66
thank you Clare, ed, and our reviewers for all the guidance we received to make this project possible. thanks to the arce department for your donation. and thanks to the caed support shop for your resources. We loved how our shell turned out. 'I I
OBJECTIVE 4portland site 5
PRECEDENTS 7
FORM FINDING 8
ORAWINGS 10
RENDERS 16
STRUCTURE 20
EXECUTION 22
CONCLUSION 30

6 $\mathbf{6}$ pprovide an aesthetically beautiful funicular structure that houses a performance pub in portland's $^{\text {and }}$ growing art and CRaft beer scene J J

"MAX" RAIL LINE

ARTS GALLERY / BREWERY

1. TILIKUM CROSSING

2. ROSS ISLAND BRIDGE

A

LOUIS SIMON / FELIX CANDELA

Royan Market Hall / Textile Factory - Los Manantiales
LOCATION
Royan, France / Mexico City

LIGHTING

The push for modernism in helped establish new exciting forms such as
 this one that were considered previously impossible.

CONSTRUCTION MATERALAS

Shell, Reinforced Concrete
ADDITIONAL NOTES

Throughout the quarter, using rhino and grasshopper as form finding tools, we developed several iterations of our shell, ultimatley focusing on four key objectives to drive our shell design, outlined above. We struggled, learned, and worked hard with grasshopper to develop our finalized scheme.

```
AMENITIES
outdoor Seating
```

UPPER LEVEL SEATINg
STAGE
Standing / dancing Area

Programmatically, we designed a seamless floor plan to ensure free-flowing circulation, while maintaining a separation between the amenities and entertainment spaces. From our programmatic studies we designed a rectangular floor plan with a square cut out to create outdoor seating with a view of the river. The subtracted rectangle lended anchor points for the shell which we input into grasshopper. A catenary surface was inflated, baked and punctured with 6 " inch oculi to mimic a starry sky.

In the design development stage, in was essential for the shell to accommodate the two-story amenities island. To achieve this, we played with various forces in grasshopper to provide a seamless undulating curve in section. As you can see, the view from the upper level to the dancing/stage area is clear and unobstructed.

13

The 3" concrete shell meets the foundation at finished grade where it is attached by a reinforcing steel that is connected to a reinforcing mesh to distribute the loads to the footing. The footing has a key to prevent the structure from sliding due to the thrusting force.

FIg 1 THRUST CONTAINMENT

ReInforcing sTEEL	A
REINForcing mesh	B
2" gravel	C

An array of 6 " diameter occuli are spread out on top of the shell to portray a stary-night experience within the shell. The occuli are casted in place when pouring the concrete, and then formed with an acrylic glass to protect the interior of the shell from rain. The occuli are flush with the shell to allow the rainfall to flow directly off the shell and into the ground

FIG 2 OCULI

```
A ACRYLIC GLASS
B 3" CONCRETE SHELL
c WIRE MESH
D STEEL SHEET
E LED PLACEMENT
```


16

AERIAL VIEW 2
upper standing area with view
of stage and dance floor

GRAVITY STRESS

BUCKLING ANALYSIS

LATERAL STRESS

Due to the complexity of our structure our structural analysis was computed through the program SAP. Our buckling analysis showed that our shell would want to fail in the area highlighted if it experienced a force that was 30.6 times our building weight which is 644 kips. In our gravity analysis our shell showed a maximum deflection of 0.28", and our gravity plus lateral analysis gave us a thrusting force of 193.3 kips.

6.7 EARTHQUAKE TIME HISTORY

LOAD FLOW

ANALYSIS

```
DEFLECTION < 1"
```

MAX STRESS 300 PSI

We also ran a time history analysis with the magnitude of the famous Northridge earthquake 6.7 showing that our shell would have survived the earthquake with little to no damage.

LYCRA CLOTH

EMBEDDED IN FORMWORK X

RELATIVELY INEXPENSIVE X
FORM ADAPTABLE X

23

For our construction methods we wanted to achieve a pillowed effect on the inside of our shell with a glossy finish. We tried lycra cloth, plastic sheets, and wire mesh as a layer of our formwork, with the plaster fabric imitating the concrete. From these trials we found that the plastic layer gave us the best control on the pillowed texture, and also gave us the glossy finish we wanted

WAFFLE FORMWORK

POLYETHYLENE PLASTIC IS USED AS WATER BARRIER

Spill edges are defined using polyeurthane concrete poured with TUBING AND PVC PIPES THRUST CONTAINMENT

f f this interdisciplinary project taught us how to communicate and collaborate. through the small SCALE CONSTRUCTION OF A FURNICULAR STRUCTURE, OUR GROUP LEARNED THE COMPLEXITIES OF CONCRETE FORMS including Water barriers, foundation supports, and finishing techniques. J J
calvin veronica tunmi ell

portland
PUB

