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ABSTRACT

In material science, microstructure plays a key role in determining properties, which

further determine utility of the material. However, effectively measuring microstructure

evolution in real time remains an challenge. To date, a wide range of advanced

experimental techniques have been developed and applied to characterize material

microstructure and structural evolution on different length and time scales. Most of

these methods can only resolve 2D structural features within a narrow range of length

scale and for a single or a series of snapshots. The currently available 3D microstructure

characterization techniques are usually destructive and require slicing and polishing

the samples each time a picture is taken. Simulation methods, on the other hand, are

cheap, sample-free and versatile without the special necessity of taking care of the

physical limitations, such as extreme temperature or pressure, which are prominent

issues for experimental methods. Yet the majority of simulation methods are limited to

specific circumstances, for example, first principle computation can only handle several

thousands of atoms, molecular dynamics can only efficiently simulate a few seconds

of evolution of a system with several millions particles, and finite element method

can only be used in continuous medium, etc. Such limitations make these individual

methods far from satisfaction to simulate macroscopic processes that a material

sample undergoes up to experimental level accuracy. Therefore, it is highly desirable

to develop a framework that integrate different simulation schemes from various scales

to model complicated microstructure evolution and corresponding properties. Guided

by such an objective, we have made our efforts towards incorporating a collection

of simulation methods, including finite element method (FEM), cellular automata

(CA), kinetic Monte Carlo (kMC), stochastic reconstruction method, Discrete Element

Method (DEM), etc, to generate an integrated computational material engineering
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platform (ICMEP), which could enable us to effectively model microstructure evolution

and use the simulated microstructure to do subsequent performance analysis. In this

thesis, we will introduce some cases of building coupled modeling schemes and present

the preliminary results in solid-state sintering. For example, we use coupled DEM and

kinetic Monte Carlo method to simulate solid state sintering, and use coupled FEM

and cellular automata method to model microstrucutre evolution during selective

laser sintering of titanium alloy. Current results indicate that joining models from

different length and time scales is fruitful in terms of understanding and describing

microstructure evolution of a macroscopic physical process from various perspectives.
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Chapter 1

INTRODUCTION

Nowadays, materials researchers are largely focused on studying physical processing,

microstructure characterization, property prediction, and performance evaluation, as

well as their mutual relations, as demonstrated in Fig.1. Among them, microstructure

characterization is a key component in terms of understanding why different materials

have distinctive properties. Both in research and manufacturing, it has been realized

that obtaining non-destructive microstructure and dynamical microstructure evolution

via experimental techniques up to satisfactory accuracy is still a challenging subject,

which is the primary reason for the efforts towards inventing other possible approaches.

Computational methods, especially in modern era of increasingly powerful computing

platforms, are very promising alternatives to assist scientists and engineers to achieve

better understandings of the relation among processing, microstructure evolution and

various material properties. Although it has been extensively explored, current progress

of individual computational modeling technique is still way below the expectation of

industrial utilization. The limitation of individual modeling scheme is obvious: the

more accuracy it achieves, the more difficult it is to deal with large system; on the

other hand, the larger the system it can handle, the less accurate the result will be.

The accuracy and computational efficiency seem to be a contradictory pair for single

simulation method.

One of the promising solutions lies in creating coupled multi-scale combinative

model which incorporates various modeling methods originally meant for specialized

purpose at unique time and length scales. For instance, to study the effect of phase
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Figure 1: Relation among processing, microstructure, property and performance in
materials research

transition on mechanical properties, ab inito computation can be used to calculate

the electronic structure and basic physical properties; molecular dynamics can be

used to simulate the collective and emergent behavior of a group of molecules and

related thermodynamic properties; phase field and cellular automata are generally

used to simulate the nucleation and growth of grains; finite element analysis or discrete

element method can be applied to determine the macro properties, such as fatigue life

and cracking resistance. Understandably, the time and length scale as well as modeling

assumptions that each simulation method is invented upon might be significantly

different, which requires elaborate interfacing algorithms and the quantification of

modeling uncertainty propagation to combine multiple simulation methods and make

them function as a whole. This thesis presents our effort towards establishing such type

of combinative simulation schemes for some widely applied manufacturing processes,
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and some preliminary results are also demonstrated. An illustration of “powder

processing - solid state sintering - 3D microstructure reconstruction” combinative

simulation procedure is demonstrated in Fig.2.

Figure 2: An example of combinative modeling process. It starts with DEM
simulation of powder packing; then, randomly cut a 2D slice of the initial 3D packing
configuration and do a kinetic Monte Carlo or cellular automata simulation to model
microstructure evolution on the slice; finally, a 3D microstructure can be obtained

though stochastic reconstruction algorithm.

A range of modern industrial processes start from powder preparation, such as solid

state sintering, 3D printing, production of porous filters, etc. Currently, two major

modeling methods are popular in the application of powder simulation: continuum

method, such as two fluid model (TFM), and discrete element method (DEM). With

increasingly booming power of modern computing devices and the extensive exploration

of parallel computing, DEM simulation has gained more and more attention due to

the intrinsic similarity between discrete element and granular nature of powders, and

increasingly accurate characterization of particulate matter with DEM. A discharging
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hopper, which is a common chemical engineering technique, will be provided as a

demonstration of DEM modeling.

With the packing structure of a powder system, we are able to simulate the

powder-based manufacturing processes. However, directly simulating a 3D system

is usually time-consuming and computationally demanding. Therefore, the majority

of microstructure simulations are performed in 2D. Even though there are cases

where a 2D simulation can be representative enough to understand a specific type

of microstructure, especially when the system is isotropic and homogeneous, it’s

still necessary to obtain 3D microstructure representation for other analysis, such as

mechanical property calculations, performance evaluations, etc. Past research has

shown that, with a 2D image of microstructure and some necessary assumptions, the

3D microstructure can be statistically reconstructed with high efficiency based on the

extracted statistical descriptors from the image, such as n-point correlation functions.

We will present an instance of stochastic microstructure reconstruction procedure for

metallic composite employing two point correlation function and radial distribution

function.

With the ability of DEM simulation for powder preparation and 3D microstructure

reconstruction from 2D slice, next, we are trying to establish a combinative model to

simulate solid-state powder sintering. First, we generate an statistically uniform initial

powder configuration as an input for sintering; then we randomly cut a slice from

this configuration and use kinetic Monte Carlo method to simulate the microstructure

evolution on this 2D structure; finally, we reconstruct the 3D microstructure based

on the 2D sinterng structure via aforementioned stochastic reconstruction algorithm.

Through the combination of DEM, kinetic Monte Carlo and stochastic reconstruction,

it provides a promising approach to numerically investigate the effect of geometry and
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size distribution of particle packing on sintered microstructure in an highly efficient

way.

In another case of model coupling, we use finite element method (FEM) to

simulate the temperature field of the selective laser sintering process of Ti6Al4V,

which is further treated as external input directing the microstructure evolution of

β → α phase transition at 990 ◦C, simulated via cellular automata method. This

coupled model allows us to investigate the effect of different processing parameters,

such as laser power, radius of laser spot and scanning path, etc., on titanium alloy

microstructure evolution during laser sintering. The potential application of this

model might be the computer-aided alloy product design.

The thesis goes as follows: in chapter 2, the DEM modeling and its application on

a discharging hopper containing powders with different size distribution and geometry

is introduced using open source software, MFIX, a suite of multi-phase flow simulation

models; in chapter 3, the examples of static 3D microstructure reconstruction and

dynamic microstructure evolution reconstruction are discussed, utilizing stochastic

quantifiers, such as two point correlation function, radial distribution function and

surface-surface correlation, etc, which are also briefly overviewed; in chapter 4, a

coupled model of DEM and kinetic Monte Carlo method is introduced and applied

on a typical solid-state sintering process; in chapter 5, an integrated model of finite

element method and cellular automata for selective laser sintering of Ti6Al4V is

discussed in details; in chapter 6, we present our effort towards inverse reconstruction

of elastic modulus field from displacement response of extra cellular matrix featured

by interconnected collagen fibers; in chapter 7, we summarize this thesis and make

some outlook.
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Chapter 2

DEM SIMULATION FOR POWDER PACKING USING MFIX-DEM

2.1 Background

Traditionally, it’s a common practice to treat granular media as continuum media

and use finite element method to obtain the mechanics. However, as the modern

computing system gets more and more sophisticated and efficient, discrete element

method (DEM) gains its popularity in handling moderate-size system with particle

number of several millions [1]. Compared to continuum method, DEM is superior

in capturing complicated nonlinearity and local behavior using nonspherical and

polydispersed packings, referring to Fig.3 as an instance. By extending conventional

DEM simulation to polydispersed packing and nonspherical particles, it enables us to

deal with problems through accurate description of the physics and provides solutions

with high fidelity.

Figure 3: left: packing configuration of mono-sized ellipsoidal granular particle, the
colors denote spatial orientations; right: packing configuration of ellipsoid and sphere

mixture.
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Among those tools that have been developed for DEM simulation, MFIX

(https://mfix.netl.doe.gov), a suite of multi-phase flow models, provides a unified

framework under a single user interface and code base to simulate a diverse range of

multiphase flow problems [2]. Hence, MFIX eliminates the need to externally couple

separate modeling softwares. Since its initial release, MFIX has been constantly

updated and successfully employed to model a variety of multiphase flow problems

relevant to industrial and energy-related applications [3, 4, 5, 6, 7].

In spite of its versatility, the lack of computationally efficient methods to simulate

polydispersed systems has posed some problems when modeling industrial applications.

Accurately capturing the particle size distribution is crucial to processes involving

denser granular flows and jammed granular packings[8, 9]. More importantly, the

capability to handle polydispersed systems easily is often available in other open-source

and commercial DEM software (e.g., LIGGGHTS [10] and EDEM [11]). Therefore,

we make our contribution to enhance MFIX-DEM’s physical modeling capability

for handling particle-size polydispersity for the pure DEM model. Specifically, we

have modified the data structure and created new subroutines to separately handle

geometrical and physical parameters of the solid phase particles. This approach

enables MFIX-DEM to handle an arbitrary number of solid phases, each possessing a

distinct arbitrary particle-size distribution. New input keywords have been introduced

to allow convenient specification of an arbitrary particle-size distribution function,

such as normal, log-normal, uniform, and even user defined distributions, which

are realized through initial condition or mass-in-flow boundary condition. Our new

implementation is systematically validated using hopper bin discharge experiments,

a commonly used set-up with many industrially relevant applications. In particular,

we use two types of glass beads with distinct size distributions to fill the hopper
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in two possible packing arrangements, i.e., well-mixed and layered configurations,

with varying mass (particle number) ratios. The experimentally obtained discharge

dynamics (e.g., normalized discharge mass fraction for one of the phases vs. the overall

discharge mass fraction) for different systems is found to be in excellent agreement with

the corresponding simulation results, which clearly validates the newly implemented

polydispersity features.

2.2 Implementation of polydispersity

The basic idea of our new implementation is to separately save the particle

geometrical parameters (i.e., diameters) which are particle-specific and the physical

parameters which are phase-specific. In particular, we modified the array D_P0 such

that it saves the diameter of each particle in the system, thus possessing a size of the

total particle number N . For example, D_P0(i) now gives the diameter of particle i,

instead of the diameter of particles for phase i. Accordingly, the phase index of each

particle is not assigned according to its diameter, but assigned based on its physical

properties, e.g., material density. Although the new implementation offers just three

types of built-in size distribution functions, addition of new distributions can be easily

done through the RANDOMNO_MOD.F subroutine. For a user-specified distribution,

the particle diameter information is provided in a standalone input file and is read in

during the initialization stage.
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2.3 Verification of polydispersity implementation on MFIX-DEM

We verify the new implementation by simulating particle discharge from a 3D

hopper with equal-sized spherical beads. The 2016-1 release version of MFIX is also

used to simulate the same system for comparison. The hopper contains a cylinder part

of height 5cm and diameter 6cm, connected to a cone part with height 5cm and angle

of 30◦. The bottom of the hopper cone is further connected to a short cylinder tube of

height 0.2cm and diameter 0.5cm. The beads possess a diameter of 0.068cm, spring

constant of 2.5× 105g/s2, friction coefficient of 0.01 and coefficient of restitution of

0.5.

The initial configuration for the discharge simulation is first obtained by settling the

hopper with 15540 beads from the top (through the mass-in-flow boundary condition),

while the bottom is kept closed (through the non-slip-wall boundary condition). The

resulting packing is allowed to settle to completely dissipate the kinetic energy, and

then the resulting stable packing is used as the initial configuration for the discharge

simulation until the hopper is fully discharged.

Table 1 summarizes the verification simulation details, including the number of

particles, domain decomposition configuration and total CPU hours required for full

discharge. Fig.4 shows the discharge dynamics for the monodisperse system, i.e.,

discharged mass vs. discharge time, obtained using both the original 2016-1 release

of MFIX-DEM and our new polydispersed implementation derived from the 2016-1

release. It can be seen that in both cases, the initial discharge rates are relatively

small and become stable after 2 seconds after the discharge starts. The discharged

mass fractions for the two cases slightly deviate from one another due to uncertainty

in the initial settled packing configurations. The overall discharge dynamics agree
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very well with one another. In addition, the total CPU hours for the simulations are

also comparable for the two cases. These results verify the correctness of our new

implementation.

Table 1: Summary of the computing layout used in the verification case.

Domain De-
composition
Configuration

Total Number
of Particles

CPU Hours

MFIX-DEM 2016-1 2× 2× 2 15544 5.45
Polydispersity Implemented 2× 2× 2 15540 5.44

Figure 4: Comparison of discharge dynamics between MFIX 2016-1 release version of
polydispersity implemented version.
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2.4 Validation of polydispersity implementation

To validate our polydispersity implementation, we carry out hopper discharge

experiments. The hopper used in experiments (shown in Fig.5) is 3D printed using

a Stratasys Dimension 1200es SST (Stratasys Ltd. MN, USA), with ABSplus ther-

moplastic. It contains a cylinder part of 12.5cm in height and 12.5cm in diameter,

connected to a cone part with a height of 3.5cm and 55◦ cone angle. The bottom of

the hopper cone is further connected to a short cylinder tube of height 1.3cm and

diameter 2.5cm. The hopper is leveled and clamped to a support stand. A glass slide

gate is used to close and open the hopper outlet, to fill and discharge, respectively.

Figure 5: 3D printed hopper used to conduct the experiment for polydispersity
implementation validation.
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The granular materials used in the experiments are silica beads (soda-lime silica

glass). The silica beads are purchased from Potters Industries, PA, USA; with

particle density 2.5g/cm3 in different sizes. The particles are further sieved to narrow

the particle size distribution (PSD). The sieved particles are analyzed using Malvern

Morphologi G3SE (Malvern Instruments Ltd, UK), and two distinct sized polydispersed

silica beads with a bi-modal size distribution (shown in Fig.6) are used for the

experiments. Specifically, the system can be considered to contain two phases of solid

particles, each possessing a distinct normal size distribution, with same physical and

chemical properties. The fine particles possess a normal distribution with a mean

of 1.5mm and standard deviation of 0.3mm, and the coarse particles also possess a

normal distribution with a mean of 2.9mm and standard deviation of 0.1mm.

Figure 6: Left: fine (brown) and coarse (green) particles used in experiment; Right:
diameter distribution of fine (blue) and coarse (red) particles.

While particles discharge through the hopper, the materials become tribocharged

and tend to stick to the walls of the hopper. To remove any charging of the particles

during discharge, the particles are rinsed with an anti-static solution. The anti-static

solution is prepared by dissolving 1ml of ASA antistatic agent (Electrolube, UK) into
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100ml of ethanol. The particles are subsequently dried overnight producing particles

with a coating of the anti-static solution. No change in the discharge dynamics and

segregation is observed before and after the particles are coated with the anti-static

solution.

The mass of the fine and coarse particles used in the experiments are 580g and

420g respectively. Two initial packing configurations are prepared using the fine and

coarse particles. In the first configuration, the fine and coarse particles are well mixed.

For this, both the fine and coarse particles are divided into 10 equal portions. One

portion of fine particles is mixed with one portion of coarse particles using Turbula

T2F Shaker-Mixer (Glen Mills Inc., NJ, USA). The same procedure is repeated with

remaining 9 portions to produce 10 equal portions of well mixed fine and coarse

particles. The hopper outlet is closed, and each portion is loaded into the hopper

slowly, to minimize segregation due to free fall. The particle bed is leveled after each

portion is loaded. In the second configuration, the coarse particles are first packed at

the bottom of the hopper (with the outlet closed) and then the fine particles are loaded

on top of the coarse particles to form a layered packing. Each layer is leveled after

loading into the hopper. The top view of initial and intermediate stage configurations

of both setups are shown in Fig.7. We note that these configurations were also used

by Ketterhagen et al., (2007) [12].

The discharge experiment is then carried out using a discontinuous sampling

method[13]. The outlet of the hopper is opened, and samples of equal mass are

collected using the discontinuous sampling method. The collected samples are sieved

and weighed to determine the mass of fine and coarse particles. Then the discharged

mass fraction of both the fine and the coarse particles are determined, and the segre-

gation data is plotted as the normalized mass fraction of fines and the fractional mass
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Figure 7: Top views of both experimental setups at the beginning and intermediate
time. (a)(b)Initial and intermediate images for well-mixed case. (c)(d)Initial and

intermediate images for fine-over-coarse layered case.

discharged. During the experiments with the well-mixed configuration, segregation

occurs during loading the hopper with particles. So, each experiment is replicated

5 times to minimize the effects of any non-homogeneous regions on the discharge

segregation results, for both the well mixed and the layered configuration. The experi-

mental results are compared with MFIX simulations to validate our polydispersity

implementation.

On the MFIX simulation side, we also prepare powder packings in both well-mixed

and layered initial configurations, which are identical to the experimental setups

described above (i.e., with the same hopper geometry, particle size distributions and
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fine to coarse particle ratios). For the simulations, we consider that the glass beads

possess a spring constant of 2.5× 105g/s2, friction coefficient of 0.5 and coefficient of

restitution of 0.9, which are consistent with the previous studies [12]. As discussed

before, to more efficiently handle size distribution in the simulation, a maximum and

minimum value are specified for each size distribution. The fine-to-coarse particle

mass ratio is 0.58: 0.42, which corresponds to a fine-to-coarse number ratio of 8: 1.

The parameters for the particle phases used in our simulations are summarized in

table 2. We note that in our subsequent simulations, the initial packings are generated

using the mass-in-flow boundary condition (i.e., the particles are filled into the hopper

from the top). In current implementation, the mass-inflow boundary condition does

not allow one to precisely control the number of particles for each solid phase to

be filled in the hopper. Therefore, the mass ratio is first determined in the hopper

discharge simulation and then reproduced in the experiments, in which the mass for

each phase can be precisely controlled.

Table 2: Summary of size distribution parameters and quantities of fine and coarse
particles.

