
Lightning Draft

Benjamin Sweedler

Senior Project
Computer Science Department

California Polytechnic State University
San Luis Obispo

2018

Abstract
Lightning Draft is a web application for drafting Magic: the Gathering cards. Users can visit
www.lightningdraft.online to build a deck from randomly generated booster packs. This app was
inspired by digital card games such as Hearthstone . Lightning Draft is a quick, fun, and simple
alternative to drafting with physical cards.

1

https://www.lightningdraft.online/

Table of Contents
Abstract 1

Table of Contents 2

Introduction 5

Application 5
Choosing a Guild 6
Beginning the Draft 6
Drafting the Deck 7
Features During the Draft 8
Finishing the Draft 9

Background 10
Frontend 10

TypeScript 10
Component Based 10
Scenario Based Testing 10
Node Package Manager 10

Backend 11
Symfony 11
Routing 11
Controllers 11
Doctrine 11
Composer 11

Design 12
User Interface 12

Decklist 12
Flexbox 12
Responsive Webpage 13

Implementation 13
API 13

API Control Flow 14
Standard Use Case 14
Returning to a Draft 15

API Documentation 15
GET guilds 15

2

URL 15
Description 15
Returns 16
Example Response 16

POST drafts 16
URL 16
Description 16
Body Parameters 16
Example Body 16
Returns 16
Example Response 16
Example Card Object 17

PUT picks 17
URL 17
Description 17
Query Parameters 17
Example Query 18
Returns 18

GET drafts 18
URL 18
Description 18
Example Query 18
Returns 18

Database 19
Card Tables 19

Cards 19
Arts 19
Sets and Formats 20

Draft Tables 20
Draft 20
User 20
Player 21
Pool 21
Picks 21

Booster Pack Generation 21
Color Rules 21
One Extra Land Per Draft 22
Creatures are Preferred 22
Rarity 22

3

Reprints Are Not Favored 22

Related Works 22
Wizards of the Coast Products 22
Third-Party Magic Companion Apps 23

Cube Tutor 23
5 Color Combo 23
Mana Stack 23

Fantasy Football Apps 23
Digital Card Games 23

Hearthstone 23
Shadowverse 24
Google Sheets 24

Analysis and Verification 24
User Statistics 24

Colors 24
User Retention 25
Users Who Left Early 26

User Survey 27
Player Profiles 28
Card Algorithm Rating 30

Future Work 31
Icon and Logo 31
Sets and Formats 31
Uploading Cubes 31
Authentication System 32
Seperate Servers for Subdomains 32
Code Reuse 32
Dynamic Card Algorithm 32
Triple Picks 32

Conclusion 33

4

Introduction
Magic: The Gathering is a revolutionary trading card game, released in 1993. As the first trading
card game, it bridged the gap between traditional card games like Poker and collectible trading
cards like baseball cards. Fans were immediately drawn to this new gaming innovation. Since
then, Magic has inspired many other games, including the relatively new genre of digital card
games.

These digital card games leverage technology in a way that Magic has yet to embrace.
Gameplay is accessible anytime. The user interfaces are clean and simple. My senior project is
a web application that seeks to bring this experience to Magic cards. Compared to a traditional
Magic draft, my app aims to be less time-consuming , have a lower barrier-to-entry , and have
clearer rules. Quick, fun, and simple.

Application
Playing Magic involves building a deck of spells and mythical creatures. A booster draft is a
popular method of building a deck. It requires a getting a group of eight players, opening booster
packs and choosing cards. Although there is exist an official desktop application for this format,
many players don’t consider this option worthwhile. Magic Online charges an expensive fee for
each draft, it has a confusing user interface, and it crashes often.

Lightning Draft is inspired by the draft format used in the most popular digital card games such
as Hearthstone , Shadowverse , and Elder Scrolls: Legends. These games feature “arena” drafts
that involve picking one card from a randomly generated pack of three cards. This simulates
opening booster packs in a manner than is quick to play. My application allows Magic players to
experience this arena draft format for the first time.

