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We study the cascading failure of networks due to overload, using the betweenness centrality of a node as
the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end
of the cascade pf as a function of the strength of the initial attack, measured by the fraction of nodes p that
survive the initial attack for different values of tolerance α in random regular and Erdös-Renyi graphs. We find
the existence of a first-order phase-transition line pt (α) on a p-α plane, such that if p < pt , the cascade of
failures leads to a very small fraction of survived nodes pf and the giant component of the network disappears,
while for p > pt , pf is large and the giant component of the network is still present. Exactly at pt , the function
pf (p) undergoes a first-order discontinuity. We find that the line pt (α) ends at a critical point (pc,αc), in which
the cascading failures are replaced by a second-order percolation transition. We find analytically the average
betweenness of nodes with different degrees before and after the initial attack, we investigate their roles in the
cascading failures, and we find a lower bound for pt (α). We also study the difference between localized and
random attacks.
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I. INTRODUCTION

In August 2003, a power failure struck northeastern North
America and 55 million people lost power. It is commonly
accepted that the cause of this event was a series of cascading
failures in the power grid [1]. A failure in one part of the
network causes some region of the system to be overloaded, and
this causes other parts of the network to fail. This process can
repeat multiple times until a large portion of the network has
failed. In the case of the northeastern power grid, this process
resulted in a widespread blackout.

To explore this phenomenon, we use a model developed by
Motter and Lai [2,3]. They study the betweenness of a node,
defined as the number of the shortest paths connecting any
pair of nodes in the network that pass through (but do not end
in) this node. A network is constructed, and we calculate the
initial betweenness b

(o)
i of each node i. A node can withstand

a maximum betweenness of Li ≡ (1 + α)b(o)
i , where α, the

tolerance, is a global parameter of the system. A fraction
(1 − p) of nodes is removed, and the betweenness of the
surviving nodes is recalculated. The nodes whose betweenness
bi is greater than Li are destroyed and removed from the
network. The betweenness of the surviving nodes is again
recalculated, and the nodes whose new betweenness exceeds
Li are removed. This process is repeated until no more nodes
fail due to overload, and we find the fraction of surviving
nodes pf (p,α) < p. We find that the function pf (p,α) has
a first-order discontinuity at p = pt (α). Above this point the
network is intact, and a majority of the surviving nodes are
part of a giant component P∞. The rest of the surviving nodes
are isolated from the giant component; because they connect
to fewer nodes, they will have a very low betweenness and,
furthermore, will not contribute to the betweenness of the nodes

of the giant component. Although these nodes technically
survive, they do not contribute to the global connectivity of
the network. Thus, we will often focus only on the size of
the giant component P∞, rather than the total number of
surviving nodes. If p < pt , the giant component disappears
but the fraction of survived nodes pf is still finite.

Most of the research until now has explored the effects of
the failure of a single node [4–8]. We will study numerically
the effects of a massive attack on the network, exploring the
values of the parameters that lead to the network’s collapse
and the nature of that collapse, also using analytical insights.
In the real world, this massive attack could come from a natural
disaster or a human attack on a nation’s infrastructure.

We study the behavior of the network when the size of
the attack is close to the “threshold attack” pt . For initial
attacks (1 − p) < (1 − pt ), the network will survive with a
majority of its nodes intact, while for (1 − p) > (1 − pt ) it
will disintegrate. The network will fail approximately when
the nodes that end up with the highest betweenness after the
initial attack have a betweenness that is near that of their limit.
At that point, the failure of a single node will redistribute the
“load” of that node such that one or more other nodes will fail
in turn. This attack, then, creates the conditions for a cascade,
triggering a sequence or cascade of failures that will not end
until the network is destroyed.

II. NUMERICAL RESULTS OF THE THRESHOLD POINT

For sufficiently low tolerances we find that, as a function of
the size of the initial attack (1 − p), the behavior of the network
experiences a first-order phase transition at a value ofp denoted
as pt , in which the destruction of even a single additional
node can trigger a cascade of failures that causes a network to
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FIG. 1. Median surviving network size and number of cascades
for a random regular graph as a function of p. The data presented are
the result of averaging over 500 realizations. Note that the number of
cascades peaks just at the first-order transition, where the size of the
surviving network drops suddenly, at pt = 0.771 for N = 5000, k =
5, and α = 1. We present data for both the size of the largest surviving
component of the system and the number of nodes that do not fail
due to overload or the initial attack, including isolated nodes. The
significance of these two quantities is discussed in the Introduction.
The explanation of the fluctuations of the order parameters for p < pt

is presented in the text.

collapse (Fig. 1). The principal characteristic of the first-order
phase transition is the bimodality of the distribution of the
order parameter, which can be either the fraction of surviving
nodes or the fraction of nodes in the giant component at the
end of the cascade of failures. For these first-order transitions,
we can numerically find pt as the value at which the areas
of both peaks, corresponding to large and small fractions of
surviving nodes, are equal to each other [9]. This coincides
with the value of p at which the average length of the cascade
reaches a maximum [10].

