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ABSTRACT  
   

Glucose sensors have had many paradigm shifts, beginning with using urine, to 

point of care blood, now being approved for implant. This review covers various aspects 

of the sensors, ranging from the types of surface chemistry, and electron transduction. All 

the way to the algorithms, and filters used to alter and understand the signal being 

transduced. Focus is given to Dr. Hellerâ’s work using redox mediators, as well as Dr. 

Sode in his advances for direct electron transfer. Simple process of designing sensors are 

described, as well as the possible errors that may come with glucose sensor use. Finally, a 

small window into the future trends of glucose sensors is described both from a device 

view point, as well as organic viewpoint. Using this history the initial point of care sensor 

for insulin published through LaBelle’s lab is reevaluated critically. In addition, the 

modeling of the possibility of continuously measuring insulin is researched. To better 

understand the design for a continuous glucose sensor, the basic kinetic model is set up, 

and ran through a design of experiments to then optimized what the binding kinetics for 

an ideal insulin molecular recognition element would be. In addition, the phenomena of 

two electrochemical impedance spectroscopy peaks is analyzed, and two theories are 

suggests, and demonstrated to a modest level.  



  ii 

ACKNOWLEDGMENTS  
   

I would like to acknowledge both Arizona state university, for allowing me to perform 

this work as well as the incredible opportunities and mentorship received form Labelle. In 

addition, there are various other people who have enabled this work; Thanks to Dr. Lin, 

Mackenzie Honikel, Brittney Cardinal, Michael Caplan, Curtiss Cook and the Mayo 

Clinic. In addition, thank you to the incredible Shelby Steed for all the support and never-

ending positive attitude toward my work.



  iii 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................... iv  

LIST OF FIGURES .................................................................................................................. v  

CHAPTER 

1 REVIEW OF GLUCOSE SENSORS ...................................................................  1  

2 DEEP DIVE INTO INSULIN PUBLICATION AND KINETICS OF INSULIN 

MRE’S ..................................................................................................................  25  

3 MODELING AND OPTIMIZATION OF BINDING KINETICS ....................  37  

4 BACKGROUND OF EIS AND OPTIMAL FREQUENCY FOR INSULIN ...  56  

REFERENCES  ...................................................................................................................... 64 

APPENDIX 

A      RELEVANT PUBLICATIONS  .............................................................................  77  



  iv 

LIST OF TABLES 

Table Page 

1.       Design of Experiment Factorial  ............................................................................ 39 

2.       Predicted Optimal Binding Frequency  ................................................................. 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  v 

LIST OF FIGURES 

Figure Page 

1.       Glucose Sensor Development Roadmap  ................................................................ 6 

2.       Generic CGM Sensor Design ................................................................................... 8 

3.       Electron Transfer Mechanism’s ............................................................................. 10 

4.       Generic Point of Care Sensor ................................................................................. 12 

5.      Calibration Curve for Insulin Sensor ...................................................................... 25 

6.       Binding Freuency’s for Insulin .............................................................................. 26 

7.       Modified Randals Cell............................................................................................ 27 

8.       Effective Capacitance of two Groups .................................................................... 29 

9.       Ideal binding Curve against time ........................................................................... 33 

10.       Various Binding Interactions for Insulin ............................................................. 37 

11.       Example of MatLab Binding Model for DOE #1 ............................................... 42 

12.       Example of MatLab Binding Model for DOE #2 ............................................... 43 

13.       Example of MatLab Binding Model for DOE #3 ............................................... 44 

14.       Example of MatLab Binding Model for DOE #4 ............................................... 45 

15.       Example of MatLab Binding Model for DOE #5 ............................................... 46 

16.       Contour Plot for Binding Constants #1................................................................ 47 

17.       Contour Plot for Binding Constants #2................................................................ 48 

18.       Contour Plot for Binding Constants #3................................................................ 49 

19.       Optimization Plot for DOE #1 ............................................................................. 50 

20.       Optinmization Plot for DOE #2 with Surface Area ............................................ 52 

21.       Optimized Binding Curve based on MatLab ....................................................... 55 



  6 

CHAPTER 1 

REVIEW OF GLUCOSE SENSORS 

 The world of biosensing has quickly been gaining momentum over the last few decades 

as a method for diagnosing, monitoring, and recently remotely monitoring various 

disease states. These sensors have utilized various fields of physics from radiation, 

magnetics, resonance, and electrical. Each of which had defining moments that can be 

traced back to where most of today’s techniques can be either directly, or indirectly 

linked to. Most biosensor platforms have had these defining moments where the potential 

was unveiled. Enzyme linked immunosorbent assay (ELISA) for example, was first 

described in 1960 by Peter Perlmann and Eva Engvall at Stockholm University ([1]). 

Famously for electrochemical sensors as well as for most sensors is the point of care and 

continuous glucose sensor. This is due to the amount of research, and development that 

has been performed to these devices in both industry, as well as academics. Glucose 

sensors make up for probably the most researched biosensors of all time, including a 

phenomenal timeline for their development (Figure 1). 
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Figure 1: General timeline for the development of the current “gold standard” glucose 

sensor. This begins back in the early 1920’s where the use of urine was employed for 

glucose. Then nearly 50 years later the first commercially available glucose sensors 

where designed employing 1st generation sensing. Finally, just recently, Medtronic 

released the first closed loop CGM therapy combination for type 1 diabetics as well as 

Senseonics receiving FDA approval for a 90 day implantable sensor [2],[3].  

 Glucose sensors were first proposed by Clarke and Lyon in 1962 in Cincinnati [1] as 

well as a description of what the “biosensor” system may look like. This discovery lead 

to the explosion of research on applying electrochemistry to biosensors, and analyte 

detection. So rapid that it was just a few years later in 1973 that the first hydrogen 

peroxide glucose sensor was designed and validated, and then was commercially 

launched in 1975 [7]-[8]. The initial product was coined the YSI of Yellow Spring 

Instrument Company Analyzer. Ever sense this time glucose sensors have had a major 

spotlight leading to the concept of an implantable sensor as early as 1982, and the 

utilization of electron mediators for more accurate detection for point of care systems in 

1984. Within the next 15 years, MiniMed launched the first in vivo continuous glucose 

sensor for the public. Of all the biosensor storylines, the continuous glucose monitor may 

be the most complete, starting from a lab in Cincinnati, to now an entirely “closed-loop” 

systems where the sensor communicates with a therapy device (insulin pump) and self-

regulates the patient almost autonomously [6]. Using this case, one may be able to 

suggest the lifeline of these sensor developments, and what series of task must be 

accomplished to develop a sensor as mature as the CGM. This timeline begins back at 

1962, where again Clarke and Lyon first described what the “modern” glucose sensor 
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may ensemble, utilizing the glucose oxidase as a transducer converting the chemical 

reaction to current which could then be measured across a cell potential. A negative 

potential was applied over a platinum electrode to measure the reduction of oxygen to 

water [6]. This method would later develop to use hydrogen peroxide as the electron 

carrier molecule which relied on oxygen to facilitate the transfer of electronics from the 

enzyme to the counter electrode and be coined the name “1st Generation Glucose 

Sensing” [7],[9]. A diagram for the reaction mechanism of 1st generation glucose sensors 

is shown below, not this is general and may have various derivative of surface chemistry, 

and detection method (figure 1). 

 

Figure 2: The image above is a high-level description of various aspects of the sensor. 

These include the enzymatic reaction, the general chemical deposition, as well as the flux 

of various molecules.  

Figure 2 is a generalized depiction of a point of care, 1st generation glucose sensor. The 

device contains 4 main layers, first is the base substrate in which the electrodes are built 

on. This may be either a 3-electrode system (depicted above) or a 2-electrode system 

such as the Dexcom design. The next layer depicted as green shade, is the chemistry 

deposition layer. This may include the enzyme, and various cofactors that are needed. 

Depending on the substrate material, the conjugation methods may include covalent 

immobilization of enzymes. For gold substrate, one common example is the use of self-
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assembling monolayers (SAM’s) with thiol head and carboxyl tail. For graphite or carbon 

nanotube substrates, one common example is the use of SAM with pyrene head and NHS 

tail. Other immobilization principles such as biotin-streptavidin interactions can also be 

used. Besides covalent immobilization, chemically enhanced physical adsorption using a 

crosslinking molecule like glutaraldehyde can also be used.  

The next two layers depict the limiting membrane for the sensor, which may be a material 

such as nafion (commonly used in glucose sensors) followed by the bulk solution. On 

either side of the main image depicts more detail such as on the left panel, shown is the 

electron transfer mechanism for 1st generation reactions. While on the right, is the relative 

diffusion amounts for the important factors in the reaction (assumed ideal). The review 

will go over some developments of point of care sensor chemistrys (specifically glucose 

sensors), these are coined 1st, 2nd, 3rd, and 4th generation based sensors. Then the 

development of continuous sensors will be briefly discussed including some of the 

algorithms and filtering methods used to both attain a clean signal and predict the signal. 

The final aspect will be future trends, and how this history can then be applied to the 

development of new sensors such as insulin.  

The development of 2nd, 3rd and 4th generation Point of Care Sensors. 

Once the 1st generation glucose sensor was developed, groups of researchers immediately 

began to find issues, and challenges to overcome in the design. Probably the biggest two 

were the dependence of oxygen to transfer the electrons, and interferents [4], [6]–

[11].The dependence on oxygen leads to a major design flaw, which occurs when the 

glucose concentration begins to rise, and the system can no longer supply the needed 

oxygen to allow electron transfer. This creates an early signal saturation limit which 
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greatly reduces the upper and lower limits of detection. Current methods leverage glucose 

limiting membranes to overcome this design flaw, which prevents the total amount of 

glucose from reaching the electrode, while still allowing the oxygen to flow freely. This 

attempt to force the glucose to become the limiting factor. Although this may solve the 

problem under normal circumstances, there are many “non-normal” events that cause this 

to fail. Some of these circumstances may include exercising, or immune response where 

the local oxygen is up taken by other biological mechanisms.  

 

Figure 3: The figure above depicts glucose reacting with glucose oxidase and the various 

modes for electron transfer. A) First generation based electron transfer. B) Second 

generation electron transfer using ferricyanide and ferrocyanide. C) Third Generation 

electron transfer leveraging FAD and a side groups (heme). D) Fourth generation 

leveraging nanotubes on the electrode surface. 