The following section will explain the user experience of visiting www.lightningdraft.online.

5

Choosing a Guild

The application begins by presenting a choice of three guilds. This choice decides what color
cards the user sees during the draft. Having this choice upfront simplifies the deck building
experience for both the user and the booster pack generation algorithm.

Beginning the Draft

6

After choosing a guild, the user is presented with the first three cards to choose a card from.
They also begin with a deck of 16 basic lands. This is considered a normal land count for a 40
card deck, which means the player has 24 left picks to complete the draft. The current card
count is displayed in the lower right area of the screen.

Drafting the Deck

Clicking a card adds it to the decklist in the sidebar. The card names and their mana cost are
listed for each card. These cards are sorted by how much mana they cost to cast. fetches a new
bucket cards.

7

Features During the Draft

A new bucket of cards is fetched after each choice. All choices are saved as the user drafts
them. The user can return to the website’s URL at any time to continue the draft where they left
off.

Once the decklist grows beyond the screen height, a scrollbar appears on the sidebar column.
Users can scroll through their past picks while keeping the current bucket on the screen.

Players can expand the card information in the decklist by hovering over the card names.

Finally, if the user hovers over the copyright symbol, a footer with external links scrolls up. This
footer also includes a copyright disclaimer.

8

Finishing the Draft

After the user’s deck reaches 40 cards, the draft displays a grid of all the cards. The application
thanks the user with these three links.

The first link is a survey that I discuss later in this report. The second and third link are for
helping the user play with the cards they drafted. They can either print the cards out on a printer,
or export a text version of the decklist to a variety of third-party Magic applications.

9

Background
Web development has two sides. Front-end and back-end. This project uses Angular 2 for the
front-end technology, and Symfony for the backend. All of the logic for organizing cards and
drafts is done on the Symfony side, while the logic for displaying cards and moving elements
around on the web page is done in Angular.

Frontend
My project uses Angular as a frontend web framework. The main job of Angular is to generate
the HTML for a web browser to display. Here are some features Angular provides.

TypeScript
Angular uses TypeScript as its primary language. Angular then generates vanilla JavaScript
from this TypeScript. One advantage to this is Angular is platform agnostic . Web sites created
with Angular theoretically look the same regardless of the browser. Angular handles all of the
details to display correctly on different browsers.

Component Based
In many frontend web frameworks, dynamic web pages are defined by templates. Each page
has templated HTML that relies on variables or loops. A complex page may include nested
templates.

Components take the dynamic abilities of templates a step further. Each component has its own
template, its own stylesheet, and its own TypeScript file for behavior. This means the style rules
and variable names won’t interfere with another component’s appearance and behavior.

This is similar to the Model View Controller design pattern that many frameworks enforce.

Scenario Based Testing
Angular Playground is an open-source tool for testing individual components. Lightning Draft
has several sandboxed scenarios for testing how components look in certain states.

Node Package Manager
The node package manager (NPM) is crucial to managing projects in Angular. Libraries such as
Angular Playground were installed through the NPM.

10

Backend

Symfony
As mentioned, the backend of my project is not written in Node. My project uses Symfony, a
backend framework written in PHP. This backend was written as a generic MtG card database
and draft tracker. This means both the Rotisserie and Arena types of drafts use this same
backend to save user information and draft progress.

Routing
The frontend communicates with the backend through HTTP requests. These are handled by
Symfony. The API routes follow a standard known as REST (Representational State Transfer).

Controllers
When the server receives a request at one of the API endpoints, Symfony runs a PHP function.
Each function is part of a class that extends the Symfony Controller class. This design pattern is
common in modern frameworks. It’s known as the Model View Controller design pattern.
Because this app only uses Symfony as backend framework, it only uses Models and
Controllers.

