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Abstract
A basic problem in information theory is the following: Let
P = (X,Y) be an arbitrary distribution where the marginals
X and Y are (potentially) correlated. Let Alice and Bob
be two players where Alice gets samples {xi}i≥1 and Bob
gets samples {yi}i≥1 and for all i, (xi, yi) ∼ P. What joint
distributions Q can be simulated by Alice and Bob without
any interaction?

Classical works in information theory by Gács-Körner
and Wyner answer this question when at least one of P or
Q is the distribution Eq (Eq is defined as uniform over the
points (0, 0) and (1, 1)). However, other than this special
case, the answer to this question is understood in very few
cases. Recently, Ghazi, Kamath and Sudan showed that this
problem is decidable for Q supported on {0, 1}× {0, 1}. We
extend their result to Q supported on any finite alphabet.
Moreover, we show that If Q can be simulated, our algorithm
also provides a (non-interactive) simulation protocol.

We rely on recent results in Gaussian geometry (by the

authors) as well as a new smoothing argument inspired by

the method of boosting from learning theory and potential

function arguments from complexity theory and additive

combinatorics.

1 Introduction

The starting point of this paper is a rather basic problem
in information theory and communication complexity,
known as the problem of non-interactive simulation of
joint distributions: Consider two non-communicating
players Alice and Bob. Suppose that we give Alice and
Bob the sequences {X1}∞i=1 and {Yi}∞i=1 respectively,
where the pairs (Xi,Yi) are independently drawn from
some joint distribution P. Without communicating
with each other, which joint distributions Q can Alice
and Bob jointly simulate? Note that both P and Q
are fully known to the players and thus, there is no
uncertainty in the problem definition.

To state the problem more precisely, suppose that
P is a distribution on Z×Z and that Q is a distribution
onW×W. A non-interactive strategy for Alice and Bob
simply denotes a triple (n, f, g) such that f, g : Zn →
W, and for which (f(Xn), g(Yn)) has distribution Q
whenever (Xi,Yi) are drawn independently from P
(here, Xn denotes X1, . . . ,Xn). The main question that
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we consider in this paper is how to decide whether a non-
interactive strategy exists for a given input distribution
P and a given target distribution Q. Note that not
every pair of input and target distributions admits a
non-interactive strategy. The most obvious example
of this is the case where the two coordinates of P
are independent; in this case, one can obviously only
simulate distributions Q whose coordinates are also
independent.

Witsenhausen [Wit75] introduced the problem of
non-interactive simulation, and he studied the case
where Q is a Gaussian measure on R2. In this case,
he showed that Q can be approximately simulated by
P if and only if the absolute value of the correlation
between the components of Q is at most the so-called
“maximal correlation coefficient” (which we will define
later) of P. In this case, Witsenhausen showed that
for any δ > 0, Alice and Bob can simulate Q up to `1
error δ with n = poly(|P|, log(1/δ)). Here |P| is the
bit complexity of representing P. Further, he gave an
explicit algorithm to compute f and g in time poly(n).

Remark 1. Note that as stated here, Witsenhausen’s
result can only handle finitely supported P. However,
the result is actually more general and can handle a
much larger class of distributions. However, stating the
resulting bound on n requires more notation. So, for
sake of simplicity, we only state the result for the case
of finitely supported P.

Various other questions of this flavor have been ex-
plored in information theory. We discuss two examples
here. Let us use Eq to denote the distribution uniform
on the two points (0, 0) and (1, 1).

1. In their seminal paper, Gács and Körner [GK73]
studied non-interactive simulation in the case Q =
Eq. In this case, they obtained a simple and
complete characterization of all P such that it is
possible to non-interactively simulate Q from P.
They also studied the notion of simulation capacity :
roughly, how many samples from P are needed
to produce each sample from Q? They showed
that the simulation capacity is equal to another
quantity, which is now known as the Gács-Körner
common information of P.
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2. Around the same time, Wyner [Wyn75] considered
the complementary problem where P = Eq and
Q is arbitrary. In other words, Alice and Bob
have access to shared random bits and they want
to simulate Q. In this case it is always possible
to approximately simulate Q; Wyner studied the
simulation capacity, and showed that it is equal
to what is now known as the Wyner common
information of Q.

Outside of these cases, the problem becomes sig-
nificantly more complicated (see, for example, [KA16]
and the references therein). Before we study the gen-
eral problem in more detail, let us briefly explain the
motivation for studying the problem of non-interactive
simulation.

Motivation While the problem of non-interactive sim-
ulation has been studied in information theory for a long
time, the interest in computer science is somewhat more
recent. Probably the earliest work in this direction in
computer science are the works of [MO05, MOR+06]
who studied the problem of non-interactive correlation
distillation (which is a special case of the problem of
non-interactive simulation). More recently, several pa-
pers [BGI14, CGMS15, GKS16a] re-examined a very ba-
sic assumption in communication complexity and more
broadly in distributed computing: most models in these
areas assume that there is a source of common random-
ness available to the different parties. How does the
quality and nature of randomness affect the difficulty
of accomplishing a computational task? Questions of
similar flavor have also been asked in other “distributed
settings” such as cryptography [AC93, AC98, CN00].
In this context, very recently, Ghazi, Kamath and
Sudan [GKS16b] raised the general question of non-
interactive simulation. Note that if two parties share
a source of randomness distributed as P and they can
non-interactively simulate Q, then it means that any
computational task which can be simulated with Q can
also be simulated with P without any further overhead
in communication. We discuss the work of [GKS16b] in
more detail later on.

Another motivation for studying this problem
(which was also raised in [GKS16b]) is its connection
to the so-called “tensor power” problems, which involve
the limiting behavior of certain quantities as the under-
lying dimensionality tends to infinity. To be less ab-
stract, we will mention two examples from [GKS16b]:
the Shannon capacity of a graph, and the MIP∗ class.

For the first example, let G be a graph and let G⊗n

be the nth tensor power of G and In be the size of the
largest independent set in G⊗n. The Shannon capacity

of G, denoted by Θ(G) is defined to be limn→∞ I
1/n
n .

How fast does I
1/n
n converge to Θ(G)? Is the quantity

Θ(G) (approximately) computable? Despite having
received significant attention [Lov79, AL06, Hae79] in
literature, both these questions remain open.

In the second example, MIP∗ is defined as the
class of multiprover interactive games with (arbitrary)
quantum entanglement. How does the value of the
game vary as the entanglement increases? In particular,
obtaining explicit convergence results would imply that
this class is decidable [DLTW08, Reg16, KKM+11],
an outstanding problem in the theory of multiprover
games.

Non-interactive simulation also fits the “tensor
power” motif. Namely, simulating a sample from Q
potentially requires multiple copies of P and an ex-
plicit upper bound on the number of copies of P re-
quired to simulate Q automatically implies that one
can find a simulation protocol (provided one exists) by
exhaustively trying out all possible simulation strate-
gies (which is finite, if P and Q are supported on finite
number of elements). Indeed, our main theorem (The-
orem 2) follows by proving such an upper bound on
the number of copies of P required for non-interactive
simulation (Theorem 3). We hope that the techniques
introduced in this paper will be of use in some of these
other problems as well.

Connection to Gaussian noise stability Having
explained the motivation, we now again turn to the
problem of non-interactive simulation. To understand
the problem outside of the cases where at least one
of P or Q is Eq, we look at the following important
example. Let Gρ,2 be the centered Gaussian measure
on R2, where each coordinate has unit variance and the
correlation between the coordinates is ρ > 0. Consider
the setting where P = Gρ,2. For κ > 0, let us define
Eqκ to be the distribution on {0, 1} × {0, 1} where
each marginal is unbiased and their correlation is κ
(i.e. Eq = Eq1). For what values of κ can Alice
and Bob non-interactive simulate Eqκ? The influential
result of Borell [Bor85] on Gaussian noise stability
can be interpreted as saying that Alice and Bob can
simulate Eqκ precisely when κ ≤ 2

π sin−1(ρ). In fact, the
simulation strategy is also quite simple: Let δ be such
that (1 − δ)2 · 2

π sin−1(ρ) = κ. Let (X1,Y1) ∼ P. To
non-interactive simulate Eqκ, Alice (resp. Bob) outputs
the sign of X1 (resp. Y1) with probability 1 − δ and
a random unbiased bit with probability δ. Note that
the private randomness involved in this protocol can
be simulated by Alice and Bob non-interactively: Alice
can use a threshold on X2 to make her choice, and then
output sign(X3) in the event that she decides to output
a random unbiased bit; Bob can use Y4 and Y5 in the
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same way.
What happens if we consider the ternary analogue

of Eqκ? Namely, what is the maximum κ > 0 such
that Alice and Bob can simulate a distribution on
{0, 1, 2} × {0, 1, 2} where their individual marginals are
uniform on {0, 1, 2} and their probability of agreement
is κ? To begin with, the analogue of Borell’s result in
this setting is not known: we do not know the optimal
strategy for Alice and Bob in order to maximize the
probability of their agreement. This issue was partially
addressed in a recent work of the authors [DMN17]:
while [DMN17] does not solve the complete simulation
problem, [DMN17] shows that they can approximately
compute a strategy that maximizes the agreement prob-
ability, to an arbitrarily small error.

Note that the above result is not sufficient to settle
the simulation problem for arbitrary Q over ternary and
larger alphabet even for P = Gρ,2 (unlike the case of
the binary alphabet). The reason is as follows: any
distribution over {0, 1} × {0, 1} is completely specified
just by the individual marginals and probability of
agreement of the two coordinates. However, this is
not the case for ternary or larger alphabets. A simple
example is

D1 = Uniform on{(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2)}.
D2 = Uniform on{(0, 0), (0, 2), (1, 1), (1, 0), (2, 0), (2, 1)}.

Note that D1 and D2 are distinct distributions
which both satisfy:

(i) The individual marginals are uniform over {0, 1, 2}.

(ii) The two coordinates agree with probability 1/2.

In this work, we extend to framework of [DMN17]
to answer the non-interactive simulation problem for
arbitrary P and Q. Specifically, we show that if Q
can be non-interactively simulated from P then one can
compute, for every δ > 0, a δ-approximate simulation
protocol. By a δ-approximate simulation protocol, we
mean the output distribution is δ-close to Q in total
variation distance. Here is an equivalent formulation,
in which |P| denotes the bit complexity of representing
P.

Theorem 2. Let (Z × Z,P) and ([k] × [k],Q) be
probability spaces, and let Xn = (X1, . . . ,Xn) and
Yn = (Y1, . . . ,Yn), where (Xi,Yi) are independently
drawn from P. For every δ > 0, there is an algorithm
running in time O|P|,δ(1) which distinguishes between
the following two cases:

1. There exist n ∈ N and f, g:Zn → [k] such that Q
and the distribution of (f(Xn), g(Yn)) are δ-close
in total variation distance. In this case, there is an

explicit n0 = n0(|P|, δ) such that we may choose
n ≤ n0. Further, the functions f and g can be
explicitly computed.

2. For any n ∈ N and f, g:Zn → [k], Q and the
distribution of (f(Xn), g(Yn)) are 3δ-far in total
variation distance.

We remark here that the bound n0, while com-
putable, is not primitive recursive and has an Acker-
mann type growth, which is introduced by our applica-
tion of a regularity lemma from [DS14]. It is easy to
see that to prove Theorem 2, it suffices to prove the
following theorem.

