
Inverting the Hopf map

Michael Andrews and Haynes Miller

October 24, 2017

Abstract

We calculate the η-localization of the motivic stable homotopy ring over C, confirming a
conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral
sequence. In fact, work of Hu, Kriz, and Ormsby implies that it suffices to compute the corre-
sponding localization of the classical Adams-Novikov E2-term, and this is what we do. Guillou
and Isaksen also propose a pattern of differentials in the localized motivic classical Adams
spectral sequence, which we verify using a method first explored by Novikov.

Dedicated to the memory of Goro Nishida (1943-2014)

1 Introduction

1.1 Overview

The chromatic approach to stable homotopy theory [11] rests on the fact that non-nilpotent graded
endomorphisms of finite complexes can be essentially classified. They are always detected by MU
(or, working locally at a prime, by BP ), and up to taking pth powers every graded BP∗BP -comodule
endomorphism survives the Adams-Novikov spectral sequence. At the prime 2, for example, the
Hopf map η ∈ π1(S) lies in filtration one, and the celebrated nilpotence theorem of Nishida [23]
already guarantees that η is nilpotent; in fact, we know that η4 = 0.

On the other hand, the element α1 that detects η in the Adams-Novikov E2-term E2(S;BP )
is non-nilpotent. This immediate failure of the Adams-Novikov E2-term to accurately reflect 2-
primary stable homotopy even in low degrees has lessened its attractiveness as a computational
tool at the prime 2. One can nevertheless hope to calculate α−11 E2(S;BP ) and discover the range
in which the localization map is an isomorphism, and this is our first main result.

Some α1-free elements have been known for many years. The group E1,2n
2 (S;BP ) is cyclic for

n ≥ 1, generated by elements αn closely related to the image of J [24, Theorem 11.2], [20, Corollary
4.23]; in particular, α4 detects σ ∈ π7(S). In [20] it was shown that for n 6= 2, αk1αn 6= 0 for all k ≥ 0.
The Adams-Novikov differentials on these classes are also well-known and due to Novikov [24], [25, p.
171]. In this paper we show that there are no other α1-free generators. A more precise statement
is that

α−11 E2(S;BP ) = F2[α
±1
1 , α3, α4]/(α

2
4). (1.1.1)

The complete structure of the localized Novikov spectral sequence now follows from the differential

d3α3 = α4
1 . (1.1.2)
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Since α1 is a unit, this differential terminates the localized spectral sequence.
We also find that the localization map E2(S;BP ) −→ α−11 E2(S;BP ) is an isomorphism above

a line of slope 1/5 when we plot the Adams-Novikov spectral sequence in the usual manner. This
resolves a question raised by Zahler [28] at the dawn of the chromatic era.

This result is of secondary interest from the perspective of the classical homotopy groups of
spheres because we already know that η4 = 0. However, the advent of motivic homotopy theory
has led to interesting related questions. There is a ground field in motivic homotopy theory, which
for us will be the complex numbers, and homotopy is bigraded. It is known that the motivic
η ∈ π1,1(SMot) is non-nilpotent, and one may ask (as Dugger and Isaksen did [6]) to calculate
η−1π∗,∗(SMot). The determination of this localization is our second major result. We will in
fact compute π∗,∗(η

−1((SMot)
∧
2 )), but a simple argument (Lemma 8.2) shows that η−1SMot −→

η−1((SMot)
∧
2 ) is an equivalence so we get an uncompleted result as well.

We can describe the result in terms of elements in π∗,∗(SMot). There are motivic “Hopf maps”

η ∈ π1,1(SMot) , σ ∈ π7,4(SMot)

as well as a unique nonzero class µ9 ∈ π9,5(SMot) ([12], 2.10). Then

η−1π∗,∗(SMot) = F2[η
±1, σ, µ9]/(σ

2)

This extends work of Morel [22], who verified this calculation (and extended it to a general
ground field) for coweight zero, and of Hu, Kriz, and Ormsby [14], who showed that the localization
is at least this big, and it verifies a conjecture of Guillou and Isaksen [9]. In subsequent work [10]
these authors carry out the analogous computation over the reals, starting with the result over C
obtained here.

1.2 Methods

In our approach to (1.1.1) we follow Novikov [24] as interpreted in [19]: we filter the BP cobar
construction by powers of the kernel of the augmentation BP∗ → F2. The resulting “algebraic
Novkiov spectral sequence” has the form

H∗(P ;Q) =⇒ E2(S;BP )

where P is the Hopf subalgebra of squares in the dual Steenrod algebra A and

Q = gr∗BP∗ = F2[q0, q1, . . .]

is the associated graded of BP∗; qn is the class of the Hazewinkel generator vn. In this spectral
sequence the element α1 is represented by the class of [ξ21 ], which, following the notational conven-
tions in force at an odd prime, we denote by h0. By inverting h0 we obtain a “localized algebraic
Novikov spectral sequence” converging to α−11 E2(S;BP ). Our main result is a complete description
of this spectral sequence.

The E1-page of the localized algebraic Novikov spectral sequence is given by h−10 H∗(P ;Q).
The computation of this object parallels the well-known fact [17,18] that if M is a bounded below
comodule over A then the localized cohomology of A with coefficients in M can be computed in
terms of the homology of M with respect to the differential Sq1:

q−10 H∗(A;M) = H(M ; Sq1)⊗ F2[q
±1
0 ]
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where q0 ∈ H1,1(A) is the class dual to Sq1. The result we obtain is

h−10 H∗(P ;Q) = F2[h
±1
0 , q21, q2, q3, . . .] .

As in [19], the differentials in the localized algebraic Novikov spectral sequence are calculated
by exploiting the connection between E2(S;BP ) and the theory of formal groups. The facts we
rely on are easier to obtain than those used in [19] and date back to [21]. We prove that

d1qn+1 = q2nh0 for n ≥ 2 . (1.2.1)

This is the last possible differential, and we arrive at (1.1.1). It follows, incidentally, that for
m,n ≥ 0, α2mα2n is α1-torsion, and that modulo α1-torsion the classes α2m+1α2n+1 and α2m+1α2n

depend only on the sum m+ n.
This computation leads without difficulty to the motivic result. Hu, Kriz and Ormsby ([13,14];

see also [6]) study a motivic analogue of the Adams-Novikov spectral sequence. To circumvent
incomplete understanding of the motivic analogue of BP , they work with its 2-adic completion,
which we will denote by BPM . They show that its E2-term is

E2(SMot;BPM) = E2(S;BP )⊗ Z2[τ ] ,

where τ detects a certain class in π0,−1((SMot)
∧
2 ). Inverting α1 results in a spectral sequence which

we show converges to π∗,∗(η
−1SMot) = π∗,∗((SMot)

∧
2 ). The unique nonzero differential is determined

by the motivic analogue of (1.1.2), namely

d3α3 = τα4
1 , (1.2.2)

and (1.1) follows.
Our calculation of η−1π∗,∗(SMot) verifies the conjecture of Guillou and Isaksen [9]). Those

authors approached this calculation by means of the motivic classical Adams spectral sequence.
Using the motivic May spectral sequence they found that

h−10 E2(SMot;H) = F2[h
±1
0 , v41, v2, v3, . . .] . (1.2.3)

Based on extensive computations they conjectured that in the localized motivic Adams spectral
sequence

d2vn+1 = v2nh0 , n ≥ 2 . (1.2.4)

In the last part of this paper we recover (1.2.3) using a localized Cartan-Eilenberg spectral sequence.
We then use the methods of [19] to show that the Adams differentials (1.2.4) follow from the
differentials (1.2.1) in the algebraic Novikov spectral sequence.

1.3 Organization

In Section 2 we recall the form of the Adams-Novikov E2 term and the definition of the elements
αi ∈ E1,2i+1

2 (S;BP ). Next we recall the algebraic Novikov spectral sequence, and in Section 4
we compute the localization of its initial term and verify vanishing lines required to check its
convergence. These vanishing lines give us a range of dimensions in which the localization map
is an isomorphism. In Section 6 we construct some permanent cycles, and then bring the theory
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of formal groups into play to compute the differential in the localized algebraic Novikov spectral
sequence and verify (1.1.1).

In Section 8 we recall the basic setup for motivic stable homotopy theory over C, and prove
(1.1). In the final section, we provide an improved statement and proof of the comparison of
differentials in the Adams and algebraic Novikov spectral sequences ([19,24]), and observe that the
local algebraic Novikov differentials then imply the local motivic Adams differentials conjectured
by Guillou and Isaksen.