Doctrine
The Models in Symfony are called Entities. The base Entity class relies on a library called
Doctrine to persist information in the Database. Doctrine is an ORM (Object Relational Model).
Lightning Draft only manipulates the Entity objects while Doctrine handles the connection to the
underlying MySQL database. One advantage of an ORM is the programmer writes less SQL
statements. Another is automatic creation of database tables and other resources, such as the
API routes mentioned above.

Composer
Symfony uses a package manager, Composer, that is directly inspired by NPM.

11

Design

User Interface
Lightning Draft is based on Hearthstone ’s Arena draft.

Decklist
The background for each card is a zoomed in version of the artwork. The mana cost symbols
are SVG images. The symbols to display is based on a string representation of the mana cost.

{2}{G}{G}{G}

Flexbox

12

All of the highlighted areas are styled with flexbox. Flexbox helps keeps the spacing between
elements consistent. It defines which elements should grow and which should shrink when the
page size changes.

Responsive Webpage
Lightning Draft is functional on mobile web browsers. The
screenshots show the page displaying correctly on both horizontal
and vertical phone screens.

Implementation
The source code for Lightning Draft is publically available online at
https://github.com/pharaxe/lightning-draft

API
Lightning Draft’s API facilitates communication between the front-end and the back-end. The
next section illustrates this communication. The section following documents the specification
for the API.

13

https://github.com/pharaxe/lightning-draft

API Control Flow

Standard Use Case

14

Returning to a Draft
The application pushes a new URL to the the browser history when the draft starts. Users can
return to the draft by navigating to the url: www.lightningdraft.com/draft/ {draftID}

API Documentation
The Lightning Draft API can be served over HTTPS.

All the queries have the base URL of http://api.lightnindraft.online

All responses are serialized JSON objects.

GET guilds

URL

api.lightningdraft.online/guilds

Description
Gets three random color pairs for the user to choose from.

15

Returns

A two dimensional array of Color objects. Each pair of Colors represents a possible guild choice.

Example Response

{ "guilds": [
 [{ "name": "Blue" , "id": 2 }, {"name": "Red" , "id": 4 }],
 [{ "name": "Green" , "id": 5 }, {"name": "White" , "id": 1 }],
 [{ "name": "Black" , "id": 3 }, {"name": "Red" , "id": 4 }]
] }

POST drafts

URL

api.lightningdraft.online/drafts

Description
Create a new draft, using the colors provided as the guild choice.

Body Parameters

colors: An array of objects with an id field to specify the color.
uuid (optional): A identifier to track a single user across multiple drafts.

Example Body

{
 "colors": [{"id": 3 }, {"id": 4 }],
 "uuid": "123e4567-e89b-12d3-a456-426655440000"
}

Returns
The newly created Draft object. Nested in this object is the Player object. Inside the Player
object is a list of Cards for the first bucket, the Colors for the player, and a list of the Player’s
deck (which is empty for a new draft).

Example Response

{
 "draft": {
 "status": "running" ,
 "id": 203 ,
 "player": {

16

 "id": 203 ,
 "pack": [Card, Card, Card],
 "colors": [Color, Color]
 "picks" : []
 }
 }
}

Example Card Object

{
 "art": {
 "id": 400
 "rarity" : "common"
 "multiverseid" : 1034
 "card" : {
 "id": 533 ,
 "name": "Giant Growth" ,
 "cmc": 1 ,
 "mana_cost": "{G}" ,
 "url": "http://img.lightnindraft.online/1034"
 }
 }
}

PUT picks

URL

api.lightningdraft.online/drafts/ {DraftID} /players/ {PlayerID} /picks/ {CardID}

Description
Send a card choice to the server, and then fetch the next bucket of cards.

Query Parameters

DraftID The ID number of the draft.

PlayerID The ID of the player. This number will be the
same number as the draft ID in most cases.

17

This is because Lightning Draft only supports
single-player drafts at this time.

CardID The card ID of the user’s choice. This number
should match one of the inner Card object
IDs that was received from the API earlier.

