13C {1H} NMR (125 

MHz, CDCl3) in Figure S2:  δ = 141.29, 128.74, 128.09, 127.08, 29.06, 28.08–27.57 (d, 

J13
C–31

P = 65.0 Hz), 24.47–24.35 (d, J13
C–31

P = 14.2 Hz), 23.90, 13.73. FTIR (cm–1) in 

Figure S5:  3054 (w), 3019 (w), 2959 (s), 2932 (s), 2871 (s), 1596 (w), 1489 (m), 1464 

(m), 1412 (w), 1301 (w). 

Tetrabutylphosphonium S-benzylthiocarbonate 

Carbon dioxide that had passed through a drying column was bubbled into stirring 

tetrabutylphosphonium benzylthiolate at room temperature for 15 minutes.  The flask was 

then sealed and the material was allowed to stir under a CO2 atmosphere for four hours.  

A white solid was recovered in quantitative yield.  1H NMR (500 MHz, CDCl3) in Figure 

S3:  δ = 7.34–7.32 (m, 2 H), 7.19–7.15 (m, 2 H), 7.09–7.07 (m, 1 H), 3.95 (s, 2 H), 2.27–
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2.21, (m, 8 H), 1.45–1.44 (m, 16 H), 0.92–0.90 (t, J = 7.30 Hz, 12 H).  13C {1H} NMR 

(150 MHz, CDCl3) in Figure S4:  δ = 162.82, 142.72, 128.69, 128.04, 125.81, 24.05–

23.84 (d, J13
C–31

P = 31.5 Hz), 23.95–23.81 (d, J13
C–31

P = 21.4 Hz), 18.93–18.62 (d, J13
C–

31
P = 46.5 Hz), 13.53. FTIR (cm–1) in Figure S6:  3066 (w), 3027 (w), 2955 (s), 2929 (s), 

2869 (s), 1670 (vs), 1600 (w), 1582 (w), 1494 (m), 1454 (m), 1414 (m), 1377 (w), 1317 

(w), 1289 (m), 1246 (m), 1217 (m). 

1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) 

In a 500 mL round bottom flask equipped with a stir bar, 100.00 g of 1-butyl-

methylpyrrolidinium chloride (0.563 mol) was added to 250 mL of deionized water and 

allowed to stir until the solid had completely dissolved.  To the stirring solution, 161.55 g 

of lithium bis(trifluoromethane)-sulfonimide (0.563 mol) was added all at once and 

allowed to stir for two hours, during which time a viscous liquid collected at the bottom 

of the flask.  The contents of the flask was poured into 500 mL of dichloromethane in a 

separatory funnel and washed with water (3 x 100 mL), the organic phase was isolated, 

and the dichloromethane was removed by rotary evaporation.  Activated carbon was 

added to the clear, viscous liquid and the suspension was stirred under vacuum at 70 oC 

for four days.  BMP TFSI was isolated by passing the warm suspension through a plug of 

Celite in a fritted glass funnel to remove the activated carbon.  Excess water was removed 

by heating the product at 100 oC for 48 hours (< 3 ppm by Karl Fischer titration), and the 

ionic liquid was stored in the glovebox. 

Tetrabutylphosphonium bis(trifluoromethylsulfonyl)imide (P4444 TFSI) 

In a 500 mL round bottom flask equipped with a stir bar, 150.00 g of 

tetrabutylphosphonium bromide (0.465 mol) was added to 250 mL of deionized water 
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and allowed to stir until the solid had completely dissolved.  To the stirring solution, 

133.59 g of lithium bis(trifluoromethane)-sulfonimide (0.465 mol) was added all at once 

and allowed to stir for two hours, during which time a viscous liquid collected at the 

bottom of the flask.  The contents of the flask was poured into 500 mL of 

dichloromethane in a separatory funnel and washed with water (3 x 100 mL), the organic 

phase was isolated, and the dichloromethane was removed by rotary evaporation.  

Activated carbon was added to the clear, viscous liquid and the suspension was stirred 

under vacuum at 70 oC for four days.  P4444 TFSI was isolated by passing the warm 

suspension through a plug of Celite in a fritted glass funnel to remove the activated 

carbon.  Excess water was removed by heating the product at 100 oC for 48 hours (< 3 

ppm by Karl Fisher titration), and the ionic liquid was stored in the glovebox. 

Characterization of Thiolate and Thiocarbonate Compounds 

Figures S1 – S6 show 1H, 13C and FTIR spectra for the synthesized and purified 

salts of tetrabutylphosphonium  thiolate and tetrabutylphosphonium  S-

benzylthiocarbonate.   1H NMR of the thiocarbonate (Figure S3) revealed the expected 

downfield shift of the benzyl proton signal as compared to that of the thiolate (from 3.73 

to 3.95 ppm).  13C NMR of the thiocarbonate (Figure S4) shows a new signal at 162.82 

ppm for the carboxylate carbon in the thiocarbonate.  The FTIR spectrum of 

tetrabutylphosphonium S-benzyl thiocarbonate (Figure S6) is very similar to that of 

tetrabutylphosphonium benzylthiolate (Figure S5) except for the very strong peak at 1670 

cm–1, which is due to the OCO asymmetric stretch of the thiocarbonate. These data are all 

in good agreement with the solid state NMR and IR results obtained by Stueber et al. who 

examined KO2CSCH3 and KO2CSCH2CH3.88c  Both of the previously reported 
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compounds showed very strong IR features at 1617 and 1583 cm–1, and solid state 13C 

NMR signals between 170–171 ppm for the O2CSR carbons.  Although the previous 

authors’ attempts to obtain solution phase NMR data of the potassium methyl- and ethyl-

thiocarbonates were unsuccessful, the general trend they observed is an upfield shift of 

the relevant 13C NMR signals as compared to the corresponding solution phase 

measurements of similar compounds. 

	
	
Figure S1.  1H NMR of tetrabutylphosphonium benzylthiolate. 
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Figure S2.  13C NMR of tetrabutylphosphonium benzylthiolate. 
 

 

Figure S3.  1H NMR of S-benzylthiocarbonate. 
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Figure S4.  13C NMR of S-benzylthiocarbonate.  

 

Figure S5.  FTIR of tetrabutylphosphonium benzylthiolate. 
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Figure S6.  FTIR of tetrabutylphosphonium S-benzylthiocarbonate. Note the very strong 
feature at 1670 cm–1 due to the –CO2

– asymmetric stretch.88c 
 
 
 
 

	
Figure S7.  Cyclic voltammetry in CO2 saturated  (100 mM) BMP TFSI IL at Au 
electrode , reference and counter - Pt, scan rate -50 mV/s. 
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Figure S8.  Cyclic voltammetry of 20 mM benzyldisulfide in BMP TFSI IL under N2  
(blue) to 8% CO2 (red) with constant stirring and purging; working-GCE, reference and 
counter - Pt , scan rate – 100 mV/s. 

 
Figure S9.  Cyclic voltammetry of 20 mM benzyldisulfide in BMP TFSI IL under 8% 
CO2 (blue) to N2 (red) with constant stirring and purging; working-GCE, reference and 
counter - Pt, scan rate – 100 mV/s. 
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Figure S10.  Cyclic voltammetry of 20 mM benzyldisulfide and 8 mM CO2 in BMP 
TFSI at different scan rates; 500 mV/s (black), 100 mV/s (red), 50 mV/s (blue) and 10 
mV/s (green); working-GCE, reference and counter - Pt, scan rate – 100 mV/s. 
 
Figure S10 shows the scan rate dependence of the reversible capture and release of CO2 
by benzyldisulfide. Note that because of the much more rapid diffusion of CO2 compared 
to BDS, 8 mM CO2 is sufficient to consume all of the benzylthiolate produced during the 
negative scan. The scan rate dependence is not consistent with a typical EC 
(electrochemical step followed by chemical step) reaction mechanism. This is because the 
product of the initial reduction, RSSR-, is not the species that reactions with CO2. Instead, 
this species dissociates to form RS- and RS⋅, which is further reduced to form a second 
equivalent of RS-. Then, the two equivalents of RS- that were produced are both able to 
capture of two equivalents of CO2. This complex reaction mechanism does not produce 
the typical EC response that might be expected for adduct formation following reduction. 
We also note that we see no evidence for film formation under the conditions used in this 
paper.     
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Figure S11.  Cyclic voltammetry of 20 mM benzyldisulfide and 40 mM P4444

+ BnSCO2
– 

in BMP TFSI IL; working-GCE, reference and counter - Pt, scan rate - 50 mV/s. 
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Figure S12.  Right: Charge versus time during reduction of BDS under a flowing stream 
of 350 ppm CO2. Left: Downstream CO2 concentration versus time during the same 
reduction.  
 
Figure S12 shows the results of a reductive bulk electrolysis performed in DMF solution 
to demonstrate CO2 uptake by the thiolate. In this experiment a DMF solution containing 
10 mM benzyldisulfide (BDS) was purged with CO2/N2 gas mixture with a concentration 
of 300 ppm CO2 in N2. In the left plot, the upward arrow shows the time at which CO2 
purging is initiated in the cell. One observes an increase in the CO2 level in the 
downstream sensor caused by the delivery of CO2 to the cell, its removal from the cell by 
the action of the purge stream and its ultimate detection by the downstream sensor. At a 
time indicated by the downward arrow, a reducing potential of -2.9 V was applied. At this 
potential reduction of BDS forms benzylthiolate, which reacts with the CO2 being 
delivered to the cell. This consumption of CO2 via reaction causes a decrease in the CO2 
level measured by the downstream sensor. Under these conditions (sub-stoichiometric 
delivery of CO2 compared to the moles of thiolate generated by reduction), essentially all 
of the CO2 delivered to the cell via the gas purge is being consumed, which causes the 
CO2 signal to fall to background levels. Thus, the decrease in CO2 signal under reducing 
conditions demonstrates CO2 capture by the thiolate. 
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Figure S13.  Left: Downstream CO2 concentration versus time during the same 
oxidation. Right: Plot of moles e– (from charge) and moles CO2 detected (integral of plot 
at left) versus time during oxidation of 10 mM S-benzylthiocarbonate under a flowing 
stream of pure N2.  

 
Figure S13 shows the results of a quantitative assay of CO2 production during an 
oxidative bulk electrolysis of a synthetically prepared sample of S-benzylthiocarbonate 
performed in DMF solution. In this experiment, the oxidation potential was held at +0.9 
V. The left plot shows the oxidative release of CO2 detected downstream from the cell. 
The right plot shows moles of e- (from charge) and moles of CO2 detected versus time. In 
the experimental configuration, the CO2 that was produced via oxidation of the 
thiocarbonate was swept up into a stream of N2 that was purged through the DMF 
solution and then exited the cell, flowing into the CO2 sensor housing. The N2 flow rate 
(43 mL min-1) was chosen such that the CO2 concentration would be within the 
sensitivity range of the CO2 sensor. The CO2 detection efficiency was calibrated by 
injecting aliquots of known concentrations of CO2 in DMF into the cell, sweeping the 
CO2 out with a N2 purge stream and detecting it downstream with the CO2 sensor. 
Detection efficiency is 100 ± 10 % (with most error due to flow rate instability). This 
allows direct comparison of moles of charge passed (26.5 C = 2.7 x 10–4 mol e–)  and 
moles of CO2 released (2.9 x 10–4 mol) in the plots above, revealing release of one 
equivalent of CO2 per equivalent of oxidative charge. This experiment unequivocally 
shows release of CO2 during thiocarbonate oxidation with a stoichiometry of 1 to 1. 
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HOMO-1 (-2.2 eV) HOMO (-2.0 eV) 

Figure S14.  Two different views of the electron densities of the HOMO and HOMO-1 
orbitals of S-benzylthiocarbonate obtained at the B3LYP/aug-cc-pVQZ level of theory. 
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CHAPTER 4 

Abstract 

Concern about the impacts of increased anthropogenic atmospheric carbon is 

motivating a great deal of research into carbon capture and sequestration strategies.  

Herein we report a novel thermal swing carbon capture and release scheme that employs 

benzylthiolates as the CO2 chemisorbent.  Alkali salts of benzylthiolate immediately 

precipitate from THF–CH3OH solution upon exposure to CO2.  Upon heating, CO2 is 

liberated from the solid benzylthiocarbonate salts and the benzylthiolate can be recovered 

with little evidence of degradation.  Release temperatures can be reduced by nearly 30 oC 

by a combination of modifying the aryl fragment of the benzylthiolate and using a crown 

ether to chelate the cation of the benzylthiolate.  This strategy represents the first example 

of the effect that cation identity has on the CO2 release properties of organosulfur 

compounds and could be employed to take advantage of the waste heat produced by 

power generating facilities to drive the CO2 capture-release cycle. 

–––––––––––––––––––– 

 There is broad consensus among climate scientists that anthropogenic CO2 

emissions are the primary contributor to global climate change.11  In 2011 an estimated 

34 billion tons of waste CO2 were generated worldwide, with the top five emitters being 

China (29%), the United States (16%), the European Union (11%), India (6%), and the 

Russian Federation (5%).12  The main sources of CO2 pollution are from fossil fuel 

combustion, flaring of waste gas during oil production, and cement production, with coal-

fired power plants being the largest stationary point-source CO2 emitters.14   
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Ameliorating anthropogenic CO2 emissions either by permanently sequestering 

CO2 or by using the captured CO2 as a chemical feedstock necessarily requires the 

controlled capture, storage, and/or release of CO2.  Presently, the most technologically 

ready and the most widely used methods for post-combustion carbon capture employ 

amines as the CO2 sorbents.20, 63  Despite this, there are serious drawbacks to amine 

capture that will likely prevent these systems from being widely implemented.  Chief 

among these are both the energy required for CO2 recovery and the likelihood for the 

unwanted emission of toxic and environmentally hazardous species during the capture 

and release process.  With respect to the former, achieving 90% CO2 capture by 

monoethanol amine (MEA) results in a 21% power loss (170 kJ mol CO2
–1), which 

translates to a 44% increase in generating cost per MWh.112  Though this may seem to be 

an insurmountable economic barrier to implementing amine scrubbing at scale, recent 

polling has shown that the average U.S. citizen will accept a 13% increase in electricity 

cost to support a national clean energy standard.113  Another cost-based impediment to 

MEA scrubbing is the parasitic loss of the amine capture agent, which can amount to as 

much as 2 kg per ton CO2.13a, 114  Along this line, the environmental impacts of amine-

based capture methods must also be addressed.  Research in this area is incomplete; 

however, one can a priori identify a number of potential environmentally harmful 

outcomes to large-scale amine scrubbing.  Since reclaiming the capture species requires 

heating, there is the potential for a large amount of waste generated during the 

reclamation step due to unwanted side reactions. Furthermore, it is likely that unwanted 

emissions will lead to highly toxic nitrosamines being formed in the atmosphere from 

either the emitted amine or degraded amine products.63   
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In an effort to develop new carbon capture and sequestration strategies that do not 

utilize amines as the CO2 capture moiety, a number of groups have reported post-

combustion CO2 capture strategies that employ either carbon or oxygen nucleophiles as 

the CO2 chemisorbent.  Salient examples include several task specific ionic liquids 

(TSIL) where chemisorption of CO2 is accomplished either by N-heterocyclic carbenes 

(NHC) or by alkoxides.  With respect to the former, several groups have found that the 

imidazolium cation is the precursor to NHCs that have been shown to attack the 

electrophilic carbon of CO2.  In one of the first such examples, Gurau et al. detailed the 

chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids, where 

they provided substantial evidence of the imidazolium carboxylate in the ionic liquid.115  

Around the same time the Louie group detailed the synthesis and characterization of a 

wide array of imidazolium carboxylates on which they performed thermal gravimetric 

analysis (TGA) in order to fully understand how the imidazolium substituents affect the 

decarboxylation temperature.116  Their findings show that the steric bulk of the N-

substituent(s) is of primary importance, more so than electronic structure, with NHCs that 

have bulkier substituents on the nitrogen atoms exhibiting lower decarboxylation 

temperatures.   