1.4 Acknowledgments

The first author is particularly grateful to Dan Isaksen and Zhouli Xu for their talks on the motivic
Adams spectral sequence and its relationship with the Adams-Novikov spectral sequence. These
served as the inspiration to start trying to compute the Adams-Novikov E2-page. We thank Amelia
Perry, who created charts of the algebraic Novikov E1-page. The idea for the proof of the main
theorem came about while she coded computational software for us. We are indebted to Dan Isaksen
for raising these questions about the η-local motivic sphere and for several useful conversations. We
thank him and Bert Guillou for keeping us abreast of their work, and Dan Dugger, Dan Isaksen,
Marc Levine, and Kyle Ormsby for helpful tutorials on motivic matters. We are also indebted to
Aravind Asok for pointing out oversight in an earlier draft, to Jens Hornbostel for providing a fix,
and to the referee for pointing out that the completion map induces an isomorphism after inverting
η; and to Lyubo Panchev for his careful reading of Section 9.

2 The Adams-Novikov spectral sequence

In this paper we follow [20] and work with right comodules. Given a Hopf algebroid (A,Γ) and a
right Γ-comodule M , the cobar construction Ω∗(Γ;M) has Ωs(Γ;M) = M ⊗A Γ ⊗A · · · ⊗A Γ with
s copies of Γ = ker (ε : Γ→ A), and is equipped with a natural differential [20, (1.10)] of degree 1.
H∗(Γ;M) denotes the cohomology of this complex. If Γ and M are graded then H∗(Γ;M) becomes
bigraded; the first index is the cohomological grading and the second is inherited from the gradings
on Γ and M .

Recall (e.g. [21, §2]) the Hopf algebroid given to us by the p-typical factor of complex cobordism:
(BP∗, BP∗BP ). We will work at the prime p = 2 throughout this paper. The Adams-Novikov
spectral sequence for a connective spectrum X takes the following form:

Es,u2 = Hs,u(BP∗BP ;BP∗(X)) =⇒ πu−s(X)⊗ Z(2), dr : Es,ur −→ Es+r,u+r−1r .

The coefficient ring of BP is a polynomial algebra,

BP∗ = Z(2)[v1, v2, . . .] , |vi| = 2(2i − 1) .

As in [20], we have a short exact sequence of BP∗BP -comodules

0 −→ BP∗ −→ 2−1BP∗ −→ BP∗/2
∞ −→ 0 ,

which gives rise to a connecting homomorphism

δ : H0,∗(BP∗BP ;BP∗/2
∞) −→ H1,∗(BP∗BP ;BP∗) .
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Following [20], define x = v21−4v−11 v2 ∈ 2−1v−11 BP∗. When s ≥ 2, the image of xs/8s in v−11 BP∗/2
∞

lies in the subgroup BP∗/2
∞. We define

αs =


δ(vs1/2) s ≥ 1 and odd

δ(v21/4) s = 2

δ(xs/2/4s) s 6= 2 and even .

Proposition 2.1 ( [20]). These classes generate H1,∗(BP∗BP ) and are of the same 2-order as the
denominator of the element to which δ was applied.

The element α1 is a permanent cycle detecting η ∈ π1(S). In Lemma 7.2 we will show that for
s 6= 2, αs is not killed by any power of α1. This is [20, Corollary 4.23], but our proof is different. We
will analyze the images of these elements in α−11 H∗(BP∗BP ), an object we will compute explicitly.
We show that these classes, and 1, generate α−11 H∗(BP∗BP ) as an F2[α

±1
1 ]-vector space.

3 The algebraic Novikov spectral sequence

One of the best tools for gaining information about the E2-page of the Adams-Novikov spectral
sequence is the algebraic Novikov spectral sequence [19, 24], which arises from filtering the cobar
complex Ω∗(BP∗BP ) by powers of the augmentation ideal

I = ker (BP∗ → F2) .

In this paper we will write A for the dual of the Steenrod algebra and P for the Hopf subalgebra
of squares in A. Write

ζn = ξ
2
n

for the square of the conjugate of the Milnor generator ξn, so that

P = F2[ζ1, ζ2, . . .]

with diagonal

∆ζn =
∑
i+j=n

ζi ⊗ ζ2
i

j .

Define the graded algebra in P -comodules

Q = F2[q0, q1, . . .] , |qi| = (1, 2(2i − 1)) ,

with coaction defined by

qn 7−→
∑
i+j=n

qi ⊗ ζ2
i

j .

Write Qt for the component of Q with first gradation t; this is the “Novikov degree.” Then [19]

grtΩs(BP∗BP ) = Ωs(P ;Qt) (3.1)

and the algebraic Novikov spectral sequence takes the form

Es,t,u1 = Hs,u(P ;Qt) =⇒ Hs,u(BP∗BP ) , dr : Es,t,ur −→ Es+1,t+r,u
r . (3.2)
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Certain elements will be important for us. We will abbreviate the element in H0,0(P ;Q1)
represented by q0[ ] to q0, and write hn for the element in H1,2n+1

(P ;Q0) represented by [ζ2
n

1 ].
The algebra H∗(P ;Q) is not only the E1-page for the algebraic Novikov spectral sequence, but

also the E2-page for the Cartan-Eilenberg spectral sequence associated to the extension of Hopf
algebras

P −→ A −→ E,

where E denotes the exterior algebra E[ξ1, ξ2, . . .]. The E2 term has the form H∗(P ;H∗(E)), and

H∗(E) = F2[q0, q1, . . .] = Q , qn−1 = [ξn] .

The coaction of P on Q coincides with the action described above. The extension spectral sequence
converges to the E2-page of the Adams spectral sequence:

Es,t,u2 = Hs,u(P ;Qt) =⇒ Hs+t,u+t(A), dr : Es,t,ur −→ Es+r,t−r+1,u+r−1
r . (3.3)

This leads to the following square of spectral sequences [19,24]:

Hs,u(P ;Qt)
CESS +3

ANSS

��

Es+t,u+t2 (S;H)

ASS

��
Es,u2 (S; ;BP )

NSS +3 πu−s(S)

(3.4)

It is useful to keep in mind two projections of the trigraded object H∗(P ;Q∗), corresponding to
the two spectral sequences of which it is an initial term. The “Novikov projection” displays (u−s, s)
and suppresses the filtration grading in the algebraic Novikov spectral sequence (Novikov weight);
it presents the spectral sequence as it will appear in E2(S;BP ). The “Adams projection” displays
(u− s, s+ t), and suppresses the filtration grading s in the Cartan-Eilenberg spectral sequence; it
presents the spectral sequence as it will appear in E2(S;H).

In Figure 1 we have shown the low-dimensional part of these two projections. Vertical black
lines indicate multiplication by q0. The vertical blue arrow indicates a q0 tower which continues
indefinitely. Black lines of slope one indicate multiplication by h0. The blue arrows of slope one
indicate h0 towers which continue indefinitely. Green arrows denote algebraic Novikov differentials
and red arrows denote Cartan-Eilenberg differentials. On the first chart square nodes denote
multiple basis elements connected by q0-multiplication; the number to the upper left indicates how
many such basis elements.

4 Localizing the algebraic Novikov E1-page.

We wish to localize the algebraic Novikov spectral sequence by inverting h0. We begin with a well-
known localization theorem, dealing with comodules over the dual Steenrod algebra A. In working
with ordinary homology we will work with left comodules, to be consistent with our presentation
of the proof of Theorem 9.3.3 below, though of course the categories of left comodules and right
comodules are equivalent via the anti-automorphism in the Hopf algebra A. Write q0 for the class
of [ξ1] in H1,1(A). It acts on H∗(A;M) for any A-comodule M . Write E for the quotient Hopf
algebra

E = A/(ξ21 , ξ2, ξ3, . . .) .
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Figure 1: H∗(P ;Q) in Novikov and classical Adams projections. Green arrows are algebraic Novikov
differentials and red arrows are Cartan-Eilenberg differentials.
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It is the exterior algebra generated by the image of ξ1. Any A-comodule M becomes an E-comodule,
and an E-comodule structure on M is equivalent to a degree −1 differential Sq1 on M given in
terms of the coaction by

x 7−→ 1⊗ x+ ξ1 ⊗ xSq1 .

Proposition 4.1. Let M be an A-comodule such that Mu = 0 whenever u < 0, and consider the
following diagram.

H∗(A;M) //

��

H∗(E;M)

��
q−10 H∗(A;M) // q−10 H∗(E;M)

The top map is surjective in bidegrees (s, u) with u− s < 2s− 2 and an isomorphism in bidegrees
with u − s < 2s − 5, i.e. above a line of slope 1/2 in the usual (u − s, s) plot. The bottom map is
an isomorphism and the right map is an isomorphism for bidegrees (s, u) with s > 0. Moreover,

q−10 H∗(E;M) = H(M ; Sq1)⊗ F2[q
±1
0 ] .

