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Self-learning Monte Carlo with deep neural networks

Huitao Shen,1,* Junwei Liu,1,2,† and Liang Fu1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

(Received 16 January 2018; revised manuscript received 16 May 2018; published 29 May 2018)

The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency
has been demonstrated in various systems by introducing an effective model to propose global moves in the
configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC,
and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum
impurity models, we reduce the complexity for a local update from O(β2) in Hirsch-Fye algorithm to O(β ln β),
which is a significant speedup especially for systems at low temperatures.
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I. INTRODUCTION

As an unbiased method, Monte Carlo (MC) simulation
plays an important role in understanding condensed matter
systems. Although great successes have been made in the
past several decades, there are still many interesting systems
that are practically beyond the capability of conventional MC
methods, due to the strong autocorrelation of local updates or
due to the heavy computational cost of a single local update.
In the midst of recent developments of machine learning
techniques in physics [1–17], a general method called self-
learning Monte Carlo (SLMC) was introduced to reduce or
solve these problems, first in classical statistical mechanics
models [18,19], later extended to classical spin-fermion mod-
els [20], determinantal quantum Monte Carlo (DQMC) [21],
continuous-time quantum Monte Carlo [22,23], and hybrid
Monte Carlo [24]. Recently, it helped understand itinerant
quantum critical point by setting up a new record of system
size in DQMC simulations [25].

Designed under the philosophy of “first learn, then earn,”
the central ingredient of SLMC is an effective model that
is trained to resemble the dynamics of the original model.
The advantage of SLMC is twofold. First, simulating the
effective model is much faster, which enables the machine
to propose global moves to accelerate MC simulations on
the original model. Second, the effective model can directly
reveal the underlying physics, such as the RKKY interaction
in the double-exchange model [20] and the localized spin-spin
imaginary-time correlation [23]. We note that there have been
many previous works incorporating effective potentials or
proposing various kinds of global moves to improve Monte
Carlo simulation efficiency [26–30].

The efficiency of SLMC depends on the accuracy of the
effective model, which is usually invented based on the human
understanding of the original system [18,20–23,25]. To further
extend SLMC to complex systems where an accurate effective
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model is difficult to write down, in this work we employ deep
neural networks (DNNs) as effective models in SLMC. Instead
of treating neural networks as black boxes with a huge number
of parameters and training them blindly, we show how to design
highly efficient neural networks that respect the symmetry
of the system, with very few parameters yet capturing the
dynamics of the original model quantitatively. The generality
of this approach is guaranteed by the mathematical fact that
DNNs are able to accurately approximate any continuous func-
tions given enough fitting parameters [31,32]. Practically, our
DNNs can be trained with ease using back-propagation-based
algorithms [33], and can be directly evaluated in dedicated
hardware [34]. Compared with other machine learning models
in SLMC such as the restricted Boltzmann machine [19,24],
which can be regarded as a fully connected neural network
with one hidden layer, our DNNs have greater expressibility
(more hidden layers) and flexibility (respecting the symmetry
of the model).

As a concrete example, we demonstrate SLMC with DNNs
on quantum impurity models. In the following, we first review
SLMC for fermion systems. We then implement the simplest
neural networks and test their performances. Next, we show
how the visualization of these networks helps design a more
sophisticated convolutional neural network that is more accu-
rate and efficient. Finally, we discuss the complexity of our
algorithm.

II. SELF-LEARNING MONTE CARLO FOR FERMIONS

For an interacting fermion system, the partition function
is given by Z = Tr[e−βĤf ], where β = 1/T is the inverse
temperature, and the trace is over the grand-canonical en-
semble. One often applies the Trotter decomposition e−βĤf =∏L

i=1 e−�τĤf , �τ = β/L, the Hubbard-Stratonovich trans-
formation Tr[e−�τĤf ] = ∑N

sj =±1 Tr[e−�τĤ [sj ]], and then in-

tegrates out fermions. We denote s
j

i as the j th auxiliary Ising
spin on the ith imaginary time slice. At this stage, the partition
function is written purely on the auxiliary Ising spin degrees
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of freedom S ≡ {sj

i } [35–37]:

Z =
∑
S

det

[
I +

L∏
i=1

e−�τĤ [si ]

]
≡

∑
S

W [S]. (1)

The Monte Carlo sampling is in the configuration space of S .
The probability p of accepting a move, for example in the
Metropolis-Hastings algorithm, is the weight ratio between
two configurations: p(S1 → S2) = min (1,W [S2]/W [S1]).
Generally, one must evaluate the determinant in Eq. (1), which
is time consuming.