 In their 2010 publication, Wang et al. report that a number of alcohols can be 

paired with a superbase,42a, 117 and that the resulting acid–base reaction yields TSILs with 

alkoxides that act both as the TSIL anion and the CO2 capture nucleophile.118  The 

majority of these alkoxides show CO2 capture at, or slightly above their theoretical limits.  

However, the phenoxide-based permutations show CO2 capture slightly below 0.5 moles 

of CO2 captured per mole of TSIL, or roughly half that expected by the reaction 
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stoichiometry.  This result was confirmed in a 2011 study by the same authors in which 

the CO2 capture medium was made by pairing phenoxide anions with trihexyl-

(tetradecyl)phosphonium cations.119 These data suggest that phenoxide is a lackluster 

CO2 capture species as compared to some of the reported nitrogen anion TSILs.  

Manipulating the CO2 absorption characteristics, particularly the absorption enthalpy, of 

phenoxide-based TSILs was shown to be quite facile.  Wang et al. studied eighteen 

different trihexyl(tetradecyl)phosphonium phenoxide ionic liquids where they appended 

the phenoxide with various electron-donating (EDG) and electron-withdrawing (EWG) 

groups.120  The authors found that the CO2 absorption capacity increased with an increase 

in the pKa of the phenoxide conjugate acids.  They also employed density functional 

theory (DFT) calculations and found that the more negative the Mulliken charge on the 

oxygen atom of the phenoxide anion, the more negative the absorption enthalpy i.e. the 

stronger the CO2 binding.   

In a previous publication from our laboratory the use of electrogenerated sulfur 

nucleophiles as part of a disulfide–thiolate–thiocarbonate electrochemical CO2 pump was 

described.121  That work showed that sufficiently nucleophilic thiolates can bind CO2 at 

room temperature, forming a thiocarbonate species.  The novelty of sulfur nucleophiles 

for post-combustion carbon capture and sequestration (CCS) prompted us to consider the 

possibility of utilizing similar compounds in a temperature swing carbon capture scheme.  

There is only one other report of sulfur-containing materials being employed for CO2 

capture.122  In that case, S-doped microporous carbon materials showed large CO2 

absorption capacity of 4.5 mmol g-1 at 1 atm CO2, as well as a high degree of selectivity 

for CO2 over N2, H2, and CH4.  In this report we establish proof-of-concept that CO2 can 
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be liberated from thiocarbonates at modest temperatures, such as might be available from 

waste heat in power generating facilities.  Additionally, similar to the studies of NHC and 

alkoxide CO2 capture, we provide further insight into the factors that govern the 

physicochemical properties for CO2 capture and release by organosulfur compounds. 

Results and Discussion 

Insight provided by density function theory (DFT) calculations into 

electrochemical CO2 release by S-benzylthiocarbonate in our previous publication served 

as the impetus for adopting an in silico approach to estimate the decarboxylation 

temperature of benzylthiocarbonate.  Toward that end, gas-phase optimization and 

frequency calculation of S-benzylthiocarbonate, benzyl-thiolate, and carbon dioxide were 

performed at the B3LYP/aug-ccPVTZ level of theory.  The Gibbs free energy of S-

benzylthiocarbonate at fifteen different temperatures ranging from 5 to 320 oC was 

determined utilizing the Gaussian 09 freqchk utility.  A plot of these data and the best-fit 

line (R2 = 0.998) are shown in Figure 8a.  An identical calculation was performed on 

benzylthiolate and carbon dioxide and the sum of the free energies over the same 

temperature range and the best-fit line (R2 = 0.999) are also shown in Figure 8a.  By 

finding the intersection of the regression lines, the estimated decarboxylation temperature 

for benzylthiocarbonate is 154.71 oC, which is the temperature at which ΔGBnSCO2
– = 

ΔGBnS
– + ΔGCO2.  This value is consistent with the only previous study of the thermal 

decarboxylation of  thiocarbonates having the general form RO2CSR’, where CO2 release 

occurred between 123–186 oC depending upon the identities of R and R’.123  Figure 8b is 

a plot of the predicted CO2 release temperature vs. the relevant Hammett substituent 

constants  for benzylthiocarbonate, 4-chlorobenzylthiocarbonate,  3,5-difluorobenzylthio- 
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Figure 8. a. Gibbs free energy (Hartree) vs. temperature (oC) for S-benzylthiocarbonate 
(n) and the sum of the free energies of benzylthiolate and carbon dioxide (¢).  b.  
Predicted decarboxylation temperatures (oC) for S-benzylthiocarbonate (H), 4-chloro-S-
benzylthiocarbonate (p-Cl), 3,5-difluoro-S-benzylthiocarbonate (m-F), and 4-
trifluoromethyl-S-benzylthiocarbonate (p-CF3) vs. Hammett substituent constant.124 
 
carbonate, and 4-trifluoromethylbenzylthiocarbonate.124  This plot indicates that it is 

possible to manipulate the decarboxylation temperature of benzylthiocarbonate by 

appending various electron-donating or electron-withdrawing groups to the aryl moiety, 

thus allowing for control of the temperature range for the capture and release cycle. 

Encouraged by the computational results, residual gas analysis (RGA) was used to 

monitor the species released from sodium benzylthiocarbonate as a function of 

temperature.  The results are shown in Figure 9.  Between 30–200 oC, the five most 

 

 

a 

b 
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intense signals in order of decreasing intensity are m/z = 44 > 91 > 16 > 28 > 18.  The 

signals at 44, 28, and 16 are all readily identifiable as CO2, CO, and O, respectively, all 

of which are expected based upon the mass spectrum of CO2.125  The high probability that 

some of the thiocarbonate was swept into the carrier gas during the experiment supports 

the assignment of m/z = 91 as the tropylium ion, which is known to appear in the mass 

spectra of benzyl derivatives.126  The signal at m/z = 18 is due to adventitious water that 

likely collected on the sample tube as it was being loaded into the instrument.  What is 

clear from the RGA analysis is that the main decomposition product of sodium 

benzylthiocarbonate is CO2, and that there is no further decomposition of the product 

thiolate into gaseous products at temperatures up to 200 oC. 

 
Figure 9.  Counts vs. temperature (oC) for the five most intense signals from residual gas 
analysis of sodium benzylthiocarbonate;  m/z = 44 (black), 91 (green), 16 (red), 28 
(yellow), 18 (blue).  
 

Further investigation of the temperature dependence of CO2 release from 

thiocarbonates was accomplished utilizing the apparatus constructed in-house that is 

described in the Supporting Information.  Figure 10 (black curve) shows the plot of CO2 

released as a function of sample temperature for the sodium benzylthiocarbonate salt. 

This curve shows that CO2 release begins near 60 oC, maximizes near 125 oC and 
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continues on to the end of the experiment near 250 oC. Confirmation that sodium 

benzylthiolate is the product of the thermal decomposition of sodium benzylthiocarbonate 

was proved by analyzing the cooled sample by 1H NMR and comparing it to the 1H NMR 

of an authentic sample of sodium benzylthiolate (Figure 11).   

Figure 10 (red curve) shows the plot for the corresponding potassium salt. This 

curve is substantially sharper and shows a higher temperature for the initial release of 

CO2.  For  comparative  purposes,  we  define  an  onset  temperature  for  the  release  by  

 
Figure 10.  CO2 concentration (ppm) vs. temperature (oC) for sodium S-benzylthio-
carbonate (black), potassium S-benzylthiocarbonate (red), 15-crown-5 sodium S-
benzylthiocarbonate (blue), 15-crown-5 sodium 4-chloro-S-benzylthiocarbonate (green). 
 
Table 1. 

	

Onset Temperature 
(oC) 

Peak Temperature 
(oC) 

sodium S-benzylthiocarbonate 88 ± 3 121 ± 2 
potassium S-benzylthiocarbonate 108 ± 4 141 ± 4 
15-crown-5 sodium S-benzylthiocarbonate 78 ± 2 92 ± 1 
15-crown-5 sodium 4-chloro-S-
benzylthiocarbonate 61 ± 5 91 ± 3 

 

extrapolating to the temperature axis from the midpoint (half-height) of the increasing, 

low T side of the release curve. This onset T allows comparison of the release behavior of 

different samples.  There are a number of striking differences between the curves for the 
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potassium and sodium salts shown in Figure 10.  First, both the onset temperature and the 

peak temperature for CO2 release are higher for the potassium salt, as summarized in 

Table 1. This behavior may be related to the relative stability of the alkali metal 

thiocarbonates (reactants) or the alkali metal thiolates (products). Further study of the 

effects of ionic interactions in such experiments is certainly warranted.  Second, the CO2 

release from sodium benzylthiocarbonate is sluggish in comparison to CO2 release 

frompotassium benzylthiocarbonate, which is evidenced by the sharpness of the 

potassium benzylthiocarbonate curve.  One possible explanation is that CO2 release from 

salt powders of the type used here is influenced by the packing density in the sodium 

thiolate product. This has previously been observed for CO2 release from dolomite 

(MgCaCO3), where sluggish release was speculated to be due to formation of a high 

density MgO “skin” on the dolomite particles during the initial stages of CO2 release.127  

In the present case, differences in packing density, either for the thiocarbonate or the 

thiolate salts, could be influencing the shape of the release curve. Thus, both ionic 

interactions and packing density in the solid could be influencing the release process in 

ways that are not yet understood. 
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Figure 11.  1H NMR of an authentic sample of sodium benzylthiolate (top) ad the 
material recovered after thermal decarboxylation of sodium benzylthiocarbonate 
(bottom). 

As will now be shown, increasing the free volume in the solid by associating the 

cation with a crown ether provides a means to facilitate the CO2 release process.  The 

blue curve in Figure 10 shows that the presence of the crown ether affects both the onset 

and release temperatures, as well as the release kinetics.  Specifically, both the onset and 

peak CO2 release temperatures for 15-crown-5 sodium benzylthiocarbonate are 

significantly lower than those of sodium benzylthiocarbonate (Table 1).  Furthermore, the 

large crown ether makes CO2 release from this material more facile as demonstrated by 

the sharpness of the release curve as compared to both sodium and potassium 

benzylthiocarbonate. The better behavior of the crown salt allowed for exploration of the 

effects summarized in Figure 8, namely the thermal stability of substituted 

benzylthiocarbonate derivatives.  The green plot in Figure 10 shows the release curve for 

a sample of 15-crown-5 sodium 4-chloro-S-benzylthiocarbonate.  Carbon dioxide release 

from this species is again facile, and there is a 17 oC decrease in the onset temperature for 

the 4-chloro derivative compared to the parent benzyl compound (Table 1 and green 
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curve Figure 10).  In contrast, DFT predicts a 40 oC decrease (Fig. 8b).  The lack of 

agreement suggests that the DFT calculations do not account for all of the 

physicochemical processes that contribute to the energetics of the CO2 release process, 

but DFT does provide meaningful insight into how the CO2 release temperature can be 

manipulated. 

In one final example of how the cation identity affects the decarboxylation of 

benzylthiocarbonate, we describe the interesting case of the task specific ionic liquid 

(TSIL) tetrabutylphosphonium benzylthiolate (P4444
+ BnS–).  Tetrabutylphosphonium 

benzylthiolate is a viscous, slightly yellow ionic liquid that when bubbled with CO2 for 4 

hours, yields tetrabutylphosphonium benzylthiocarbonate (P4444
+ BnSCO2

–) as a waxy, 

white solid in quantitative yield (Figure 12).  Both P4444
+ BnS– and P4444

+ BnSCO2
– have 

been fully characterized in our previous report.121  The white solid P4444
+ BnSCO2

– was 

stable for weeks at 2 oC; however, when P4444
+ BnSCO2

– was placed under vacuum at 

room temperature, the solid returned to a viscous, slightly yellow liquid over a period of 

12–16 hours.  NMR verified that the liquid contained only thiolate and not thiocarbonate.  

Similarly, when left at atmospheric pressure and room temperature, the solid would fully 

return to the liquid phase after a period of 10 days, again showing loss of CO2.  In both 

cases, when the liquid was again exposed to CO2 the white solid thiocarbonate 

reappeared.  Thus, it is clear that the P4444
+ BnS– liquid binds CO2 to form a solid 

thiocarbonate salt, and that this binding is reversible and causes a phase change. 
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Figure 12. a.  Tetrabutylphosphonium benzylthiolate (note the white stir bar in the flask).  
b.  Tetrabutylphosphonium S-benzylthiocarbonate 
 

The release of CO2 from P4444
+ BnSCO2

– under such mild conditions was 

unexpected in the context of the previous reports of the chemisorption of CO2 by ionic 

liquids whose anion is a nitrogen base as detailed by Seo and coworkers.40-41, 128  Seo et 

al. described a series of ionic liquids that changed phase from solid to liquid upon 

exposure to CO2.41  These so-called phase-change ionic liquids (PCIL) all had anionic 

nitrogen CO2 capture sites in the form benzimidazolide, pyrrolide, or pyrazolide anions, 

and had either tetraethyl- or tetrabutylphosphonium cations.  Carbon dioxide capture and 

release experiments with their model ionic liquid, tetraethylphosphonium 

benzimidazolide, were done at 70 oC.  Quantitative release of CO2 was achieved at this 

elevated temperature under a reduced pressure of <0.01 bar over a period of 1 hour.  The 

authors note that at there was some evidence of CO2 release at room temperature over 

time, depending upon how carefully the samples were sealed.  Seo et al. additionally 

found that when the cation of the benzimidazolide ionic liquid is changed to 

tetrabutylphosphonium CO2 capture is still possible, but the melting point of the PCIL is 

nearly 100 oC higher. 

 

 

	  
a b 
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Conclusions.  

A thermal swing capture and release process has been described that involves 

cycling between thiolate and thiocarbonate species. Specifically, salts of both S-

benzylthiolate and 4-chloro-S-benzylthiolate are shown to be capable of this thermal 

swing process. A simple method for monitoring CO2 release was described that gives a 

good estimate of CO2 release temperature. Comparison of the release temperatures for 

benzylthiocarbonate and 4-chloro-S-benzylthiocarbonate shows reasonable agreement 

with predictions from DFT analysis of the relative stabilities predicted for these two 

thiocarbonate species. This represents the first report of a thermal swing capture and 

release cycle using thiolate nucleophiles. 

–––––––––––––––––––– 
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CHAPTER 4 SUPPORTING INFORMATION 
 
Experimental Details 

General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a nitrogen atmosphere.  Solvents were purified and dried according to 

literature procedures, degassed by four successive freeze-pump-thaw cycles, and stored in 

the glovebox.108  Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., degassed by four successive freeze-pump-thaw cycles and stored in 

the glovebox.  All other reagents and starting materials were purchased from commercial 

vendors and used without further purification unless otherwise noted.  Compressed gas 

cylinders were furnished by Praxair, Inc. 