Example Query

http://api.lightnindraft.online/drafts/ 30 /players/ 30 /picks/ 533

This would signify a user picking card number 533 for draft number 30.

Returns

On success, returns the next bucket of cards.

{
 "cards": [Card, Card, Card]
}

If the card specified in the query is not one of the player’s valid choices, the response returns an
error code of 500 and resends the current bucket of valid card choices.

GET drafts

URL

api.lightningdraft.online/drafts/ {DraftID}

Description
This api call is used if the user refreshes the web page. It loads the deck and bucket data from
the saved state on the server.

Example Query

http://api.lightningdraft.online/drafts/ 30

Returns
The draft object for the specified draft ID number. The response format for the draft is the same
as the POST drafts API call.

18

Database
The MySQL database has around 16,000 magic cards, imported through a JSON file that can
be downloaded from MTGJSON.com for free.

What follows are Entity Relationship graphs for the various tables in the database. Even when
not explicitly in the graph, a joining table exists for relationships between entities.

Card Tables

Cards
Mana_cost: String describing the mana cost of the card.

Types: Each card can have many types. Most have a single type. This is used in the card
algorithm, which prefers to present creature cards over non-creatures.

Colors: Each card can have many colors. Players are only presented with cards that include a
color in their guild.

Identities: Similar field to colors. It includes colorless cards that have colored mana symbols
in their abilities. The algorithm includes these as valid cards.

The rest of the fields represent various text information on the card. They are not used in the
algorithm currently, but are being stored for their use in future features.

19

Arts
Each Card has one to many Arts. An Art entity represents a specific printing of a card.

Multiverseid: this field directly identifies the URL for the image of the art.

Rarity: different printings have different rarities. Can be common, uncommon, rare, or mythic
rare.

Sets and Formats
A Set is an expansion of Magic cards, which typically includes 200 to 300 cards. A format is a
group of Sets. Eventually, Lighting Draft will include a feature for drafting cards from chosen
Sets and Formats.

Draft Tables

Draft
In the current version of this app, the Draft Entity is only for keeping track of meta information
related to the draft.

Status: Can be in one of three modes: beginning, running, or completed.

Start: The time the draft was created.

Finish: The time the last pick was saved.

User
Eventually, login information would be stored in this table. For now, it only has a single field.

20

UUID: unique string that the app generates on the front-end. Used to track a user across
multiple drafts.

Player
Pack: the bucket of cards the player can choose from.

Picks: the deck of cards the player has picked so far.

Passes: all the cards from previous packs that the player did not pick.

Pool
This entity is a joining table for Players and Picks. It represents a list of cards.
Ordered: a flag for if the list should be sorted.

Picks
A joining table between Pools and Arts.

This table creates an inheritance relationship between Picks, Arts, and Cards.

● A Card entity represents a particular Magic card.
● An Art entity includes all the information of a Card entity, plus the rarity and artwork of a

specific printing.
● A Pick entity includes all the information of an Art entity, plus a reference to the Player

and the Pool it’s included in (the deck, the bucket, or the passed picks).

Booster Pack Generation
In most draft formats, booster packs include all sorts of cards that might not work together. This
works because a booster pack has 15 cards, there is room for plenty of extras. My application
has packs of 3 card choices at a time. This means all 3 cards ought to fit in the user’s deck. This
is why having the user choose a guild is a necessary design decision.

Color Rules
The algorithm excludes all cards with colors different than the chosen guild. There is also a 50%
chance per pack to allow colorless artifact cards, which fit in any deck.

21

One Extra Land Per Draft
Each deck begins with 16 basic lands. They also get to pick 1 extra non-basic land. This
non-basic land pack happens in between picks 5 and 20, at a 10% chance per pick until pick 20,
when it’s guaranteed.

Creatures are Preferred
The booster pack is all creature cards 60% of the time. The other 40% of packs are a
combination of creatures and non-creatures cards.