The idea of SLMC is to introduce an effective model
Heff [S; α] that depends on some trainable parameters α. We
would like to optimize α so that Weff [S; α] ≡ e−βHeff [S;α] and
W [S] are as close as possible. More formally, we would like
to minimize the mean-squared error (MSE) of the logarithmic
weight difference:

min
α

ES∼W [S]/Z(ln Weff [S; α] − ln W [S])2. (2)

The rationale of minimizing this error will be discussed shortly
later. Following the maximum likelihood principle, in practice
one could minimize the MSE on a given data set called the
training set {S,W [S]}, which is obtained from the Monte Carlo
simulation of the original model. This training set is of small
size compared with that of the whole configuration space, but
is considered typical mimicking the distribution of the original
model because it is generated by the importance sampling.
Importantly, the training data taken from the Markov chain
should be independently distributed in order for the maximum
likelihood estimation to work well.

One then uses the trained effective model to propose
global moves. Starting from a given configuration S1, one first
performs standard Monte Carlo simulations on the effective
model S1 → S2 → · · · → Sn. Configuration Sn is accepted
by the original Markov chain with the probability [18,20]

p(S1 → Sn) = min

(
1,

W [Sn]

W [S1]

Weff [S1; α]

Weff [Sn; α]

)
. (3)

As proven in the Supplemental Material [38], the acceptance
rate 〈p〉, defined as the expectation of configuration acceptation
probability p defined in Eq. (3), is directly related to the MSE
in Eq. (2) as 〈(ln p)2〉 = MSE. This means MSE serves as a
very good estimation of the acceptance rate. Indeed, we will
see in the following that these two quantities correspond with
each other very well.

The acceleration of SLMC can be analyzed as follows.
Denote the computational cost of computing W [S] and
Weff [S; α] given S as T and Teff , and the autocorrelation time
of a measurement without SLMC as τ . Suppose T � Teff , one
can always to make enough (�τ ) updates in the effective model
so that the proposed configuration Sn is uncorrelated with S1.
In this way, to obtain two independent configurations without
or with SLMC, it takes time O(τT ) and O[(τTeff + T )/〈p〉].
If simulating the effective model is efficient τTeff � T , as
demonstrated by cases studied in Refs. [20,21], the acceleration
is of order 〈p〉τ .

In principle, there is no limitation on the functional form of
Heff [S; α]. In the following, we choose to construct Heff [S; α]
using neural networks of different architectures. To be con-

crete, we study the asymmetric Anderson model with a single
impurity [39]

Ĥ = Ĥ0 + Ĥ1, (4)

Ĥ0 =
∑

k

εkĉ
†
kĉk + V

∑
kσ

(ĉ†kd̂σ + H.c.) + μn̂d, (5)

Ĥ1 = U

(
n̂d,↑ − 1

2

)(
n̂d,↓ − 1

2

)
, (6)

where d̂σ and ĉk are the fermion annihilation operator for the
impurity and for the conduction electrons respectively. n̂d,σ ≡
d̂†

σ d̂σ , n̂d = ∑
σ=↑/↓ n̂d,σ . With different fillings, this model

hosts very different low-temperature behaviors identified by
the three regimes: local moment, mixed valence, and empty
orbital [40]. The Hubbard-Stratonovich transformation on the
impurity site is (up to a constant factor)

e−�τĤ1 = 1

2

∑
s=±1

eλs(n̂d,↑−n̂d,↓), (7)

with cosh λ = e�τU/2. In total there are L auxiliary spins, one
at each imaginary time slice denoted as a vector s ≡ S . For
impurity problems, one may integrate out the continuous band
of conducting electrons explicitly and update with Hirsch-
Fye algorithm [41,42]. In the following, the conduction band
is assumed to have semicircular density of states ρ(ε) =
2
√

1 − (ε/D)2/(πD). The half-bandwidth D = 1 is set to be
the energy unit.

III. FULLY CONNECTED NEURAL NETWORKS

To gain some insight on how to design the neural network
as the effective model, we first implement the simplest neural
network, which consists of several fully connected layers. Its
structure is shown schematically in the inset of Fig. 1. The
effect of the ith fully connected layer can be summarized as
ai+1 = fi(Wiai + bi), where ai is the input/output vector of the
ith/(i − 1)th layer. Wi , bi , fi are the weight matrix, bias vector,
and the nonlinear activation function of such layer. The layer
is said to have Ni neurons when Wi is of size Ni × Ni−1. This
structure as the variational wave function in quantum many-
body systems has recently been studied extensively [43–52].