Physical Methods 

1H NMR spectra were collected on a Varian 500 MHz NMR spectrometer.  13C 

NMR spectra were collected on a Brüker Ultra-Shield 600 MHz NMR spectrometer 

equipped with a cryoprobe. 1H and 13C NMR spectra are reported in parts per million 

relative to tetramethylsilane, using the residual solvent resonances as an internal 

standard.129  FTIR measurements were performed on a Brüker Alpha spectrometer 

equipped with a diamond ATR.  Gas output from compressed gas cylinders was 

controlled with Cole-Parmer PRM1-010547 gas flow regulator and measured using an 

Agilent Technologies ADM 2000 Universal Gas Flowmeter.  Residual Gas Analyses 

(RGA) that measure the partial pressures of the individual gases in a mixture were 

performed using an in-house constructed stand-alone vacuum system that is differentially 

pumped to accept atmospheric pressure sample gas input. A small quantity of sample gas 
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is ionized, and the ions are accelerated into a mass separation filter, resulting in a mass 

spectrum showing partial pressure vs. gas species mass.  Carbon dioxide release 

experiments were conducted utilizing the in-house constructed apparatus described 

below. 

Carbon Dioxide Release Apparatus  

An in-house apparatus was constructed as follows:  Temperature control and 

charting was achieved utilizing an OMEGA CN8PT temperature controller outfitted with 

a type K thermocouple and the associated software.  The temperature was initially held at 

30 oC for 15 minutes, followed by a temperature increase to 250 oC at a rate of 3 oC min–

1.  This device was routed to an OMEGA 75 Amp solid-state relay that was used to 

switch the AC line voltage to an OptiChem Power Controller to which a Glas-Col heating 

tape was connected.  The heating tape was wrapped around a 25 mL distilling bulb that 

served as the sample chamber.  Ground glass adapters fitted on one side with gas-tight 

tubing were connected to the distilling bulb and sealed with Apiezon H grease.  Medical 

grade N2 was flowed through the sample chamber to a COZIR K-30 Ambient CO2 sensor 

and finally through an Agilent ADM 2000 Universal Gas Flow Meter.  Carbon dioxide 

concentration data was processed utilizing the method of least squares described by 

Savitzky and Golay.130  The N2 flow rate was set to 450 mL min–1 at the output of the 

CO2 sensor by utilizing a Cole-Parmer PRM1-010547 gas flow regulator.  Injecting CO2 

directly into the sample chamber using a syringe showed virtually no delay between 

injection and detection.  Evaluation of this apparatus with sodium bicarbonate showed 

peak CO2 release at 145.8 +/- 2.5 oC. 
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Computational Details 

Calculations using density functional theory (DFT) were carried out using the 

Becke gradient-corrected exchange functional and Lee−Yang−Parr correlation functional 

with three parameters (B3LYP) and the aug-cc-pVTZ basis sets using the Gaussian suite 

of programs.110 Calculations at this level of theory have been found to yield energies and 

spectroscopic parameters comparable to those obtained with higher levels of theory.104, 111 

Syntheses 

Sodium benzylthiolate 

For a typical experiment, 245.0 mg (10.6 mmol) of sodium in mineral oil was 

weighed into a beaker containing 25 mL of hexane.  The sodium metal was washed with 

25 mL of hexane three additional times to remove the mineral oil, and then transferred to 

a round bottom flask equipped with a stirbar under a nitrogen atmosphere.  The flask was 

placed under vacuum and then transferred to the glovebox.  Tetrahydrofuran (15 mL) was 

added to the flask followed by the dropwise addition of 2.5 mL (21.3 mmol) of benzyl 

mercaptan, at which time a white solid immediately appeared.  After reaching constant 

turbidity with concomitant dissolution of the sodium metal (4–6 hrs), the solution was 

allowed to stir for one hour then sodium benzylthiolate was isolated in quantitative yield 

on a sintered glass disk by vacuum filtration.  1H NMR (500 MHz, [D8] THF) in Figure 

S1:  δ = 7.39–7.32 (m, 2 H), 7.09–7.06 (m, 2 H), 6.94–6.91 (m, 1 H), 3.69 (s, 2 H).  13C 

{1H} NMR (125 MHz, [D8] THF) in Figure S2:  δ = 151.22, 128.75, 128.01, 124.60, 

30.73.  FTIR (cm–1) in Figure S3:  3607 (s), 3079 (br), 3055 (s), 3024 (s), 2909 (m), 2839 

(m), 1598 (s), 1491 (s), 1445 (w), 1310 (m), 1235 (s), 1067 (s). 

Sodium S-benzylthiocarbonate 
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In a round bottom flask equipped with a stirbar, 73.10 mg (0.50 mmol) of sodium 

benzylthiolate was suspended in 50 mL of THF and CH3OH was added dropwise until 

the solid completely dissolved.  Carbon dioxide that had passed through a drying column 

was bubbled into the solution and a white solid immediately appeared.  After reaching 

constant turbidity roughly half the solvent was removed by vacuum.  Sodium 

benzylthiocarbonate was isolated by vacuum filtration on a sintered glass disk in 

quantitative yield.  1H NMR (500 MHz, CD3OD) in Figure S4:  δ = 7.32–7.27 (m, 4 H), 

7.21–7.18 (m, 1 H), 3.72 (s, 2 H).  13C {1H} NMR (150 MHz, CD3OD) in Figure S5:  δ = 

161.43, 142.98, 129.51, 129.07, 127.80, 29.17.  FTIR (cm–1) in Figure S6:  3062 (w), 

3034 (w), 2954 (w), 2900 (w), 1670 (m), 1569 (vs), 1495 (s) , 1450 (s), 1435 (s), 1413 

(s), 1322 (vs), 1292 (vs), 1234 (s),  1190 (m), 1100 (w), 1070 (m). 

15-crown-5 sodium S-benzylthiocarbonate 

Sodium S-benzylthiocarbaonate (50.0 mg, 0.26 mmol) was suspended in THF, 

and 52 µL (0.26 mmol) of 15-crown-5 was added by syringe all at once.  The white solid 

dissolved over a period of five minutes and the solution was allowed to stir for an 

additional 15 minutes.  The flask was placed under vacuum to remove all the solvent, and 

15-crown-5 sodium benzylthiocarbonate was isolated as a white solid in quantitative 

yield.  1H NMR (500 MHz, CD3OD) in Figure S7:  δ = 7.33–7.31 (m, 2 H), 7.26–7.23 (m, 

2 H), 7.16–7.14 (m, 1 H), 3.70 (s, 2 H), 3.68 (s, 20 H).  13C {1H} NMR (150 MHz, 

CD3OD) in Figure S8:  δ = 161.44, 130.53, 129.28, 129.14, 127.09, 69.79, 29.69.  FTIR 

(cm–1) in Figure S9:  3062 (w), 3028 (w), 2909 (m), 2894 (m), 2874 (m), 1633 (s), 1601 

(m), 1472 (s), 1452 (s), 1353 (s), 1288 (m), 1267 (s), 1249 (s), 1230 (s), 1096 (vs). 

15-crown-5 sodium 4-chloro-S-benzylthiocarbonate 
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Sodium metal (46.2 mg, 2.0 mmol) in mineral oil was weighed into a beaker 

containing 10 mL of hexane, then washed with 25 mL of hexane three additional times to 

remove the mineral oil.  The metal was transferred to a round bottom flask equipped with 

a stirbar that was under a nitrogen atmosphere, which was subsequently placed under 

vacuum and then transferred to the glovebox.  Tetrahydrofuran (50 mL) was added to the 

flask followed by the dropwise addition of 0.33 mL (2.5 mmol) of 4-

chlorobenzenemethanethiol, at which time a white solid immediately appeared.  After 

reaching constant turbidity with concomitant dissolution of the sodium metal (4–6 hrs) 

the solution was allowed to stir for one hour, at which time 0.40 mL (2.05 mmol) of 15-

crown-5 was added all at once.  After the solid had completely dissolved, the solution 

was allowed to stir for an additional two hours, then placed under vacuum overnight.  

The following day 15-crown-5 sodium 4-cholorobenzylthiocarbonate was recovered as a 

white powder in quantitative yield.  1H NMR (500 MHz, CD3OD) in Figure S10:  δ = 

7.33–7.28 (m, 4 H), 3.71 (s, 2 H), 2.68 (s, 20 H).  13C {1H} NMR (150 MHz, CD3OD) in 

Figure S11:  δ = 160.04, 143.02, 131.27, 129.36, 127.87, 68.43, 278.61.  FTIR (cm–1) in 

Figure S12:  2909 (m, br), 2872 (m, br), 2078 (w), 2055 (w), 1671 (m), 1621 (vs), 1487 

(m), 1454 (m), 1355 (s, br), 1324 (s), 1249 (m), 1098 (vs), 1089 (vs).  

Potassium S-benzylthiocarbonate 

Following a procedure similar to the one detailed by Stueber et al.,131 in the 

glovebox potassium metal (333.5 mg, 8.5 mmol) in mineral oil was added to 25 mL of 

hexane in a beaker.  The potassium was washed three additional times to remove the 

mineral oil, then cut into small slivers.  In a separate three neck round bottom flask 

equipped with a reflux condenser and a stirbar at 0 oC, 3.0 mL (25.6 mmol) of benzyl 
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mercaptan was added.  The slivers of potassium metal were slowly added to the cooled 

mercaptan one at a time over a period of several hours.  After complete dissolution of the 

potassium metal with the concomitant appearance of a suspended white solid, the 

suspension was stirred at 0 oC for one hour then slowly warmed to room temperature.  

The white solid, potassium benzylthiolate, was isolated on a sintered glass disk by 

vacuum filtration, then transferred to round bottom flask containing 50 mL of THF.  

Methanol was added dropwise until the solid had completely dissolved, then CO2 that 

had been passed through a drying column was bubbled into the solution, at which time a 

white solid appeared.  After reaching constant turbidity, the CO2 was removed and 

potassium benzylthiocarbonate was isolated on a sintered glass disk by vacuum filtration.  

This compound is insoluble in all organic solvents that we tested, so NMR was not 

possible.  FTIR (cm–1) in Figure S13:  3153 (m, br), 2984 (m, br), 1672 (s), 1643 (m), 

1436 (vs), 1358 (vs, br), 1261 (s), 1060 (m), 1034 (m), 1012 (m).  

Characterization of Thiolate and Thiocarbonate Compounds 

Figures S15 – S27 show 1H, 13C and FTIR spectra for the synthesized and purified 

salts of the relevant S-benzylthiocarbonates.  The 13C NMR of the thiocarbonates show 

signals between 160.04–161.44 ppm for the carboxylate carbon in the thiocarbonate, 

which compares favorably to our previously reported result of 162.82 ppm for the same 

carbon in tetrabutylphosphonium S-benzylthiocarbonate.121  The FTIR spectra of sodium 

S-benzylthiocarbonate, 15-crown-5 sodium S-benzylthiocarbonate, 15-crown-5 4-chloro-

S-benzylthiocarbonate, and potassium S-benzylthiocarbonate exhibit very strong peaks at 

1569, 1633, 1621, and 1672 cm–1, respectively, which is due to the OCO asymmetric 

stretch of the thiocarbonate. These data are all in good agreement both with the solid state 
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NMR and IR results obtained by Stueber et al.,131 and with our previous report.  Due to 

the insolubility of potassium S-benzylthiocarbonate in all organic solvents that we tested 

(the insolubility of similar potassium thiocarbonates was also reported by Stueber et al.), 

only FTIR data is presented. 
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Figure S15.  1H NMR sodium benzylthiolate 

 

 

 

Figure S16.  13C NMR sodium benzylthiolate 
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Figure S17.  FTIR spectrum of sodium benzylthiolate 

 

 

 

Figure S18.  1H NMR sodium S-benzylthiocarbonate 
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Figure S19.  13C NMR sodium S-benzylthiocarbonate 

 

 
Figure S20.  FTIR spectrum sodium S-benzylthiocarbonate 
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Figure S21.  1H NMR 15-crown-5 sodium S-benzylthiocarbonate 
 
 
 

 

 
Figure S22.  13C NMR 15-crown-5 sodium S-benzylthiocarbonate 
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Figure S23.  FTIR spectrum 15-crwon-5 sodium S-benzylthiocarbonate 
 
 
 
 

 
Figure S24.  1H NMR 15-crown-5 sodium 4-chloro-S-benzylthiocarbonate 
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Figure S25.  13C NMR 15-crown-5 sodium 4-chloro-S-benzylthiocarbonate 
 
 
 

 
Figure S26.  FTIR spectrum of 15-crown-5 sodium 4-chloro-S-benzylthiocarbonate 
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Figure S27.  FTIR spectrum of potassium benzylthiocarbonate 

  



 99	

REFERENCES 
 

1. Cicerone, R. J.; Nurse, P. Climate Change: Evidence & Causes; Royal Society 
and National Academy of Sciences, The National Academies: Washington, DC, 2014. 

2. Lunt, D. J.; Haywood, A. M.; Schmidt, G. A.; Salzmann, U.; Valdes, P. J.; 
Dowsett, H. J., J. Nat. Geoscience 2010, 3, 60-64. 

3. Arrhenius, S. A., on the Influence of Carbonic Acid. Phil. Mag. s. 1896, 41 (251), 
237-276. 

4. Högbom, A., Om Sannolikheten För Sekulära Förändringar I Atmosfärens 
Kolsyrehalt. Svensk kemisk Tidskrift 1894, 6, 169-177. 

5. (a) Arrhenius, S. A., Über die Wärmeabsorption Durch Kohlensäure und Ihren 
Einfluss auf die Temperatur der Erdoberfläche. Förhandlingar Svenska 
Vetenskapsakademiens 1901, 58, 25-58; (b) Arrhenius, S. A., Über Die Wärmeabsorption 
Durch Kohlensäure. Annalen der Physik 1901, 4, 690-705; (c) Arrhenius, S. A., World in 
the Making. Harper & Brothers: New York, 1908. 

6. Hansen, J.; Ruedy, R.; Sato, M.; Lo, K., Global Surface Temperature Change. 
Reviews of Geophysics 2010, 48 (4). 

7. NASA GISS Surface Temperature Analysis. https://data.giss.nasa.gov/ 
gistemp/graphs_v3/ (accessed September 2017). 

8. Climate Change 2014 Synthesis Report; Intergovernmental Panel on Climate 
Change; Pachauri, R. K.; Meyer, L. A., Geneva, Switzerland, 2014. 

9. U.S. Department of Commerce, N. O. A. A. Trends in Atmospheric Carbon 
Dioxide.  https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed September 5, 
2017). 

10. Keeling, C. D.; Piper, S. C.; Whorf, T. P.; Keeling, R. F., Evolution of natural and 
anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus B: Chemical and 
Physical Meteorology 2017, 63 (1), 1-22. 

11. Anderegg, W. R.; Prall, J. W.; Harold, J.; Schneider, S. H., Expert credibility in 
climate change. Proceedings of the National Academy of Sciences of the United States of 
America 2010, 107 (27), 12107-9. 

12. Olivier, J. G. J.; Janssens-Maenhout, G.; Muntean, M.; Peters, J. A. H. W., Trends 
in Global CO2 Emissions 2016 Report. PBL Netherland Environmental Assessment 
Agency 2016, 2315. 