Simultaneously occurring to this is the interference of several other biological molecules 

such as acetaminophen, ascorbic acid, and other sugars [12], [13].There were several 
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approaches performed to improve the sensor regarding these issues. First was the 

introduction of electron mediators to facilitate the transfer of electrons from the reaction 

site, down to the respective electrode. This type of sensor is coined “2nd Generation” 

sensors. These electron mediators used range in design, but all perform relatively the 

same. Electron mediators can behave in equilibrium allowing free electrons to transfer 

from the area of a higher concentration to an area of lower concentration. The term 

electron mediator began to pop up in various articles reaching back to the 1940’s [12], 

[13]. It  became much more developed through the work from Adam Heller, who led the 

development of various sensors currently on the market today, including novel redox 

mediators, biocompatible methods of integration, and optimizing their integration in 

glucose sensors to improve the sensitivity and specificity [17], [17, p. 2], [18]–[25]. More 

specifically, Dr. Heller and his team developed a “tethered” electron mediator that can 

directly transfer electrons from the site of the reaction, down to the electrode surface 

independently of oxygen levels [23]–[27]. Furthermore, the use of electron mediators can 

enable the use of lower overpotentials. This in turn eliminates various interferent which 

may have previously been oxidized. In addition, his team developed novel redox centers 

that could then be formed in biocompatible methods for implantable based glucose 

sensors, and even worked in furthering lactate based sensors [25], [28]–[46]. This was 

and has been a major jump in the detection of glucose. This enabled the first types of 

modern point of care glucose sensors, where a patient could prick his/her finger, and 

within seconds receives an accurate, reliable measurement of blood glucose. The figure 

below depicts a traditional, second generation point of care glucose sensor developed by 

Abbott for Type 1 and 2 diabetics.  
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Figure 4: Typical 

second generation 

point of care sensor 

leveraging redox 

technology. The 

system is a 3-electrode 

sensor, that has an 

adhesive, enzyme, and electrode layers stacked in generally a roll to roll manufacturing 

process. Abbottt has developed a variety of derivative based on this general design with 

various optimization goals.  

Following this research, the third generation of glucose sensing has been focusing on the 

mutation or alteration of the enzyme to enable direct electron transfer (DET). This mainly 

stemmed from the biohazards of artificial electron mediators in human body, limiting its 

use for in vivo continuous sensing. This field has broken into various interesting designs 

to enable the direct electron transfer. For the sake of this summary we will be focusing on 

the mutation of glucose, and binding of a subgroup to enable the reaction. Others have 

used carbon nanotubes, mesoporous carbon, as well as other surface chemistry methods 

that enable this direct electron transfer[47], [48]. As for the mutation of glucose or the 

attachment of electron mediating subgroups to enable the DET, one work worthy of 

mentioning is that of Dr. Sode from the School of Agriculture and Technology in Tokyo 

University (recently relocated to the University of North Carolina). Dr. Sode’s group 

began looking into the use of additional side groups such as Cytochrome b562, paired 

with either pyrroloquinoline quinone (PQQ) glucose dehydrogenase, or FAD glucose 
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oxidase [49], [50]. The concept was that neither glucose oxidase, or glucose 

dehydrogenase could directly transfer electrons to an electrode surface on their own. This 

lead to the various methods described above of utilizing redox mediators, or advance 

micro machining of the electrode surface to enable direct measurement. The challenge of 

using these synthetic mediator is that many of them could not be employed in the body 

for long term continuous measurement, as potassium ferri/ferro cyanide, phenazine 

methosulphate, and quinones all have either biocompatibility issues, or at the time, 

challenges of tethering these molecules in a consistent manner with low variance and 

cost. In addition, current glucose oxidase and glucose dehydrogenase’s electron mediator 

is bound deep inside the molecule, making access very challenging. Over a decade span, 

Dr. Sode’s team classified both the mechanism in which electrons are transferred through 

FADGDH, PQQGDH, as well as begin performing various sensor designs to optimize the 

novel enzyme [50]–[52], such as altering the distance from the electrode using various 

lengths of SAM lengths.  

The last generation of glucose sensing is direct oxidation of glucose without the use of an 

enzyme, coined 4th generation sensing. This method is heavily dependent on designing 

unique surface chemistry and structures that both are specific to glucose, as well as allow 

the natural FAD group to transfer the electron to the sensor surface. One example is the 

design of Graphitic carbon nitride nanosheets (g-C3N4NS) that were then doped with 

copper ions [53]. In addition, the doping of both cerium atoms, and nickel atoms were 

performed to better enable the electrochemical performance of the sensor, including 

claiming to have strong anti-interferent qualities [54]. Other methods have included 

molecularly imprinted electrochemical sensor (MIECS) or the use of conducting 
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polymers such as poly (3-aminophenyl boronic acid-co-3-octylthiophene) [53], [55]–[58]. 

These methods show some promise, but have not been used in industry, and seem to 

require significant progress to be made before the introduction into everyday use. These 

improvements are dependent on the surface chemistry, and process of manufacturing the 

enable strong reproducibility for which is required of glucose sensors. Yet, as seen in the 

past improvements of glucose sensing, much is derived around the alteration, or 

innovation of surface chemistry.  

The development of continuous glucose sensor platform. 

Next, the development of a continuous glucose sensor will be explored. Various designs 

and innovations enabled continuous sensing overcoming the challenges presented by 

oxygen dependency, and interference. The first major design change for a continuous 

glucose sensor was a reproducible surface chemistry the limited the glucose diffusion, but 

maximized the oxygen diffusion. To achieve this, various methods have been developed. 

First, we will examine the Dexcom “wired” sensor. This continuous glucose sensor is 

based on the use of a 2-electrode system that has a gold wire, coated in polyimide layer 

with a recess etched into the tip. Then, using chemical vapor deposition, various layers 

were applied. These include a glucose oxidase layer, glucose transport membrane layer, 

and a bioinert layer (such as PEG based materials). Starting with the glucose oxidase 

layer, a major challenge to solve was the leaching of the enzyme. This leeching caused a 

limit to the lifetime of the sensor, as well as challenges with reproducibility across 

various batches. First is the use of tethering the enzyme to the electrode as demonstrated 

in the Abbott Libre sensor. This method was first done in order to prevent the leeching of 

electron mediator’s sensors, but then was applied to the same principle for enzyme 
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attachment to mitigate diffusion. Using Epoxy linkage, long chains interconnect the 

exposed amine groups of glucose oxidase down to the vinyl pyridine polymer with 

osmium complexes joined [59]. Once this redox hydrogel is hydrated, the osmium 

complexes can conduct electrons through “holes” or self-exchange in a Marcus-Type 

collisional electron transfer [60].  The next most common method may be the use of 

glutaraldehyde (GA) (or similar material) for enhanced surface adsorption. This 

chemically enhanced physical adsorption method was derived and optimized through 

many design of experiments focused on the concentration of GA, concentration of 

enzyme being bound, roughness of substrate being deposited on, as well as temperature, 

humidity, time, curing time to name a few. Even with the amount of progress made in the 

study and understanding of GA, there are still many unknowns and a lack of clarity on 

exactly how the mechanism may work. For more information please refer to Oveimar et. 

Al. who wrote a very detailed review on the various methods, configurations, and 

possible mechanisms in which GA may react [61]. For the sake of simplicity, this 

discussion will not go into detail on the various possible mechanisms and binding 

kinetics that may be involved with GA.  

The next layer is the limiting membrane. This has two main uses depending on the 

mechanism used to transfer the electrons to the surface of the electrode. For the wired 

enzyme approach, which utilizes a 2nd generation method of detection, the limiting 

membrane serves the purpose of preventing some glucose from permeating through, as 

well as most of the oxygen. This is because in the case for a wired enzyme, oxygen may 

act as an interferent, which can create noise in the system, as well as produce hydrogen 

peroxide which may oxide the oxidase layer affecting the enzyme activity. As for other 
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CGM devices such as Medtronic’s or Dexcom’s sensors, the limiting membrane rejects 

some of the glucose, but allows the oxygen to diffuse in excess. The general design is 

proprietary, but consist of a polyurethane polyurea block copolymer which is a mixture 

composed of various materials such as; hexamethylene, diisocyanate, aminopropyl-

terminated siloxane polymer, and polyethylene glycol. For this design, the oxygen is 

easily permeable through the siloxane material, while glucose only partially diffuses due 

to the hydrophilic diol group . Abbott uses a proprietary vinyl pyridine-styrene 

copolymer with an epoxy group. This is then functionalized with various side groups to 

improve the biocompatibility for the system, even being demonstrated to last over 1 year 

in rabbits with little to no encapsulation [62]. The last layer added is a bioinert layer that 

will be in contact with the body to help minimize immune response and other unwanted 

interactions. This generally makes up what a CGM will look like with various alterations 

based on the company, and proprietary information. The next development in the path to 

a continuous monitor where the predictive algorithms, software, and hardware required to 

enable such technology. For the sake of this discussion, these topics will not be described 

during this writing. 

Current Sources of Error in Glucose Sensors: 

This history of glucose gives a strong depiction of the timeline, and stages for a 

biosensor. There has also been large amounts of work involved with classifying error 

regarding these glucose sensors. In general, there are many factors that may affect a 

reading output by either the point of care sensors or CGM. Sensors are rated according to 

their precision and accuracy. Precision being the reproducibility of the sensor, or 

manufacturing process, and the accuracy being how close any one reading is with respect 
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to the reference measurement. The current gold standard for depicting both accuracy and 

precision is by plotting the measured value in the y-axis, against the reference value in 

the x-axis. This graph can be presented in either the Clark Error Grid, or the Surveillance 

Error Grid. In the Clark Error Grid, majority of the data points should ideally fall within 

zone A, which shows that the measured points are within 20% error of the reference 

methods. The Surveillance Error Grid is a more visual version of Clark Error Grid 

developed recently by Dr. Klonoff [63]. It converts the error into risk levels and present 

them in a color-coded manner.  

The difference between the measured values and reference values are known as errors. 

While there are multiple ways to express errors, such as the coefficient of variance, with 

the emergence of CGM, MARD (mean absolute relative deviation) has gain popularity as 

it is capable of summarizing the accuracy of a CGM over a period of time in a single 

value [65],[66]. It is typically obtained using data from clinical trials by computing the 

difference between the CGM measurements and the values that are simultaneously 

measured by a reference system. These error values are heavily valued by FDA and ISO 

to develop the standards for blood glucose meters. Following this in 2003 the 

International Standards Organization worked with a plethora of health providers, and 

government agencies to develop the ISO 15197 which stated the following (ISO 

standard):  

1) 20% of glucose values above 75 mg/dl 

2) 15 mg of glucose values below 75 mg/dl 

This has recently been updated in 2016 with tighter controls. A summary of important 

values is described below:  



  18 

1. 90% of glucose values within 5% error of reference for blood glucose below 

75 mg/dl 

2. 80% of glucose values within 5% error of reference for blood glucose equal, 

or above 75 mg/dl 

For more detailed information please refer to the full FDA report, or the executive 

summary [65], [66]. 