Theorem 3. With the notation of Theorem 2, suppose
there exist f, g:Zn → [k] such that (f(Xn), g(Yn)) ∼
Q. Then, there exist n0 = n0(|P|, δ) and
fδ, gδ:Zn0 → [k] such that Q and the distribution of
(fδ(X

n0), gδ(Y
n0)) are δ-close in total variation dis-

tance. Moreover, n0 is computable. Further, the func-
tions fδ and gδ can be explicitly computed.

The gist of the above theorem is that if a distri-
bution can be simulated then it can be approximately
simulated with a bounded number of samples. (The cru-
cial point in the previous sentence is that the bound is
explicit, and that it depends only on P and the desired
accuracy.) To obtain Theorem 2 from Theorem 3,
we exhaustively try out all possible pairs of functions
f, g : Zn0 → [k]× [k] for n0 = n0(|P|, δ). Note that this
step is meaningful because Z is finite. If we are in case
(i), then we can indeed find f, g such that f(Xn0 ,Yn0)
is 2δ-close to Q. On the other hand, if we are in case (ii),
then by definition, for every such f and g, f(Xn0 ,Yn0)
is at least 3δ far from Q.

Remark 4. While Theorem 2 shows the decidability
of the gapped version of non-interactive simulation, the
decidability of the exact version remains open (and does
not seem to be amenable to our techniques). More
precisely, given P and Q we do not know if the problem
of checking whether Q can be (exactly) non-interactively
simulated from P is decidable.

1.1 Recent work, and the difficulty of go-
ing from two to three Ghazi, Kamath, and Su-
dan [GKS16b] proved Theorems 2 and 3 in the case
k = 2. Moreover, they gave an explicit doubly expo-
nential bound on n0 and the running time of the al-
gorithm. Borell’s noise stability theorem (which is not
available for k > 2) played an important role in their
analysis. To explain the bottleneck in extending their
result for any k, we will elaborate on the case where
Z = R and P = Gρ,2. We begin by recalling Borell’s in-
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equality [Bor85] on Gaussian noise stability. A conven-
tion that we will adopt for the rest of the paper is that
unless explicitly mentioned otherwise, the expectation
is always w. r. t. the variable being a standard Gaus-
sian where the ambient dimension will be clear from the
context.

Theorem 5. [Bor85] Let P = Gρ,2. For any µ1, µ2 ∈
[0, 1], let f, g:Rn → {0, 1} such that E[f ] = µ1

and E[g] = µ2. Let us choose κ1, κ2 such that for
fLTF, gLTF:R→ {0, 1} defined as fLTF(x) = sign(x− κ1)
and gLTF(x) = sign(x − κ2), we have E[fLTF] = µ1 and
E[gLTF] = µ2. Then, for (X,Y) ∼ P,

Pr[fLTF(X) = gLTF(Y)] ≥ Pr[f(Xn) = g(Yn)].

Likewise, if we define hLTF = sign(−x − κ2), then
E[hLTF] = µ2 and

Pr[fLTF(X) = hLTF(Y)] ≤ Pr[f(Xn) = g(Yn)].

To explain the intuitive meaning of these theorems,
let us define Corrmax(ρ, µ1, µ2) and Corrmin(ρ, µ1, µ2) as

Corrmax(ρ, µ1, µ2) = Pr
(X,Y)∼P

[fLTF(X) = gLTF(Y)],

Corrmin(ρ, µ1, µ2) = Pr
(X,Y)∼P

[fLTF(X) = hLTF(Y)]

where fLTF, gLTF and hLTF are halfspaces defined in The-
orem 5. Then, Borell’s result implies that for any given
measures µ1, µ2 and functions f, g with these measures,
the probability that f(X) and g(Y) are identical lies
between Corrmax(ρ, µ1, µ2) and Corrmin(ρ, µ1, µ2). Fur-
ther, now, it easily follows that for any η such that
Corrmin(ρ, µ1, µ2) ≤ η ≤ Corrmax(ρ, µ1, µ2), there is
a function gη:R → {0, 1} such that E[gη] = µ2 and
η = Pr(X,Y)∼P [f(X) = gη(Y)]. In fact, it is also easy
to see that gη can be assumed to be the indicator func-
tion of an interval.

Now, consider any distribution Q on {0, 1}×{0, 1},
and take (U,V) ∼ Q. Assume that there exist
f, g:Rn → {0, 1} such that (f(Xn), g(Yn)) ∼ Q.
Defining µ1,Q = E[U], µ2,Q = E[V] and ηQ = Pr[U =
V] and applying Theorem 5, we obtain that there are
functions fQ, gQ:R→ {0, 1} which satisfy

E[fQ(X)] = µ1,Q, E[gQ(Y)] = µ2,Q,

and
Pr

(X,Y)∼P
[fQ(X) = gQ(Y)] = ηQ.

Further, the functions fQ and gQ are in fact indicators
of intervals and given µ1,Q, µ2,Q and ηQ, the functions
fQ and gQ can be explicitly computed. Observe that
any distribution Q over {0, 1} × {0, 1} is characterized

by the quantities µ1,Q, µ2,Q and ηQ. Thus, it implies
that (fQ(X), gQ(Y)) ∼ Q. This completely settles the
non-interactive simulation problem in the case k = 2,
when P is the Gaussian measure Gρ,2 on R2.

In particular, we see that when P is Gaussian, the
result of [GKS16b] is a straightforward consequence of
Theorem 5. Indeed, their main contribution was to
show that the general case reduces to the Gaussian
case. Moreover, that part of their argument turns out to
generalize to k > 2 (as we will discuss later). Therefore,
let us continue examining the case where P is Gaussian,
and see why k > 2 is more difficult. There are two
problems:

1. The analogue of Borell’s result for k > 2 is not
known. In particular, the following simple question
is still open: let µ ∈ ∆k where ∆k is the convex hull
of the standard unit vectors {e1, . . . , ek}. Let Aµ =
{f :Rn → [k]: E[f ] = µ}. Among all f ∈ Aµ, what
f maximizes the probability Pr(X,Y)∼P[f(X) =
f(Y)]? If k = 2, then Theorem 5 asserts that
f is the indicator of some halfspace; for k > 3,
the answer is essentially unknown. Of particular
relevance to us, it is not even known whether
the optimal value can be achieved in any finite
dimension (whereas in the case k = 2, it is achieved
in one dimension).

2. For k = 2, any distribution R = (R1,R2) sup-
ported on [k]× [k] is completely defined by E[R1],
E[R2] and Pr[R1 = R2]. However, this is no longer
true when k > 2.

In [DMN17], the authors partially circumvented the
first issue. To explain the result of [DMN17], we will
need to introduce two notions. The first is that of the
(standard) Ornstein-Uhlenbeck noise operator. Namely,
for any t ≥ 0 and f :Rn → R, we define Ptf :Rn → R as

(1.1) Ptf(x) = E
y∼γn

[f(e−tx+
√

1− e−2ty)].

To see the connection between Pt and our ρ-correlated
Gaussian distribution P = Gρ,2, choose t so that e−t =
ρ. Then

E(X,Y)n∼Pn [f(Xn)·f(Yn)] = EXn∼γn [f(Xn)·Ptf(Xn)].

The above quantity is often referred to as the noise
stability of f at noise rate t > 0. Note that the
operator Pt is a linear operator on the space of functions
mapping Rn to R. In fact, the noise operator can be
syntactically extended to functions f :Rn → Rk with
the same definition as in (1.1). Embedding ∆k in Rk
and identifying [k] with the vertices of ∆k, we obtain
that

E[〈f(Xn), f(Yn)〉] = E[〈f(Xn), Ptf(Xn)〉].
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Let us now recall the notion of a multivariate
polynomial threshold function (PTF) from [DMN17].
Given polynomials, p1, . . . , pk:Rn → R, define f =
PTF(p1, . . . , pk) as

f(x) =

{
j if pj(x) > 0 and pi(x) ≤ 0 for all j 6= i,

1 otherwise.

In [DMN17], the authors proved the following theorem.

Theorem 6. Let f :Rn → [k] such that E[f ] = µ ∈ Rk.
Then, given any t > 0, ε > 0, there exists an explicitly
computable n0 = n0(t, k, ε) and d = d(t, k, ε) such that
there is a degree-d PTF g:Rn0 → [k] with

1. ‖E[g]− µ‖1≤ ε.

2. E[〈g, Ptg〉] ≥ E[〈f, Ptf〉]− ε.

In other words, Theorem 6 shows that for any
given µ and error parameter ε > 0, there is a low-
degree, low-dimensional PTF g which approximately
maximizes the noise stability and whose expectation
is close to µ. We remark here that the issue of
matching the expectation exactly versus approximately
is insignificant since expectations can always be made
to match exactly by suffering a tiny change in the
correlation. The proof of Theorem 6 has two separate
steps:

1. (Smooth) The first step is to show that given any
f :Rn → [k] with E[f ] = µ, there is a degree
d = d(t, k, ε) PTF h on n variables such that
‖E[h] − µ‖1≤ ε and E[〈h, Pth〉] ≥ E[〈f, Ptf〉] − ε.
In other words, reduce the degree but not the
dimension.

The main idea here is to modify the function f
by first smoothing it and then rounding it back to
the discrete set [k]. It is fairly easy to show that
this procedure doesn’t decrease the noise stability
of f (as long as the amount of smoothing is
chosen to match the noise parameter t). The
more difficult part is to show that the result of
this procedure is close to a low-degree PTF. This
is done using a randomized rounding argument:
we show that by rounding the smoothed function
at a random threshold, the expected Gaussian
surface area of the resulting partition is bounded;
in particular, there exists a good way to round. A
well-known link between Gaussian surface area and
Hermite expansions then implies that the rounded,
smoothed function is almost a low-degree PTF.
This argument uses the co-area formula, gradient
bounds and is inspired by ideas from [KNOW14,
Nee14].

2. (Reduce) The second step is to show that given
a multivariate PTF h, there is a multivariate PTF
g on n0 = n0(t, k, ε) variables such that the noise
stability of g is the same as that of the noise sta-
bility of h up to an additive error ε. This step uses
several ideas and results from [DS14]. To give a
brief overview of this part, we start with the no-
tion of an eigenregular polynomial which was in-
troduced in [DS14]. A polynomial is said to be
δ-eigenregular if for the canonical tensor Ap asso-
ciated with the polynomial, the ratio of the maxi-
mum singular value to its Frobenius norm is at most
δ. Let us assume that h = PTF(p1, . . . , pk). The
regularity lemma from [DS14], roughly speaking,
shows that each of the polynomials p1, . . . , pk can
be written as a low-degree “outer” polynomial com-
posed with a bounded number of δ-eigenregular,
low-degree “inner” polynomials. Using the central
limit theorem from [DS14] and several other new
technical ingredients, one can replace the whole col-
lection of inner polynomials by a new collection of
inner polynomials on a bounded number of vari-
ables. Moreover, one can do this replacement while
hardly affecting the distribution of the outer poly-
nomial. In particular, this whole procedure con-
structs a new PTF on a bounded number of inputs,
and with approximately the same noise stability as
the original PTF.

How to prove Theorem 3: We will first outline
the proof of Theorem 3 in the case that P = Gρ,2 (the
ρ-correlated Gaussian measure on R2). As we observed
earlier, any function with codomain [k] naturally maps
to Rk by identifying i ∈ [k] with the standard unit
vector ei ∈ Rk. Also, for any function f :Rn → Rk and
1 ≤ j ≤ k, we let fj :Rn → R denote the jth coordinate
of f . Then, observe that for all 1 ≤ i, j ≤ k,

Pr
(Xn,Yn)∼Pn

[f(Xn) = i ∧ g(Yn) = j] = E[fiPtgj ].