13. (a) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, 
S.; Mac Dowell, N.; Fernández, J. R.; Merrar, M. C.; Gross, R.; Hallett, J. P.; Haszeldine, 



 100	

R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; 
Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S., Carbon Capture 
and Storage Update. Energy Environ. Sci. 2014, 7, 130-189; (b) Hasib-ur-Rahman, M.; 
Siaj, M.; Larachi, F., Ionic liquids for CO2 capture—Development and progress. 
Chemical Engineering and Processing: Process Intensification 2010, 49 (4), 313-322; (c) 
MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, 
C. S.; Williams, C. K.; Shah, N.; Fennell, P., An overview of CO2 capture technologies. 
Energy & Environmental Science 2010, 3 (11), 1645. 

14. Daily, S. Carbon Dioxide Emissions From Power Plants Rated Worldwide. 
(accessed September 3, 2017). 

15. (a) (EIA), U. S. E. I. A. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 
1990-2008. (accessed September 2, 2017); (b) (EIA), U. S. E. I. A. Emissions of 
Greenhouse Gases in the United States. (accessed September 2, 2017). 

16. Benson, S. M.; Orr, F. M., Carbon Dioxide Capture and Storage. Environmental 
Policy Collection 2010, 33, 303-305. 

17. IPCC Special Report on Carbon Dioxide Capture and Storage.  Prepared by 
Working Group III of the Intergovernmental Panel on Climate Change; 
Intergovernmental Panel on Climate Change: U.K., and New York, 2005. 

18. (a) Heyong, T.; Wanfu, W.; Renfang, W., Study on Carbon Dioxide Capture 
Technology. Energy Environmental Protection 2012, 26, 39-41; (b) Hu, Y.; Yan, J., 
Oxyfuel Combustion for CO2 Capture. International Journal of Greenhouse Gas Control 
2015, 40, 55-125; (c) Jordal, K.; Anheden, M.; Yan, J., Oxyfuel Combustion for Coal-
Fired Power Generation with CO2 Capture-Opportunities and Challenges. Greenhouse 
Gas Control Technologies 2005, 201-209. 

19. Yuan, P.; Qiu, Z.; Liu, J., Recent enlightening strategies for co2 capture: a review. 
IOP Conference Series: Earth and Environmental Science 2017, 64, 012046. 

20. Bhown, A. S.; Freeman, B. C., Analysis and Status of Post-Combustion Carbon 
Dioxide Capture Technologies. Environ. Sci. Technol. 2011, 45, 8624-8632. 

21. (a) Council, A. C., Guide to the Business of Chemistry. Washington, DC, 2017; 
(b) Staff, C. E., Gains in Chemical Output Level Off. Chem. Eng. News 2008, pp 61-70. 

22. Chemistry, I. U. o. P. a. A., Manual of Symbols and Terminology for 
Physicochemical Quantities and Units. In Definitions, Terminoloy and Symbols in Colloid 
and Surface Chemistry, International Union of Pure and Applied Chemistry: Washington, 
DC, 2002. 

23. Tolman, W. B., Ed., Activation of Small Molecules:  Organometallic and 
Bioinorganic Perspectives;. Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 
2006. 



 101	

24. Scibioh, M. A.; Viswanathan, B., Proc. Indian Natn. Sci. Acad. 
 2004, 70, 1–65. 

25. Lackner, K. S.; Ziock, H.; Grimes, P., Carbon Dioxide Extraction from Air:  Is It 
an Option? In In Proceedings of the 24th Annual Technical Conference on Coal 
Utilization & Fuel Systems, Clearwater, FL, 1999; pp 885-896. 

26. Goeppert, A.; Czaun, M.; Surya Prakash, G. K.; Olah, G. A., Air as the 
Renewable Carbon Source of the Future:  An Overview of CO2 Capture from the 
Atmosphere. Energy Environ. Sci. 2012, 5, 7833-7853. 

27. Sanz-Perez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W., Direct Capture of 
CO2 from Ambient Air. Chemical reviews 2016, 116 (19), 11840-11876. 

28. Society, A. P., Direct Air Capture of CO2 with Chemicals:  A Technology 
Assesment for the APS Panel on Public Affairs. APS 2011. 

29. STOLAROFF, J. K.; KEITH, D. W.; LOWRY, G. V., Carbon Dioxide Capture 
from Atmospheric Air Using Sodium Hydroxide Spray. Environ. Sci. Technol. 2008, 42, 
2728-2735. 

30. (a) Baciocchi, R.; Storti, G.; Mazotti, M., Process design and energy requirements 
for the capture of carbon dioxide from air. Chemical Engineering and Processing: 
Process Intensification 2006, 45, 1047-1058; (b) Zeman, F., Energy and Material Balance 
of CO2 

Capture from Ambient Air. Environ. Sci. Technol. 2007, 41, 7558-7563. 

31. Shi, X.; Xiao, H.; Lackner, K. S.; Chen, X., Capture CO2 from Ambient Air 
Using Nanoconfined Ion Hydration. Angewandte Chemie 2016, 55 (12), 4026-9. 

32. (a) Abu Ghalia, M.; Dahman, Y., Development and Evaluation of Zeolites and 
Metal-Organic Frameworks for Carbon Dioxide Separation and Capture. Energy 
Technology 2017, 5 (3), 356-372; (b) Bae, Y. S.; Snurr, R. Q., Development and 
evaluation of porous materials for carbon dioxide separation and capture. Angewandte 
Chemie 2011, 50 (49), 11586-96; (c) Sabouni, R.; Kazemian, H.; Rohani, S., Carbon 
dioxide capturing technologies: a review focusing on metal organic framework materials 
(MOFs). Environmental science and pollution research international 2014, 21 (8), 5427-
49; (d) Yaumi, A. L.; Bakar, M. Z. A.; Hameed, B. H., Recent advances in functionalized 
composite solid materials for carbon dioxide capture. Energy 2017, 124, 461-480. 

33. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. 
R., Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-
organic framework mmen-Mg2(dobpdc). Journal of the American Chemical Society 
2012, 134 (16), 7056-65. 



 102	

34. McDonald, T. M.; Mason, J. A.; Kong, X.; Bloch, E. D.; Gygi, D.; Dani, A.; 
Crocella, V.; Giordanino, F.; Odoh, S. O.; Drisdell, W. S.; Vlaisavljevich, B.; Dzubak, A. 
L.; Poloni, R.; Schnell, S. K.; Planas, N.; Lee, K.; Pascal, T.; Wan, L. F.; Prendergast, D.; 
Neaton, J. B.; Smit, B.; Kortright, J. B.; Gagliardi, L.; Bordiga, S.; Reimer, J. A.; Long, J. 
R., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. 
Nature 2015, 519 (7543), 303-8. 

35. (a) Kazakov, A. M., J.W.; Chirico, R.D.; Paulechka, E.; Diky, V.; Muzny, C.D.; 
Kroenlein, K.; Frenkel, M. NIST Standard Reference Database 147: NIST Ionic Liquids 
Database - (ILThermo)", Version 2.0. http://ilthermo.boulder.nist.gov (accessed 
September 15, 2017); (b) Dong, Q. M., C.D.; Kazakov, A.; Diky, V.; Magee, J.W.; 
Widegren, J.A.; Chirico, R.D.; Marsh, K.N.; Frenkel, M., ILThermo: A Free-Access Web 
Database for Thermodynamic Properties of Ionic Liquids. J. Chem. Eng. Data 2007, 52 
(4), 1151-1159. 

36. (a) Firaha, D. S.; Holloczki, O.; Kirchner, B., Computer-Aided Design of Ionic 
Liquids as CO2 Absorbents. Angewandte Chemie 2015, 54 (27), 7805-7809; (b) Firaha, 
D. S.; Kirchner, B., Tuning the Carbon Dioxide Adsorption in Aminio Acid Ionic 
Liquids. Chem Sus Chem 2016, 9 (13), 1591-1599; (c) Garcia, G.; Atilhan, M.; Aparicio, 
S., Assessment of DFT methods for studying acid gas capture by ionic liquids. Physical 
Chemistry Chemical Physics 2015, 17 (40), 26875-26891; (d) Izgorodina, E. I.; Seeger, 
Z. L.; Scarborough, D. L. A.; Tan, S. Y. S., Quantum Chemical Methods for the 
Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. 
Chemical reviews 2017, 117 (10), 6696-6754; (e) Katsyuba, S. A.; Zvereva, E. E.; Vidis, 
A.; Dyson, P. J., Application of Density Functional Theory and Vibrational Spectroscopy 
Toward the 

Rational Design of Ionic Liquids. J Phys Chem A 2007, 111, 352-370; (f) Wu, C.; 
Senftle, T. P.; Schneider, W. F., First-principles-guided design of ionic liquids for CO2 
capture. Physical chemistry chemical physics : PCCP 2012, 14 (38), 13163-70. 

37. Lei, Z.; Dai, C.; Chen, B., Gas solubility in ionic liquids. Chemical reviews 2014, 
114 (2), 1289-326. 

38. (a) Finotello, A.; Bara, J. E.; Narayan, S.; Camper, D.; Noble, R. D.,  
J. Phys. Chem. B 2008, 112, 2335-2339; (b) Baltus, R. E.; Culbertson, B. H.; Dai, S.; 
Luo, H.; DePaoli|, D. W., J. Phys. Chem. B 2004, 108, 721-727; (c) Lei, Z.; Han, J.; 
Zhang, B.; Li, Q.; Zhu, J.; Chen, B., Journal Chem. Eng. Data 2012, 57 (8), 2153-2159; 
(d) Shiflett, M. B.; Yokozeki, A., J. Chem. Eng. Data 2009, 54, 108-114; (e) Kühne, E.; 
Calvo, E. S.; Witkamp, G. J.; Peters, C. J., J. Supercrit. Fluids 2008, 45 (3), 293-297; (f) 
Kühne, E.; Santarossa, S.; Perez, E.; Witkamp, G. J.; Peters, C. J., J. Supercrit. Fluids 
2008, 46 (2), 93-98; (g) Kühne, E.; Perez, E.; Witkamp, G. J.; Peters, C. J., J. Supercrit. 
Fluids 2008, 45 (1), 27-31; (h) Zhang, Z.; Wu, W.; Wang, B.; Chen, J.; Shen, D.; Han, 
B., J. Supercrit. Fluids 2007, 40 (1), 1-6; (i) Lei, Z.; Qi, X.; Zhu, J.; Li, Q.; Chen, B., J. 
Chem. Eng. Data 2012, 57 (12), 3458-3466; (j) G. Hong, J. J., P. Husson, M. F. Costa 
Gomes, M. Deetlefs, M. Nieuwenhuyzen,; O. Sheppard, a. C. H., Ind. Eng. Chem. Res. 



 103	

2006, 45, 8180-8188; (k) Scurto, A. M.; Aki, S. N. V. K.; Brennecke, J. F., Chem. 
Commun. 2003,  (5), 572-573; (l) Scurto, A. M.; Aki, S. N. V. K.; Brennecke, J. F., J. 
Am. Chem. Soc. 2002, 124, 10277; (m) Aki, S. N. V. K.; Scurto, A. M.; Brennecke, J. F., 
Ind. Eng. Chem. Res. 2006, 45, 5574-5585; (n) Mellein, B. R.; Brennecke, J. F., J. Phys. 
Chem. B 2007, 111, 4837-4843; (o) Liu, Z.; Wu, W.; Han, B.; Dong, Z.; Zhao, G.; Wang, 
J.; Jiang, T.; Yang, G., Chemistry 2003, 9 (16), 3897-903. 

39. Eleanor D. Bates, R. D. M., Ioanna Ntai, and James H. Davis, J., CO2 Capture by 
a Task-Specific Ionic Liquid. Journal of the American Chemical Society 2002, 124 (6), 
926-927. 

40. Seo, S.; Quiroz-Guzman, M.; DeSilva, M. A.; Lee, T. B.; Huang, Y.; Goodrich, 
B. F.; Schneider, W. F.; Brennecke, J. F., Chemically Tunable Ionic Liquids with Aprotic 
Heterocyclic Anion (AHA) for CO2 Capture. J. Phys. Chem. B 2014, 118 (21), 5740-
5751. 

41. Seo, S.; Simoni, L. D.; Ma, M.; DeSilva, M. A.; Huang, Y.; Stadtherr, M. A.; 
Brennecke, J. F., Phase-Change Ionic Liquids for Postcombustion CO2 Capture. Energy 
Fuels 2014, 28 (9), 5968-5977. 

42. (a) Beer, P. D.; Gale, P. A., Angew. Chem. Int. Ed. 2001, 40, 486-516; (b) H. M. 
Luo, G. A. B., J. S. Lee, R. M. Pagni, S. Dai, The journal of physical chemistry. B 2009, 
113, 4181; (c) I. Kaljurand, I. A. K., A. Kutt, E. I. Room, T. Rodima, I. Koppel, M. 
Mishima, I. Leito, J Phys Chem A 2007, 111, 1245. 

43. Wang, C.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S., Carbon dioxide capture by 
superbase-derived protic ionic liquids. Angewandte Chemie 2010, 49 (34), 5978-81. 

44. Wang, C.; Luo, X.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S., Tuning the basicity of 
ionic liquids for equimolar CO2 capture. Angewandte Chemie 2011, 50 (21), 4918-22. 

45. Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S., Tuning the physicochemical 
properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent 
on the anion. Chemistry 2012, 18 (7), 2153-60. 

46. Boulas, P. L.; Gómez-Kaifer, M.; LEchegoyen, L., Angew. Chem. Int. Ed. 1998, 
37, 216-247. 

47. Gohndrone, T. R.; Bum Lee, T.; DeSilva, M. A.; Quiroz-Guzman, M.; Schneider, 
W. F.; Brennecke, J. F., Competing reactions of CO2 with cations and anions in azolide 
ionic liquids. ChemSusChem 2014, 7 (7), 1970-5. 

48. Lee, T. B.; Oh, S.; Gohndrone, T. R.; Morales-Collazo, O.; Seo, S.; Brennecke, J. 
F.; Schneider, W. F., CO2 Chemistry of Phenolate-Based Ionic Liquids. The journal of 
physical chemistry. B 2016, 120 (8), 1509-17. 



 104	

49. (a) Menard, G.; Stephan, D. W., Stoichiometric reduction of CO2 to CO by 
aluminum-based frustrated Lewis pairs. Angewandte Chemie 2011, 50 (36), 8396-9; (b) 
Stephan, G. M. n. a. D. W., Room Temperature Reduction of CO2 to Methanol by Al-
Based Frustrated Lewis Pairs and Ammonia Borane. Journal of the American Chemical 
Society 2010, 132, 1796-1797. 

50. (a) Holbrey, J. D.; Reichert, W. M.; Tkatchenko, I.; Bouajila, E.; Walter, O.; 
Tommasi, I.; Rogers, R. D., 1,3-Dimethylimidazolium-2-carboxylate: the unexpected 
synthesis of an ionic liquid precursor and carbene-CO2 adductElectronic supplementary 
information (ESI) available: experimental data for 1,3-dimethylimidazolium-2-
carboxylate. Chemical Communications 2003,  (1), 28-29; (b) Norbert Kuhn, M. S., Gerd 
Weyers, Synthese und Eigenschaften von l,3-Diisopropyl-4,5-dimethylimidazolium-2-
carboxylat. Ein stabiles Carben-Addukt des Kohlendioxids [1]. Z. Naturforsch. b 1999, 
54, 427-433. 

51. Tudose, A.; Demonceau, A.; Delaude, L., Imidazol(in)ium-2-carboxylates as N-
heterocyclic carbene precursors in ruthenium–arene catalysts for olefin metathesis and 
cyclopropanation. Journal of Organometallic Chemistry 2006, 691 (24-25), 5356-5365. 