We take the auxiliary Ising spin as the input vector s ≡ a1.
It is propagated through two nonlinear hidden layers with N1

and N2 neurons, and then a linear output layer. The output
is a number represents the corresponding weight ln Weff [s].
We trained the fully connected neural networks of different
architectures and in different physical regimes. The details on
the networks and training can be found in the Supplemental
Material [38].

As shown in Fig. 1, the trained neural network resembles
the original model very well. It retains high acceptance rates
(>70%) steadily throughout all the parameter regimes. In
addition, e−√

MSE indeed shares the same trend with the
acceptance rate 〈p〉. This suggests that to compare different
effective models, one can directly compare the MSE instead
of computing the acceptance rate every time.

To extract more features from neural networks, we visualize
the weight matrix of the first layers in Fig. 2. The most
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FIG. 1. The performance of the effective model at different chem-
ical potentials. The dashed blue line is the estimation of acceptance
rates through MSE computed in a test data set [38]: e−√

MSE. The
discrepancy between the solid and the dashed line is due to the fact

that in general 〈p〉 �= e−
√

〈(ln p)2〉 = e−√
MSE and the effective model

is biased. Here β = 20,U = 3.0,V = 1.0, and L = 120. The number
of neurons in the first and second hidden layers are set as N1 = 100
and N2 = 50. The activation function is the rectified linear unit
f (x) = max{x,0}. Inset: A schematic show of the fully connected
neural network. The red circles represent neurons in the input layer
with L = 4, and the blue circles represent neurons in two hidden
layers with N1 = 6 and N2 = 3. The last layer is a linear output layer.

striking feature is its sparsity. Although the network is fully
connected by construction, most of the weight matrix elements
vanish after the training, and thus the network is essentially
sparsely connected. Clearly, even without any prior knowledge
of the system, and using only field configurations and their
corresponding energies, the neural network can actually learn
that the correlation between auxiliary spins is short ranged in
imaginary time.

Weight matrices in neural networks of different chemical
potentials look similar. The main difference lies in the magni-
tude of the matrix elements. Shown in Fig. 2, the neural network
could capture the relative effective interaction strength. When
the chemical potential moves away from half-filling, less
occupation on the impurity site 〈nd〉 leads to a weaker coupling
between the auxiliary spins and the impurity electrons, accord-
ing to the Hubbard-Stratonovich transformation Eq. (7). This
further causes the decrease of interaction between the auxiliary
spins induced by conducting electrons.

We end this section by briefly discussing the complexity of
fully connected neural networks. The forward propagation of
the spin configuration in the fully connected network involves
three matrix-vector multiplications. Each multiplication takes
computational cost O(L2), with L the number of imaginary-
time slices that is usually proportional to βU . Thus the running
time for a local update in the effective model is Teff = O(L2).
In the Hirsch-Fye algorithm, each local update also takes time
T = O(L2) [41,42]. Since Teff = T , SLMC based on fully
connected networks has no advantage in speed over the original
Hirsch-Fye algorithm. In the next section, we will show that

FIG. 2. Top: Weight matrix W1 taken from the fully connected
neural network of μ = 0 in Fig. 1. Bottom: Average magnitude of
nonzero matrix elements in W1 of fully connected neural networks in
Fig. 1. The nonzero matrix element is defined as the element that is
greater than 10% of the maximum element in all seven weight matrices
W1 from networks trained at seven different chemical potentials. Only
around 3% elements are nonzero in these weight matrices.

by taking advantage of the sparse connection found in the
neural network, we can reduce the complexity and make the
acceleration possible.

IV. CONVOLUTIONAL NEURAL NETWORKS

The sparsity found in the previous section inspires us to
design a neural network that is sparsely connected by con-
struction. Moreover, it is known physically that the interaction
between the auxiliary spins in imaginary time is translationally
invariant, i.e., only depends on |τi − τj |. A neural network
that has both properties is known as the “one-dimensional
convolutional neural network” [33]. Instead of doing matrix
multiplications as in fully connected networks, convolutional
networks produce their output by sliding inner product denoted
by ∗: ai+1 = fi(ai ∗ hi + bi) (Fig. 3). hi and bi are called the
kernel and the bias of such layer. A detailed mathematical
description of such networks can be found in the Supplemental
Material [38].

