
1

DeadDrop:
Message Passing Without Metadata Leakage

By Davis Arndt

Computer Science Department
College of Engineering

California Polytechnic State University
San Luis Obispo

June 2018

© 2018 Davis Arndt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/158453053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Table of Contents

Introduction……………………………………………………………………………………..3
Background……………………………………………………………………………………..4
Design…………………………………………………………………………………………...5
Evaluation……………………………………………………………………………………….7
Conclusions……………………………………………………………………………………..9
References……………………………………………………………………………………..10

3

Introduction

Problem:

Cryptographic communication schemes, even when paired with anonymized
routing, tend to be vulnerable to extraction and analysis of metadata. Those that require
users to trust a central server or service could potentially yield a great deal of
information if the trusted resource is compromised, and any system that sends data
across an unsecured network is vulnerable to traffic analysis to some degree. The
purpose of this project was to explore a solution to the problem of metadata collection
and analysis.

Scope:

The scope of this project was limited to creating a data transfer system that
places no trust whatsoever in the centralized system while eliminating, to the greatest
degree possible, the ability of an outside observer to analyze and correlate traffic. This
system would consist of a single node and and API designed to interact with it. Other
features necessary or beneficial to cryptographic messaging, such as key exchange
and storage, authentication, and anonymized routing, are not implemented by this
project, though it is designed to be able to incorporate them.

Solution:

In order to prevent a central server or outside observers from gleaning anything
from traffic patterns, it needs be impossible to correlate incoming and outgoing traffic.
To accomplish this, I designed a system in which the server is unaware of the intended
recipient of any given message, and all recipients receive a copy of every encrypted
message currently on the server. Because the server has no way of knowing where to
send a message once received, it is up to each client to check for and retrieve
messages of their own accord.

4

Background

Hybrid Cryptography:

Asymmetric cryptography, in which each participant in a conversation holds a
different key, is extremely useful for purposes of identification and overall cryptographic
robustness. However, it relies on extremely inefficient mathematical operations and is
therefore slow. Symmetric cryptography, where participants have the same key, is much
faster. Hybrid cryptography gains the strength of both by using an asymmetric algorithm
to encrypt a symmetric key, which is sent to the recipient alongside and used to encrypt
the message [1]. Done properly, such a system can be even more secure than either
type used alone.

Traffic Analysis:

Even when internet traffic is encrypted and routed anonymously, an observer can
often determine its origin by analyzing it. For example, if an observer sees a user send
a packet of a certain size into a routing system, then sees a similarly-sized packet exit
elsewhere a short time later, it is a hint that the two are the same [2]. This can allow an
observer to know information such as who is talking to whom, with what frequency, and
how much they are saying. On its own, such information is not always terribly harmful.
Combined with other small pieces of data, however, a great deal of information can be
built up without ever breaking the protections on the data being transferred.

Server Trust:

Cryptographic systems that make use of a central trusted server are extremely
convenient and powerful. Such a system enables easy key exchange, efficient routing,
and a variety of other benefits. However, placing trust in a server that you don’t control
is a risky proposition. A server that participates in facilitating every conversation, such
as those used with the Signal cryptosystem, is able to form a detailed record of who is
conversing when [3]. Even if you can trust the organization in charge of the server not to
abuse their power, there is always the chance that they will be coerced by a
government agency to collect and turn over data [4].

5

Design

Overview Diagram

Repository: https://github.com/DaveArndt/DeadDrop

Server:

Designing the server was the simplest part of this project. The general idea is a
system that handles client connections and acts as an intermediary between client
requests and the backend MySQL database. It doesn’t manipulate the data in any way,
and as discussed earlier, lacks the information required to meaningfully manipulate it.

Interaction with the server follows one of three paths. First, a client can request to
store a message, providing it to the server as encrypted binary data. This is stored to
the database, along with an auto-generated ID and the time of upload. Second, a client
can request the server’s manifest. Manifest entries, consisting of the recipient’s ID,
sender’s ID, and AES symmetric key, all encrypted with the recipient’s public key, are
constructed by the sender before uploading and are mapped to the corresponding
message in the database. This allows the client to identify which messages, if any, are
intended for them, as well as providing the symmetric key and sender’s ID. Third, a
client can request any given message by ID number, which is returned alongside a
signed hash computed by the sender.