Various other groups have advised tightening these controls including the American 

Diabetes Association (ADA) suggesting that 95% of glucose readings be within 5% of 

the reference value. There are a multitude of factors which affect the error of these 

devices. Strip to strip error can occur through the size variation of the well shape, as well 

as variance within the amount of enzyme applied. Most test strips use excess enzyme to 

avoid the error caused by slight under application or variation [67]. Although the thinning 

of the enzyme will not affect the glucose reading greatly, bare spots may result in large 

underestimation since most algorithms relate to the functional surface area. The next 

source of variation comes from variance in the electron mediator. Normally the reactions 

occur and the transfer of electrons flows from the glucose, to the enzyme and is carried to 

the electrode by an electron mediator. If there is a shortage of electron mediator, the 

mechanism will change, requiring the presence of oxygen to enable this transfer. 

Immediately, the measurement errors will increase as the sensor then relies on the 

environmental oxygen levels which can vary within the sensing system. Oxygen in 

addition is a major source of variance due to its competitive nature with the electron 

mediator for electrons. This mediator may also be affected by the temperature, and 

stability over time. Both of which may result in an increase of error [68]. Patient factors 
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are also key and can impose great variance on the system [67]. Other patient factors 

include washing their hands, or not up taking enough volume (although with the use of 

microcapillaries this has been greatly improved). With all the room for error, and miss-

use of both point of care, and continuous devices, various filters, and algorithms have 

been employed in attempt to help overcome this weakness.  

Continuous Glucose Algorithms, Calibration, and filtering aspects: 

There have been many review articles on the design of glucose sensors, ranging from 

chemistry, to the transduction method, as well as various clinical studies of their efficacy. 

One characteristic that receives much less attention are the calibration algorithms, and 

methods of filtering the raw signal coming from the device. These algorithms are used for 

various reasons, such as predictive modeling for hypo/hyperglycemia alarms, lag time 

between the signal glucose and current levels, as well as filtering the raw signal into a 

manageable curve [69]. Typically, a linear regression calibration curve is applied for the 

detection of glucose:  

� = �� + �  Eq. 1 

Where y represents the current signal and x the corresponding glucose pair. This equation 

must then be calibrated to find a relation to the blood glucose from the interstitial glucose 

levels which is essentially the slope (m) of the curve. This then takes the form:  

� = ��	

   Eq. 2 

Using a linear regression method as the one described above assumes that the 

independent variable is known, and that the dependent variable is uncertain. Past studies, 

such as those from Panteleon, and Ginsberg ([67],[70]) have shown that using the glucose 
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signal as the independent variable improves the signal. This then flips the equation to be 

as follows:  

 � = �� + � + � Eq. 3 

Where � represents source error, and variance from the calibrated reading to the predicted 

reading. Once given a calibration, the system then will use a technique of minimizing the 

sum of the squares (or similar method) to attempt and eliminate the difference in 

reference value to the calculated values. This takes the equation of:  

min
�,	

∑ ���
��� =  min

�,	
∑ ��� − �������

���    Eq. 4 

Where � is the specific data point, N is the total number of previous points, with the goal 

of minimizing error (�) while controlling the slope and y-intercept (b) ([69]). One other 

major challenge with calibration is the time in which a patient calibrates his/her sensor. A 

group called DirecNet Study characterized various noises introduced to the calibration 

method leveraging Medtronic CGM’s, finding that accuracy quickly degraded when the 

sensors are calibrated during a rapid change in glucose (about 1.5 mg/dl/min or more).  

This suggest that for optimal calibrated, a steady state current, or glucose value would be 

beneficial as the best correlation between ISF and blood glucose occurs during steady 

state periods.  

The next aspect is filtering the data being input, which various common filters being 

used. These are finite impulse response filters, infinite impulse response filters, Kalman 

filter, and wiener based filter. Medtronic has patented a weiner based filter where the 

parameters of a finite impulse response filter are found by minimizing the sum of the 

squares error between the signal and the reference value applied.  The next important 

filter is the Kalman filter which is considered superior to the weiner based on a few 
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research teams work ([69], [71], [72]). The Kalman model switches between the 

prediction value based on statistical certainty based on time-varying events ([69]). 

Depending on the strength of the model, the Kalman filter can achieve stronger glucose 

relationships for ISF to blood, as well as strong predictive analytics. Dimitri Boiroux et al 

performed a comparison of various Kalman filter methods such as least squares 

estimation, Huber regression, and Gaussian maximum likelihood ([73]). The results of 

this study showed that the Gaussian maximum likelihood method achieved best results, 

as well as enabled the ability to include uncertainties from various errors, or from 

population based models. The strong drawback was that this method did require the most 

time to compute the outcome of an event. As powerful as these filters, and linear 

regression techniques are, there is still excessive amounts of information that is lost, or 

disregarding. These include the integration of various metabolic models to help better 

predict future glucose values. These models, such as Medtronic’s virtual patient, can help 

validate, and further allow for predictive decision making. Furthermore, the integration of 

Bayesian methods for risk and uncertainty of predicated values may enable better 

outcomes, as well as enable the ability to better design for population based data as 

previously mentioned.  

Future Trends: 

Glucose sensors have a vast history, which has led to the development of tremendous 

therapy’s, and treatment methods for diabetics. Still, there is much room for 

improvement, and progress in the field as well as adjacent fields in which the technology 

rely upon. These include the development of novel surface chemistry technique which 

both improve the signal transduction methods, but eliminate noise caused by the 
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environment. In addition, technologies in the field of computer science are becoming 

more relevant and applied to everyday systems. The use of machine learning, and 

artificial intelligence has vastly improved many fields including supply chain 

management, manufacturing reliability, and design process ([74]–[77]). This same 

technology is also starting to be leveraged in diabetes treatment, developing individual 

based treatment and therapy that are specific to each patient. This is being implemented 

already in the type 2 diabetes market as recent work employing machine learning has 

begun to categorize the disease sate as 5 separate diseases versus the 2 commonly 

believed today ([78]). Organic solutions have also become more prevalent, as the 

University of Washington demonstrated the integration of a co-polymer with beta-cell 

transplant to help prevent immune rejection of the tissue ([79]). Simultaneously, there are 

new pharmaceutical drugs being developed and tested constantly improving the outcomes 

of patients. In more recently industry, both Abbott, and Medtronic have made several 

leaps towards next generation therapy. Medtronic has begun to pave the road with the 

releases of the 670G insulin pump which not only communicates with a continuous 

glucose sensor, but also can adjust some patients basal according to the value ([80]). 

Simultaneously, Abbott has released the first calibration free sensor titles “Libre” which 

is factory calibrated meaning that patients do not need to calibrate the sensor by using a 

glucometer ([81]). Interestingly, each innovation was done for a separate market. The 

Libre sensor development was done for type 2 diabetes, while Medtronic’s innovation 

was aimed toward type 1.  Other startup companies have begun to appear developing 

major increase in technology. One is called Beta Bionic who has worked with various 

technology groups to develop the first dual hormone treatment pump ([82]–[84]). Most 
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research showed the various challenges with such a device, 1 being the stabilization of 

glucagon (a hormone which signal the liver to release glucose when the blood sugar 

drops to low). Another major development is the algorithm utilized to predict how each 

hormone should interact, and be used. Giving the device complete autonomy greatly 

improves the patient compliance and outcomes, but may also pose a tremendous threat if 

a misreading or mistake should occur. This risk leads to the last major technology 

improvement, which is increased accuracy within the CGM devices. In late March of 

2018, both the Dexcom G6 was approved by the FDA as the first calibration free sensor 

aimed towards type 1 diabetics, as well as Senseonics receiving FDA approval for a 90-

day implantable continuous sensor. Both are major innovations in the goal of designing 

an autonomous artificial pancreas ([85]).  
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CHAPTER 2 

DEEP DIVE INTO INSULIN PUBLICATION AND KINETICS OF INSULIN MRE’S 

Current understanding of the kinetics of insulin, and anti-insulin are based on a series of 

experiments performed to measure the equilibrium constants, both as binding occurred, 

or at equilibrium state to attempt and validate. These studies have shown Scatchard 

analyses with concavity’s like interactions that represent when 2 affinities of binding sites 

are present. By this, we mean that one of the binding sites has high affinity, and another 

site has much lower affinity od the same molecular recognition element ([86], [87]). This 

creates challenges when attempted to model this interaction as the simple antigen + 

antibody reaction. In addition, this begins a more non-linear function. The interesting 

aspect is that insulin has been shown to show both positive cooperativity, and negative 

depending upon the concentration ([87]–[92]). There are many possible reasons why this 

may be the case, first, there may be dimerization issues when the concentration of insulin 

increases. In addition, as the concentration of insulin peaks, steric hindrance may begin to 

increase the dissociation constant. Another concept may be that this relates to the 

differential binding affinities of the antibody. At low concentration, all the high affinity 

sites bind rapidly, but as these began to saturate with the increase in concentration, the 

low affinity sites began to bind.  

Insulin was previously studied in Dr. LaBelle ‘s lab utilizing electrochemical impedance 

spectroscopy. The goal was to fabricate a proof of concept for a point of care insulin 

sensor. The work had many challenges, as the team altered various pH levels, 

concentration of antibody, and very interesting results came from this. The most 

interesting aspect was the appearance of two different frequency peaks. To improve the 
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sensor, we averaged the two peaks together and designed a calibration curve accordingly. 

The figure of this is shown below:  

 

Figure 5: The of a calibration curve of 0, 50, 100, 200, 250, 500, 750,1000, 1500 �  

based off imaginary impedance readings of insulin based on the initial study done in lab.  

This was measure at 810.5 Hz, which the team derived of the two following curves: 
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Figure 6: The two graphs above represent the two-binding frequencies measured using 

the insulin sensors. One is much lower, and the second is much higher, this is attributed 

to the two binding sites, and the distribution of binding.   

The figures above show some of the complexity which was seen when attempting to 

detect insulin. There are various theories built around why this observation occurred, first 

was the idea that insulin has two differential binding sites. Each with different affinities, 

and based on the concentration make interact differently. This was then further 

researched, to find that not only are there two binding sites, but insulin as interact 

laterally with adjacent antibodies. This phenomenon makes the detection very 

challenging, as there is noise added to the system. The analysis then went to see if a 



  27 

CPE 

circuit fit would improve on the system, began to understand the electrical relationship 

with each peak, as well as the combined spectrum. The model use was a modified 

Randel’s circuit. “Using the system geometry and the results of the electrochemical 

circuit modeling, an imperfect parallel plate capacitor (IPPC) is used to model the 

interaction of chemical and biological molecules. The surface of the sensor is considered 

as the bottom plate. The molecular recognition elements and the bounded target 

molecules at the end of the SAM are considered as the top plate of the capacitor. The 

length of SAM chains determines the distance between the two parallel plate capacitors. 