52. Ishiguro Katsuya , H. K., Nojima Takayuki ,  Sawaki Yasuhiko, Nucleophilic O-
Transfer, Cyclizaton, and Decarboxylation of Carbonyl Oxide Intermediate in the 
Reaction of Stable Imidazolylidene and Singlet Oxygen. Chemistry Letters 2002, 31, 
796-797. 

53. (a) Duong, H. A.; Tekavec, T. N.; Arif, A. M.; Louie, J., Reversible carboxylation 
of N-heterocyclic carbenes. Chem Commun (Camb) 2004,  (1), 112-3; (b) Van Ausdall, 
B. R.; Glass, J. L.; Wiggins, K. M.; Aarif, A. M.; Louie, J., A systematic investigation of 
factors influencing the decarboxylation of imidazolium carboxylates. The Journal of 
organic chemistry 2009, 74 (20), 7935-42. 

54. Manginn, E. J. Design and evaluation of Ionic liquids as novel CO2 absorbents; 
Department of Energy: 2005. 

55. Gurau, G. R., H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.; Rogers, R. D., 
Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate 
Ionic Liquids. Angew Chem 2011, 123, 12230-12232. 

56. (a) Besnard, M.; Cabaco, M. I.; Chavez, F. V.; Pinaud, N.; Sebastiao, P. J.; 
Coutinho, J. A.; Danten, Y., On the spontaneous carboxylation of 1-butyl-3-
methylimidazolium acetate by carbon dioxide. Chem Commun (Camb) 2012, 48 (9), 
1245-7; (b) Cabaco, M. I.; Besnard, M.; Chavez, F. V.; Pinaud, N.; Sebastiao, P. J.; 
Coutinho, J. A.; Mascetti, J.; Danten, Y., On the chemical reactions of carbon dioxide 
isoelectronic molecules CS2 and OCS with 1-butyl-3-methylimidazolium acetate. Chem 
Commun (Camb) 2013, 49 (94), 11083-5; (c) Mao, J. X.; Steckel, J. A.; Yan, F.; Dhumal, 
N.; Kim, H.; Damodaran, K., Understanding the mechanism of CO2 capture by 1,3 di-
substituted imidazolium acetate based ionic liquids. Physical chemistry chemical physics 



 105	

: PCCP 2016, 18, 1911-1917; (d) Seo, S.; DeSilva, M. A.; Brennecke, J. F., Physical 
Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids 
with Aprotic Heterocyclic Anions. The journal of physical chemistry. B 2014, 118 (51), 
14870-9. 

57. Holloczki, O.; Firaha, D. S.; Friedrich, J.; Brehm, M.; Cybik, R.; Wild, M.; Stark, 
A.; Kirchner, B., Carbene formation in ionic liquids: spontaneous, induced, or 
prohibited? The journal of physical chemistry. B 2013, 117 (19), 5898-907. 

58. (a) Feroci, M.; Chiarotto, I.; Ciprioti, S. V.; Inesi, A., On the reactivity and 
stability of electrogenerated N-heterocyclic carbene in parent 1-butyl-3-methyl-1H-
imidazolium tetrafluoroborate: Formation and use of N-heterocyclic carbene-CO2 adduct 
as latent catalyst. Electrochimica Acta 2013, 109, 95-101; (b) Feroci, M.; Chiarotto, I.; 
Forte, G.; Inesi, A., An electrochemical methodology for the cyclic CO2 “catch and 
release”. The role of the electrogenerated N-heterocyclic carbene in BMIm-BF4. Journal 
of CO2 Utilization 2013, 2, 29-34; (c) Feroci, M.; Chiarotto, I.; Forte, G.; Vecchio 
Ciprioti, S.; Inesi, A., Stability and CO2Capture Ability of ElectrogeneratedN-
Heterocyclic Carbene in Parent 1-Butyl-3-methylimidazoliun Ionic Liquid (BMIm-X): 
The Role of X−. ChemElectroChem 2014, 1 (8), 1407-1414. 

59. Mei, K.; He, X.; Chen, K.; Zhou, X.; Li, H.; Wang, C., Highly Efficient CO2 
Capture by Imidazolium Ionic Liquids through a Reduction in the Formation of the 
Carbene–CO2 Complex. Industrial & Engineering Chemistry Research 2017, 56 (28), 
8066-8072. 

60. Hammond, G. P.; Ondo Akwe, S. S., Thermodynamic and related analysis of 
natural gas combined cycle power plants with and without carbon sequestration. 
International Journal of Energy Research 2007, 31 (12), 1180-1201. 

61. Aldy, J. E.; Kotchen, M. J.; Leiserowitz, A. A., Willingness to pay and political 
support for a US national clean energy standard. Nature Climate Change 2012, 2, 596-
599. 

62. Thitakamol, B.; Veawab, A.; Aroonwilas, A., Environmental impacts of 
absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-
fired power plant. International Journal of Greenhouse Gas Control 2007, 1 (3), 318-
342. 

63. Kanniche, M.; Le Moullec, Y.; Authier, O.; Hagi, H.; Bontemps, D.; Neveux, T.; 
Louis-Louisy, M., Up-to-date CO 2 Capture in Thermal Power Plants. Energy Procedia 
2017, 114, 95-103. 

64. DuBois, D. L.; Miedaner, A.; Bell, W.; Smart, J. C., In Electrochemical and 
Electrocatalytic reactions of Carbon Dioxide, Sullivan, B. P. G., H. E., Ed. Elsevier 
Science Publishers B. V.: Amsterdam, 1993; pp 90-94. 



 106	

65. Scovazzo, P.; Poshusta, J.; DuBois, D.; Koval, C.; Noble, R., Electrochemical 
Separation and Concentration of <1% Carbon Dioxide from Nitrogen. Journal of The 
Electrochemical Society 2003, 150 (5), D91. 

66. (a) Abanades, J. C.; Arias, B.; Lyngfelt, A.; Mattisson, T.; Wiley, D. E.; Li, H.; 
Ho, M. T.; Mangano, E.; Brandani, S., Emerging CO2 capture systems. International 
Journal of Greenhouse Gas Control 2015, 40, 126-166; (b) Boot-Handford, M. E.; 
Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernandez, 
J. R.; Ferrari, M. C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, 
A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, 
N.; Yao, J. G.; Fennell, P. S., Carbon capture and storage update. Energy & 
Environmental Science 2014, 7 (1), 130-189; (c) Hammond, G. P.; Akwe, S. S. O.; 
Williams, S., Techno-economic appraisal of fossil-fuelled power generation systems with 
carbon dioxide capture and storage. Energy 2011, 36 (2), 975-984. 

67. (a) Goeppert, A.; Zhang, H.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah, G. 
A.; Narayanan, S. R., Easily Regenerable Solid Adsorbents Based on Polyamines for 
Carbon Dioxide Capture from the Air. Chemsuschem 2014, 7 (5), 1386-1397; (b) Li, D.; 
Furukawa, H.; Deng, H. X.; Liu, C.; Yaghi, O. M.; Eisenberg, D. S., Designed amyloid 
fibers as materials for selective carbon dioxide capture. Proceedings of the National 
Academy of Sciences of the United States of America 2014, 111 (1), 191-196. 

68. (a) Huebsche, R. G.; Babinsky, A. D., SAE Transactions 1969, 78, 151; (b) Kang, 
M. P.; Winnick, J., C Journal of Applied Electrochemistry 1985, 15 (3), 431-439; (c) Li, 
K.; Li, N., Separation Science and Technology 1993, 28 (4), 1085-1090. 

69. (a) Rexed, I.; della Pietra, M.; McPhail, S.; Lindbergh, G.; Lagergren, C., Molten 
carbonate fuel cells for CO2 separation and segregation by retrofitting existing plants - 
An analysis of feasible operating windows and first experimental findings. International 
Journal of Greenhouse Gas Control 2015, 35, 120-130; (b) Campanari, S., Carbon 
dioxide separation from high temperature fuel cell power plants. Journal of Power 
Sources 2002, 112 (1), 273-289; (c) Campanari, S.; Chiesa, P.; Manzolini, G., CO2 
capture from combined cycles integrated with Molten Carbonate Fuel Cells. International 
Journal of Greenhouse Gas Control 2010, 4 (3), 441-451; (d) Chacartegui, R.; Monje, B.; 
Sanchez, D.; Becerra, J. A.; Campanari, S., Molten carbonate fuel cell: Towards negative 
emissions in wastewater treatment CHP plants. International Journal of Greenhouse Gas 
Control 2013, 19, 453-461. 

70. (a) Eisaman, M. D.; Alvarado, L.; Larner, D.; Wang, P.; Garg, B.; Littau, K. A., 
CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science 
2011, 4 (4), 1319-1328; (b) Eisaman, M. D.; Alvarado, L.; Larner, D.; Wang, P.; Littau, 
K. A., CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & 
Environmental Science 2011, 4 (10), 4031-4037; (c) Eisaman, M. D.; Parajuly, K.; 
Tuganov, A.; Eldershaw, C.; Chang, N. R.; Littau, K. A., CO2 extraction from seawater 
using bipolar membrane electrodialysis. Energy & Environmental Science 2012, 5 (6), 
7346-7352. 



 107	

71. Datta, S.; Henry, M. P.; Lin, Y. J.; Fracaro, A. T.; Millard, C. S.; Snyder, S. W.; 
Stiles, R. L.; Shah, J.; Yuan, J. W.; Wesoloski, L.; Dorner, R. W.; Carlson, W. M., 
Electrochemical CO2 Capture Using Resin-Wafer Electrodeionization. Industrial & 
Engineering Chemistry Research 2013, 52 (43), 15177-15186. 

72. Rau, G. H., Electrochemical Splitting of Calcium Carbonate to Increase Solution 
Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity. 
Environmental Science & Technology 2008, 42 (23), 8935-8940. 

73. Watkins, J. D.; Siefert, N. S.; Zhou, X.; Myers, C. R.; Kitchin, J. R.; Hopkinson, 
D. P.; Nulwala, H. B., Redox-Mediated Separation of Carbon Dioxide from Flue Gas. 
Energy & Fuels 2015, 29 (11), 7508-7515. 

74. Mizen, M. B.; Wrighton, M. S., REDUCTIVE ADDITION OF CO2 TO 9,10-
PHENANTHRENEQUINONE. Journal of the Electrochemical Society 1989, 136 (4), 
941-946. 

75. Scovazzo, P.; Poshusta, J.; DuBois, D.; Koval, C.; Noble, R., Electrochemical 
separation and concentration of < 1% carbon dioxide from nitrogen. Journal of the 
Electrochemical Society 2003, 150 (5), D91-D98. 

76. Apaydin, D. H.; Glowacki, E. D.; Portenkirchner, E.; Sariciftci, N. S., Direct 
Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic 
Pigment: Quinacridone. Angewandte Chemie-International Edition 2014, 53 (26), 6819-
6822. 

77. Gurkan, B.; Simeon, F.; Hatton, T. A., Quinone Reduction in Ionic Liquids for 
Electrochemical CO2 Separation. ACS Sustainable Chemistry & Engineering 2015, 3 (7), 
1394-1405. 

78. Ishida, H.; Ohba, T.; Yamaguchi, T.; Ohkubo, K., INTERACTION BETWEEN 
CO2 AND ELECTROCHEMICALLY REDUCED SPECIES OF N-PROPYL-4,4'-
BIPYRIDINIUM CATION. Chemistry Letters 1994,  (5), 905-908. 

79. Ranjan, R.; Olson, J.; Singh, P.; Lorance, E. D.; Buttry, D. A.; Gould, I. R., 
Reversible Electrochemical Trapping of Carbon Dioxide Using 4,4 '-Bipyridine That 
Does Not Require Thermal Activation. Journal of Physical Chemistry Letters 2015, 6 
(24), 4943-4946. 

80. Saveant, J. M., Elements of molecular and biomolecular electrochemistry: An 
electrochemical approach to electron transfer chemistry. John Wiley & Sons: Hoboken, 
NJ, 2006. 
 
81. Kullapere, M.; Seinberg, J. M.; Maeorg, U.; Maia, G.; Schiffrin, D. J.; 
Tammeveski, K., Electroreduction of oxygen on glassy carbon electrodes modified with 
in situ generated anthraquinone diazonium cations. Electrochimica Acta 2009, 54 (7), 
1961-1969. 



 108	

82. Roberts, J. L.; Calderwood, T. S.; Sawyer, D. T., NUCLEOPHILIC 
OXYGENATION OF CARBON-DIOXIDE BY SUPEROXIDE ION IN APROTIC 
MEDIA TO FORM THE C2O6(2-) SPECIES. Journal of the American Chemical Society 
1984, 106 (17), 4667-4670. 

83. Luo, J. F.; Preciado, S.; Xie, P.; Larrosa, I., Carboxylation of Phenols with CO2 at 
Atmospheric Pressure. Chem.-Eur. J. 2016, 22 (20), 6798-6802. 

84. (a) Stern, M. C.; Hatton, T. A., Bench-scale demonstration of CO2 capture with 
electrochemically-mediated amine regeneration. RSC Advances 2014, 4 (12), 5906-5914; 
(b) Stern, M. C.; Simeon, F.; Herzog, H.; Hatton, T. A., Post-combustion carbon dioxide 
capture using electrochemically mediated amine regeneration. Energy & Environmental 
Science 2013, 6 (8), 2505-2517. 

85. DuBois, D. L.; Miedaner, A.; Bell, W.; Smart, J. C., Chapter 4 - Electrochemical 
Concentration of Carbon Dioxide, Sullivan, B.P. In Electrochemical and Electrocatalytic 
Reactions of Carbon Dioxide, Elsevier: Amsterdam, 1993; pp 94-117. 

86. Appel, A. M.; Newell, R.; DuBois, D. L.; DuBois, M. R., Concentration of carbon 
dioxide by electrochemically modulated complexation with a binuclear copper complex. 
Inorganic Chemistry 2005, 44 (9), 3046-3056. 

87. Singh, P.; Rheinhardt, J. H.; Olson, J. Z.; Tarakeshwar, P.; Mujica, V.; Buttry, D. 
A., Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide-
Thiocarbonate Redox Cycle. Journal of the American Chemical Society 2016, submitted. 

88. (a) Stueber, D.; Arif, A. M.; Grant, D. M.; Parry, R. W., Carbonates, 
thiocarbonates, and the corresponding monoalkyl derivatives. 2. X-ray crystal structure of 
potassium methyltrithiocarbonate (KS2CSCH3). Inorganic Chemistry 2001, 40 (8), 
1912-1914; (b) Stueber, D.; Orendt, A. M.; Facelli, J. C.; Parry, R. W.; Grant, D. M., 
Carbonates, thiocarbonates, and the corresponding monoalkyl derivatives: III. The C-13 
chemical shift tensors in potassium carbonate, bicarbonate and related monomethyl 
derivatives. Solid State Nuclear Magnetic Resonance 2002, 22 (1), 29-49; (c) Stueber, D.; 
Patterson, D.; Mayne, C. L.; Orendt, A. M.; Grant, D. M.; Parry, R. W., Carbonates, 
thiocarbonates, and the corresponding monoalkyl derivatives. 1. Their preparation and 
isotropic C-13 NMR chemical shifts. Inorganic Chemistry 2001, 40 (8), 1902-1911. 

89. Shouji, E.; Buttry, D. A., A mechanistic study of the influence of proton transfer 
processes on the behavior of thiol/disulfide redox couples. Journal of Physical Chemistry 
B 1999, 103 (12), 2239-2247. 