Proof. The cotensor product A�EM is a submodule of A⊗M . Since the coaction mapM −→ A⊗M
is associative, it factors through a map i : M −→ A�EM . Define L by the following short exact
sequence of A-comodules.

0 //M
i // A�EM // L // 0 (4.2)

We claim that Hs,u(A;L) = 0 whenever u− s < 2s− 2.
If M = F2, the middle comodule A�EF2 is the homology of the integral Eilenberg Mac Lane

spectrum. It is well known, in that case, that the map i induces an isomorphism in Sq1-homology.
(One way to see this is to think about the dual: left multiplication by Sq1 gives a bijection between
the Cartan-Serre basis elements for H∗(HZ) with even leading entry and those with odd leading
entry, with the exception of the basis element 1 in dimension 0.) Filtering the general comodule M
by dimension shows that the same is true in general. We deduce that L is Sq1-acyclic and so we
can apply [1, Theorem 2.1] or [2, Theorem 1.1] to give the claimed vanishing line for H∗(A;L).

Under the identification H∗(A;A�EM) = H∗(E;M), the map induced by applying H(A;−) to
i is the top map in the proposition statement and so the first statement in the proposition follows
from the cohomology long exact sequence associated to (4.2) and the vanishing line just proved.

Since q0 acts vertically in (u−s, s) coordinates we find that the bottom map is an isomorphism.
The remaining statements follow from the identification

H∗(E;M) =
ker (Sq1)⊗ F2[q0]

im(Sq1)⊗ (q0)
.

Thus the localization of the Adams E2-page coincides with the E2-page of the Bockstein spectral
sequence. In fact [17,19] the two spectral sequences coincide from E2 onwards, giving a qualitative
strengthening of Serre’s observation that π∗(X)⊗Q ∼= H∗(X;Q).

By doubling degrees we obtain a parallel result for the Hopf subalgebra P of A. Now E will be
the quotient Hopf algebra P/(ζ21 , ζ2, . . .). Any P -comodule M becomes an E-comodule, and just as
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we wrote Sq1 above we will write P 1 for the operator on a right E-comodule corresponding to ζ1.
A P -comodule splits naturally into even and odd parts, which one can handle separately to prove
the following result.

Proposition 4.3. Let M be a P -comodule such that Mu = 0 whenever u < 0, and consider the
following diagram.

H∗(P ;M) //

��

H∗(E;M)

��
h−10 H∗(P ;M) // h−10 H∗(E;M)

The top map is surjective in bidegrees (s, u) with u− s < 5s− 4 and an isomorphism in bidegrees
with u− s < 5s− 10, i.e. above a line of slope 1/5 in the usual (u− s, s) plot. The bottom map is
an isomorphism and the right map is an isomorphism for bidegrees (s, u) with s > 0. Moreover,

h−10 H∗(E;M) = F2[h
±1
0 ]⊗H(M ;P 1) .

As an application, we obtain a calculation of the h0-localization of the E1-page of the algebraic
Novikov spectral sequence together with the range in which the localization map is an isomorphism.

Corollary 4.4. For any t, the localization map H∗(P ;Qt) −→ h−10 H∗(P ;Qt) is surjective in
bidegrees (s, u) with u−s < 5s−4 and an isomorphism in bidegrees with u−s < 5s−10. Moreover,

h−10 H∗(P ;Q) = F2[h
±1
0 , q21, q2, q3, . . .] .

Proof. It is enough to note that q1P
1 = q0, kerP 1 = F2[q0, q

2
1, q2, q3, . . .], and imP 1 = (q0).

In order to check convergence of the localized algebraic Novikov spectral sequence we will require
some basic vanishing lines, which are suggested by the diagrams in Figure 1. The first one is easy:

Lemma 4.5. Hs,u(P ;Qt) = 0 when u− s < s.

Proof. The cobar construction has the form

Ωs,u(P ;M) = (P
⊗s ⊗M)u

where P denotes the positive-dimensional part of P . Since P u = 0 for u < 2, Ωs,u(P ;M) = 0 for
u < m+ 2s if Mu = 0 for u < m.

For any t, Qt,u = 0 for u < 0. Thus Ωs,u(P ;Qt) = 0 for u < 2s.

This crude vanishing line can be improved when u > s:

Lemma 4.6. Hs,u(P ;Qt) = 0 when 0 < u− s < s+ t.

Proof. The cobar complex itself vanishes if u, s, or t is negative. The groups H0,∗(P ;Qt) constitute
the primitives of Qt, which are generated as a vector space by qt0. The constraint 0 < u− s avoids
these classes.

Define an algebra map ϕ : Q −→ P by sending qn to ζn (so q0 maps to 1). Restricting to
Novikov degree t gives us an embedding of P -comodules, and, by the vanishing of H∗(P ;P ), the
boundary map Hs−1,u(P ;P/Qt) −→ Hs,u(P ;Qt) in the associated long exact sequence is surjective
as long as s > 0. Now (P/Qt)u = 0 if u < 2(t+ 1), since the first element not in the image of ϕ|Qt

is ζt+1
1 . Thus Hs−1,u(P ;P/Qt) is zero provided that u < 2(s− 1) + 2(t+ 1) = 2s+ 2t. Since Qt = 0

for t < 0, we may assume t ≥ 0, and then u− s < s+ t implies u < 2s+ 2t.
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5 The localized algebraic Novikov spectral sequence

The algebraic Novikov spectral sequence is multiplicative since it is obtained by filtering the DG
algebra Ω∗(BP∗BP ) by powers of a differential ideal. Since the class h0 ∈ E1,0,2

1 is a permanent
cycle and H∗(BP∗BP ) is commutative, inverting h0 gives a new multiplicative spectral sequence.

In forming this localization we may lose convergence; this is the issue at stake in the “telescope
conjecture” of chromatic homotopy theory. Here we are lucky, however. Convergence is preserved
because, as was the case in [19], the operator we are inverting acts parallel to a vanishing line. This
vanishing line is visible in the lower diagram in figure 1 and is the content of Proposition 4.6.

The vanishing line has the following two implications for the algebraic Novikov spectral sequence.

1. If x ∈ H∗(BP∗BP ) is not killed by any power of α1, then for some k, αk1x has a representative
at E1 that is not killed by any power of h0.

2. For any a ∈ E1, h
k
0a is a permanent cycle for all sufficiently large k (though it may be zero).

The first fact tells us that we detect everything we are supposed to; the second fact tells us that
we do not detect more than we are supposed to. A more thorough account of similar convergence
issues may be found in [3].

Coupled with the isomorphism range in Corollary 4.4, the natural map of spectral sequences
from the algebraic Novikov spectral sequence to its localized counterpart implies an isomorphism
range for the α1-localization of the Adams-Novikov E2-page for the sphere.

Proposition 5.1. The localization map

H∗(BP∗BP ) −→ α−11 H∗(BP∗BP )

is surjective in bidegrees (s, u) for which u− s < 5s− 4 and an isomorphism in bidegrees for which
u− s < 5s− 10, i.e. above a line of slope 1/5 in the usual (u− s, s) plot.

Proof. We use the natural map of spectral sequences from the algebraic Novikov spectral sequence
to its localized counterpart.

First, Lemma 4.6 implies that in each bidegree (s, u) other than (0, 0),

Es,t,u1 = 0 for t > u− 2s .

The same then holds for Er for all r ≥ 0, so by convergence of the spectral sequence

F u−2sHs,u(BP∗BP ) = 0 for (s, u) 6= (0, 0) .

Multiplication by h0 preserves u−2s and t, so the same facts hold for the localized spectral sequence
and for the filtration of α−11 H∗(BP∗BP ).

Next, observe that Lemma 4.6 implies that

dr(E
s,t,u
r ) = 0 for r > u− 2(s+ 1)− t

and the fact that Qt = 0 for t < 0 implies that

Es,t,ur ⊇ im(dr) = 0 for r > t ,

10



so in each tridegree the spectral sequence terminates at a finite stage.
Finally, we claim that for each r ≥ 1 the map at Er is surjective in bidegrees (s, u) for which

u − s < 5s − 4 and an isomorphism in bidegrees for which u − s < 5s − 10. We know this to be
true at the E1-page by Proposition 4.3; suppose it is true for the Er-page. A dr-differential in the
algebraic Novikov spectral sequence has (s, u) bidegree (1, 0). Because u − s < 5s − 4 if and only
if u − (s + 1) < 5(s + 1) − 10, it has source in the surjective region if and only if it has target
in the isomorphism region. Thus, we can deduce the result for the Er+1-page using the following
simple observation: if a map of cochain complexes is a surjection in degree n and an isomorphism
in higher degrees, then the same is true of the map induced in cohomology.