In particular, to prove Theorem 3 in the case P = Gρ,2

it suffices to prove an improvement of Theorem 6, where
the inequality E[〈g, Ptg〉] ≥ E[〈f, Ptf〉] − ε is replaced
by an almost-equality: |E[giPtgj ]−E[fiPtfj ]|≤ ε for all
i, j. In fact, we will prove something slightly stronger,
by starting with a tuple of functions instead of just one.

This proof will follow the same “smooth and re-
duce” outline as in the proof of Theorem 6. Moreover,
the “reduce” step will essentially be the same as the one
in [DMN17]. However, the “smooth” step here will be
different and hence we outline it here. Define the set
∆k,ε as

∆k,ε = {x ∈ Rk:∃y ∈ ∆k, ‖x− y‖1≤ ε}.
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Thus, if ε = 0, then ∆k,ε = ∆k. In the “smooth” step
for the proof of Theorem 3, we will show that for any
pair f , g of functions Rn → [k] and error parameter
ε > 0, there exist functions f̃ , g̃: Rn → Rk satisfying
the following conditions:

(i) ‖E[f ]−E[f̃ ]‖1≤ ε, ‖E[g]−E[g̃]‖1≤ ε;

(ii) the functions f̃ and g̃ are linear combinations
of Ok,t,ε(1) low-degree PTFs (with some special
structure that we will describe later);

(iii) Pr[f̃(Xn) ∈ ∆k,ε] ≥ 1 − ε and Pr[g̃(Yn) ∈ ∆k,ε] ≥
1− ε; and

(iv) for any 1 ≤ i, j ≤ k, |E[〈fiPtgj〉]−E[〈f̃iPtg̃j〉]| ≤ ε.

The precise statement corresponding to this step
is given in Lemma 18, which contains most of the
technically new ideas in the paper. We remark
that because of technical considerations, the formal
statement of Lemma 18 considers tuples of functions
rather than just a pair of functions which makes the
notation more involved. However, the technical gist is
contained in the simpler setting discussed here. To
prove Lemma 18, we employ a new “boosting” based
idea to obtain the functions f̃ and g̃.

The proof of Lemma 18 comes in two main steps.
We start with arbitrary functions f and g. First, we
show that there are projections of polynomial threshold
functions fsm and gsm which have the same low-level
Hermite spectrum as f and g. This is carried out in
an iterative argument using a potential function, and
is inspired by similar iterative algorithms appearing
in boosting [Sch90, Fre95] from learning theory, the
hardcore lemma in complexity theory [Imp95] and dense
model theorems in graph theory [FK99] and additive
combinatorics [Tao07, TTV09]. While these iterative
algorithms have recently been used to prove structural
results in complexity theory [DDFS14, LRS15, TTV09],
since our algorithm is in the multidimensional setting,
it is somewhat more delicate than these applications.
The main argument here is carried out in Lemma 21,
and we bound the degree of the resulting polynomials
in Corollary 27.

The next step is to show that we can replace the
projected polynomial threshold functions by polynomi-
als that with high probability take values very close to
the simplex (call them f ′sm and g′sm). This is carried out
in Lemma 31, using Bernstein approximations for Lips-
chitz functions. Finally, we use some probabilistic tricks
to replace f ′sm and g′sm by functions f̃ and g̃ which are
linear combinations of low-degree PTFs. This finishes
the proof of Lemma 18.

1.2 What happens when P is not Gaussian?
So far, the discussion has pertained to the case when
P = Gρ,2. What happens if P is a different probability
distribution?

As we have remarked earlier, the main result
of [GKS16b] is that the k = 2 case of Theorem 3 es-
sentially reduces to the special case P = Gρ,2. Their
argument uses quite general tools from Boolean func-
tion analysis such as the invariance principle [MOO10,
Mos10] and regularity lemmas for low-degree polynomi-
als [DSTW10, DDS14]. A similar argument can be used
to prove Theorem 3 by reducing to the Gaussian case;
however, we will actually need a slightly stronger Gaus-
sian version of Theorem 3 (note that Theorem 3 only
applies to two functions):

Theorem 7. Let P = Gρ,2 and let f (1), . . . , f (`):Rn →
[k] and g(1), . . . , g(`):Rn → [k] where we define Qi,j as
Qi,j = (f (i)(Xn), g(j)(Yn)). Then, for every δ > 0,
there is an explicitly defined constant n0 = n0(`, k, δ)

and explicitly defined functions f
(1)
junta, . . . , f

(`)
junta:Rn0 →

[k] and g
(1)
junta, . . . , g

(`)
junta:Rn0 → [k] such that for every

1 ≤ i, j ≤ `, dTV((f
(i)
junta(X

n0), g
(j)
junta(Y

n0)),Qi,j) ≤ δ.

Note that the ` = 1 case of Theorem 7 is exactly
the P = Gρ,2 case of Theorem 3, the proof of which
we outlined above. Then ` > 1 case has essentially the
same proof, but with more notation.

In order to prove Theorem 3 from Theorem 7,
Alice and Bob both execute a “decision tree.” By
standard arguments from Boolean function analysis
(see [O’D14] for definitions of the terminology that
follows), Alice and Bob can represent f and g by
small decision trees, such that most of the “leaf”
functions (call them {f (i)}1≤i≤` and {g(i)}1≤i≤`) are
low-influence functions. The invariance principle of
Mossel et al. [MOO10, Mos10] allows us to replace
{f (i)}1≤i≤` and {g(i)}1≤i≤` by functions of Gaussian
variables; essentially, we can pretend that Alice and
Bob have access to independent copies of Gρ,2 where
ρ is the so-called maximal correlation coefficient of
(X,Y). Finally, we apply Theorem 7 to this collection
of Gaussian “leaf” functions. In the end, we have
replaced Alice and Bob’s initial functions by a pair of
decision trees of bounded size, where every leaf function
is a function of a bounded number of Gaussian variables.
We give a more detailed overview of this reduction in
Section A.

1.3 Subsequent work Subsequent to the appear-
ance of this work on arXiv, Ghazi, Kamath and
Raghavendra [GKR17] have obtained alternate proofs
of the main result here as well as the main result of
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[DMN17]. Their proof techniques are different from ours
with better quantitative parameters.

1.4 Acknowledgments We thank Pritish Kamath,
Badih Ghazi and Madhu Sudan for pointing out that
the ` = 1 case of Theorem 7 is not sufficient to
derive Theorem 3. (An earlier version of this paper
incorrectly claimed that it was.) We also thank the
anonymous reviewers who pointed out this gap and
for several comments which greatly helped improve the
presentation of this paper.

2 Technical preliminaries

We will start by defining some technical preliminaries
which will be useful for the rest of the paper.

Definition 8. For k ∈ N and 1 ≤ i ≤ k, let ei be the
unit vector along coordinate i and let ∆k be the convex
hull formed by {ei}1≤i≤k.

In this paper, we will be working on the space of
functions f :Rn → R where the domain is equipped with
the standard n dimensional normal measure (denoted
by γn(·)). Unless explicitly mentioned otherwise, all
the functions considered in this paper will be in L2(γn).
A key property of such functions is that they admit the
so-called Hermite expansion. Let us define a family of
polynomials Hq:R→ R (for q ≥ 0) as

H0(x) = 1; H1(x) = x; Hq(x) =
(−1)q√
q!
·ex

2/2· d
q

dxq
e−x

2/2.

Let Z∗ denote the subset of non-negative integers and
S ∈ Z∗n. Define HS :Rn → R as

HS(z) =
n∏
i=1

HSi
(zi).

It is well known that the set {HS}S∈Z∗n forms an
orthonormal basis for L2(γn). In other words, every
f ∈ L2(γn) may be written as

f =
∑
S∈Z∗n

f̂(S) ·HS ,

where f̂(S) are typically referred to as the Hermite
coefficients and expansion is referred to as the Hermite
expansion. The notion of Hermite expansion can be
easily extended to f :Rn → Rk as follows: Let f =
(f1, . . . , fk) and let

fi =
∑
S∈Z∗n

f̂i(S) ·HS .

Then, the Hermite expansion of f is given by∑
S∈Z∗n f̂(S) ·HS where f̂(S) = (f̂1(S), . . . , f̂k(S)). In

this setting, we also have Parseval’s identity:

(2.2)

∫
‖f(x)‖22 γn(x)dx =

∑
S∈Z∗n

‖f̂(S)‖22

For f :Rn → Rk and d ∈ N, define f≤d:Rn → Rk by

f≤d(x) =
∑

S:|S|≤d

f̂(S) ·HS(x).

Here |S| denotes the `1 norm of the vector S. We will

define W≤d[f ] = ‖f≤d‖22 and W>d[f ] =
∑
|S|>d‖f̂(S)‖22.

Ornstein-Uhlenbeck operator

Definition 9. The Ornstein-Uhlenbeck operator Pt is
defined for t ∈ [0,∞) such that for any f :Rn → Rk,

(Ptf)(x) =

∫
y∈Rn

f(e−t · x+
√

1− e−2t · y)dγn(y).

Note that if f :Rn → ∆k, then so is Ptf for every
t > 0. A basic fact about the Ornstein-Uhlenbeck
operator is that the functions {HS} are eigenfunctions
of this operator. See Proposition 11.37 in [O’D14] for a
proof.

Proposition 10. For S ∈ Z∗n, PtHS = e−t·|S| ·HS.

Probabilistic inequalities The following are useful
probabilistic inequalities in the analysis of Boolean func-
tions. The first theorem is a higher degree generaliza-
tion of the well-known Chernoff bound.

Theorem 11. [Jan97] Let p:Rn → R be a degree-d
polynomial. Then, for any t > ed,

Pr
x

[|p(x)−E[p(x)]|≥ t ·
√
Var[p]] ≤ d · e−t

2/d

.

The next theorem follows by combining Theorem 11
with the well-known result of Carbery-Wright on anti-
concentration of low-degree polynomials [CW01]. See
Lemma 5 in [DS14] for a short proof.

Theorem 12. Let a, b : Rn → R be degree d polyno-
mials satisfying Ex[a(x) − b(x)] = 0 and Var[a − b] ≤
(τ/d)3d · Var[a]. Then, Prx[sign(a(x)) 6= sign(b(x))] =
O(τ).

Producing non-integral functions Instead of pro-

ducing functions {f (j)junta}1≤i≤` and {g(j)junta}1≤i≤` (in The-
orem 7) with range [k], we will actually produce func-

tions {f̃ (j)junta}1≤i≤` and {g̃(j)junta}1≤i≤` whose range will be
close to ∆k,ε. The next two lemmas show that functions
with range ∆k,ε can be converted to non-interactive sim-
ulation strategies with range [k] with nearly the same
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guarantees. To state this more precisely, let us adopt
the notation that given a point x ∈ Rk, Proj(x) denotes
the closest point to x in ∆k in Euclidean distance.

Lemma 13. Let f : Rn → Rk satisfy the following two
conditions:

1. Prx[f(x) 6∈ ∆k,δ] ≤ δ.

2. For all x, ‖f(x)‖∞≤ k.

Then, there is a function f1 : Rn → ∆k such that
‖f − f1‖1= O(k · δ).