90. Daasbjerg, K.; Jensen, H.; Benassi, R.; Taddei, F.; Antonello, S.; Gennaro, A.; 
Maran, F., Evidence for large inner reorganization energies in the reduction of diaryl 
disulfides: Toward a mechanistic link between concerted and stepwise dissociative 
electron transfers? Journal of the American Chemical Society 1999, 121 (8), 1750-1751. 



 109	

91. Soloveichik, G. L., Flow Batteries: Current Status and Trends. Chem. Rev. 2015, 
115 (20), 11533-11558. 

92. Costentin, C.; Robert, M.; Saveant, J. M.; Tard, C., Breaking Bonds with 
Electrons and Protons. Models and Examples. Accounts Chem. Res. 2014, 47 (1), 271-
280. 

93. Mayr, H.; Ofial, A. R., Do general nucleophilicity scales exist? Journal of 
Physical Organic Chemistry 2008, 21 (7-8), 584-595. 

94. Kenarsari, S. D.; Yang, D. L.; Jiang, G. D.; Zhang, S. J.; Wang, J. J.; Russell, A. 
G.; Wei, Q.; Fan, M. H., Review of recent advances in carbon dioxide separation and 
capture. Rsc Advances 2013, 3 (45), 22739-22773. 

95. Dutcher, B.; Fan, M. H.; Russell, A. G., Amine-Based CO2 Capture Technology 
Development from the Beginning of 2013-A Review. Acs Applied Materials & Interfaces 
2015, 7 (4), 2137-2148. 

96. Stueber, D.; Grant, D. M., The C-13 chemical shift tensor principal values and 
orientations in dialkyl carbonates and trithiocarbonates. Solid State Nuclear Magnetic 
Resonance 2002, 22 (4), 439-457. 

97. Cui, G. K.; Wang, J. J.; Zhang, S. J., Active chemisorption sites in functionalized 
ionic liquids for carbon capture. Chemical Society Reviews 2016, 45 (15), 4307-4339. 

98. Liu, M. L.; Visco, S. J.; Dejonghe, L. C., Electrochemical Properties of Organic 
Disulfide Thiolate Redox Couples. Journal of the Electrochemical Society 1989, 136 (9), 
2570-2575. 

99. (a) Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.; Seddon, K. 
R.; Compton, R. G., Voltammetry of oxygen in the room-temperature ionic liquids 1-
ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and 
hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: One-electron reduction to 
form superoxide. Steady-state and transient behavior in the same cyclic voltammogram 
resulting from widely different diffusion coefficients of oxygen and superoxide. Journal 
of Physical Chemistry A 2003, 107 (42), 8872-8878; (b) Barrosse-Antle, L. E.; Bond, A. 
M.; Compton, R. G.; O'Mahony, A. M.; Rogers, E. I.; Silvester, D. S., Voltammetry in 
Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional 
Electrochemical Solvents. Chemistry-an Asian Journal 2010, 5 (2), 202-230. 

100. Hoffman, M. Z.; Hayon, E., One-Electron Reduction of Disulfide Linkage in 
Aqueous-Solution - Formation, Protonation, and Decay Kinetics of Rssr- Radical. 
Journal of the American Chemical Society 1972, 94 (23), 7950-&. 

101. (a) Antonello, S.; Daasbjerg, K.; Jensen, H.; Taddei, F.; Maran, F., Formation and 
cleavage of aromatic disulfide radical anions. Journal of the American Chemical Society 
2003, 125 (48), 14905-14916; (b) Meneses, A. B.; Antonello, S.; Arevalo, M. C.; 



 110	

Gonzalez, C. C.; Sharma, J.; Wallette, A. N.; Workentin, M. S.; Maran, F., Electron 
transfer to sulfides and disulfides: Intrinsic barriers and relationship between 
heterogeneous and homogeneous electron-transfer kinetics. Chemistry-a European 
Journal 2007, 13 (28), 7983-7995. 

102. Batchelor-McAuley, C.; Compton, R. G., Voltammetry of multi-electron 
electrode processes of organic species. J. Electroanal. Chem. 2012, 669, 73-81. 

103. Utley, J., Trends in organic electrosynthesis. Chemical Society Reviews 1997, 26 
(3), 157-167. 

104. Tian, Z. X.; Pawlow, A.; Poutsma, J. C.; Kass, S. R., Are carboxyl groups the 
most acidic sites in amino acids? Gas-phase acidity, H/D exchange experiments, and 
computations on cysteine and its conjugate base. Journal of the American Chemical 
Society 2007, 129 (17), 5403-5407. 

105. (a) D'Alessandro, D. M.; Smit, B.; Long, J. R., Carbon Dioxide Capture: 
Prospects for New Materials. Angewandte Chemie-International Edition 2010, 49 (35), 
6058-6082; (b) Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L., Organic liquid 
CO2 capture agents with high gravimetric CO2 capacity. Energy & Environmental 
Science 2008, 1 (4), 487-493; (c) Koh, H. S.; Rana, M. K.; Hwang, J.; Siegel, D. J., 
Thermodynamic screening of metal-substituted MOFs for carbon capture. Physical 
Chemistry Chemical Physics 2013, 15 (13), 4573-4581; (d) Lee, H. M.; Youn, I. S.; 
Saleh, M.; Lee, J. W.; Kim, K. S., Interactions of CO2 with various functional molecules. 
Physical Chemistry Chemical Physics 2015, 17 (16), 10925-10933. 

106. (a) Boixel, J.; Blart, E.; Pellegrin, Y.; Odobel, F.; Perin, N.; Chiorboli, C.; 
Fracasso, S.; Ravaglia, M.; Scandola, F., Hole-Transfer Dyads and Triads Based on 
Perylene Monoimide, Quaterthiophene, and Extended Tetrathiafulvalene. Chemistry-a 
European Journal 16 (30), 9140-9153; (b) Pistner, A. J.; Pupillo, R. C.; Yap, G. P. A.; 
Lutterman, D. A.; Ma, Y. Z.; Rosenthal, J., Electrochemical, Spectroscopic, and O-1(2) 
Sensitization Characteristics of 10,10-Dimethylbiladiene Complexes of Zinc and Copper. 
Journal of Physical Chemistry A 118 (45), 10639-10648. 

107. Rauk, A.; Yu, D.; Armstrong, D. A., Journal of the American Chemical Society 
1994, 116 (18), 8222-8228. 

108. Armarego, W. L. F.; Chai, C. L. L., Purification of Laboratory Chemicals. Fifth 
ed.; Butterworth-Heinemann: London, 2003. 

109. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; 
Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: 
Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to 
the Organometallic Chemist. Organometallics 2010, 29 (9), 2176-2179. 

110. (a) Becke, A. D., Journal of Chemical Physics 1993, 98 (7), 5648-5652; (b) 
Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; 



 111	

Pople, J. A., Journal of Chemical Physics 1982, 77 (7), 3654-3665; (c) Frisch, M. J., In 
Gaussian 03, revision C.02, Gaussian, Inc.: Wallingford, CT, 2004; (d) Harihara, P. C.; 
Pople, J. A., Theoretica Chimica Acta 1973, 28 (3), 213-222; (e) Kendall, R. A.; 
Dunning, T. H.; Harrison, R. J., Journal of Chemical Physics 1992, 96 (9), 6796-6806; (f) 
Lee, C. T.; Yang, W. T.; Parr, R. G.,. Physical Review B 1988, 37 (2), 785-789; (g) 
Neese, F., The ORCA program system. Wiley Interdisciplinary Reviews-Computational 
Molecular Science 2012, 2 (1), 73-78; (h) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; 
Windus, T. L., 6-31G* basis set for atoms K through Zn. Journal of Chemical Physics 
1998, 109 (4), 1223-1229; (i) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, 
M. J., Journal of Physical Chemistry 1994, 98 (45), 11623-11627; (j) Woon, D. E.; 
Dunning, T. H., Journal of Chemical Physics 1993, 98 (2), 1358-1371. 

111. Denis, P. A., Basis set requirements for sulfur compounds in density functional 
theory: a comparison between correlation-consistent, polarized-consistent, and pople-type 
basis sets. Journal of Chemical Theory and Computation 2005, 1 (5), 900-907. 

112. Hammond, G. P.; Ondo Akwe, S. S., Thermodynamic and related analysis of 
natural gas combined cycle power plants with and without carbon sequestration. Int. J. 
Energy Res. 2007, 31 (12), 1180-1201. 

113. Aldy, J. E.; Kotchen, M. J.; Leiserowitz, A. A., Willingness to pay and political 
support for a US national clean energy standard. Nat. Clim. Change 2012, 2, 596-599. 

114. MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; 
Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P., An overview of CO2 capture 
technologies. Energy Environ. Sci. 2010, 3 (11), 1645. 

115. Gurau, G. R., H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.; Rogers, R. D., 
Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate 
Ionic Liquids. Angew. Chem. 2011, 123, 12230-12232. 

116. (a) Duong, H. A.; Tekavec, T. N.; Arif, A. M.; Louie, J., Reversible carboxylation 
of N-heterocyclic carbenes. Chem. Commun. 2004,  (1), 112-3; (b) Van Ausdall, B. R.; 
Glass, J. L.; Wiggins, K. M.; Aarif, A. M.; Louie, J., A systematic investigation of factors 
influencing the decarboxylation of imidazolium carboxylates. J. Org. Chem. 2009, 74 
(20), 7935-42. 

117. (a) H. M. Luo, G. A. B., J. S. Lee, R. M. Pagni, S. Dai, J. Phys. Chem. B 2009, 
113, 4181; (b) I. Kaljurand, I. A. K., A. Kutt, E. I. Room, T. Rodima, I. Koppel, M. 
Mishima, I. Leito, J. Phys. Chem. A 2007, 111, 1245. 

118. Wang, C.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S., Carbon dioxide capture by 
superbase-derived protic ionic liquids. Angew. Chem. Int. Ed. 2010, 49 (34), 5978-81. 

119. Wang, C.; Luo, X.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S., Tuning the basicity of 
ionic liquids for equimolar CO2 capture. Angew. Chem. Int. Ed. 2011, 50 (21), 4918-22. 



 112	

120. Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S., Tuning the physicochemical 
properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent 
on the anion. Chem. Eur. J. 2012, 18 (7), 2153-60. 

121. Singh, P.; Rheinhardt, J. H.; Olson, J. Z.; Tarakeshwar, P.; Mujica, V.; Buttry, D. 
A., Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide–
Thiocarbonate Redox Cycle. J. Am. Chem. Soc. 2017, 139 (3), 1033-1036. 

122. Seema, H.; Kemp, K. C.; Le, N. H.; Park, S.-W.; Chandra, V.; Lee, J. W.; Kim, K. 
S., Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 
2014, 66, 320-326. 

123. Kice, J. L.; Bartsch, R. A.; Dankleff, M. A.; Schwartz, S. L., Mechanisms of SNi 
Reactions.  The Decomposition of Aralkyl Thiocarbonates. J. Am. Chem. Soc. 1965, 87, 
1734-1739. 

124. Hansch, C.; Leo, A.; Taft, R. W., A Survey of Hammett Substituent Constants 
and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165-195. 

125. NIST Mass Spec Data Center, S. E. S., director NIST Chemistry WebBook, NIST 
Standard Reference Database Number 69. http://webbook.nist.gov/cgi/	
inchi?ID=C124389&Mask=200	-	Mass-Spec (accessed October 18, 2017). 

126. Tureček, F.; McLafferty, F. W., Interpretation of Mass Spectra. Fourth ed.; 
University Science Books: Sausalito, CA 94965, 1993. 

127. (a) Powell, E. K.; Searcy, A. W., Kinetics and Thermodynamics of 
Decomposition of Dolomite to a Metastable Solid Product. J. Am. Ceram. Soc. 1978, 61, 
216-221; (b) Powell, E. K.; Searcy, A. W., Surface Areas and Morphologies of CaO 
Produced by Decomposition of Large CaCO3 Crystals in Vacuum. J. Am. Ceram. Soc. 
1982, 65, C42-C44. 

128. Seo, S.; DeSilva, M. A.; Brennecke, J. F., Physical Properties and CO2 Reaction 
Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic 
Anions. J. Phys. Chem. B 2014, 118 (51), 14870-9. 

129. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; 
Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., Organometallics 2010, 29, 2176–2179. 

130. Savitzky, A.; Golay, M. J. E., Analytical Chemistry 1964, 36 (8), 1627-1639. 

131. Stueber, D.; Patterson, D.; Mayne, C. L.; Orendt, A. M.; Grant, D. M.; Parry, R. 
W., Inorganic Chemistry 2001, 40, 1902-1911. 
 



 113	

APPENDIX A 

FUNCTIONALIZTION OF POLY(2,6-DIMETHYL-1,4-PHENYLENE OXIDE) WITH 

FERROCENE BY THE COPPER CATALYZED AZIDE–ALKYNE COUPLING 

REACTION 
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Metallopolymers are presently an active area in polymer research due to the 

interest in coupling the unique redox and catalytic properties of inorganic systems with 

the robustness and versatility of organic polymers.  In particular, polymer materials with 

redox properties find uses in applications such as batteries,1 chemical sensors,2 

photovoltaics,3 electrochromic devices,4 and responsive membranes.5  A common 

strategy for achieving redox active polymers is to couple ferrocene moieties to the 

polymer structure.  Ferrocene-containing polymers continue to attract a significant 

amount of interest due to the well-behaved, reversible redox properties.  There are 

numerous reports and reviews detailing a great number of polymers to which ferrocene 

has been appended as well as a variety of strategies for achieving covalent attachment of 

ferrocene to polymers.6 

In their pioneering work, Inzelt and Szabo described the effect that different 

electrolyte anions have on the redox potentials of poly(vinylferrocene) polymer film 

electrodes in aqueous media.7  The authors observed that the anodic peak potential 

shifted positive by 76 mV and 71 mV in going from ClO4
– < NO3

– < SO4
2–, respectively.  

Efforts to further understand this phenomenon were undertaken by Creager et al.8, 

Uosaki et al.9, and Kondo et al.10 all of who investigated ferrocene-terminated 

alkanethiol self-assembled monolayers(SAM) on gold electrodes.  By employing 6-

ferrocenylhexanethiol monolayers, Uosaki et al. observed the same trend in oxidation 

potentials as Inzelt and Szabo.  Without interference from the polymer matrix Uosaki et 

al. were able to establish a Nernstian relation between the formation constant of the Fc+ 

X– ion pairs, with larger formation constants leading to more negative redox potentials.  

Similarly, Creager et al. probed the behavior of 6-ferrocenylhexanethiol as one 
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component of mixed monolayers with n-alkanethiols (1-CnH2n+1SH, n = 4, 6, 8, 10, and 

12) and observed that when the value of n is increased, there is a concomitant shift of the 

ferrocene/ferrocenium redox potential to more positive values.  The authors suggest that 

the longer alkyl chains serve to create a more alkane-like environment where 

ferrocenium is destabilized relative to ferrocene.  Kondo et al. observed that the redox 

potentials for SAMs of 6-ferrocenylhexanethiol were sensitive both to the anion present 

in solution as well as the solvent in which the electrochemistry was performed.  