The steps in the cascade length and the associated fluctua-
tions in the number of survived nodes for p < pt are caused by
the discreteness of the number of cascades necessary to destroy
the network, starting from the initial fraction of survived nodes,
p. If after the nth step the fraction of surviving nodes, pn, is
still larger than the percolation transition, a giant component
may still exist, but its size is small enough for the betweenness
of its members to be below the maximal betweenness, Li , and
as a result, this greatly diminished network is stable. As we
vary the initial p (by increasing it), pn also increases, and it
may be large enough for the greatly diminished network to
collapse one more time. At this point, an additional n + 1 step
may become necessary, and the average pf will be in between
the large pn and the small pn+1. As p increases, this pf will
decrease, as will the size of the giant component. Meanwhile,
the average number of cascades will increase from n to n + 1.
As we increase p more, pf increases (as n does not change)
until the process repeats at a higher p.

We study how the value of the size of the threshold initial
attack pt depends on the different values of the tolerance α

for graphs with different connectivity. In the case of random
regular (RR) graphs, we show data for different values of the
degree k. In the case of Erdös-Renyi (ER) graphs, we present
data for different values of the average degree 〈k〉 (Fig. 2). It can
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FIG. 2. We show pt , the minimum initial survivability of a
catastrophic attack, as a function of the tolerance α in both random
regular graphs and Erdös-Renyi graphs, each containing 5000 nodes.
Note that for identical conditions, the regular graph is less resilient;
as is discussed in the text, the variation in initial degree in the nodes
of the Erdös-Renyi graphs causes some low-degree nodes to be more
susceptible to failure, which is less damaging to the network’s chance
of survival. The data plotted were obtained by studying the results of
50 realizations for each set of parameters.

be seen, as we would expect, that as the tolerance increases, the
network becomes more resilient and pt decreases. This feature
is common to both types of networks. For the same tolerance,
the ER graphs with the average degree 〈k〉 are in all cases more
resilient than the RR graphs with degree k = 〈k〉. We will show
later that at sufficiently high tolerances, the collapse of the
network changes its nature, and we observe a more gradual
second-order transition.

III. GENERAL RESULTS

To better understand the behavior of a graph under a massive
attack, we study the distribution of the betweenness of the
nodes for the graphs before the initial attack and just after it
(before the cascade of failures takes place). We start our analy-
sis with the simpler case of RR graphs. Before the initial attack,
the betweenness distribution of RR graphs is a sharp Gaussian
curve centered around its mean 〈B〉 ≈ N ln(N/k)/ ln(k − 1)
[11]. After the initial attack, the distribution presents a structure
in which it is divided into a number of wider curves, each of
which follows a nearly normal distribution, although with a
much larger standard deviation (Fig. 3). The division of the
single Gaussian curve into many curves as a result of the initial
attack is an important result of this work. The betweenness of a
node i surviving the initial attack is essentially determined by
the number of its surviving immediate neighbors, denoted as
�i . Specifically, the betweenness is approximately proportional
to �i(�i − 1), which is similar, although not identical, to the
results found by Goh et al. for scale-free networks [12], in
which a scaling relationship between the betweenness of a
node and its degree was found. A theoretical argument for this
dependence is given in Sec. V, and we present a comparison
with our numerical simulations in Fig. 4. After the initial
attack, our random regular graph loses a fraction 1-p of its
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FIG. 3. Betweenness distribution after the initial attack, but be-
fore any failure due to overload, for RR graphs with N = 20 000
nodes, k = 5, and p = 0.9. Each curve represents the distribution
of betweenness for a different number of surviving neighbors, �,
normalized so that the peaks are all the same height. The between-
ness distribution before the initial attack is included for compar-
ison. It is sharply peaked around its analytical prediction 〈B〉 =
N ln(N/k)/ ln(k − 1) ≈ 1.20×105. These results are a combination
of 100 realizations. The positions of the peaks of the curves are
approximately in a 2 : 6 : 12 : 20 ratio, showing a dependence on
�(� − 1).