Sample Mean Diameter Max. Diameter Min. Diameter Total Mass
Fine 0.15cm 0.17cm 0.13cm 580g

Coarse 0.29cm 0.31cm 0.27cm 420g

For well-mixed configuration, the initial configuration for the discharge simulation

is obtained by filling the hopper with both fine and coarse beads together from the

top through the mass-in-flow boundary condition, while keeping the bottom closed

with a non-slip-wall boundary. The flow rates of the fine and coarse beads through

the top are 16cm/s, with volume fraction of 0.0145 for coarse beads and 0.0165 for

fine beads at the injection boundary. The resulting packing is allowed to settle to
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completely dissipate the kinetic energy, and the resulting well-mixed stable packing is

used as the initial configuration for the discharge simulation until the hopper is fully

discharged.

Fig.8 shows the snapshots of the discharge simulations at several different times.

The discharge dynamics are quantified using the normalized fine mass fraction, γNf ,

of the discharged particles vs. the overall discharged mass fraction, γ̄. Specifically,

γNf = γdischargef /γ0
f , where γ

discharge
f is the fine mass fraction of the discharged particles

and gamma0
f is the fine mass fraction in the initial packing configuration. Also,

γ̄ = mdischarge/m0, where mdischarge is the total discharged mass and m0 is the mass

of the initial particle packing.

Figure 8: Left: the side view of initial configuration for well-mixed case; Right: the
top views (top) captured at time equal 2s, 6s, 9s, 11s and the corresponding side

views (bottom).

In the ideal case that during the entire discharge process, the packing configuration

stays well mixed, the resulting γNf -γ̄ curve would be a simple step function. However,

due to segregation effects, the fine particles cluster at the hopper bottom towards the

end of the discharge, leading to an increase of γNf towards the end of discharge (see
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Fig.9). The simulated γNf curve agrees very well quantitatively with our experimental

data.

Figure 9: The segregation plot for well-mixed configuration, which is the normalized
fine mass fraction at each time step against total fraction mass discharged.

For the layered configuration, the initial configuration for discharge simulation

is obtained by first filling the hopper with coarse beads from the top through the

mass-in-flow boundary condition, while the bottom is kept closed through the non-

slip-wall boundary condition, and then continuing to fill the hopper with fine beads,

which settle on top of the coarse beads. The flow rates of the fine and coarse beads

through the top are 16cm/s, with a volume fraction of 0.02 for each layer respectively.

The resulting packing is allowed to settle to completely dissipate the kinetic energy,

and the resulting layered stable packing is used as the initial start for the discharge

simulation until the hopper is fully discharged.
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Fig.10 shows the snapshots of the discharge simulations. The discharge segregation

as quantified via γNf -γ̄ is shown in fig. 11. As demonstrated in fig. 10, in this case,

the coarse particles packed at the hopper bottom discharge first, which opens up a

channel for the fine particles on the top. Therefore, the resulting γNf remains zero

for a while (before a channel is opened up), and is monotonically increasing as the

discharge proceeds after the channel is open. Towards the end of discharge, since most

of the fine particles in the hopper are gone, γNf begins to decrease and finally starts to

fluctuate due to very small number of fine particles remaining in the hopper. Again,

our simulated γNf -γ̄ curve agrees very well quantitatively with the experimental data.

Figure 10: Left: the side view of initial configuration for layered case; Right: the top
views (top) captured at time equal 2s, 6s, 9s, 11s and the corresponding side views

(bottom).

2.5 Conclusion

In summary, we enhanced the capability of MFIX to handle particle-size poly-

dispersity for granular flow simulation via pure DEM mode . We have modified the
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Figure 11: The segregation plot for layered configuration, which is the normalized fine
mass fraction at each time step against total fraction mass discharged.

data structure and created new subroutines to separately handle geometrical and

physical parameters of the solid phase particles. This allows MFIX-DEM to easily

handle an arbitrary number of solid phases, each possessing an arbitrary particle-size

distribution. New key words have been introduced to allow easy specification of a

variety of built-in and user-defined distributions, for both the initial condition and

mass-in-flow boundary condition modules. The new implementation is systematically

validated using discharge hopper experiments, a commonly encountered set-up with

many industrial applications, with polydispersed particles. The simulated discharge

dynamics, including the normalized fine mass fraction vs. the overall discharged mass

fraction, are found to be in excellent agreement with the corresponding experimental

data, which clearly validate our new implementations.
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The current implementation can easily handle particle size dispersity as large as

10:1. To efficiently handle larger dispersity (e.g., >20 : 1), additional modifications of

the codes (e.g., by implementing adaptive near-neighbor list [14]) are required to make

simulations in an acceptable time frame. Nonetheless, the new polydispersity feature

added to MFIX-DEM enables users to better capture the actual particle geometry

of the solid phases, and thus, would lead to more accurate simulations of multiphase

flows involving particle phases especially in the dense flow regime.

With the ability of efficiently simulating polydispersed particle packing, a powder

precursor can be easily obtained for later application of simulating powder based

manufacturing processes, such as solid-state sintering. The current implementation

will also pave the way for further development, such as feature of the non-spherical

particle shape, as the data structures for handling individual particle sizes can be

readily generalized to handle other particle geometry parameters. If finished, we will

be able to create more realistic powder packing configurations with both polydispersity

and nonspherical particles.

The results demonstrated in this chapter are published in Powder Technology 317,

117 (2017).
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Chapter 3

STOCHASTIC RECONSTRUCTION OF MICROSTRUCTURE FROM 2D TO 3D

3.1 Background

In previous chapter, we introduced DEM simulation to generate large packing

configuration of solid powder. Unfortunately, based on currently available compu-

tational techniques, directly performing microstructure evolution for 3D system is

quite time-consuming. Nevertheless, an accurate knowledge of the 3D polycrystalline

microstructure of a material is crucial to its property prediction, performance opti-

mization and design. If we are able to simulate microstructure evolution in 2D, and

then restore to the 3D microstrucutre, it might be a more efficient way to deal with a

large system.

Here, we present a computational scheme that allows one to stochastically recon-

struct the 3D microstructure of a highly heterogeneous polycrystalline material with

large variation in grain size, morphology and spatial distribution, as well as the distri-

bution of second phase particles, from single 2D electron-back-scattered-diffraction

(EBSD) micrograph. Specifically, the two-point correlation functions S2 are employed

to statistically characterize grain morphology, orientation and spatial distribution and

are incorporated into the simulated annealing procedure for microstructure recon-

struction. During the reconstruction, the original polycrystalline microstructure is

coarsened such that the large grains are reconstructed first and the smaller ones are

generated later. The second phase particles are then inserted into the reconstructed

polycrystalline material based on the pair-correlation function g2 sampled from the
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2D backscattered electron (BSE) micrograph. The utility of our multi-scale scheme is

demonstrated by successfully reconstructing a highly heterogeneous polycrystalline

Sn-rich solder joint with Cu6Sn5 intermetallic particles. The accuracy of our recon-

struction is ascertained by comparing the virtual microstructure with the actual 3D

structure of the joint obtained via serial sectioning techniques.

Advanced experimental techniques such as the electron-back-scattered-diffraction

(EBSD) imaging are routinely used to characterize the microstructure of polycrystalline

materials. Due to the nature of this technique, only the polished flat surface of the

material can be probed, which results in a 2D micrograph showing a “slice” of the

grain morphology, orientation, and spatial distribution. Serial sectioning technique[15]

has been used in combination with EBSD to obtain 3D polycrystalline structures.

Specifically, after the EBSD micrograph of the top surface is obtained, the specimen

is polished such that the top layer is removed and a new surface is imaged. This

process is continued until a sufficient number of 2D slices of the material are obtained,

which are then stacked to generate a 3D reconstruction. Although widely used, this

technique is tedious and very time-consuming. Moreover, it destroys the specimen

and is thus, not suitable to study time-dependent structure evolution under external

stimuli.

Recently, a number of stochastic reconstruction techniques have been developed that

allow one to generate “virtual” polycrystalline microstructures from three orthogonal

2D EBSD micrographs associated with the three surfaces of the specimen[16, 17].

Specifically, each 3D grain is modeled as an ellipsoid, whose three principal axes are

estimated from the 2D micrographs. A packing of ellipsoids is generated using a

Monte Carlo simulation, whose semi-axis statistics satisfy those obtained from the 2D

images. The ellipsoids are allowed to grow to fill the entire simulation domain, which
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leads to 3D grain structure. Then the grain orientations are assigned based on the

corresponding statistics obtained from the 2D micrographs and a 3D polycrystalline

microstructure is reconstructed. More recently, a generalized method [18, 19] has been

devised that incorporates additional statistics such as orientation correlations directly

obtained from 3D EBSD reconstructions. In addition, a new tessellation scheme has

been used to better represent grain morphology. These stochastic reconstruction

techniques have been proven to be very successful in generated virtual microstructure

for large homogeneous polycrystalline materials for subsequent quantitative analysis.

An important assumption for the aforementioned stochastic reconstruction tech-

niques is that the 2D micrographs contain a sufficiently large number of grains in

order to lead to robust statistics. In addition, the spatial correlations between the

grains with different shapes and sizes as well as the distribution of different grains

were not explicitly considered in the reconstruction, assuming small variations in these

characteristics. Although these assumptions are true in many engineering materials, it

is also useful to devise techniques that reconstruct highly heterogeneous polycrystalline

structures containing a small number of grains with large variation in grain size and

morphology from 2D micrographs.

Let’s take an example of a highly complex, multiscale microstructure of pure Sn

alloy melted over copper, as shown in Fig.12. Fig.12(a) shows the EBSD image and a

backscattered electron (BSE) image obtained via scanning electron microscopy (SEM)

is shown in Fig.12(b). Fig.12(c) is the segmented BSE image showing the intermetallic

particles. The microstructure of a pure Sn solder alloy consists of Sn-rich grains

surrounded by a mixture of finely dispersed Cu6Sn5 intermetallic particles which form

due to solid state diffusion of copper atoms, and their quantity depends chiefly on

reflow temperature, reflow time, cooling rate [20, 21] and thermal aging [22]. Other
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important microstructural features are the intermetallic layers of Cu6Sn5 and Cu3Sn

that form at the interface between the Sn solder and the copper substrate, and these

are an essential component for good metallurgical bond. Solder alloys serve as the

primary interconnection material in a microelectronic package and have been studied

by researchers for several decades [23, 24]. There are several reported techniques

for microstructural characterization and failure analysis in 2D and 3D and by both

destructive and non-destructive methods [25, 26, 27, 28]. In this work, we use serial

sectioning technique to experimentally obtain 3D crystallographic information in a

solder volume. This technique is performed using conventional polishing coupled with

SEM or EBSD mapping.

Figure 12: (a) Electron back-scatter diffraction (EBSD) image (i.e., orientation image
map) of a Sn-based Pb-free solder joint. (b) Back-scatter electron (BSE) image of the
joint. (c) Segmented BSE showing the distribution of fine intermetallic particles
(white phase) in the joint. The dimension of the material is 350× 300× 45µm.

Synthetic reconstructions of a thin section of the polycrystalline microstructure

as well as the distribution of intermetallic particles using serial sectioning techniques

are shown in Fig.13. It can be clearly seen that the second phase precipitates possess

a much lower volume fraction than the Sn-rich phase (i.e., the grains). In addition,

the Sn-rich grains possess a large variation in their shape and size and a highly

heterogeneous spatial distribution. Specifically, several large equiaxial grains are found

in the middle of the system and a number of significantly elongated grains are clustered
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close to the boundary of the system. This is due to the fact that during the growth

process, the middle of the joint is under a more homogeneous temperature field and a

small number of nuclei, while in the boundary region, the large temperature gradient

and large number of nucleation sites lead to rapid directional growth. Furthermore, we

find that a significant number of second phase intermetallic particles are distributed

on the grain boundaries.

Figure 13: (a) Experimental reconstruction of a thin section of the polycrystalline
microstructure using serial sectioning technique from the associated 2D EBSD

dataset. (b) Experimental reconstruction of the 3D distribution of the intermetallic
particles using serial sectioning technique from the associated 2D BSE dataset.

Statistically reproducing the aforementioned highly heterogeneous microstructural

features in 3D virtual microstructure from a single 2D micrograph is very challenging

and requires a novel stochastic reconstruction technique. Here, we propose a stochastic

multi-scale computational procedure to reconstruct the 3D polycrystalline structure as

well as the second phase particles. In particular, we employ the two-point correlation
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function S2 to statistically characterize the grain morphology, orientation correlation,

and spatial distributions. The value of S2 at r gives the probability of finding two

randomly selected points separated by a distance r simultaneously falling into the same

grain of interest in the system [29]. The original colored EBSD image is smoothed at a

reasonable threshold to generate a grayscale image. The smooth step is very important,

since the original quality of EBSD image is not very suitable for computer processing

due to the fact that it is difficult to detect grains while filter out experimental noise.

Moreover, it may be unfruitful to take efforts reconstructing grains of really small

percentages because of their small influences on the overall spatial correlations. The

S2 of each grain in smoothed grayscale image will be computed and incorporated into

the simulated annealing procedure devised by Yeong and Torquato[30, 31].

In addition, due to highly heterogeneous nature of the system, we decompose the

microstructure into five different length scales (the algorithm works fine for more

scales, but it will be more time-consuming), and reconstruct the structural features on

each length scale separately. The large grains are generated first and smaller grains

are then reconstructed. All the intermetallic particles are placed in the polycrystalline

structure at last by matching the associated pair-correlation function sampled from the

SEM micrograph. To ascertain the accuracy of the reconstruction, we quantitatively

compare the grain size and orientation distribution of the virtually reconstructed

microstructure with the experimentally obtained microstructure.

We note that a variety of other statistical descriptors have been developed to

characterize different structural features a polycrystalline microstructure[32, 33, 34,

35]. In addition, other computational schemes such as the “branching” method [36]

and the phase recovery method [37] have also been devised to represent polycrystalline

microstructure from two-point statistics. Our approach distinguishes itself from the
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aforementioned polycrystalline reconstruction methods in the following aspects: (i)

it uses general correlation functions (extracted from 2D micrographs) instead of

predefined shapes (e.g., ellipsoids) to characterize and model individual grains; (ii)

it can effectively handle highly heterogeneous morphology with a wide distribution

of grain shape and size via a multi-scale reconstruction framework; (iii) it integrates

structural information in 2D EBSD and BSE micrographs to generate realistic 3D

virtual microstructure with both polycrystalline grains and second phase intermetallic

particles.

3.2 Statistical Microstructure Descriptors

3.2.1 n-point correlation function

In general, the microstructure of a heterogeneous material can be uniquely deter-

mined by specifying the indicator functions associated with all of the individual phases

of the material[29, 38]. Without loss of generality, we focus on two-phase materials

(binary medium) in this work. We note that the generalization of the subsequent

discussion to a multiple-phase system is straightforward. Consider a statistically

homogeneous material M occupying the region V in the d-dimensional Euclidean

space (d = 1, 2, 3), which is partitioned into two disjoint phases: phase 1, regions V1

of volume fraction φ1 and phase 2, regions V2 of volume fraction φ2. It is obvious that

V1 ∪ V2 = V and V1 ∩ V2=0. The indicator function I(i)(x) of phase i is given by

I(i)(x) =


1 x ∈ Vi

0 x ∈ V̄i
(3.1)
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for i = 1, 2 with Vi∪ V̄i = V andI(1)(x)+I(2)(x) = 1. The n-point correlation function

Sin for phase i is defined as follows:

S(i)
n (x1,x2, · · · ,xn) = 〈I(i)(x1)I(i)(x2) · · · I(i)(xn)〉 (3.2)

where the angular brackets 〈· · · 〉 denotes the ensemble averaging over independent

realizations of the medium. The two-point correlation function S
(i)
2 for phase i is

defined by

S
(i)
2 (x1,x2) = 〈I(i)(x1)I

(i)
( x2)〉 (3.3)

For a statistically homogeneous medium, S(i)
2 is a function of the relative displacements

of point pairs, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (x2 − x1) = S

(i)
2 (r) (3.4)

where r = x2 − x1. If the medium is statistically isotropic, S(i)
2 is a radial function,

depending on the separation distances of point pairs only, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (|x2 − x1|) = S

(i)
2 (r) (3.5)

Interested readers are referred to Ref.[29] for a detailed discussion of S(i)
2 and other

higher-order S(i)
n . Henceforth, we will drop the superscript i in S

(i)
2 for simplicity.

Without further elaboration, S2 will always be the two-point correlation function.

If the material of interest is anisotropic, a vector-argument S2(r) is generally

required to characterize the system. For systems with a preferred direction (e.g.,

microstructure containing elongated grains along one direction), one can employ the

directional two-point correlation functions to characterize the material, i.e., those

computed along three orthogonal directions. Although the directional correlation

functions do not contain the full set of structural information in S2(r), they have

been shown sufficient to model anisotropic heterogeneous materials with elongated
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inclusions[39, 40]. Therefore, we will employ the directional functions to characterize

the grain morphology, orientation correlation and spatial distribution. However, in

general, S2 alone is not sufficient to uniquely determine the microstructure[41, 42].

3.2.2 Surface correlation function

The surface correlation functions contain information about the random interface

in a heterogeneous system[43]. Since such statistics arise in and are of basic importance

in the trapping and flow problems, it is conventional in that context to let phase 1

denote the fluid or void phase, and phase 2 denote the solid phase. The simplest

surface correlation function is the specific surface s(x) at point x, which gives the

interface per unit volume, i.e.,

s(x) = 〈M(x)〉 (3.6)

where M(x) is the interface indicator function defined as the absolute gradient of the

phase indicator function, i.e.,

M(x) = |∇L(x)| (3.7)

We note that for statistically homogeneous material, the specific surface is a constant

everywhere and thus, is simply denoted by s.

The two-point surface correlation functions for a general heterogeneous material

are defined by

Fss(x1,x2) = 〈M(x1)M(x2)〉 (3.8)

and

Fsv(x1,x2) = 〈M(x1)L(x2)〉 (3.9)
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which are respectively called the surface-surface and surface-void correlation func-

tions[29, 43]. For statistically homogeneous and isotropic materials, the functions Fss

and Fsv only depend on the scalar distance r = |x1 − x2|. We note that, unlike Sn,

the surface correlation functions do not have a direct probability interpretation, since

the probability of finding a point exactly falling on the the interface is always zero.

Instead, they can be associated with the probability of finding points in the dilated

interface region with thickness δ in the limit δ → 0 [44].

3.2.3 Two point cluster function

The two-point cluster correlation function C2(x1,x2) gives the probability that two

randomly selected points x1 and x2 fall into the same cluster of the phase of interest[45,

46]. For statistically homogeneous and isotropic materials, C2 depends only on the

relative distance r between the two points. It contains complete clustering information

of the phases, which has been shown to have dramatic effects on the material’s physical

properties[29, 47]. However, unlike S2 and the surface correlation functions, the cluster

function generally cannot be obtained from lower-dimensional cuts (e.g., 2D slices) of

a 3D microstructure, which may not contain correct connectedness information of the

actual 3D system.