Specifically, when measured in aqueous electrolyte the redox potential shifted positive 

in the order PF6
– < ClO4

– < HSO4
–, whereas in methylene chloride electrolyte the order 

was reversed.  In a recent report, Neef et al. showed that copolymers from 

vinylferrocene and 3-phenyl[5]ferrocenophane with N-ethyl and N-phenylmaleimide 

exhibited different redox potentials when the supporting electrolyte was changed in 

aqueous solution.  Specifically, there was a positive shift in the redox potentials in going 

from ClO4
– < NO3

– ≈ phosphate buffered saline (PBS).   

 In this paper, we report the synthesis and electrochemical behavior of poly(2,6-

dimethyl-1,4-phenylene oxide) (PPO) functionalized with pendant ferrocene moieties.  

Poly(2,6-dimethyl-1,4-phenylene oxide) is a robust polymer that shows great potential 

for functional applications in high-temperature, chemically-reactive environments.  PPO 

has excellent thermal and mechanical properties, possessing high dimensional stability 

and a glass transition temperature (Tg) of 220° C.7, 8  Furthermore, the ferrocene moieties 

were easily coupled to the PPO backbone using the copper(I) catalyzed azide–alkyne 

cycloaddition (CuAAC) reaction.  Despite the ease of synthesis, without proper workup 

copper coordination to the product triazole rings can result in a blue, insoluble material 
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where copper(II) ions act as crosslinkers in the functionalized materials.  These 

materials show good electrochemical response in water–N-methylpyrrollidine (NMP) 

electrolyte demonstrating both electrochromic properties and sensitivity of the redox 

potentials to the nature of the electrolyte anion.  The latter property of this material is 

investigated within the context of anion recognition and sensing applications.11 

Experimental 

General Considerations.  All manipulations were carried out using standard Schlenk 

line techniques under a nitrogen atmosphere.  Solvents were purchased from commercial 

vendors and purified according to literature methods.12  Deuterated solvents were 

purchased from Cambridge Isotope Laboratories, Inc., degassed by four successive 

freeze-pump-thaw cycles and stored in the glovebox.  Supporting electrolytes for 

electrochemical experiments were purified according to literature methods12 and dried in 

a vacuum oven at 100 oC.  All other reagents and starting materials were purchased from 

commercial vendors and used without further purification unless otherwise noted. 

Physical Methods.  1H and 13C NMR spectra were collected on Varian 400 and 500 

MHz NMR spectrometers.  1H and 13C NMR spectra are reported in parts per million 

relative to tetramethylsilane, using the residual solvent resonances as an internal 

standard.13  FTIR measurements were performed utilizing a Brüker Alpha spectrometer 

equipped with a diamond ATR.  Photographs taken at 10x magnification were obtained 

utilizing a Nikon LABOPHOT microscope equipped with a Nikon E950 digital camera.  

Atomic force microscopy experiments were conducted with a Brüker MultiMode 8 

equipped with a Brüker ScanAsyst tip in tapping mode at a scan rate of 0.883 Hz.  

Single crystals suitable for X-ray diffraction were suspended in Apiezon N grease and 



 117	

then mounted on the goniometer head of a Bruker APEX diffractometer equipped with 

Mo Kα radiation. A hemisphere routine was used for data collection and determination 

of the lattice constants. The space group was identified, and the data were processed 

using the Bruker SAINT+ program and corrected for absorption using SADABS. The 

structures were solved using direct methods (SHELXS), completed by subsequent 

Fourier synthesis, and refined by full-matrix, least-squares procedures on |F|2 

(SHELXL).  Electrochemical measurements were performed with a CH Instruments 

618C Electrochemical Analyzer or a Gamry Reference 3000 Potentiostat/Galvanostat. 

Cyclic voltammograms were acquired using a polymer-coated glassy carbon working 

electrode, platinum counter electrode, and Ag/AgCl reference electrode that was –0.417 

V against the ferrocene/ferrocenium redox couple.  Polymer films were deposited on the 

glassy carbon electrode from a 2 wt% solution in CH2Cl2 by pipetting 5 µL of the 

solution onto the electrode surface and allowing the solvent to evaporate under a stream 

of N2 over 30 minutes.  Prior to each electrochemical experiment, the electrolyte was 

purged with medical grade N2 for 30 minutes. 

Computational Methods.  Density functional theory (DFT) calculations were carried 

out using Becke’s three-parameter hybrid functional14 with the Lee−Yang−Parr 

correlation functional15 (B3LYP) and the 6-311++G** basis set using the Gaussian suite 

of programs.16 This level of theory was selected because it has produced theoretical 

vibrational spectra that are in good agreement with experiment for a variety of triazoles 

and benzotriazoles.17 

Bromomethylated Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO–Br).  This 

compound was synthesized according to literature procedures.18  In a typical experiment, 
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a 1000 mL round bottom flask equipped with a reflux condenser and a stir bar was 

charged with 420 mL of chlorobenzene.  Subsequently, the apparatus was placed under a 

nitrogen atmosphere, 10.0 g of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was 

added all at once, and the solution was stirred at room temperature until the PPO had 

completely dissolved (typically 1 hour).  To the stirring solution, 9.9 g of N-

bromosuccinimide, which had been previously recrystallized from H2O and dried under 

vacuum overnight, and 410.5 mg of azobisisobutyronitrile were added all at once.  After 

allowing the solution to stir for ten minutes at room temperature, the apparatus was 

placed in an oil bath and the reaction mixture was refluxed for four hours.  The solution 

was then cooled to room temperature and roughly half the solvent was removed by 

rotary evaporation.  Upon pouring the resulting viscous, brown fluid into 1000 mL of 

stirring MeOH, a fibrous brown solid appeared, which was recovered in on filter paper 

utilizing a Büchner funnel.  Purification of the bromomethylated polymer was achieved 

by Soxhlet extraction with MeOH overnight, then the polymer was transferred to a 

round bottom flask and placed under vacuum at 70 oC overnight.  The product was 

recovered in 95% yield and the degree of bromination was determined to be 50% by 

NMR.  1H NMR (500 MHz, CDCl3):  δ = 6.73–6.48 (m, 4 H), 4.35 (s, 2 H), 2.10 (s, 9 

H).  FTIR (cm–1): 3034 (w), 2955 (s), 2922 (s), 2660 (w), 1721 (m), 1605 (s), 1477 (vs), 

1460 (vs), 1360 (m), 1306 (s), 1221 (s), 1207 (s). 

Azidified Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO–N3).  Following a similar 

procedure to that found in the literature,19 160 mL of a 3:1 THF:MeOH solution was 

added to a 500 mL round bottom flask equipped with a stir bar and a reflux condenser.  

The apparatus was placed under a nitrogen atmosphere, and 5.0 g of PPO–Br was added 
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all at once.  Once all of the PPO–Br had dissolved (typically 30 minutes), 2.5 g of 

sodium azide was added in three equal portions, allowing 15 minutes between each 

addition.  After the final addition, the flask was sealed and the apparatus was placed in 

an oil bath.  The reaction mixture was refluxed for 16 hours, then cooled to room 

temperature.  Roughly half of the solvent was removed via rotary evaporation, and the 

contents of the flask was poured into a 3:1 MeOH:H2O solution at which time a tan-

colored precipitate appeared.  This material (PPO–N3) was recovered on a filter paper 

using a Büchner funnel, washed three times with cold methanol, and then repeatedly 

washed with water until the silver–halide test indicated that no bromide was present.  1H 

NMR (500 MHz, CDCl3):  δ = 6.68–6.48 (m, 4 H), 4.21 (s, 2 H), 2.09 (s, 9 H).  FTIR 

(cm–1):  2954 (s), 2923 (s), 2960 (m), 2737 (w), 2101 (vs, N3), 1717 (w), 1604 (s), 1478 

(vs), 1458 (vs), 1380 (w), 1344 (s), 1305 (s), 1209 (vs). 

5-Ferrocenyl-1,2,3-Triazole Poly(2,6-dimethyl-1,4-phenylene oxide) (1).  In a 100 

mL Schlenk flask equipped with a stir bar, 0.200 g of PPO–N3 was added to 5 mL of 

chlorobenzene and the solution was placed under a nitrogen atmosphere.  

Ethynylferrocene (0.147 g, 0.7 mmol) was added to the flask all at once and the solution 

was allowed to stir for 30 minutes.  In a separate 50 mL Schlenk flask equipped with a 

stir bar, 2 mL of chlorobenzene was added and the solvent was degassed and placed 

under a nitrogen atmosphere.  To the stirring chlorobenzene, 0.232 g of CuBr (1.6 

mmol) and 3.2 mL of N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, 15.3 

mmol) were added and the solution was allowed to stir at room temperature for one 

hour.  Subsequently, 2.3 mL of the CuBr–PMDETA solution was removed from the 

Schlenk flask by syringe and added dropwise to the ethynylferrocene–PPO–N3 solution 
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over a period of 15 minutes.  The reaction mixture was stirred at room temperature for 

four hours, at which time it was poured into 100 mL of chloroform in a separatory 

funnel.  Deionized water was added to the funnel and the organic phase was washed 

repeatedly until the blue color, indicating the presence of copper ions, was no longer 

observed in the aqueous phase (typically 5 washes).  The organic phase was dried over 

MgSO4, and the solvent was removed by means of rotary evaporation leaving 1 as an 

orange–brown solid in 91% yield.  1H NMR (500 MHz, CDCl3):  δ = 7.27 (bs, 1 H), 

6.62–6.47 (m, 4 H), 5.36 (bs, 2 H), 4.74–4.11 (bm, 9 H), 2.09–2.05 (m, 9 H).  FTIR (cm–

1):  3092 (b), 2959 (s), 2921 (s), 2853 (s), 1711 (vw), 1599 (s), 1466 (vs), 1379 (w), 

1345 (w), 1302 (m), 1261 (m). 

5-Butyl-1,2,3-Triazole Poly(2,6-dimethyl-1,4-phenylene oxide) (2).  This material was 

synthesized in a procedure identical to that described above for the synthesis of 1, except 

for the use of 1-hexyne (0.1 mL, 0.7 mmol) that was added via syringe all at once.  The 

product was isolated as a light brown solid in 87% yield.  1H NMR (500 MHz, CDCl3):  

δ = 7.21 (bs, 1 H), 6.62–6.45 (m, 4 H), 5.33–5.29 (m, 2 H), 2.64 (bs, 2 H), 2.10–2.04 (m, 

9 H), 1.58 (bs, 2 H), 1.33 (bs, 2 H), 0.90 (bs, 3H).  FTIR (cm–1):  2961 (m), 2925 (m), 

2857 (w), 1720 (w), 1602 (m), 1466 (s), 1379 (w), 1351 (w), 1302 (m), 1259 (s).  

4-Butyl-1-(phenylmethyl)-1H-1,2,3-triazole (3).  In a 250 mL Schlenk flask equipped 

with a stir bar under N2, 50 mL of chlorobenzene was added, along with 3.00 g (22.5 

mmol) of benzyl azide and 2.6 mL of (22.5 mmol) of 1-hexyne.  In a separate Schlenk 

flask equipped with a stir bar, 30 mL of chlorobenzene, 3.23 g (22.5 mmol) of CuBr, 

and 5.6 mL (27.0 mmol) of PMDETA were added and allowed to stir for 30 minutes.  

Cannula transfer was employed to add the CuBr solution to the benzyl azide–1-hexyne 
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solution over a period of 30 minutes.  After stirring at room temperature for 3 hours, the 

contents of the flask was emptied into 100 mL of chloroform in a separatory funnel.  

The organic phase was washed with water (4 x 50 mL), dried over MgSO4, and then the 

solvent was removed by rotary evaporation.  The product was recovered as a white solid 

in 94 % yield.  1H NMR (500 MHz, CD3OD):  δ = 7.69 (s, 1 H), 7.36–7.29 (m, 5 H), 

5.40 (s, 2 H), 2.69–2.66 (t, J = 7.5 Hz, 2 H), 1.66–1.60 (m, 2 H), 1.40–1.32 (m, 2 H), 

0.94–0.92 (t, J = 7.0 Hz, 3 H).  13C {1H} NMR (125 MHz, CD3OD):  δ = 149.66, 

136.96, 129.97, 129.49, 128.98, 123.11, 54.80, 32.69, 25.97, 23.22, 14.08.  FTIR (cm–1):  

3113 (m), 3063 (s), 2959 (s), 2923 (s), 2875 (m), 2855 (s), 1706 (w), 1556 (s), 1495 (s), 

1448 (vs), 1366 (w), 1352 (w), 1332 (m), 1310 (m), 1294 (s), 1228 (s), 1215 (s), 1206 

(s).  

4-Butyl-1-(phenylmethyl)-1H-1,2,3-triazolyl-Copper(II)-Acetate (4).  Copper(II) 

acetate monohydrate (58.0 mg, 0.29 mmol) was suspended in 25 mL of CH2Cl2 in a 

Schlenk flask equipped with a stir bar and a reflux condenser.  The apparatus was placed 

under a nitrogen atmosphere, and 250.0 mg (1.16 mmol) of 6 was added all at once.  

After stirring the resulting solution at room temperature for 5 minutes, the apparatus was 

placed in an oil bath and the solution was refluxed for two hours.  Upon cooling the 

reaction to room temperature, the solvent was removed by rotary evaporation, and the 

resulting blue solid was washed with cold Et2O and 7 was isolated in 65 % yield.  

Crystals suitable for x-ray diffraction were grown by diffusing Et2O into a CH2Cl2 

solution of 7.  1H NMR (500 MHz, CD3OD):  δ = 12.22 (br, 6 H), 8.18 (s, 1 H), 7.34–

7.27 (m, 5 H), 5.56 (s, 2 H), 2.67 (br, 2 H), 1.66 (br, 2 H), 1.37 (br, 2 H), 0.93–0.91 (t, J 
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= 6.5 Hz, 3 H).  FTIR (cm–1):  2964 (w), 2931 (w), 2858 (vw), 1615 (vs), 1552 (m), 

1496 (w), 1423 (vs), 1341 (m), 1264 (m), 1220 (m), 1136 (m).   

Results and Discussion 

3.1.  Polymer synthesis 

 5-Ferrocenyl-1,2,3-Triazole Poly(2,6-dimethyl-1,4-phenylene oxide) (1) was 

prepared via the synthetic route shown in Scheme A1.  The first step is radical 

bromination of the methyl groups on the PPO backbone by NBS to yield 

bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO–Br).  Subsequently, 

PPO–Br was combined with sodium azide in a 3:1 THF:CH3OH solution and refluxed 

for 16 hours.   After cooling to room  temperature, roughly half the solvent was removed 

 
Scheme A1.  Synthesis of 1 by the copper catalyzed azide–alkyne 1,3-dipolar 
cycloaddition reaction. 
 
by rotary evaporation and the solution was poured into a beaker containing a 3:1 

CH3OH:H2O solution, at which time a tan solid, azidified poly(2,6-dimethyl-1,4-
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O OO O OO

Br

O OO

N N N

O OO

N
N

N Fe

x x

x

x

NBS

AIBN

NaN3

CuBr, PMDETA
r.t., 4 hrs

Fe



 123	

using a Büchner funnel, washed three times with cold methanol, and then repeatedly 

washed with water until the silver–halide test indicated that no bromide was present.  

PPO–N3 was dried, then added to a round bottom flask containing chlorobenzene under 

a nitrogen atmosphere.  Upon complete dissolution of the polymer, ethynylferrocene 

was added to the solution all at once, followed by the dropwise addition of a 

chlorobenzene solution of a stoichiometric amount of CuBr–PMDETA.  After stirring 

the solution for 4 hours at room temperature the copper catalyzed azide–alkyne coupling 

(CuAAC) reaction was judged complete by NMR, and in our initial experiments the 

contents of the round bottom flask was poured into a beaker of stirring methanol.  A 

soft, blue material immediately precipitated that was found to be insoluble in THF, 

DMSO, toluene, chloroform, methylene chloride, NMP, methanol, MEK and water. 