Proof. Define f1 = Proj(f). Note that if x is such that
f(x) ∈ ∆k,δ, then by definition, ‖f1(x) − f(x)‖1≤ δ.
On the other hand, for any x, ‖f(x)−f1(x)‖1≤ k. This
proves the claim.

Lemma 14. Let f1, g1 : Rn → ∆k. Then, there exist
(explicitly defined) f2, g2 : Rn+2 → [k] such that

1. E[f2] = E[f1] and E[g2] = E[g1].

2. For any 1 ≤ j, ` ≤ k,

E[f1,jPtg1,`] = E[f2,jPtg2,`].

Further, the function f2 (resp. g2) is dependent only on
f1 (resp. g1).

Proof. Let z = (x, z1, z2) where x ∈ Rn and z1, z2 ∈ R.
For any y ∈ ∆k, let us divide R into k intervals
S1, . . . , Sk such that for z ∼ γ, Pr[z ∈ Si] = yi. For
y ∈ ∆k and z′ ∈ R, Part(y, z) = i if z′ ∈ Si. Define
f2 : Rn+2 → [k] as

f2(z) = f2(x, z1, z2) = Part(f1(x), z1).

g2(z) = g2(x, z1, z2) = Part(g1(x), z2).

We will now verify the claimed properties. First of
all, observe that the codomain of f2 and g2 is indeed
k. Second, by definition, it is easy to follow that
E[f1] = E[f2] and E[g1] = E[g2]. Finally, note that

E[f1,jPtg1,`] = E(Xn,Yn)∼Pn [f1,j(X
n)g1,`(Y

n)].

On the other hand, suppose z1, z2 ∼ γ. Then,

Pr
z1,z2∼γ

[f2(x, z1, z2) = j ∧ g2(y, z1, z2) = `]

= f1,j(x)g1,`(y).

Thus, we obtain that

E[f2,jPtg2,`] = E[f1,j(X
n)g1,`(Y

n)] = E[f1,jPtg1,`].

2.1 Proof strategy for the main theorem To
describe the proof strategy for the main section, we
first define a class of k-ary functions called polynomial
plurality functions (PPFs) which are closely related to
the multivariate PTFs defined in the introduction. For
this, let us first define the function arg max as follows

Definition 15. arg max : Rk → Rk is defined as

arg max(x1, . . . , xk) =

{
ei if xi > xj for all j 6= i

0 otherwise

Definition 16. A function f : Rn → Rk is said
to be a PPF of degree-d if there exists a polynomial
p : Rn → R of degree d and an index 1 ≤ j ≤ x such that
f = arg max(z) where zi = δi=j ·p(x). Given polynomial
p : Rn → R and 1 ≤ j ≤ k, we define the function
PPFp,j as

PPFp,j(x) = arg max ( 0, . . . , 0︸ ︷︷ ︸
(j−1) times

, p(x), 0, . . . , 0︸ ︷︷ ︸
(n−j) times

).

The following is a basic fact about PPFs.

Fact 17. For any PPF f of degree d, if f = PPFp,j, we
can assume without loss of generality that Var(p) = 1.
Further, by changing f in at most δ fraction of places,
we can assume that |E[p(x)]|≤ d · logd/2(1/δ). Such a
PPF is said to be a (d, δ)-balanced PPF.

Proof. The fact about variance follows simply by scal-
ing. To bound |E[p(x)]|, note that if |E[p(x)]|> d ·
logd/2(1/δ), then Prx[sign(p(x)) = sign(E[p(x)])] ≥ 1−δ
(using Theorem 12). Thus, if we set q(x) = p(x) −
E[p(x)] + d · logd/2(1/δ) · sign(E[p(x)]), then Prx[p(x) 6=
q(x)] ≤ δ. The PPF defined as PPFq,j satisfies all the
desired properties.

To prove our main theorem (Theorem 7), we will
prove the following two intermediate results.

Lemma 18. For 1 ≤ i ≤ `, let f (i), g(i) : Rn → [k]

such that E[f (i)] = µ
(i)
f and E[g(i)] = µ

(i)
g . Then, for

any t > 0, δ > 0, d0 = d0(t, k, δ) = (2/t) · log(k2/δ) and

1 ≤ i ≤ `, there are functions f
(i)
1 , g

(i)
1 : Rn → Rk which

satisfy the following conditions:

1. For any x ∈ Rn and 1 ≤ i ≤ `, f
(i)
1 (x), g

(i)
1 (x)

always lies in the positive orthant.

2. For any x ∈ Rn and 1 ≤ i ≤ `,

‖f (i)1 (x)‖∞, ‖g(i)1 (x)‖∞≤ 1.

3. For 1 ≤ i ≤ `, Prx[f
(i)
1 (x) 6∈ ∆k,kδ/2] ≤ δ/2 and

Prx[g
(i)
1 (x) 6∈ ∆k,kδ/2] ≤ δ/2.
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4. For 1 ≤ i ≤ `, |E[f
(i)
1 ] − µ

(i)
f |, |E[g

(i)
1 ] − µ

(i)
g |=

O(kδ).

5. For 1 ≤ i, j ≤ ` and for any 1 ≤ s1, s2 ≤ k,

|E[f
(i)
1,s1

Ptg
(j)
1,s2

]−E[f
(i)
s1 Ptg

(j)
s2 ]|= O(k · δ).

6. For 1 ≤ i ≤ `, f
(i)
1 and g

(i)
1 are of

the following form. There are degree-d0
polynomials {p(i)s,j,1}1≤i≤`,1≤s≤k,1≤j≤m and

{p(i)s,j,2}1≤i≤`,1≤s≤k,1≤j≤m

f
(i)
1 =

k∑
s=1

m∑
j=1

1

m
· PPF

p
(i)
s,j,1,j

(x) , g
(i)
1

=

k∑
s=1

m∑
j=1

1

m
· PPF

p
(i)
s,j,2,j

(x),

such that the resulting PPFs PPF
p
(i)
s,j,1,j

(x) and

PPF
p
(i)
s,j,2,j

(x) are (d0, δ)-balanced PPFs. Here m =

O(1/δ).

Further, the function f
(i)
1 (resp. g

(i)
1 ) is dependent only

on f (i) (resp. g(i)), t, k and δ.

Lemma 19. Let {p(i)s,j,1}1≤i≤`,1≤s≤k,1≤j≤m and

{p(i)s,j,2}1≤i≤`,1≤s≤k,1≤j≤m be degree-d0 polynomials. For

1 ≤ i ≤ `, let f
(i)
1 , g

(i)
1 : Rn → Rk be defined as in

Lemma 18 and satisfy the following two conditions:

1. For 1 ≤ i ≤ `, 1 ≤ s ≤ k and 1 ≤ j ≤ m, all the
PPFs PPF

p
(i)
s,j,1,j

and PPF
p
(i)
s,j,2,j

are (d0, δ)-balanced

PPFs.

2. For 1 ≤ i ≤ `, Prx[f
(i)
1 (x) 6∈ ∆k,δ] ≤ δ and

Prx[g
(i)
1 (x) 6∈ ∆k,δ] ≤ δ.

Then, there exists an explicit constant
n0 = n0(d0, k, δ, `) such that there are

polynomials {r(i)s,j,1}1≤i≤`,1≤s≤k,1≤j≤m and

{r(i)s,j,2}1≤i≤`,1≤s≤k,1≤j≤m satisfying the following
conditions: For 1 ≤ i ≤ `, let us define the functions

f
(i)
junta, g

(i)
junta : Rn0 → Rk defined as

f
(i)
junta =

k∑
s=1

m∑
j=1

1

m
· PPF

r
(i)
s,j,1,s

(x),

g
(i)
junta =

k∑
s=1

m∑
j=1

1

m
· PPF

r
(i)
s,j,2,s

(x),

Then, they satisfy the following three conditions: For
all 1 ≤ i ≤ `,

1. ‖E[f
(i)
junta]−E[f

(i)
1 ]‖1≤ δ and ‖E[g

(i)
junta]−E[g

(i)
1 ]‖1≤

δ.

2. Prx[f
(i)
junta(x) 6∈ ∆k,

√
δ] ≤

√
δ and Prx[g

(i)
junta(x) 6∈

∆k,
√
δ] ≤

√
δ.

3. For any 1 ≤ i, j ≤ `, 1 ≤ s1, s2 ≤ k,

|E[f
(i)
1,s1

Ptg
(j)
1,s2

]−E[f
(i)
junta,s1

Ptg
(j)
junta,s2

]|≤ δ.

Proof of Theorem 7:The proof of Theorem 7
follows by applying Lemma 18 on the set {f (i) ∪
g(i)}1≤i≤` and subsequently applying Lemma 19. While

the range of functions produced by {f (i)junta ∪ g
(i)
junta}1≤i≤`

is not ∆k, by applying Lemma 13 and Lemma 14,
we can rectify this issue. We note here that the

functions obtained in this process, namely {f (i)junta ∪
g
(i)
junta}1≤i≤` are explicit. Namely, the functions obtained

before applying Lemma 13 and Lemma 14 are low-
degree PPFs. Lemma 13 applies a projection on to
the standard simplex ∆k. Likewise, Lemma 14 also
produces an explicit function as its output. We now

explain why {f (i)junta ∪ g
(i)
junta}1≤i≤` satisfy the stated

guarantees.
In particular, overloading notation, let us denote

the functions obtained by application of Lemma 13 and

Lemma 14 as f
(i)
junta and g

(i)
junta. Then, we see that

‖E[f
(i)
junta]−E[f

(i)
1 ]‖1, ‖E[g

(i)
junta]−E[g

(i)
1 ]‖1≤ O(k ·

√
δ),

For any 1 ≤ i, j ≤ `, 1 ≤ s1, s2 ≤ k,

|E[f
(i)
1,s1

Ptg
(j)
1,s2

]−E[f
(i)
junta,s1

Ptg
(j)
junta,s2

]|≤ δ

Note that the functions {f (i) ∪ g(i)}1≤i≤` have arity n0.
Further, observe that for 1 ≤ s1, s2 ≤ k and 1 ≤ i, j ≤ `,

Pr[f
(i)
junta(X

n0) = s1 ∧ g
(j)
junta(Y

n0) = s2]

= E[f
(i)
junta,s1

Ptg
(j)
junta,s2

] and

Pr[f (i)(Xn) = s1 ∧ g(j)(Yn) = s2] = E[f (i)s1 Ptg
(j)
s2 ].

Thus, for 1 ≤ s1, s2 ≤ k,

|Pr[f
(i)
junta(X

n0) = s1 ∧ g
(j)
junta(Y

n0) = s2]

− Pr[f (i)(Xn) = s1 ∧ g(j)(Yn) = s2]| ≤ δ.

This immediately implies that

dTV((f
(i)
junta(X

n0), g
(j)
junta(Y

n0)), (f (i)(X), g(j)(Y))) = O(k2δ),

which finishes the proof.
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3 Proof of Lemma 18

The proof of Lemma 18 shall proceed in several steps.

Note that Lemma 18 claims existence of {f (i)1 } and

{g(i)1 } which satisfies six different properties. The
functions {f (i)} and {g(i)} themselves satisfy the first
five properties and thus, the only non-trivial task that
remains is to achieve the sixth property. The sixth
property will be achieved by gradual modification of
{f (i)} and {g(i)} in a sequence of steps which are
explained below.

