
Simple, Efficient, and Neural Algorithms for Sparse Coding

Sanjeev Arora∗ arora@cs.princeton.edu
Princeton University, Computer Science Department

Rong Ge rongge@microsoft.com
Microsoft Research

Tengyu Ma † tengyu@cs.princeton.edu
Princeton University, Computer Science Department

Ankur Moitra‡ moitra@mit.edu

MIT, Department of Mathematics and CSAIL

Abstract

Sparse coding is a basic task in many fields including signal processing, neuroscience and
machine learning where the goal is to learn a basis that enables a sparse representation of
a given set of data, if one exists. Its standard formulation is as a non-convex optimization
problem which is solved in practice by heuristics based on alternating minimization. Re-
cent work has resulted in several algorithms for sparse coding with provable guarantees,
but somewhat surprisingly these are outperformed by the simple alternating minimization
heuristics. Here we give a general framework for understanding alternating minimization
which we leverage to analyze existing heuristics and to design new ones also with provable
guarantees. Some of these algorithms seem implementable on simple neural architectures,
which was the original motivation of Olshausen and Field (1997a) in introducing sparse
coding. We also give the first efficient algorithm for sparse coding that works almost up to
the information theoretic limit for sparse recovery on incoherent dictionaries. All previous
algorithms that approached or surpassed this limit run in time exponential in some natural
parameter. Finally, our algorithms improve upon the sample complexity of existing ap-
proaches. We believe that our analysis framework will have applications in other settings
where simple iterative algorithms are used.

1. Introduction

Sparse coding or dictionary learning consists of learning to express (i.e., code) a set of input
vectors, say image patches, as linear combinations of a small number of vectors chosen
from a large dictionary. It is a basic task in many fields. In signal processing, a wide
variety of signals turn out to be sparse in an appropriately chosen basis (see references
in Mallat (1998)). In neuroscience, sparse representations are believed to improve energy
efficiency of the brain by allowing most neurons to be inactive at any given time. In machine
learning, imposing sparsity as a constraint on the representation is a useful way to avoid
over-fitting. Additionally, methods for sparse coding can be thought of as a tool for feature

‡ Supported by the NSF and the Simons Foundation.
‡ Supported by the NSF and the Simons Foundation.
‡ Supported by NEC Corporation and Google.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/158415453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Arora Ge Ma Moitra

extraction and are the basis for a number of important tasks in image processing such as
segmentation, retrieval, de-noising and super-resolution (see references in Elad (2010)), as
well as a building block for some deep learning architectures Ranzato et al. (2007). It is
also a basic problem in linear algebra itself since it involves finding a better basis.

The notion was introduced by neuroscientists Olshausen and Field (1997a) who formal-
ized it as follows: Given a dataset y(1), y(2), . . . , y(p) ∈ <n, our goal is to find a set of basis
vectors A1, A2, . . . , Am ∈ <n and sparse coefficient vectors x(1), x(2), . . . , x(p) ∈ <m that
minimize the reconstruction error

p∑
i=1

‖y(i) −A · x(i)‖22 +

p∑
i=1

S(x(i)) (1)

where A is the n×m coding matrix whose jth column is Aj and S(·) is a nonlinear penalty
function that is used to encourage sparsity. This function is nonconvex because both A and
the x(i)’s are unknown. Their paper as well as subsequent work chooses m to be larger
than n (so-called overcomplete case) because this allows greater flexibility in adapting the
representation to the data. We remark that sparse coding should not be confused with the
related — and usually easier — problem of finding the sparse representations of the y(i)’s
given the coding matrix A, variously called compressed sensing or sparse recovery Candes
et al. (2006); Candes and Tao (2005).

Olshausen and Field also gave a local search/gradient descent heuristic for trying to min-
imize the nonconvex energy function (1). They gave experimental evidence that it produces
coding matrices for image patches that resemble known features (such as Gabor filters) in
V 1 portion of the visual cortex. A related paper of the same authors Olshausen and Field
(1997b) (and also Lewicki and Sejnowski (2000)) places sparse coding in a more familiar
generative model setting whereby the data points y(i)’s are assumed to be probabilistically
generated according to a model y(i) = A∗ · x∗(i) + noise where x∗(1), x∗(2), . . . , x∗(p) are sam-
ples from some appropriate distribution and A∗ is an unknown code. Then one can define
the maximum likelihood estimate, and this leads to a different and usually more complicated
energy function — and associated heuristics — compared to (1).

Surprisingly, maximum likelihood-based approaches seem unnecessary in practice and
local search/gradient descent on the energy function (1) with hard constraints works well,
as do related algorithms such as MOD Aharon et al. (2006) and k-SVD Engan et al. (1999).
In fact these methods are so effective that sparse coding is considered in practice to be a
solved problem, even though it has no polynomial time algorithm per se.

Efficient Algorithms vs Neural Algorithms. Recently, there has been rapid progress
on designing polynomial time algorithms for sparse coding with provable guarantees (the
relevant papers are discussed below). All of these adopt the generative model viewpoint
sketched above. But the surprising success of the simple descent heuristics has remained
largely unexplained. Empirically, these heuristics far out perform — in running time, sample
complexity, and solution quality — the new algorithms, and this (startling) observation was
in fact the starting point for the current work.

Of course, the famous example of simplex vs ellipsoid for linear programming reminds us
that it can be much more challenging to analyze the behavior of an empirically successful
algorithm than it is to to design a new polynomial time algorithm from scratch! But

2

Simple, Efficient, and Neural Algorithms for Sparse Coding

for sparse coding the simple intuitive heuristics are important for another reason beyond
just their algorithmic efficiency: they appear to be implementable in neural architectures.
(Roughly speaking, this means that the algorithm stores the code matrix A as synapse
weights in a neural network and updates the entries using differences in potentials of the
synapse’s endpoints.) Since neural computation — and also deep learning — have proven to
be difficult to analyze in general, analyzing sparse coding thoroughly seems to be a natural
first step for theory. Our algorithm is a close relative of the Olshausen-Field algorithm and
thus inherits its neural implementability; see Appendix H for further discussion.

Here we present a rigorous analysis of the simple energy minimization heuristic, and as
a side benefit this yields bounds on running time and sample complexity for sparse coding
that are better (in some cases, dramatically so) than the algorithms in recent papers. This
adds to the recent literature on analyzing alternating minimization Jain et al. (2013); Hardt
(2013); Netrapalli et al. (2013, 2014) but these work in a setting where there is a convex
program that is known to work too, and in our setting, the only known convex program
runs in time exponential in a natural parameter Barak et al. (2014).

1.1. Recent Work

A common thread in recent work on sparse coding is to assume a generative model; the
precise details vary, but each has the property that given enough samples the solution is
essentially unique. Spielman et al. (2012) gave an algorithm that succeeds when A∗ has full
column rank (in particular m ≤ n) which works up to sparsity roughly

√
n. However this

algorithm is not applicable in the more prevalent overcomplete setting. Arora et al. (2014)
and Agarwal et al. (2013, 2014) independently gave algorithms in the overcomplete case
assuming that A∗ is µ-incoherent (which we define in the next section). The former gave an
algorithm that works up to sparsity n1/2−γ/µ for any γ > 0 but the running time is nΘ(1/γ);
Agarwal et al. (2013, 2014) gave an algorithm that works up to sparsity either n1/4/µ or
n1/6/µ depending on the particular assumptions on the model. These works also analyze
alternating minimization but assume that it starts from an estimate A that is column-
wise 1/poly(n)-close to A∗, in which case the objective function is essentially convex. We
remark that the key feature that distinguishes our paper with previous works Agarwal et al.
(2014); Schnass (2014b,a); Jenatton et al. (2012); Geng and Wright (2014) on non-convex
approaches for sparse coding is that we only require an O(1/ log n)-close initialization while
before 1/poly(n)-closeness was needed for provably non-convex local search algorithms.

Barak et al. (2014) gave a new approach based on the sum-of-squares hierarchy that
works for sparsity up to n1−γ for any γ > 0. But in order to output an estimate that is
column-wise ε-close to A∗ the running time of the algorithm is n1/εO(1)

. In most applications,
one needs to set (say) ε = 1/k in order to get a useful estimate. However in this case
their algorithm runs in exponential time. The sample complexity of the above algorithms
is also rather large, and is at least Ω(m2) if not much larger. Here we will give simple
and more efficient algorithms based on alternating minimization whose column-wise error
decreases geometrically, and that work for sparsity up to n1/2/µ log n. We remark that even
empirically, alternating minimization does not appear to work much beyond this bound.

3

Arora Ge Ma Moitra

1.2. Model, Notation and Results

We will work with the following family of generative models (similar to those in earlier
papers)1:

Our Model Each sample is generated as y = A∗x∗ + noise where A∗ is a ground truth
dictionary and x∗ is drawn from an unknown distribution D where

(1) the support S = supp(x∗) is of size at most k, Pr[i ∈ S] = Θ(k/m) and Pr[i, j ∈
S] = Θ(k2/m2)

(2) the distribution is normalized so that E[x∗i |x∗j 6= 0] = 0; E[x∗i
2|x∗i 6= 0] = 1 and when

x∗i 6= 0, |x∗i | ≥ C for some constant C ≤ 1 and

(3) the non-zero entries are pairwise independent and subgaussian, conditioned on the
support.

(4) The noise is Gaussian and independent across coordinates.

Such models are natural since the original motivation behind sparse coding was to discover a
code whose representations have the property that the coordinates are almost independent.
We can relax most of the requirements above, at the expense of further restricting the
sparsity, but will not detail such tradeoffs.

The rest of the paper ignores the iid noise: it has little effect on our basic steps like
computing inner products of samples or taking singular vectors, and easily tolerated so long
as it stays smaller than the “signal.”

We assume A∗ is an incoherent dictionary, since these are widespread in signal processing
Elad (2010) and statistics Donoho and Huo (1999), and include various families of wavelets,
Gabor filters as well as randomly generated dictionaries.

Definition 1 An n×m matrix A whose columns are unit vectors is µ-incoherent if for all
i 6= j we have 〈Ai, Aj〉 ≤ µ/

√
n.

We also require that ‖A∗‖ = O(
√
m/n). However this can be relaxed within polylogarithmic

factors by tightening the bound on the sparsity by the same factor. Throughout this paper
we will say that As is (δ, κ)-near to A∗ if after a permutation and sign flips its columns are
within distance δ and we have ‖As −A∗‖ ≤ κ‖A∗‖. See also Definition 7. We will use this
notion to measure the progress of our algorithms. Moreover we will use g(n) = O∗(f(n))
to signify that g(n) is upper bounded by Cf(n) for some small enough constant C.

Regime of parameters: Finally, throughout this paper we will assume that k ≤ O∗(
√
n/µ log n)

and m = O(n). Again, m can be allowed to be higher by lowering the sparsity. We assume
all these conditions in our main theorems.

1. The casual reader should just think of x∗ as being drawn from some distribution that has independent
coordinates. Even in this simpler setting —which has polynomial time algorithms using Independent
Component Analysis—we do not know of any rigorous analysis of heuristics like Olshausen-Field. The
earlier papers were only interested in polynomial-time algorithms, so did not wish to assume indepen-
dence.

4

Simple, Efficient, and Neural Algorithms for Sparse Coding

Main Theorems In Section 2 we give a general framework for analyzing alternating
minimization. Instead of thinking of the algorithm as trying to minimize a known non-
convex function, we view it as trying to minimize an unknown convex function. Various
update rules are shown to provide good approximations to the gradient of the unknown
function. See Lemma 10, Lemma 26 and Lemma 31 for examples. We then leverage
our framework to analyze existing heuristics and to design new ones also with provable
guarantees. In Section 3, we prove:

Theorem 2 There is a neurally plausible algorithm which when initialized with an esti-
mate A0 that is (δ, 2)-near to A∗ for δ = O∗(1/ log n), converges at a geometric rate to A∗

until the column-wise error is O(
√
k/n). Furthermore the running time is O(mnp) and the

sample complexity is p = Õ(mk) for each step.

Additionally we give a neural architecture implementing our algorithm in Appendix H. To
the best of our knowledge, this is the first neurally plausible algorithm for sparse coding
with provable convergence. We also remark that when the coefficients x∗ have independent
entries then the theorem above can be strengthened to work for nearly linear sparsity
k = O∗(n/polylogn), although we don’t have a good initialization procedure to achieve
O∗(1/ log n)-closeness in this regime.

Having set up our general framework and analysis technique we can use it on other
variants of alternating minimization. Section 4.2 gives a new update rule whose bias (i.e.,
error) is negligible:

Theorem 3 There is an algorithm which when initialized with an estimate A0 that is (δ, 2)-
near to A∗ for δ = O∗(1/ log n), converges at a geometric rate to A∗ until the column-wise
error is O(n−ω(1)). Furthermore each step runs in time O(mnp) and the sample complexity
p is polynomial2.

This algorithm is based on a modification where we carefully project out components along
the column currently being updated. We complement the above theorems by revisiting the
Olshausen-Field rule and analyzing a variant of it in Section 4.1 (Theorem 11). However
its analysis is more complex because we need to bound some quadratic error terms. It uses
convex programming.