nodes, causing the number of surviving first neighbors to vary
from node to node. Most of the nodes for which all of the
first neighbors survive will have their betweenness increased
due to the attack. In contrast, those nodes with neighbors that
were destroyed in the initial attack will see their betweenness
decrease. Accordingly, our results show that the nodes that will
fail first due to overload are generally those with all of their
neighbors surviving, driving the phenomena seen in the failure
of the network (see Fig. 3).
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FIG. 4. Analytical results for the mean betweenness of nodes
with different numbers of neighbors surviving the initial attack as
a function of p for a random regular graph with 10 000 nodes and
a degree of k = 5. This graph presents the betweenness immediately
after the attack without any failure due to overload. The symbols
represent simulation results; there are minor discrepancies at very
low values of p. These discrepancies are discussed later.
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FIG. 5. Analytical results for the mean betweenness of nodes with
all surviving neighbors (� = k), as a function of p for an Erdös-Renyi
graph with average degree 5 and size N = 5000. All values are
normalized to the mean betweenness for that � at p = 1, denoted
as B0(�). Note that betweenness rises most for low-degree nodes as
p decreases. This graph presents the betweenness without any failure
due to overload. The symbols represent simulation results; there are
minor discrepancies at very low values of p. Note the difference
between this graph and Fig. 4. Here, we study only nodes in which all
their neighbors survive the initial attack, and we examine the effect
of the original degree on the change in betweenness. In Fig. 4, on the
other hand, we study nodes with identical original degrees, in which
not all neighbors survive.

Figure 3 provides a lower bound for the value of pt (α)
displayed in Fig. 2 for RR graphs. Indeed, if we neglect the
spread in values of B(�), we can assume that α0(p) = B(� =
k,p)/B0(k) − 1 gives a good approximation for αt (p), but
due to the spread, αt (p) > α0(p). Since both α0(p) and αt (p)
are decreasing functions of p, for sufficiently large p, the
same is true for the inverse functions. Thus αt (p) > α0(p)
implies pt (α) > p0(α). More accurate estimates would require
knowledge of the standard deviation of B(� = k,p), which
requires additional investigation, which goes beyond the scope
of the present paper.

In ER graphs, we find similar catastrophic failures of the
network. However, the mechanism of the failure is slightly
different. Because the nodes have different initial degrees,
they also have very different initial loads and, thus, different
maximum loads. As mentioned (and showed later in Sec. V and
Appendix), nodes of lower initial degree will start with lower
betweenness and, correspondingly, lower maximum load. The
initial attack, however, will cause a greater proportional in-
crease in the betweenness of low-degree nodes than in high-
degree nodes, as shown in Fig. 5, provided, in each case, that all
neighbors survive. This will affect the behavior of ER graphs
and the way in which they disintegrate. The low-degree nodes
fail first (in earlier stages of the cascade and with smaller at-
tacks), causing further fragmenting of the network (see Fig. 6).
If the attack is widespread enough (p < pt ), this fragmentation
causes the high-degree nodes to also fail. This multistage
phenomenon does not appear to be operative to the same extent
in RR graphs; in those graphs, relatively few nodes fail before
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FIG. 6. Fraction of nodes not failing due to overload at each stage
of the cascade, as a function of initial degree. The data presented are
for a case of an Erdös-Renyi graph where the average degree is 4,
N = 10 000, tolerance α = 0.2, and pt ≈ p = 0.935. Note that nodes
with low initial degree fail at a greater proportion, particularly at the
early stages of the cascade. The network disintegrates at the end of
the cascade; the surviving nodes do not form a giant component.

the point where the cascade of failures becomes catastrophic,
while in ER graphs the decline in the number of nodes in the
giant component is more gradual as illustrated in Fig. 7; the
low-initial-degree nodes fail first, followed by the hubs. This
leads to more resilient networks; by preferentially destroying
low-degree nodes, the overload causes less disintegration of
the network than an indiscriminate decimation would. Again,
the curve B(k = 2,p)/B(k = 2,1) − 1 in Fig. 5 provides the
lower bound for pt (α) for the ER graphs.

IV. FEATURES OF THE CASCADES

A. Progress of cascade

Immediately after a massive attack near pt , the few nodes
with the greatest increase in betweenness fail. As they fail,
other nodes increase in betweenness, and also fail. Soon, the
network reaches a point of catastrophic failure in which many
nodes fail in each stage of the cascade (Fig. 7). However,
there is an important difference between RR and ER graphs.
RR graphs have a much more pronounced initial part of the
cascade, in which only a few nodes fail. In ER graphs, instead,
we observe faster degradation of the network from the start of
the cascades. This is due to the difference in initial degrees;
as described, nodes with low initial degrees are most affected
by the initial attack. They thus fail first, in the early stages of
the cascade. Once they fail, the high-degree nodes fail. This
feature is clearly displayed in Fig. 6, where the number of
nodes surviving each stage of the cascade in an ER graph has
been studied as a function of their initial degree.