Rarity
The algorithm generates packs so each of the 3 cards have the same rarity.

Common 60%

Uncommon 25%

Rare 10%

Mythic Rare 5%

Reprints Are Not Favored
The random card generator pulls data from the Cards table, not the Arts table. This means even
if a card has been reprinted several times, it will not be more likely to show up in a booster pack.

Related Works
This section involves looking at the current market for drafting and card game applications.
Some of these applications were inspiration for my project.

Wizards of the Coast Products
Magic: the Gathering Online (known as MTGO) was released in 2002. From a user interface
perspective, it seems several years behind the current market of digital card games. It’s favored
by professional players and avoided by casual players. This application has booster drafts, but
nothing similar to an arena draft.

Wizards acknowledges the disconnect between this app and Magic fans. They have a new
client in beta, called Magic Arena . Currently, there is no draft mode in this application either.

22

WotC also has plans to release phone applications. This shows at there’s a market space
available for Magic software products.

Third-Party Magic Companion Apps
Fans continue to breathe life into Magic by creating companion apps.

Cube Tutor
Cube Tutor is a website for uploading a Magic cube, a personalized collection of around 450
cards that a player maintains for drafting. Cube drafts are popular among all levels of players.

5 Color Combo
5CC is a phone application for deck building and single-player mock drafts. Old sets can be
drafted for free, and the paid version includes cards from the newest releases.

Mana Stack
There are many third party deck-building websites. Mana Stack is one such site. These are for
maintaining and organizing a player’s decks.

Fantasy Football Apps
Fantasy Football takes advantage of web and phone applications to make drafting more
approachable. Many of these apps include features for setting up a room, sending out email
invites, and then being notified when it’s a player’s turn to draft. Lightning Draft aims to
incorporate some of these features eventually.

Digital Card Games
Magic has inspired many digital cards games.

Hearthstone
Hearthstone focuses making their drafts enjoyable to newcomers. Arena is a single player draft
where the game presents only 3 cards at a time. This is much easier than the 15 card booster
pack in a Magic draft.

23

Shadowverse
Shadowverse has a twist to drafting where two pairs of cards are presented at a time. The
player must consider which pair to pick. This shows there are unique drafting formats yet to be
explored.

Google Sheets
One unique draft in Magic is a Rotisserie draft. These types of drafts are generally tracked using
spreadsheets. Even so, this process can be long and confusing. This is another situation where
software could affect the quality-of-life for Magic gameplay and organizing.

Analysis and Verification
The following graphs are based on data collected from 68 different users who drafted decks on
Lightning Draft. This data excludes all drafts run by the creator of the application.

User Statistics

Colors

The Red/Blue guild, Izzet, was the most commonly drafted. Considering all the colors overall,
Black was only slightly favored at 24.5% and Green was slightly unfavored at 17.1%. Color
choice in Magic often comes down to personal preference, so this breakdown is expected to be
about even.

24

User Retention

In some of the drafts, users started a draft but did not complete a deck. In the figure above, this
is represented by .5 drafts.

This data shows 38 users never finished building their decks. The remaining 30 users
completed at least one draft.

25

Users Who Left Early

Of the users who did not complete a draft, 6 left after picking a guild. 12 more picked only a
single card before leaving the website. More draft data is necessary to determine why this
happened. One reason may be a need for clearer instructions during the first two picks. Another
possible reason could be users who were mainly motivated by checking out the user interface,
and not necessarily visiting the project to build a deck.

26

7 users completed their draft in less than a minute. It’s possible they picked more or less
randomly. The average time for completing a draft was 7.7 minutes. Three players took over 20
minutes.

A traditional MtG booster draft can take upwards of an hour for drafting and deck building. In all
cases it is faster to build a deck using Lightning Draft.

User Survey
On completing a draft, Lightning Draft prompts users to take a survey in order to rate the app. 8
users responded and what follows is an analysis of the results.