What remains is to give a method to initialize these iterative algorithms. We give a new
approach based on pair-wise reweighting and we prove that it returns an estimate A0 that
is (δ, 2)-near to A∗ for δ = O∗(1/ log n) with high probability. As an additional benefit,
this algorithm can be used even in settings where m is not known and this could help solve
another problem in practice — that of model selection. In Section 5 we prove:

Theorem 4 There is an algorithm which returns an estimate A0 that is (δ, 2)-near to A∗

for δ = O∗(1/ log n). Furthermore the running time is Õ(mn2p) and the sample complexity
p = Õ(mk).

2. In principle, the sample complexity of this algorithm should be similar to that of 2. A careful analysis
is left to future work

5

Arora Ge Ma Moitra

Algorithm 1 Generic Alternating Minimization Approach

Initialize A0

Repeat for s = 0, 1, ..., T

Decode: Find a sparse solution to Asx(i) = y(i) for i = 1, 2, ..., p

Set Xs such that its columns are x(i) for i = 1, 2, ..., p

Update: As+1 = As − ηgs where gs is the gradient of E(As, Xs) with respect to As

This algorithm also admits a neural implementation, which is sketched in Appendix H. The
proof currently requires a projection step that increases the run time though we suspect it
is not needed.

We remark that these algorithms work up to sparsity O∗(
√
n/µ log n) which is within a

logarithmic factor of the information theoretic threshold for sparse recovery on incoherent
dictionaries Donoho and Huo (1999); Gribonval and Nielsen (2003). All previous known
algorithms that approach Arora et al. (2014) or surpass this sparsity Barak et al. (2014)
run in time exponential in some natural parameter. Moreover, our algorithms are simple to
describe and implement, and involve only basic operations. We believe that our framework
will have applications beyond sparse coding, and could be used to show that simple, iterative
algorithms can be powerful in other contexts as well by suggesting new ways to analyze them.

2. Our Framework, and an Overview

Here we describe our framework for analyzing alternating minimization. The generic scheme
we will be interested in is given in Algorithm 1 and it alternates between updating the
estimates A and X. It is a heuristic for minimizing the non-convex function in (1) where
the penalty function is a hard constraint. The crucial step is if we fix X and compute the
gradient of (1) with respect to A, we get:

∇AE(A,X) =

p∑
i=1

−2(y(i) −Ax(i))(x(i))T .

We then take a step in the opposite direction to update A. Here and throughout the
paper η is the learning rate, and needs to be set appropriately. The challenge in analyzing
this general algorithm is to identify a suitable “measure of progress”— called a Lyapunov
function in dynamical systems and control theory — and show that it improves at each step
(with high probability over the samples). We will measure the progress of our algorithms
by the maximum column-wise difference between A and A∗.

In the next subsection, we identify sufficient conditions that guarantee progress. They
are inspired by proofs in convex optimization. We view Algorithm 1 as trying to minimize
an unknown convex function, specifically f(A) = E(A,X∗), which is strictly convex and
hence has a unique optimum that can be reached via gradient descent. This function is
unknown since the algorithm does not know X∗. The analysis will show that the direction
of movement is correlated with A∗ − As, which in turn is the gradient of the above func-
tion. An independent paper of Balakrishnan et al. (2014) proposes a similar framework for

6

Simple, Efficient, and Neural Algorithms for Sparse Coding

analysing EM algorithms for hidden variable models. The difference is that their condition
is really about the geometry of the objective function, though ours is about the property
of the direction of movement. Therefore we have the flexibility to choose different decoding
procedures. This flexibility allows us to have a closed form of Xs and obtain a useful func-
tional form of gs. The setup is reminiscent of stochastic gradient descent, which moves in a
direction whose expectation is the gradient of a known convex function. By contrast, here
the function f() is unknown, and furthermore the expectation of gs is not the true gradient
and has bias. Due to the bias, we will only be able to prove that our algorithms reach an
approximate optimum up to some error whose magnitude is determined by the bias. We
can make the bias negligible using more complicated algorithms.

Approximate Gradient Descent

Consider a general iterative algorithm that is trying to get to a desired solution z∗ (in our
case z∗ = A∗i for some i). At step s it starts with a guess zs, computes some direction gs,
and updates its estimate as: zs+1 = zs − ηgs. The natural progress measure is ‖z∗ − zs‖2,
and below we will identify a sufficient condition for it to decrease in each step:

Definition 5 A vector gs is (α, β, εs)-correlated with z∗ if

〈gs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖gs‖2 − εs.

Remark: The traditional analysis of convex optimization corresponds to the setting where
z∗ is the global optimum of some convex function f , and εs = 0. Specifically, if f(·) is
2α-strongly convex and 1/(2β)-smooth, then gs = ∇f(zs) (α, β, 0)-correlated with z∗. Also
we will refer to εs as the bias.

Theorem 6 Suppose gs satisfies Definition 5 for s = 1, 2, . . . , T , and η satisfies 0 < η ≤ 2β
and ε = maxTs=1 εs. Then for any s = 1, . . . , T ,

‖zs+1 − z∗‖2 ≤ (1− 2αη)‖zs − z∗‖2 + 2ηεs

In particular, the update rule above converges to z∗ geometrically with systematic error ε/α
in the sense that

‖zs − z∗‖2 ≤ (1− 2αη)s‖z0 − z∗‖2 + ε/α.

Furthermore, if εs <
α
2 ‖z

s − z∗‖2 for s = 1, . . . , T , then

‖zs − z∗‖2 ≤ (1− αη)s‖z0 − z∗‖2.

We defer the proof to Appendix C; it closely follows existing proofs in convex optimiza-
tion, and we also give an analysis for approximate projected gradient descent in Corollary 15.

An Overview of Applying Our Framework

Our framework clarifies that any improvement step meeting Definition 5 will also converge
to an approximate optimum, which enables us to engineer other update rules that turn
out to be easier to analyze. Indeed we first analyze a simpler update rule with gs =

7

Arora Ge Ma Moitra

E[(y−Asx)sgn(xT)] in Section 3. Here sgn(·) is the coordinate-wise sign function. We then
return to the Olshausen-Field update rule and analyze a variant of it in Section 4.1 using
approximate projected gradient descent. Finally, we design a new update rule in Section 4.2
where we carefully project out components along the column currently being updated. This
has the effect of replacing one error term with another and results in an update rule with
negligible bias. The main steps in showing that these update rules fit into our framework
are given in Lemma 10, Lemma 26 and Lemma 31.

How should the algorithm update X? The usual approach is to solve a sparse recovery
problem with respect to the current code matrix A. However many of the standard basis
pursuit algorithms (such as solving a linear program with an `1 penalty) are difficult to
analyze when there is error in the code itself. This is in part because the solution does not
have a closed form in terms of the code matrix. Instead we take a much simpler approach
to solving the sparse recovery problem which uses matrix-vector multiplication followed by
thresholding: In particular, we set x = thresholdC/2((As)T y), where thresholdC/2(·) keeps
only the coordinates whose magnitude is at least C/2 and zeros out the rest. Recall that the
non-zero coordinates in x∗ have magnitude at least C. This decoding rule recovers the signs
and support of x correctly provided that A is column-wise δ-close to A∗ for δ = O∗(1/ log n).
See Lemma 9.

The rest of the analysis can be described as follows: If the signs and support of x are
recovered correctly, then alternating minimization makes progress in each step. In fact this
holds each for much larger values of k than we consider; as high as n/(log n)O(1). (However,
the explicit decoding rule fails for k >

√
n/µ log n.) Thus it only remains to properly

initialize A0 so that it is close enough to A∗ to let the above decoding rule succeed. In
Section 5 we give a new initialization procedure based on pair-wise reweighting that we
prove works with high probability. This section may be of independent interest, since this
algorithm can be used even in settings where m is not known and could help solve another
problem in practice — that of model selection. See Lemma 14.

3. A Neurally Plausible Algorithm with Provable Guarantees

Here we will design and analyze a neurally plausible algorithm for sparse coding which is
given in Algorithm 2, and we give a neural architecture implementing our algorithm in
Appendix H. The fact that such a simple algorithm provably works sheds new light on how
sparse coding might be accomplished in nature. Here and throughout this paper we will
work with the following measure of closeness:

Definition 7 A is δ-close to A∗ if there is a permutation π : [m] → [m] and a choice of
signs σ : [m]→ {±1} such that ‖σ(i)Aπ(i)−A∗i ‖ ≤ δ for all i We say A is (δ, κ)-near to A∗

if in addition ‖A−A∗‖ ≤ κ‖A∗‖ too.

This is a natural measure to use, since we can only hope to learn the columns of A∗ up to
relabeling and sign-flips. In our analysis, we will assume throughout that π(·) is the identity
permutation and σ(·) ≡ +1 because our family of generative models is invariant under this
relabeling and it will simplify our notation.

8

Simple, Efficient, and Neural Algorithms for Sparse Coding

Algorithm 2 Neurally Plausible Update Rule

Initialize A0 that is (δ0, 2)-near to A∗

Repeat for s = 0, 1, ..., T

Decode: x(i) = thresholdC/2((As)T y(i)) for i = 1, 2, ..., p

Update: As+1 = As − ηĝs where ĝs =
1

p
·

p∑
i=1

(y(i) −Asx(i))sgn(x(i))T

Let sgn(·) denote the coordinate-wise sign function and recall that η is the learning rate,
which we will soon set. Also we fix both δ, δ0 = O∗(1/ log n). We will also assume that in
each iteration, our algorithm is given a fresh set of p samples. Our main theorem is:

Theorem 8 Suppose that A0 is (2δ, 2)-near to A∗ and that η = Θ(m/k). Then if each
update step in Algorithm 2 uses p = Ω̃(mk) fresh samples, we have

E[‖Asi −A∗i ‖2] ≤ (1− τ)s‖A0
i −A∗i ‖2 +O(k/n)

for some 0 < τ < 1/2 and for any s = 1, 2, ..., T . In particular it converges to A∗ geometri-
cally, until the column-wise error is O(

√
k/n).

Our strategy is to prove that ĝs is (α, β, ε)-correlated (see Definition 5) with the desired
solution A∗, and then to prove that ‖A‖ never gets too large. We will first prove that if A
is somewhat close to A∗ then the estimate x for the representation almost always has the
correct support. Here and elsewhere in the paper, we use “very high probability” to mean
that an event happens with probability at least 1− 1/nω(1).

Lemma 9 Suppose that As is δ-close to A∗. Then with very high probability over the
choice of the random sample y = A∗x∗:

sgn(thresholdC/2((As)T y)) = sgn(x∗)

We prove a more general version of this lemma (Lemma 16) in Appendix C; it is an ingredient
in analyzing all of the update rules we consider in this paper. However this is just one step
on the way towards proving that ĝs is correlated with the true solution.

The next step in our proof is to use the properties of the generative model to derive a
new formula for ĝs that is more amenable to analysis. We define gs to be the expectation
of ĝs

gs := E[ĝs] = E[(y −Asx)sgn(x)T] (2)

where x := thresholdC/2((As)T y) is the decoding of y. Let qi = Pr[x∗i 6= 0] and qi,j =
Pr[x∗ix

∗
j 6= 0], and define pi = E[x∗i sgn(x∗i)|x∗i 6= 0].

Here and in the rest of the paper, we will let γ denote any vector whose norm is negligible
(i.e. smaller than 1/nC for any large constant C > 1). This will simplify our calculations.
Also let A∗−i denote the matrix obtained from deleting the ith column of A∗. The following
lemma is the main step in our analysis.

9

Arora Ge Ma Moitra

Lemma 10 Suppose that As is (2δ, 2)-near to A∗. Then the update step in Algorithm 2
takes the form E[As+1

i] = Asi −ηgsi where gsi = piqi (λsiA
s
i −A∗i + εsi ± γ), and λsi = 〈Asi , A∗i 〉

and
εsi =

(
As−idiag(qi,j)

(
As−i

)T)
A∗i /qi

Moreover the norm of εsi can be bounded as ‖εsi‖ ≤ O(k/n).

Note that piqi is a scaling constant and λi ≈ 1; hence from the above formula we should
expect that gsi is well-correlated with Asi −A∗i . We defer the proof to Section A.

In Appendix D we complete the analysis of Algorithm 2 in the infinite sample setting.
In particular, in Appendix D.1, we prove that if As is (2δ, 2)-near to A∗ then gsi is indeed
(α, β, ε)-correlated with Ai (Lemma 23). Finally we prove that if As is (2δ, 2)-near to A∗

then ‖As+1 − A∗‖ ≤ 2‖A∗‖ (Lemma 24). These lemmas together with Theorem 6 imply
Theorem 21, the simplified version of Theorem 8 where the number of samples p is assumed
to be infinite (i.e. we have access to the true expectation gs). In Appendix G we prove the
sample complexity bounds we need and this completes the proof of Theorem 8.

4. Further Applications

Here we apply our framework to design and analyze further variants of alternating mini-
mization.

4.1. Revisiting Olshausen-Field

In this subsection we analyze a variant of the Olshausen-Field update rule. However there
are quadratic error terms that arise in the expressions we derive for gs and bounding them
is more challenging. We will also need to make (slightly) stronger assumptions on the
distributional model that for distinct i1, i2, i3 we have qi1,i2,i3 = O(k3/m3) where qi1,i2,i3 =
Pr[i1, i2, i3 ∈ S].