It has been shown that C2 is related to S2 via the following equation

S2(r) = C2(r) +D2(r) (3.10)

where D2(r) measures the probability that two points separated by r fall into different

clusters of the phase of interest. In other words, C2 is the connectedness contribution to

the standard two-point correlation function S2. For microstructures with well-defined

inclusion, C2(r) of the inclusions is a short-ranged function that rapidly decays to zero
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as r approaches the largest linear size of the inclusions. We note that although C2 is a

two-point quantity, it has been shown to encode higher-order structural information,

which makes it a highly sensitive statistical descriptor over and above S2. Fig.14

illustrates some of these statistical descriptors in a binary system.

Figure 14: Schematic illustration of different correlation functions in a binary
microstructure.

3.2.4 Pair correlation function

The pair correlation function g2 of a particle system describes how average local

number density varies as a function of the distance from a reference particle[48]. It is

formally defined as below:

g2(r) =
1

4πNr2ρ0

N∑
j=1

N∑
i=1,
i 6=j

δ(r − rij) (3.11)
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where N is the total number of particles in the system, ρ0 is the average number

density, i and j represent different particles. In particular, the quantity 4g2πr
2dr is

proportional to the probability of finding a particle which is away from the reference

location with a distance of r. We will employ g2 to characterize the distribution of

intermetallic particles in the Sn matrix.

3.2.5 Effective grain size

Generally, a grain can possess an irregular shape and it is desirable to devise a

parameter to characterize its linear size. Here, we only focus on 2D slices of a grain

since the original statistics are obtained from 2D EBSD micrographs. Given a 3D

reconstruction, the average grain size can be computed by considering separate 2D

slices and averaging the result.

As shown in Fig.15(a), given a general grain shape, its effective linear size is defined

as the average of radii of the inscribe circle Ri and the circumscribe circle Rc, i.e.,

Rgrain =
1

2
(Ri +Rc) (3.12)

We note that there are many different ways for defining an effective grain size. For

example, the “number volume” (or area) based metrics have been suggested. Here,

the reason we use the as-defined effective size is that in our system there are both

equiaxed and elongated grains, which is difficult to characterize their sizes accurately

in conventional way. In this a volume (area) based metric is less informative than this

linear metric to characterize the anisotropy feature of the grains.

32



Figure 15: (a) The radii of inscribe circle and circumscribe circle associated with an
irregular grain. (b) Illustration of the equivalent ellipse associated with a general
anisotropic grain shape and its director defined as the rotation angle of the long

semi-axis of the equivalent ellipse.

3.2.6 Director of anisotropic grains

In our system, a significant number of grains possess an elongated shape. How

such anisotropic shapes are orientated in the microstructure is also an important

characteristic of the microstructure and can be used to validate our reconstruction.

We note the orientation of an anisotropic grain shape is a geometrical characterization

of the polycrystalline microstructure and is to be distinguished from grain orientation,

which refers to the orientation of the atomic lattice structure within the grain. In the

subsequent discussion, we first introduce the concept of geometric moment and how

it can be calculated, which is crucial to the characterization of the anisotropic grain

shape.

In image processing, a geometric moment is defined as a weighted average (moment)

of the intensity values associated with the pixels in the image[49]. Given a general

shape, an associated equivalent ellipse can be defined as one possessing the same
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geometric properties as the original shape, such as geometric moments. We then define

the director of a general grain, which specifies the orientation of the anisotropic grain

shape in the microstructure, as the rotation angle associated with the long semi-axis

of the equivalent ellipse of the shape, see Fig.15(b).

For a 2D continuous function f(x, y), which specifies a continuous intensity field,

the geometric moment with an order of (p+ q) is defined as

mpq =

∫∫
ξ

xpyqf(x, y)dxdy (3.13)

where ξ denotes integration over the entire field. For a scalar image with pixel intensity

I(x, y), its moment of (i+ j) can be calculated as :

mij =
∑
x

∑
y

xiyjI(x, y) (3.14)

The geometric center of the discrete intensity field I(x, y) can be calculated as:

x̄ =
m10

m00

, x̄ =
m10

m00

(3.15)

The central moment with an order of (p+ q) then is defined as:

upq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (3.16)

Finally, the director of the grain shape as specified by the intensity field I(x,y) (or the

rotation angle of the equivalent ellipse) can be computed as follows:

α =
1

2
tan−1(

2µ11

µ20 − µ02

) (3.17)

3.3 Stochastic Multi-Scale Reconstruction Procedure

The basic idea of stochastic reconstruction procedure devised by Yeong and

Torquato[41] is as follows: It’s assumed that the microstructure of interest can be
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statistically characterized by a set of correlation functions. If the microstructure

is statistically homogeneous along a particular direction, the correlation functions

computed from 2D slices normal to that direction can present the 3D structural features.

Then one can incorporate such correlation functions into the simulated annealing

procedure to reconstruct the 3D microstructure. Starting from an initial guess of the

3D microstructure, an “energy” function is defined as the sum of squared difference

between correlation functions sampled from the initial guess and the corresponding

target functions. The initial microstructure is evolved by exchanging a pair of pixels

associated with different grains such that the energy is decreased on average. This

amounts to a random walk in the “microstructural space”. Energy-increasing exchange

is allowed during the initial stage of the reconstruction as determined by the Metropolis

rule (see definition below). The simulation is terminated if the energy is smaller than

a prescribed threshold value (specified below for the current reconstruction).

In this work, we use S2 to characterize the microstructure, which has been employed

to model a variety of complex material systems[50, 51, 52, 53]. The energy function,

defined as the sum of the squared difference between the two point-correlation functions

associated with the target 2D micrograph and the 3D reconstruction, is gives as follows:

E =
N∑
α=0

L∑
r=0

[Sα,reconstr2 (r)− Sα,target2 (r)]2 (3.18)

where α indicates different grains and there are totally N grains in the system, r

represents the separation vector between two points, and L is half of the linear size of

target micrograph (i.e., periodic boundary condition is applied). As discussed below,

we use directional correlation function to characterize the system, and thus r is chosen

along three orthogonal directions.

A Monte Carlo method is used to evolve the system by exchanging the values of

two randomly selected voxels belonging to different grains. The energy change due to
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the exchange of these two voxels is then computed. The acceptance probability of a

trial exchange is determined by the Metropolis method, i.e.,

pacc(old→new) =


e

−Enew−Eold
T if Enew ≥ Eold

1 if Enew < Eold

(3.19)

where Enew and Eold are the energy of the new and the previous (old) microstructures,

respectively, T is an effective temperature which is chosen to be high initially (such

that the initial acceptance rate of trial microstructures is roughly 0.5) and decreases

as the simulation proceeds according to the cooling schedule T (t) = 0.99tT0, where t

is time and T0 is initial temperature. This process is continued until the energy is

smaller than a prescribed threshold value, i.e., E∗ = 10−4, then the 3D reconstruction

is considered complete.

In principle, this reconstruction procedure can be applied to any system with a

finite number of grains. However, as the number of grains in the system increases,

the associated computation cost will increase dramatically due to large number of

correlation functions involved. From the definition of energy, it can be seen that adding

one grain will lead to three additional terms in the summation, making the numerical

minimization more difficult to achieve. Moreover, in our system the grain size and

shape distributions are far from uniform. The grains with low volume fractions (minor

grains) have less contribution to overall energy change in each evolution step compared

to grains with high volume fractions (major grains). If all of the grains are considered

together, the minor ones would suffer from a lower accuracy in the reconstruction.

Generally, large grains have large value of S2 and they will dominate during energy

minimization, while the small ones have so small values of S2 that their magnitudes

may be very close to the minimization errors arising from the reconstruction of large

grains, which significantly impairs the accuracy of reconstruction of small grains.
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To solve this problem, we develop a multi-scale reconstruction procedure, in which

we reconstruct the grains on different length scales (i.e., with different volume fractions)

separately. It works as follows: We first define an index called “importance factor” for

each grain, which is simply chosen to be the volume fraction of that grain. In other

words, the larger the volume fraction, the more important the role this grain plays

in the reconstruction. In this way, we “quantify” the importance of each grain and

first explicitly reconstruct the major grains with volume fractions while coarsening

the minor grains. In this work, we use a threshold value φc = 0.1 to determine the

major grains. Thus, the minor grains, that possess a relative volume fraction smaller

than φc, are merged temporarily into single grains and reconstructed together with

the original major grains in the system. When the major grains are successfully

reconstructed, the reconstruction domain is restricted to the merged grain regions

within which the minor grains are reconstructed. We repeat this process until it is

not necessary to further merge minor grains. In fact, the reconstruction works best

if the smaller grains are spatially clustered, so they can naturally be treated as a

large cluster. However, the general stochastic reconstruction method can also generate

reasonable reconstructions if the small grains are randomly dispersed in the structure.

This is because the spatial statistics, i.e., the two-point correlation functions used to

characterize the grains, contain information on both grain morphology (i.e., in the

short-range behavior of S2) and spatial correlation between the grains (i.e., in the

long-range behavior of S2). We note that two orientations that are spatially separated

(not the same grain) would show up as a single grain cluster, which may introduce

physical inconsistencies to grain orientation distribution in the reconstructed result.

Therefore, our reconstruction method is restricted to grain morphology reproduction

in 3D from 2D microstructural information. This procedure allows us to reconstruct
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the morphology of minor grains with the same level of accuracy as the major grains.

Given sufficient computational resources, this approach can handle a material system

with a large number of grains with a wide range of shapes and sizes.

3.4 Reconstruction of 3D Grain Morphology and Orientations

3.4.1 Image analysis

The original EBSD micrograph is a colored grain orientation map, with each

color indicating a specific orientation of the grain. To obtain the EBSD image, the

sample, which is a pure Sn solder joint with butt joint geometry, was polished to a

final finish of 0.05µm colloidal silica to obtain mirror finish quality, as required for

performing EBSD. Scanning electron microscope (JEOL JSM-6100) equipped with

TSL EBSD system was used to obtain EBSD patterns of the solder joint. The patterns

were collected at a step size of 0.6µm on the entire solder joint cross-section area

of about 300× 300µm. These patterns were analyzed for its crystal orientation and

then color coded using TSL OIM data collection and analysis software. To reduce the

noise, the EBSD micrograph was processed using ‘single average orientation’ cleaning

procedure inbuilt in the analysis software. This method provided the information for

one complete cross-section. From here, the 3D experimental dataset is collected by

using serial sectioning process. Mechanical polishing was done using a semi-automatic

polisher which was standardized to polish a section depth of 2µm every step. EBSD

maps were obtained at every polishing step and Avizo® Fire (VSG, Burlington, MA)

software was used to import these images as a stack. 3D voxels were then defined by

interpolation, thereby rendering the entire experimental volume in 3D.
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For purposes of reconstruction, we consider that each color within the EBSD

micrograph is associated with a “grain cluster”, and convert the original orientation

map into a multi-grain-cluster microstructure. Since the orientation map inevitably

contains noise, we now describe our approach for image smoothing and extracting

different grain clusters from the smoothed image. We select a rectangular portion of

the micrograph as the reconstruction target and convert it from a RGB image into to

an eight-bit grayscale image, in which each color in the original micrograph has a gray

value ranging from 0 to 255. A histogram showing the distribution of the number of

pixels over the gray values is obtained, which contains significant peaks at certain gray

values, corresponding to distinct grains, see Fig.16(b). We then smooth the image by

selecting the gray values associated with significant peaks and binning the remaining

pixels to the closest peak values to form larger grain clusters. The smooth is done by

removing the phases with volume fraction less than 0.01 and assign these pixels with

the new value of their nearest neighbor with the largest frequency. The smoothed

image, which contains 53 distinct grain clusters, is shown in Fig.16(a).

Once the smoothed target multi-grain-cluster microstructure is obtained, we now

proceed to sample the correlation functions. Note that we assume that this single

2D image can statistically represent the 3D microstructure. This assumption might

not be true for a general heterogeneous material. To verify our assumption, we need

to examine the preparation history of the material. The solidification of solder joint

and the associated grain growth are very sensitive to the temperature gradient. In

this system, the temperature gradient is uniaxial, perpendicular to the two parallel

surfaces of the wires to be joined. This leads to a transversely statistically homogeneous

microstructure, i.e., the morphology of the cross section of joint perpendicular to the

temperature gradient is statistically homogeneous. Therefore, the correlation function
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Figure 16: (a) The smoothed grayscale image, which contains 52 grain clusters. (b)
The histogram showing the distribution of gray values in the non-smoothed grayscale
image. A number of peak values can be clearly seen, which are selected for binning
the remaining pixels to obtain a smoothed image. The linear size of the system is 300

by 240µm.

along the vertical direction sampled from the 2D micrograph should be sufficient to

statistically represent the cross sectional morphology.

As discussed before, we employ the directional correlation functions to characterize

the anisotropic grains. Recently studies have shown that S2 along three orthogonal

directions are sufficient to represent a wide class of anisotropic microstructure. Since

the joint microstructure is transversely statistically homogeneous, we consider that

S2 along the two orthogonal directions in the transverse plane are identical and can

be presented by the S2 along the vertical direction in the 2D micrograph. Similarly,

the S2 along the horizontal direction in the 2D image quantify the microstructure

along the temperature gradient in 3D. In the subsequent reconstructions, we will only

consider the auto-correlation functions of the 53 grain clusters, which are shown in

Fig.17. Previous studies have shown that the auto-correlation functions are sufficient

to accurately represent the shape and size of individual grains. Since the spatial
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correlations between different grains are taken into account via the length-scale

decomposition, we do not incorporate the set of cross-correlation functions into the

reconstruction. This will significantly reduce the computational cost without scarifying

accuracy.

Figure 17: Directional two-point correlation functions associated with 53 different
grain clusters in the smoothed grayscale image of the polycrystalline structure. (a) S2

along the horizontal direction and (b) S2 along the vertical direction.

3.4.2 Multi-scale Reconstruction Results

We now apply the multi-scale reconstruction procedure to our multi-grain-cluster

microstructure. As discussed before, this procedure leads to better convergence for

system with a large number of distinct grains and can significantly improve the

reconstruction accuracy for grains with small volume fractions. Recall that we first

merge the minor grains to produce temporary grain clusters of fairly large volume

fraction, and subsequently restore the minor grains within the temporary grain
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cluster. For the current system, the aforementioned process is repeated five times and

reconstruction process is illustrated in Fig.18.

Figure 18: Illustration of the multi-scale synthetic reconstruction process (a through
c). The minor grains are initially merged to generate temporary grain clusters, which
are then restored in subsequent reconstructions. The linear size of the system is 300

by 240µm.

The final 3D reconstruction is shown in Fig.19. A filter is also applied to remove

isolated voxels to further smooth the microstructure. This step is designed because

there are a large amount of isolated pixels located at grain boundary and within the

grains, which may be reconstructed small grains or computational artifacts. Because

we cannot distinguish the small grains from computational artifacts and these isolated

pixels significantly add the complexity to detecting individual grains, they are simply

smoothed out here to avoid errors during post analysis. It can be clearly seen from the

smoothed microstructure that a few large grains are distributed in the middle of the

system and elongated small grains are distributed close to the boundary. In addition,

the reconstructed microstructure is transversely homogeneous. These results indicate

that our 3D reconstruction has qualitatively reproduced the salient morphological

features of the target microstructure.
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Figure 19: Virtual synthetic 3D reconstruction of the polycrystalline microstructure,
which successfully reproduces the salient features of the target 2D EBSD micrograph
and smoothed grayscale image obtained from experiment). The dimension of the

system is 300 by 240 by 240µm.

3.4.3 Comparison of grain morphology statistics

To quantitatively verify the accuracy of the reconstruction, we compare the grain

morphology statistics, i.e., the distribution of linear grain size and grain directors

obtained from the virtual 3D structure and that of the target micrograph. Since only

a thin section of the system is reconstructed using serial sections (see Fig.13), the

morphology of larger grains may not be sufficiently obtained. Moreover, the virtual

microstructure is reconstructed from quite limited information obtained from a single

slice of EBSD image and based on the assumption that the microstructure of the

material is transversely homogeneous and can be effectively characterized by the single
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EBSD image, a comparison of microstructural information extracted from slices of the

stochastically reconstructed and that of target slice should be sufficient. The statistics

for the 3D system are obtained by considering individual 2D slices of the structure. As

shown in Fig.20(a), the grain size distribution in the reconstruction agrees very well

with that in the target 2D image, both of which contain a large number of small-sized

grains. In addition, the grain size distribution of 3D reconstruction is smoother than

the 2D image, indicating a larger number grains contributing the statistics. The

comparison of grain director distributions is shown in Fig.20(b). It can be seen that

the distribution in both the target image and reconstruction exhibit a peak around

the zero degree with respect to the horizontal axis. This indicates that the anisotropic

grains are elongated along the horizontal direction, which is also the direction of the

temperature gradient. The excellent agreement of the grain morphology statistics

between the target and reconstruction suggests that our 3D virtual microstructure is

statistically robust and accurate.

3.5 Dynamic reconstruction

Although the standard two-point correlation function S2 has been widely used in

microstructure reconstructions, it has been found that large structural degeneracy

could exist in the reconstruction, which leads to uncertainties and inaccuracies for

nearly percolating systems. To improve reconstruction accuracy and reduce structural

degeneracy, one can successively incorporate additional morphological information

(e.g., nonconventional or higher-order correlation functions) from a dynamic process

like sintering, which amounts to reshaping the energy landscape to create deep (local)

energy minimum. In this paper, we present a dynamic reconstruction procedure
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Figure 20: Comparison of (a) grain size distributions and (b) grain director
distributions between the target 2D EBSD micrograph and the synthetic

reconstruction.

that allows one to additively use a series of S2 to achieve high level of accuracy. In

particular, instead of randomly sampling the microstructure space as in the simulated

annealing scheme, our procedure utilizes the series of microstructures that comes from

a physical structural evolution process (e.g., densification in sintering, grain growth in

phase transition). In contrast to commonly used evolution reconstruction approaches

that separately generate individual static configurations, our procedure continuously

evolves a single microstructure according to a time-dependent correlation function.

The utility of our procedure is illustrated by successfully reconstructing constantly

growing to nearly percolating hard-sphere packings and particle-reinforced composites

as well as the coarsening process in a binary metallic alloy.

45



3.5.1 Computing correlation functions from images

The aforementioned correlation functions can be effectively computed from given

digital images of a material, in which the microstructure is represented as a 2D (or

3D) array of pixels (or voxels). In such arrays, each entry indicates the local state

(e.g., phase) of that pixel. For a binary system, the array is simply a collection

of black and white pixels on a regular lattice. The probabilistic interpretation of

the correlation functions enable us here to develop a general sampling method for

reconstruction of statistically homogeneous and isotropic digitized textures based on

the lattice-gas formalism, which is introduced in ref.[44] and generalized in ref.[41].