B. Order of transition

At high values of α, the fragmentation of the network due
to the failure of a few nodes can never cause a catastrophic
cascade of failures. This is because the betweenness presents
a maximum as a function of the fraction of surviving nodes
(see Figs. 4 and 5).
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FIG. 7. Size of a giant component, as the cascade progresses. The
left graph corresponds to several realizations of a RR graph with
degree 5, N = 5000, α = 1, and p = pt = 0.7715. The right graph
corresponds to several realizations of an ER graph with the same
parameters and p = pt = 0.603. Insets above the graph display the
first few stages of the cascade in greater detail. Note that for the ER
graph, the giant component loses a significant fraction of its size (the
low-degree nodes) before catastrophic failure begins, while relatively
few nodes fail in the RR graph before the catastrophic portion of the
cascade. Nevertheless, both graphs exhibit a first-order transition.

Note that the average betweenness per node in the giant
component is pN̂L, where pN̂ is the number of nodes in the
giant component and L is the average path length in the giant
component. As fewer nodes survive, the network becomes frag-
mented, leading to longer path lengths and thus a larger average
betweenness. However, at the same time, the fraction of nodes
in the giant component decreases, as nodes become isolated
due to the widespread destruction. These isolated nodes do not
contribute to the betweenness; they do not have paths reaching
the nodes in the largest component. Thus, as fewer nodes
survive the initial attack, the betweenness decreases. When
very few nodes survive, the second effect dominates, and the
mean betweenness of nodes decreases with further destruction.
In a first-order transition, the original attack causes nodes to fail
due to overload, which will cause the mean betweenness to in-
crease. This in turn will cause more destruction; this cascading
effect is the scenario that will lead to a first-order transition.

However, as long as α is sufficiently high to prevent
the network from failing at the point of maximum mean
betweenness, the original attack will not cause further failures.
Thus, the network will not fail due to a first-order transition.
Instead, it will fail due to a second-order transition when the
initial attack and associated overload reaches the percolation
threshold (which, for random regular graphs, occurs at 1

k−1 ).
We define the pt for this second-order transition as the point
where the cascade reaches a maximum in length, analogous to
the criterion for first-order transitions.

This shift from first-order to second-order scenarios occurs
at the value of α where we would expect pt to equal the
fraction of surviving nodes that yields the maximum mean
betweenness. That is, if pt is small enough such that the mean
betweenness decreases as p decreases, we will only see a
second-order transition, as the fraction of nodes in the giant
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FIG. 8. Cumulative frequency distribution of the final network
size for a variety of α’s and their corresponding pt ’s. When pt > 0.32,
where the mean betweenness reaches a maximum (see Fig. 4, albeit
for a different N ), the distribution has a plateau, showing a first-order
transition in which a midsize network is unstable. When pt < 0.32,
no such plateau exists; when the network begins to disintegrate, it
becomes more, not less, stable. The corresponding value of pt for
each α is determined by simulation. All graphs are random regular,
with degree k = 5 and 5000 nodes.

component decreases to zero due to percolation. In the vicinity
of this point, we can see the shift from a first-order transition
to a second-order transition as α increases and pt decreases
(see Fig. 8). Thus, the transition between first and second order
will occur when pt is so low that further cascades decrease the
average betweenness, and the only failure possible is due to the
network reaching the percolation threshold, and not cascading
overload.

C. Size dependence of the transition point

The logarithmic dependence of the betweenness on the
system size produces a strong logarithmic dependence of the
transition point pt on the size of the system N , and also changes
the location of the critical point pc at which the first-order phase
transition switches to a second-order percolation transition.
Figure 9(a) shows the behavior of pt (α) for RR graphs (k = 4)
for N = 10 000, 20 000, 40 000, and 80 000. One can see that
the larger networks become more vulnerable than the smaller
ones. This phenomenon is similar to the one observed in [9]
for high dimensional interdependent lattices. For all values
of N , the curves pt (α) approach the critical point pc ≈ 0.38
from above. Note that this value is almost independent of N .
Since for larger N these curves show more fragility, they reach
the critical point at larger values of α. Figure 9(b) shows the
increase of pt as a function of the size of the system for different
α. One can see that pt (N ) grows approximately linearly with
ln(N ) above the critical point value pc.