Theorem 11 Suppose that A0 is (2δ, 2)-near to A∗ and that η = Θ(m/k). There is a
variant of Olshausen-Field (given in Algorithm 4 in Appendix E.1) for which at each step
s we have

‖As −A∗‖2F ≤ (1− τ)s‖A0 −A∗‖2F +O(mk2/n2)

for some 0 < τ < 1/2 and for any s = 1, 2, ..., T . In particular it converges to A∗ geometri-
cally until the error in Frobenius norm is O(

√
mk/n).

We defer the proof of the main theorem to Appendix E.1. Currently it uses a projection
step (using convex programming) that may not be needed but the proof requires it.

4.2. Removing the Systemic Error

In this subsection, we design and analyze a new update rule that converges geometrically
until the column-wise error is n−ω(1). The basic idea is to engineer a new decoding matrix
that projects out the components along the column currently being updated. This has the
effect of replacing a certain error term in Lemma 10 with another term that goes to zero as
A gets closer to A∗ (the earlier rules we have analyzed do not have this property).

We will use B(s,i) to denote the decoding matrix used when updating the ith column

in the sth step. Then we set B
(s,i)
i = Ai and B

(s,i)
j = ProjA⊥i

Aj for j 6= i. Note that B
(s,i)
−i

10

Simple, Efficient, and Neural Algorithms for Sparse Coding

(i.e. B(s,i) with the ith column removed) is now orthogonal to Ai. We will rely on this fact
when we bound the error. We defer the proof of the main theorem to Appendix E.2.

Theorem 12 Suppose that A0 is (2δ, 2)-near to A∗ and that η = Θ(m/k). There is an
algorithm (given in Algorithm 5 given in Appendix E.2) for which at each step s, we have

‖Asi −A∗i ‖2 ≤ (1− τ)s‖A0
i −A∗i ‖2 + n−ω(1)

for some 0 < τ < 1/2 and for any s = 1, 2, ..., T . In particular it converges to A∗ geometri-
cally until the column-wise error is n−ω(1).

5. Initialization

There is a large gap between theory and practice in terms of how to initialize alternating
minimization. The usual approach is to set A randomly or to populate its columns with
samples y(i). These often work but we do not know how to analyse them. Here we give
a novel method for initialization which we show succeeds with very high probability. Our
algorithm works by pairwise reweighting. Let u = A∗α and v = A∗α′ be two samples from
our model whose supports are U and V respectively. The main idea is that if we reweight
fresh samples y with a factor 〈y, u〉〈y, v〉 and compute

M̂u,v =
1

p2

p2∑
i=1

〈y(i), u〉〈y(i), v〉y(i)(y(i))T

then the top singular vectors will correspond to columns A∗j where j ∈ U ∩ V . (This is
reminiscent of ideas in recent papers on dictionary learning, but more sample efficient.)

Throughout this section we will assume that the algorithm is given two sets of samples
of size p1 and p2 respectively. Let p = p1 + p2. We use the first set of samples for the pairs
u, v that are used in reweighting and we use the second set to compute M̂u,v (that is, the
same set of p2 samples is used for each u, v throughout the execution of the algorithm).
Our main theorem is:

Theorem 13 Suppose that Algorithm 3 is given p1 = Ω̃(m) and p2 = Ω̃(mk) fresh samples

and moreover (a) A∗ is µ-incoherent with µ = O∗(
√
n

k log3 n
), (b) m = O(n) and (c) ‖A∗‖ ≤

O(
√

m
n). Then with high probability A is (δ, 2)-near to A∗ where δ = O∗(1/ log n).

We will defer the proof of this theorem, and the following main lemma to Appendix F.

Lemma 14 Suppose u = A∗α and v = A∗α′ are two random samples with supports U ,
V respectively. Let β = A∗Tu and β′ = A∗T v. Let y = A∗x∗ be random sample that is
independent of u,v, then

Mu,v := E[〈u, y〉〈v, y〉yyT] =
∑

i∈U∩V
qiciβiβ

′
iA
∗
iA
∗
i
T + E1 + E2 + E3, (3)

where qi = Pr[i ∈ S], ci = E[x∗i
4|i 6= S], and the error terms are:

E1 =
∑

i 6∈U∩V qiciβiβ
′
iA
∗
iA
∗
i
T

E2 =
∑

i,j∈[m],i 6=j qi,jβiβ
′
iA
∗
jA
∗
j
T

E3 =
∑

i,j∈[m],i 6=j qi,j(βiA
∗
iβ
′
jA
∗
j
T + β′iA

∗
iβjA

∗
j
T).

11

Arora Ge Ma Moitra

Algorithm 3 Pairwise Initialization

Set L = ∅
While |L| < m choose samples u and v

Set M̂u,v = 1
p2

∑p2
i=1〈y(i), u〉〈y(i), v〉y(i)(y(i))T

Compute the top two singular values σ1, σ2 and top singular vector z of M̂u,v

If σ1 ≥ Ω(k/m) and σ2 < O∗(k/m logm)
If z is not within distance 1/ logm of any vector in L (even after sign flip), add

z to L
Set Ã such that its columns are z ∈ L and output A = ProjBÃ where B is the convex set
defined in Definition 28

Moreover the error terms E1 +E2 +E3 has spectral norm bounded by O∗(k/m log n), |βi| ≥
Ω(1) for all i ∈ supp(α) and |β′i| ≥ Ω(1) for all i ∈ supp(α′).

We will invoke this lemma several times in order to analyze Algorithm 3 to verify whether
or not the supports of u and v share a common element, and again to show that if they do
we can approximately recover the corresponding column of A∗ from the top singular vector
of Mu,v.

Conclusions

Going beyond
√
n sparsity requires new ideas as alternating minimization appears to break

down. Mysterious properties of alternating minimization are also left to explore, such as
why a random initialization works. Are these heuristics information theoretically optimal
in terms of their sample complexity? Finally, can we analyse energy minimization in other
contexts as well?

Acknowledgements

We are grateful to Dmitri Chklovskii and Sebastian Seung for useful discussions about
neural computation.

References

A. Agarwal, A. Anandkumar, and P. Netrapalli. Exact recovery of sparsely used overcom-
plete dictionaries. In arXiv:1309.1952, 2013.

A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used
overcomplete dictionaries via alternating minimization. In COLT, pages 123–137, 2014.

M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. In IEEE Trans. on Signal Processing, pages 4311–
4322, 2006.

S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In COLT, pages 779–806, 2014.

12

Simple, Efficient, and Neural Algorithms for Sparse Coding

Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the
EM algorithm: From population to sample-based analysis. CoRR, abs/1408.2156, 2014.
URL http://arxiv.org/abs/1408.2156.

Boaz Barak, John Kelner, and David Steurer. Dictionary learning using sum-of-square
hierarchy. 2014.

E. Candes and T. Tao. Decoding by linear programming. In IEEE Trans. on Information
Theory, pages 4203–4215, 2005.

E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. In Communications of Pure and Applied Math, pages 1207–1223, 2006.

D. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. In IEEE
Trans. on Information Theory, pages 2845–2862, 1999.

M. Elad. Sparse and redundant representations. In Springer, 2010.

K. Engan, S. Aase, and J. Hakon-Husoy. Method of optimal directions for frame design. In
ICASSP, pages 2443–2446, 1999.

Quan Geng and John Wright. On the local correctness of l1-minimization for dictionary
learning. In 2014 IEEE International Symposium on Information Theory, Honolulu, HI,
USA, June 29 - July 4, 2014, pages 3180–3184, 2014. doi: 10.1109/ISIT.2014.6875421.
URL http://dx.doi.org/10.1109/ISIT.2014.6875421.

R. Gribonval and M. Nielsen. Sparse representations in unions of bases. In IEEE Transac-
tions on Information Theory, pages 3320–3325, 2003.

M. Hardt. On the provable convergence of alternating minimization for matrix completion.
In arxiv:1312.0925, 2013.

R. Horn and C. Johnson. Matrix analysis. In Cambridge University Press, 1990.

P. Jain, P. Netrapalli, and S. Sanghavi. Low rank matrix completion using alternating
minimization. In STOC, pages 665–674, 2013.

Rodolphe Jenatton, Rémi Gribonval, and Francis R. Bach. Local stability and robustness
of sparse dictionary learning in the presence of noise. CoRR, abs/1210.0685, 2012. URL
http://arxiv.org/abs/1210.0685.

M. Lewicki and T. Sejnowski. Learning overcomplete representations. In Neural Computa-
tion, pages 337–365, 2000.

S. Mallat. A wavelet tour of signal processing. In Academic-Press, 1998.

Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using
alternating minimization. In Advances in Neural Information Processing Sys-
tems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 2796–2804, 2013. URL http://papers.nips.cc/paper/

5041-phase-retrieval-using-alternating-minimization.

13

http://arxiv.org/abs/1408.2156
http://dx.doi.org/10.1109/ISIT.2014.6875421
http://arxiv.org/abs/1210.0685
http://papers.nips.cc/paper/5041-phase-retrieval-using-alternating-minimization
http://papers.nips.cc/paper/5041-phase-retrieval-using-alternating-minimization

Arora Ge Ma Moitra

Praneeth Netrapalli, Niranjan U. N, Sujay Sanghavi, Animashree Anandkumar, and Prateek
Jain. Non-convex robust PCA. In Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 1107–1115, 2014. URL http://papers.nips.

cc/paper/5430-non-convex-robust-pca.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: a
strategy employed by v1. Vision Research, 37:3311–3325, 1997a.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research, 37(23):3311–3325, 1997b.

Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learn-
ing for deep belief networks. In Advances in Neural Information Process-
ing Systems 20, Proceedings of the Twenty-First Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada, De-
cember 3-6, 2007, pages 1185–1192, 2007. URL http://papers.nips.cc/paper/

3363-sparse-feature-learning-for-deep-belief-networks.

Karin Schnass. Local Identification of Overcomplete Dictionaries. ArXiv e-prints, January
2014a.

Karin Schnass. On the identifiability of overcomplete dictionaries via the minimisation
principle underlying k-svd. Applied and Computational Harmonic Analysis, 37(3):464 –
491, 2014b. ISSN 1063-5203. doi: http://dx.doi.org/10.1016/j.acha.2014.01.005. URL
http://www.sciencedirect.com/science/article/pii/S1063520314000207.

D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In
Journal of Machine Learning Research, 2012.

14

http://papers.nips.cc/paper/5430-non-convex-robust-pca
http://papers.nips.cc/paper/5430-non-convex-robust-pca
http://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks
http://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks
http://www.sciencedirect.com/science/article/pii/S1063520314000207

Simple, Efficient, and Neural Algorithms for Sparse Coding

Appendix A. Proof of Lemma 10

Since As is (2δ, 2)-near to A∗, As is 2δ-close to A∗. We can now invoke Lemma 9 and
conclude that with high probability, sgn(x∗) = sgn(x). Let Fx∗ be the event that sgn(x∗) =
sgn(x), and let 1Fx∗ be the indicator function of this event.

To avoid the overwhelming number of appearances of the superscripts, let B = As

throughout this proof. Then we can write gsi = E[(y − Bx)sgn(xi)]. Using the fact that
1Fx∗ + 1F̄x∗

= 1 and that Fx∗ happens with very high probability:

gsi = E[(y −Bx)sgn(xi)1Fx∗] + E[(y −Bx)sgn(xi)1Fx∗
]

= E[(y −Bx)sgn(xi)1Fx∗]± γ (4)

The key is that this allows us to essentially replace sgn(x) with sgn(x∗). Moreover,
let S = supp(x∗). Note that when Fx∗ happens S is also the support of x. Recall that
according to the decoding rule (where we have replaced As by B for notational simplicity)
x = thresholdC/2(BT y). Therefore, xS = (BT y)S = BT

S y = BT
SA
∗x∗. Using the fact that

the support of x is S again, we have Bx = BT
SBSA

∗x∗. Plugging it into equation (4):

gsi = E[(y −Bx)sgn(xi)1Fx∗]± γ = E[(I −BSBT
S)A∗x∗ · sgn(x∗i)1Fx∗]± γ

= E[(I −BSBT
S)A∗x∗ · sgn(x∗i)]−E[(I −BSBT

S)A∗x∗ · sgn(xi)1F̄x∗
]± γ

= E[(I −BSBT
S)A∗x · sgn(x∗i)]± γ

where again we have used the fact that Fx∗ happens with very high probability. Now we
rewrite the expectation above using subconditioning where we first choose the support S of
x∗, and then we choose the nonzero values x∗S .

E[(I −BSBT
S)A∗x∗ · sgn(x∗i)] = E

S

[
E
x∗S

[(I −BSBT
S)A∗x∗ · sgn(x∗i)|S]

]
= E[pi(I −BSBT

S)A∗i]

where we use the fact that E[x∗i · sgn(x∗i)|S] = pi. Let R = S − {i}. Using the fact that
BSB

T
S = BiB

T
i +BRB

T
R, we can split the quantity above into two parts,

gsi = pi E[(I −BiBT
i)A∗i + pi E[BRB

T
R]A∗i

= piqi

(
I −BiBT

i

)
A∗i + pi

(
B−idiag(qi,j)B

T
−i

)
A∗i ± γ.

where diag(qi,j) is a m ×m diagonal matrix whose (j, j)-th entry is equal to qi,j , and B−i
is the matrix obtained by zeroing out the ith column of B. Here we used the fact that
Pr[i ∈ S] = qi and Pr[i, j ∈ S] = qij .