The result now follows by an induction on the filtration.

6 Computing the localized algebraic Novikov spectral sequence

We begin by identifying some permanent cycles in the algebraic Novikov spectral sequence. Recall
that

BP∗BP = BP∗[t1, t2, . . .] , |ti| = 2(2i − 1) .

Lemma 6.1. The following elements are cocycles in the cobar construction Ω∗(BP∗BP ):

1. [ ] and [t1];

2. v21[t1] + 2v1[t
2
1] + 4

3 [t31];

3. v2[t1|t1] + v1[t1|t31]− v1[t21|t21] + v1[t
3
1|t1]− 3v1[t1|t2] + 2[t1|t1t2] + 2[t21|t31]− 2[t21|t2] + 2[t1t2|t1].

Proof. Direct calculation.

Corollary 6.2. The following elements are cocycles in the cobar construction Ω∗(P ;Q):

1. [ ] and [ζ1];

2. q21[ζ1] + q0q1[ζ
2
1 ] + q20[ζ31 ];

3. q2[ζ1|ζ1]+q1[ζ1|ζ31 ]+q1[ζ
2
1 |ζ21 ]+q1[ζ

3
1 |ζ1]+q1[ζ1|ζ2]+q0[ζ1|ζ1ζ2]+q0[ζ21 |ζ31 ]+q0[ζ

2
1 |ζ2]+q0[ζ1ζ2|ζ1].

Moreover, these elements define the classes 1, h0, 〈h1, q20, h0〉 and 〈h0, q0, h21〉 in H∗(P ;Q) and they
are permanent cycles in the algebraic Novikov spectral sequence.

Proof. Checking the first Massey product is straightforward. The second stops being difficult once
one realizes that d

(
q2[ζ1] + q1[ζ2 + ζ31 ] + q0[ζ1ζ2]

)
= q0[ζ

2
1 |ζ21 ].

The main result of this section is the following proposition, which completely describes the
localized algebraic Novikov spectral sequence.

Proposition 6.3. In the localized algebraic Novikov spectral sequence

h−10 H∗(P ;Q) = F2[h
±1
0 , q21, q2, q3, . . .] =⇒ α−11 E2(S;BP ) ,

the elements 1, h0, q21 and q2 are permanent cycles, while d1qn+1 = q2nh0 for n ≥ 2.
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Proof. The images in Ω∗(E[ζ1];Q) of the elements in Corollary 6.2 are [ ], [ζ1], q
2
1[ζ1], q2[ζ1|ζ1],

respectively. So there are permanent cycles in the algebraic Novikov E2-term that map to 1, h0,
q21h0, and q2h

2
0 in the localized E2-term. We are left with proving the differential, so suppose that

n ≥ 2 and write E for E[ζ1].
By Proposition 4.3, there exists a positive integer N such that qn+1h

N
0 is in the image of

H∗(P ;Q1) → H∗(E;Q1). Pick an X in HN,∗(P ;Q1) mapping to qn+1h
N
0 . To complete the proof

of the proposition it is enough to calculate d1X in the unlocalized algebraic Novikov spectral and
check that its image under H∗(P ;Q)→ H∗(E;Q) is q2nh

N+1
0 .

Since Ω∗(P ;Q) → Ω∗(E;Q) is surjective, we can find a cocycle in Ω∗(P ;Q) that represents
X and maps to qn+1[ζ1]

N in Ω∗(E;Q). Now all elements of the monomial basis for Ω∗(P ;Q) that
include a tensor factor containing some monomial in P other than ζ1 map to zero in Ω∗(E;Q). This
means that when we write our cocycle in this monomial basis it must contain the term qn+1[ζ1]

N .
We write the cocyle representing X as qn+1[ζ1]

N +x, where x is a linear combination of other basis
elements.

By (3.1) we have a surjection

IΩ∗(BP∗BP ) −→ Ω∗(P ;Q1) .

We will make use of the set-theoretic splitting that in each term of a linear combination of monomial
basis elements replaces each ζi by ti and each qi by vi. (Remember that v0 = 2; this splitting is not
linear.) With this choice of splitting, vn+1[t1]

N +y is selected to map to our cocycle representing X,
where y is a linear combination of terms, each of which involves, as a tensor factor, some monomial
in the ti’s other than the monomial t1, and such that each nonzero coefficient is vi for some i.

Since qn+1[ζ1]
N + x ∈ Ω∗(P ;Q) is a cocycle, d(vn+1[t1]

N + y) ∈ I2Ω∗(BP∗BP ). Mapping to
gr2Ω∗(BP∗BP ) = Ω∗(P ;Q2) gives an element representing d1X ∈ H∗(P ;Q). As explained at the
start of the proof, we wish to understand the image of this element in H∗(E;Q).

To do this we will consider the BP∗-basis of the cobar construction given by placing a monomial
in the ti’s in each tensor factor. Any element of I2Ω∗(BP∗BP ) is uniquely a linear combination of
these elements with coefficients in I2. Of these terms, only those of the form α[t1]

j with α /∈ I3
map nontrivially to Ω∗(E;Q2). The elements d(vn+1[t1]

N ) and dy are linear combinations of these
basis elements with coefficients in BP∗. Since qn+1[ζ1]

N is not a cocycle, neither set of coefficients
by themselves need to lie in I2, though their sums do. First, we look at the contribution from
d(vn+1[t1]

N ).

Lemma 6.4. For n ≥ 1, the coefficient of [t1]
N+1 in d(vn+1[t1]

N ) is v2n mod I3.

Proof. Because t1 is primitive it is enough to investigate the coefficient of t1 in ηRvn+1. Since the
elements ηRvn+1 and vn+1 = ηLvn+1 have the same augmentation, we have

ηR(vn+1) ≡ vn+1 + ct1 mod (t21, t2, t3, . . .)

for some c ∈ BP2(2n+1−2). The only monomial in the vi’s of the degree of c that is not in I3 is v2n.
Moreover, 2v2nt1 ∈ I3 so that

ηR(vn+1) ≡ vn+1 + bv2nt1 mod I3 + (t21, t2, t3, . . .)

where b = 0 or 1. Since [21, 5.1]

ηR(vn+1) ≡ vn+1 + vnt
2n

1 − v2nt1 mod (2, v1, . . . , vn−1)

we must have b = 1.
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Mapping v2n[t1]
N+1 ∈ I2Ω∗(BP∗BP ) to gr2Ω∗(BP∗BP ) = Ω∗(P ;Q2) gives q2n[ζ1]

N+1. Mapping
further to Ω∗(E;Q), gives a cocycle representing q2nh

N+1
0 . In order to complete the proof it suffices

to show that the coefficient of [t1]
N+1 in dy is zero.

Recall that y is a linear combination of terms, each of which involves, as a tensor factor, some
monomial in the ti’s other than the monomial t1. The differential in the cobar complex makes use
of the right unit and the diagonal map in BP∗BP . When evaluating dy, the right unit is used
on the coefficients of the terms in y. Since none of the monomials occurring in y are of the form
[t1]

N , BP∗ multiples of [t1]
N+1 cannot arise from this part of the differential. Thus we just need to

consider terms coming from the diagonal map. The following simple lemma is crucial.

Lemma 6.5. The only monomials in the ti’s that contain a nonzero BP∗-multiple of t1 ⊗ t1 in
their diagonal are t21 and t2.

Proof. Recall that we have an inclusion BP∗ ⊂ H∗(BP ) = Z(2)[m1,m2, . . .] given by the Hurewicz
homomorphism. Thus, we can compute in H∗(BP ∧ BP ) = H∗(BP )[t1, t2, . . .] and there we have
(see [21]) an inductive formula for the diagonal of tn.

∆tn =
∑

i+j+k=n

mit
2i

j ⊗ t2
i+j

k −
n∑
i=1

mi(∆tn−i)
2i .

The first sum does not contain a term t1 ⊗ t1. Moreover, the only terms in ∆tn−i with a 1 on one
side or the other are tn−i ⊗ 1 and 1⊗ tn−i. Thus, in the expression of (∆tn−i)

2i , the only way one
can achieve t1 ⊗ t1 is with i = 1 and n− i = 1 so that n = 2.

The diagonal is multiplicative and so one can achieve t1⊗ t1 in the diagonal of a monomial only
in the cases t2 and t21.