V. ANALYTICAL CALCULATIONS
OF THE BETWEENNESS

To estimate the betweenness, we need to define an exterior
and a shell. We define xn as the fraction of nodes more than n

nodes away from a central node and yn as the fraction of nodes
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FIG. 9. (a) Dependence of the transition point pt (α) on the
tolerance α for different system sizes, N = 10 000, 20 000, 40 000,
and 80 000. For large tolerance, the curves for all system sizes
converge from above to the critical point pc ≈ 0.38, at which the
bimodal first-order transition changes to a unimodal second-order
transition. (b) Dependence of the transition point pt (N ) on the system
size for different tolerances α. One can see an almost linear increase
of pt with ln N .

that are exactly n nodes away. We further define x∞ as the
fraction of nodes that are isolated from the giant component of
the network. These are all expressed as fractions of Ñ ≡ pN ,
the size of the decimated network. By definition,

yn = xn−1 − xn. (1)

In the rest of this section, we will illustrate our findings for the
case of random regular graphs, and we will collect results from
Erdös-Renyi graphs in Appendix.

Following [13], we use the relationship

xn+1 = G0
{
G1

[
G−1

0 (xn)
]}

, (2)

where G0 is the generating function of the network, G1 ≡ G′
0(x)

G′
0(1)

is the generating function of the branching process, and G−1
0

is the inverse of G0.
In the case of RR graphs, this expression becomes

xn+1 =
(
x

k−1
k

n

)k

= xk−1
n . (3)
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FIG. 10. A schematic illustration of the calculation of the average
betweenness. (a) Derivation of Eq. (6). (b) Derivation of Eq. (10). In
panel (a), the original node i with degree �i is placed in the dth shell of
node j , which is depicted at the center. The exterior of the dth shell xd

of node j is connected to the dth shell yd by links depicted by arrows
emanating from the dth shell; �i − 1 of those links belong to node i.
We assume that each of these links from shell yd carries, on average,
equal amounts of shortest paths from xd to node j . In panel (b), the
original node i (for which the total betweenness is calculated) is placed
at the center, and the contribution of node j to its betweenness must
be summed for all nodes j and shells d . The connections of node i to
the exterior of the dth shell of node j , xd , are shown by wavy lines.

It is known [14] that if a random fraction (1 − p) of
the nodes is destroyed in a network that initially had a
generating function given by G0(x), the generating function of
the decimated network becomes G0(1 − p + px) for the same
function G0. Thus, for a decimated random regular network
with initial degree k, we obtain

xn+1 =
(

1 − p + px
k−1
k

n

)k

. (4)

This relationship allows us to create shells of nodes around a
central node that ends up with � surviving neighbors after the
initial attack. Setting y1(�) = �/Ñ by definition, and doing a
Taylor expansion of x0(�) around 1, and using Eqs. (1) and (4)
for the case n = 0, we obtain for the case of RR graphs

x0(�) = 1 − �

Ñ [p(k − 1) − 1]
. (5)

With these equations, we are now in a position to calculate
the betweenness of a node i with �i surviving neighbors. To
proceed, we first study the contribution to the betweenness
from paths that leave another node j and travel through i, where
j is a distance d away from i (Fig. 10). To do so, we recreate
the graph, using j as a new “central node,” around which we
build shells. When we recreate the graph around j , our original
node i is in a shell a distance d away, and Ñ [xd (�j ) − x∞] of
the nodes in the network belong to the giant component, but
are farther away from j than the original node i is. The shortest
path between j and any of these nodes in the d exterior (of j )
must pass through (or originate in) the d + 1 shell and then
travel from there through a link to the d shell. We will assume
that each of these links between thed andd + 1 shells [depicted
as arrows in Fig. 10(a)] carries an equal amount of traffic.

(�i − 1) of these links branch out of the original node i,
while an average of p(k − 1)[Ñyd (�j ) − 1] links branches out
from the other nodes (different from i) in the d shell. Thus, the

contribution to the betweenness of i due to a single node j a
distance d away is

B̃d (�i,�j ) = Ñ [xd (�j ) − x∞]

× (�i − 1)

p(k − 1)[Ñyd (�j ) − 1] + �i − 1
. (6)

In this expression, the numerator of the fraction is the number
of links that branch out from the i node, and the denominator
is the total number of links that branch out from all the nodes
in the d shell of j .

This expression contains a slight error; the actual number
of links that branch out of j ’s d shell is a random variable with
a mean at the value given. For computational simplicity, we
treat the mean of the fraction as the fraction of the means. This
simplification causes errors at low values of p, where there
is a greater variation in the denominator (Fig. 4). Taking a
second-order Taylor expansion of Eq. (6), we find a correction
factor of

B̃d (�i,�j )σ 2
yd (�j )/yd (�j )2. (7)

While we have not calculatedσ 2
yd (�j ) directly, the approximation

should be noted.
With our value of B̃d (�i,�j ) for the betweenness of a node i

due to paths leaving a single node j , we now make an identical
argument for each node j a distance d away from i for each
value of d (Fig. 10). To do that, we must perform a sum over
all j . This requires calculating the probability distribution of
�j for a given node j . Node j will have �j surviving neighbors
with probability [13]