Now we setB = As, and rearranging the terms, we have gsi = piqi (〈Asi , A∗i 〉Asi −A∗i + εsi ± γ)

where εsi =
(
As−idiag(qi,j)

(
As−i

)T)
A∗i /qi, which can be bounded as follows

‖εsi‖ ≤ ‖As−i‖2 max
j 6=i

qi,j/qi ≤ O(k/m)‖As‖2 = O(k/n)

where the last step used the fact that
maxi6=j qi,j

min qi
≤ O(k/m), which is an assumption of our

generative model.

15

Arora Ge Ma Moitra

Appendix B. Approximate Gradient Descent

Here we prove Theorem 6:

Proof:[Proof of Theorem 6] We expand the error as

‖zs+1 − z∗‖2 = ‖zs − z∗‖2 − 2ηgsT (zs − z∗) + η2‖gs‖2

= ‖zs − z∗‖2 − η
(
2gsT (zs − z∗)− η‖gs‖2

)
≤ ‖zs − z∗‖2 − η

(
2α‖zs − z∗‖2 + (2β − η)‖gs‖2 − 2εs

)
(Definition 5 and η ≤ 2β)

≤ ‖zs − z∗‖2 − η
(
2α‖zs − z∗‖2 − 2εs

)
≤ (1− 2αη)‖zs − z∗‖2 + 2ηεs

Then solving this recurrence we have ‖zs+1−z∗‖2 ≤ (1−2αη)s+1R2+ ε
α where R = ‖z0−z∗‖.

And furthermore if εs <
α
2 ‖z

s − z∗‖2 we have instead

‖zs+1 − z∗‖2 ≤ (1− 2αη)‖zs − z‖2 + αη‖zs − z‖2 = (1− αη)‖zs − z‖2

and this yields the second part of the theorem too. �

In fact, we can extend the analysis above to obtain identical results for the case of
constrained optimization. Suppose we are interested in optimizing a convex function f(z)
over a convex set B. The standard approach is to take a step in the direction of the gradient
(or gs in our case) and then project into B after each iteration, namely, replace zs+1 by
ProjB z

s+1 which is the closest point in B to zs+1 in Euclidean distance. It is well-known
that if z∗ ∈ B, then ‖ProjB z − z∗‖ ≤ ‖z − z∗‖. Therefore we obtain the following as an
immediate corollary to the above analysis:

Corollary 15 Suppose gs satisfies Definition 5 for s = 1, 2, . . . , T and set 0 < η ≤ 2β
and ε = maxTs=1 εs. Further suppose that z∗ lies in a convex set B. Then the update rule
zs+1 = ProjB(zs − ηgs) satisfies that for any s = 1, . . . , T ,

‖zs − z∗‖2 ≤ (1− 2αη)s‖z0 − z∗‖2 + ε/α

In particular, zs converges to z∗ geometrically with systematic error ε/α. Additionally if
εs <

α
2 ‖z

s − z∗‖2 for s = 1, . . . , T , then

‖zs − z∗‖2 ≤ (1− αη)s‖z0 − z∗‖2

What remains is to derive a functional form for various update rules and show that
these rules move in a direction gs that approximately points in the direction of the desired
solution z∗ (under the assumption that our data is generated from a stochastic model that
meets certain conditions).

16

Simple, Efficient, and Neural Algorithms for Sparse Coding

Appendix C. Threshold Decoding

Here we show that a simple thresholding method recovers the support of each sample with
high probability (over the randomness of x∗). This corresponds to the fact that sparse
recovery for incoherent dictionaries is much easier when the non-zero coefficients do not
take on a wide range of values; in particular, one does not need iterative pursuit algorithms
in this case. As usual let y = A∗x∗ be a sample from the model, and let S be the support of
x∗. Moreover suppose that A∗ is µ-incoherent and let A be column-wise δ-close to A. Then

Lemma 16 If µ√
n
≤ 1

2k and k = Ω∗(logm) and δ = O∗(1/
√

logm), then with high prob-

ability (over the choice of x∗) we have S = {i : |〈Ai, y〉| > C/2}. Also for all i ∈ S
sgn(〈Ai, y〉) = sgn(x∗i).

Consider 〈Ai, y〉 = 〈Ai, A∗i 〉x∗i + Zi where Zi =
∑

j 6=i〈Ai, A∗j 〉x∗j is a mean zero random
variable which measures the contribution of the cross-terms. Note that |〈Ai, A∗i 〉| ≥ (1 −
δ2/2), so |〈Ai, A∗i 〉x∗i | is either larger than (1−δ2/2)C or equal to zero depending on whether
or not i ∈ S. Our main goal is to show that the variable Zi is much smaller than C with
high probability, and this follows by standard concentration bounds.

Proof: Intuitively, Zi has two source of randomness: the support S of x∗, and the ran-
dom values of x∗ conditioned on the support. We prove a stronger statement that only
requires second source of randomness. Namely, even conditioned on the support S, with
high probability S = {i : |〈Ai, y〉| > C/2}.

We remark that Zi is a sum of independent subgaussian random variables and the
variance of Zi is equal to

∑
j∈S\{i}〈Ai, A∗j 〉2. Next we bound each term in the sum as

〈Ai, A∗j 〉2 ≤ 2(〈A∗i , A∗j 〉2 + 〈Ai −A∗i , A∗j 〉2) ≤ 2µ2 + 2〈Ai −A∗i , A∗j 〉2.

On the other hand, we know ‖A∗S\{i}‖ ≤ 2 by Gershgorin’s Disk Theorem. Therefore

the second term can be bounded as
∑

j∈S\{i}〈Ai − A∗i , A
∗
j 〉2 = ‖A∗S\{i}

T (Ai − A∗i)‖2 ≤
O∗(1/ logm). Using this bound, we know the variance is at most O∗(1/ logm):∑

j∈S\{i}

〈Ai, A∗j 〉2 ≤ 2µ2k + 2
∑

j∈S\{i}

〈Ai −Ai, A∗j 〉2 ≤ O∗(1/ logm).

Hence we have that Zi is a subgaussian random variable with variance at most O∗(1/ logm)
and so we conclude that Zi ≤ C/4 with high probability. Finally we can take a union bound
over all indices i ∈ [m] and this completes the proof of the lemma. �

In fact, even if k is much larger than
√
n, as long as the spectral norm of A∗ is small

and the support of x∗ is random enough, the support recovery is still correct.

Lemma 17 If k = O(n/ log n), µ/
√
n < 1/ log2 n and δ < O∗(1/

√
logm), the support of

x∗ is a uniformly k-sparse set, then with high probability (over the choice of x) we have
S = {i : |〈Ai, y〉| > C/2}. Also for all i ∈ S sgn(〈Ai, y〉) = sgn(x∗i).

The proof of this lemma is very similar to the previous one. However, in the previous case
we only used the randomness after conditioning on the support, but to prove this stronger
lemma we need to use the randomness of the support.

First we will need the following elementary claim:

17

Arora Ge Ma Moitra

Claim 18 ‖A∗TAi‖ ≤ O(
√
m/n) and |A∗Tj Ai| ≤ O∗(1/

√
logm) for all j 6= i.

Proof: The first part follows immediately from the assumption that A∗ and A are column-
wise close and that ‖A∗‖ = O(

√
m/n). The second part follows because |A∗Tj Ai| ≤

|A∗Tj A∗i |+ |A∗
T
j (A∗i −Ai)| ≤ O∗(1/

√
logm). �

Let R = S\{i}. Recall that conditioned on choice of S, we have var(Zi) =
∑

j∈R〈Ai, A∗j 〉2.
We will bound this term with high probability over the choice of R. First we bound its
expectation:

Lemma 19 ER[
∑

j∈R〈Ai, A∗j 〉2] ≤ O(k/n)

Proof: By assumption R is a uniformly random subset of [m]\{i} of size |R| (this is either
k or k − 1). Then

E[
∑
j∈R
〈Ai −A∗i , A∗j 〉2] =

|R|
m− 1

‖A∗TAi‖2 = O(k/n),

where the last step uses Claim 18. �

However bounding the expected variance of Zi is not enough; we need a bound that
holds with high probability over the choice of the support. Intuitively, we should expect to
get bounds on the variance that hold with high probability because each term in the sum
above (that bounds var(Zi)) is itself at most O∗(1/ logm), which easily implies Theorem 16.

Lemma 20
∑

j∈R〈Ai, A∗j 〉2 ≤ O∗(1/ logm) with high probability over the choice of R.

Proof: Let aj = 〈Ai, A∗j 〉2, then aj = O∗(1/ logm) and moreover
∑

j 6=i aj = O(m/n) using
the same idea as in the proof of Lemma 19. Hence we can apply Chernoff bounds and
conclude that with high probability

∑
j 6=i ajXj =

∑
j∈R〈Ai, A∗j 〉2 ≤ O∗(1/ logm) where Xj

is an indicator variable for whether or not j ∈ R. �

Proof:[Proof of Lemma 17] Using Lemma 20 we have that with high probability over the
choice of R, var(Zi) ≤ O∗1/ logm. In particular, conditioned on the support R, Zi is the
sum of independent subgaussian variables and so with high probability (using Theorem ??)

|Zi| ≤ O(
√
varZi log n) = O∗(1).

Also as we saw before that |〈Ai, A∗i 〉xi| > (1− δ2/2)C if i ∈ S and is zero otherwise. So we
conclude that |〈Ai, y〉| > C/2 if and only if i ∈ S which completes the proof. �

Remark: In the above lemma we only needs the support of x satisfy concentration in-
equality in Lemma 20. This does not really require S to be uniformly random.

18

Simple, Efficient, and Neural Algorithms for Sparse Coding

Appendix D. Analysis of the Neural Algorithm

In Lemma 10 we gave a new (and more useful) expression that describes the update direction
under the assumptions of our generative model. Here we will make crucial use of Lemma 10
in order to prove that gsi is (α, β, ε)-correlated with Ai (Lemma 22). Moreover we use
Lemma 10 again to show that ‖As+1−A∗‖ ≤ 2‖A∗‖ (Lemma 24). Together, these auxiliary
lemmas imply that the column-wise error decreases in the next step and moreover the errors
across columns are uncorrelated.

We assume that each iteration of Algorithm 2 takes infinite number of samples, and prove
the corresponding simplified version of Theorem 8. The proof of this Theorem highlights
the essential ideas of behind the proof of the Theorem 8, which can be found at Section G.

Theorem 21 Suppose that A0 is (2δ, 2)-near to A∗ and that η = Θ(m/k). Then if each
update step in Algorithm 2 uses infinite number of samples at each iteration, we have

‖Asi −A∗i ‖2 ≤ (1− τ)s‖A0
i −A∗i ‖2 +O(k2/n2)

for some 0 < τ < 1/2 and for any s = 1, 2, ..., T . In particular it converges to A∗ geometri-
cally until the column-wise error is O(k/n).

The proof is deferred to the end of this section.

D.1. Making Progress

In Lemma 10 we showed that gsi = piqi(λiA
s
i − A∗i + εsi + γ) where λi = 〈Ai, A∗i 〉. Here we

will prove that gsi is (α, β, ε)-correlated with A∗i . Recall that we fixed δ = O∗(1/ log n). The
main intuition is that gsi is mostly equal to piqi(A

s
i −A∗i) with a small error term.

Lemma 22 If a vector gsi is equal to 4α(Asi −A∗i) + v where ‖v‖ ≤ α‖Asi −A∗i ‖+ ζ, then
gsi is (α, 1/100α, ζ2/α)-correlated with A∗i , more specifically,

〈gsi , Asi −A∗i 〉 ≥ α‖Asi −A∗i ‖2 +
1

100α
‖gi‖2 − ζ2/α.

In particular, gsi is (α, β, ε)-correlated with A∗i , where α = Ω(k/m), β ≥ Ω(m/k) and
ε = O(k3/mn2). We can now apply Theorem 6 and conclude that the column-wise error
gets smaller in the next step:

Corollary 23 If As is (2δ, 2)-near to A∗ and η ≤ mini(piqi(1 − δ)) = O(m/k), then
gsi = piqi(λiA

s
i − A∗i + εsi + γ) is (Ω(k/m),Ω(m/k), O(k3/mn2))-correlated with A∗i , and

further
‖As+1

i −A∗i ‖2 ≤ (1− 2αη)‖Asi −A∗i ‖2 +O(ηk2/n2)

Proof:[Proof of Lemma 22] Throughout this proof s is fixed and so we will omit the su-
perscript s to simplify notations. By the assumption, gi already has a component that
is pointing to the correct direction Ai − A∗i , we only need to show that the norm of the
extra term v is small enough. First we can bound the norm of gi by triangle inequality:
‖gi‖ ≤ ‖4α(Ai−A∗i)‖+‖v‖ ≤ 5α‖(Ai−A∗i)‖+ ζ, therefore ‖gi‖2 ≤ 50α2‖(Ai−A∗i)‖2 +2ζ2.