While the bottom plate is relatively smooth, the top plate, depending on the orientation of 

the MREs and the binding of target molecules, can report varying degrees of surface 

roughness” ([93]). This same concept described by Dr. Lin is seen in the circuit, and 

calibration curve below:  

 

Figure 7: The above circuit is a modified randel’s cell. Q, represents constant phase 

element which is has been commonly used to represent an imperfect capacitor. The two 

resistors represent the electron transfer, and solution resistance.  
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Figure 3 can be broken into a few equations, generally the constant phase element (Q) is 

of most interest.  

!"#$ = �
%�&'�(    Eq. 1 ([94]) 

The equation above is the representation of the constant phase element. Where ) =

�−1�
+
,, - = 2/0 with 0 being the frequency of the applied AC potential, and 1 

representing a fractional value between 0 to 1, with 0 describing a pure resistor and 1 an 

ideal double layer capacitor [88]. There are various relationships between the constant 

phase element, and the surface. This was seen also in the data collected, as the two-

different impedance peak location also correlated to different 1 values. The lower peak 

being must lower in value then the higher suggesting that the surface was either more 

rough, or dynamic, creating a less than ideal capacitor in the parallel plate. The relation 

may be due to the different binding affinities of the two IgG sites. Effective capacitance 

(Ceff) is then related to CPE, derived from [95], [96] as a method to estimate what the 

ideal capacitor would look like: 

2344 = 5
+
( ∗ 7 898:

89;8:
<

+=(
(       Eq. 2  

Using this process, the two groups effective capacitance was analyzed and the following 

curves where reported:  



  29 

 

Figure 8: The two figures above represent the 2 different groups, but organized by 

effective capacitance instead of the frequency peak. Interestingly there is very clear 

correlation in group 1, which is represented by the lower frequency range. Whereas group 

2 has very little to no correlation.  

This data shows a very interesting aspect, that the two groups showed very different 

characteristics. The electrode analyzed came across 15 different experiments and where 

scattered throughout the different test. In addition, the lab performs a post-MHDA 

measurement which is used as a quality control for the lab. Nearly all of these electrode 

across both groups (1 and 2) had normal baseline MHDA impedance spectrums, and 

where tightly batched. This process was done through the following protocol taken from 

Malkoc et al. “Electrodes were prepared in batches of eighteen and all electrodes were 

analyzed using EIS. After measuring the post-MHDA impedance, the quality control 
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(QC) was executed by selecting only the electrodes with similar peak frequencies and 

impedance magnitudes that are within 6% to 10% relative standard deviation (%RSD). 

Only the QC passing sensors would then proceed with immobilization.” Malkoc et al. 

This further suggest that the variance is seen in the next stages of the conjugation method. 

This is also refuted through the detection of the blanks, which is the second quality 

control which showed similar results across the batches. Due to these quality control 

methods, the only aspect left to create such a difference is the mechanism of binding.  

Through all of this work, the lab realized that a better understanding of the mechanics for 

insulin interaction with the receptor must be understood. To do this I present a small 

overview of the all the work that has been done, and the current thoughts and 

understanding of the process. 

Measurement of the Affinity of Antibody – Antigen Interactions basic example 

(insulin Example) 

Affinity: The detectability of a specific target biomarker 

Specificity: The relationship between the amount an antibody binds to a target versus 

non-target molecule.  

Affinity can be defined in two methods, first is through kinetics, and the second is by 

thermodynamics. We will go through both for a basic example of insulin and anti-insulin 

interactions.  

Insulin: I  

Anti-Insulin: AB 

Complex: IAB 

Ka: Association Constant 
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Kd: Dissociation Constant 

[I], [AB], [IAB] � Respective concentrations 

>? + @ AB,ACDEEF  @>? Eq. 1 

First, at equilibrium, both the association reaction, and dissociation reaction will exist at 

equal rates (the amount of insulin binding is equal to the amount of insulin unbinding) as 

seen in equation 2 below:  

G�H@IH>?I = GJH@>?I Eq. 2 

The affinity constant K, is defined as the association divided by the dissociation constant. 

Using this to solve equation 2 we get:  

G = AB
AC

= HKLMI
HKIHLMI Eq. 3 

This is the basic kinetic model, which is governed by mass action.  

Next, the basic thermodynamic model will be explained, and expressed. This assumes 

that K, is determined by the amount of total free energy changed within the system being 

interrogated (also assume standard conditions and steady state with 1 Mol reacting)  

∆O =  −PQR1�G� Eq. 4 

R is the gas constant, T is the temperature. This suggest that if there is a change in free 

energy of the system, the affinity will also change. Addition of side charged groups may 

prove beneficial when trying to “control” this binding and affinity. 

[AB]t: total concentration of antibody available  

n: Number of “active” binding sites available on the antibody.  

Before going further, let’s take a quick side walk down the path of how antibodies are 

designed, and structured…. 
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Assume the anti-insulin is a IgG anti-body structure. In general antibodies are made up 

with heavy and light segments which may be referred to as “domains” in which the 

interact with the surrounding environment. These are related to a broader family of 

molecules coined “immunoglobins” (Ig). The heavy chain makes up for about 60 kDa of 

the weight, while the light chain can make up for about 25 kDa. Traditionally, these Ig’s 

consist of a pair of light chains, and heavy chains that are structurally symmetrical in 

design. This design has the shape like that of a Y, with a light chain covalently bound to a 

heavy on one side, then a symmetrical light and heavy chain bound on the left, 

interconnected by various disulfide bounds. In physiological environment, these 

molecules serve various duties, from recognition, to activation, and inhibition to name a 

few. But in the use of a sensor, only 2 aspects are of interest, first is the recognition (or 

specificity to a target) and the second is affinity (how well the target binds). IgG’s 

specifically contain 1 unit, with 2 valence binding sites. Simply put, for each antibody, 

there are 2 binding regions available. In an ideal sensor, these antibodies would be 

immobilized to the surface (see Immobilization section), and then be activated ready to 

bind when the target molecule is applied. This method of application using 

immunoassays (most famously ELISA) have led to the design of very specific antibodies 

that bind for very long periods of time. This poses a challenge for the goal of a 

continuous sensor, which is being able to measure a decrease in concentration. Since 

most antibodies have very high affinity constants, this means that it is much easier to add 
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analyte, then remove it from the system. Shown below is a graphical example of what is 

being discussed:  

Figure 9: The image to the 

left depicts the time, 

versus the change in 

concentration. The light 

green is enzyme based, 

whereas the blue is 

antibody based. The 

dotted lines represent the 

trend lines which the 

signal output may look like, while the stars represent the actual concentrations in the 

sample. 

This challenge is one of the major reasons that antibody based assays have been limited 

in use for continuous based sensor platforms.  

Now, coming back to the simple thermodynamic model, we can assume the insulin 

antibody is an IgG with 2 valance binding sites. One important aspect to note, is that 

these sites do NOT have symmetrical binding affinities, in addition, the molecule once 

bound to a single site, may “conform” over to the second site.  

Let Mr be the molar ration of bound insulin/Antibody for the system. Using this, we then 

get the equation as follows:  

 S = HKLMI
HLMIT

→ H@>?I =  S ∗ H>?IV Eq. 5 

Time  

S
ig

na
l  
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Taking this, and noting that the free antibody sites is equal to the total amount of 

antibody, minus the bound concentration of the complex: 

H>?IW�X�W = 1 ∗ H>?IV −  S ∗ H>?IV → H>?IV�1 −  S� Eq. 6 

Let the unbound insulin: @YZ and use these new assumptions to show the following 

relation: 

G = HKLMI
HKIHLMI = [\∗HLMIT

HLMI]�V3]∗HKI = [\∗HLMIT
HLMIT∗�Z�[\�∗� → [\

�Z�[\�∗�  Eq. 7 

Equation 7, basically helps provide both the relationship between the affinity and the 

molar ration bound, with the concentration of insulin, and number of valence sites. In 

addition, this demonstrate how the affinity is partially related to the amount of available 

insulin to be bound, suggesting that it may have slight dynamics. Furthermore, may be 

utilized as another method to find the affinity through different test, such as Langmuir, or 

Sips plots.  

The next important factor to binding kinetics is the binding association, and dissociation 

which correlates to the time constant of the interaction. From a structural view this all 

depends upon the geometry of the molecule, closeness of fit, and charge of the 

interaction. The association constants for most antibodies are generally similar, ranging 

from around 107-109. The dissociation constant has much larger variance, ranging from 

10-4 for higher affinity’s, up to 104 for very poor affinity. The half-life of the reaction is 

related to the dissociation constant through the following equations:  

JHKLMI
JV = −GJH@>?I → JHKLMI

HKLMI =  −GJ^X Eq. 8 

_1H@>?I + ` = −GJX  Eq. 9 

` = −_1H@>?I  aX X = 0 Eq. 10 
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_1 7 HKLMI
HKLMIc

< = −GJ�X − Xd�  Eq. 11 

When you set time to ½ for the half-life of the binding interaction. Plugging this in we 

then get the following equation: 

X�/� = .ghi
AC

  Eq. 12 

The half-life is the time in which the reaction take place. For a high affinity react the half-

life may be up to 19.25 hours. This is very good for immunoassays due to the need for 

specific and strong binding, but for a continuous sensor this creates a very impractical 

design.  
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CHAPTER 3 

MODELING AND OPTIMIZATION OF BINDING KINETICS 

This is an incredibly over simplified case for many reasons; first is that insulin has 2 

binding sites being an IgG, each of which have different binding affinities to insulin. 

Furthermore, once bound to a single site, lateral interaction may occur (binding from 1 

site, laterally to the next site) from one antibody to the next, or within the same antibody 

from one valence site to the other. In addition, the complexity of how the antibody is 

immobilized must also be considered. Assuming close packaging is a simple way to 

greatly ease the process, but still should be considered. The amount of impact these may 

have are directly related to the affinities of each site. Below is a figure depicting the 

various interactions of importance (excluding surface chemistry of self-assembling 

monolayer) ([67], [87], [97]–[99]).  