P̃ (�j ,d) = P (�j )
[
G−1

0 (xd−1)�j − G−1
0 (xd )�j

]
/yd, (8)

where P (�j ) is the overall fraction of nodes in the network

with �j surviving neighbors, or C
�j

k (1 − p)k−�j p�j . Summing
over all d and all j , we find that the total betweenness is

B(�i) =
∞∑

d=1

⎡
⎣Ñyd (�i)

k∑
�j =1

B̃d (�i,�j )P̃ (�j ,d)

⎤
⎦ (9)

≡
∞∑

d=1

[Ñyd (�i)〈B̃d (�i)〉]. (10)

This is the closest approximation we have for the betweenness
of a node and the equation we use in Fig. 4. Note that B̃ is
proportional to � − 1, and yd is approximately proportional
to �, giving us the �(� − 1) dependence of the betweenness
discussed in Sec. III.

For large Ñyd or p(k − 1) ≈ �i − 1, we can simplify
the denominator in Eq. (6) and average over all �j (again,
introducing a slight error term due to equating the fraction
of the averages with the average of the fractions), leading to
an average value of B̃d for each lj :

〈B̃d (�i)〉 ≈ (〈xd〉 − x∞)
(�i − 1)

p(k − 1)〈yd〉 (11)

and thus, combining Eqs. (10) and (11),

B(�i) ≈ Ñ

∞∑
d=1

yd (�i)

〈yd〉
(�i − 1)

p(k − 1)
(〈xd〉 − x∞). (12)
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Note that for �i ≈ k, the two fractions are near unity, and we
are left with the intuitive result that the mean betweenness will
be the average path length, which we will call L, multiplied
by the network size. This follows from the observation that∑〈xi〉 can be written telescopically as

∑
(〈xi〉 − 〈xi+1〉)×i ≡∑

i×〈yi〉. For other values of �i , note that for small d, yd (�i )
〈yd 〉 ≈

�i

pk
, and thus for �i = kmax (that is, the betweenness of a node

in an RR graph with all of its neighbors surviving),

B(�i) ≈ pN̂�i(�i − 1)L

pkp(k − 1)
= pN̂L

p2
= N̂L

p
, (13)

where pN̂ , as earlier, is pN (1 − x∞), or the total number of
nodes in the giant component. We have explicitly written out
this prefactor here to more clearly identify the dependence of
our result on p.

Using results from [11], we finally obtain for the between-
ness of a node in a random regular graph of degree k,

B(k) ≈ N̂

p

(
ln(pN̂/pk)

ln[p(k − 1)]

)
= N̂

p

(
ln(N̂/k)

ln[p(k − 1)]

)
. (14)

While this analysis has been illustrated with random regular
graphs, the results also hold true for any random graph, mutatis
mutandis, and in Appendix we reobtain them for Erdös-Renyi
graphs.

These results are confirmed within 5%, for p ≈ 1, where
this approximation is most accurate. Note that the betweenness
of the nodes with all of their original neighbors intact increases
as approximately 1/p, which is the primary cause of network
failure.

VI. LOCALIZED ATTACK

According to our theory, the network becomes vulnerable
because of the variation in the number of surviving neigh-
bors in the nodes. Thus, a localized attack, in which most
nodes’ neighbors are unaffected, will be less effective than a
comparable random attack. We implement this local attack by
selecting a random node in the network. This node is destroyed,
and the destruction spreads along the network’s links to each
of its neighbors with probability λ, a measure of the locality
of the attack. When the attack reaches a neighboring node,
that node is also destroyed, and the damage spreads to its
neighbors with the same probability λ. Once 1 − p nodes are
destroyed, the initial attack ceases and we begin to evaluate the
failure of nodes due to overload. This allows us to interpolate
between the case of a totally random attack λ = 1 − p and a
totally localized attack with λ = 1. Simulations show (Fig. 11),
as we expected, that a network can survive a local attack,
even when a random attack of the same strength would have
caused the network’s collapse. Other models have assumed
that the destruction wrought by an initial attack often spreads
to the attacked nodes’ neighbors first [15,16]. However, our
results show the opposite in this model; the nodes closest to
the destruction are the least likely to be overloaded. This is
confirmed by the progression of the cascade in the case of
a localized attack. After the initial attack, the nodes farthest
from the center of the destruction are the first nodes to
fail. Only after they fail do the inner nodes, near the nodes
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FIG. 11. Size of the final giant component as a function of p. This
graph shows the effect of a local attack and the effect of several values
of λ, a measure of the locality of the attack. For the case of λ = 1,
a random node and the nearest 1 − p nodes are destroyed. Although
this can lead to a cascade of failures, such a cascade happens only at
a relatively low value of p. Although the exact value of λ has little
effect on the vulnerability, all local attacks are much less effective
than nonlocal attacks. This graph shows the results from a random
regular graph of N = 5000, k = 5, and α = 1.