19

Arora Ge Ma Moitra

Also, we can bound the inner-product between gi and Ai −A∗i by 〈gi, Ai −A∗i 〉 ≥ 4α‖Ai −
A∗i ‖2 − ‖v‖‖Ai −A∗i ‖.

Using these bounds, we will show 〈gi, Ai − A∗i 〉 − α‖Ai − A∗i ‖2 − 1
100α‖gi‖

2 + ζ2/α ≥ 0.
Indeed we have

〈gi, Ai −A∗i 〉 − α‖Ai −A∗i ‖2 −
1

100α
‖gi‖2 + ζ2/α

≥ 4α‖Ai −A∗i ‖2 − ‖v‖‖Ai −A∗i ‖ − α‖Ai −A∗i ‖2 −
1

100α
‖gi‖2 + ζ2/α

≥ 3α‖Ai −A∗i ‖2 − (α‖Ai −A∗i ‖+ ζ)‖Ai −A∗i ‖ −
1

100α
(50α2‖(Ai −A∗i)‖2 + 2ζ2) + ζ2/α

≥ α‖Ai −A∗i ‖2 − ζ‖Ai −A∗i ‖+
1

4
ζ2/α

= (
√
α‖Ai −A∗i ‖ − ζ/2

√
α)2 ≥ 0.

This completes the proof of the lemma. �

Proof:[Proof of Corollary 23] We use the form in Lemma 10, gsi = piqi(λiA
s
i −A∗i + εsi + γ)

where λi = 〈Ai, A∗i 〉. We can write gsi = piqi(A
s
i −A∗i) + piqi((1− λi)Asi + εsi + γ), so when

applying Lemma 22 we can use 4α = piqi = Θ(k/m) and v = piqi((1−λi)Asi + εsi + γ). The
norm of v can be bounded in two terms, the first term piqi(1− λi)Asi has norm piqi(1− λi)
which is smaller than piqi‖Asi − A∗i ‖, and the second term has norm bounded by ζ =
O(k2/mn).

By Lemma 22 we know the vector gis is (Ω(k/m),Ω(m/k), O(k3/mn2))-correlated with
As. Then by Theorem 6 we have the last part of the corollary. �

D.2. Maintaining Nearness

Lemma 24 Suppose that As is (2δ, 2)-near to A∗. Then ‖As+1 − A∗‖ ≤ 2‖A∗‖ in Algo-
rithm 2.

Proof: As in the proof of the previous lemma, we will make crucial use of Lemma 10.
Substituting and rearranging terms we have:

As+1
i −A∗i = Asi −A∗i − ηgsi

= (1− ηpiqi)(Asi −A∗i) + ηpiqi(1− λsi)Asi − ηpi
(
As−idiag(qi,j)

(
As−i

)T)
A∗i ± γ

Our first goal is to write this equation in a more convenient form. In particular let U

and V be matrices such that Ui = piqi(1 − λsi)Asi and Vi = pi

(
As−idiag(qi,j)

(
As−i

)T)
A∗i .

Then we can re-write the above equation as:

As+1 −A∗ = (As −A∗)diag(1− ηpiqi) + ηU − ηV ± γ

where diag(1 − ηpiqi) is the m ×m diagonal matrix whose entries along the diagonal are
1− ηpiqi.

20

Simple, Efficient, and Neural Algorithms for Sparse Coding

We will bound the spectral norm of As+1−A by bounding the spectral norm of each of
the matrices of right hand side. The first two terms are straightforward to bound:

‖(As −A∗)diag(1− ηpiqi)‖ ≤ ‖As −A∗‖ · (1− ηmin
i
piqi) ≤ 2(1− Ω(ηk/m))‖A∗‖

where the last inequality uses the assumption that pi = Θ(1) and qi ≤ O(k/m), and the
assumption that ‖As −A∗‖ ≤ 2‖A∗‖.

From the definition of U it follows that U = Asdiag(piqi(1− λsi)), and therefore

‖U‖ ≤ δmax
i
piqi‖As‖ = o(k/m) · ‖A∗‖

where we have used the fact that λsi ≥ 1− δ and δ = o(1), and ‖As‖ ≤ ‖As−A∗‖+ ‖A∗‖ =
O(‖A∗‖).

What remains is to bound the third term, and let us first introduce an auxiliary matrix
Q which we define as follows: Qii = 0 and Qi,j = qi,j〈Asi , A∗i 〉 for i 6= j. It is easy to verify
that the following claim:

Claim 25 The ith column of AsQ is equal to
(
As−idiag(qi,j)

(
As−i

)T)
A∗i

Therefore we can write V = AsQdiag(pi). We will bound the spectral norm of Q by
bounding its Frobenus norm instead. Then from the definition of A, we have that:

‖Q‖F ≤
(

max
i 6=j

qij

)∑
i 6=j

√
〈Asi , A∗j 〉2 = O(k2/m2)‖A∗TAs‖F

Moreover since A∗TAs is an m×m matrix, its Frobenius norm can be at most a
√
m factor

larger than its spectral norm. Hence we have

‖V ‖ ≤
(

max
i
pi

)
‖As‖‖Q‖ ≤ O(k2√m/m2)‖As‖2‖A∗‖

≤ o(k/m)‖A∗‖

where the last inequality uses the fact that k = O(
√
n/ log n) and ‖As‖ ≤ O(‖A∗‖).

Therefore, putting the pieces together we have:

‖As+1 −A∗‖ ≤ ‖(As −A∗)diag(1− ηpiqi)‖+ ‖ηU‖+ ‖ηV ‖ ± γ
≤ 2(1− Ω(ηk/m))‖A‖+ o(ηk/m)‖A∗‖+ o(ηk/m)‖A∗‖ ± γ
≤ 2‖A∗‖

and this completes the proof of the lemma. �

D.3. Proof of Theorem 21

We prove by induction on s. Our induction hypothesis is that the theorem is true at
each step s and As is (2δ, 2)-near to A∗. The hypothesis is trivially true for s = 0. Now
assuming the inductive hypothesis is true. Recall that Corollary 23 of Section D.1 says
that if As is (2δ, 2)-near to A∗, which is guaranteed by the inductive hypothesis, by then

21

Arora Ge Ma Moitra

gsi is indeed (Ω(k/m),Ω(m/k), O(k3/mn2))-correlated with A∗i . Invoking our framework of
analysis (Theorem 6), we have that

‖As+1
i −A∗i ‖2 ≤ (1− τ)‖Asi −A∗i ‖2 +O(k2/n2) ≤ (1− τ)s+1‖A0

i −A∗i ‖2 +O(k2/n2)

Therefore it also follows that As+1 is 2δ-close to A∗. Then we invoke Lemma 24 to prove
As+1 has not too large spectral norm ‖As+1−A∗‖ ≤ 2‖A∗‖, which completes the induction.

Appendix E. More Alternating Minimization

Here we prove Theorem 11 and Theorem 12. Note that in Algorithm 4 and Algorithm 5, we
use the expectation of the gradient over the samples instead of the empirical average. We
can show that these algorithms would maintain the same guarantees if we used p = Ω̃(mk)
to estimate gs as we did in Algorithm 2. However these proofs would require repeating very
similar calculations to those that we performed in Appendix G, and so we only claim that
these algorithms maintain their guarantees if they use a polynomial number of samples to
approximate the expectation.

E.1. Proof of Theorem 11

We give a variant of the Olshausen-Field update rule in Algorithm 4. Our first goal is to
prove that each column of gs is (α, β, ε)-correlated with A∗i . The main step is to prove an
analogue of Lemma 10 that holds for the new update rule.

Lemma 26 Suppose that As is (2δ, 5)-near to A∗ Then each column of gs in Algorithm 4
takes the form

gsi = qi
(
(λsi)

2Asi − λiAsi + εsi
)

where λi = 〈Ai, A∗i 〉. Moreover the norm of εsi can be bounded as ‖εsi‖ ≤ O(k2/mn).

We remark that unlike the statement of Lemma 22, here we will not explicitly state the
functional form of εsi because we will not need it.

Proof: The proof parallels that of Lemma 10, although we will use slightly different con-
ditioning arguments as needed. Again, we define Fx∗ as the event that sgn(x∗) = sgn(x),
and let 1Fx∗ be the indicator function of this event. We can invoke Lemma 16 and conclude
that this event happens with high probability. Moreover let Fi be the event that i is in the
set S = supp(x∗) and let 1Fi be its indicator function.

When event Fx∗ happens, the decoding satisfies xS = ATSA
∗
Sx
∗
S and all the other entries

are zero. Throughout this proof s is fixed and so we will omit the superscript s for notational
convenience. We can now rewrite gi as

gi = E[(y −Ax)xT] = E[(y −Ax)xTi 1Fx∗] + E[(y −Ax)xTi (1− 1Fx∗)]

= E
[
(I −ATSAS)A∗Sx

∗
Sx
∗
S
TA∗S

TAi1Fx∗1Fi

]
± γ

= E
[
(I −ATSAS)A∗Sx

∗
Sx
∗
S
TA∗S

TAi1Fi

]
= E

[
(I −ATSAS)A∗Sx

∗
Sx
∗
S
TA∗S

TAi1Fi

]
± γ

22

Simple, Efficient, and Neural Algorithms for Sparse Coding

Algorithm 4 Olshausen-Field Update Rule

Initialize A0 that is (δ0, 2)-near to A∗

Repeat for s = 0, 1, ..., T

Decode: x = thresholdC/2((As)T y) for each sample y

Update: As+1 = As − ηgs where gs = E[(y −Asx)xT]

Project: As+1 = ProjBA
s+1(where B is defined in Definition 28)

Once again our strategy is to rewrite the expectation above using subconditioning where
we first choose the support S of x∗, and then we choose the nonzero values x∗S .

gi = E
S

[
E
x∗S

[(I −ATSAS)A∗Sx
∗
Sx
∗
S
TA∗S

TAi1Fi |S]
]
± γ

= E
[
(I −ASATS)A∗SA

∗
S
TAi1Fi

]
± γ

= E
[
(I −AiATi −ARART)(A∗iA

∗
i
T +A∗RA

∗
R
T)Ai1Fi

]
± γ

= E
[
(I −AiATi)(A∗iA

∗
i
T)Ai1Fi

]
+ E

[
(I −AiATi)A∗RA

∗
R
TAi1Fi

]
−E

[
ARAR

TA∗iA
∗
i
TAi1Fi

]
−E

[
ARA

T
RA
∗
RA
∗
R
TAi1Fi

]
± γ

Next we will compute the expectation of each of the terms on the right hand side.
This part of the proof will be somewhat more involved than the proof of Lemma 10,
because the terms above are quadratic instead of linear. The leading term is equal to
qi(λiA

∗
i − λ2

iAi) and the remaining terms contribute to εi. The second term is equal to
(I − AiA

T
i)A∗−idiag(qi,j)A

∗
−i
TAi which has spectral norm bounded by O(k2/mn). The

third term is equal to λiA−idiag(qi,j)A
∗
−i
TA∗i which again has spectral norm bounded by

O(k2/mn). The final term is equal to

E
[
ARA

T
RA
∗
RA
∗
R
TAi1Fi

]
=
∑

j1,j2 6=i
E[(Aj1A

T
j1)(A∗j2A

∗
j2
T)Ai1Fi1Fj1

1Fj2
]

=
∑
j1 6=i

∑
j2 6=i

qi,j1,j2〈A∗j2 , Ai〉〈A
∗
j2 , Aj1〉

Aj1

= A−iv.

where v is a vector whose j2-th component is equal to
∑

j2 6=i qi,j1,j2〈A
∗
j2
, Ai〉〈A∗j2 , Aj1〉. The

absolute value of vj2 is bounded by

|vj2 | ≤ O(k2/m2)|〈A∗j2 , Ai〉|+O(k3/m3)(
∑

j2 6=j1,i
(〈A∗j2 , Ai〉

2 + 〈A∗j2 , Aj1〉
2))

≤ O(k2/m2)|〈A∗j2 , Ai〉|+O(k3/m3)‖A∗‖2 = O(k2/m2)(|〈A∗j2 , Ai〉|+ k/n).

The first inequality uses bounds for q’s and the AM-GM inequality, the second inequality
uses the spectral norm of A∗. We can now bound the norm of v as follows

‖v‖ ≤ O(k2/m2 ·
√
m/n)

23

Arora Ge Ma Moitra

and this implies that the last term satisfies ‖A−i‖‖v‖ ≤ O(k2/mn). Combining all these
bounds completes the proof of the lemma. �

We are now ready to prove that the update rule satisfies Definition 5. This again uses
Lemma 22, except that we invoke Lemma 26 instead. Combining these lemmas we obtain:

Lemma 27 Suppose that As is (2δ, 5)-near to A∗. Then for each i, gsi as defined in
Algorithm 4 is (α, β, ε)-correlated with A∗i , where α = Ω(k/m), β ≥ Ω(m/k) and ε =
O(k3/mn2).