1. Corollary 22 allows us to replace f (i) (resp. g(i))

with f
(i)
sm (resp. g

(i)
sm ), which is the projection onto

∆k of a polynomial, and which shares the same
low-degree Hermite expansion as f (i) (resp. g(i)).
Coupled with Claim 20, this shows that if f (i) is

replaced by f
(i)
sm and g(i) is replaced by g

(i)
sm , then

the first five properties in Lemma 18 hold. On the

other hand, note that while f
(i)
sm and g

(i)
sm do not

have the full structure claim in Property 6, they do
have some resemblance to PPFs. Corollary 22 is the
technically most innovative part of the proof and in
turn relies on Lemma 21. A crucial point for the
application to non-interactive simulation is that the

construction of f
(i)
sm (resp. g

(i)
sm ) is dependent only

on f (i) (resp. g(i)) and the error parameters.

2. Applying Bernstein-type approximations for Lip-
schitz functions in terms of low-degree polynomi-

als, Lemma 31 shows that f
(i)
sm and g

(i)
sm can be re-

placed by f
′(i)
sm and g

′(i)
sm where each coordinate of

f
′(i)
sm and g

′(i)
sm is a low-degree multivariate poly-

nomial. Again, crucially for the application to

non-interactive simulation, the function f
′(i)
sm (resp.

g
′(i)
sm ) is dependent only on f

(i)
sm (resp. g

(i)
sm ) and the

error parameters.

3. Finally, the functions f
′(i)
sm and g

′(i)
sm are changed to

f
(i)
1 and g

(i)
1 which are linear combinations of PPFs

(as promised in Lemma 18) using some simple
probabilistic observations. Again, the conversion of

f
′(i)
sm to f

(i)
1 is only dependent on f

′(i)
sm and desired

error parameters.

3.1 Projections of polynomials We begin with the
first step described above. The first lemma relates
the (by now, well-known) connection between the low-
degree Hermite expansion of a function and its noise
stability. In particular, it shows that if a pair of
functions (f (1), g(1)) (whose range is ∆k) is replaced by

another pair (f (1), g(1)) such that low-degree Hermite

spectrum of f (1) (resp. g(1)) is close to that of f (1) (resp.

g(1)) are close to each other, then for any 1 ≤ s1, s2 ≤ k,

E[f
(1)
s1 Ptg

(1)
s2 ] ≈ E[f (1)

s1
Ptg

(1)
s2

].

Claim 20. Let f (1), g(1), f (1), g(1) : Rn → ∆k such that

for d1 = d1(δ, t) = 1
t log(k2/δ) we have

W≤d1 [(f (1) − f (1))], W≤d1 [g(1) − g(1)] ≤ δ2/k4.

Then,
∑

1≤s1,s2≤k|E[f
(1)
s1 Ptg

(1)
s2 ]−E[f (1)

s1
Ptg

(1)
s2

]|≤ δ.

Proof. For any 1 ≤ s1, s2 ≤ k,

|E[f (1)s1 Ptg
(1)
s2 ]−E[f (1)

s1
Ptg

(1)
s2

]|

≤ |E[(f (1)s1 − f
(1)

s1
)Ptg

(1)
s2 ]|+ |E[f (1)

s1
Pt(g

(1)
s2 − g

(1)
s2

)]|

By using the self-adjointness of the noise operator and
applying the Jensen’s inequality, the first term can be
bounded as

|E[(f (1)s1 − f
(1)

s1
)Ptg

(1)
s2 ]| ≤

√
E[Pt(f (1) − f (1))2s1 ]

√
E[(g(1))2s2 ]

≤
√

E[Pt(f (1) − f (1))2s1 ].

Similarly bounding |E[f (1)
s1
Pt(g

(1)
s2 − g(1)s2 )]|, we obtain

|E[(f (1)s1 − f
(1)

s1
)Ptg

(1)
s2 ]|+ |E[f (1)

s1
Pt(g

(1)
s2 − g̃

(1)
s2 )]|

≤
√

E[Pt(f
(1)
s1 − f (1)s1 )2] +

√
E[Pt(g

(1)
s2 − g(1)s2 )2].

Now, applying the condition that W≤d1 [(f (1) −
f (2))] ≤ δ2/k4, we get that

E[‖Pt(f (1)−f (1))‖22] ≤ δ2

k4
+e−2td1 ·E[‖(f (1)−f (1))‖22] ≤ 2δ2

k4
.

The last inequality uses the fact that for all x, ‖f (1)(x)−
f (1)(x)‖1≤ 1. Likewise, we also get E[‖Pt(g(1) −
g(1))‖22≤ 2δ2/k4. Combining this, we obtain that for
all 1 ≤ s1, s2 ≤ k,

|E[f (1)s1 Ptg
(1)
s2 ]−E[f (1)

s1
Ptg

(1)
s2

]| ≤ 2δ

k2
.

Summing over all 1 ≤ s1, s2 ≤ k, we get the stated
bound.

Next, we state the main technical lemma of this
section. To state the lemma, we define the function
Proj : Rk → ∆k such that Proj(x) = y if y is the closest
point (in Euclidean distance) to x in ∆k. While the
authors are aware that technically, we require Proj to
be quantified by the parameter k, the relevant k shall
always be clear from the context. Though we do use
other `p norms in this paper, it is crucial that the
projection is defined in terms of `2 norm.
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Lemma 21. Let F : Rn → ∆k and let g1, . . . , gm :
Rn → Rk be an orthonormal sequence of functions
under the standard n-dimensional Gaussian measure
γn. Here the function g1 : x 7→ (1, . . . , 1). Then, for
any δ > 0, there exists a function Fproj : Rn → ∆k of
the form Fproj = Proj(

∑m
i=1 κigi) satisfying

m∑
i=1

(E[giF ]−E[giFproj])
2 ≤ δ.

Further,
∑m
i=1‖κi‖22≤ δ−2.

Before proving Lemma 21, we first see why this
lemma is useful. In particular, we have the following
corollary. Essentially, the corollary says that given
f, g : Rn → ∆k, there are functions fsm and gsm such
that (i) the low-level Hermite spectrum of f (resp.
g) is close to fsm (resp. gsm) (ii) Both fsm and gsm
are obtained by applying the function Proj on a low-
degree polynomial. In essence, we are obtaining simple
functions fsm and gsm which simultaneously (i) have the
same low-level Hermite spectrum as f and g (ii) and
have range ∆k.

Corollary 22. Given function f : Rn → [k], d ∈ N and
error parameter δ > 0, there is a function fsm : Rn →
∆k which has the following properties:

1. The function fsm has the following form:

fsm(x) = Proj

( ∑
|S|≤d

αf,sHS(x)

)
,

where HS(x) is the Hermite polynomial correspond-
ing to the multiset S.

2.
∑
|S|≤d‖αf,S‖22≤ δ−2.

3. Define βf,S = E[fsm(x) · HS(x)]. Then,∑
|S|≤d‖βf,S − αf,S‖22≤ δ.

We note that for a scalar-valued function HS and a
vector-valued function fsm, we compute E[fsm · HS ]
pointwise for each coordinate of the vector valued func-
tion fsm.

The proof of this corollary follows straightaway by
instantiating Lemma 21 with {g1, . . . , gm} = {HS}|S|≤d
with F = f and F = g.
Proof of Lemma 21: We will prove this lemma via
an iterative argument. We will define a sequence of
functions {Ft}t≥0 iteratively such that for all t ≥ 0,
Ft : Rn → ∆k. Define the vector β ∈ Rm by βj =
〈F, gj〉. Also, for every t ≥ 0, we will define βt ∈ Rm by
βt,j = 〈Ft, gj〉. The iterative process has the following
property: If for any t, ‖βt − β‖22≤ δ, then we terminate

the process. Else, we modify Ft to obtain the function
Ft+1. We now define the initial function F0 as well as
the modification to obtain Ft+1 from Ft (when t ≥ 0).

The function F0 : Rn → ∆k is defined as F0 : x →
(1/k, . . . , 1/k). Next, given Ft, we define Ft+1. To do
this, we will also need to define an auxiliary sequence
of functions {Gt}t≥0 where G0 = F0. The iterative pro-
cess is defined in Figure 1.

Description of iterative process

1. Define ρt = ‖βt − β‖2.

2. If ρ2t ≤ δ, then stop the process. Else, we define
Jt =

∑m
j=1(β − βt)j · gj .

3. Define Gt+1 = Gt + Jt/2. Define Ft+1 =
Proj(Gt+1) and t← t+ 1. Go to Step 1.

Figure 1: Iterative process describing the sequence {Ft}

It is clear that if this process terminates at step t = t0,
then the function Fproj = Ft0 satisfies the required prop-
erties. Thus, we now need to bound the convergence
rate of the process. To do this, we introduce a potential
function Ψ(t) defined as follows:

Ψ(t) = E[〈F − Ft, F − 2Gt + Ft〉].

The basic observation here is that Ψ(0) = O(1). We
will prove two main lemmas. The first will prove
that in every iteration of the process in Figure 1, Ψ(t)
decreases by a fixed amount. The second is that Ψ(t) is
always non-negative. These two facts, in conjunction,
automatically imply an upper bound on the maximum
number of steps in the algorithm.

Claim 23.
E[〈F − Ft, Jt〉] = ρ2t .

Proof. By orthogonality of the functions {gj}mj=1,

E[〈F − Ft, Jt〉] =
m∑
j=1

(β − βt)jE[〈gj , F − Ft〉]

=
m∑
j=1

(β − βt)j · (β − βt)j = ‖β − βt‖22.

We now recall a basic fact about projective maps
(see, e.g. [CG59, Theorem 3]).

Fact 24. Let C be a closed, convex set and let
ProjC : Rn → C be defined as x 7→ arg miny∈C‖x −

Copyright © 2018 by SIAM
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y‖2. Then the map ProjC is uniquely defined, and
always contractive i.e. for any z, z′ ∈ Rn, ‖ProjC(z) −
ProjC(z′)‖2≤ ‖z − z′‖2. Moreover, for any x ∈ C and
any z ∈ Rn, 〈z − ProjC(z), x− ProjC(z)〉 ≤ 0.

Claim 25. For all t, Ψ(t) ≥ 0.

Proof.

Ψ(t) = E[〈F − Ft, F − 2Gt + Ft〉]
= E[〈F − Ft, F − Ft〉] + 2 ·E[〈F − Ft, Ft −Gt〉].

The first term is clearly non-negative. The second is
non-negative by Fact 24, taking z = Gt and x = F .

The next lemma shows that the potential function
always decreases by a fixed quantity.

Lemma 26.

Ψ(t+ 1)−Ψ(t) ≤ −ρ
2
t

4
.

Proof.