Assumptions:  

1) Antibody is an IgG with 2 valence binding sites with different affinities 

2) I1AB is the concentration of Valence site 1, bound with antigen  

3) I2AB is the concentration of Valence site 2, bound with antigen  

4) ABu is the unbound antibody 

5) I is the amount of available insulin near the surface 

6) IB is the concentration of insulin in the bulk solution  

7) The system is well mixed 

8) Close packaging for surface immobilization of antibody 

9) The antigen can move “laterally” from valence site 1�2, and from 2�1 within 

the antibody and between two adjacent antibodies.  
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The figure below depicts the various interactions that may occur with the antibody-

antigen system.  

 

Figure 10: The figure above shows the various binding interactions that may occur with 

the antibody-antigen system. The black circle 1,2 represent the 2 binding sites, while the 

various “K” values are the binding affinities for respective reactions. Note: each K is 

NOT the overall affinity which is the association over the dissociation.  

Using the assumptions, and figure 5, we can attempt to build more realistic rates of 

binding and unbinding of the various molecules.  (refer to drawing) 

JK+LM
JV =  G�H>?YIH@I − G��H@>?I + G��H@�>?I − G�H@>?IH@I − GiH>?YIH@>?I +

G�jH@�>?I − GjH@>?I  Eq. 13 

JK,LM
JV =  G�H@>?IH@I − G��@>?�− G�jH@�>?I + GjH@>?I  Eq. 14 

Jk
JV = G��H@>?�I −  G�H>?YIH@I + G��H@�>?I − G�H@>?IH@I  Eq. 15 

JLMl
JV =  G��HIABI − G�H>?YIH@I + GiH@>?I   Eq. 16 

This is a divalent receptor model, which is one step more complex than the traditional 

antibody-antigen reaction kinetics. There are various factors here which we can control to 

help improve the continuous platform of the system. These include the concentration of 
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antibody bound to the electrode, as well as the amount of antigen “allowed” to reach the 

surface of the electrode. These values will not be constant, in fact, they will most likely 

fit into a distribution function of concentration bound to the surface. The goal would be to 

optimize the concentration on insulin antibody on the surface which will increase the 

dissociation constant to a point at which continuous detection would be possible. The 

goal would be a time constant of lower than 30 minutes if possible, while still have the 

resolution to measure small changes in insulin (pmol). The proposed method to do this 

will be to model the system of differential equations as either normal or beta-distribution 

functions. For simplicity, we will assume that all the distributions are normal and can’t be 

negative.  

 

This is a brief introduction to the basic method in which antibodies interact with antigens. 

It is important to note that in an unideal system these are vastly inadequate to describe the 

system. To overcome this the use of Matlab have been applied to better understand the 

system and interrogate the design.  

The parameters ran for the Matlab program were assuming various concentrations. 

Antibody started at 1 uM of concentration, and was tested both an order of magnitude 

above, and below. This was tested against a gradient of insulin concentrations to see how 

the effect of changing concentration changed the amount bound vs free. The outputs 

analyzed were the following: Sensitivity which is defined as the lowest amount which is 

bound. The change in equilibrium, with respect to change in concentration. This was 

looked at to measure the expected change for continuous detection. Other calculations 

performed were the binding half-life, as this is less in our control due to being related to 
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the dissociation constant. To model test was to run various concentrations until 

equilibrium was reached. Once equilibrium was obtained, this was then set as the new 

initial condition for the next iteration. The concentrations were 50, 250, 500, 750, 1250, 

2500pM. After that increase, the final parameters of 2500 would be set as the initial 

condition and the concentration applied would be back to 0. The code used was derived 

off Dr. Caplan’s binding model, as well as another code altered from a Michaels Menton 

interaction.  

To simplify the model I focused on simply modeling a bivalent interaction (2 binding 

sites with differential kinetics). Dr. Caplan helped design the used matlab code. In 

addition, I attempted to model a more complex version of the kinetics using the effect of 

lateral interactions. The results and code of the first, simpler model as shown below:  

function yp = InsulinAbrhs (t, y, p); 

Ib1=y(1); Ib2=y(2); 

yp=y; 

Iu = p.Itotal - (Ib1 + Ib2); 

Au1 = p.Atotal - Ib1; 

Au2 = p.Atotal - Ib2; 

  

%Insulin bound to antibody site 1 

yp(1) = p.ka1*Au1*Iu - p.kd1*Ib1; 

  

%Insulin bound to antibody site 2 

yp(2) = p.ka2*Au2*Iu - p.kd2*Ib2; 
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p.ka1=1e5; 

p.kd1=9.9e-4; 

p.ka2=1e5; 

p.kd2=1.299e-1; 

p.Atotal=9.178e-6; 

p.Itotal=0e-9; 

p.Vr=100; 

p.Ib10=4.956606e-8; 

p.Ib20=3.801558e-10; 

p.tf=1000;  

y0=[p.Ib10 p.Ib20]; 

options = odeset('AbsTol', 1e-10, 'RelTol', 1e-7); 

[t y] = ode15s(@InsulinAbrhsTake2, [0 p.tf], y0, options, p) 

InsulinBound = y(:,1) + y(:,2); 

figure(1); 

plot (t, y);  

xlabel ('Time'); ylabel ('Insulin bound'); title ('Insulin binding'); 

 

The above code provided and altered by Dr. Caplan was used to test a half-factorial 

design of experiment built on minitab. The chart below shows the variation in parameters 

and the type of factorial ran: 
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Table 1: The half factorial DOE tested with the parameters of dissociation constants, and 

antibody concentration. The association constant was left at 1e-5 to keep high sensitivity. 

 

Each group of settings was tested against the described gradient of insulin above, and the 

outputs where time of dissociation, as well as the “best fit”. Currently this is being 

performed through visual interpretation of the graphs, but other methods may also be of 

interest.  

 

 

Test Number Antibody [] Kd1 Kd2

1.00E+00 1.00E-07 1.00E-04 1.00E-03

2.00E+00 1.00E-06 1.00E-04 1.00E-02

3.00E+00 1.00E-07 1.00E-05 1.00E-01

4.00E+00 1.00E-05 1.00E-05 1.00E-03

5.00E+00 1.00E-05 1.00E-03 1.00E-01
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Figure 11: The above figures are the concentration fluctuation and the binding affects as 

seen with settings 1 of the half factorial DOE. The specific settings of the model are 

shown above. 
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Figure 12: The above figures are the concentration fluctuation and the binding affects as 

seen with settings 2 of the half factorial DOE. The specific settings of the model are 

shown above. Note that for binding site 1, there is a sudden change in binding, but then 

the signal quickly deteriorates. The total binding curve (addition of site 1 and 2) 

resembles a much-improved fluctuation. 

 

 

Figure 13: The above figures are the concentration fluctuation and the binding affects as 

seen with settings 3 of the half factorial DOE. The specific settings of the model are 

shown above. Note that for binding site 1, there is a sudden change in binding, but then 
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the signal quickly deteriorates which may be to the low antibody concentration, as well as 

the low dissociation constant. The total binding curve (addition of site 1 and 2) resembles 

a much-improved fluctuation. 

 

 

 

Figure 14: The above figures are the concentration fluctuation and the binding affects as 

seen with settings 4 of the half factorial DOE. The specific settings of the model are 

shown above. Note that for binding site 1, there shows a nice trend with the increase of 

concentration. Although the second binding site is much noisier, and does not correlate 

well on the decreasing concentration. This negative may appear due to the nature of 

solving the differential equation as a relative negative when compared to the initial value 

point. 
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Figure 15: The above figures are the concentration fluctuation and the binding affects as 

seen with settings 5 of the half factorial DOE. The specific settings of the model are 

shown above. The net binding site has a great trend when compared to other system 

parameters. Although, like system 4, there is an issue with negative values appearing. 

Again, this may be due to the simplification of the model, or the need for more specific 

boundary conditions.  
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Figure 16: The figure above is contour plot showing the different dissociation constants 

for both binding sites derived from the model. The z-axis is the goodness of fit to the 

insulin concentration increases. 5 is the best fit, and 1 is the lowest. The contour plot 

shows that having a higher Kd for both lead to a stronger fit for the concentration.  

The figure above shows that the ideal Kd for fitting both the increase in insulin and 

decrease is when both dissociation constants are higher. This would make sense due to 

the relationship between the half-life of a bond and the dissociation constant.  
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Figure 17: The figure above is contour plot showing the different dissociation constants 

for both binding sites derived from the model. The z-axis is binding response for the first 

site. The contour plot shows that having a higher Kd for both lead to a stronger fit for the 

concentration. In addition, the bottom left of the plot also has an area of high affinity 

binding.  
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Figure 18: The figure above is contour plot showing the different dissociation constants 

for both binding sites derived from the model. The z-axis is binding response for the first 

site. The contour plot shows that having a higher Kd for Kd 2 and a lower for Kd1 lead to 

a stronger fit for the concentration. In addition, the bottom left of the plot also has an area 

of high affinity binding.  

The two figures above represent contour plots relating the dissociation constants for both 

the binding sites to the goodness of fit of the concentration.  These were obtained through 

the half factorial DOE ran altering the antibody concentration, as well as the two 

dissociation coefficients.  
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Figure 19: Optimization plot for the three input parameters which where antibody, and 

the two dissociation affinities. The output measurements where to optimize the goodness 

of fit on a scale of 1-5, with respect to the input insulin concentration.  
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Kd1          9.927E-04 
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The figure above is an optimization of the response fit based on three input parameters. 

These were the two dissociation constants, as well as the concentration of antibody. 

Using these three aspects the optimization function found the ideal values to be: 9.17uM 

of IgG antibody that had the Kd values of .01299 for the low affinity site (binding site 2) 

and 9.9e-4 for the high affinity site (binding site 1). The challenge is the half-life of such 

a low affinity constant. The fist binding site which has the dissociation constant of 9.92e-

4 relates to 770 seconds (12 minutes) for half the antigen to release. The 12-minute half-

life can make real time detection very challenging. The attempt to overcome this, another 

optimizing step was performed based maximizing the dissociation constants. The 

following figures are the binding curves for site 1, and site two based on the optimization 

function in minitab. 

Assume: The IgG has the dimensions (10 x 2 x7 nm), and a 2mm diameter gold disk 

electrode, and close packaging .74 can be achieved.  

SAelec = Pi*r^2 = 1mm^2*3.14 = 3.14mm2 

SAIgG  =  (1 nm)*(5 nm) = 1.5708x10-17 m2 

Max Coverage = (.74)*(.0000314 m2/1.5708x10-17 m2) = 1.4792462e+13 molecules on 

the surface. This is equivalent to 2.455e-11M which is much less then what is needed. To 

bind the required amount of insulin (9.17uM or 5.523e18 molecules) then either the surface 

area must increase by 4 orders of magnitude, or the packaging must be improved. The 

needed surface area would be:  

(.74)*(X /1.5708x10-17 m2) = 5.523e18 � X = 117.17 m2 .  
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To achieve such a surface area the use of mesoporous carbon, or carbon nanotubes need 

to be employed. This has been demonstrated by Brittany Cardinal in LaBelle’s lab as well 

as many other fields of research pushing the development of new surface chemistry.  