Notice that in the third step in Algorithm 4 we project back (with respect to Frobenius
norm of the matrices) into a convex set B which we define below. Viewed as minimizing
a convex function with convex constraints, this projection can be computed by various
convex optimization algorithm, e.g. subgradient method (see Theorem 3.2.3 of Section
3.2.4 of Nesterov’s seminal Book ? for more detail). Without this modification, it seems
that the update rule given in Algorithm 4 does not necessarily preserve nearness.

Definition 28 Let B = {A|A is δ0 close to A0 and ‖A‖ ≤ 2‖A∗‖}

The crucial properties of this set are summarized in the following claim:

Claim 29 (a) A∗ ∈ B and (b) for each A ∈ B, A is (2δ0, 5)-near to A∗

Proof: The first part of the claim follows because by assumption A∗ is δ0-close to A0 and
‖A∗−A0‖ ≤ 2‖A∗‖. Also the second part follows because ‖A−A∗‖ ≤ ‖A−A0‖+‖A0−A∗‖ ≤
4‖A∗‖. This completes the proof of the claim. �

By the convexity of B and the fact that A∗ ∈ B, we have that projection doesn’t increase
the error in Frobenius norm.

Claim 30 For any matrix A, ‖ProjBA−A∗‖F ≤ ‖A−A∗‖F .

We now have the tools to analyze Algorithm 4 by fitting it into the framework of
Corollary 15. In particular, we prove that it converges to a globally optimal solution by
connecting it to an approximate form of projected gradient descent:

Proof: [Proof of Theorem 11] We note that projecting into B ensures that at the start of
each step ‖As−A∗‖ ≤ 5‖A∗‖. Hence gsi is (Ω(k/m),Ω(m/k), O(k3/mn2))-correlated withA∗i
for each i, which follows from Lemma 27. This implies that gs is (Ω(k/m),Ω(m/k), O(k3/n2))-
correlated with A∗ in Frobenius norm. Finally we can apply Corollary 15 (on the matrices
with Frobenius) to complete the proof of the theorem. �

24

Simple, Efficient, and Neural Algorithms for Sparse Coding

Algorithm 5 Unbiased Update Rule

Initialize A0 that is (δ0, 2)-near to A∗

Repeat for s = 0, 1, ..., T

Decode: x = thresholdC/2((As)T y) for each sample y

x̄i = thresholdC/2((B(s,i))T y) for each sample y, and each i ∈ [m]

Update: As+1
i = Asi − ηgsi where gsi = E[(y −B(s,i)x̄i)sgn(x)Ti] for each i ∈ [m]

E.2. Proof of Theorem 12

The proof of Theorem 12 is parallel to that of Theorem 21 and Theorem 11. As usual, our
first step is to show that gs is correlated with A∗:

Lemma 31 Suppose that As is (δ, 5)-near to A∗. Then for each i, gsi as defined in Algo-
rithm 5 is (α, β, ε)-correlated with A∗i , where α = Ω(k/m), β ≥ Ω(m/k) and ε ≤ n−ω(1).

Proof: We chose to write the proof of Lemma 10 so that we can reuse the calculation here.
In particular, instead of substituting B for As in the calculation we can substitute B(s,i)

instead and we get:

g(s,i) = piqi(λ
s
iA

s
i −A∗i +B

(s,i)
−i diag(qi,j)B

(s,i)T
−i A∗i) + γ.

Recall that λsi = 〈Asi , A∗i 〉. Now we can write g(s,i) = piqi(A
s
i −A∗i) + v, where

v = piqi(λ
s
i − 1)Asi + piqiB

(s,i)
−i diag(qi,j)B

(s,i)T
−i A∗i + γ

Indeed the norm of the first term piqi(λ
s
i − 1)Asi is smaller than piqi‖Asi −A∗i ‖.

Recall that the second term was the main contribution to the systemic error, when we

analyzed earlier update rules. However in this case we can use the fact that B
(s,i)T
−i Asi = 0

to rewrite the second term above as

piqiB
(s,i)
−i diag(qi,j)B

(s,i)T
−i (A∗i −Asi)

Hence we can bound the norm of the second term by O(k2/mn)‖A∗i − Asi‖, which is also
much smaller than piqi‖Asi −A∗i ‖.

Combining these two bounds we have that ‖v‖ ≤ piqi‖Asi − A∗i ‖/4 + γ, so we can take
ζ = γ = n−ω(1) in Lemma 22. We can complete the proof by invoking Lemma 22 which
implies that the g(s,i) is (Ω(k/m),Ω(m/k), n−ω(1))-correlated with Ai. �

This lemma would be all we would need, if we added a third step that projects onto
B as we did in Algorithm 4. However here we do not need to project at all, because the
update rule maintains nearness and thus we can avoid this computationally intensive step.

Lemma 32 Suppose that As is (δ, 2)-near to A∗. Then ‖As+1 − A∗‖ ≤ 2‖A∗‖ in Algo-
rithm 5.

25

Arora Ge Ma Moitra

This proof of the above lemma parallels that of Lemma 24. We will focus on highlighting
the differences in bounding the error term, to avoid repeating the same calculation.

Proof: [sketch] We will use A to denote As and B(i) to denote B(s,i) to simplify the notation.

Also let Āi be normalized so that Āi = Ai/‖Ai‖ and then we can write B
(i)
−i = (I−ĀiĀTi)A−i.

Hence the error term is given by

(I − ĀiĀTi)A−idiag(qi,j)A
T
−i(I − ĀiĀTi)A∗i

Let C be a matrix whose columns are Ci = (I − ĀiĀTi)A∗i = Ai − 〈Āi, A∗i 〉Āi. This implies
that ‖C‖ ≤ O(

√
m/n). We can now rewrite the error term above as

A−idiag(qi,j)A
T
−iCi − (ĀiĀi)

TA−idiag(qi,j)A
T
−iCi

It follows from the proof of Lemma 24 that the first term above has spectral norm
bounded byO(k/m·

√
m/n). This is because in Lemma 24 we bounded the termA−idiag(qi,j)A

T
−iA

∗
i

and in fact it is easily verified that all we used in that proof was the fact that ‖A∗‖ =
O(
√
m/n), which also holds for C.

All that remains is to bound the second term. We note that its columns are scalar mul-
tiples of Āi, where the coefficient can be bounded as follows: ‖Āi‖‖A−i‖2‖diag(qi,j)‖‖A∗i ‖ ≤
O(k2/mn). Hence we can bound the spectral norm of the second term iby O(k2/mn)‖Ā‖ =
O∗(k/m ·

√
m/n). We can now combine these two bounds, which together with the calcu-

lation in Lemma 24 completes the proof. �

These two lemmas directly imply Theorem 12.

Appendix F. Analysis of Initialization

Here we prove an infinite sample version of Theorem 13 by repeatedly invoking Lemma 14.
We give sample complexity bounds for it in AppendixG.3 where we complete the proof of
Theorem 13.

Theorem 33 Under the assumption of Theorem 13, if Algorithm 3 has access to Mu,v

(defined in Lemma 14) instead of the empirical average M̂u,v, then with high probability A
is (δ, 2)-near to A∗ where δ = O∗(1/ log n).

Our first step is to use Lemma 14 to show that when u and v share a unique dictionary
element, there is only one large term in Mu,v and the error terms are small. Hence the top
singular vector of Mu,v must be close to the corresponding dictionary element Ai.

Lemma 34 Under the assumptions of Theorem 13, suppose u = A∗α and v = A∗α′ are
two random samples with supports U , V respectively. When U ∩ V = {i} the top singular
vector of Mu,v is O∗(1/ log n)-close to A∗i .

Proof: When u and v share a unique dictionary element i, the contribution of the first
term in (3) is just qiciβiβ

′
iA
∗
iA
∗
i
T . Moreover the coefficient qiciβiβ

′
i is at least Ω(k/m) which

follows from Lemma 14 and from the assumptions that ci ≥ 1 and qi = Ω(k/m).

26

Simple, Efficient, and Neural Algorithms for Sparse Coding

On the other hand, the error terms are bounded by ‖E1 + E2 + E3‖ ≤ O∗(k/m logm)
which again by Lemma 14. We can now apply Wedin’s Theorem (see e.g. Horn and Johnson
(1990)) to

Mu,v = qiciβiβ
′
iA
∗
iA
∗
i
T + (E1 + E2 + E3)︸ ︷︷ ︸

perturbation

and conclude that its top singular vector must be O∗(k/m logm)/Ω(k/m) = O∗(1/ logm)-
close to A∗i , and this completes the proof of the lemma. �

Using (3) again, we can verify whether or not the supports of u and v share a unique
element.

Lemma 35 Suppose u = A∗α and v = A∗α′ are two random samples with supports U ,
V respectively. Under the assumption of Theorem 13, if the top singular value of Mu,v is
at least Ω(k/m) and the second largest singular value is at most O∗(k/m logm), then with
high probability u and v share a unique dictionary element.

Proof: By Lemma 14 we know with high probability the error terms have spectral norm
O∗(k/m logm). Here we show when that happens, and the top singular value is at least
Ω(k/m), second largest singular value is at most O∗(k/m logm), then u and v must share
a unique dictionary element.

If u and v share no dictionary element, then the main part in Equation (3) is empty,
and the error term has spectral norm O∗(k/m logm). In this case the top singular value of
Mu,v cannot be as large as Ω(k/m).

If u and v share more than one dictionary element, there are more than one terms in
the main part of (3). Let S = U ∩ V , we know Mu,v = A∗SDSA

∗
S
T + E1 + E2 + E3 where

DS is a diagonal matrix whose entries are equal to qiciβiβ
′
i. All diagonal entries in DS have

magnitude at least Ω(k/m). By incoherence we know A∗S have smallest singular value at
least 1/2, therefore the second largest singular value of A∗SDSA

∗
S
T is at least:

σ2(A∗SDSA
∗
S
T) ≥ σmin(A∗S)2σ2(DS) ≥ Ω(k/m).

Finally by Weyl’s theorem (see e.g. Horn and Johnson (1990)) we know σ2(Mu,v) ≥
σ2(A∗SDSA

∗
S
T) − ‖E1 + E2 + E3‖ ≥ Ω(k/m). Therefore in this case the second largest

singular value cannot be as small as O∗(k/m logm).
Combining the above two cases, we know when the top two singular values satisfy the

conditions in the lemma, and the error terms are small, u and v share a unique dictionary
element. �

Finally, we are ready to prove Theorem 13. The idea is every vector added to the list
L will be close to one of the dictionary elements (by Lemma 35), and for every dictionary
element the list L contains at least one close vector because we have enough random samples.

Proof:[Proof of Theorem 33] By Lemma 35 we know every vector added into L must be
close to one of the dictionary elements. On the other hand, for any dictionary element A∗i ,

27

Arora Ge Ma Moitra

by the bounded moment condition of D we know

Pr[|U ∩ V | = {i}] = Pr[i ∈ U] Pr[i ∈ V] Pr[(U ∩ V)\{i} = ∅|i ∈ U, j ∈ U]

≥ Pr[i ∈ U] Pr[i ∈ V](1−
∑

j 6=i,j∈[m] Pr[j ∈ U ∩ V |i ∈ U, j ∈ V])

= Ω(k2/m2) · (1−m ·O(k2/m2))

= Ω(k2/m2).

Here the inequality uses union bound. Therefore given O(m2 log2 n/k2) trials, with high
probability there is a pair of u,v that intersect uniquely at i for all i ∈ [m]. By Lemma 34
this implies there must be at least one vector that is close to A∗i for all dictionary elements.

Finally, since all the dictionary elements have distance at least 1/2 (by incoherence), the
connected components in L correctly identifies different dictionary elements. The output A
must be O∗(1/ logm) close to A∗. �

We now come to the proof of the main lemma:

Proof:[Proof of Lemma 14] We will prove this lemma in three parts. First we compute the
expectation and show it has the desired form. Recall that y = A∗x∗, and so:

Mu,v = E
S

[
E
x∗S

[〈u,A∗Sx∗S〉〈v,A∗Sx∗S〉A∗Sx∗Sx∗S
TA∗S

T |S]
]

= E
S

[
E
x∗S

[〈β, x∗S〉〈β′, x∗S〉A∗Sx∗Sx∗S
TA∗S

T |S]
]

= E
S

[∑
i∈S

ciβiβ
′
iA
∗
iA
∗
i
T +

∑
i,j∈S,i6=j

(
βiβ
′
iA
∗
jA
∗
j
T + βiβ

′
jA
∗
iA
∗
j
T + β′iβjA

∗
iA
∗
j
T
)]

=
∑
i∈[m]

qiciβiβ
′
iA
∗
iA
∗
i
T +

∑
i,j∈[m],i 6=j

qi,j

(
βiβ
′
iA
∗
jA
∗
j
T + βiβ

′
jA
∗
iA
∗
j
T + β′iβjA

∗
iA
∗
j
T
)

where the second-to-last line follows because the entries in x∗S are independent and have
mean zero, and the only non-zero terms come from x∗i

4 (whose expectation is ci) and x∗i
2x∗j

2

(whose expectation is one). Equation (3) now follows by rearranging the terms in the last
line. What remains is to bound the spectral norm of E1, E2 and E3.

Next we establish some useful properties of β and β′:

Claim 36 With high probability it holds that (a) for each i we have |βi−αi| ≤ µk logm√
n

and

(b) ‖β‖ ≤ O(
√
mk/n).