In the generalized formalism, pixels with different values (occupying the lattice sites)

correspond to distinct local states and pixels with the same value are considered to

be molecules of the same gas species. The correlation functions of interest can be

obtained by binning the separation distances between the selected pairs of molecules

from particular species.

For example, the standard two-point correlation function S2 can be computed as

follows:

S2(r) = NP (r)/NS(r) (3.20)

where NS(r) is the number of lattice-site separation distances of length r and NP (r)

gives he number of molecule-pair separation distances of length r. The two-point

cluster function C2 is given by

C2(r) =
∑
i

N i
P (r)/NS(r) (3.21)

where N i
P (r) denotes the pair distances of length r between the molecules within the
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same cluster i. The surface-surface correlation function Fss can be obtained by

Fss(r) = N ss(r)/NS(r) (3.22)

where Nss(r) gives the number of distances between two surface molecules with length

r.

3.5.2 Algorithm

In the original YT scheme, the microstructure space is randomly sampled and thus,

the evolution of the trial microstructure during the reconstruction is not associated

with any physical process. In addition, the convergence of the reconstruction strongly

depends on the energy landscape defined over the microstructure space. For certain

nearly percolating systems (e.g., dense particle packings), the energy landscape

associated with the reconstruction using S2(r) alone is very rough and contains

many local minima, which usually lead to large structural degeneracy and inaccurate

reconstructions. For example, in a typical reconstructed structure, the degree of

clustering is significantly overestimated and the particle phase, which is supposed

to be disconnected, usually percolates and forms a system spanning cluster [42, 54].

One approach to reduce structural degeneracy is to incorporate additional correlation

functions such as C2 and Fss, which reshape the energy landscape to create a deep

(local) energy minimum with a wide and smooth basin of attraction. Such a minimum

is usually associated with a high probability being visited and selected by the random

microstructure research.

The dynamic reconstruction procedure we devise here uses successive energy

landscapes to bias the microstructure evolution towards a favored reconstruction. This

allows one to use a series of S2 to achieve the same level of reconstruction accuracy
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as those incorporating additional nonconventional correlation functions. It works as

follows: given each digitized two-phase microstructure (2D or 3D) possessing a volume

fraction φ(0) for each phase of interest at the beginning of process, the associated two-

point correlation function S(0)
2 (r) is computed. Then microstructure evolution proceeds

by one time step, which results in a slightly modified volume fraction of each phase,

i.e., φ(1) and the associated two-point correlation function S(1)
2 (r) is computed. This

process is repeated n times until the process comes to an end or become equilibrium,

which results in a series of correlation functions {S(0)
2 (r), S

(1)
2 (r), S

(n)
2 (r)}.

To reconstruct the dynamic system, we start from S
(0)
2 associated the lowest

volume fraction φ(0) and a corresponding microstructure is then reconstructed using

the YT procedure, which has been shown to be highly efficient in generating accurate

reconstruction at such low φ. The reconstructed microstructure is then used as the

initial configuration for reconstructing the structure with φ(1) from S
(1)
2 . Specifically,

a new trial microstructure is generated from the current configuration by adding

pixels to randomly selected locations at the surface of each phase to increase the

volume fraction from φ(0) to φ(1). Then YT procedure is applied in which only surface

pixels are randomly selected and displaced on the surface. The resulting new trial

microstructure is accepted with a Metropolis probability and simulated annealing is

used to evolve the system.

We note that this approach is distinct from a conventional YT procedure in two

aspects: (i) an initial configuration from last step is used at each new reconstruction,

which is already in the basin associated with an energy minimum; (ii) more efficient

evolution kinetics that only involves displacing surface pixels is employed. This corre-

sponds to evolve the energy minimal configuration M (k) associated with S(k)
2 to the

nearest energy minimal configuration M (k+1) in the energy landscape associated with
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S
(k+1)
2 via surface optimization. This process is repeated to successively generate a

series of microstructures M (k),M (k+1), · · · ,M (n) in order to finally accurately recon-

struct the microstructure evolution of the process. It can be seen that during the entire

reconstruction process, a series of energy landscapes are constructed, each associated

with a S(k)
2 (k = 0, 1, · · · , n). These landscapes successively and additively bias the

evolution path of the trial microstructure to improve the convergence of the reconstruc-

tion (see Fig.21). Our procedure is also different from a recently developed dilation

and erosion method[51, 55], which transforms a topologically complex structure to

simpler one, and utilizes appropriate topological descriptors such as C2 for accurate

reconstructions of the original system. In our case, the series {S(0)
2 (r), S

(1)
2 (r), S

(n)
2 (r)}

characterizes snapshots of the materials at successive time points during the evolution

and thus, which can be considered as a single time-dependent correlation function

evaluated at different time points. In contrast to commonly used evolution recon-

struction approaches that separately generate individual static configurations, our

procedure continuously evolves a single microstructure according to a time-dependent

correlation function.

3.5.3 Reconstructing nearly percolating microstructure

In this section, we apply the dynamic reconstruction procedure to generate virtual

microstructures of 3D binary heterogeneous materials in which one of the phases

is nearly percolating. Specifically, two systems are considered here: a packing of

equal-sized hard spheres[56] and a SiC particle reinforced Al-matrix composite [57]

with a particle phase volume fraction close to the corresponding percolation thresholds.

Previous studies have shown that the standard YT reconstruction using S2 alone
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Figure 21: Schematic illustration of different modifications of energy landscape to
improve convergence for different reconstruction methods within the Yeong-Torquato
framework. The original funnel energy landscape associated with S2 is illustrated by
the black curve in both panels. (a) Incorporating additional correlation functions
amounts to reshaping the energy landscape to create deep (local) energy minimum
with a wide and smooth basin (red curves or dark gray curves in print version). (b)
The dynamic reconstruction utilizes a series of energy landscapes (dashed red curves)

to bias the convergence of reconstruction to the favor microstructure.

significantly overestimates the degree of clustering of the particle phase in such systems.

In the following, we will show that our procedure not only correctly reproduces the

connectedness of the particle phase but also reasonably resolve the shape and size

distribution for the SiC particles.

3.5.3.1 SiC/Al composite

Fig.22 shows a model microstructure of SiC-particle reinforced Al-matrix composite

[58] with particle volume fraction φ = 0.31. It can be seen that the isotropic SiC

particles possess a wide size distribution. Although the final volume fraction is close
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to the percolation threshold, the particle phase is still disconnected, which makes the

system very difficult to reconstruct using the standard YT procedure based on S2

alone. The process is a DEM modeling of the growth of SiC particle, which starts

from equal-sized nuclei and then coarsens at various rates until its volume fraction

reaches 0.31.

Figure 22: A SiC-particle reinforced Al-matrix composite material with final particle
volume fraction φ = 0.31. Only the particle is shown and the matrix is transparent.
The linear size of the system is 200µm. The whole system is digitized into 100 by 100

by 100 voxels.

The computed correlation functions S(j)
2 are employed to successively reconstruct

the microstructures, see Fig.23. The final reconstruction is shown in Fig.24(a). It

can be clearly seen that the size distribution of SiC particles are very well resolved in
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the reconstruction. This is also quantitatively indicated from the comparison of the

two-point cluster function C2 and surface-surface correlation function Fss computed

from the target and the reconstruction, as shown in Fig.24(c, d). Also shown is the

reconstructed system using the standard YT procedure from S2 alone (Fig.24(b)), in

which the clustering of the particle phase is again significantly overestimated.

Figure 23: Dynamic reconstruction of the SiC/Al composite system. (d)-(f)
Intermediate structures are successively reconstructed from the (a)-(c) associated
correlation functions based on previously reconstructed structures as favored initial

configurations.
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Figure 24: Reconstructed systems based on S2 alone. (a) Dynamics reconstruction.
(b) Standard YT reconstruction. Comparison of (c) C2 and (d) Fss computed from

the target and reconstructed microstructures.

3.5.3.2 Reconstructing microstructure during coarsening

In this section, we apply the dynamic reconstruction procedure to reproduce the

microstructure coarsening process in a binary lead/tin alloy aged at 448 K up to 216

hours[52]. It has been shown that the scaled autocorrelation function of this system,
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i.e.,

f(r) =
S2(r)− φ2

φ(1− φ)
(3.23)

which is same for both the Pb-rich and Sn-rich phases, can be approximated via the

following expression

f(r; t) = exp[−ar/λ(t)] cos[πr/λ(t) + b]/ cos(b) (3.24)

where a = 3.5 and b = 0.60 are dimensionless fitting parameters depending on the

aging temperature and Pb composition and

λ(t) = [λ3
0 + (λ3

f − λ3
0)
t

tf
]1/3 (3.25)

where λ0 and λf are respectively the length scale in the as-processed and final aged

microstructures, and tf is the associated time of aging.

To reconstruct the coarsening process, the two-point correlation function S2 of the

Pb-rich phase is computed at different time points during the evolution. The dynamic

reconstruction is employed to successively evolve the microstructure according to the

series of S2, see Fig.25. We note that the coarsening process is diffusion controlled, thus,

the phase morphological changes occur through the two-phase interface. This makes

the surface-evolution kinetics utilized in our reconstruction procedure naturally mimics

the actual physical evolution process, and therefore highly efficient in reconstructing

the structural evolution.

To quantitatively ascertain the quality of the reconstruction, the reconstructed

system at selected time points are compared both visually and qualitatively to the 2D

optical micrographs of the alloy at the corresponding time points during the aging ex-

periment, see Fig.26(a,b). Fig.26(c,d) respectively show the two-point cluster function

C2 and surface-surface correlation function Fss computed from the 2D micrographs
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Figure 25: Reconstruction of the coarsening process in a lead/tin alloy from a
time-dependent correlation function. (a)-(c) S2 at different time points during the
evolution (i.e., respectively 12, 24, and 48 hours after annealing starts). (d)-(f) The
associated microstructures generated using the dynamic reconstruction in which only
the Pb-rich phase is shown. The coarsening of the phase is apparent. The linear size

of the system is 250µm. The total annealing time for the alloy is 216 hours.

and 2D slices of the reconstructed alloy structures. The excellent agreement between

the reconstructed and experimental correlation functions clearly indicates the accuracy

of the dynamic reconstruction in reproducing the entire microstructure evolution

process.
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Figure 26: Top: Comparison of (a) a 2D optical micrograph of the alloy at 36 hours
after annealing starts and (b) a corresponding 2D slice of the reconstructed structure
at the same time point. Bottom: Comparison of the two-point cluster functions (c)
C2 and the surface-surface correlation function (d) Fss for the experimental and

reconstructed systems.

3.6 Summary

We have developed novel simulated annealing based Monte Carlo method to model

both static microstructure and morphology evolution during physical processes. For

static reconstruction, we use S2 for each phase along two orthogonal directions and YT
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procedure to reconstruct statistically similar 3D microstructure to the input microstruc-

ture. For evolving microstructure, we have invented a layer-by-layer reconstruction

scheme which allows one to use a series of S2 to accurately reconstruct heterogeneous

materials in which one of the phases is nearly percolating. Such systems are extremely

difficult to reconstruct using the standard YT procedure, which usually significantly

overestimates the degree of clustering unless additional nonconventional correlation

functions containing appropriate topological information are incorporated. Different

from the YT scheme in which the microstructure space is randomly sampled, our

procedure utilizes a series of energy landscapes and surface-evolution kinetics to bias

the microstructure evolution path and improve the convergence of the reconstruction.

This dynamic procedure can be naturally applied to reconstruct any microstructure

evolution process by continuously evolving the microstructure at each stage according

to a time-dependent correlation function. The utility of our procedure is illustrated

by successfully reconstructing systems containing well-separated particles or phases

with volume fraction near percolation point, i.e., the hard-sphere packing and SiC/Al

composite, as well as a system containing bi-continuous interpenetrating phases of

binary lead/tin alloy. These examples clearly validate the accuracy and efficiency

of the dynamic reconstruction procedure in generating a wide class of complex mi-

crostructures and structural evolution. Although the two-point correlation function S2

is employed as the input structural information for dynamic reconstruction, this pro-

cedure can be easily generalized to utilize other stochastic morphological information.

For instance, limited-angle projections obtained via in situ x-ray tomography can

be used to reconstruct the continuous evolution of a single material due to external

stimuli[59]. This will significantly reduce the cost to separately reconstruct individual

material microstructures at discrete time points.

57



The results demonstrated in this chapter are published in Metallurgical and

Materials Transactions A 47, 1440 (2016) and Physical Review E 92, 023301 (2015).
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Chapter 4

MODELING MICROSTRUCTURE EVOLUTION OF SOLID-STATE SINTERING

4.1 Background

In previous chapters, we have introduced two basic material simulation methods,

DEM for powder packing and stochastic reconstruction of microstructure from low

dimension (2D) to high dimension (3D), both of which can be incorporated in a

lot of occasions. In this chapter, we are presenting our effort towards establishing

a combinative modeling technique of DEM and kinetic Monte Carlo method for a

common manufacturing process, the solid-state sintering, where DEM is used to

generate powder packing and kinetic Monte Carlo is used to simulate microstructure

evolution during sintering.

Solid-state sintering is a widely used material processing and manufacturing

method[60, 61, 62]. The final sintered material microstructure is generally affected by

the physical and chemical properties of the material (e.g., viscosity, diffusivity and

chemical potential, etc.) as well as external processing parameters determined by the

sintering conditions (such as temperature, heating and cooling rate, pressure, etc.).

Sintering is generally an irreversible process, which is driven by interfacial energy

minimization. After sintering, the initial particle compact (i.e., green body) becomes

a dense bulk material, which is ready to be formed into various engineering parts.

Due to the its important role in material research and industry, theorists have

been trying to formulate the applicable mathematical descriptions for solid-state

sintering several decades ago, and the earliest work can be dated back in the 1940s.
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The early theoretical models were mainly focused on individual mechanisms during

different stages of sintering, including the initial bonding stage, intermediate shrinking

stage and final sintering stage[63, 64, 65, 66]. Later on, more sophisticated models

were developed, which used less simplifications and incorporated multiple physical

mechanisms simultaneously[67, 68, 69, 70, 71, 72].

The final density, controlled by the sintering conditions and physical and chemical

properties of material, is a key property for sintered materials, since porosity has a

strong influence on subsequent processing and the mechanical properties of the final

product[73]. A general model of densification during sintering, taking into account

both grain boundary and volume diffusion[74], is established by Rusin et al., which is

expressed as:

dρ

ρdt
=

3γΩa

kBT
[
δDbΓb
G4

+
DvΓv
G3

] (4.1)

where ρ is density, γ is specific surface energy, Ωa is atomic volume, G is the mean

grain diameter, δ is the thickness of diffusion region, Db and Dv are grain boundary

diffusion coefficient and volume diffusion coefficient, and Γb and Γv are geometric

factors for grain boundary and volume diffusion. Based on Eq.4.1, Su and Johnson

[75] subsequently derived the following governing equation for sintering:

Θ =

∫
1

T
exp(− Qb

RT
)dt (4.2)

where Θ is a function of density. This is the so called master sintering curve (MSC).

Under isothermal conditions, Eq.4.2 can be written as:

Θ =
t

T
exp(− Qb

RT
) (4.3)
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Recently, due to the rapid development modern computers, a significant amount of

new efforts have been devoted in establishing general sintering models both analytically

and numerically [76, 77, 78, 79, 80, 81]. In general, there are two categories of sintering

models on mesoscale: deterministic and stochastic. The deterministic models are based

on physical conservation laws (in the form of a set of partial different equations for

mass and energy transfer) and employ standard numerical procedures (such as finite

element method and finite difference method) to solve the equations for given boundary

conditions[82, 83, 84]. For example, phase-field models have been used to investigate

the detailed morphology evolution of two-particle system during sintering[85, 86].

On the other hand, in the stochastic models, the microstructure evolution during

sintering is considered to be driven by the minimization of one or several predefined

energy functionals, and is simulated using Monte Carlo methods (or coupled with

finite element method)[87, 88, 89, 90, 91]. For example, Braginsky et al. successfully

reproduced densification and grain growth by simulating the formation, diffusion

and annihilation of vacancies[92]. Bjørk et al. explored the effect of particle size

distributions on microstructural evolution during sintering using a similar Monte Carlo

simulation[93]. Veena Tikare et al. use Potts model to study the microstructural

evolution during solid state sintering of a complex 3D powder compact, which is in

excellent agreement with 3D micro-tomographic images obtained from synchrotron

radiation of Cu-powder compact[94].

Although successful in many aspects, most of the existing mesoscale numerical

sintering simulations do not explicitly model the densification as a result of system-

wide mass transport due to sintering stress. Here, we present a novel kinetic Monte

Carlo model that models the densification process by iteratively applying effective

particle displacements based on analytically derived heterogeneous densification rate,
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grain boundary migration and interfacial energy minimization, which mimics to mass

transport process. We also introduce an efficient two-step iterative interfacial energy

minimization procedure with a “penalty energy” defined based on geometrical con-

straints for free-surface energy minimization. We prove that our model can accurately

capture the diffusion-induced evolution of particle morphology, including neck forma-

tion and growth, as well as the overall densification behavior. The computationally

obtained density evolution curves for both 2D and 3D sintering simulation are found

in excellent agreement with the corresponding experimental master sintering curves.

In addition, our model can be utilized to control a variety of structural and physical

properties of the sintered materials by modifying corresponding simulation parameters.

Combined with DEM simulation, which can be used to generate different packing

configurations in terms of particle size distributions and particle shapes, it is possi-

ble to investigate the effect of powder precursor on microstructure evolution during

solid-state sintering purely in silico.

4.2 Driving Force and Sintering Dynamics

4.2.1 Driving force in sintering: Interfacial energy minimization

In a typical sintering process, the microstructure evolution and densification result

from the tendency of the system to minimize its total interfacial energy. For a sintering

system under isothermal and isobaric conditions, the total energy includes several

parts and can be expressed as[95]:

φT = Es + Ecoh + PV (4.4)
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where Es = γSVASV is the total surface/interface energy, and γSV is specific

surface/interface energy, ASV is surface/interface area, Ecoh is cohesive energy of

particles, P is external pressure and V is the total volume.

For free solid state sintering (i.e., without externally applied pressures), the driving

force is the reduction of interfacial energy of the material system, i.e., ES in the Eq.4.4.

The total reduction of interfacial energy can be expressed as:

∆(γA) = ∆γA+ γ∆A (4.5)

Eq.4.5 indicates that, both the change of specific interfacial energy (or equivalently

interfacial tension) and the change of interfacial area account for interfacial energy

reduction. We note that although the main kinetic processes leading to interfacial

energy reduction include surface diffusion (at the particle-pore interface) and grain

boundary diffusion (at particle necks), other processes such as viscous flow and lattice

diffusion can also lower the system’s interfacial energy.