Because the server can’t authenticate, or even identify, individual users, users
have no way to delete messages from the system once they are posted. To prevent
messages from piling up and bogging down the system, a parallel thread, running on a
timed duration given at startup, deletes messages older than a certain time period, also
given at startup. Should the parent thread crash, this cleanup thread will kill itself the
next time it runs.

https://github.com/DaveArndt/DeadDrop

6

Client:
The client is responsible for all data processing, including cryptography. It was

designed as an API instead of a runnable application both to increase overall flexibility
and stay within the scope of the project.

The client API communicates with the server in the ways outlined above, but its
real work is done in the manipulation and packaging of data to facilitate communication
with other clients. After downloading the manifest, it iterates through and decrypts each
entry using the recipient’s private RSA key. If the recipient ID matches that given to the
method, the message database ID, sender ID, and AES key are appended as a tuple to
a master list. When done, another method is used to download each message from the
server, ignoring those not present in the list. Finally, each message is decrypted using
its AES key and the signature is verified. What to do in the case of an invalid signature
is left to whomever is using the API. In addition, it is up to the user to manage key
storage and retrieval, though helper methods are provided to facilitate storing to and
retrieving RSA keys from files.

Data Structure:

Data internal to this system comes in three forms. One of each exists for each
message: ciphertext, signature, and manifest entry. The ciphertext is just the plaintext,
padded and truncated to 1024 bytes and encrypted with a 256-bit AES key randomly
generated for each uploaded message. The signature consists of a SHA256 hash of the
padded plaintext appended to the AES key, signed using the sender’s private 2048-bit
RSA key. The inclusion of the AES key in the signature is intended to offset the small
message size by making rainbow table attacks infeasible. The manifest entry is
comprised of the recipient and sender usernames, each padded to 16 bytes, joined with
the AES key for this message, all encrypted with the recipient’s private RSA key. This is
the most important piece of data, as the manifest is what allows a client to check for
messages without parsing unnecessary data.

7

Evaluation

Security Requirements:

First, the system must protect the data contained in the message. The message
itself is protected by an AES cipher, the key to which exists in two locations: the signed
hash, and the manifest, which itself is protected by an RSA cipher and a user-provided
key. As key management is outside the scope of this project, it is up to the user of the
API to ensure its security. As long as neither RSA nor AES are broken, the data should
remain safe.

Second, the system must not provide the server with any information directly.
Because all data is either encrypted or hashed, and the server is never told to whom the
message is intended, the data provided to the server amounts to nothing more than
binary gibberish.

Finally, the system must protect metadata as much as possible. The server could
theoretically apply traffic analysis to incoming messages. This would potentially allow it
to determine information about the sender, possibly discerning patterns or correlating
received messages with each other. Likewise, it might be possible to fingerprint a
recipient based on patterns of checking messages or the speed of their connection.
Neither of these are ideal, but both are mitigatable through the supplementary use of
anonymous routing, and at worst the server or observers would simply learn that an
individual uses the service. Because all outgoing data is identical for a given moment in
time, and because data is not immediately routed to its destination, it is impossible to
correlate incoming and outgoing communications by analysis of packet contents or
timing. Because not all metadata is perfectly obfuscated, this requirement is not
completely met. However, it does prevent observers from connecting senders to
recipients.