Now consider a tensor product of monomials, a basis element in the cobar construction. The
differential is computed by applying the reduced diagonal to each factor and taking the alternating
sum. One receives a term that is a BP∗-multiple of [t1]

N+1 only by starting with a tensor product
of monomials in which all but one term is t1, and the remaining term is either t21 or t2.

We should call attention to a subtlety here. When the reduced diagonal is applied to a monomial,
the result is a BP∗-linear combination of monomials. Given a basis element of the cobar complex,
to express the value of the differential on it as a BP∗-linear combination of tensor products of such
monomials, one needs to pull coefficients outside the tensor products. This operation is nontrivial
since the tensor products, while formed over BP∗, use the left and right actions on the right and
left factors, respectively. In particular, t⊗vt′ = ηR(v)t⊗t′. The element ηR(v) will itself be a linear
combination of monomials in the ti’s (where we now include 1 as t0) so if the expression involves
more than [t1]’s before this maneuver, it will continue to involve more than [t1]’s afterwards as well.

Now recall that y has internal dimension 2(2n+1 − 1) + 2N . The internal dimensions of
[t1]

N−i[t21][t1]
i−1 and [t1]

N−i[t2][t1]
i−1 are 2(N + 1) and 2(N + 2), respectively and so the coef-

ficients of these basis elements in y must have internal dimensions 2(2n+1 − 2) and 2(2n+1 − 3),
respectively. But recall that the coefficient of each term appearing in y is a vi. The first dimension
does not occur as the dimension of a vi, and the second occurs only for n = 1.

We note that when n = 1 such terms do occur, as we see in Lemma 6.1, where the third cocycle
contains the terms v2[t1|t1] and −3v1[t1|t2]. These provide two canceling v21[t1|t1|t1] terms. Of
course, this is how we saw q2h

2
0 was a permanent cycle.

But now we are assuming n ≥ 2, so the proof of Proposition 6.3 is complete.
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We see immediately from the proposition that the E2-page of the localized algebraic Novikov
spectral sequence consists of permanent cycles and so we obtain the following corollary.

Corollary 6.6. The E∞-page of the localized algebraic Novikov spectral sequence is

F2[h
±1
0 , q21, q2]/(q

2
2).

7 What happens to αs?

We now return to the elements αs of Section 2. In order to say what happens to them under the
localization map it is convenient to consider the mod 2 Moore spectrum analogues of our results
for S, which are of interest in their own right. We write S/2 for the mod 2 Moore spectrum. Just
as before, when we filter Ω∗(BP∗BP ;BP∗(S/2)) = Ω∗(BP∗BP/2) by powers of the augmentation
ideal BP∗BP/2 −→ F2, we arrive at the “mod 2 algebraic Novikov spectral sequence”

Es,t,u1 = Hs,u(P ; [Q/(q0)]
t) =⇒ Hs,u(BP∗BP/2) , dr : Es,t,ur −→ Es+1,t+r,u

r .

Again h0 ∈ E1,0,2
1 is a permanent cycle, and, continuing to follow the argument above, we arrive at

the following result.

Proposition 7.1. The localized mod 2 algebraic Novikov spectral sequence converges, and has

E1 = h−10 H∗(P ;Q/(q0)) = F2[h
±1
0 , q1, q2, . . .] .

The elements q1 and q2 are permanent cycles in this spectral sequence and we have

d1qn+1 = q2nh0 for n ≥ 2 .

The map S −→ S/2 induces a map between the localized algebraic Novikov spectral sequences. At
the E1-page, the map is given by the inclusion

F2[h
±1
0 , q21, q2, q3, . . .] −→ F2[h

±1
0 , q1, q2, . . .] .

At the E∞-page, it is given by the inclusion

F2[h
±1
0 , q21, q2]/(q

2
2) −→ F2[h

±1
0 , q1, q2]/(q

2
2) .

We now locate the elements αs in the localized algebraic Novikov spectral sequence.

Lemma 7.2. For s 6= 2, αs is α1-free and its image in α−11 H∗(BP∗BP ) is detected by qs−11 h0 when
s is odd and by qs−41 q2h0 when s is even.

Proof. When s is odd αs has a cocycle representative with leading term svs−11 [t1] because ηRv1 =
v1 + 2t1. All other terms have the same filtration and involve higher powers of t1. Thus, αs is
detected by qs−11 h0.

Suppose s is even and bigger than 2. Because the map induced by S → S/2 between our
localized algebraic Novikov spectral sequences is injective at each page, it suffices to check the
result for the image of αs in H∗(BP∗BP ;BP∗/2). For s > 4 one can find (see [25, 4.4.35], for
instance) an explicit cocycle representative for αs:

vs−41 v2[t1] + vs−31 [t2] + vs−31 [t31] .
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This element is detected by qs−41 q2h0 in the localized algebraic Novikov spectral sequence.
For s = 4 one finds, by direct computation, the following cocycle respresentative for α4:

[t41] + v2[t1] + v1[t2] + v1[t
3
1] + v21[t21] .

Upon multiplying by α3
1 we have leading term [t41|t1|t1|t1]. It is classical that h30h2 = 0 in H∗(P ).

Find y ∈ Ω3P with dy = [ζ41 |ζ1|ζ1|ζ1]. Then obtain y′ ∈ Ω3(BP∗BP ) by replacing ζ’s by t’s. Using
Lemma 6.5 we see that dy′ cannot contain v2[t1|t1|t1|t1]. Thus, picking off the elements of filtration
1 with only single powers of t1’s appearing in(

[t41] + v2[t1] + v1[t2] + v1[t
3
1] + v21[t21]

)
· [t1|t1|t1] + dy′

gives v2[t1|t1|t1|t1]. We deduce that α3
1α4 is detected by q2h

4
0 in the localized algebraic Novikov

spectral sequence.

We can now obtain an explicit description of the localized Adams-Novikov E2-page, in terms of
elements which exist before localizing.

Corollary 7.3. α−11 H∗(BP∗BP ) = F2[α
±1
1 , α3, α4]/(α

2
4).

Proof. Consider the natural map Z(2)[α1, α3, α4] −→ H∗(BP∗BP ). It can be checked that α1α
2
4 = 0

in H∗(BP∗BP ); this follows for example from Toda’s relation ησ2 = 0 [26] in π∗(S). We also have
2α1 = 0. This map thus factors through a map

Z(2)[α1, α3, α4]/(2α1, α1α
2
4) −→ H∗(BP∗BP ) .

Inverting α1 gives a map f : F2[α
±1
1 , α3, α4]/(α1α

2
4) −→ α−11 H∗(BP∗BP ).

We have shown that α3 and α4 have images in α−11 H∗(BP∗BP ) detected by q21h0 and q2h0, re-
spectively. The E∞-page of the localized algebraic Novikov spectral sequence is F2[h

±1
0 , q21, q2]/(q2);

for each bidegree (s, u) there is only one t such that Es,t,u∞ 6= 0 and so the filtration is locally finite.
These facts, together with convergence of the localized algebraic Novikov spectral sequence, allow
one to check that f is injective and surjective.

8 The localized motivic Adams-Novikov spectral sequence

Here is our main result about motivic homotopy groups. We are working over an algebraically
closed base field of characteristic zero.

Theorem 8.1. Let η ∈ π1,1(SMot) and σ ∈ π7,4(SMot) denote the elements of motivic Hopf invariant
1, and µ9 the nonzero element in π9,5(SMot). Then 2η = 0, σ2 is η-torsion, and

π∗,∗(η
−1SMot) = η−1π∗,∗(SMot) = F2[η

±1, σ, µ9]/(σ
2) .

The first step is to move to the 2-complete context. We owe the following observation to the
referee.

Lemma 8.2. For any motivic spectrum,

η−1X −→ η−1(X∧2 )

is an equivalence.
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Proof. Since 2η = 0, there is a map η−1X/2 −→ η−1X, natural in the motivic spectrum X, that
splits the map induced by X −→ X/2. On the other hand, the completion map X/2 −→ (X/2)∧2
is an equivalence. The result follows.

We now briefly recall the theorems of Voevodsky [14, 27] concerning mod 2 motivic homology
and the motivic Steenrod algebra over an algebraically closed field of characteristic 0.

Motivic homotopy and homology are graded by a free abelian group of rank two. One pair of
parameters is dimension and weight and with this bigrading |τ | = (0,−1). Other parameters are
the coweight (or “Milnor-Witt degree” [8]) and the Novikov or Chow [7] degree; these satisfy the
relations

cowt + wt = dim , cowt − wt = deg .

Each of these parameters has its uses. For example, Morel showed that the motivic stable homotopy
ring is zero in negative coweight, and given by the Milnor-Witt K-theory (which he defined for the
purpose) in coweight zero. Our bigrading will be by dimension and weight.