Ψ(t+ 1)−Ψ(t)

= E[〈F − Ft+1, F − 2Gt+1 + Ft+1〉]
− E[〈F − Ft, F − 2Gt + Ft〉]
= E[〈F − Ft, 2(Gt −Gt+1)〉]
+ E[〈Ft+1 − Ft, 2Gt+1 − Ft − Ft+1〉]
= E[〈F − Ft,−Jt〉]
+ E[〈Ft+1 − Ft, 2Gt+1 − Ft − Ft+1〉]
= −ρ2t + E[〈Ft+1 − Ft, 2Gt+1 − Ft − Ft+1〉]

(applying Claim 23)

= −ρ2t + 2 ·E[〈Ft+1 − Ft, Gt+1 − Ft+1〉]
+ E[〈Ft+1 − Ft, Ft+1 − Ft〉]
= −ρ2t + E[‖Ft+1 − Ft‖22]

+ 2 ·E[〈Ft+1 − Ft, Gt+1 − Ft+1〉]
≤ −ρ2t + E[‖Gt+1 −Gt‖22]

+ 2 ·E[〈Ft+1 − Ft, Gt+1 − Ft+1〉] (applying Fact 24)

= −3ρ2t
4

+ 2 ·E[〈Ft+1 − Ft, Gt+1 − Ft+1〉]

It remains to show that E[〈Ft+1 − Ft, Gt+1 −
Ft+1〉] ≤ ρ2t

4 . Indeed, the Cauchy-Schwarz inequality
yields

‖Ft+1 − Ft‖2‖Gt+1 −Gt‖2≥ 〈Gt+1 −Gt, Ft+1 − Ft〉
= 〈Gt+1 − Ft+1, Ft+1 − Ft〉+ 〈Ft+1 − Ft, Ft+1 − Ft〉
+ 〈Ft −Gt, Ft+1 − Ft〉

In the last line above, the second term is obviously non-
negative. Moreover, the third term is non-negative by

Fact 24 (take z = Gt and x = Ft+1). Hence,

〈Gt+1 − Ft+1, Ft+1 − Ft〉 ≤ ‖Ft+1 − Ft‖2‖Gt+1 −Gt‖2

≤ ‖Gt+1 −Gt‖22=
ρ2t
4
,

where the second inequality follows from Fact 24.

Combining Claim 25 and Lemma 26, we obtain
that the iterative process described in Figure 1 stops
in at most 4/δ steps. If the above iteration stops
after t = t0 steps, we let Fproj = Ft0 . Note that
Fproj = Proj(

∑
0≤t<t0 Jt/2). Thus, it is clear that

Fproj = Proj(
∑m
i=1 κigi). To bound

∑m
i=1‖κi‖22, note

that
m∑
i=1

‖κi‖22 = ‖
∑

0≤t<t0

Jt/2‖22≤ t0 ·
∑

0≤t<t0

‖Jt/2‖22

≤ t20 ·max
t
‖Jt/2‖22≤ t20.

The very last inequality uses the fact that ‖Jt‖2≤ ‖(Ft−
F )‖2≤ 1. Plugging the upper bound of O(1/δ2) on t20,
we obtain that

∑m
i=1‖κi‖22≤ O(1/δ2). This concludes

the proof.

Corollary 27. For t > 0, error parameter δ > 0
and any function f : Rn → [k], there is a function
fsm : Rn → ∆k such that for d = (2/t) · log(k2/δ),
we have the following:

1. ‖E[fsm]−E[f ]‖1≤ δ.

2. The function fsm = Proj(pf,1(x), . . . , pf,k(x)) where
for all 1 ≤ s ≤ k, pf,s : Rn → R are polynomials of
degree d and Var(pf,s) ≤ k8/δ4.

3. For any g : Rn → [k] and the correspond-
ing function gsm : Rn → ∆k, we have∑

1≤s1,s2≤k|E[fsm,s1Ptgsm,s2 ]−E[fs1Ptgs2 ]|≤ δ.

Proof. Given the function f : Rn → [k], we apply
Corollary 22 to obtainthe function fsm : Rn → ∆k where

fsm = Proj(pf,1(x), . . . , pf,k(x)),

where for all 1 ≤ s ≤ k, pf,s : Rn → R are
polynomials of degree d = (1/t) · log(k2/δ) such that
W≤d[(fsm − f)] ≤ δ2/k4. Further, for each 1 ≤ s ≤ k,
Var(pf,s) ≤ (k8/δ4). This immediately implies both
items 1 and 2. To prove Item 3, note that we also have
W≤d[(gsm − g)] ≤ δ2/k4. Applying Claim 20, we obtain
that

∑
1≤s1,s2≤k|E[fsm,s1Ptgsm,s2 ] − E[fs1Ptgs2 ]|≤ δ.

This proves Item 3.

This completes the first step in the outline of
Lemma 5: we have replaced arbitrary functions by
projections of polynomials.
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3.2 Bernstein approximation The next step in the
proof of Lemma 5 is the removal of the projection. The
basic idea is just to approximate the projection map
by a polynomial. Then, the projection of a polynomial
becomes the composition of two polynomials, which is
still a polynomial.

Definition 28. For 0 ≤ k ≤ d, efine pk,d(x) =(
d
k

)
xk(1 − x)d−k. For a function f : [0, 1]` → R, define

the polynomial BPf,d1,...,d` by

BPf,d1,...,d`(x) =
∑

k1,...,k`

f

(
k1
d1
, . . . ,

k`
d`

)
pk1,d1(x1) · · · pk`,d`(x`).

We call BPf,d1,...,d` the multivariate Bernstein approxi-
mation for f with degrees (d1, . . . , d`).

Theorem 29. Multivariate Bernstein approxima-
tions Let f : [0, 1]` → R be a L-Lipschitz function in
[0, 1]`. In other words, ‖f(x) − f(y)‖2≤ L · ‖x − y‖2.
Then BPf,d1,...,d` satisfies the inequality

sup
z∈[0,1]`

|f(z)− BPf,d1,...,d`(z)| ≤
L

2
·
(∑̀
j=1

1

dj

)1/2

The proof of Theorem 29 is folklore; we provide one
for completeness.

Proof. Fix z ∈ [0, 1]`. Note that each pki,di(zi) is non-

negative, and that
∑di
ki=0 pki,di(zi) = 1. Hence,

f(z)− BPf,d1,...,d`(z)

=
∑

k1,...,k`

[
f(z)− f

(
k1
d1
, . . . ,

k`
d`

)] ∏̀
j=1

pkj ,dj (zj)

≤ L
∑

k1,...,k`

∥∥∥∥z − (k1d1 , . . . , k`d`
)∥∥∥∥

2

∏̀
j=1

pkj ,dj (zj)

≤ L

 ∑
k1,...,k`

∥∥∥∥z − (k1d1 , . . . , k`d`
)∥∥∥∥2

2

∏̀
j=1

pkj ,dj (zj)

1/2

= L

[∑̀
i=1

di∑
ki=0

(
zi −

ki
di

)2
pki,di(zi)

]1/2
.

Finally, note that
∑d
k=0(x − k/d)2pk,d(x) is just the

variance of a binomial random variable with d trials
and success probability x. This is bounded by 1

4d .
Plugging in this bound for each i separately completes
the proof.

Rescaling the function, we have the following corol-
lary. To state this corollary, we let B(x, r) = {z :
‖z − x‖2≤ r} i.e. the `2 of radius r at x.

Corollary 30. Let f : B(x, r) → R be a 1-Lipschitz
function (where B(x, r) ⊆ R`). Then, given any error
parameter η > 0, there is a polynomial pf,r,η whose
degree in every variable is at most dB(η, r, `) = ` · 4r2 ·
(1/η2) such that

sup
z∈B(x,r)

|pf,r,η(z)− f(z)| ≤ η.

Proof. To prove this, we will rely on Theorem 29. First,
define B∞(x, r) = {z : ‖z − x‖∞≤ r}. We extend f to
B∞(x, r) as follows: f(z) = f(ProjB(x,r)(z)). Note that
the extension is 1-Lipschitz (using Fact 24). Define the
function g : [0, 1]` → R as

g(z) = f

(
x+

(
z − 1

2

)
· 2r
)
.

Here 1
2 is the point in R` which is 1/2 in every

coordinate. It is easy to see that the function g is 2r-
Lipschitz. Thus, if we choose the function BPg,d1,...,d` ,
then we have

sup
z∈[0,1]`

|BPg,d1,...,d` − g(z)| ≤ 2r ·
(∑̀
j=1

1

dj

)1/2

.

In particular, we set all the degrees d1 = . . . = d` =
` · 4r2 · (1/η2), then supz∈[0,1]` |BPg,d1,...,d` − g(z)| ≤ η.
Thus, if we set pf,r,η(z) as

pf,r,η(z) = BPg,d1,...,d`

(
z − x

2r
+

1

2

)
.

It is clear that the polynomial pf,r,z satisfies
supz∈B(x,r) |pf,r,η(z)− f(z)| ≤ η.

We next modify the function fsm : Rn → ∆k

obtained in Corollary 27 to obtain the function f ′sm :
Rn → Rk which is a (i) low-degree polynomial and (ii)
fsm is close to f ′sm with high probability on the Gaussian
measure γn.

Lemma 31. Given the function fsm : Rn → ∆k from
Corollary 27, there is a function f ′sm : Rn → Rk such
that f ′sm = (p′f,1(x), . . . , p′f,k(x)) where for all 1 ≤ s ≤ k,
p′f,s : Rn → R are polynomials satisfying the following
conditions:

1. For 1 ≤ s ≤ k, the polynomials {p′f,s} have degree

d′ = logd(dk/δ) · poly(k/δ) · d where d is the degree
appearing in Corollary 27.

2. Prx∼γn [‖fsm(x)− f ′sm(x)‖∞≤ δ/4] ≤ δ/2.
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Proof. Let the function fsm(x) =
Proj(pf,1(x), . . . , pf,k(x)). Since all the polynomi-
als are degree d and have variance at most σ2

sm = k8/δ4,
using Theorem 11, we obtain the following:
(3.3)

Pr
x∼γn

sup
1≤s≤k

[|pf,s −E[pf,s]|≤ logd/2(2dk/δ) · σsm] ≤ δ

2
.

Define the point µsm,f = (E[pf,1], . . . ,E[pf,s]). Also,

let rsm = logd/2(2dk/δ) ·σsm. Since the projection from
Rk to ∆k is Lipschitz, Corollary 30 implies that there
exist polynomials psm,s : Rk → R (for 1 ≤ s ≤ k) whose
degree in every variable is at most k · 4r2sm · 16/δ2 =
logd(dk/δ) · poly(k/δ), and which satisfy for all z ∈
B(µsm,f , rsm), we have

(3.4) |psm,s(z)− Projs(z)|≤
δ

4

Let psm : Rk → Rk be defined as the map
psm(x) = (psm,1(x), . . . , psm,k(x)). Recall that
fsm = Proj(pf,1(x), . . . , pf,k(x)). We define p′f =
psm ◦ (pf,1, . . . , pf,k). We now define f ′sm =
(p′f,1(x), . . . , p′f,k(x)). It is clear that for 1 ≤ s ≤ k,

p′f,s is a polynomials of degree logd(dk/δ) · poly(k/δ) · d.
Likewise, combining (3.4) and (3.3), we obtain that
Prx∼γn [‖fsm(x)− f ′sm(x)‖∞≤ δ/2] ≤ δ/2.

3.3 Converting to PPFs Before we finish the proof
of Lemma 18, we will need to make a couple of ele-
mentary observations. First of all, observe that if α
is uniformly random in [0, 1], then for any x ∈ [0, 1],
E[1x−α≥0] = x. Here 1x−α≥0 denotes the function
which is 1 if x − α ≥ 0 and 0 otherwise. Now, for
any parameter η > 0, define the distribution Intη to be
uniformly random over the set {i · η}i≥0 ∩ [0, 1]. Then,
we have the following simple claim.

Claim 32. Let ζ > 0 and y ∈ ∆k,ζ . Then,

∥∥∥∥E

[ k∑
s=1

arg max( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, ys − αs, 0, . . . , 0︸ ︷︷ ︸
k−s times

)

]
− y
∥∥∥∥
1

≤ 2(ζ + k · η).