The key parameters in convolutional neural networks are
the number and size of kernels and the stride of the sliding
inner product. The setup of these parameters can be guided
from the fully connected neural networks: The number and the
size of kernels is determined according to the pattern of weight
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FIG. 3. The structure of the convolutional neural network. The
first layer is a convolutional layer with two kernels (dark and light
blue) of size 3. The stride of the sliding inner product is 2. The second
layer is a fully connected layer and the last layer is a linear layer.

matrices in the fully connected neural networks, and the stride
could be chosen to be half of the kernel size to avoid missing
local correlations. For example, for the model whose weight
matrix is shown in Fig. 2, we could choose two kernels of size
9 for the first convolutional layer with a stride 3. Then several
convolutional layers designed in the same spirit are stacked
until the size of the output is small enough. Finally, one adds
a fully connected layer to produce the final output.

Compared with the fully connected network, the convolu-
tional network has much fewer trainable parameters, which
explicitly reduces the redundancy in the parametrization. The
fully connected networks in Fig. 2 typically have 105 trainable
parameters, while the convolutional networks have only 102—
smaller by three orders of magnitude.

The performance of convolutional networks are shown in
Fig. 4. The measured fermion imaginary-time Green’s function
is shown in the Supplemental Material [38]. Interestingly, the
acceptance rate of global moves proposed by convolutional
networks are sometimes even higher than those proposed
by fully connected networks. In principle, fully connected
networks with more parameters have greater expressibility.
However, for this specific Anderson model, the parametrization
of the effective model has a lot of redundancy, as the auxiliary
spin interactions are local and are translationally invariant.
The convolutional networks reduce this redundancy by con-
struction, and are easier to train potentially due to the smaller
parameter space.

The fewer parameters not only make the network easier to
train, but also faster to evaluate. Each slide inner product has
the computational cost O(L). It is important to notice that the
strides of the sliding inner product are greater than one so that
the dimensions of intermediate outputs keep decreasing. In this
way, the number of the convolutional layers is of order O(ln L)
because of the large stride. The final fully connected layer is
small. Propagating through such layer only costs a constant
computational time that is insensitive to L. To summarize,
each local update on the effective model has complexity Teff =
O(L ln L), while that in Hirsch-Fye algorithm is T = O(L2).
Since the autocorrelation time for the desired observable is at
least of order τ = �(L) in order for every auxiliary spin to

(a)

(b)

FIG. 4. (a) The performance of the convolutional network com-
pared with the fully connected network in Fig. 1. The number of
trainable parameters is 211 (two kernels in the first convolutional
layer) or 291 (six kernels in the first convolutional layer). Here
β = 20,U = 3.0,V = 1.0, and L = 120. (b) The performance of the
convolutional network at different temperatures. Here U = 3.0,μ =
−1.0,V = 1.0, and L = 2βU . The conventional neural network
details are described in Supplemental Material [38].

be updated once, i.e. τTeff � T , the acceleration with respect
to the original Hirsch-Fye algorithm is then τT /(τTeff + T ) ≈
T/Teff , of order 〈p〉L/ ln L. It is especially significant for large
L. This efficiency allows us to train effective models at very
low temperatures very effectively [Fig. 4(b)], whereas training
a fully connected network is very costly, if possible at all.

V. CONCLUSION

In this paper, we showed how to integrate neural networks
into the framework of SLMC. Both the architecture of the
networks and the way we design these networks are general and
not restricted to impurity models. This work can help design
neural networks as effective models in more complicated
systems, thereby introducing the state-of-the-art deep learning
hardware into the field of computational physics.

Particularly for impurity models, we demonstrated that the
complexity of the convolutional network for a local update is
improved to O(L ln L). We note that there exist continuous-
time Monte Carlo algorithms that generally outperform the
discrete-time Hirsch-Fye algorithm [53,54]. Although similar
self-learning approaches have already been implemented in
these systems [22,23], designing an accurate effective model
in these continuous-time algorithms is not straightforward
as the size of the field configuration keeps changing during
the simulation. Looking forward, there have already been
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attempts introducing machine learning into dynamical mean-
field theory (DMFT) [55,56]. It will be interesting to accelerate
DMFT simulation by integrating SLMC into their impurity
solvers [57]. Moreover, it is worthwhile to develop more ad-
vanced network architectures beyond convolutional networks,
e.g., networks that are invariant under permutations of the
input [58]. We leave all these attempts for future work.
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