The coefficient ring of mod 2 motivic homology, written H, is M2 = F2[τ ].
Hu, Kriz, and Ormsby [14] (see also [6]) describe a “motivic Adams-Novikov spectral sequence.”

To circumvent the fact that the full structure of the motivic Thom spectrum MGL is unknown
they work with the H-completion. They show that this motivic spectrum splits as a wedge of
suspensions of a motivic analogue of the Brown-Peterson spectrum, denoted here by BPM , and
use it to construct a spectral sequence.

They show that the H-complete motivic analogue of the Hopf algebroid (BP∗, BP∗BP ) is simply
the classical one tensored with Z2[τ ] (where Z2 denotes the 2-adic integers). It follows that the
E2-page of the motivic Adams-Novikov spectral sequence is obtained from the classical one by
completing at 2 and adjoining τ , and that the corresponding algebraic Novikov spectral sequence
is obtained by adjoining τ . Thus, our work above has the following consequence.

Corollary 8.3. Over an algebraically closed field of characteristic zero, the H-complete motivic
Adams-Novikov E2-page localizes to α−11 E2 = F2[τ, α

±1
1 , α3, α4]/(α

2
4).

Dugger and Isaksen observe that the motivic Adams-Novikov spectral sequence converges to
π∗((SMot)

∧
H). In [13] this mod 2 homology completion is identified with the 2-adic completion

(SMot)
∧
2 ; so the H-completed motivic Adams-Novikov spectral sequence has the form

Es,u,w2 = H∗(BP∗BP )⊗ Z2[τ ]s,u,w
s

=⇒ πu−s,w((SMot)
∧
2 ) , dr : Es,u,wr −→ Es+r,u+r−1,wr .

If x ∈ Hs,u(BP∗BP ) is nonzero then u is even and τnx defines an element ofH∗(BP∗BP )[τ ]s,u,u/2−n.
We can recover the classical Adams-Novikov spectral sequence by forgetting the weight and setting
τ = 1.

Inverting η does not harm convergence of this spectral sequence, since powers of α1 constitute
the vanishing line at E2; it converges to η−1π∗((SMot)

∧
2 ).

The classical differential d3α3 = α4
1 appears motivically as

d3α3 = τα4
1 .

When we invert α1, this differential has the effect of killing τ , and using the relations above we find
that

E∞ = F2[α
±1
1 , α2

3, α4]/(α1α
2
4) = F2[α

±1
1 , α4, α5]/(α

2
4) .
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To see what this implies about motivic homotopy groups, note that classically η, σ, µ9 and
ηµ9 = µ10 are detected by α1, α4, α5 and α1α5 = α2

3, respectively, in the Adams-Novikov spectral
sequence. These facts hold motivically as well [12], and the relation ησ2 = 0 is true motivically
also in the 2-complete sphere [15]. So we receive a map

F2[η, σ, µ9]/(2η, ησ
2) −→ π∗,∗((SMot))

∧
2 .

Now η, σ, and µ9 are detected by α1, α4, and α5 respectively. Convergence of the η-localized
H-completed motivic Adams-Novikov spectral sequence then shows that

F2[η
±1, σ, µ9]/(2η, ησ

2) −→ π∗,∗((SMot)
∧
2 )

is an isomorphism.
This completes the proof of Theorem 8.1.

9 A comparison of spectral sequences

9.1 The diagram

In this final section, we complete the calculation of a square of spectral sequences, a localized
version of the following square.

H∗(P ;Q)[τ ]
CESS +3

ANSS[τ ]

��

E2(SMot;H)

MASS
��

E2(SMot;BPM)
MNSS +3 π∗,∗(SMot)

The right spectral sequence is the motivic Adams spectral sequence as studied in [6, 14]. The
bottom spectral sequence is the motivic Adams-Novikov spectral sequence described above, which
was first studied in [14]. The left spectral sequence is the motivic algebraic Novikov spectral se-
quence, obtained by filtering π∗(BPM) = BP∗[τ ] by powers of the kernel of the augmentation
π∗(BPM) −→ F2[τ ]. By the results of Hu, Kriz, and Ormsby [14] this is simply the alge-
braic Novikov spectral sequence described in Section 3 extended by adjoining τ . The grading
of H∗(P ;Q)[τ ] follows that of H∗(BP∗BP )[τ ]. If x ∈ Hs,u(P ;Qt) is nonzero then u is even and
τnx defines an element of H∗(P ;Q)[τ ]s,t,u,u/2−n. The top spectral sequence is the Cartan-Eilenberg
spectral sequence associated to the extension of Hopf algebras

M2 ⊗ P −→ AMot −→M2 ⊗ E. (9.1.1)

This motivic Cartan-Eilenberg spectral sequence is indexed just as in (3.3), but with the additional
weight grading that is preserved by differentials. The vanishing lines of (4.5) and (4.6) ensure that
we can localize all the spectral sequences to obtain a square of convergent spectral sequences. The
behavior of these spectral sequences is summarized in the following diagram.

F2[τ, h
±1
0 , q21, q2, q3, . . .]

d3q21=τh
3
0 +3

d1qn+1=q2nh0, n≥2
��

F2[h
±1
0 , v41, v2, v3, . . .]

d2vn+1≡v2nh0, n≥2
��

F2[τ, α
±1
1 , α3, α4]/(α1α

2
4)

d3α3=τα4
1 +3 F2[η

±1, σ, µ9]/(ησ
2)
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We have calculated the left spectral sequence and the bottom one in the earlier sections of this
paper. Guillou and Isaksen calculated the E2-page of the localized motivic Adams spectral sequence
in [9]. In the next section, we will give a different proof of their result by calculating the top spectral
sequence. In the final section, we will use the techniques of [19] to determine the differentials in the
localized motivic Adams spectral sequence, verifying another conjecture of Guillou and Isaksen [9].

9.2 The localized Cartan-Eilenberg spectral sequence

The extension of Hopf algebras (9.1.1) gives rise to a Cartan-Eilenberg spectral sequence, which we
may localize by inverting h0 ∈ H(P ;Q)[τ ]1,0,2,1.

Lemma 9.2.1. In the localized Cartan-Eilenberg spectral sequence we have d3q
2
1 = τh30. The classes

q41 and qn for n ≥ 2 are permanent cycles and so

E∞ = F2[h
±1
0 , q41, q2, q3, . . .].

Proof. The differential d3q
2
1 = τh30 follows from the unlocalized differential d3〈h1, q20, h0〉 = τh40 and

this is forced on us by our limited knowledge of H∗(AMot). Degree considerations show that q41,
and qn for n ≥ 2, are permanent cycles.

We can now prove the following result, established also by Guillou and Isaksen [9]. We note
that they follow the classical conventions at p = 2 and denote by h1 the class that we call h0 ∈
E1,2,1

2 (SMot;H).

Corollary 9.2.2. There exist classes v41, v2, . . ., with |v41| = (0, 8, 4), |vn| = (0, 2(2n − 1), 2n − 1),
such that

h−10 E2(SMot;H) = F2[h
±1
0 , v41, v2, v3, . . .] .

Proof. We choose a representative for q41, which we call v41, and for n ≥ 2 we choose representatives
for qn, which we call vn. Since the associated graded algebra is free on the classes of these generators,
the result follows.

9.3 Comparing Adams spectral sequences

In this section we will complete the calculation of the localized motivic Adams spectral sequence.
By finding representatives, one sees that in the localized motivic Adams spectral sequence for the
η-local sphere spectrum the elements v41 and v2 are permanent cycles. For the other generators, we
have the following proposition, which follows from the techniques of [19].

Proposition 9.3.1. For n ≥ 2, we have d2vn+1 = v2nh0 modulo higher Cartan-Eilenberg filtration.

We will give an improvement, due to the first author, of the statement and the proof of the
comparison result of [19] (which, in turn, followed ideas from [24]). The second author is eager to
use this opportunity to clarify the proof given in [19], and to fill a gap: Lemma 6.7 is not correct
as stated there. What follows is a correct statement that serves the purpose in [19], and which
will be used in the proof presented here as well. This lemma relates to the comparison of two
boundary maps, and its importance cannot be overstated. It deals with the following situation.
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Let A −→ B −→ C and X −→ Y −→ Z be cofiber sequences. Smash them together to form the
following commutative diagram of cofiber sequences.