Including minimization of half-life: 

 

Figure 20: Multiple Response Prediction for the model. Showing that the optimal set up 

has a high antibody concentration, as well as high Kd’s for both sites.  
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                                SE    95%     95% 

Response                  Fit  Fit    CI      PI 

Half Life Site 2 (Sec)  6.390    *  (*, *)  (*, *) 

Half Life Site 1 (sec)  639.0    *  (*, *)  (*, *) 

Total Response          5.000    *  (*, *)  (*, *) 

 

The optimization function used above was done to include the addition of half binding for 

the two sites. The outcome for each was an antibody concentration of 10uM, and the two 

dissociation constants of .001, and .1 M. The challenge is the time constant which would 

be approximately 10.65 minutes. Depending on the use case of the patient this may or 

may not be acceptable for therapy. This then must be translated to the surface of the 

electrode. As incubating 10uM of antibody will not correlate to that concentration due to 

steric hindrance, loss in rinsing, and close packaging factors. To achieve this amount of 

concentration on the surface of the electrode leveraging 16-MHDA interaction can be 

calculated in the following means:  

Assume: The IgG has the dimensions (10 x 2 x7 nm), and a 2mm diameter gold disk 

electrode, and close packaging .74 can be achieved.  

SAelec = Pi*r^2 = 1mm^2*3.14 = 3.14mm2 

SAIgG  =  (1 nm)*(5 nm) = 1.5708x10-17 m2 

Max Coverage = (.74)*(.0000314 m2/1.5708x10-17 m2) = 1.4792462e+13 molecules on 

the surface. This is equivalent to 2.455e-11M which is much less then what is needed. To 

bind the required amount of insulin (10uM or 6.023e17 molecules) then either the surface 
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area must increase by 4 orders of magnitude, or the packaging must be improved. The 

needed surface area would be:  

 
(.74)*(X /1.5708x10-17 m2) = 6.023e17 � X = 12.78 m2 .  

To achieve such a surface area the use of mesoporous carbon, or carbon nanotubes need 

to be employed.  

Kinetic Model with Optimized Parameter: 
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Figure 21: Once the optimization function was performed in mintab, the new parameters 

where input into the matlab model. These results show a nice relationship between the 

input concentration, as with binding.  

The models above where done on the matlab code given by Dr. Capaln, to help validate 

the writing of another general differential equation solver was done. The second code is 

written below, which used 4 differential equations, one for the insulin free, unbound 

antibody, and the 2 binding sites. In this case, we only test the optimal values derived off 

the optimization function in minitab.  

function rre_AB 

tspan = [0 4000]; yzero = [50e-9; 1e-7; 0; 0]; 

k1 = 3e5; k2 = 1e-5; k3 = 3e5; k4 = 1e-2;  

[t,y] = ode15s(@AB_rre,tspan,yzero) 

plot (t, y) 

function ypI = AB_rre(t,y) 

ypI = zeros(4,1); 

ypI(1) = -k2*y(3) - k1*y(1)*y(2) + k4*y(4) - k3*y(1)*y(3); %Blue Curve (Free insulin) 

ypI(2) = k2*y(3) - k1*y(1)*y(2);%Orange Curve (Unbound antibody  

ypI(3) = k1*y(1)*y(2) - (k2)*y(3) + k4*y(4) - k3*y(1)*y(3); %Yellow Curve (Antibody 

with 1 bound) 

ypI(4) = -k4*y(4) + k3*y(1)*y(3); %Purple Curve (antibody with 2 bonds)  

end 

end 
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CHAPTER 4 

BACKGROUND OF EIS AND OPTIMAL FREQUENCY FOR INSULIN 

Electrochemical impedance spectroscopy is an electrochemical method that interrogates a 

system utilizing an alternating current signal. The signal is swept through a series of 

frequencies that range from 1Hz up to 100KHz. The measured output of the system is 

phase and impedance which can be related to the input factors of the system. EIS offers 

various advantages for biosensing, including improved sensitivity, label-free detection 

and speed (< 90 seconds). It measures the resistance and capacitance of an 

electrochemical system with variable AC signal. The AC signal consists of a varying 

potential and a wide range AC frequency sweep. When varying AC signals are applied to 

the sample of interest, a current response is generated. The current response is measured 

over the range of frequencies encompassed by the sweep and is then used to calculate the 

real, imaginary, phase angle, and complex impedance. Mathematically, the complex 

impedance is defined by the equation below:  

�)-� = p�&'�
K�&'� = !\�-� + )!��-�      Eq. 17 

Where, is the complex impedance, the angular frequency (which is equivalent to where is 

the input frequency), the applied potential,  the current response,  the real impedance, and  

the imaginary impedance.  After investigating the correlation between the complex 

impedance and target concentration, the concept of optimal frequency is applied. The 

optimal frequency of a biomarker is the AC frequency at which the resulting impedance 

best represents the interaction between the biomarker and its molecular recognition 

element (MREs). The optimal frequency is determined by optimizing the responsivity 

and R-square values (RSQ). It offers an orthogonal means for target detection in addition 
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to the specific interaction between target and their MREs. By determining the optimal 

frequencies of the biomarkers of interest, it is proposed that each biomarker can be 

detected at its optimal frequency simultaneously on a single sensor platform, envisioning 

the possibility of a multi-marker detection platform technology. In addition to this 

various other parameter can be measured. These include capacitance, resistance, 

conductance, admittance, and modulus. These different parameters all give distinct 

information about the entire system. This can be useful for characterizing materials such 

as polymers, co-polymers, and such. Furthermore, electron kinetics can be interrogated 

using EIS, which is seen generally through the Warburg style plot (Tacrolimus not yet 

submitted).  

EIS has begun to get more attention as well as various derivatives of the method such as 

electrochemical capacitance spectroscopy being developed and implanted by James 

Davis and others. EIS depends on the theory that each biomarker as a specific and unique 

binding frequency. This has been developed for both single marker detection and 

multimarker methods ([88], [92], [93], [100]–[107]). 

Optimal Frequency (The following section is derived from Lin. Et. Al. (submitted)) 

The optimal frequency has been used by various researchers to quantify the concentration 

of biomolecular interacts that occur on the surface of the electrode. Dr. Lin reported 

various inputs that may affect the frequency at which this signal peaks ([92], [101], 

[108]–[111]). The general cut off frequency has been modeled as the following:  

 

 0� = �
qr�s Eq. 18 
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where R is resistance and C the capacitance. The equation can be used to explain the 

changes of optimal frequencies discovered in the biomarker using the inputs of zeta 

potential, molecular weight, and conductivity which are unique to any one interaction. 

These were extensively studied by Lin et al, using the conjugation of nanoparticles to 

electrode surface and a series of design of experiments to produce a calibration curve 

relating the zeta, conductivity, and mass of a system to the predicted optimal frequency. 

The values of zeta potential and conductivity of nanoparticles and biomarker analytes are 

measured in a free-flowing model, which was different from the immobilized model used 

herein. For the case of insulin, all these values will be approximated through literature 

and other studies.  

Zeta potential is generally defined as the electrostatic potential at the interfacial double 

layer of the between the particles and the surrounding mediums ([112]). Zeta potential 

can also a molecule’s surface charge, although this is an average of an entire system. This 

surface charge then can affect the expected optimal frequency and is used in the analysis 

of insulin. Nevertheless, as shown in by Lin et al. zeta potential can significantly affect 

the optimal frequency. In general, higher negative charge on the surface of particles 

might restrict the flow of electron and thus increase the charge transfer resistance, 

therefore corresponds to the lower optimal frequency recorded ([108], [113], [114]) 

according to Equation 18. 

An increase in the molecular weight of a molecule results in a decrease in the optimal 

frequency as observed by Lin et al. The increase in molecular weight may cause steric 

hindrance and close packing limitations near the electrode surface, as the electron flows 

through the antibody-antigen or nanoparticle-antibody-antigen complexes are obstructed. 
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A larger molecular weight can be attributed to the size and/or density of the molecule. 

Assuming both the antigen-antibody are spheres with a hydrodynamic radius of r, their 

resistance and capacitance can be modeled as: 

  R = ρ �sv
sv, = ρ �

v  Eq. 19                                      

   C = �sxcxy
�;z

y
  Eq. 20 Chaki et al.  

where ρ is the resistivity, ε the dielectric constant of the sphere, εv the permittivity of the 

medium, and d the distance between the antibody-antigen complex and the surface of the 

electrode. According to equation 19 and 20, when the molecular weight changes, the 

change in size and/or density can be reflected in r and d, resulting in a change in the 

resistance and capacitance.  

However, changing the molecular weight can also affect the ρ and ε of the antibody 

complex due the alternating current applied in the EIS and a change in the close packing 

factor ([115]–[117]), affecting the resistance and capacitance of the antibody complex. 

Since r and d are in the denominator and ρ and ε the numerator, altering the molecular 

weight will have trade-off effects depending on the magnitudes of these factors. Judging 

from Equation 18 an increase in the molecular weight suggested an overall increase in the 

resistance and the capacitance, meaning that the growths in ρ and ε are more dominant 

than that of r and d. In other words, an increase in the molecular weight would affect the 

electron flows inside the antibody complex, increase both its resistance and the 

capacitance, and thus lower the cutoff frequency and consequently the optimal frequency 

according to Equation 18. Increasing the molecular weight can also lead to a larger 
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surface area for charge accumulation, affecting the zeta potential around the particles and 

consequently the antibody complex.  

Conductivity is also a factor that significantly affects the optimal frequency. The 

conductivity measures how the electrons flow through a material and is the reciprocal of 

resistivity. Using the similar boundary conditions above, the conductivity of the antigen 

and the nanoparticles can also affect the conductivity of the overall complex. 

Subsequently, the flow of electrons through the complex to the electrode is affected. 

Therefore, conductivity of the overall system can affect the resistance in the equivalent 

circuit, consequently affecting the optimal frequency.  

Significant interaction between the conductivity and zeta was also found to affect the 

optimal frequency. Since zeta potential is an estimation of the surface charge between the 

molecule and the surrounding medium, the repulsion among molecules can affect the 

electron flow through the antibody complex as well. Therefore, the interaction between 

conductivity and zeta can affect the resistance and capacitance of the antibody complex, 

and consequently the optimal frequency. The conductivity of the antibody complex can 

be modeled as: 

σ = σd e��~_�/q��   Eq. 21 obtained from Brust et al. 