4.2.2 Discrete formulation of interfacial energy

In a discrete Monte Carlo model, the microstructure of the material during sintering

is defined on a pixel-based grid. A popular form of surface/interface energy is given

as follows[96]:

Es =
1

2

N∑
i

m∑
j

J

dij
[1− δ(qi, qj)] (4.6)

where N is the total number of pixels included in the system, m is the number of

nearest and next-nearest neighbor, dij is the distance between two pixels, δ(qi, qj) is
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kronecker delta to exclude the sites of a same species and J is a parameter which is

related to specific interfacial energy.

In our model, we introduce an additional “penalty energy” to further facilitate the

minimization of the void-particle (“free”) surface energy. Our formulation is motivated

by the fact that the optimal shape of a single free particle is a perfect sphere (or

circle in 2D). Thus, our “penalty” energy is defined as the difference between certain

geometric moments (defined below) of a particle and the corresponding moments

of the equivalent sphere (possessing the same volume of that particle). And the

minimization of the penalty energy alone clearly tends to drive the particle to the

associated spherical shape.

We now introduce the geometric moments used in the void-particle surface energy

formulation. The geometry of a discrete object can be completely characterized via

an indicator function:

I(x) =


0 if x is occupided by material

1 if x is occupided by void
(4.7)

For a 3D object f(x, y, z), the geometric moment with an order of (p+ q + r) is

defiend as[97]:

mpqr =

∫∫∫
xpyqzrf(x, y, z)dxdydz (4.8)

For a discrete pixel-based object I(x, y, z), its moment of (i + j + k) can be

calculated as summation:

mijk =
∑
x

∑
y

∑
z

xiyjzkI(x, y, z) (4.9)

The geometric center of the image is defined as:
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x̄ =
m100

m000

, ȳ =
m010

m000

, z̄ =
m001

m000

(4.10)

The central moment (normalized form of geometric moment) with an order of

(p+ q + r) is then defined as:

upqr =
∑
x

∑
y

∑
z

(x− x̄)p(y − ȳ)q(z − z̄)rI(x, y, z) (4.11)

Ghorbel et al.[98] have shown that for a general complex microstructure (or an

image), the associated indicator function can be approximated as a summation of finite

terms consisting of geometric moments with proper truncation. Therefore, the penalty

energy for the void-particle surface energy minimization in our model is defined as:

Epn =

√√√√p+q+r=n∑
p+q+r=0

(upqr(xc, yc, zc)− u0
pqr(x

0
c , y

0
c , z

0
c ))

2 (4.12)

where upqr and u0
pqr are central geometric moments of object of interest and that

of the equivalent sphere, (xc, yc, zc) and (x0
c , y

0
c , z

0
c ) are centers of mass and n is the

highest order used in the truncation.

4.2.3 Sintering stress

The sintering stress, which is originally defined for equilibrium state and is propor-

tional to sintering rate (or shrinkage rate), has been widely used to characterize the

total driving force [99, 100]. There are several definitions that can be used to calculate

sintering stress [101]. Here, we employ a simple definition in which the sintering stress

is considered as the variation of energy with respect to volume change:
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S(t) =
δE∗(t)

δV ∗(t)
=

Vmδ(γSAS + γgbAgb − E0)

E0δV
(4.13)

where t is sintering time, E∗ and V ∗ are normalized interfacial energy and volume

respectively given by

E∗ =
γSAS + γgbAgb − E0

E0

(4.14)

V ∗ =
V

Vm
(4.15)

where γs and γgb are specific energy of surface and grain boundary, As and Agb are the

values of surface and grain boundary areas, Vm is the total volume of all the particles,

and E0 is the initial interfacial energy. In our case, the Monte Carlo step can be

naturally regarded as a measure of time, the values of E is calculated according to

Eq.4.5. The curve of S(t) vs. V ∗(t) is derived from calculating the slope of E∗(t) vs.

V ∗(t) plot.

4.2.4 Material deposition and densification rate

Using a first order approximation for the thickness deposition rate at grain bound-

ary, Exner and Bross[102] calculated a parabolic stress distribution and the corre-

sponding material transport along grain boundary during grain boundary diffusion.

Their results showed that compressive stress occurs at central region of a neck and

tensile stress occurs at neck surface. For a symmetric neck, the stress distribution is

described by the following equation:

δ(x) =
γ

R
(

6

g3
(g − 2R)(x2 − xg) + 1) (4.16)
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and the associated rate of material deposition at grain boundary is described by:

ld

dt
=

DGbΩd
2σ

kTdx2
=

12DGbΩγ

kTRg3
(g − 2R) (4.17)

where R = R1 = R2 are the radii of neck surface curvature at the left and the

right hand side, g is the length of the grain boundary, x is the distance from left

neck surface along the grain boundary, dl is the height of material deposition at the

grain boundary, γ is surface tension, DG is the grain boundary diffusivity, b is the

grain boundary width, and Ω is an intermediate coefficient, see Fig.27 for a schematic

illustration. We note that Eq.4.16 and 4.17 were derived for a two-particle sintering

system assuming that dl
dt

is linearly related to x.

Figure 27: A schematic illustration of two-particle sintering configuration. R1 and R2

are the radii of neck surface curvature at the left and the right hand side, g is the
length of the grain boundary, x is the distance from left along the grain boundary, dl
is the height of material deposition at the grain boundary, JG is atomic flux in grain

boundary.

In a many-particle system, the material deposition due to grain boundary diffusion
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Figure 28: Schematic illustration of a spherical sub-region with radius r in the
sintering material. The material deposition at the grain boundary leads to overall
densification of the materials, i.e., shrinkage of radius r. As shown in the text, the
densification (shrinkage) rate at the boundary of this sub-region is linearly proportion

to r.

results in the overall densification of the system. In particular, consider that in the

sintering system, the average coordination number for a particle is Z, the average

grain boundary length at time t is a, the particle number density ρ = N/V , then

the total length of the grain boundary L(r) within a spherical region of radius r (see

Fig.28 for schematic illustration) is given by

L(r) = πr2ρ
Z

2
a (4.18)

During time interval dt, the void space taken up by material deposition is then

given by

dV (h, t) = L(r)dl (4.19)

We note that in general L(r) is also a function of time due to the fact that a is
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time-dependent. However, in our model, we assume that a is an average value whose

rate of change is much smaller compared to the deposition rate and thus, can be

approximately considered as a constant. According to mass conservation, we can

compute the average densification rate ut(r) (the average shrinkage rate along the

radial direction) at the boundary of the spherical region due to material deposition as

follows:

ut(r) =
−dV/dt

2πr
= −3DGbΩγρaZr

kTRg3
(g − 2R) = −C(T )r (4.20)

From Eq.4.20, it is clear that under isothermal conditions, the densification rate

at a point in the sintering system is linearly proportional to its distance r from the

reference center. This result suggests that the overall densification of the system

can be modeled by effective particle displacement, coupled with interfacial energy

minimization steps, which we will discuss in detail in the subsequent section.

4.3 Algorithmic Details

4.3.1 Interfacial energy minimization for two-particle system

We first present our Kinetic Monte Carlo (KMC)[103] algorithm for a two-particle

sintering system, in order to verify the incorporation of the penalty energy for free

surface minimization. In particular, our algorithm includes two fundamental repeating

processes: (i) overall interfacial energy minimization using Eq.4.6, and (ii) separate

free surface energy minimization (using the penalty energy) and grain boundary energy

minimization, which we describe in detail below.

Firstly, we use simulated annealing to minimize the total interfacial energy defined
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by Eq.4.6, including both free surface and grain boundary. Many previous studies

stop at this step when doing interfacial energy minimization. However, as we will

show in following sections, this step alone is not sufficient to lead to densification in

this two-particle sintering system. The interfacial energy minimization is implemented

by randomly choosing a surface pixel or grain boundary pixel and exchanging its value

with one of its neighbors which are of different pixel values from the selected pixel.

Then the corresponding energy change is calculated according to Eq.4.6, and this trial

exchange is accepted based on the Metropolis rule, i.e.,

pacc(old→new) =


e−

Enew−Eold
T if Enew ≥ Eold

1 if Enew < Eold

(4.21)

where T is an annealing parameter that is gradually decreased during the simulation

and does not related to the actual temperature of the sintering system. We note that

the diffusion coefficients of free surface diffusion and grain boundary diffusion are

significantly different, i.e., grain boundaries are usually considered as perfect source

and sink of atoms so that no energy is required for atom attaching and detaching.

To take into account this, during the interfacial energy minimization, the specific

interfacial energy parameter J in Eq.4.6 for grain boundary pixel is set to be 0.5,

while that for free surface pixel is set to be 1.0.

Secondly, we perform energy minimization on free surface and grain boundary

separately for each particle. For free surface energy minimization, the grain boundary

is kept stationary and the penalty energy is used, i.e., the free surface of a particle is

evolved (by randomly exchanging free surface pixels) using simulated annealing to

minimize the difference of its geometric moment from that of the equivalent sphere,

without moving the pixels at grain boundary. For the subsequent grain boundary
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energy minimization, the surface pixels are kept fixed and the grain boundary pixels

are randomly exchanged and the associated energy is computed using Eq.4.6 and

minimized using simulated annealing. The same parameters are used for all simulated

annealing simulations, which include an initial temperature of 0.1, a cooling rate of 0.99

and an initial acceptance rate of 0.3. The aforementioned two steps (overall interfacial

energy minimization and separate free surface/grain boundary energy minimization)

are repeated to drive the system to global energy minimum which is very difficult to

achieve by using single interfacial minimization for Eq.4.6 alone.

4.3.2 Effective particle displacement for densification in many-body sintering

For a many-body sintering system, the numerical interfacial energy minimization

procedure alone is not sufficient to result in densification. A widely-used densification

scheme (i.e., the vacancy annihilation model)[92] is to exchange internal void pixel

with a material pixel on the external free surface of the sintering system. Here, we

present a novel procedure for densification by applying effective particle displacements.

Following Exner and Bross’s work on sintering stress induced material deposition[102],

we have derived an analytical expression of densification (displacement) rate at any

position within the sintering system, which is linearly proportional to the distance of

that position to a reference center, see Eq.4.20. In our simulation, we set C(T ) = 0.1,

in order to match the experimental sintering master curve. The unit of distance r is

in pixel and dt is taken to be the time for a single simulation cycle.

Our many-body sintering simulation proceeds in a very similar way as the two-body

sintering, except that for the many-body system we explicitly incorporate effective

particle displacement due to system-wide mass transport driven by grain boundary
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diffusion, which is necessary for densification. The algorithm which includes two

repeating steps is described as follows:

Firstly, we use simulated annealing method to minimize the total interfacial energy

of the system (including both free surface energy and grain boundary energy), following

the same procedures used for the two-particle system (i.e., the iterative two-step energy

minimization). The parameters used include an initial temperature of 0.1, a cooling

rate of 0.99 and an initial acceptance rate of 0.3.

Secondly, we apply the effective particle displacement according to Eq.4.20 to

achieve densification of the sintering system. Specifically, we first obtain the position

of center of mass (COM) of particle i, i.e., xi, and its effective displacement ui(r)

calculated based on the densification rate given by Eq.4.20, where r is the distance of

the COM to the reference line in the system. Then, we apply simulated annealing

by randomly moving the free surface pixels of the particle to minimize interfacial

energy as well as difference between the geometric moment of that particle and that

of the equivalent sphere centered at (xi + ui), i.e., the “penalty energy”. Finally, the

migration of grain boundary between two contacting particle i and j is considered

when the magnitude of (ui + uj)/2 is greater than one pixel length. This is achieved

by first depositing the grain boundary pixels of the particle closer to the reference

center to the surface of that particle, and then randomly moving the surface pixels of

the other particle to fill the vacant sites. We note that the aforementioned procedures

mimic the sintering stress induced mass transfer process that result in densification of

the system. These two steps (interfacial energy minimization and effective particle

displacement) are repeated until the sintering system is fully densified or a prescribed

density value is achieved.
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4.4 Case 1: Modeling two-particle sintering behavior

In this section, we use the algorithm described in previous sections to investigate

the densification behavior of a two-particle system during sintering and quantitatively

compare our simulation result with experimentally obtained master sintering curve

(MSC).

In particular, we consider two congruent spherical particles with a radius of

30 pixels. Initially, the two spherical particles are just touching one another with

their centers separated by a distance of 60 pixels. Different values are assigned to

the pixels belonging to different particles for the convenience of calculating surface

energy, although the particles are made of the same material. In the beginning of

the simulation, the total interfacial energy and six second order central moments

(uxx, uyy, uzz, uxy, uyz, uxz) are computed[104]. Then the two-step iterative interfacial

energy minimization procedure will be applied.. For the purpose of comparison, we

also perform standard Monte Carlo simulation to minimize the interfacial energy alone,

without the additional separate surface-energy/ grain-boundary energy minimization

step.

Fig.29 shows microstructure evolution as a result of two-step energy minimization,

while Fig.30 shows microstructure evolution via standard MC energy minimization. It

is obvious that the final microstructure in Fig.29 possesses a more compact morphology

than that in Fig.30. This has been quantitatively verified by comparing the particle

center-center distance after each sintering step. To further quantitatively validate our

sintering model, we obtain the relative density as a function of Monte Carlo step (see

Fig.31) and compare it with the mater sintering curve, in which the relative density is

calculated according to the following equation:
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ρ =
1

(d/L)3
=

L3

d3
(4.22)

where d is the instant distance between center of mass of the particles, while L

is the initial separation. From Fig.31, it can be seen that our simulated curve is in

excellent agreement with the Master Sintering Curve[75] under isothermal conditions,

where the density increases rapidly in the initial state of the sintering and slows down

when approaching the maximum density. On the other hand, in the case of standard

MC energy minimization, the density fluctuates and no significant overall densification

is seen, as shown in Fig.32. This indicates that interfacial energy minimization alone

via standard MC simulation is not sufficient to induce densification and lead to the

global minimum energy state.

Figure 29: Microstructure evolution of a 3D two-particle sintering system as
simulated via the two-step energy minimization method.
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Figure 30: Microstructure evolution of a 3D two-particle sintering system as
simulated via the standard Monte Carlo energy minimization method.

Figure 31: Density evolution for the 3D two-particle sintering system as simulated via
the two-step energy minimization method.

4.5 Case 2: Modeling many-particle sintering in two dimension

After the two-particle sintering model validation, we now employ our algorithm

to simulate the sintering behavior of a many-body system in two dimensions, which

models the densification via iterative effective particle displacement (as a result of

sintering stress induced mass transport) and two-step interfacial energy minimization.

In addition, we also simulate a sintering system that is driven by interfacial energy

minimization alone for the purpose of comparison.

The initial configurations of both cases are identical, whih consist of 100 2D
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Figure 32: Density evolution for the 3D two-particle sintering system as simulated via
the standard Monte Carlo energy minimization method.

spherical particles with a normal distribution of their radii. It is generated by

uniformly growing an initially dilute sphere packing to a near-jamming configuration

using DEM simulation. The packing configuration for sintering simulation is then

discretized on a square grid with 600 by 600 pixels, which results in a mean radius

of 15 pixels and radius standard deviation of 5 pixels. Hereafter, all the distances

reported are measured in the length of pixel. Coarsening will be considered at later

stages of sintering, which takes the role of hindering further densification and has

significant effects on the mechanical properties of sintered materials. In this simulation

scheme, we employ the Potts model to continuously change the value of interfacial

pixels and constantly modify the shape of interface in search of lowest energy state

during the later stages of sintering. Specifically, interfacial pixels are first tracked and

randomly picked to calculate the surface energy associated with this pixel; then its

value is changed to be the same as its neighboring pixel with the largest frequency of

occurrence. If the change decreases the total interfacial energy, then it’s accepted; if

it increases the surface energy, it is accepted at a predefined rate of 0.0001, which will

be referred as coarsening rate parameter.
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Fig.33 shows the microstructure evolution of the sintering system simulated using

effective particle displacement. Note that due to the application of periodic boundary

condition along the vertical direction (to simulate an infinite large size thin layer), no

shrinkage can be observed in this direction. This also implies that our model sintering

system possesses a reference central line, and the densification rate at any point in the

system is proportional to the distance of that point to the central line. The sintering

density vs. Monte Carlo steps is plotted and shown in Fig.34. The left panel shows

the total density evolution, which is in excellent agreement with the corresponding

MSC. The right panel shows the density distribution along horizontal direction at

selected stages. We can clearly see that densification takes place as sintering proceeds.

At later stage, density along y direction becomes uniform, suggesting a fully densified

configuration. The sintering stress due to interfacial energy reduction is also computed

at different stages, and plotted with respect to the specific volume. The fitted curve

is obtained based on a third order polynomial using least square fitting method. In

Fig.35, the left panel shows interfacial energy, while the right shows sintering stress.

Figure 33: Microstructure evolution at Monte Carlo stages 1, 50, 300, and 900 (from
left to right panels) for a 2D sintering system simulated by considering mass

transport effects.

Fig.36 shows the microstructure evolution of a system driven by standard MC in-
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Figure 34: Left panel: Relative density evolution as a function of Monte Carlo steps
for the 2D sintering system simulated by considering mass transport effects. Right
panel: Relative density distribution along y direction (the non-periodic direction) at

MC stages 0, 150, and 500.

Figure 35: Left panel: Normalized interfacial potential with respect to normalized
volume for the 2D sintering system simulated by considering mass transport effects.

Right panel: Sintering stress with respect to normalized volume.

terfacial minimization. As a comparison, no significant densification could be observed

just like the two-particle sintering case using standard MC energy minimization. This

can be quantitatively verified via the density evolution along the horizontal direction,

as shown in Fig.37, which remains almost unchanged as simulation proceeds. However,

we note that although the density does not increase appreciably, initially prolonged
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pores tend to be more isotropic, leading to smaller curvatures and thus reducing

interfacial energy.

Figure 36: Microstructure evolution at Monte Carlo stages 1, 50, 300, and 900 (from
left to right panels) for a 2D powder compact simulated by applying MC interfacial

energy minimization alone.

Figure 37: Left panel: Normalized interfacial potential with respect to normalized
volume for the 2D sintering system simulated by applying MC interfacial energy

minimization alone. Right panel: Sintering stress with respect to normalized volume.

4.6 conclusion

Microstructure control is an important subject in solid-state sintering and plays a

crucial role in determining material properties, such as density, strength, toughness,
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etc. Different from existing sintering simulations, most of which are driven by surface

energy minimization only and the densification of them are realized by either dilating

the particles or using the vacancy annihilation method, we have developed a novel

combinative modeling scheme of discrete element method (DEM) and kinetic Monte

Carlo method (kMCM) to model morphology evolution and densification during free

sintering simultaneously. Specifically, we have derived analytically a heterogeneous

densification rate of the sintering system by considering sintering stress induced mass

transport. Our model is proved to be able to accurately capture the diffusion-induced

evolution of particle morphology, including neck formation, growth, and coarsening, as

well as realistically reproduce the overall densification process. The computationally

obtained density evolution curves for both two-particle sintering and many-particle

sintering are found in excellent agreement with the corresponding experimentally

summarized master sintering curve. Our model can be utilized to guide the control of

a variety of structural and physical properties of the sintered materials, such as the

pore size and final material density.