destroyed in the initial attack, fail (Fig. 12). This difference
emphasizes the difference between the random networks and
the networks embedded in space for which the opposite effect is
observed [17].
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FIG. 12. Fraction of nodes not overloaded, as the cascade pro-
gresses, for different values of d , the distance from the central node.
Note that the nodes closest to the center of the destruction are the
last to be destroyed; because their neighbors are destroyed in the
original attack, their betweenness decreases. Conversely, the nodes
farthest from the center of the destruction fail first; not only do all
of their immediate neighbors survive, more of their distant neighbors
survive, increasing their betweenness beyond the values that we have
calculated. The results included are from a random regular graph:
N = 10 000, k = 3, α = 0.2, p = pt = 0.908, and λ = 1. The first
eight shells around the central node are completely destroyed in the
initial attack and thus are not shown on the graph.
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VII. CONCLUSION

We have studied, both computationally and analytically,
the effects of widespread attacks on networks that are sus-
ceptible to failure due to betweenness overload. We study the
fraction of surviving nodes at the end of the cascade pf as a
function of the strength of the initial attack, measured by the
fraction of nodes p that survive the initial attack for different
values of tolerance α in random regular and Erdös-Renyi
graphs. We find the existence of a first-order phase transition
line pt (α) on a p-α plane, such that if p < pt , the cascade of
failures leads to a very small fraction of survived nodes pf and
the giant component of the network disappears, while for p >

pt , pf is large and the giant component of the network is still
present. This feature of the cascading failures is similar to the
phenomenology found in other models of cascading failures:
i.e., bootstrap percolation [18–21], k-core percolation [21],
and mutual percolation in interdependent networks [10,22,23].
Exactly at pt the function pf (p) undergoes a first-order
discontinuity. We find that the line pt (α) ends at a critical
point (pc,αc), in which the cascading failures are replaced by
a second-order percolation transition. We find analytically the
average betweenness of nodes with different degrees before
and after the initial attack, we investigate their roles in the
cascading failures, and we find a lower bound for pt (α). The
dynamics of cascading failures indicates the existence of a
latent period of cascading failures, during which only a few
overloads occur at each stage of the cascade. This latent period
is more pronounced in ER graphs than in RR graphs. A similar
latent period is present in a more realistic model of overloads
in the power grid based on a direct current approximation (DC)
[24]. Another similarity between the Motter and Lai model and
the DC model of the power grid is a complete clusterization
of the network at the end of the cascade. In both models, the
giant cluster remains highly vulnerable until the last stages of
the cascade. However, in small, isolated clusters in the Motter
and Lai model, nodes have low betweenness and thus do not
suffer from overloads, without adding to global transport in
the network. In the power-grid model, small self-sustaining
islands are likely to survive, because local transmission lines
connecting neighboring consumers and producers are less
likely to develop overloads than lines connecting distant parts
of the network, which may develop a huge imbalance of
production and consumption.

Another interesting example of more realistic networks
are the small-world networks [25,26] in which the nodes are
located in d-dimensional space, with the majority of links
connecting neighboring nodes, while a small fraction of long-
distant links connects nodes at arbitrary distances. In the ab-
sence of long-distant links, the Motter and Lai model becomes
extremely fragile; even a small initial attack, which leads to
an overload of at least one additional node, leads to a long
cascade of failures that completely disintegrates the network.
However, even a small fraction of long-distance links stabilizes
the network and makes its behavior similar to that of ER graphs,
with a first-order phase transition line on the p-α plane, which
for large tolerance becomes a second-order phase transition
associated with the percolation transition. As an example, we
show the behavior of a one-dimensional small-world network,
in which the nodes are located on a circle with equal spacing
and each node is connected to m nearest nodes clockwise
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FIG. 13. We show pt , the minimum initial survivability of a
catastrophic attack, as a function of the tolerance α for a small world
network. The n = 40 000 nodes are chosen in a circle, and each one
is connected to its m = 3 closest nodes in each direction. In addition,
there are on average l = 0.5 links joining each node with another
node chosen at random. The behavior is qualitatively similar to that
observed in ER and RR graphs illustrated in Fig. 2.

and m nearest nodes counterclockwise. In addition, there are
n�/2 long-distant links that connect randomly selected pairs
of nodes. Accordingly, the total average degree of a node
is 2m + � and the total number of links n� = n(m + �/2).
As an example, we show the p-α phase diagram for m = 3,
� = 0.5, and n = 40 000. The behavior of the first-order phase
transition line is qualitatively very similar to that of ER graphs
(Fig. 13). Similar behavior can be observed for any � > 0
and also for two-dimensional lattices with long-range links.
However, the analytic results shown for random graphs are not
fully applicable to small-world graphs, in which the clustering
coefficient is large. The compete investigation of this problem
in its large parameter space, including analytic insights, is
reserved for the future.