27

Player Profiles

28

Lightning Draft was created for Magic players to experience to draft format that digital card
games offer. The users who took the survey match that intended audience. They were Magic
players, who overwhelmingly played digital card games, but did not play Magic Online .

29

Card Algorithm Rating

These questions may have been too ambiguous to gain insight from. But even with the random
card pool, users felt they got to make meaningful decisions.

30

App Rating

Attached was an optional short answer question that gave two insightful responses:

“ Mostly just cleaning up the card pool to allow going for themes would be good.”
“Cards were kinda random.”

These responses signal experienced Magic players want more strategic decision making. The
users thought the app was undeniably quick, but was only a decently fun experience. There is
potential to improve the booster pack generation algorithm.

Future Work

Icon and Logo
Lightning Draft could use a lightning bolt icon.

Sets and Formats
If the card choices were limited to specific sets or formats, then deckbuilding might be more
interesting for the players compared to random cards.

Uploading Cubes
This feature could possibly interface with Cube Tutor . Players might be more willing to build
decks using Lightning Draft if the cards are from their personal collection of owned physical
cards.

31

Authentication System
This would allow them to revisit their old drafts. Currently they can look at their browser history
to find old drafts, but this is not ideal. Registered users could also allow for multiplayer drafts.

Seperate Servers for Subdomains
● api - communicating with the backend
● www - serving the Angular app
● img - serving card images.

Currently, all three subdomains are on the same server. A more scalable option would be to
have separate services for each subdomain. The images could be hosted by S3, which is
Amazon’s image hosting service. The frontend could be hosted on Cloudflare, which can protect
against DDoS attacks, malicious or otherwise.

Code Reuse
Lightning Draft is a potential a building block for future applications for new or existing card
games. The backend Lighting Draft is built upon includes a generalized implementation for
keeping track of drafts. There is a possibility of writing future applications for Magic using this
same system. And because there is an API for Lightning Draft, it’s possible that other
developers could interface with this backend, and build their own applications.

Dynamic Card Algorithm
The database for the app keeps track of the cards that users pick, as well as do not pick.
For instance, a card called Merfolk Looter was picked 5 times. This card is one that users liked.
Another card, Crookshank Kobolds , was shown to users 7 times but never picked. Obviously
users did not like this card. This information could be used to improve of the booster pack
generation.

Triple Picks
Even though Lightning Draft was less time consuming than a regular draft, many users did not
finish their drafts. It’s a lot of time to spend on a website, even if it’s not a lot a time to draft.
23 seperate card choices is still a lot to ask of a user.

One idea to fix this would be to present mini packs of three cards each, and then present three
of those packs at a time. The packs would be a theme. This would help the users create a deck
with more synergy. It might also speed up the draft by a factor of three, as instead of 23 choices
there would be eight.

32

Conclusion
Lightning Draft gives the experience a traditional Magic draft in a quick, fun, and direct way. The
users of Lightning Draft found it less time-consuming than a regular Magic draft. Also, the
survey responses support the app being decently fun. But, the usage statistics show that 25% of
the users left the webpage during the first few picks. One conclusion is the application needs
clearer instructions. Another is the app needs to set the user’s expectations directly during the
beginning of the draft.

Lightning Draft is an example of a Angular web application that communicates through an API.
The API provides an abstraction for the complex underlying database. The frontend application
only needs to know minimum information about this implementation. This allows the potential for
other applications to interface with Lightning Draft in the future.

Lightning Draft is a new addition to the gaming world. There has not been an arena-style draft
for Magic up until now. With digital CCGs becoming more popular, there’s space in the market to
create this sort of application for existing or new card games. Hopefully, Lightning Draft serves
as an inspiration for new types of games.

33

Disclaimer

Lightning Draft is unofficial Fan Content permitted under the Fan Content Policy. Not
approved/endorsed by Wizards. Portions of the materials used are property of Wizards
of the Coast. ©Wizards of the Coast LLC.

34