Here, the expectation is with respect to
(α1, . . . , αk) ∼ Intkη

Proof. Let the point closest to y in ∆k be x. Then, we
have ‖x− y‖1= ζ. We have the following:∥∥∥∥E

[ k∑
s=1

arg max( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, xs−αs, 0, . . . , 0︸ ︷︷ ︸
k−s times

)

]
−x
∥∥∥∥
1

≤ k·η.

Combining this with ‖x− y‖1≤ ζ, we obtain

∥∥∥∥E

[ k∑
s=1

arg max( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, xs − αs, 0, . . . , 0︸ ︷︷ ︸
k−s times

)

]
− y
∥∥∥∥
1

≤ k · η + ζ.

(3.5)

Next, for any 1 ≤ s ≤ k,

‖E arg max( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, xs − αs, 0, . . . , 0︸ ︷︷ ︸
k−s times

)

− arg max( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, ys − αs, 0, . . . , 0︸ ︷︷ ︸
k−s times

)‖1≤ |xs − ys|+η.

Summing over all 1 ≤ s ≤ k and combining with (3.5),
we obtain the claim.

Proof of Lemma 18: For 1 ≤ i ≤ `, let {f
′(i)
sm } and

{g
′(i)
sm } be the functions obtained by applying Corol-

lary 27 and Lemma 31 to the family of functions {f (i)}
and {g(i)}. In particular, let f

′(i)
sm = (p

′(i)
f,1 , . . . , p

′(i)
f,k ) and

g
′(i)
sm = (p

′(i)
g,1 , . . . , p

′(i)
g,k ). For η > 0 (to be fixed later), let

us define f
(i)
1 and g

(i)
1 as follows:

f
(i)
1 =

k∑
s=1

E arg max ( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, p
′(i)
f,s − αs, 0, . . . , 0︸ ︷︷ ︸

k−s times

)

g
(i)
1 =

k∑
s=1

E arg max ( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, p
′(i)
g,s − αs, 0, . . . , 0︸ ︷︷ ︸

k−s times

)

We will now verify the properties of the construction.
Proof of Items 1 and 2: Both these items are straight
forward from the construction.
Proof of Item 3: By the second item of Lemma 31, we

have Prx∼γn [f
′(i)
sm (x) ∈ ∆k,kδ/4] ≥ 1− δ/2. By applying

Claim 32, we obtain that whenever f
′(i)
sm (x) ∈ ∆k,kδ/4,

f
(i)
1 (x) ∈ ∆k,O(kδ+kη). Thus, as long as η ≤ δ/k, this

proves Item 3 for f
(i)
1 . The proof for g

(i)
1 is similar.

Proof of Items 4 and 5: We first observe that
Prx∼γn [‖f

′(i)
sm (x) − f

(i)
sm (x)‖1≤ k · δ/4] ≥ 1 − δ/2. By

applying Claim 32, we obtain that Prx∼γn [‖f (i)1 (x) −
f
(i)
sm (x)‖1≤ O(kδ + kη)] ≥ 1 − δ/2. However, note that

by definition, ‖f (i)1 (x) − f
(i)
sm (x)‖∞≤ k. This implies

that E[‖f
′(i)
sm (x) − f

(i)
1 (x)‖1] = O(kδ + kη). As long

as η ≤ δ/k, we have E[‖f (i)sm (x) − f (i)1 (x)‖1] = O(kδ).
Combining with the guarantees of Corollary 22 yields
Items 4 and 5.
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Proof of Item 6: To prove Item 6, note that for any
1 ≤ s ≤ k and αs ∈ [0, 1],

arg max ( 0, . . . , 0︸ ︷︷ ︸
s−1 times

, p
′(i)
f,s − αs, 0, . . . , 0︸ ︷︷ ︸

k−s times

) = PPF
p
′(i)
f,s −αs,s

.

Thus, if we define p
(i)
s,j,1 = p

′(i)
f,s − η · j and p

(i)
s,j,2 =

p
′(i)
g,s − η · j, then

f
(i)
1 =

k∑
s=1

m∑
j=0

1

m
PPF

p
(i)
s,j,1,s

and

g
(i)
1 =

k∑
s=1

m∑
j=0

1

m
PPF

p
(i)
s,j,2,s

,

where m = d1/ηe. As η ≤ δ/k, m = O(k/δ). By

Lemma 31, deg(p
′(i)
f,s ) and deg(p

′(i)
g,s ) is at most d′ =

d · poly(k/δ) · logd(dk/δ) where d = 2/t · log(dk/δ)
(coming from Corollary 22). If we set d0(t, k, δ) = d′,

then deg(p
′(i)
f,s ) and deg(p

′(i)
g,s ) is at most d0(t, k, δ). As

deg(p
(i)
s,j,1) = deg(p

′(i)
f,s ) and deg(p

(i)
s,j,2) = deg(p

′(i)
g,s ), this

proves Item 6. (We can make the PPFs balanced by
applying Fact 17).

4 Construction of junta polynomials

This section is dedicated to the proof of Lemma 19.
To prove this lemma, we will first recall the following
important result from [DMN17] (Theorem 41 in that
paper).

Theorem 33. Let p1, . . . , p` : Rn → R be degree-d
polynomials and for δ > 0, the following two conditions:
(i) For all 1 ≤ s ≤ `, Var(ps) = 1 and (ii) For all 1 ≤
s ≤ `, |E[ps]|≤ logd/2(k · d/δ). For 1 ≤ s ≤ ` and t > 0,
define us : R2n → R as follows: us(x, y) = ps(e

−tx +√
1− e−2ty). Then, there is an explicitly computable

n0 = n0(`, d, ξ) and polynomials r1, . . . , r` : Rn0 → R
with the following properties: For 1 ≤ s ≤ `, define
vs : R2n0 → R as vs(x, y) = rs(e

−tx +
√

1− e−2ty).
Then, for 1 ≤ s, s′ ≤ `,

1. |Prx∼γn [ps ≥ 0]− Prx∼γn [rs ≥ 0]| ≤ ξ.

2. |Prx,y∼γn [us ≥ 0]− Prx,y∼γn0
[vs ≥ 0]| ≤ ξ.

3. |Prx∼γn [ps · ps′ ≥ 0]− Prx∼γn0
[rs · rs′ ≥ 0]| ≤ ξ.

4. |Prx,y∼γn [us ·us′ ≥ 0]−Prx,y∼γn0
[vs ·vs′ ≥ 0]| ≤ ξ.

5. |Prx,y∼γn [ps ·us′ ≥ 0]−Prx,y∼γn0
[vs · vs′ ≥ 0]| ≤ ξ.

We now derive an additional property of the poly-
nomials {ps}1≤s≤` and {rs}1≤s≤` defined in Theorem 33
which will be useful later.

Corollary 34. Let p1, . . . , p` : Rn → R and u1, . . . , u` :
Rn → R be as defined in Theorem 33. Then, for any
1 ≤ s, s′ ≤ k,

| Pr
x∼γn

[(ps(x) ≥ 0) ∧ (ps′(x) ≥ 0)]

− Pr
x∼γn0

[(rs(x) ≥ 0) ∧ (rs′(x) ≥ 0)]| ≤ 2ξ.

Proof. The main observation here is that if A,B 6= 0,
then

1[A ≥ 0] · 1[B ≥ 0] =
1

2
(1[A ·B ≥ 0] + 1[A ≥ 0]

+ 1[B ≥ 0]− 1)
.

Now, note that because ps, ps′ , rs and rs′ are degree-
d polynomials, any of these functions vanish over the
Gaussian measure with probability 0. Thus,

Pr
x∼γn

[(ps(x) ≥ 0) ∧ (ps′(x) ≥ 0)]

=
1

2
( Pr
x∼γn

[ps(x) ≥ 0] + Pr
x∼γn

[ps′(x) ≥ 0]

+ Pr
x∼γn

[ps · ps′(x) ≥ 0]− 1)

Pr
x∼γn0

[(rs(x) ≥ 0) ∧ (rs′(x) ≥ 0)]

=
1

2
( Pr
x∼γn0

[rs(x) ≥ 0] + Pr
x∼γn0

[rs′(x) ≥ 0]

+ Pr
x∼γn0

[rs · rs′(x) ≥ 0]− 1)

Combining the above equations with items 1 and 3 in
Theorem 33 yields the corollary.

We now describe the proof of Lemma 19.
Proof of Lemma 19: Let us consider the collection
of degree-d0 polynomials {p(i)s,j,1}1≤i≤`,1≤s≤k,1≤j≤m ∪
{p(i)s,j,2}1≤i≤`,1≤s≤k,1≤j≤m. We now apply Theorem 33

to obtain polynomials {r(i)s,j,1}1≤i≤`,1≤s≤k,1≤j≤m ∪
{r(i)s,j,2}1≤i≤`,1≤s≤k,1≤j≤m with ξ = δ/(40k2). We now
define

f
(i)
junta =

k∑
s=1

m∑
j=1

1

m
· PPF

r
(i)
s,j,1,s

(x) , g
(i)
junta

=
k∑
s=1

m∑
j=1

1

m
· PPF

r
(i)
s,j,2,s

(x)

We now verify the properties of the construction.
Proof of Item 1: Observe that for 1 ≤ s ≤ k, we
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have the following

E[(f
(i)
1 (x))s] =

m∑
j=1

1

m
·Ex[PPF

p
(i)
s,j,1,s

(x)]

=
m∑
j=1

1

m
· Pr
x

[p
(i)
s,j,1(x) ≥ 0]

E[(f
(i)
junta(x))s] =

m∑
j=1

1

m
·Ex[PPF

r
(i)
s,j,1,s

(x)]

=

m∑
j=1

1

m
· Pr
x

[r
(i)
s,j,1(x) ≥ 0]

Thus, we obtain

|E[(f
(i)
1 (x))s]−E[(f

(i)
junta(x))s]|

≤ sup
1≤j≤m

|Pr
x

[p
(i)
s,j,1(x) ≥ 0]− Pr

x
[r

(i)
s,j,1(x) ≥ 0]| ≤ ξ.

The penultimate inequality follows by applying Theo-

rem 33 to p
(i)
s,j,1 and r

(i)
s,j,1. This immediately implies

that ‖E[f
(i)
1 (x)] − E[f

(i)
junta(x)]‖1≤ k · ξ ≤ δ. The proof

for |E[(g
(i)
1 (x))s]−E[(g

(i)
junta(x))s]| ≤ δ. is exactly identi-

cal.
Proof of Item 2: Like Item 1, we will only prove

that Prx[f
(i)
junta(x) ∈ ∆k,

√
δ] ≤

√
δ. The proof

for Prx[g
(i)
junta(x) ∈ ∆k,

√
δ] ≤

√
δ. To prove this,

we first observe that for all x both f
(i)
1 (x) and

f
(i)
junta(x) always lie in the positive orthant and secondly,

‖f (i)1 (x)‖∞, ‖f (i)junta(x)‖∞≤ 1. Next,

E[(‖f (i)1 (x)‖1−1)2] ≤ Pr
x

[f
(i)
1 (x) ∈ ∆k,δ] · δ2(4.6)

+ Pr
x

[f
(i)
1 (x) 6∈ ∆k,δ] · k2 ≤ δ2 + k2 · δ.