Load Handling:

This metric was always going to be the most difficult to optimize. By necessity,
this scheme is extremely inefficient during message retrieval. As the number of
messages in the database increases, performance degrades. This is somewhat
mitigated through the use of hybrid encryption to minimize time spent decrypting
messages, but the rate-determining step is the download itself. The performance for
each user varies greatly based on computer and network performance, especially if
using anonymous routing. On a computer with middling hardware and network
connections running through localhost, I recorded the following execution times to
download and decrypt the given number of messages:

8

Number of Messages Execution Time (s)

10 0.422

20 0.798

30 0.719

40 0.880

50 3.122

60 1.158

70 1.247

80 1.481

90 1.633

100 1.693

110 1.815

120 2.036

130 2.106

140 2.312

150 2.374

Even with relatively small numbers of messages and minimal network latency,
the lag was noticeable, if tolerable. With a sufficient user base, the problem would only
get worse. In its current form, this system operates best when used by a relatively small
group, but more users increases its ability to occlude metadata. These opposing
interests limit the overall feasibility.

9

Conclusions

Successes:

With this project, I accomplished exactly what I set out to do. The system I
created, when used correctly, hides a great deal of information that would otherwise be
available to anyone with the resources to catch it all. It is small and simple enough to be
inserted into almost any network system, and is flexible enough to fit into and work
alongside other security systems. Most importantly, I learned at least as much just
sitting down and building this as I did in most of my classes.

Failures:

I can’t claim that using this system is worthwhile to anybody but the most
paranoid of groups. Notice that I specified “groups.” The nature of this system is that it
slows down heavily as use increases, but barely provides any protection if there aren’t
enough other users with which to blend in. I speculate that this system would work best
when the people using it are coordinated in some way so as not to overtax the system,
and therefore would be best suited to a medium-sized organization. However, doing so
would defeat much of the purpose of hiding your messages’ destinations in the first
place.

In addition, while it does provide protection from many forms of analysis, it isn’t
perfect. It is still possible to identify individuals connecting to the server, though their
messages can’t be tracked.

Improvements:

Had I the time, I might be able to mitigate the scaling issue by downloading a
random subset of all messages instead of grabbing all every time. This could allow the
system to support a much larger user base with minimal slowing. It would weaken the
decoupling between sender and recipient provided by the current build, though, as well
as make it easier for an observer to identify a specific user. I couldn’t think of a way to
incorporate it without negating the rest of the system, so I didn’t include it.

10

References

[1] Kuppuswamy, Prakash and Saeed Q. Y. Al-Khalidi. (March 2014) Hybrid
Encryption/Decryption Technique Using New Public Key and Symmetric Key
Algorithm. MIS Review Vol. 19, No. 2.
https://pdfs.semanticscholar.org/87ff/ea85fbf52e22e4808e1fcc9e40ead4ff7738.pdf

[2] Northcutt, Stephen. (May 2007) “Traffic Analysis.” SANS Technology Institute.

https://www.sans.edu/cyber-research/security-laboratory/article/traffic-analysis

[3] Rottermanner, Christoph; Kieseberg, Peter; Huber, Markus; Schmiedecker,

Martin; Schrittwieser, Sebastian (December 2015). Privacy and Data Protection in
Smartphone Messengers. Proceedings of the 17th International Conference on
Information Integration and Web-based Applications & Services (iiWAS2015). ACM
International Conference Proceedings Series. Retrieved 27 February 2018.
https://www.sba-research.org/wp-content/uploads/publications/paper_drafthp.pdf

[4] Fox-Brewster, Thomas. “Forget About Backdoors, This Is The Data WhatsApp

Actually Hands To Cops.” Forbes, 22 Jan. 2017,
www.forbes.com/sites/thomasbrewster/2017/01/22/whatsapp-facebook-backdoor-g
overnment-data-request/#4976977a1030

https://pdfs.semanticscholar.org/87ff/ea85fbf52e22e4808e1fcc9e40ead4ff7738.pdf
https://www.sans.edu/cyber-research/security-laboratory/article/traffic-analysis
https://www.sba-research.org/wp-content/uploads/publications/paper_drafthp.pdf
http://www.forbes.com/sites/thomasbrewster/2017/01/22/whatsapp-facebook-backdoor-government-data-request/#4976977a1030
http://www.forbes.com/sites/thomasbrewster/2017/01/22/whatsapp-facebook-backdoor-government-data-request/#4976977a1030