A ∧X

��

// A ∧ Y

��

// A ∧ Z

��
B ∧X

��

// B ∧ Y

��

// B ∧ Z

��
C ∧X // C ∧ Y // C ∧ Z

Let b be an element of πn(B∧Y ) that maps to 0 in πn(C∧Z). Then there is an element a ∈ πn(A∧Z)
mapping to the image of b in πn(B ∧Z), and an element c ∈ πn(C ∧X) mapping to the image of b
in πn(C ∧ Y ).

Lemma 9.3.2 (May [16]). The elements a and c can be chosen so that they have the same image
(up to a conventional sign) in πn−1(A ∧ X) under the boundary maps associated to the cofiber
sequences along the top and the left edge of the diagram.

This statement is a small part of an elaborate structure enriching the displayed 3× 3 diagram.
This structure is described in detail and proved by May in [16]. In the founding days of the theory
of triangulated categories, Verdier [4] showed that a 2×2 diagram can always be extended to a 3×3
diagram of cofiber sequences. An analysis of his proof reveals that it actually produces precisely
the structure verified by May for the specific case in which the 3× 3 diagram occurs by smashing
together two cofiber sequences.

For clarity, we will work in the non-motivic context, and in the specific case of BP and HFp
(for any prime p) and the sphere spectrum. We will then indicate the general setting under which
the result holds and this will prove the proposition just stated. Write H for the mod p Eilenberg
Mac Lane spectrum.

So we have the following square of spectral sequences.

Hs,u(P ;Qt)
CESS +3

ANSS

��

Es+t,u+t2 (S;H)

ASS

��
Es,u2 (S;BP )

NSS +3 πu−s(S)

The initial two are the algebraic Novikov spectral sequence (3.2) and the Cartan-Eilenberg spectral
sequence (3.3); the final two are the (H-based) Adam spectral sequence and the Novikov or BP -
based Adams, spectral sequence. Write dHr for the Adams differentials, and dANr for the differentials
in the algebraic Novikov spectral sequence.

Theorem 9.3.3. Suppose x ∈ F sCEE
s+t,u+t
2 (S;H). Then the Cartan-Eilenberg filtration of dH2 x is

higher:
dH2 x ∈ F s+1

CE Es+t+2,u+t+1
2 (S;H) .

Moreover, if x is detected in the Cartan-Eilenberg spectral sequence by a ∈ Hs,u(P ;Qt) then dH2 x is
detected by dAN

1 a ∈ Hs+1,u(P ;Qt+1).
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Proof. The proof depends upon geometric constructions of the two algebraically defined spectral
sequences. Both arise from the canonical BP -resolution of S and so we recall how this resolution
is constructed. From the unit map of the ring spectrum BP we can construct a cofiber sequence

S −→ BP −→ BP. (9.3.4)

Smashing this cofiber sequence with various smash-powers of BP gives the canonical BP -resolution
of S.

S

��

BP

��

|oo · · ·|oo BP∧s

��

|oo BP∧(s+1)

��

|oo · · ·|oo

BP [0] BP [1] BP [s] BP [s+1]

(9.3.5)

Here we use the notation
BP [s] = BP∧s ∧BP,

and the marked arrows indicate that they map from a desuspension. The Adams-Novikov spectral
sequence for the homotopy of a spectrum X is associated to the exact couple arising by smashing
this resolution with X and taking homotopy groups. The maps in the exact couple will be denoted

iBP : πu+s(X ∧BP∧(s+1)) −→πu+s−1(X ∧BP∧s)
jBP : πu+s(X ∧BP∧s) −→πu+s(X ∧BP [s])

kBP : πu+s(X ∧BP [s]) −→πu+s(X ∧BP∧(s+1))

(9.3.6)

The E1 term arising from this exact couple is isomorphic, as a complex, to the cobar complex
Ω∗(BP∗BP ). The algebraic Novikov spectral sequence arises by filtering this complex by powers
of the augmentation ideal in BP∗. In geometric terms, we are filtering π∗(BP

∧s) by the classical
Adams filtration.

Next we set up the Cartan-Eilenberg spectral sequence. Smashing (9.3.4) with a spectrum X
and applying mod 2 homology gives a short exact sequence

0 −→ H∗(X) −→ H∗(BP ∧X) −→ H∗(BP ∧X) −→ 0

(by the Künneth formula) and thus a long exact sequence

· · · −→ Et,u2 (X;H) −→ Et,u2 (X∧BP ;H) −→ Et,u2 (X∧BP ;H)
δ−→ Et+1,u

2 (X;H) −→ · · · . (9.3.7)

This means that applying E2(−;H) to (9.3.5) gives an exact couple and hence a spectral sequence.
We index the spectral sequence so that

Es,t,u1 = Et,u+t2 (BP [s];H)
s

=⇒ Es+t,u+t2 (S;H).

A change of rings theorem identifies Et,u+t2 (BP [s];H) with (Qt ⊗ P⊗s)u, so that our E1-term is
isomorphic, as a complex, to Ω∗(P ;Q). Thus Es,t,u2 = Hs,u(P ;Qt). This spectral sequence is, in
fact, the Cartan-Eilenberg spectral sequence of (3.3). The Cartan-Eilenberg filtration of E2(S;H)
is given by

F sCEE
s+t,u+t
2 (S;H) = im

(
δs : Et,u+t2 (BP∧s;H) −→ Es+t,u+t2 (S;H)

)
. (9.3.8)
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If x = δsz then x is detected in the Cartan-Eilenberg E1-page by the image of z under the map
jBP : Et,u+t2 (BP∧s;H) −→ Et,u+t2 (BP [s];H).

We next recall a construction of the Adams spectral sequence for a spectrum X. We have a
cofiber sequence S −→ H −→ H and we define

H [t] = H ∧H∧t.

Note that we put the factor of H at the left rather than at the right as in the case of BP ; this will
let us keep these two types of resolution separate. The cofiber sequences

H∧(t+1) ∧X | // H∧t ∧X // H [t] ∧X

link together as in (9.3.5) and the Adams spectral sequence for X is obtained by applying π∗(−).
We have Et,u1 = πu(H [t] ∧X) and Et,u2 = Ht,u(A;H∗(X)). The structure maps in the exact couple
will be denoted as in (9.3.6) but subscripted with H.

The map of ring spectra BP −→ H descends uninque to a map

δ : BP −→ H

such that iHδ = iBP . We will denote this map and all the maps it induces by δ, even if they involve
the swap map T . For example, we have compatible maps

δ : H∧t ∧X ∧BP 1∧T // H∧t ∧BP ∧X1∧δ∧1 // H∧(t+1) ∧X

δ : H [t] ∧X ∧BP 1∧T // H [t] ∧BP ∧X 1∧δ∧1 // H [t+1] ∧X

for any spectrum X, and so a map of spectral sequences

δ : Et,ur (X ∧BP ;H) −→ Et+1,u
r (X;H) .

In particular, with X = BP∧s, we have compatible maps

δ : H∧t ∧BP∧(s+1) −→H∧(t+1) ∧BP∧s

δ : H [t] ∧BP∧(s+1) −→H [t+1] ∧BP∧s .

At E2, this map is the boundary map δ in (9.3.7).
We now address the first claim of the theorem. Suppose that x ∈ F sCEE

s+t,u+t
2 (S;H), so that

x = δsz for some z ∈ Et,u+t2 (BP∧s;H). Since δ is a map of spectral sequences, dH2 x = δs(dH2 z).
Thus in order to show that

dH2 x ∈ F s+1
CE E

s+t+2,u+t+1
2 (S;H)

it suffices to find an element mapping to dH2 z under

δ : Et+1,u+t+1
2 (BP∧(s+1);H) −→ Et+2,u+t+1

2 (BP∧s;H) .

To compute dH2 z, begin by picking a representative

z′ ∈ πu+t(H [t] ∧BP∧s) (9.3.9)
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for z. Since 0 = dH1 z
′ = jHkHz

′, kHz
′ = iHy

′ for some y′ ∈ πu+t+1(H
∧(t+2) ∧ BP∧s). Then

jHy
′ ∈ πu+t+1(H

[t+2] ∧ BP∧s) is a cocycle representing dH2 z. These maps arise by applying π∗ to
the bottom row in the following diagram.

H∧(t+1) ∧BP∧(s+1)

−iBP

uu

jH //

δ
��

H [t+1] ∧BP∧(s+1)

δ
��

H [t] ∧BP∧s kH // H∧(t+1) ∧BP∧s H∧(t+2) ∧BP∧siHoo jH // H [t+2] ∧BP∧s

(9.3.10)

We will construct an element y0 ∈ πu+t+1(H
∧(t+1) ∧ BP∧(s+1)) such that iHδy0 = kHz

′. We can
then take y′ = δy0, so the representative jHy

′ for dH2 x lifts across δ, to the cocyle jHy0. This proves
the first claim of the theorem.