In particular since the difference between βi an αi is o(1) for our setting of parameters, we
conclude that if αi 6= 0 then C − o(1) ≤ |βi| ≤ O(logm) and if αi = 0 then |βi| ≤ µk logm√

n
.

Proof: Recall that U is the support of α and let R = U\{i}. Then:

βi − αi = A∗i
TA∗UαU − αi = A∗i

TA∗RαR

28

Simple, Efficient, and Neural Algorithms for Sparse Coding

and since A∗ is incoherent we have that ‖A∗i
TA∗R‖ ≤ µ

√
k/n. Moreover the entries

in αR are independent and subgaussian random variables, and so with high probability
|〈A∗i

TA∗R, αR〉| ≤
µk logm√

n
and this implies the first part of the claim.

For the second part, we can bound ‖β‖ ≤ ‖A∗‖‖A∗U‖‖α‖. Since α is a k-sparse vector
with independent and subgaussian entries, with high probability ‖α‖ ≤ O(

√
k) in which

case it follows that ‖β‖ ≤ O(
√
mk/n). �

Now we are ready to bound the error terms.

Claim 37 With high probability each of the error terms E1, E2 and E3 in (3) has spectral
norm bounded at most O∗(k/m logm).

Proof: Let S = [m]\(U ∩ V), then E1 = A∗SD1A
∗
S
T where D1 is a diagonal matrix whose

entries are qiciβiβ
′
i. We first bound ‖D1‖. To this end, we can invoke the first part of

Claim 36 to conclude that |βiβ′i| ≤
µ2k2 log2m

n . Also qici = Θ(k/m) and so

‖D1‖ ≤ O
(
µ2k3 log2m

mn

)
= O

(
µk2 log2 n

m
√
n

)
= O∗(k/m logm)

Finally ‖AS‖ ≤ ‖A‖ ≤ O(1) (where we have used the assumption that m = O(n)), and this
yields the desired bound on ‖E1‖.

The second term E2 is a sum of positive semidefinite matrices and we will make crucial
use of this fact below:

E2 =
∑
i 6=j

qi,jβiβ
′
iA
∗
jA
∗
j
T � O(k2/m2)

(∑
i

βiβ
′
i

)(∑
j

A∗jA
∗
j
T
)
� O(k2/m2)‖β‖‖β′‖A∗A∗T .

Here the first inequality follows by using bounds on qi,j and then completing the square. The
second inequality uses Cauchy-Schwartz. We can now invoke the second part of Claim 36
and conclude that ‖E2‖ ≤ O(k2/m2)‖β‖‖β′‖‖A∗‖2 ≤ O∗(k/m logm) (where we have used
the assumption that m = O(n)).

For the third error term E3, by symmetry we need only consider terms of the form
qi,jβiβ

′
jA
∗
iA
∗
j
T . We can collect these terms and write them as A∗QA∗T , where Qi,j = 0 if

i = j and Qi,j = qi,jβiβ
′
j if i 6= j. First, we bound the Frobenius norm of Q:

‖Q‖F =

√ ∑
i 6=j,i,j∈[m]

q2
i,jβ

2
i (β′j)

2 ≤
√
O(k4/m4)(

∑
i∈[m]

β2
i)(
∑
j∈[m]

(β′j)
2) ≤ O(k2/m2)‖β‖‖β′‖.

Finally ‖E3‖ ≤ 2‖A∗‖2‖Q‖ ≤ O(m/n·k2/m2)‖β‖‖β′‖ ≤ O∗(k/m logm), and this completes
the proof of the claim. �

The proof of the main lemma is now complete. �

Appendix G. Sample Complexity

In the previous sections, we analyzed various update rules assuming that the algorithm
was given the exact expectation of some matrix-valued random variable. Here we show
that these algorithms can just as well use approximations to the expectation (computed by
taking a small number of samples). We will focus on analyzing the sample complexity of
Algorithm 2, but a similar analysis extends to the other update rules as well.

29

Arora Ge Ma Moitra

G.1. Generalizing the (α, β, ε)-correlated Condition

We first give a generalization of the framework we presented in Section 2 that handles
random update direction gs.

Definition 38 A random vector gs is (α, β, εs)-correlated-whp with a desired solution z∗

if with probability at least 1− n−ω(1),

〈gs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖gs‖2 − εs.

This is a strong condition as it requires the random vector is well-correlated with the
desired solution with very high probability. In some cases we can further relax the definition
as the following:

Definition 39 A random vector gs is (α, β, εs)-correlated-in-expectation with a desired
solution z∗ if

E[〈gs, zs − z∗〉] ≥ α‖zs − z∗‖2 + βE[‖gs‖2]− εs.

We remark that E[‖gs‖2] can be much larger than ‖E[gs]‖2, and so the above notion
is still stronger than requiring (say) that the expected vector E[gs] is (α, β, εs)-correlated
with z∗.

Theorem 40 Suppose random vector gs is (α, β, εs)-correlated-whp with z∗ for s = 1, 2, . . . , T
where T ≤ poly(n), and η satisfies 0 < η ≤ 2β, then for any s = 1, . . . , T ,

E[‖zs+1 − z∗‖2] ≤ (1− 2αη)‖zs − z∗‖2 + 2ηεs

In particular, if ‖z0 − z∗‖ ≤ δ0 and εs ≤ α · o((1− 2αη)s)δ2
0 + ε, then the updates converge

to z∗ geometrically with systematic error ε/α in the sense that

E[‖zs − z∗‖2] ≤ (1− 2αη)sδ2
0 + ε/α.

The proof is identical to that of Theorem 6 except that we take the expectation of both
sides.

G.2. Proof of Theorem 8

In order to prove Theorem 8, we proceed in two steps. First we show when As is (δs, 2)-near
to A∗, the approximate gradient is (α, β, εs)-correlated-whp with optimal solution A∗, with
εs ≤ O(k2/mn)+α ·o(δ2

s). This allows us to use Theorem 40 as long as we can guarantee the
spectral norm of As −A∗ is small. Next we show a version of Lemma 24 which works even
with the random approximate gradient, hence the nearness property is preserved during the
iterations. These two steps are formalized in the following two lemmas, and we defer the
proofs until the end of the section.

Lemma 41 Suppose As is (2δ, 2)-near to A∗ and η ≤ mini(piqi(1−δ)) = O(m/k), then ĝsi
as defined in Algorithm 2 is (α, β, εs)-correlated-whp with A∗i with α = Ω(k/m), β = Ω(m/k)
and εs ≤ α · o(δ2

s) +O(k2/mn).

30

Simple, Efficient, and Neural Algorithms for Sparse Coding

Lemma 42 Suppose As is (δs, 2)-near to A∗ with δs = O∗(1/ log n), and number of samples
used in step s is p = Ω̃(mk), then with high probability As+1 satisfies ‖As+1−A∗‖ ≤ 2‖A∗‖.

We will prove these lemmas by bounding the difference between ĝsi and gsi using various
concentration inequalities. For example, we will use the fact that ĝsi is close to gsi in
Euclidean distance.

Lemma 43 Suppose As is (δs, 2)-near to A∗ with δs = O∗(1/ log n), and number of samples
used in step s is p = Ω̃(mk), then with high probability ‖ĝsi − gsi ‖ ≤ O(k/m) · (o(δs) +
O(
√
k/n)).

Using the above lemma, Lemma 41 now follows the fact that gsi is correlated with A∗i .
The proof of Lemma 42 mainly involves using matrix Bernstein’s inequality to bound the
fluctuation of the spectral norm of As+1.

Proof:[Proof of Theorem 8] The theorem now follows immediately by combining Lemma 41
and Lemma 42, and then applying Theorem 40. �

G.3. Sample Complexity for Algorithm 3

For the initialization procedure, when computing the reweighted covariance matrix Mu,v we

can only take the empirical average over samples. Here we show with only Ω̃(mk) samples,
the difference between the true Mu,v matrix and the estimated Mu,v matrix is already small
enough.

Lemma 44 In Algorithm 3, if p = Ω̃(mk) then with high probability for any pair u, v

consider by Algorithm 3, we have ‖Mu,v − M̂u,v‖ ≤ O∗(k/m log n).

The proof of this Lemma is deferred to Section G.4.3. notice that although in Algo-
rithm 3, we need to estimate Mu,v for many pairs u and v, the samples used for different
pairs do not need to be independent. Therefore we can partition the data into two parts,
use the first part to sample pairs u, v, and use the second part to estimate Mu,v. In this

way, we know that for each pair u, v the whole initialization algorithm also takes Ω̃(mk)
samples. Now we are ready to prove Theorem 13.

Proof:[Proof of Theorem 13] First of all, the conclusion of Lemma 34 is still true for M̂u,v

when p = Ω̃(mk). To see this, we could simply write

M̂u,v = qiciβiβ
′
iA
∗
iA
∗
i
T + (E1 + E2 + E3) + (M̂u,v −Mu,v)︸ ︷︷ ︸

perturbation

where E1, E2, E3 are the same as the proof of Lemma 34. We can now view M̂u,v −Mu,v as
an additional perturbation term with the same magnitude. We have that when U ∩V = {i}
the top singular vector of Mu,v is O∗(1/ log n)-close to A∗i . Similarly, we can prove the

conclusion of Lemma 35 is also true for M̂u,v. Note that we actually choose p such that the

perturbation of M̂u,v matches noise level in Lemma 35. Finally, the proof of the theorem
follows exactly that of the infinite sample case given in Theorem 33, except that we invoke
the finite sample counterparts of Lemma 14 and Lemma 35 that we gave above. �

31

Arora Ge Ma Moitra

G.4. Proofs of Auxiliary Lemmas

Here we prove Lemma 41, Lemma 42, and Lemma 44 which will follow from various versions
of the Bernstein inequality. We first recall Bernstein’s inequality that we are going to use
several times in this section. Let Z be a random variable (which could be a vector or a
matrix) chosen from some distribution D and let Z(1), Z(2), ..., Z(p) be p independent and
identically distributed samples from D. Bernstein’s inequality implies that if E[Z] = 0 and
for each j, ‖Z(j)‖ ≤ R almost surely and E[(Z(j))2] ≤ σ2, then

1

p

∥∥∥∥∥
p∑
i=1

Z(i)

∥∥∥∥∥ ≤ Õ
(
R

p
+

√
σ2

p

)
(5)

with high probability. The proofs below will involve computing good bounds on R and σ2.
However in our setting, the random variables will not be bounded almost surely. We will
use the following technical lemma to handle this issue.

Lemma 45 Suppose that the distribution of Z satisfies Pr[‖Z‖ ≥ R(log(1/ρ))C] ≤ 1 − ρ
for some constant C > 0, then

(a) If p = nO(1) then ‖Z(j)‖ ≤ Õ(R) holds for each j with high probability and

(b) ‖E[Z1‖Z‖≥Ω̃(R)
]‖ = n−ω(1).

In particular, if 1
p

∑p
j=1 Z

(j)(1 − 1‖Z(j)‖≥Ω̃(R)
) is concentrated with high probability, then

1
p

∑p
j=1 Z

(j) is too.

Proof: The first part of the lemma follows from choosing ρ = n− logn and applying a union
bound. The second part of the lemma follows from

E[Z1‖Z‖≥R log2c n] ≤ E[‖Z‖1‖Z‖≥R log2c n]

= R log2c nPr[‖Z‖ ≥ R log2c n] +

∫ ∞
R log2c n

Pr[‖Z‖ ≥ t]dt = n−ω(1).

and this completes the proof. �

All of the random variables we consider are themselves products of subgaussian random
variables, so they satisfy the tail bounds in the above lemma. In the remaining proofs we
will focus on bounding the norm of these variables with high probability.

G.4.1. Proof of Lemma 43 and Lemma 41

Since s is fixed throughout, we will use A to denote As. Also we fix i in this proof. Let
S denote the support of x∗. Note that ĝi is a sum of random variable of the form (y −
Ax)sgn(xi). Therefore we are going to apply Bernstein inequality for proving ĝi concentrates
around its mean gi. Since Bernstein is typically not tight for sparse random varaibles like in
our case. We study the concentration of the random variable Z := (y − Ax)sgn(xi) | i ∈ S
first. We prove the following technical lemma at the end of this section.

32

Simple, Efficient, and Neural Algorithms for Sparse Coding

Claim 46 Let Z(1), . . . , Z(`) be i.i.d random variables with the same distribution as Z :=
(y −Ax)sgn(xi) | i ∈ S. Then when ` = Ω̃(k2),

‖1

`

∑̀
j=1

Z(j) −E[Z]‖ ≤ o(δs) +O(
√
k/n)

We begin by proving Lemma 43.