All the networks discussed in this work so far (ER, RR,
SW) present a narrow distribution of the degrees of the nodes
(infinitely narrow in the case of RR). It is thus interesting to
analyze the effect of a wider distribution of the degrees, typical
of scale-free (SF) networks [27], with a power-law degree
distribution. We considered the case P (k) ∼ k−μ, where μ � 3
is an exponent. For such distribution, as with the previous
graphs discussed in the paper, the initial betweenness of the
nodes strongly correlates with their degree. A random attack on
the network acts just as a random attack on an ER graph does, in
the sense that it preferentially overloads nodes with few initial
connections, while leaving hubs mostly intact. This is due to
the relative increase of betweenness, which is greater in nodes
with small degrees. The preferential removal of spokes due to
this overload will decrease the betweenness of the hubs further,
preventing the overload of those large hubs. This behavior is
illustrated in Fig. 14. Thus, a short cascade eliminating poorly
connected nodes never leads to the complete disintegration
of the network, and the giant component survives for any
p > 0 (the percolation transition in the scale-free network
happens at p = 0 [28]). Accordingly, the cascading failures in
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FIG. 14. Fraction of nodes not failing due to overload at each stage
of the cascade, as a function of initial degree. The data presented
are for a case of a SF graph with power-law distribution k−μ, with
μ = 2.5, kmin = 2, and average degree 6 for a network of size N =
40 000. The tolerance is α = 0.02, and the size of the initial attack
is p = 0.9. Note that nodes with low initial degree fail at a greater
proportion, particularly at the early stages of the cascade, but the
network does not disintegrate at the end of the cascade, with most of
the hubs remaining intact. The diminished network is a new, stable
network, with a higher connectivity among the surviving nodes. This
decreases the betweenness, leading to stability.

SF networks do not lead to a first-order phase transition for any
value of the tolerance, and the transition is of second order with
pt = 0. An interesting behavior is expected when the width of
the distribution decreases as the exponent of the power law
grows; we expect the first-order transition to emerge at large
enough μ > 3. We plan to explore this interesting phenomenon
in future work.

In summary, our main finding is that the degree of a node
is the primary determinant of its betweenness, and thus its
risk of overloading. This shows the fragility of nodes with
many surviving neighbors, and of nodes with low initial
degrees in nonregular networks. This knowledge can be used
to stop cascades in their track, or to easily identify the most
vulnerable nodes. This result has led to new insights into the
critical point, at which the transition shifts from first-order to
second-order, and the effect of the degree of the network, the
degree distribution, the size of the network, and the tolerance
on the stability of the network. We also study the difference of

cascading failures caused by local attacks and random attacks
on randomly connected networks. We find that localized
attacks are less destructive than random attacks, which is
opposite to the behavior of spatially embedded networks [17].
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APPENDIX: CALCULATION OF BETWEENNESS
FOR THE ERDÖS-RENYI MODEL

For the case of Erdös-Renyi graphs, the expression equiva-
lent to (4) becomes

xn+1 = ep〈k〉(xn−1) (A1)

and the Taylor expansion equivalent to (5) is

x0(�) = 1 − �

Ñ [p〈k〉 − 1]
. (A2)

The shell analysis for the contribution of a single node to the
betweenness [equivalent to Eq. (6)] yields

B̃d (�i,�j ) = Ñ [xd (�j ) − x∞]
(�i − 1)

p〈k〉[Ñyd (�j ) − 1] + �i − 1
,

(A3)

while Eq. (10) for the total betweenness still remains valid.
In this case, the approximations analogous to Eqs. (11) and

(12) are

〈B̃d (�i)〉 ≈ (〈xd〉 − x∞)
(�i − 1)

p(k)〈yd〉 , (A4)

B(�i) ≈ Ñ

∞∑
d=1

yd (�i)

〈yd〉
(�i − 1)

(p〈k〉) (〈xd〉 − x∞). (A5)

And finally, the result obtained using [11], equivalent to
Eq. (14), becomes

B(k) ≈ N̂

p

(
ln(N̂/〈k〉)
ln(p〈k〉)

)
(A6)

for Erdös-Renyi graphs, where 〈k〉 represents the average
degree before the attack.
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