3.2.  Influence of copper ions 

There were two plausible possibilities as to the identity of the soft, insoluble, 

blue material:  Either the ferrocene moieties were oxidized to ferrocenium, or copper(II) 

ions that formed during the CuAAC reaction were coordinated to the product triazole 

rings and were acting as crosslinks.  Deeming the latter to be more likely based upon 

earlier work of Doran et al.,20 5-butyl-1,2,3-triazole poly(2,6-dimethyl-1,4-phenylene 

oxide) (2) was synthesized according to the same initial procedure for 1, and again, a 

soft, blue, insoluble material was recovered.  After modifying the workup protocol as 

described in the Experimental section, copper-free 2 was isolated.  Copper(I) bromide 

was then added to an NMP solution of 2 and was allowed to stir overnight under air 

during which time a blue–green gel formed.  The gel was transferred to a glass slide, 

spread with a spatula, then dried on a hot plate at 70 oC to yield the familiar soft, blue 
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insoluble material.  Similarly, an NMP solution of 2 with no added copper salt was 

pipetted onto a glass slide, dried on a hot plate, and then both were examined by FTIR, 

optical microscopy, and AFM.  Shown in Figure A1 is the FTIR of 2 in the absence 

(black curve) and presence (red curve) of CuBr.  Note that the feature at 1720 cm–1 for 2 

is no longer observed and that there is a decrease in the intensity of the peak at1259 cm–1  

 
Figure A1.  FTIR spectrum of polymer 2 in the absence (black curve) and presence (red 
curve) of CuBr from 800–1800 cm–1. 
 
when copper ions are present.  Further, as seen by the optical microscope images in 

Figure A2, there are striking differences in morphology of 2 when Cu ions are present.  

While there is evidence of trapped CuBr in Figure A2 panel (b), the images indicate that 

these are, in fact, two different materials.  Further evidence of this can be observed in 

the AFM images in Figure A3.  These experiments support the conclusions drawn from 

the optical microscope images, namely that copper salts are trapped in the polymer 

matrix, but the difference in polymer morphology indicates that these are two different 

materials. 
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Triazoles are known to bind both Cu(I) and Cu(II) ions,21 and a common feature 

of the proposed  mono-  and bi-metallic  catalytic  cycles  for  the CuAAC reaction is the 

 
 

Figure A2.  Optical microscope images of 2 in the (a) absence and (b) presence of 
CuBr. 
 

 
Figure A3.  Atomic force microscope images of 2 in the (a) absence and (b) presence of 
CuBr.  Top images are 10 µm × 10 µm, bottom images are 3 µm × 3 µm. 
 
existence of a Cu–Ctriazole bond that is cleaved by protonation in the final step to 

regenerate the copper catalyst and free the triazole.22  Though the presence of Cu(I) 

species cannot be ruled out, the blue color of the recovered material indicates the 

presence of Cu(II).  With this in mind, 4-butyl-1-(phenylmethyl)-1H-1,2,3-triazole (3) 

was synthesized as a surrogate for a monomer unit of 1.  Subsequently, 4-butyl-1-

(phenylmethyl)-1H-1,2,3-triazolyl-copper(II)-acetate (4) was synthesized and the crystal 

structure is shown Figure A4.  Although the paddle-wheel structure shown in Figure A4 

is unlikely in the functionalized PPO due to the absence of acetate ions, the structure 

shows that the triazole nitrogen of 3 is coordinated to a Cu(II) ion.  Additional evidence 

a b 

a	 b	
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of Cu(II) coordination is seen in the 1H NMR of 3 in the absence and presence of 

copper(II) bromide (Figure A5).   In the  presence  of Cu(II) ions the 1H NMR peaks of 3  

 
Figure A4.  Solid-state structure of 4 with hydrogen atoms removed for clarity.  
  
are broadened, and there is a substantial downfield shift in the triazole hydrogen signal.   

Similar to the FTIR spectra of 2 in the absence and presence of Cu ions, comparison of 

the FTIR spectra of 3 and 4 (Figure A6) shows that the feature at 1706 cm–1 of 3 (black 

curve) is absent when the triazole is bound to copper in 4 (red curve). 

  To assign the modes responsible for the features at 1706/1720 and 1259 cm–1, 

density functional theory calculations at the B3LYP/6-311++G** level of theory were 

performed.    Using  the  work  of  Aziz  et al.  as  a  guide,17  the  computed spectra were  
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Figure a5.  1H NMR of 3 in the absence (top, black curve) and presence (bottom, red 
curve) of copper(II) bromide. 
 
multiplied by a scaling factor of 0.975 for a more accurate comparison to their 

experimental counterparts.  Acetate ions were replaced with chloride ions because their 

presence in the calculations would be an impediment to observing the effect of copper 

on the triazole fragment in the polymer.  Based upon the current work as well as the 

previously reported spectrum of 1H-1,2,3-triazole,23 the mode 1259 cm–1 is likely a ring-

based N–N stretching mode, which would undoubtedly be impacted by the presence of a 

copper ion bound to a ring nitrogen.  Our calculations also indicate that there is a 

significant contribution from C–H wagging on the alkyl and benzyl fragments.  The 

mode at 1706/1720 cm–1 is more difficult to assign, and although similar peaks are 

observed in the experimental spectra of a variety of triazoles,24 there is no discussion as 

to the source of this spectral feature.  Since there are no peaks between 1653 and 3012 

cm–1 in the computed spectra, it is possible that the peak at 1720 cm–1 is either a 

combination  band  or  an  overtone.   Despite  not  being  able  to  rigorously  make  this 
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Figure A6.  FTIR spectra of 3 (black curve) and 4 (red curve) 
 
assignment, we are confident that this peak is due to a triazole mode or combination of 

modes, and that it is sensitive to the presence of a Cu–N bond. 

3.3.  Electrolyte Effects 

Cyclic voltammograms (CVs) of glassy carbon electrodes coated with films of 1 

in 4:1 NMP:H2O–0.1 M NaNO3 electrolyte are shown in Figure A7.  As the scan rate 

(v) was increased from 5 to 100 mV s–1 a concomitant increase in peak current was 

observed that scaled with the square root of the scan rate (v1/2).   Figure A8a is a plot of 
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Figure A7.  Cyclic voltammograms recorded with a glassy carbon disk electrode with 
films of 1 at 5 mV s–1 (black), 10 mV s–1 (red), 25 mV s–1 (blue), 50 mV s–1 (orange), 75 
mV s–1 (green), and 100 mV s–1 (violet) in oxygen-free 4:1 NMP:H2O–0.1 M NaNO3. 
 
ipa, vs. v and of ipa vs. v1/2, with the values and the best fit line for the latter shown in 

blue.  The R2 value for this line was 0.97, while the R2 value for ipa vs. ν was 0.89 (not 

shown), indicating that the oxidation of 1 is a diffusion controlled process in accordance 

with the Randles–Sevcik equation.25   Similar results were obtained for 4:1 NMP:H2O 

containing 0.1 M N(C4H9)4ClO4, 0.1 M NH4PF6, and 0.1 M LiN(SO2CF3)2 (Figures 

A8b–d), respectively.  Figure A9 shows CVs of films of 1 on glassy carbon electrodes at  

	

a	 b	
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Figure A8.  Dependence of ipa on the scan rate (¢) and the square root of the scan rate 
(n) in cyclic voltammetry experiments of glassy carbon disk electrodes with films of 1 
from 5 mV s–1 to 100 mV s–1 in oxygen-free 4:1 NMP:H2O with (a) 0.1 M NaNO3 (b) 
0.1 M N(C4H9)4ClO4 (c) 0.1 M NH4PF6 and (d) 0.1 M LiN(SO2CF3)2 as the electrolyte 
(Pt counter electrode; Ag/AgCl reference electrode). 
 
25 mV s–1 in these same electrolytes, and the relevant data are summarized in Table A1.  

In each of these electrolytes there are distinct oxidation and reduction peaks with mean 

potentials (Ēp) between 0.541–0.579 V vs. Ag/AgCl, which falls in the range of reported 

redox potentials for ferrocene-containing polymers.26  Furthermore, the peaks are quite 

broad, indicating that the ferrocene moieties are in a variety of microenvironments, each 

of which gives rise to slightly different oxidation and reduction potentials.26d, 27  

Of particular applicability to anion sensing applications is the observation that 

the peak anodic potential (Epa) of 1 is sensitive to the identity of  the  electrolyte.   Figure 

c	 d	
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Figure 9.  Cyclic voltammograms recorded with a glassy carbon disk electrode with 
films of 1 at 25 mV s–1 in oxygen-free 4:1 NMP:H2O 0.1 M NaNO3 (black), 0.1 M 
N(C4H9)4ClO4 (red), 0.1 M NH4PF6 (blue), and 0.1 M LiN(SO2CF3)2 (green). 
 
Table A1. 
Electrolyte Epa

a ipa
b Epc

c ipc
d ΔEp

e Ēp
f 

NaNO3 0.676 ± 0.001 59 ± 3 0.406 ± 0.001 –54 ± 4 0.270 0.541 
N(C4H9)4ClO4 0.742 ± 0.002 76 ± 9 0.405 ± 0.010 –53 ± 9 0.337 0.573 
NH4PF6 0.755 ± 0.014 67 ± 9 0.392 ± 0.010 –45 ± 6 0.363 0.574 
LiN(SO2CF3)2 0.776 ± 0.006 75 ± 2 0.382 ± 0.009 –48 ± 1 0.394 0.579 

a  Anodic peak potential in V vs. Ag/AgCl 
b  Anodic peak current in µA 
c  Cathodic peak potential in V vs. Ag/AgCl 
d  Cathodic peak current in µA 
e  Peak-to-peak separation in V 
f  Mean peak-to-peak potential vs. Ag/AgCl 
 
A9	 shows that the Epa shifts to more positive values when the electrolyte is changed 

from NaNO3 < N(C4H9)4ClO4 ≈ NH4PF6 < LiN(SO2CF3)2.  Because this ordering 

follows neither the Hofmeister series,28 which orders anions by their hydrophobicity, nor 

the previously reported trends where the ferrocenium+anion– formation constant is 

thought to be responsible for the shift in Epa,7-10, 29 we hypothesize that the size of the 
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electrolyte anion is the factor that is most responsible for the observed shift in Epa.  

Table A2 summarizes both the Epa values and the reported anionic radii and volumes for 

the supporting electrolytes used in this study,30 and Figure A10 is a plot of Epa vs. the 

anion radii and volumes.  It has been previously shown that PPO films cast from organic 

Table A2. 
Electrolyte Epa r (pm)a V (107 pm3)a ΔGhyd,calc

b ΔGhyd,exp
c 

NaNO3 0.676 ± 0.001 179 ± 19 64 ± 11 -300 -300 
N(C4H9)4ClO4 0.742 ± 0.002 225 ± 19 82 ± 13 -252 -205 
NH4PF6 0.755 ± 0.014 242 ± 19 109 ± 8 -237 – 
LiN(SO2CF3)2 0.776 ± 0.006 325 146 -184 – 

a Anionic radii and volumes from Ref. 23 
b ΔGhyd,calc

 was found using the method detailed by Marcus in Ref. 31 
c ΔGhyd,exp

 from Ref. 31 
 

 
Figure A10.  Epa (V vs. Ag/AgCl) vs. anionic radii (¢, pm) and volumes (n, 107 pm3).  
Data in Table A2. 
 
solvents form porous three-dimensional networks with molecular-sized cavities between 

the rigid polyether chains.31  Along this line, the data presented in Table A2 and Figure 
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A10 suggest that the size and the structure of the free volume elements within the 

polymer must swell and/or rearrange to accommodate the larger anions.  Solvent 

swelling of polymer films has been shown to influence their electrochemical behavior,32 

which underscores the necessity for a 4:1 NMP:H2O solvent mixture.  The polymer must 

be swollen with NMP for the ionic transport processes to be facile; however, in 

electrolyte where NMP is the only solvent, the polymer films rapidly desorb from the 

electrode.  	

Cyclic voltammograms of 1 when the solvent is 2:1, 1:1, and 0:1 NMP:H2O—

0.1 M NaNO3 are shown in Figure A11.  The positive shift of Epa and the decrease in ipa 

indicate that PPO–Fc is very hydrophobic, and that in addition to swelling there may a 

significant contribution to the increase in Epa from the free energy of dehydration.  That 

is, in order for the anions to enter the hydrophobic polymer it is first necessary to shed 

their  hydration  shell  either  in  whole or in part, or the free energy of hydration must be  

 
Figure A11.  Cyclic voltammograms recorded with a glassy carbon disk electrode with 
films of 1 at 25 mV s–1 in oxygen-free 0.1 M NaNO3 4:1 NMP:H2O (black), 2:1 
NMP:H2O (red), 1:1 NMP:H2O (blue), 0:1 NMP:H2O (orange).  Pt counter electrode, 
Ag/AgCl reference electrode. 
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overcome by electromigration to effectively pull the anion into the polymer network.  

This would be especially true in the case of NO3
–, which has the largest free energy of 

hydration (ΔGhyd).33  However, since the ΔGhyd of ClO4
–, PF6

–, and N(SO2CF3)2
– are all 

less than that of the ΔGhyd for NO3
– (Table A2), it is clear that this contribution to the 

increase in Epa is secondary to the size of the anion in the electrolyte of choice. 

3.4.  Electrochromism 

 Shown in Figure A12 are images of ITO electrodes coated with 1 pre- and post-

electrolysis at 1.0 V vs. Ag/AgCl in 4:1 NMP:H2O–0.1 M NaNO3.  Note the blue–green 

veins in the oxidized polymer showing that there are distinct regions of functionalized 

and non-functionalized polymer that appear to self-segregate when cast from methylene 

chloride solution.  Previous studies of PPO have shown that the polymer structure can be 

controlled by casting the polymer from different organic solvents as well as by 

controlling the relative humidity in the casting environment.31b, 31c  We are presently 

seeking to adjust the casting procedure to obtain a more homogeneous polymer.   

 
Figure A12.  Indium tin oxide electrodes coated with 1 pre- (a) and post-electrolysis (b) 
at +1.0 V vs. Ag/AgCl in 4:1 NMP:H2O–0.1 M NaNO3.  Pt counter electrode. 

a b 
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APPENDIX A SUPPLEMENTARY INFORMATION 

 
Figure A13.  FTIR of PPO–Br 
 
 

 

4000 3000 2000 1000
0

20

40

60

80

100

	

	
%
	tr
an

sm
itt
an

ce

υ	/	cm	-1

Chemical Shift (ppm)8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

A
bs

ol
ut

e 
In

te
ns

ity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9.
00

2.
02

4.
07

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
10

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
17

2.
172.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77
2.

77

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

4.
35

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
48

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
49

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
53

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
54

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
68

6.
686.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
72

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
73

6.
737.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26
7.

26



 136	

 
Figure A14.  1H NMR of PPO–Br 
 
 
 
 
 
 
 

 
Figure A15.  FTIR of PPO–N3
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Figure A16.  1H NMR of PPO–N3

 

 

 

 

 

Figure A17.  FTIR of 1 
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Figure A18.  1H NMR of 1 
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