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BOUNDARY BEHAVIOUR OF WEIL–PETERSSON AND FIBER

METRICS FOR RIEMANN MODULI SPACES

RICHARD MELROSE AND XUWEN ZHU

Abstract. The Weil–Petersson and Takhtajan–Zograf metrics on the Rie-
mann moduli spaces of complex structures for an n-fold punctured oriented
surface of genus g, in the stable range g + 2n > 2, are shown here to have
complete asymptotic expansions in terms of Fenchel–Nielsen coordinates at
the exceptional divisors of the Knudsen–Deligne–Mumford compactification.
This is accomplished by finding a full expansion for the hyperbolic metrics
on the fibers of the universal curve as they approach the complete metrics on
the nodal curves above the exceptional divisors and then using a push-forward
theorem for conormal densities. This refines a two-term expansion due to
Obitsu–Wolpert for the conformal factor relative to the model plumbing met-
ric which in turn refined the bound obtained by Masur. A similar expansion
for the Ricci metric is also obtained.
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Introduction

The universal curve, Cg = Mg,1, of Riemann surfaces of genus g ≥ 2 may
be identified with the moduli space of pointed curves as a stack or as a smooth
orbifold fibration ψ : Cg −→ Mg over the moduli space (we distinguish notationally
between these spaces since later they have different real resolutions). Deligne and
Mumford [3] gave compactifications ψ : Cg = Mg,1 −→ Mg in which nodal curves
are added covering exceptional divisors corresponding to the pinching of geodesics
on the Riemann surfaces to pairs of nodal points resulting in a surface, or surfaces,
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2 RICHARD MELROSE AND XUWEN ZHU

of lower genus but with the same arithmetic genus. The holomorphic map ψ then
has Lefschetz singularities and is universal in this sense. Each fiber of Mg,1 carries
a unique metric of finite area and curvature −1, complete outside the nodal points.

A resolution of the complex compactification is given below

(1) Ĉg
β

//

ψ̂
��

Mg,1

ψ

��

M̂g
β

// Mg

in the category of real manifolds with corners (or more correctly tied orbifolds),
which resolves this fiber metric. In particular, the real fibration in (1) is a b-fibration
in terms of which the fiber metric is conformal, with a log-smooth conformal factor,
to a smooth metric on a rescaling of the fiber tangent bundle. The resolution (1)
(in both domain and range) involves a transcendental step, introducing variables
comparable to the length of the shrinking cycles, i.e. Fenchel-Nielsen coordinates.

The regularity properties of the fiber hyperbolic metrics have been widely stud-
ied, see [21, 23, 24, 25, 26, 27], and the results effectively applied, see [5, 6, 2].
The log-smoothness of the hyperbolic fiber metric up to the boundaries, produced
by the real blow-up, corresponds to a refinement, to infinite order, of the 2-term
expansion obtained by Obitsu and Wolpert [15] for the fiber metric relative to the
‘plumbing metric’ on the local model for nodal curves. The case of a single shrinking
geodesic was considered in [13] and the log-smoothness of the constant curvature
fiber metrics here is proved by an extension of the method used there (which in
structure goes back to Obitsu and Wolpert loc. cit.) We further extend these results
to the case of the universal curve over the moduli space, Mg,n, of marked Riemann
surfaces in the stable case that 2g + n > 2. The universal curve over Mg,n may be
identified as Cg,n = Mg,n+1 but in which one, here by convention the last, variable
is distinguished as the fiber variable in the holomorphic fibration Cg,n −→ Mg,n.

In the unpointed case, let L be the fiber tangent bundle of ψ, then the cotangent
bundle of Mg is naturally identified with the bundle of holomorphic quadratic
differentials, i.e. holomorphic sections of L−2, on the fibers of Cg = Mg,1

(2) q : Λ1,0Mg ≃ QMg.

Using this identification, the Weil–Petersson (co-)metric is defined by

(3) GWP(ζ1, ζ2) =

∫

fib

ζ1ζ2
µH

, ζ1, ζ2 ∈ Qm, m ∈ Mg

where µH is the area form of the fiber hyperbolic metric and the integrand itself
may be identified as a fiber 2-form.