Additionally, our model can be easily generalized to incorporate more complex

processing conditions, such as changing sintering temperature field or externally ap-

plied pressure, which provides the potential to systematically investigate the effects of

material types, initial powder packing configurations and different sintering conditions

on microstructure evolution during solid-state sintering. Although most of the simula-

tions demonstrated here are performed on 2D, the corresponding 3D microstructure

can be immediately obtained using stochastic reconstruction algorithm introduced in

chapter 3.

The content in this chapter can be found in Modeling and Simulation in Materials

Science and Engineering 24, 085003 (2016).
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Chapter 5

MODELING PHASE TRANSITION OF SELECTIVE LASER SINTERING OF

TITANIUM ALLOY

5.1 Background

In previous chapter, we presented a combinative model for solid state sintering,

where DEM served to generate powder packing and kinetic Monte Carlo is engaged

to simulate microstructure evolution. In this chapter, we are going to introduce

another cominative model for selective laser sintering (SLS), where particles not only

interconnect and coarsen but also undergo phase transition from one solid state to

another.

As a typical rapid additive manufacturing technology, selective laser sintering

(SLS) has been extensively used in metal processing, product design, biomedical

applications, and energy and sustainability applications and so on[105]. With the help

of computer-aided design (CAD) models, materials can be developed into complicated

geometries efficiently to satisfy various application situations, including design testing,

find functional parts manufacturing, etc.[106]. Other advantages, such as low time

costs, high material utilization rate, wide range support of commercial powders, are

also being attractive factors to modern industry, which makes it popular in just two

decades since its invention[107].

To establish a model for laser sintering, countless efforts have been made in

experiments, fundamental theories, as well as computer simulation. In particular,

numerical simulation of laser sintering has gained significant progresses, however,
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inventing a thorough modeling technique to include powder packing, heat transfer,

melting, phase transition and finally solidification is still a challenging task. In this

chapter, we are introducing a combinative model of FEM and cellular automata

for the simulation of selective laser sintering, where melting, phase transition and

microstructure evolution will be simulated by first modeling temperature field evolution

using finite element analysis and then modeling nucleation and growth using cellular

automata.

The material we are going to use for laser sintering simulation is Ti6Al4V, which

has been a widely used high performance structural material due to its lower density,

superior mechanical properties, high chemical corrosion resistance, as well as easier

to for working and processing, compared to conventional metallic materials[108].

For selective laser sintering of Ti6Al4V, the microstructure evolution during β → α

phase transition is a key factor that affects the properties of final product, which is

dependent on the processing parameters, such as the laser power, scanning speed, and

scanning pattern, and so forth. These processing parameters are directly reflected

by the temperature filed evolution as laser spot moves. We will incorporate these

processing conditions into a standard finite element analysis model to solve the

transient temperature field.

The microstructure evolution during phase transition will be simulated via a cellular

automata (CA) model. Cellular Automata (CA) is first developed by Stanisław Ulam

and John von Neumann for Los Alamos National Lab in 1940s. One of the very first

applications of CA is studying the growth of crystals[109]. CA models have been

constantly gaining popularity as discrete dynamical system simulator, vehicles for

studying pattern formation and complexity, and novel devices modelling fundamental

physics. Though being relaxed commonly, in general four basic characters define a CA:
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discrete n-dimensional lattice of cells, discrete states for each cell, local interactions,

and discrete dynamics. Because of its efficiency and phenomenologically soundness,

CA has been extensively explored in material science research[110, 111, 112, 113, 114,

115].

5.2 FEM model on temperature field evolution during laser sintering

Past decades have seen a lot of researches conducted to calculate temperature field

during laser sintering, both analytically or computationally. For example, a pragmatic

engineering model using an enthalpy formulation incorporating the effects of shrinkage

and laser penetration is developed to investigate the laser melting (SLM) process

[116]; a process map of pulsed selective laser sintering is generated by conducting

numerical simulation of heat equations as well as experiments [117]; finite Element

Method (FEM) is used to study the thermal cycles and temperature field by allowing

element birth and death [118], etc.

Despite the fact that extensive work have been done to study the laser induced

temperature field and some properties of the sintered body, it is still not clear about

how the microstructure evolves due to the agitation of scanning laser and what kind

of properties will be produced if certain microstructure evolution takes place. In the

following sections, we will introduce the FEM simulation to calculate the transient

temperature field at arbitrary time as laser beam moves. The temperature field

obtained can be used to direct the evolution of Ti6Al4V microstructure in a robust

cellular automata model, which will be discussed later.
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5.2.1 FEM model details

The entire simulation domain will be restricted to 5mm by 5mm by 2mm block.

When generating mesh, another bock of 1mm by 3mm by 0.5mm which is defined as

laser spot affecting area, is selected for finer element size with an average of 0.025mm,

while the rest is meshed with coarser element with an average size of 0.1mm, see

Fig.38(a). We have tried different mesh sizes on the laser affecting area, and it turns

out that 0.025mm is right close the critical size that guarantees stability of the solution

while maintain descent efficiency.

Figure 38: (a) geometry and mesh of FEM simulation domain: the overall size is
5mm by 5mm by 2mm meshed with 0.1mm elements, the laser spot affecting area is

1mm by 3mm by 0.5mm meshed with 0.025mm elements. (b)the scanning path,
δl = 0.6mm,δw = 0.2mm.

The laser spot moves in a zigzag fashion and is restricted to the fine meshed area.

The process parameters utilized in this model are 120W for laser power, 100µm for

laser spot radius, 200mm/s for laser scanning speed and the scanning pattern is shown

on Fig.38(b).

The thermodynamic properties of Ti6Al4V powders for laser sintering vary ac-
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cording to different fabricating approaches and measuring states. Here we use the

temperature dependent density, thermal conductivity and specific heat as provided in

[119], which are replicated here in Fig.39(a)(b)(c).

Figure 39: Temperature dependent thermodynamic properties of Ti6Al4V. (a)
density; (b) heat capacity; (c) thermal conductivity.

The heat flux of laser beam is commonly modeled as a Gaussian distribution,

which is given as:

Q(r) =
2AP

πr2
0

e−2r/r20 (5.1)

where P is laser power, r0 is laser spot radius, r is an arbitrary position in the incident

surface and A is the absorption coefficient of the material, the value of which is

chosen to be 0.3, as the intrinsic absorptance of Ti with Nd:YAG wavelength 1.06µm,

following ref.[117].

The initial temperature of the entire simulation body is 300K, and the lateral and

bottom sides are fixed at 300K during sintering, under the assumption that these

boundaries are far enough from the laser spot. The additive surface is defined as

heat convection and radiation boundary, with an average heat transfer coefficient

300W/(m2K) and emissivity 0.5.
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5.2.2 FEM simulation results

The contour plot of temperature field at 0.01s is demonstrated on Fig.40, both

with an overview of the whole simulation domain (a) and an inset of the laser affected

region (b), while Fig.41 shows the corresponding heat flux. From the contour plots,

we find the maximum temperature can reach as high as 3500K, and there exists very

large temperature gradient near laser spot. This obtained temperature field will be

used for cellular automata simulation of microstructure evolution of this sintering

process.

Figure 40: Contour plot of temperature field at 0.01s. Maximum temperature is
3500K, (a)whole simulation domain, (b)laser spot affecting domain.
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Figure 41: Contour plot of magnitude of heat flux filed at 0.01s. (a)whole simulation
domain, (b)laser spot affecting domain.

5.3 Theoretical background for CA modeling of phase transition

5.3.1 crystalline structure transition

For pure titanium, body centered cubic (BCC) structure is the stable phase at

high temperature, referred as β phase. Upon cooling, BCC structure transforms into

a modified ideally hexagonal close packed structure, which is the low temperature

stable phase, known as α phase. This transition takes place at 882±2◦C. During this

β → α transition, the densest packed {110} plane in β transforms to the {0001} plane

of α, satisfying the follow orientation relation[120]:
{0001}α ‖ {110}β

〈1120〉α ‖ 〈111〉β
(5.2)

Due to crystallographic symmetries, there could be 12 possible α orientations precipi-

tating from a particular β parent grain following the orientation relationships[121].
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With different cooling rate, the microstructure of transformed α phase could

be significantly distinct. Generally speaking, fine structure such as needle-like α

phase (referred to as acicular phase) is produced at high cooling rate, while plate

shape is formed at slow cooling rate. At intermediate cooling rate, the well-known

Widmanstätten pattern is developed, within which α plates grow from grain boundaries

of precursor β phase and are separated by high-vanadium-concentration β remainings.

The radial spread of α plates is along the {110}plane of bcc structure. It is also worth

to mention that when cooling rate is high enough the growth front of each lamellar

packets can be potential nucleation sites as well, and Martensitic transformation

occurs at such high cooling rate, characterized by a very fine basket-weave structure

with needle-like α grains due to diffusionless nucleation. Other microstructure, such

as equiaxed α grain, is a result of recrystallization.

5.3.2 Kinetics of transition

The kinetics of the β → α transformation under isothermal condition can be

characterized by Johnson-Mehl-Avrami theory (JMA):

f = 1− exp(−ktn) (5.3)

f is the α phase volume fraction, k is a constant, n is the Averami index associated

with nucleation and growth mechanisms. It is assumed that nucleation frequency is

constant and nuclei are spatially randomly formed.

The JMA equation under continuous cooling is commonly expressed as[122]:

f = 1− exp(−θn) = 1− exp(−(k0 exp

∫
(
−Q
RT

)dt)n) (5.4)

where k0 is a constant, Q is the overall activation energy.
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In practice, the kinetics of phase transformation during continuous cooling can be

numerically obtained by discretizing the JMA equation into a sum of small consecutive

isothermal steps using fictitious time:

fi = 1− exp(−ki(ti + ∆t)ni)

ti = ni

√
− ln(1− fi)

ki

(5.5)

for simplicity, ni can be regarded as constant, n = 1.13 for Ti6Al4V empirically.

Reaction rate k, on the other hand, varies significantly with temperature demon-

strated in Fig.42 as a function of temperature for Ti6Al4V, which is replicated from

reference[123].

Figure 42: Calculated reaction constant for Ti6Al4V in JMA equation.
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5.3.3 Formulation of nucleation and growth

Assuming an intermediate cooling rate, all the α grains nucleate at the grain

boundary of beta phase, the rate of which is influenced by the element concentration

field and temperature field. The growth rate or the α/β interface migration rate is

dependent on the intrinsic mobility of impurity atoms and diffusion energy barrier. The

mathematical formulation of nucleation is similar to that of a common solidification

process[124]:

N =
NvkbT

~
exp(
−∆Gm + ∆G∗c

kbT
)

∆G∗c =
16πγ3

αβ

3∆g2
S(θ) =

16π

3

γ3
αβT

2
c

L2
v

1

(∆T )2
S(θ)

S(θ) =
1

2
(2 + cos(θ))(1− cos(θ))2, ∆T = Tc − T

(5.6)

where Nv is the potential nucleation sites per unit volume, ∆G∗c is the nucleation

barrier, ∆Gm is the activation energy of atomic migration across the interface, γαβ

is the free interface energy of α/β phase boundary, ∆g is the volumetric free energy

difference between α and β phase or the driving force, Tc is the transition temperature,

Lv is the latent heat of phase transition, θ is the wetting angle, and ∆T is undercooling

which is the difference between transition temperature and current temperature.

Within the range of phase transition, as T decreases, ∆T increases, ∆G∗c decreases,

and the overall contribution of exp(−∆G∗
c

kbT
) increases, meanwhile, exp(−∆Gm

kbT
) decreases.

Furthermore, through integration the total number of nuclei at a potential nucle-

ation site at time t can be obtained as:

J(t) =

∫
Sβ

∫ t

t0

Ndtdx =

∫
Sβ

∫ t

t0

aT (t, x) exp(
−b

T (t, x)
) exp(

−c
∆T (t, x)2T (t, x)2

)dtdx

(5.7)

a =
Nvkb
~

, b =
∆Gm

kb
, c =

16π

3

γ3
αβT

2
c

L2
v

S(θ)
1

kb
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where Sβ denotes the spatial integration domain of β grain boundaries, t0 is the

transformation starting time, a, b, c are treated as constants in CA simulation.

It has been found that the growth of α plate is mainly controlled by the diffusion

of vanadium atoms during β → α phase transformation of Ti6Al4V. Suppose the

atomic mobility of vanadium is M , the Gibbs free energy difference between α and β

phase is ∆G, the molar volume of α phase is Vm, then the atomic migrating velocity is

v = M ∆G
Vm

, meaning that the migration rate of vanadium atom is proportional to grain

boundary mobility and energy decrement per unit volume which is the driving force

of phase transition. The atomic flux due to chemical potential is Jµ = vC = MC∆G
Vm

.

Besides, concentration gradient also plays a role in vanadium atoms migra-

tion. According to Fick’s law, J = −D ∂C
∂x
, where D is diffusion coefficient and

D = D0 exp(−∆Ga/RT ), where ∆Ga is thermal activation energy, D0 is a constant

depending on atomic vibration frequency, coordination number and number of atoms

per unit volume.

Therefore, it is easy to find that the net atomic flux at interface can be expressed

as:
Jnet = Jµ + Jα→β + Jβ→α = MC

∆G

Vm
+

Dα exp(−∆Ga
α/RT )

∂Ciα
∂x

+Dβ exp(−∆Ga
β/RT )

∂Ciβ
∂x

(5.8)

where Dα,∆G
a
α are the diffusion constant and thermal activation barrier in α phase,

while Dβ,∆G
a
β are the diffusion constant and thermal activation barrier in β phase.

Ciα , Ciβ are the vanadium concentration at interface to the α phase limit and β

phase limit respectively, as shown Fig.43. Note that Cα < Ci ≤ Ceq
β , which is the

concentration of beta phase when phase transformation arrives at equilibrium state. To

simplify the expression for Jnet, it’s assumed that ∆Ga
β = ∆Ga

α+∆G,Dα exp(−∆Ga
α) =
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Dβ exp(−∆Ga
α) = D, ∂Ciα

∂x
= −

∂Ciβ
∂x

= ∂C
∂x

. Then we have

Jnet = MC
∆G

Vm
+D

∂C

∂x
(exp(−∆G/RT )− 1) (5.9)

Expand exp(−∆G/RT )− 1 at ∆G = 0, the above expression is approximated with

first order as

Jnet = (MC − DVm
RT

∂C

∂x
)
∆C

Vm
(5.10)

Considering dt time interval, the α grain boundary migrates dx along direction n

normal to the interface. As a consequence of mass conservation, we have the following

equation in 3D

(C − Cα)dx = Jnetdt = (CM − DVm
RT
∇C · n)

∆G

Vm
dt (5.11)

further

vGB = (
C

C − Cα
M − DVm

RT (C − Cα)
∇C · n)

∆G

Vm
(5.12)

Intuitively, this approximation contains two components of grain boundary mi-

gration. The first one comes from Gibbs energy decrement, and slows down with

increasing vanadium concentration at interface; the second one is due to vanadium

concentration gradient which speeds up with the extent of vanadium segregation at

interface. Understandably, the interface stops migrating at certain transformation

point due to the equilibrium of these two counter effects.

It has been observed that the migration rate of vanadium atom can be pronounced

anisotropic, related to the inherent anisotropy of hcp structure of α phase[120, 124].

For example, the migration rate is magnitudes slower along the direction normal to α

plate than that along the plate expanding direction. Consequently, the migration rate

can be written as a vector, and the interface moving velocity at arbitrary position of

α grain boundary will be

v|int = (
C

C − Cα
M − d

T (C − Cα)
∇C · n)f (5.13)
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d =
DVm
R

, f =
∆G

Vm

Due to the orientation relationship between β and α phase,M = RM0, where spatial

orientation of a β grain in terms of {110} plane, andM0 = (M‖,M‖,M⊥), whereM‖

is the atomic migration rate along most densely packed plane, whileM⊥ perpendicular

to it. Although it has been observed that the orientation of α plates on some level is

dependent on the orientation of grain boundary allotriomorphic α, which is related to

the orientations of adjacent β grains on both sides of the boundary, we simplify the

scenario here by assuming that the orientation of a α plate is completely decided by

the orientation of β grain it grows into. And we further assume that the 12 variants

are of the same possibility to occur.

Figure 43: Schematic demonstration of lamellar α growth and the concentration
variables.
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5.4 The cellular automata model

In our model, each grid is regarded as a cell, which is assumed to be a parcel

of atoms. Each cell is functionally defined by seven parameters: position x, crystal

orientation of k of β phase, grain index z, crystallographic variant s of α phase,

initial position xN of the nuclear seed each cell belongs to, vanadium concentration

C, and temperature T . The global hyper parameters defined are: nucleation constant

a, atomic migration barrier b, nucleation barrier c, migration rate M‖, M⊥, along

and perpendicular most densely packed plane in α, diffusion coefficient d, driving

force of phase transformation f . Moore neighborhood definition is used, and the

grid correction for the neighbors but the nearest ones is 0.07. The value of each

hyper parameter used in the simulation is listed in table 3. Specifically, αGB is for

grain boundary α, αside is for lamellar α. Particularly, the value of parameter f is

dynamically chosen so that the maximum component v|int is 1.

Table 3: The numerical values for hyper parameters in CA model.

αGB 1 bsid3 103 MGB
‖ 100 M side

‖ 1
αside 1 cGB 104 MGB

⊥ 1 d 1
bGB 103 cside 103 M side

⊥ 100 f —

We cut a 1mm by 1mm by 0.375mm bock and discretize it into 1000 by 1000 by

375 grids. When FEM simulation is done, the time dependent temperature field on

each node is extracted from FEM result and linearly interpolated for each grid for CA

simulation. Knowing the β → α phase transition occurs at 990◦C, we assume that,

during heating stage, all the cells whose temperature builds up to or above 990◦C
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become β phase while the rest stays with what they used to be, the state of which

will not be modified during the following CA procedure anyway.

To date, there isn’t a sufficiently general and efficient model to simulate particle

morphology evolution to the knowledge of the authors, even though we have devoted

to building novel models for solid state sintering with or without external pressure[125,

126], when it comes to 3D, they become very complicated and computation demanding.

To avoid the complexity by devising a posteriori model, we first label all the cells

whose highest temperature exceeding 990◦C as potential β transformation sites. We

then use a separate CA simulation by randomly seeding β nuclei within the labeled

area, noting that the number β nuclei can be used to control the average size of

β grains. The total number of β grains is set to 100 in this simulation. Next, the

β nuclei grow until all the potential β transformation sites are occupied by β cells.

Fig.44 shows the obtained beta phase microstructure.

Figure 44: The microstructure of parent β phase generated by a separate CA process.

In next procedure, cooling induced β → α transformation below 990◦C, the

nucleation and growth of α phase is modeled. There are roughly two stages of
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microstructure evolution during β → α transformation. First, the allotriomorphic α,

also called grian-boundary (GB) α, nucleate and grow along the β grain boundaries.