E� = �,

�sxcxy
7�

v − �
v;�<  Eq. 22 from Brust et al. 

where σ is the conductivity constant, E the activation energy, R the universal gas 

constant, T the temperature, and e the charge of an electron. As described above, the 

change in the molecular weight may also affect ρ, ε, r, and d, as well as varies other 

parameters. Using these various inputs and the transfer function derived from Lin et al, 

we could predict where the peak frequency should be based on the mass, conductivity 
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and zeta of insulin found in literature. The next goal is to predict what the change in 

impedance may be due to insulin binding. To simplify this model, we are assuming the 

system acts as a perfect capacitor, and has no electron transfer during the interaction of 

inulin and the antibody. The following chart was reprinted with permission of Lin et al. 

which shows the initial DOE built to predict optimal frequency, as well as the transfer 

function derived from the experiments:  

�� = 274.36 + 8.03O�i� + 9.59� − 2.91O��� − 1.34O�i�� + 2.18O���� −

6.89O����  Eq. 23 

where Fo is the optimal frequency, � the conductivity in, � the zeta potential, and m the 

molecular weight. The following chart presents the approximate values for these of 

insulin based on others published work. Immediately there are challenges found in 

attempting to apply this model to insulin. This begins with mass, insulin alone as a mass 

ranging around 5733.55 g./mol (Pubchem.gov) but as the concentration increase, insulin 

may aggregate together which will increase the overall mass of the system. Insulin has 

been thought to aggregate at lower concentrations levels, which may affect the predicted 

mass of the protein. For this model, we will assume monomer insulin molecules only. 

The second parameter of interest is conductivity. This also has been shown to be 

dependent on the concentration of insulin available in solution ([118]). Omathanu Pillai 

et al showed that as insulin concentration increases, the conductivity of the solution also 

does. This may be in part related to the aggregation challenges of the protein or may be 

due to steric effects of charge. Although the conductivity of the insulin molecule will still 

be constant, the system interaction effects seem to impact the mixtures conductivity. First 

starting with the monomer, the mass is 57733.55 daltons. To get the conductance, we 
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leveraged the relationship between impedance which is the inverse of the conductance. 

This led to another interesting point, which is that Dr. Lin used DC based conductance, 

whereas here we use an AC based conductance. The difference would be thought to be 

small due to the 5 mV bias applied. The concept that conductance may be frequency 

dependent calls into question the work done previously, as well as if there are superior 

methods. Nonetheless, the calculated conductance was 2.61 uS. The zeta potential was 

estimated to be about -15mV, this value comes from two sources. First is literature which 

cites a range of that, in addition previous IgG antibodies character for lactoferrin also 

showed a Zeta of -15mV. The same analysis was done for the oligomer, but with 1 main 

difference. This is that there is currently no data on how many insulin molecules are 

oligomerized with each other. To overcome this, the assumption that there is normal 

distribution of molecules bound ranging from 10, up to 10000. Using this bookending, 

the mean frequency was then chosen as the most likely value based on the distribution. 

Below table 2 summarized the results from the analysis. 
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Table 2: The above image shows the calculated optimal frequency based upon the various 

size distributions, as well as the change in conductance. 

This helps depict what may have caused the two peaks to occur. This also may be an 

enabled technology to predict the amount of oligomerization of insulin manufactures 

using the location of the peak. There are a few key assumptions used in the model above 

which do need to validate in lab through an orthogonal method. First is the conductivity 

which is calculated through the impedance measurement’s done using the EIS system 

described. In addition, the fact that we utilized an transfer function based on DC using 

AC values and still predicted correctly may suggest that the type of analysis to measure 

the conductivity may not matter. Or that the 5mV bias is not great enough to impact the 

conductivity measurement compared to that of a DC method. The next important 

assumption in the model is that the zeta potential does not change with oligomerization. 

This is not entirely true since the amount of available surface areas to the surrounding 

medium may impact that double layer capacitance of that system and in turn the zeta. The 

last major assumption is the distribution of mass. The assumed state is Gaussian, as well 

as the limits of 10 self-bound up to 10000. This assumption may be very incorrect, as the 

range may span to millions of molecules or even lower than 10. Yet, the ability to use the 

transfer function to help predict yet another molecule adds more validity to that derived 

equation. 
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Abstract  

Background: Currently, glycemic management for individuals with diabetes mellitus 

involves monitoring glucose only, which is insufficient as glucose metabolism involves 

other biomarkers such as insulin. Monitoring additional biomarkers alongside glucose has 

been proposed to improve glycemic control. In this work, the development of a rapid and 

label-free insulin biosensor with high sensitivity and accuracy is presented. The insulin 

sensor prototype also serves as a prior study for a multi-marker sensing platform 

technology that can further improve glycemic control in the future. 

Methods: Electrochemical impedance spectroscopy was used to identify an optimal 

frequency specific to insulin detection on a gold disk electrode with insulin antibody 

immobilized, which was accomplished by conjugating the primary amines of insulin 

antibody to the carboxylic bond of the self-assembling monolayer on the gold surface. 

After blocking with ethanolamine, the insulin physiological concentration gradient was 

tested. The imaginary impedance was correlated to insulin concentration and the results 

were compared with standard equivalent circuit analysis and correlation of charge 

transfer resistance to target concentration. 
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Results: The optimal frequency of insulin is 810.5 Hz, which is characterized by having 

the highest sensitivity and sufficient specificity. The lower limit of detection was 2.26 

�  which is comparable to a standard and better than traditional approaches. 

Conclusion: An insulin biosensor prototype capable of detecting insulin in physiological 

range without complex data normalization was developed. This prototype will be the 

ground works of a multi-marker platform sensor technology for future all-in-one 

glycemic management sensors.   
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Introduction 

DM encompasses a series of chronic metabolic diseases characterized by inadequate 

glucose metabolism[119]. It is quickly becoming a worldwide epidemic, involving nearly 

30 million people in the United States, and costing nearly 250 billion dollars[120]. 

According to the American Diabetes Association, by the year 2034 the number of 

diagnosed and undiagnosed people with diabetes will increase from 23.7 million to 44.1 

million[121]. With such an increase in prevalence, there has also been a large need for 

next generation technology to help manage the disease with better portability and 

increased sensitivity[122]. Currently, diabetes management involves monitoring glucose 

levels daily, either discretely or continuously, and glycated hemoglobin (HbA1c) levels 

periodically[123], [124]. Overall, detection and monitoring of glucose levels is achieved 

through detection of a single marker: glucose. Recently, there have been strides to 

develop multi-marker assays due to many studies showing monitoring of multiple 

biomarkers associated with a complex disease can enhance the accuracy of disease 

diagnosis, prognosis, management, and treatment[125]–[128]. Figure 1 shows key 

biomarkers involved in glucose management[123] and measuring of these biomarkers can 

give a better understanding of a patient’s state of health. Additionally, enhanced 

biomarker detection would extend to the development of multi-marker simultaneous 

detection on a single POC.  
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Figure 1: Representation of selective markers that influence glucose management  

 

Among the many biomarkers in Figure 1, insulin is a biomarker that directly affects 

glucose levels in achieving glucose homeostasis[129]–[131]. The current SOTA for 

insulin detection are enzyme-linked immunosorbent assay (ELISA) and High 

Performance Liquid Chromatography (HPLC). While these techniques are specific and 

sensitive, they require specialized laboratory technicians and time consuming 

procedures[132], [133]. There is a need for a simple, label free, and rapid insulin sensor 

suitable for a point-of-care setting in addition to a glucose sensor. In this paper we report 

the groundwork of a rapid and label-free insulin sensor using EIS. 

 

The momentum on developing electrochemical insulin sensors has been rising in the past 

few years[100], [134]–[136]. Our group recently showed that, using the imaginary 

impedance of EIS, a biomarker will have an optimal binding frequency (OBF) at which 

the change in imaginary impedance best correlates to the change in target 

concentrations[137]. Furthermore, it would also be possible to measure two biomarkers, 

for example insulin and glucose, simultaneously by simply monitoring their impedance 
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response at their respective OBFs, as suggested by our recent work in detecting low and 

high density lipoproteins simultaneously on a single sensor[137]. We have already 

characterized glucose previously using EIS and have shown its feasibility in glucose 

detection[133]. In addition to developing an insulin sensor prototype, this work aims to 

lay the ground work for a dual marker sensor capable of detecting glucose and insulin 

simultaneously as suggested previously[137], which would improve glycemic control via 

controlling glucose and insulin levels concurrently. Once the initial response of insulin is 

characterized the dual-marker sensor prototype can be developed. Additional biomarkers 

can be later explored to eventually build a multi-marker sensing platform monitoring all 

the major biomarkers of DM, providing the most accurate information for medical 

intervention and glycemic control.  
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Material and Methods 

Reagents and Chemicals  

All chemical reagents were purchased from Sigma (St Louis, MO, USA) unless stated 

otherwise. The 10 mM phosphate buffer saline (PBS) tablets were purchased from 

Calbiochem (Gibbstown, NJ, USA), potassium hexacyanoferrate (III) from EMD 

Chemicals (Billerica, MA, USA), and sulfo-derivative of N-hydroxysuccinimide sodium 

salt (NHS) from Toronto Research Chemicals (Toronto, Ontario, Canada). The redox 

probe reagent used was 100 mM potassium ferricyanide dissolved in pH 7.4 PBS.  

 

Sensor Fabrication and Testing 

The sensor consists of 3 electrodes: working gold disk electrodes (GDEs), reference 

silver/silver chloride electrodes, and counter platinum electrodes acquired from CH 

Instruments (Austin, TX, USA). All EIS measurements were performed at room 

temperature using a CHI660C Electrochemical Analyzer from CH Instrument at the 

electrode’s formal potential from 1 Hz to 100 kHz.  A Buehler felt pad with 0.05 μg grit 

aluminum oxide particles was used to polish the GDEs with 10 figure-eight motions, 

followed by a 20-minute sonication in deionized water. After electrode polishing, cyclic 

voltammetry (CV) from -1.0 V to 1.0 V was used to obtain the formal potential and bare 

electrode EIS was performed to evaluate sensor cleanliness.  

 



  85 

 

Figure 2 (Scheme): This illustration shows sensor fabrication process and detection 

mechanism. A: Bare GDE. B: 1 mM 16-MHDA self-assembled linker. C: EDC/NHS 

coupling. D: immobilization of 156 �M insulin antibody. E: 1% ethanolamine blocking. 