Proof:[Proof of Lemma 43] Let W = {j : i ∈ supp(x∗(j))} and then we have that

ĝi =
|W |
p
· 1

|W |
∑
j

(y(j) −Ax(j))sgn(x
(j)
i)

Note that 1
|W |
∑

j(y
(j)−Ax(j))sgn(x

(j)
i) has the same distribution as 1

`

∑`
j=1 Z

(j) for ` = |W |,
and indeed by concentration we have ` = |W | = Ω̃(k2) when p = Ω̃(mk). Also note that

E[(y −Ax)sgn(xi)] = qi ·E[Z] with qi = O(k/m). Therefore by Lemma 46 we have that

‖ĝi − gi‖ ≤ O(k/m) · ‖1

`

∑̀
j=1

Z(j) −E[Z]‖ ≤ O(k/m) · (o(δs) +O(
√
k/n))

and this completes the proof. �

Proof:[Proof of Lemma 41] Therefore using Lemma 10 we can write ĝsi (whp) as ĝi =
ĝi − gi + gi = 4α(Asi −A∗i) + v with ‖v‖ ≤ α‖Asi −A∗i ‖+O(k/m) · (o(δs) +O(

√
k/n)). By

Lemma 22 we have ĝi is (Ω(k/m),Ω(m/k), o(k/m · δ2
s) + O(k2/mn))-correlated-whp with

A∗i . �

Then it suffices to prove Claim 46. To this end, we apply the Bernstein’s inequality
stated in equation 5 with the additional technical lemma 45. We are going to control the
maximum norm of Z and as well as the variance of Z using Claim 47 and Claim 48 as
follows:

Claim 47 ‖Z‖ = ‖(y−Ax)sgn(xi)‖ ≤ Õ(µk/
√
n+kδ2

s +
√
kδs) holds with high probability

Proof: We write y−Ax = (A∗S −ASATSA∗S)x∗S = (A∗S −AS)x∗S +AS(I −ATSA∗S)x∗S and we
will bound each term. For the first term, since A is δs-close to A∗ and |S| ≤ O(k), we have
that ‖A∗S −AS‖F ≤ O(δs

√
k). And for the second term, we have

‖AS(ATSA
∗
S − I)‖F ≤ ‖AS‖‖(ATSA∗S − I)‖F

≤ (‖A∗S‖+ δs
√
k)(‖(AS −A∗S)TA∗S‖F + ‖A∗S

TA∗S − I‖F)

≤ (2 + δs
√
k)(‖A∗S‖‖AS −A∗S‖F + µk/

√
n) ≤ O(µk/

√
n+ δ2

sk +
√
kδs).

Here we have repeatedly used the bound ‖UV ‖F ≤ ‖U‖‖V ‖F and the fact that A∗ is µ
incoherent which implies ‖A∗S‖ ≤ 2. Recall that the entries in x∗S are chosen independently

33

Arora Ge Ma Moitra

of S and are subgaussian. Hence if M is fixed then ‖Mx∗S‖ ≤ Õ(‖M‖F) holds with high
probability. And so

‖(y −Ax)sgn(xi)‖ ≤ Õ(‖A∗S −AS‖F + ‖AS(ATSA
∗
S − I)‖F) ≤ Õ(µk/

√
n+ kδ2

s +
√
kδs)

which holds with high probability and this completes the proof. �

Next we bound the variance.

Claim 48 E[‖Z‖2] = E[‖(y −Ax)sgn(xi)‖2|i ∈ S] ≤ O(k2δ2
s) +O(k3/n)

Proof: We can again use the fact that y − Ax = (A∗S − ASA
T
SA
∗
S)x∗S and that x∗S is

conditionally independent of S with E[x∗S(x∗S)T] = I and conclude

E[‖(y −Ax)sgn(xi)‖2|i ∈ S] = E[‖A∗S −ASATSA∗S‖2F | i ∈ S]

Then again we write A∗S −ASATSA∗S as (A∗S −AS) +AS(Ik×k −ATSA∗S), and the bound
the Frobenius norm of the two terms separately. First, since A is δs-close to A∗, we have
that A∗S−AS has column-wise norm at most δs and therefore ‖A∗S−AS‖F ≤

√
kδs. Second,

note that ‖AS‖F ≤ O(
√
k) since each column of A has norm 1± δs, we have that

E[‖AS(I −ATSA∗S)‖2F | i ∈ S] ≤ O(k) E[‖(Ik×k −ATSA∗S)‖2F | i ∈ S]

≤ O(k) E

∑
j∈S

(1−ATj A∗j)2 +
∑
j 6=`∈S

〈Aj , A∗` 〉2 | i ∈ S


We can now use the fact that A is δs-close to A∗, expand out the expectation, and use

the fact that Pr[j ∈ S, ` ∈ S | i ∈ S] ≤ O(k2/m2), to obtain

E[‖AS(I −ATSA∗S)‖2F | i ∈ S]

≤ O(k2δ2
s) +O(k3/m2) ·

∑
j,`∈[m]\i

〈Aj , A∗` 〉2 +O(k2/m)‖ATi A∗−i‖2 +O(k2/m)‖AT−iA∗i ‖2

≤ O(k2δ2
s) +O(k3/n)

and this completes the proof. �

Proof:[Proof of Claim 46] We apply first Bernstein’s inequality (5) with R = Õ(µk/
√
n+

kδ2
s +
√
kδs) and σ2 = O(k2δ2

s) +O(k3/n) on random variable Z(j)(1− 1‖Z(j)‖≥Ω(R)). Then
by claim 47, claim 48 and Bernstein Inequality, we know that the truncated version of Z
concentrates when ` = Ω(k2),∥∥∥∥∥∥1

`

∑̀
j=1

Z(j)(1− 1‖Z(j)‖≥Ω(R))−E[Z(1− 1‖Z‖≥Ω(R))]

∥∥∥∥∥∥ ≤ Õ
(
R

`

)
+Õ

(√
σ2

`

)
= o(δs)+O(

√
k/n)

Note that we choose ` = k2 logc n for a large constant c so that it kills the log factors caused
by Bernstein’s inequality. Then by Lemma 45, we have that

∑
j Z

(j) also concentrates:

‖1

`

∑̀
j=1

Z(j) −E[Z]‖ ≤ o(δs) +O(
√
k/n)

and this completes the proof. �

34

Simple, Efficient, and Neural Algorithms for Sparse Coding

G.4.2. Proof of Lemma 42

Proof:[Proof of Lemma 42] We will apply the matrix Bernstein inequality. In order to do
this, we need to establish bounds on the spectral norm and on the variance. For the spectral
norm bound, we have ‖(y − Asx)sgn(x)T ‖ = ‖(y − Asx)‖‖sgn(x)‖ =

√
k‖(y − Asx)‖. We

can now use Claim 47 to conclude that ‖(y−Asx)‖ ≤ Õ(k), and hence ‖(y−Asx)sgn(x)‖ ≤
Õ(k3/2) holds with high probability.

For the variance, we need to bound both E[(y − Asx)sgn(x)T sgn(x)(y − Asx)T] and
E[sgn(x)(y−Asx)T (y−Asx)sgn(x)T]. The first term is equal to kE[(y−Asx)(y−Asx)T].
Again, the bound follows from the calculation in Lemma 26 and we conclude that

‖E[(y −Asx)sgn(x)T sgn(x)(y −Asx)T]‖ ≤ O(k2/n)

To bound the second term we note that

E[sgn(x)(y −Asx)T (y −Asx)sgn(x)T] � Õ(k2) E[sgn(x)sgn(x)T] � Õ(k3/m)I

Moreover we can now apply the matrix Bernstein inequality and conclude that when the
number of samples is at least Ω̃(mk) we have

‖1

p

p∑
j=1

(y(j) −Asx∗(j))sgn(x∗(j))T −E[(y −Asx)sgn(x)T ‖ ≤ O∗(k/m ·
√
m/n)

and this completes the proof. �

G.4.3. Proof of Lemma 44

Again in order to apply the matrix Bernstein inequality we need to bound the spectral norm
and the variance of each term of the form 〈u, y〉〈v, y〉yyT . We make use of the following
claim to bound the magnitude of the inner product:

Claim 49 |〈u, y〉| ≤ Õ(
√
k) and ‖y‖ ≤ Õ(

√
k) hold with high probability

Proof: Since u = A∗α and because α is k-sparse and has subgaussian non-zero entries we
have that ‖u‖ ≤ Õ(

√
k), and the same bound holds for y too. Next we write |〈u, y〉| =

|〈A∗TSu, x∗S〉| where S is the support of x∗. Moreover for any set S, we have that

‖A∗S
Tu‖ ≤ ‖A∗S‖‖u‖ ≤ Õ(

√
k)

holds with high probability, again because the entries of x∗S are subgaussian we conclude

that |〈u, y〉| ≤ Õ(
√
k) with high probability. �

This implies that ‖〈u, y〉〈v, y〉yyT ‖ ≤ Õ(k2) with high probability.
Now we need to bound the variance:

Claim 50 ‖E[〈u, y〉2〈v, y〉2yyT yyT]‖ ≤ Õ(k3/m)

35

Arora Ge Ma Moitra

Figure 1: A neural implementation of Algorithm 2, which mimics that of Olshausen-Field (Figure 5
in Olshausen and Field (1997a))

Proof: We have that with high probability ‖y‖2 ≤ Õ(k) and 〈u, y〉2 ≤ Õ(k), and we can
apply these bounds to obtain

E[〈u, y〉2〈v, y〉2yyT yyT] � Õ(k2) E[〈v, y〉2yyT]

On the other hand, notice that E[〈v, y〉2yyT] = Mv,v and using Lemma 14 we have that
‖E[〈v, y〉2yyT]‖ ≤ O(k/m). Hence we conclude that the variance term is bounded by
Õ(k3/m). �

Now we can apply the matrix Bernstein inequality and conclude that when the number
of samples is p = Ω̃(mk) then

‖M̂u,v −Mu,v‖ ≤ Õ(k2)/p+

√
Õ(k3/mp) ≤ O∗(k/m log n)

with high probability, and this completes the proof.

Appendix H. Neural Implementation

Neural Implementation of Alternating Minimization: Here we sketch a neural ar-
chitecture implementing Algorithm 2, essentially mimicking Olshausen-Field (Figure 5 in
Olshausen and Field (1997a)), except our decoding rule is much simpler and takes a single
neuronal step.

(a) The bottom layer of neurons take input y and at the top layer neurons output
the decoding x of y with respect to the current code. The middle layer labeled r is used
for intermediate computation. The code A is stored as the weights between the top and
middle layer on the synapses. Moreover these weights are set via a Hebbian rule, and upon
receiving a new sample y, we update the weight Aij on the synapses by the product of the
values of the two endpoint neurons, xj and ri.

(b) The top layer neurons are equipped with a threshold function. The middle layer
ones are equipped with simple linear functions (no threshold). The bottom layer can only
be changed by stimulation from outside the system.

36

Simple, Efficient, and Neural Algorithms for Sparse Coding

(c) We remark that the updates require some attention to timing, which can be ac-
complished via spike timing. In particular, when a new image is presented, the value of
all neurons are updated to a (nonlinear) function of the weighted sum of the values of its
neighbors with weights on the corresponding synapses. The execution of the network is
shown at the right hand side of the figure. Upon receiving a new sample at time t = 0, the
values of bottom layer are set to be y and all the other layers are reset to zero. At time
t = 1, the values in the middle layer are updated by the weighted sum of their neighbors,
which is just y. Then at time t = 2, the top layer obtains the decoding x of y by calculating
thresholdC/2(AT y). At time t = 3 the middle layer calculates the residual error y − Ax
and then at time t = 4 the synapse weights that store A are updated via Hebbian rule
(update proportional to the product of the endpoint values). Repeating this process with
many images indeed implements Algorithm 2 and succeeds provided that the network is
appropriately initialized to A0 that is (δ, 2) near to A∗.

Neural Implementation of Initialization: Here we sketch a neural implementation of
Algorithm 13. This algorithm uses simple operations that can be implemented in neurons
and composed, however unlike the above implementation we do not know of a two layer
network, but note that this procedure need only be performed once so it need not have a
particularly fast or short neural implementation.

(a) It is standard to compute the inner products 〈y, u〉 and 〈y, v〉 using neurons, and
even the top singular vector can be computed using the classic Oja’s Rule ? in an online
manner where each sample y is received sequentially. There are also generalizations to
computing other principle components ?. However, we only need the top singular vector
and the top two singular values.

(b) Also, the greedy clustering algorithm which preserves a single estimate z in each
equivalence class of vectors that are O∗(1/ logm)-close (after sign flips) can be implemented
using inner products. Finally, projecting the estimate Ã onto the set B may not be required
in real life (or even for correctness proof), but even if it is it can be accomplished via
stochastic gradient descent where the gradient again makes use of the top singular vector
of the matrix.

37

	Introduction
	Recent Work
	Model, Notation and Results

	Our Framework, and an Overview
	A Neurally Plausible Algorithm with Provable Guarantees
	Further Applications
	Revisiting Olshausen-Field
	Removing the Systemic Error

	Initialization
	Proof of Lemma 10
	Approximate Gradient Descent
	Threshold Decoding
	Analysis of the Neural Algorithm
	Making Progress
	Maintaining Nearness
	Proof of Theorem 21

	More Alternating Minimization
	Proof of Theorem 11
	Proof of Theorem 12

	Analysis of Initialization
	Sample Complexity
	Generalizing the (,,)-correlated Condition
	Proof of Theorem 8
	Sample Complexity for Algorithm 3
	Proofs of Auxiliary Lemmas
	 Proof of Lemma 43 and Lemma 41
	Proof of Lemma 42
	Proof of Lemma 44

	Neural Implementation