Then, α lamellae nucleate and grow from GB α into β matrix forming large colonies,

while β plates are separated by vanadium concentrated β layers. Obviously, for both

stages, the mobility of vanadium atoms is anisotropic: for grain boundary α, the

rotation matrix R denotes the orientation of tangent plane at a grain boundary point,

which is approximately calculated for every GB point before α transformation; for

lamellar α, R denotes the orientation of the most densely packed plane, which is

decided by the spatial configuration of parent phase as well as variant choice from

those 12 variants. Fig.45(a) shows the 3D microstructure obtained at t=0.1s, Fig.45(b)

corresponding vertical slice contour and Fig.45(c) horizontal slice contour.

Figure 45: The microstructure of α phase at t = 0.1s. (a) 3D visualization; (b)
contour of vertical slice; (c) contour of horizontal slice.

To examine the soundness of our model, the volume fraction of transformed α

phase is plotted against temperature, compared with the theoretical JMC prediction

in Eq.5.3 and 5.4 under linear cooling schedule, in Fig.46. Although it may be

straightforward to compare transformed fraction against time, there is a scale gap

between experiment and our model, meaning that it’s still not clear that how much

physical time is equivalent to CA time or CA step. As we can see, two curves agree
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reasonably well with each other, from which we can clearly identify the nucleation and

growth stage. The overall shift of CA curve is due to the pre-existing grain boundary

α before nucleation and growth of lamellar α. Additionally, due to the remaining β

phase, the final transformation rate of our simulation is about 0.9, different from the

ideally theoretical prediction.

Figure 46: The comparison of transformation fraction between simulation and
theoretical prediction.

5.5 Summary

The goal of this work is to establish an integrated model of finite element method

and cellular automata to numerically investigate the effects of processing parameters

on final microstructure. The FEM part efficiently provides us real time temperature

distribution, then the calculated temperature field directs microstructure evolution

simulated by cellular automata model. The combinative model is engaged to simulate
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the process of selective laser sintering of Ti6Al4V, which involves complicated mi-

crostructure evolution and solid-state phase transition involving nucleation and growth

of irregular grains. It is phenomenologically validated by comparing the kinetics of

β → α phase transition of our simulation with experimentally summarized JMA

theory. Based on the obtained titanium alloy microstrucutre after sintering, it’s easy

to do property predictions and performance evaluations for the produced materials.

There are already several algorithms designed for the calculations of basic properties

from material microstructure, such as the lattice-spring model, through which we can

build surrogate model to quantitatively link the processing parameters and product

properties. Such an numerical technique may shed light on in silico product design.

The content in this chapter can be found in Chen et al 2018 Modelling Simul.

Mater. Sci. Eng. https://doi.org/10.1088/1361-651X/aabcad.
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Chapter 6

COMPUTING ELASTIC MODULUS FIELD OF HETEROGENEOUS

EXTRA-CELLULAR MATRIX VIA INVERSE FEM

6.1 Background

Previous chapters are mainly focused on modeling material microstructure and

its time-dependent evolution. In this chapter, we will discuss the algorithm aimed

for mechanical property calculation. Basically, there are two ways to determine

material properties computationally: the ab initio approach and the macroscopic

stimulus-response approach. It’s reasonable to expect that as the theoretical foun-

dations become more and more developed and the computational platforms become

more and more powerful, ab initio approach will be heavily applied in a lot of oc-

casions where conventionally only experiments can fulfill the goals. However, based

on current situation, it’s more computationally feasible to use the other approach,

i.e., stimulus-response method, to build combinative model from microstructure to

material properties. Here, an inverse finite element method is introduced, which is

used to determine the elastic modulus of a material sample through analyzing the

responsive displacement filed upon external pressure. Usually, FEM is engaged to

compute the displacement field when an object is deformed by external stress, with

known mechanical properties, such as elastic modulus and Poisson’s ratio. If the

mechanical properties are the unknown targets to be calculated, the conventional

FEM formulations need to be rearranged, for example, the boundary forces have to
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be expressed in terms of integrals involving the local strain (gradient of displacement

field) and unknown variables of elastic modulus.

Our inverse FEM computational scheme will be elaborated over the application

of calculating the elastic modulus field of extra-cellular matrix (ECM), where the

heterogeneity of the mechanical properties are explicitly considered. Specifically, a

general formulation will be provided to reconstruct the distinct local elastic modulus

values of the heterogeneous ECM from a pre-measured displacement field within the

interested region, which may contain active cells of arbitrary shapes. Through the

proposed inverse FEM scheme, we are able to establish a set of homogeneous linear

equations based on the stress equilibrium conditions where the unknowns are the local

modulus values. Given an experimentally measured overall modulus of the ECM E0,

the local modulus values can be uniquely determined by solving the aforementioned

set of homogeneous equations and multiply the solution vector by E0, which also

indirectly provides the values of stress and strain including the traction force on the

cell surface if there are any.

We first validate our procedure by reconstructing a highly heterogeneous 3D model

ECM with alternating arrangement of soft and stiff regions and provide a systematic

mesh-size dependency and convergence analysis. Then we employ the procedure to

compute the distribution of elastic modulus and stress in a heterogeneous type-I

collagen network as well as the traction force on a rounded breast cancer cell in

the ECM, based on the deformation field data obtained via 3D reflectance force

microscopy. Note that in this system the contraction magnitude is small, and the cell

maintains a rounded shape, which indicate linear elastic deformation dominates in

the ECM and serves as ideal demonstration case for our general procedure. Finally,

the generalization of our formulation for nonlinear situations is also discussed.
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6.2 Related work on determining elastic modulus of extra-cellular matrix

Accurately resolving the traction forces on active cells in ECM is crucial to

understanding stress homeostasis in cellularized ECM systems and the resulting

collective cellular behavior. The majority of 3D traction force microscopy techniques,

which compute the stress distribution in ECM as well as cellular traction forces from

experimentally measured deformation field in the ECM using dispersed tracing particles

or fluorescently-tagged matrix proteins, have assumed a spatially homogeneous ECM

with constant material properties at every location in the system. Recent studies

have shown that ECM can exhibit significant heterogeneity due to the disordered

nature of collagen network as well as cell remodeling. In this paper, we develop

a novel procedure for accurately resolving the cellular traction forces by explicitly

reconstructing the distinct local elastic modulus values of the heterogeneous ECM

containing an arbitrary shaped cell from a measured displacement field in the ECM.

Our formulation does not require any a priori knowledge of the boundary conditions,

and simultaneously results in the distribution of the heterogeneous modulus values and

stress field in the ECM, as well as the traction forces on the cell. We first validate our

procedure by reconstructing a highly heterogeneous 3D model ECM with alternating

arrangement of soft and stiff regions and provide a systematic mesh-size dependency

and convergence analysis. Then we employ the procedure to compute the distribution

of elastic modulus in a heterogeneous type-I collagen gel as well as the traction force

on a rounded breast cancer cell in the gel, based on the deformation field data obtained

via 3D reflectance force microscopy. Finally, the generalization of our formulation for

nonlinear situations is also discussed.

Recent studies have shown that the mechanical interactions between cells and
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extra-cellular matrix (ECM) play an important role in regulating individual and

collective cell migration behaviors in many physiological processes such as wound

healing and cancer metastasis [127, 128, 129, 130, 131, 132, 133, 134]. Specifically, a

migrating cell can generate active pulling forces on ECM fibers through actomyosin

contraction and cell-ECM adhesions [135, 136, 137, 138, 139]. Reciprocally, the local

stress state of ECM fibers can also bias the formation of new focal adhesion sites and

thus, affects the overall migration of the cells [140, 141].

Due to its great importance and physiological relevance, a significant amount

of research efforts have been spent to understand the cell-ECM mechanical inter-

actions[142, 143, 144, 145, 146, 147, 148, 149]. One of the most commonly used

approaches is the traction force microscopy, which allows one to compute the stress

distribution in the cell-ECM system by tracking the deformation of ECM regions[150].

Specifically, fluoresce-labelled micro-beads are typically embedded in the collagen gel.

The displacements of beads are then obtained via time-lapse confocal imaging, which

quantitatively represents the displacement field of the ECM. The bead displacement

field can be further interpolated and mapped to a prescribed mesh grid points. The

stress distribution in the ECM region is subsequently computed for a given (nonlinear)

constitutive relation of the ECM material, from which the traction forces on the cells

embedded in the ECM can be resolved.

Very recently, a 3D reflectance traction microscopy has been developed, which

combines confocal reflection imaging and partial volume correlation post-processing

[151]. Specifically, the local displacement field is obtained via individual pixel-based

digital image correlation. In contrast to employing dispersed tracing particles or

fluorescently-tagged matrix proteins, this method provides a label-free, computationally

effective strategy to study the cell mechanics in native 3D extracellular matrix in a
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non-invasive fashion. More importantly, it allows one to directly resolve the ECM

displacement field on mesh grids without further interpolations.

Most of the traction force microscopy techniques assume that the ECM is a

spatially homogeneous medium, i.e., the constitutive relations and local material

properties (such as elastic moduli) do not vary at different locations of the material.

This assumption allows one to employ constant material properties to compute the

stress distribution in the ECM and subsequently resolve the traction forces on the cell.

However, recent studies have shown that ECM heterogeneity can significantly affect

the stress homeostasis in cellularized ECM systems [152]. The heterogeneity of ECM

mechanical properties can be resulted from the original structural and topological

disorder of the collagen fiber network [153, 154, 155, 156], as well as the network

remodeling by the active cells[157, 158, 159]. In particular, it has been shown that

continuous cell contraction can lead to significant fiber bundle formation between

neighboring cells, which creates gradients of mechanical properties of the local ECM

[34]. Recently, non-uniform local perturbations in ECM mimicking those generated of

a cell has been investigated, which indicated ECM heterogeneities can lead to a wide

spectrum of mechanical responses to such perturbations[160, 161].

6.3 Method

6.3.1 General reconstruction framework

Reconstruction of the material properties from its response to external or internal

stimuli is a classical inverse problem. For example, in many biomedical imaging

applications, visualizing the distribution of elastic modulus within a sample of material,
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a tissue for example, based on the measured displacements due to perturbations from

a ultrasonic or magnetic source, allows one to discriminate the bulk tissue into

normal and abnormal regions for further diagnosis [162, 163]. Based on the types of

external stimulus, elastic modulus reconstructions generally fall into two categories:

(i) reconstruction under dynamic perturbations [164, 165, 166, 167, 168, 169, 170],

such as sono-elasticity; and (ii) reconstruction under static perturbations such as

simply compressing or stretching the material at boundaries[171, 172, 173, 174, 175,

176]. The static compression based reconstructions, depending on whether or not

requiring the actual boundary conditions, can be further divided into absolute modulus

reconstruction [177] and relative modulus reconstruction [178, 179], with the latter

only calculating the pattern of modulus distribution instead of absolute values.

In this work, we focus on the reconstruction of the distribution of local elastic

moduli in a heterogeneous ECM. We model the ECM as a cuboid domain containing

an arbitrarily shaped cell. The 3D cell morphology is obtained via confocal microscopy

analysis. The displacement field in the ECM region is obtained using 3D reflectance

force microscopy and an overall effective elastic modulus of the ECM is experimentally

measured. In this case, the stresses on neither the exterior boundary of the bulk

ECM nor the cell-ECM interface (i.e., the cell traction forces) are known a priori.

These stresses are expressed in terms of the surface or interface strain and local elastic

moduli to be solved.

Given the experimentally measured displacements resolved at discrete mesh grids,

we first obtain the associated strain field by approximating a continuous displacement

field using linear shape functions. To minimize the effects due to the uncertainties in

the measured displacement fields and the possible local discontinuities of the material,

the directly calculated strain field is smoothed using the least-square approach [180].
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Next, we use the smoothed strain field and the unknown local elastic modulus at

each boundary node to approximate the boundary forces. Subsequently, the forward

finite-element equations based on stress equilibrium conditions are rearranged and

reformulated into a set of homogeneous linear equations with the local elastic modulus

values as the unknown variables. Finally, those homogeneous linear equations are

solved and the relative modulus at each location is obtained. By rescaling the relative

modulus with the experimentally measured overall modulus of the ECM, the actual

distribution of heterogeneous elastic modulus for the material can be obtained.

We note that our novel procedure distinguish itself from previous modulus re-

construction research in two aspects. First, we provide a general 3D reconstruction

formulation that only requires the displacements as input and requires no knowledge

or assumptions on the boundary forces. Secondly, it allows us to immediately obtain

both the distribution of the heterogeneous modulus and the traction forces on cell

surface without further forward finite-element-method calculations. On the other

hand, the preponderance of previous researches on reconstruction was focused on 2D

systems using plane strain or plane stress approximation and the reconstructions are

usually based on the assumption that the moduli at boundary points are identical

[178] or the stress distribution is constant [179] within the material.

6.3.2 Strain fitting

One of the important steps in our reconstruction process is to obtain an accurate

estimation of the strain field given the measured displacement field, which will be

used to approximate the boundary forces. The continuous displacement field within
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the ECM material is approximated by

u(x) = N(x)um (6.1)

where um is the measured displacement data at mesh grids, and N(x) is the global

shape function. Conventionally, the strain field can be calculated as

εm = ∇su = Bum (6.2)

where the strain-displacement matrix B consists of spatial derivative ofN(x). Because

εm is calculated as the derivative of measured displacements and the uncertainties

associated with the displacement measurement may be amplified, we need to further

calculate the smoothed strain filed. Assuming εm is equal to the linear approximation

of the strain field parameterized by smoothed nodal strain εs at each location, we

have

Nεs = εm (6.3)

which can be solved by multiplying both sides with NT , i.e.,

εs = (NTN )−1NTεm (6.4)

This strain smoothing scheme can also be used to smooth the measured displacement,

however, we observe that strain smoothing is sufficient to obtain accurate modulus

reconstruction. Therefore, to keep the algorithm concise and robust, displacement

smoothing is not considered as a necessary step here.

6.3.3 Forward FEM formulation

The most commonly used procedure of FEM on static linear elasticity problem

works as follows: (1) decide the element to be used; (2) create mesh on the geometry;
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(3) calculate element stiffness matrix and construct the global stiffness matrix; (4)

apply boundary conditions; (5) solve the linear equations for nodal displacement[181].

In ensuing discussions, we briefly describe the governing differential equations and

corresponding matrix form for forward linear elastic problem which will be the basis

towards the derivation of modulus reconstruction formulation.

For a material under static (quasi-static) force equilibrium condition, we have

∇T
s σ + b = 0 (6.5)

where σ is the stress tensor, b is the body force term and

∇T
s =


∂
∂x

0 0 0 ∂
∂x

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0

 (6.6)

The strain is calculated according to the kinematics equation describing the strain-

displacement relation, which is given by:

ε = ∇su (6.7)

For a linear elastic material, the stress and strain are linearly related by the constitutive

equation:

σ = Dε (6.8)

where D is the fourth-order stiffness tensor. Eqs. (5)-(8) define an elasticity problem,

the solution of which also requires the specification of proper boundary conditions.

There are generally two types of boundary conditions: (i) the natural boundary

condition or the force boundary condition, in which the traction forces at material

boundary are specified, i.e.,

τn = t̄ on Γt (6.9)
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and (ii) the essential boundary condition or the displacement boundary condition, in

which the displacements at the boundary are specified, i.e.,

u = ū on Γu (6.10)

where Γt indicates the traction boundary, and Γu indicates the displacement boundary.

In the case that the material under consideration is isotropic and there is no body

force, we have

D = ED0 =
E

(1 + v)(1− 2v)



1− v v v 0 0 0

v 1− v v 0 0 0

v v 1− v 0 0 0

0 0 0 1−2v
2

0 0

0 0 0 0 1−2v
2

0

0 0 0 0 0 1−2v
2


(6.11)

∇T
s σ = 0 (6.12)

σ = D∇su (6.13)

where E and v are local elastic modulus and Poisson’s ratio respectively. By con-

verting the strong form into weak form and using Eq.6.1 to approximate a piecewise

displacement field based on the nodal displacement u at the meshed grids, we can

immediately obtain the following linear equation set:

∑∑∑
L

BTDBu = Ku = f (6.14)

where B is the matrix version of ∇S, global stiffness matrix K =
∑∑∑

LB
TDB, and

L is a gathering matrix, which maps the local stiffness matrix and forces on element

onto a global stiffness matrix and force vector. With proper boundary conditions [c.f.

Eq.6.9 and 6.10], the Eq.6.14 can be solved for the nodal displacements.
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6.3.4 Inverse reconstruction formulation

In the inverse reconstruction problem, the nodal displacement in the ECM is known

from experiment, and the corresponding displacement field is obtained through linear

interpolation within each element using the nodal values (see Eq.6.1). The formulation

for our inverse modulus reconstruction is derived by rearranging the forward FEM

Eq.6.14, in which the displacement field and its gradient (i.e., the strain field) are

used to construct the coefficient matrix (similar to the stiffness matrix in forward

FEM calculation) while the local elastic modulus values in each element are treated

as the unknowns.

In particular, the essential and natural boundary conditions are expressed in terms

of the known displacement field and its derivative as well as the unknown local elastic

modulus, i.e.,

ū = u(x), x ∈ Γu (6.15)

and

t̄ = Dεs(x) = D(NTN )−1NT∇su(x), x ∈ Γt (6.16)

Specifically, the traction forces on boundaries are calculated in two steps: first, we

compute and smooth out the strain field εs according to Eq.6.4; then, the nodes and

corresponding element facets for both the exterior boundary of the reconstruction

domain and the cell-ECM interface are detected and the traction forces on these

boundaries are expressed as Dεs.

Using the calculated strain εs to replace Bu and t̄ and explicitly separating

the nodal modulus En as the unknown variable, the left-hand side Eq.6.14 can be

rearranged and transformed into BTD0ε
sNEn, while the right-hand side can be
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expressed as ND0ε
s
Γt
NEn. Then the forward FEM equation (14) becomes

∑∑∑
L

BTD0ε
sNEn =

∑∑∑
L

ND0ε
s
ΓtNE

n (6.17)

moving the term on the right-hand side to the left, we have

∑∑∑
L

(BTD0ε
sN −ND0ε

s
ΓtN )En = 0 (6.18)

We denote the constant term in front of E by KE, i.e.,

KEE
n = 0 (6.19)

We employ a constrained optimization method to find the nontrivial solutions to

Eq.6.19. Specifically, the “trust region” algorithm[182] is utilized which uses a quadratic

function to approximate the function to be minimized at current search point. In

addition, the local minimizer of the approximation function is obtained within a

confined neighborhood defined as a hypersphere region. If the attempt fails, the

radius of the neighborhood shrinks, and the local minimization step is repeated

until a successful trial is achieved. To avoid degrading into the trivial solutions, the

constraints on the optimization problem, i.e., a prescribed lower bound on the local

elastic modulus, should be satisfied for all attempted solutions. Here, the reflective

Newton method is employed to find the solutions satisfying the lower bound, which

has been proved to be efficient for large scale problem and exhibit superior convergence

behavior [183].
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6.4 Results

6.4.1 Modulus reconstruction for a 3D model heterogeneous material

To validate and ascertain the accuracy of reconstruction procedure, a 3D model of

heterogeneous material with alternating arrangement of soft and stiff regions charac-

terized by an analytical modulus distribution is designed. After generating a mesh

upon a cubic region with tetrahedron elements, we first obtain the nodal displacements

under a uniaxial tensile boundary condition using forward FEM calculation. Then,

the nodal displacements are provided as the input for our modulus reconstruction

algorithm to recover the modulus distribution within the material. We also perform a

systematic analysis on how the convergence of our reconstruction algorithm is affected

by the mesh resolution used to discretize the material.