To construct y0 we first show that kHz
′ lifts across iBP , and then that the dotted triangle

commutes: iHδ = −iBP .
The first step is organized by the diagram

H [t] ∧BP∧s jBP //

kH
��

H [t] ∧BP [s]

kH
��

dH1

ww

H∧(t+1) ∧BP∧(s+1) iBP // H∧(t+1) ∧BP∧s jBP //

jH
��

H∧(t+1) ∧BP [s]

jH
��

H [t+1] ∧BP∧s jBP // H [t+1] ∧BP [s]

We have dH1 jBP z
′ = jBPd

H
1 z
′ = 0. Since the Adams spectral sequence for BP [s] collapses at

E2, this implies that kHjBP z
′ = 0, so jBPkHz

′ = 0 and hence that kHz
′ lifts to some y0 ∈

πu+t+1(H
∧(t+1) ∧BP∧(s+1)). It is important to note that the only property of y0 used in this part

of the proof is that iBP y0 = kHz
′.

Since iHδ = iBP : BP −→ S1, it may appear that the triangle commutes without the sign. But
δ has many meanings. The triangle expands to the perimeter of the diagram

H ∧ Y ∧X ∧BP 1∧iBP //

(34)
��

H ∧ Y ∧X ∧ S−1

(34)
��

(134)

ww

H ∧ Y ∧BP ∧X

1∧δ∧1
��

1∧iBP∧1 //

−

H ∧ Y ∧ S−1 ∧X

(13)
��

H ∧ Y ∧H ∧X iH∧1 // S−1 ∧ Y ∧H ∧X

in which X = BP∧s and Y = H∧t, and the cycles indicate the appropriate permutations of factors.
The top inner square commutes, and it remains to check that the bottom square commutes up to
the indicated sign.

For this, note that we can drop the terminal X. We can also move the Y to the right end and
drop it; so we need to check that

H ∧BP 1∧iBP //

1∧δ
��

−

H ∧ S1

(12)
��

H ∧H iH∧1 // S1 ∧H

(9.3.11)
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commutes up to sign. To verify this, first map out to S1 ∧ S1:

H ∧BP 1∧iBP //

1∧δ
��

−

H ∧ S1

(12)
��

iH∧1

%%
H ∧H iH∧1 //

iH∧iH ++

S1 ∧H
1∧iH
%%

S1 ∧ S1

(12)
��

S1 ∧ S1

Now iHδ = iBP , and the switch map on S1 ∧ S1 multiplies by −1, so the outer diagram commutes
up to sign. Thus the sum of the two maps across (9.3.11) lifts through a map H ∧BP −→ S1 ∧H.
But H1(H ∧BP ) = 0.

This completes the proof of the first part of the theorem. To relate the Adams differential to
the algebraic Novikov differential, recall from (9.3.8) and (9.3.9) that in the algebraic Novikov E1

term

x ∈ F sCEE
s+t,u+t
2 (S;H) is represented the class of jBP z

′ ∈ πu+t(H [t] ∧BP [s]).

Similarly, from (9.3.10),

dA2 x ∈ F
s+1
CE E

s+t+2,u+t+1
2 (S;H) is represented by jBP jHy0 ∈ πu+t+1(H

[t+1] ∧BP [s+1]).

We need to see that these two classes are also related by dAN1 .
The computation of the differential dAN1 is organized by the top of the following diagram.

H [t] ∧BP [s]
dBP
1 // H [t] ∧BP [s+1] H [t+1] ∧BP [s+1]iHoo

H∧t ∧BP [s]

jH

OO

dBP
1 //

kBP %%

H∧t ∧BP [s+1]

jH

OO

H∧(t+1) ∧BP [s+1]

jH

OO

iHoo

H∧t ∧BP∧(s+1)

jBP

88

H∧(t+1) ∧BP∧(s+1)iHoo
jBP

66

Let a ∈ Ht,u(P ;Qs) be an element in the algebraic Novikov E1 term. To compute dAN1 a, find
a representative a′ ∈ πu+t(H

[t] ∧ BP [s]). By the collapse at E2 of the Adams spectral sequence
for BP [s], a′ lifts to an element y1 ∈ πt+u(H∧t ∧ BP [s]). Since a′ is a cocycle, dBP1 y1 = iHb ∈
πu+t(H

∧t ∧ BP [s+1]) for some b ∈ πu+t+1(H
∧(t+1) ∧ BP [s+1]). Then jHb is a representative for

dAN1 a.
With a′ = jBP z

′, our earlier work suggests that we might choose b = jBP y0; then jHb =
jHjBP y0 = jBP jHy0 would be our representative for dAN1 a, reaching the conclusion we want. For
this to work, we need jBP y0 to satisfy the equation required of b; that is, iHjBP y0 = dBP1 y1 =
jBPkBP y1. Since iHjBP = jBP iH , this will be guaranteed if

iHy0 = kBP y1 ∈ πu+t(H∧t ∧BP∧(s+1)) .
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But this is precisely what is guaranteed to us by the application of May’s lemma 9.3.2 to the
following diagram.

H∧t ∧BP∧(s+1) //

��

H∧t ∧BP∧s //

��

H∧t ∧BP [s]

jH
��

kBP

ww

H [t] ∧BP∧(s+1)

��

// H [t] ∧BP∧s jBP //

kH
��

H [t] ∧BP [s]

kH
��

H∧(t+1) ∧BP∧(s+1) iBP //

iH

66

H∧(t+1) ∧BP∧s jBP // H∧(t+1) ∧BP [s]

This concludes the proof.

9.4 Motivic conclusions.

This proof works in much greater generality. As in [19], the square of spectral sequences can be
set up for any map of ring spectra A −→ B and any spectrum X for which the B-Adams spectral
sequence

E2(A ∧A∧s ∧X;B) =⇒ π∗(A ∧A∧s ∧X)

converges and collapses at the E2-page for all s. The proof holds whenever B1(B ∧A) = 0.
In particular, the proof works in the motivic context, at least over C, with H replaced by the

mod 2 motivic Eilenberg Mac Lane spectrum (also denoted H) and BP by the spectrum BPM
considered by Hu, Kriz, and Ormsby [14]. They observe that as a comodule for AMot

H∗(BPM) = AMot�EM2 ,

where AMot is the motivic dual Steenrod algebra

AMot = V [τ0, τ1, . . . , ξ1, ξ2, . . .]/(τ
2
n = τξn+1) ,

|τn| = (2n+1 − 1, 2n − 1), |ξn| = (2n+1 − 2, 2n − 1) ,

and E is the exterior algebra over M2 generated by τ0, τ1 . . . By change of rings, then,

E2(BPM ;H) = F2[τ, v0, v1, . . .]

where vi is the class of the primitive τi. The motivic Adams spectral sequence for BPM thus
collapses.

We also need to check that H1,0(BPM ∧H) = 0. This follows from the fact that BPM and H
are cellular ([14]), using the computations of H∗(BPM) and H∗(H) and the Künneth theorem [5].

We have
h0 ∈ E1,2,1

2 (SMot;H) , vn ∈ E1,2n+1−1,2n−1
2 (SMot;H) ,

and the differentials constructed in Proposition 6.3 produce the following differentials in the motivic
Adams spectral sequence:

d2vn+1 ≡ v2nh0, n ≥ 2
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modulo terms of higher Cartan-Eilenberg filtration. Recalling that deg = t − 2w = 1 we see
deg(h0) = 0 and deg(vn) = 1. Thus v2nh0 has Chow degree 2 and Adams filtration 3 and any other
such element must be of the form vivjh0. We find that

v2nh0 ∈ E
3,2n+2,2n+1−1
2 (SMot;H)

is the only element in its trigrading so, in fact, our calculation has no indeterminancy. This is our
last theorem.

Theorem 9.4.1. In the η-localized motivic Adams spectral sequence,

d2vn+1 = v2nh0 , n ≥ 2 .

References

[1] J. F. Adams, A periodicity theorem in homological algebra, Math. Proc. Cambridge. Philos.
Soc., vol. 62, 1966, pp. 365–377.

[2] D. W. Anderson and D. M. Davis, A vanishing theorem in homological algebra, Comment.
Math. Helv. 48 (1973), no. 1, 318–327.

[3] M. J. Andrews, The v1-periodic homotopy of the sphere spectrum and the classical Adams
spectral sequence at an odd prime, http://math.ucla.edu/~mjandr/Thesis.pdf (2013).

[4] P. Deligne, A. Beilinson, and J. Bernstein, Faisceaux pervers, Astérisque 100 (1983).
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