The first inequality uses supx‖f
(i)
1 (x)‖1≤ k and the

second inequality uses Prx[f
(i)
1 (x) 6∈ ∆k,δ] ≤ δ. Next,

observe that

‖f (i)1 (x)‖1 =

k∑
s=1

m∑
j=1

1

m
· 1[p

(i)
s,j,1(x) ≥ 0],

‖f (i)junta(x)‖1 =

k∑
s=1

m∑
j=1

1

m
· 1[r

(1)
s,j,1(x) ≥ 0]

This implies

(4.7)

(‖f (i)1 (x)‖1−1)2

=

k∑
s=1

k∑
s′=1

m∑
j=1

m∑
j′=1

1

m2
1[p

(i)
s,j,1(x) ≥ 0] · 1[p

(i)
s′,j′,1(x) ≥ 0] + 1

− 2

m

k∑
s=1

m∑
j=1

1[p
(i)
s,j,1(x) ≥ 0].

(4.8)

(‖f (i)junta(x)‖1−1)2

=

k∑
s,s′=1

m∑
j,j′=1

1

m2
1[r

(i)
s,j,1(x) ≥ 0] · 1[r

(i)
s′,j′,1(x) ≥ 0] + 1

− 2

m

k∑
s=1

m∑
j=1

1[r
(i)
s,j,1(x) ≥ 0].

Recall that by construction, we have
(4.9)

sup
1≤s≤k, 1≤j≤m

|Pr
x

[p
(i)
s,j,1(x) ≥ 0]− Pr

x
[r

(i)
s,j,1(x) ≥ 0]| ≤ ξ

Applying Corollary 34, we also obtain

sup
1≤s,s′≤k, 1≤j,j′≤m

|Pr
x

[(p
(i)
s,j,1(x) ≥ 0) ∧ (p

(i)
s′,j′,1(x) ≥ 0)]

− Pr
x

[(r
(i)
s,j,1(x) ≥ 0) ∧ (r

(i)
s′,j′,1(x) ≥ 0)]| ≤ 2ξ.

(4.10)

Applying (4.9) and (4.10) to (4.7) and (4.8), we obtain

|E[(‖f (i)junta(x)‖1−1)2]−E[(‖f (i)1 (x)‖1−1)2]| ≤ 2k2·ξ+2k·ξ ≤ δ.

Combining this with (4.6), we obtain

E[(‖f (i)junta(x)‖1−1)2] ≤ 2k2 · δ. Applying Markov’s

inequality, we obtain that Pr[| ‖f (i)junta(x)‖1−1|> k
√
δ] ≤

2k
√
δ. Since f

(i)
junta(x) lies in the positive orthant for

any x, this proves Item 2.
Proof of Item 3: To prove Item 3, we observe that
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for any 1 ≤ s1, s2 ≤ k,

E[f1,s1Ptg1,s2 ](4.11)

=
1

m2

m∑
j=1

m∑
j′=1

E[PPF
p
(1)
s1,j1

(x)Pt PPFp(2)s2,j2

(x)]

=
1

m2

m∑
j=1

m∑
j′=1

Ex,y[PPF
p
(1)
s1,j1

(x)PPF
p
(2)
s2,j2

(z)]

=
1

m2

m∑
j=1

m∑
j′=1

Pr
x,y

[(p
(1)
s1,j1

(x) ≥ 0) ∧ (p
(2)
s2,j2

(z) ≥ 0)]

=
1

m2

m∑
j=1

m∑
j′=1

Pr
x,y

[(p
(1)
s1,j1

(x) ≥ 0) ∧ (u
(2)
s2,j2

(z) ≥ 0)].

In the above, z = e−tx+
√

1− e−2ty. Likewise, we can
obtain

E[fjunta,s1Ptgjunta,s2 ]

=
1

m2

m∑
j=1

m∑
j′=1

Pr
x,y

[(r
(1)
s1,j1

(x) ≥ 0) ∧ (v
(2)
s2,j2

(z) ≥ 0)].

(4.12)

Combining (4.11) and (4.12) with Item 5 in Theorem 33
yields

|E[f1,s1Ptg1,s2 ]−E[fjunta,s1Ptgjunta,s2 ]| ≤ ξ.

This finishes the proof.
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A Reduction from arbitrary P to the Gaussian
case

We first restate Theorem 3 below.

Theorem. 3 Suppose there exist f, g : Zn → [k] such
that (f(Xn), g(Yn)) ∼ Q. Then, there exist n0 =
n0(|P|, δ) and fjunta, gjunta : Zn0 → [k] such that Q and
the distribution of (fjunta(X

n0), gjunta(Y
n0)) are δ-close

in total variation distance. Moreover, n0 is computable.
Further, the functions fjunta and gjunta can be explicitly
computed.

Next, we restate Theorem 7.

Theorem. 7 Let P = (X,Y) = Gρ,2 and let
f (1), . . . , f (`) : Rn → [k] and g(1), . . . , g(`) : Rn → [k]
where we define Qi,j as Qi,j = (f (i)(Xn), g(j)(Yn)).
Then, for every δ > 0, there is an explicitly defined
constant n0 = n0(`, k, δ) and explicitly defined func-

tions f
(1)
junta, . . . , f

(`)
junta : Rn0 → [k] and g

(1)
junta, . . . , g

(`)
junta :

Rn0 → [k] such that for every 1 ≤ i, j ≤ `,

dTV((f
(i)
junta(X

n0), g
(j)
junta(Y

n0)),Qi,j) ≤ δ.

The main purpose of this section is to show how
proving Theorem 3 reduces to proving Theorem 7.
While the reduction essentially follows just going over
the steps in [GKS16b] mutatis mutandis (which in turn
relies on standard tools from Boolean function analysis),
for the purpose of clarity, we give a brief overview of the
reduction here.

First, let us fix some notation.

1. We recall the notion of maximal correlation coef-
ficient: Namely, given a probability space (X,Y),
we let ρ(X,Y) be defined as

ρ(X,Y) = sup E[Ψ1(X) ·Ψ2(Y)],

where the supremum is taken over all functions
which satisfy E[Ψ1(X)] = E[Ψ2(Y)] = 0 and
Var[Ψ1(X)] = Var[Ψ2(Y)] = 1.
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2. For a given set H ⊆ [n], xH ∈ X|H| and function
f : Xn → Rk, we let f(xH , .) : X[n]\H → Rk denote
the function obtained by fixing the coordinates of
f in H to xH .

As we have stated before, for the case k = 2, Ghazi,
Kamath and Sudan [GKS16b] reduce Theorem 3 for the
general P case to the case when P = Gρ,2. In other
words, for k = 2, [GKS16b] reduces Theorem 3 for the
general P case to Theorem 7 with ` = 1. We now give
a sketch of why Theorem 3 reduces to Theorem 7 for
k > 1.

Overview of the reduction: Using the regularity
lemma for low-degree polynomials [DSTW10, DDS14]
and other ideas from Boolean function analysis (along
the lines of [GKS16b]), one can easily show the follow-
ing: Let τ > 0 be any error parameter. Then, there
exists a set H ⊆ [n] such that |H|= Oτ,|P|,k(1) and for
(xH , yH) ∼ (X,Y)H , with probability 1 − τ , the fol-
lowing holds: The functions f(xH , ·) and g(yH , ·) are
low-influence functions namely,

max
i∈[n]\H

Infi(f(xH , ·)) ≤ τ, max
i∈[n]\H

Infi(g(yH , ·)) ≤ τ.

In the above definition, for f : Rn → Rk, we let Infi(f)
denotes the quantity

Infi(f) =
∑

i∈S:S∈Z∗n
‖f̂(S)‖22,

where f̂(S) denotes the Hermite coefficient of f cor-
responding to S. Note that this is the standard def-
inition of “influence” from Boolean function analysis
(see [O’D14, Mos10]). In fact, one can also additionally
assume that every coordinate of f and g is essentially a
low-degree polynomial.

To understand why the low-influence condition is
useful, let PG = Gρ,2 where ρ = ρ(X,Y). Further, let

(XG,YG) = PG. Likewise, let f̃(xH , ·) (resp. g̃(yH , ·))
be the multilinear extension of f(xH , ·) (resp. g(yH , ·))
to the Gaussian space. Then, the invariance principle
of Mossel et al. [MOO10, Mos10] shows that as long as
τ is chosen to be sufficiently small in δ, for any pair
(xH , yH) where f(xH , ·) and g(yH , ·) are low-influence
functions, the following holds:

dTV((f̃(xH ,X
[n]\H
G ), g̃(yH ,Y

[n]\H
G )),

(f(xH ,X
[n]\H), f(yH ,Y

[n]\H)) ≤ δ/4.

Note that the total number of (xH , yH) pairs is bounded
by |supp(P)|2|H|. Let us denote this number by Nsup.
By applying Theorem 7,we obtain that for any δ > 0,
there is n0 = n0(Nsup, k, δ) such that corresponding

to every function f̃(xH , ·) (resp. g̃(yH , ·) ), there is a

function fxH
: Rn0 → [k] (resp. gyH : Rn0 → [k] ) such

that

dTV((f̃(xH ,X
[n]\H
G ), g̃(yH ,Y

[n]\H
G ),

(f
xH

(Xn0

G ), g
yH

(Yn0

G ))) ≤ δ/4.

Note that here we are crucially using the fact that
Theorem 7 is valid for an arbitrary ` ≥ 1 and not just
` = 1. Let us define m0 = n0 · (1/κ2). We next define
f
low, xH

: Rm0 → [k] as

f
low, xH

(x1,1, . . . , xn0,κ−2) = f
xH

(κ · z1, . . . , κ · zn0
).

Here zj = (xj,1 + . . .+ xj,κ−2) for 1 ≤ j ≤ n0. Likewise,
letting wj = (yj,1 + . . .+ xy,κ−2), we define,

g
low, yH

(y1,1, . . . , yn0,κ−2) = g
yH

(κ · w1, . . . , κ · wn0).

From the definition of f
xH

and g
yH

, it easily follows

that,

(f
xH

(Xn0

G ), g
yH

(Yn0

G )) = (f
low,xH

(Xm0

G ), g
low,yH

(Ym0

G ))

Let flow,xH
and glow,yH denote the multilinear extensions

of f
low,xH

and g
low,yH

to the space (Xm0 ,Ym0). Observe

that the functions f
low,xH

and g
low,yH

have influence

bounded by κ. Thus, as long as κ is chosen to
be a sufficiently small function of δ, the invariance
principle [Mos10] implies that

dTV((flow,xH
(Xm0), glow,yH (Ym0)),

(f
low,xH

(Xm0

G ), g
low,yH

(Ym0

G ))) ≤ δ/4.

Combining the above three equations, we get that

dTV((flow,xH
(Xm0), glow,yH (Ym0)),

(f(xH ,X
[n]\H), g(yH ,Y

[n]\H))) ≤ 3δ

4
.

With this, we define functions fjunta : Rm0+|H| → [k]
and gjunta : Rm0+|H| → [k] as follows. Split x ∈ Rm0+H

as (xH , xm0
) and y ∈ Rm0+H as (yH , ym0

).

fjunta(xH , xm0
) = flow,xH

(xm0
);

gjunta(yH , ym0
) = glow,yH (ym0

).

This immediately implies

dTV((f(Xn), g(Yn)),

(fjunta(X
m0+|H|), gjunta(Y

m0+|H|)) ≤ 3δ

4
+ τ.

Once we choose τ ≤ δ/4, the reduction is complete.
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