Our test material possesses a cubic geometry with edge length L=8 mm and is

meshed upon n nodal points with tetrahedral elements. Tetrahedral elements are

more flexible to mesh complex geometry such as a motile cell than brick elements,

and the corresponding mesh can be easily generated using Delaney tessellation given

an arbitrary point cloud without mapping them onto regular grid. The distribution of

Young’s modulus within material is given by the following analytical function:

E(x, y, z)

E0

= 1.0 + 0.1 sin 0.7x cos 0.7z(sin 0.7y + cos 0.7y) (6.20)

where E0 is a scaling constant (i.e., overall effective modulus) which we set it to

106 Pa in our forward FEM displacement calculation, which is cancelled out after

normalization. Poisson’s ratio is set to be 0.3. In addition, we consider the material

is under uniaxial tensile force along the x direction. The corresponding boundary
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conditions are

u(x = 0) = 0, τ (x = L) = [1.0× 104, 0, 0]T (6.21)

We note that in the forward problem, the number of nodes n used to mesh the domain

is an important factor determining the accuracy of the calculated displacements.

This corresponds to the resolution of the displacement field measured in 3D traction

force microscopy, which plays a crucial role to the accuracy of the reconstructed

modulus distribution and the resolved traction forces on cells. Therefore, we perform

a systematic mesh-size dependency analysis by varying the number of mesh nodes

n and obtaining the corresponding displacement fields with different resolution via

FEM calculations.

The inverse reconstruction procedure described above is then employed to reproduce

the modulus distribution in Eq.6.20 solely based on the nodal displacement data. To

better capture the intrinsic spatial variation of the local modulus, in the ensuing

discussions we use the normalized modulus defined via

Ei =
E∗i − Emin

Emax − Emin

(6.22)

where Ei and E∗i are respectively the normalized and original modulus values at

node i, E( max) and Emin are the maximum and minimum modulus value of all the

nodes. Clearly, through Eq.6.22, the modulus distribution in each case is mapped

into the range [0,1] for easy comparison. This also removes the dependency of the

reconstructed modulus on the average modulus value of the entire system. Fig.47 shows

the distribution of normalized modulus according to Eq.6.20 and two representative

reconstructions from displacement fields associated with 20 and 57 nodes along each

dimension respectively.

To quantitatively measure the accuracy of reconstruction, we define the following
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Figure 47: The normalized modulus distribution in a 3D cubic modeling material
with edge length L = 8mm. (a) Original modulus distribution. (b) Reconstructed
modulus distribution associated with a linear mesh size (i.e., number of nodes along
each direction) of 20. (c) Reconstructed modulus distribution associated with a linear
mesh size of 57. The reconstruction in (b) already captures the main features of the
initial modulus distribution, while the reconstruction in (c) almost exactly reproduces

the initial modulus distribution.

error metric R, i.e.,

R =
1

n

∑
i

Etrue
i − Ereconstr

i

Ereconstr
i

(6.23)

where n is number of nodes, Etrue
i and Ereconstr

i are the respectively true and recon-

structed elastic modulus at node i. Fig.48 shows the plot of the reconstruction error

metric R as a function of mesh resolution (i.e., number of nodes). It can be clearly

seen from the figure that the reconstruction error monotonically decreases as the mesh

resolution increases. This suggests that a high-resolution displacement data measured

from experiment can result in more accurate modulus reconstruction and thus, the

resolution of the traction forces on the cells.

We also note that our reconstruction procedure is very robust and reliable to

produce accurate results even with very low-resolution displacement data. For example,

even with the displacement data computed with only 8000 nodes (20 by 20 by 20), we
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Figure 48: The reconstruction error R as a function of linear mesh size (number of
nodes along each direction), which is monotonically decreasing as mesh density

increases. The error R is already very small ( 3%) even when there is only 20 nodal
points along each dimension.

can still achieve a 97% reconstruction accuracy for the distribution of modulus values.

In addition, when mesh resolution (node number) is sufficiently high (>48 on each

dimension, for instance), further increasing the mesh resolution (adding the number of

displacement data points) does not significantly improve the reconstruction accuracy.

This implies that one can use moderate-resolution displacement data in practice.

6.4.2 Resolving traction forces on breast cancer cell in heterogeneous ECM

With our reconstruction procedure validated, we now apply it to resolve traction

forces on a rounded MDA-MB-231 breast cancer cell embedded in type-I collagen gel

(ECM) with collagen concentration of 2mg/ml. This system is particular selected

since the contraction magnitude of the cell is relatively small, and the cell maintains a
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rounded shape. In this case, it is reasonable to assume that linear elastic deformation

dominates in the ECM and it serves as ideal demonstration case for our general

reconstruction procedure. The Poisson’s ratio of ECM is set to be 0.33. We note

that recent studies have shown that ECM can possess a unusual asymmetric Poisson’s

ratio due to fiber micro-buckling in case of large deformation [150]. Here, we still use

the normal value, which is a good approximation for small linear deformations. Our

procedure can also apply to other matrices such as elastic hydrogels used in Ref. [148].

The morphology of the cell is obtained via confocal microscopy and the displacement

field within the ECM region is obtained via 3D reflectance force microscopy. The

reconstruction domain is a cubic box with linear sizes 354.64um by 354.64um by

130um along each direction. Obviously, the finer the mesh is constructed, the more

accurate the result will be. However, with ultra fine mesh, the geometry of the cell

will be compromised based on the available experimental data. Therefore, the domain

is meshed into 63 by 63 by 65 grids to fully utilize the displacement data meanwhile

accurately resolve the geometry of the cell. The total number of experimentally

measured displacement points within the ECM region is 255405, which are then

interpolated to generate a continuous displacement field according to Eq.6.1.

Similar to the validation case described before, the reconstruction domain is first

meshed with linear tetrahedral elements and the available displacement data are

mapped to the corresponding mesh grid points. Specifically, the mesh for ECM is

generated as follows: first, we tessellate the entire system into tetrahedral elements

including both the ECM region and the cell region. We then check each element and

exclude those elements which contain at least one node within the cell. The remaining

ECM elements and the associated nodes are re-ordered and each is assigned with a new

global element (node) index. The surface of the cell is approximated by an appropriate
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triangle tessellation compatible with the tetrahedral elements at cell-ECM interface,

see Fig.49. The normal vector of each boundary facet, including the exterior boundary

reconstruction domain and the cell-ECM interface is obtained for approximating

boundary forces using the unknown modulus and smoothed boundary strain.

Figure 49: The geometry of the MDA-MB-231 breast cancer cell embedded in the
ECM and its surface mesh using tetrahedral elements.

The strain field is calculated and smoothed to reduce the influence the random

error introduced in experimental measurement for displacements. The smoothed strain

field is then plugged into Eq.6.19 for unknown modulus, which is subsequently solved

to obtain the modulus distribution. Fig.50(a) shows the reconstructed distribution

of the Young’s modulus of the ECM, from which the heterogeneous nature of the

modulus distribution can be clearly seen. We note that the far away from the cell,

stiff and soft regions of ECM generally possess a uniform distribution, which is mainly

due to the disordered nature of collagen network. In addition, the stiff regions tend

to cluster towards the cell, which might be due the ECM remodeling in regions close
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to the cell. Although the normalized modulus values are used for visualization, the

actual modulus values can be easily obtained by a rescaling with respect to the overall

average modulus of the ECM E0 = 2KPa. Fig.50(b) shows the variation of the

normalized modulus values as one moves away from the cell surface. A clear stiffness

gradient can be observed, i.e., as one moves away from the cell surface, the normalized

modulus first rapidly decreases and then reaches a plateau value. We note this trend is

qualitatively consistent with the experimentally measured local stiffness in cellularized

collagen [184].

Once the distribution of ECM modulus is known, it is straightforward to calculate

the stress distribution in both the ECM region and one the cell surface according to

σ = Eε, which are respectively shown in Fig.51 and Fig.52. Both the ECM bulk

stress distribution and cell surface stress distribution indicate that the cell is in a

polarized state, with one end generating isotropic pulling forces (e.g., the red regions

on the cell surface) and the opposite end generating compressive forces (e.g., the blue

regions on the cell surface). This analysis suggests that the cell is active contracting

on one side while swelling on the other side, corresponding to typical state during cell

migration. This study clearly demonstrates the utility and robustness of our approach.

6.5 Conclusions and discussion

In this chapter, we have developed a novel procedure for accurately resolving the

cellular traction forces by explicitly taking into account the heterogeneity of the ECM.

Specifically, we have reconstructed the distinct local elastic modulus values of the
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Figure 50: Reconstructed distribution of the normalized modulus within the ECM.
The dark region shows the embedded cell. The red color indicates locally stiff regions.
(b) The frequency distribution (in log scale) of normalized local modulus values.

heterogeneous ECM containing an arbitrary shaped cell, based on a prescribed ECM

displacement field and an overall modulus of the ECM. Our formulation does not

require any assumptions on the boundary conditions for the reconstruction domain

and directly provides the forces on the exterior boundary of the reconstruction domain

as well as the traction forces on the cell. We have validated our procedure by

reconstructing a highly heterogeneous 3D model ECM with alternating arrangement of
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Figure 51: Distribution of normalized stress within in the ECM. σxx, σyy and σzz are
normal stresses along x,y,z directions, positive values indicate traction and negative

values indicate compression; σxy, σyz and σxz are shear stresses.

soft and stiff regions and provided a systematic mesh-size dependency and convergence

analysis. In addition, we have employed the procedure to compute the distribution of

elastic modulus and stress in a heterogeneous type-I collagen network as well as the

traction force on a motile breast cancer cell in the ECM, based on the deformation

field data obtained via 3D reflectance force microscopy. Our analysis showed that

the cell is in a polarized state with contracting and swelling modes on opposite ends,

indicating its active motion. Our procedure allows one to dynamically track the stress

and traction forces on migrating cells with time-lapse displacement data and to obtain

insights on the mechanisms for force-regulated collective cell migration.

We note that in the examples considered in this paper, we have assumed linear

elasticity in the ECM. This is true for relative small cell induced ECM deformations.

However, the general reconstruction formulation can be readily extended to non-linear
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Figure 52: Distribution of normalized stress on cell surface. In the cases of normal
stress (i.e., the upper panels), the red region corresponds to cell contraction and the

blue region corresponds to cell stretching.

situations where large deformation occurs. Following a similar procedure as introduced

above, instead of only recording the final state, a time-lapse nodal displacement data

u(x, t) will be obtained and the static Eq.6.19 is generalized to the time-dependent

equation

KE(t)En(t) = 0 (6.24)

To solve Eq.6.24 at a particular time t, the displacement data at time t and time

t+ ∆t can be treated as the initial and final state and our procedure for the linear

case can be applied assuming that the ECM is not significantly distorted by the cell

within a small time interval t. In this way, not only can we deal with non-linear large
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deformations of the ECM, but also numerically investigate the dynamical interaction

between and active cell and the variation of ECM modulus due to cell remodeling.

Finally, the proposed inverse FEM computational scheme can be applied to any

solid material system, and the experimentally measured displacement filed can also be

replaced by numerically obtained displacement field using recently reported algorithms,

such as lattice-spring model. Specifically, to generate numerical displacement field

using lattice-spring model, the microstructure of a material sample need to be converted

into a discrete lattice points linking by artificially defined springs. Upon the application

of stress and displacement boundaries, each lattice point will translate by a certain

amount and each spring will deform by some degree, which can be conveniently

regarded as the displacement field. Based on such a displacement field, we can use

the inverse FEM to calculate elastic modulus field of the material sample.
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Chapter 7

FUTURE WORK

In this thesis, our efforts towards establishing combinative modeling tech-

niques are introduced, which are aiming to simulate the whole procedure of

“processing→microstructure evelution→property prediction” in solid state sintering.

Specifically, the packing configuration of solid powders is generated via DEM simula-

tion (chapter 2), the interconnection of powders and accompanying densification is

simulated using kinetic Monte Carlo method (chapter 4), possible phase transition

during sintering is simulated using celluar automata approach (chapter 6), and mate-

rial property, such as elastic modulus, can be obtained using inverse FEM (chapter

6). In addition, to further reduce the simulation cost of homogeneous materials, their

microstructure related modelings and simulations can be performed in 2D first and the

corresponding 3D microstructure can be easily obtained using stochastic reconstruction

technique (chapter 3), the accuracy of which has been proved satisfying for the 3D

microstructure reconstruction of polycrystalline materials. The preliminary results

reported the thesis indicate that coupling multiple simulation methods to describe

complicated physical processes is possible and effective. However, to truly create

an integrated model capable of simulating the whole process of powder compaction,

microstructure evolution and all the way to material properties, long-term efforts are

still required, especially in following aspects:

• Create more efficient microstructure evolution algorithms. Current kinetic

Monte Carlo algorithm discussed in chapter 4 is proven effective in resolving

microstructure evolution during solid state sintering. However, it’s quite time
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consuming if directly augmented to 3D configuration. Generally speaking, MC

based algorithm is difficult to be parallelized, therefore, new algorithms need to

be invented in future.

• Densification and phase transition need to be coupled. Currently, densification

process is simulated phenomenologically regardless of the chemical activities

taking place at smaller length scale, which however plays an important role in

controlling density evolution in reality. Such a coupling should be addressed

explicitly in a combinative model.

• More sophisticated model is needed to calculate material properties based on

simulated microstructure. The lattice-spring model currently is only efficient

in determining elastic modulus filed and related material properties. Viscoelas-

tic property and plastic behavior should also be considered in future model

development.

• Both individual models and model couplings should be carefully calibrated via

experimental data. Specifically, there are quite a few simulation parameters

introduced in the combinative model, these parameters may or may not corre-

spond to existing physical quantities, therefore, their effective value should be

determined or fitted experimentally.

• Uncertainty of the modeling and simulation should be addressed and quantified.

When coupling different models, the simulation uncertainty may propagate and

be amplified through the interfacing algorithms. As a result, the overall uncer-

tainty may become the most significant factor that jeopardize the effectiveness

of the integrated model. Therefore, uncertainty should be quantified for each

model as well as its propagation behavior across different models.

If above tasks are fulfilled, the combinative numerical simulation modeling will be
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quite promising in place of experiments under a lot of circumstances. As the constant

development of powerful computers proceeds, atomic level numerical methods, such

density functional theory (DFT) for electronic structure calculation and molecular

dynamics (MD) for atomic activity simulation, can also be incorporated in the

combinative model in future.
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APPENDIX A

MODIFICATIONS IN MFIX-DEM FOR POLYDISPERSITY IMPLEMENTATION
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We now describe our implementation for polydispersity. In the recent 2016-1
release version of MFIX-DEM, each distinct solid phase is only allowed to possess a
unique particle size, which is saved in the array D_P0, whose size is the number
of solid phases in the system. Each solid particle is assigned a unique phase index
based on its diameter, based on which the phase-specific physical properties of the
particles (e.g., material density, Young’s modulus, coefficient of friction, coefficient of
restitution, etc.) can be retrieved and employed in the subsequent computation of
particle contact forces.

As has been discussed, our implementation of poly-dispersity allows the users to
specify the particle size distribution for both the initial condition (IC) and mass-inflow
boundary conditions (MIC). This is achieved by introducing two sets of new key words,
respectively, for ICs and MICs, which are summarized below:

• DISCRETELEMENT_MOD.F is modified to add five global arrays that spec-
ify the particle size distributions for different solid phases, including DIS-
TRI_TYPE(Phase) (type of the distribution), DISTRI_MEAN(Phase)
(mean of the distribution), DISTRI_STANDARD_DEVIATION(Phase)
(standard deviation of the distribution), (DISTRI_LOWER_BOUND)(Phase)
(smallest cut-off diameter), DISTRI_UPPER_BOUND(Phase) (largest cut-
off diameter). The size of the arrays is the total number of solid phases in the
system. And the cut-off values are required to truncate the continuous distribu-
tion function for efficient numerical simulation.

• GENERATE_PARTICLES_MOD.F is modified to generate particles with the
diameter according to the specified particle size distribution (i.e., the distribution
parameters in DISCREMENT_MOD.F ), instead of assigning particles with the
same phase with the same diameter for that phase.

• SET_PHASE_INDEX.F is modified to assign a unique phase index to each
particle according to the associated physical properties, e.g., material density,
instead of basing on particle size.

Newly introduced key words:

1. IC_PSD_TYPE(ICV, Phase): The type of particle size distribution function
(e.g., normal, log-normal, uniform or user-specified) in region ICV in the initial
configuration for solid phase-m.

2. IC_PSD_MEAN_DP(ICV, Phase): The mean of the particle size distribu-
tion function (i.e., the mean particle size) in region ICV in the initial configuration
for solid phase-m.

3. IC_PSD_STDEV(ICV, Phase): The standard deviation of the particle size
distribution function in region ICV in the initial configuration for solid phase-m.

4. IC_PSD_MAX_DP(ICV, Phase): The largest cut-off diameter for particles
of solid phase-m in region ICV in the initial configuration.
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5. IC_PSD_MAX_DP(ICV, Phase): The largest cut-off diameter for particles
of solid phase-m in region ICV in the initial configuration. The new key words
for the mass-in-flow boundary conditions are summarized below:

6. BC_PSD_TYPE(BCV, Phase): The type of particle size distribution func-
tion (e.g., normal, log-normal, uniform or user-specified) in boundary region
BCV for the mass-in-flow boundary condition for solid phase-m.

7. BC_PSD_MEAN_DP(BCV, Phase): The mean of the particle size distri-
bution function (i.e., the mean particle size) in boundary region BCV for the
mass-in-flow boundary condition for solid phase-m.

8. BC_PSD_STDEV(BCV, Phase): The standard deviation of the particle size
distribution function in boundary region BCV for the mass-in-flow boundary
condition for solid phase-m.

9. BC_PSD_MAX_DP(BCV, Phase): The largest cut-off diameter for parti-
cles of solid phase-m in boundary region BCV for the mass-in-flow boundary
condition.

10. BC_PSD_MAX_DP(BCV, Phase): The largest cut-off diameter for parti-
cles of solid phase-m in boundary region BCV for the mass-in-flow boundary
condition. Again, we note that the cut-off values (upper and lower bounds) for
particle diameter are required to truncate the continuous distribution function
for efficient numerical simulation.
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