F: Binding of insulin antigen to antibody. G: Electrochemical cell consists of a 1000 �L 

pipet tip with counter and reference electrodes.  

 

Once the sensors were cleaned, the SAM was created by incubating 1 mM of 16-

mercaptohexadecanoic acid (MHDA) for one hour at room temperature. The sensors 

were then rinsed and stored dry overnight to ensure proper deposition of SAM, as SAMs 

takes hours to reach their final thickness and contact angles[138], [139]. The carboxylate 

groups of the 16-MHDA were activated by incubating the sensor in 10 mM 1-ethyl-3-(3-
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dimethylaminopropyl) carbodiimide (EDC) and 80 mM sulfo-NHS for one hour at room 

temperature. After rinsing with DI, 100 μL of 156 �M of insulin antibody prepared in pH 

7.4 PBS was incubated onto the electrode surface for one hour. After rinsing with PBS 

the sensors were blocked with 1% ethanolamine for 30 minutes to block any remaining 

active sites, completing the sensor fabrication process. The schematic of sensor 

preparation can be found in Figure 2. The finished sensors were stored at 277.15 K until 

testing. All sensors were brought to room temperature before running each test. Insulin 

antigen gradients were prepared through serial dilution with PBS. Each sample contained 

200 mM potassium ferricyanide and equal volume of insulin antigen to form 100 �L total 

solution volume. Final insulin samples were made according to the physiological 

concentration range from 0 �  to 1500 �  to establish a calibration curve. 

 

Quality Control  

Electrodes were prepared in batches of eighteen and all electrodes were analyzed using 

EIS. After measuring the post-MHDA impedance, the quality control (QC) was executed 

by selecting only the electrodes with similar peak frequencies and impedance magnitudes 

that are within 6% to 10% relative standard deviation (%RSD). Only the QC passing 

sensors would then proceed with immobilization.  

 

Determination of OBF and Circuit Modeling 

Once EIS was performed, the imaginary impedance values were correlated to target 

concentrations to calculate slope and R-square values (RSQ) across the frequency sweep. 
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The OBF is the frequency at which the slope peaks with RSQ values above 0.85. All 

circuit modeling was performed using ZsimpWin software. 

 

Results  

Using the methods described above, the impedance responses from 7 electrodes were 

used to determine the OBF of insulin, which was found to be 810.5 Hz (Figure 3). This 

relationship was evident in all 7 electrodes as the peak frequency shifts consistently 

comparing to the post-MHDA results (Figure 3a).  

 

Figure 3: A) This figure is an example of the QC mentioned above, and shows the 

average peak location, and magnitude of the desired electrodes within the test data. B) 

This figure shows the logarithmic fit (slope) and RSQ values by fitting the imaginary 
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impedance against target insulin concentrations across the frequency sweep. 810.5 Hz 

was found to be the OBF at which both slope and RSQ peaked.  

 
 
 
 
Figure 4 shows the relationship between the imaginary impedance and the target insulin 

concentration range (0 �  to 1500 � ) at the OBF of 810.5 Hz. The target insulin range 

is the physiological insulin range[140]. The correlations between the impedance and 

concentrations were 0.926 and the logarithmic slope was -378.1ln(x) with x being the 

concentration of insulin and the intercept being -5001.1. The slope is represented as 

negative due to the nature of imaginary impedance values however; the graph represents 

correlation between increasing concentration and impedance. The %RSDs for this 

physiological concentration range from low to high concentrations were 11%, 5%, 26%, 

19%, 14%, 5%, 5%, 25%, and 16%. The lower limit of detection was calculated to be 

2.64 � .  
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Figure 4: This is a representation of a calibration curve of 0, 50, 100, 200, 250, 500, 

750,1000, 1500 �  based off imaginary impedance readings of insulin detected with N = 

7 repetitions at each concentration. Error bars were calculated from the standard 

deviations.  

 
 
Using ZsimpWin, the ideal circuit model that best describes the electrochemical system 

of insulin sensor can be obtained (Figure 5). The solution resistance and the electron 

transfer resistance were both modeled as resistors and were labeled as Rsol and Ret, 

respectively. The pseudo-capacitor is modeled as Q and represents the piece of the 

system that can be correlated to the molecular recognition element being used[137].  
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Figure 5: The image above is the circuit used to model the electrochemical cell. Rsol is the 

resistance due to solution, Ret is the electron transfer resistance. Q is used to represent the 

constant phase element (CPE) or the imperfect capacitor of the system.  

 
 
 
Figure 6 shows the correlation between charge transfer resistance and target insulin 

concentrations derived from equivalent circuit modeling, a standard method of analyzing 

EIS data[141].  

 

Rsol 

CPE 

Ret 
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Figure 6: Calibration curve relating the calculated charge transfer resistance against the 

change in concentration of insulin in � .  
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Discussion 

Electrochemical Impedance Results  

Comparing the results between Figure 3a and 3b, it was evident that the shift in peak 

frequency is due to the binding of insulin antibody. The shifts are reproducible as the QC 

was executed rigorously. Since the slope peaks at 810.5 Hz with RSQ value of 0.93, 

810.5 Hz is determined to be the OBF of insulin. However, it is important to note that 

there is often a trade-off between the sensitivity (slope) and specificity (RSQ) when 

considering the optimal frequency of EIS[133]. Figure 4 shows the calibration curve for 

purified insulin at 810.5 Hz. For insulin, a logarithmic fit with slope of -378.1 

Ohm/Ln(� ) and RSQ of 0.93 was found to correlate imaginary impedance with 

concentration of insulin. The purpose for running a calibration curve experiment is 

because ideally, a hand held device could be programmed with these equations and upon 

running EIS on an unknown sample, the calibration curve would convert an imaginary 

impedance reading into an insulin concentration.  

 

The lower limit of detection (LLD) and dynamic range are important parameters in 

determining the efficiency of the system. The LLD and dynamic range were calculated 

based off the standard deviation and slope of the system. The LLD was found to be 2.64 

�  and dynamic range from 50 �  to 1500 �M, which meets clinical needs. From a 

clinical standard detection of insulin, ELISA can accurately detect labeled insulin at 1.39 

�  [142]. This is slightly lower then what we have demonstrated with this sensor 

prototype, but with optimization of the electrode design, the LLD may be lowered to that 

of ELISA. Even more so, techniques such as ELISA or high-performance liquid 
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chromatography have labeling steps and many associated techniques that can be 

performed only in laboratories. EIS on the other hand, is a label free technique, and the 

sensor prototype can be translated into screen printed sensors, allowing the possibility of 

POC with portable device and disposable test strips similar to the setup of self-

monitoring of blood glucose[132], [143].  

 

The Food and Drug Administration requires all glucose meters to be within 20% variance 

from standards[144]. Currently, the replicated results show that across all sample 

concentrations the %RSDs ranges from 5% to 26%, suggesting there are still room for 

improvements. Although batch analysis has helped eliminate some of the variance 

between GDEs, polishing and reusing GDEs is a significant source of variance as surface 

roughness of gold can affect SAM formation[145], affecting the capacitance of imperfect 

parallel plate capacitor (IPPC) explained in later section. Transition to screen printed 

sensors will reduce the variance of surface roughness under consistent manufacturing 

procedures and rigorous QC. 

 

We have shown that the EIS method of using imaginary impedance can very well detect 

insulin in the physiological range. Future studies will look into replicating the trials with 

much smaller concentration interval sizes such as 1 pM, which is equivalent to a gold 

standard ELISA to distinguish between even the smallest changes in concentration. 

Interference and clinical samples will also be tested to evaluate robustness and optimize 

further toward a POC device. This will lay a solid foundation for the multi-marker 

platform sensor to truly enhance a person’s glycemic control. Lastly, unlike other 
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publications on insulin detection there was no modification to the insulin solution via 

pH[134], [135].  

 

Circuit Analysis 

Generally, EIS is analyzed with equivalent circuit modeling. Typically, the best-fit circuit 

for a semi-circle looking Nyquist plot is the Randles circuit, which models the 

electrochemical interactions as a resistance-capacitor circuit in parallel.  The electron 

transfer resistance can be used to derive a calibration curve linking back to input 

concentration[88], [142]. However, recently some researchers have demonstrated the use 

of a modified Randles circuit that implements a constant phase element (CPE) to model 

the capacitance[137], [140], [146]. CPE is commonly referred to as either a leaky or 

imperfect parallel plate capacitor (IPPC). The bottom plate is the surface of electrode and 

the top plate is the top of the SAM with MREs immobilized owing to SAM’s insulating 

property[147]. The MREs different shape, orientation and size alter the smoothness of 

SAM in various ways, constituting the IPPC. As binding occurs, the target-MRE complex 

further alters the capacitance of the IPPC, affecting the electron transferring properties 

and impedance signals, which is evident in Figure 6. This model gives a better 

description of the actual system when compared to the ideal Randles. Since imaginary 

impedance correlates to capacitance[141], we used imaginary impedance to correlate 

target concentration to reflect the impedance signal generated from changes in CPE, 

which we believe to have less noise than using the complex impedance approach and 

omits the trouble of circuit modeling. Owing to this nature, it’s no surprise that the LLD 

in imaginary impedance (2.64 � ) is lower than that of the complex impedance approach 
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(14.46 � ).    

 

Conclusion  

 

An insulin biosensor prototype that has the potential to serve as a POC device alongside 

with glucose has been developed. Detection of insulin and other markers affecting 

individuals with diabetes will greatly enhance the ability of individuals with diabetes to 

better control their own blood glucose levels. With a reproducible LLD of 2.26 �  the 

study suggests that imaginary impedance based techniques are not only sensitive enough 

to detect physiological concentrations in purified solution of small proteins such as 

insulin but can also compete with current SOTA as well.  

 

Future work includes transitioning to a disposable strip that is capable of insulin detection 

in clinical samples. Currently, we are starting to make screen printed electrodes (SPEs) 

using a MPM Accuflex Speedline screen printer in house. Depending on the dimension of 

the sensor, machine overhead and the amount of sensors fabricated, the current cost of a 

sensor can be as low as 1$ per sensor with order size of 45,000 sensors. We hope to 

translate the insulin sensor prototype onto the SPEs manufactured in house to enhance 

quality control and obtain a more practical insulin sensor prototype that can be translated 

to industrial mass manufacturing. Additionally, once the insulin sensor has been truly 

optimized, the next step would be the design of dual-marker detection sensor using the 

imaginary impedance of EIS to detect glucose and insulin simultaneously at their 

respective OBFs. This would be ground breaking and would potentially provide next 

generation glycemic control to many individuals with diabetes.  
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