More generally in the pointed case, the Knudsen-Deligne-Mumford compactifi-
cation Mg,n of the n-pointed moduli space may again be considered as a smooth

complex orbifold. The ‘boundary’ Mg,n \Mg,n is a union of normally intersecting,
and self-intersecting, divisors. Expanding on an idea of Robbin and Salamon [17]
we extend (2) to the compactification, showing that the logarithmic cotangent bun-
dle DΛ1,0Mg,n, with local sections the sheaf of differentials which are logarithmic
across the exceptional divisors, is naturally isomorphic to a corresponding holomor-
phic extension of the bundle of holomorphic quadratic differentials on the fibers of
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Cg,n. More precisely, the projection

(4) ψ : Cg,n = Mg,n+1 −→ Mg,n

is a Lefschetz map (as defined explicitly below) and hence has a well-defined, and
surjective, differential between the logarithmic tangent bundles. The null bundle,

L̃, is thus a holomorphic line bundle over Cg,n (with sections being the holomorphic
vector fields on the fibers which vanish at marked points and nodes – in the marked
case nodes also arise from the collision between, or more precisely the separation of,
the fixed divisors corresponding to the marked points). Then QMg,n extends as a

holomorphic vector bundle Q̃Mg,n where the fiber of Q̃ consists of the holomorphic

sections of L̃−2 which vanish at marked points and have consistent values at nodes.
That is, if the fibers of ψ are ‘resolved’ into a disjoint union of marked Riemann

surfaces, by separating the nodes, then elements of the fiber of Q̃may be interpreted
as meromorphic quadratic differentials in the ordinary sense, with at most simple
poles at marked points and double poles at nodes but where the double residues
at the two points representing a node are the same. Notice that this is meaningful

since the double residue, which is the leading coefficient of f(z)dz
2

z2 , is a well-defined
complex number. Then q in (2) extends to a global holomorphic isomorphism

(5) q̃ : DΛ1,0Mg,n ≃ Q̃Mg,n.

This allows (3) to be evaluated asymptotically near the divisors, allowing the full de-
scription of the singularities of the Weil–Petersson co-log-metric, i.e. on DΛ1,0Mg,n.

One of the properties of the log-cotangent bundle is that DΛ1,0Mg,n has the
cotangent bundle of the divisor (or the log-cotangent bundle in the case of inter-
secting divisors) as a subbundle over the divisor. These ‘tangential elements’ are
identified by q̃ with the quadratic differentials with at most simple poles at the corre-
sponding (separated) nodal points. Thus the quadratic differentials corresponding
to the log-normal directions are the most singular and these produce the singu-
larities in GWP as a co-log-metric. Moreover, the restriction to the log-cotangent
bundle of the divisor gives the Weil–Petersson metric for the finite covering of the
divisor as a product of pointed moduli spaces; this is already noted by Masur [10].

In the pointed case we again have a ‘metric resolution’ to real manifolds with
corners extending (1) and again involving the introduction of logarithmic coordi-
nates

(6) Ĉg,n

ψ̂
��

β
// Cg,n = Mg,n+1

ψ

��

M̂g,n
β

// Mg,n.

As remarked above Ĉg,n = M̂g,n+1 involves an extra step of resolution compared to

M̂g,n −→ Mg,n, without which the map ψ̂ is not defined. This extra blow-up is of

the codimension-two variety of double points of ψ which therefore lifts to a collection

of boundary hypersurfaces. As a result the boundary hypersurfaces of Ĉg,n fall into
three distinct classes, the ‘fixed’ hypersurfaces corresponding to the marked points,
the ‘type I’ boundary hypersurfaces corresponding to the resolved singular fibers
and the ‘type II’ boundary hypersurfaces corresponding to the singular set of ψ,
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so the image in the base of the type II hypersurfaces lies within that of the type I
hypersurfaces.

The line bundle L̃ lifts to a complex line bundle, L̂, on Ĉg,n but this is not
precisely the fiber b-tangent bundle

(7) ψ̂T Ĉg,n ⊂ bT Ĉg,n

of ψ̂, although the latter is a well-defined smooth bundle. Namely L̃ is a rescaling

of the fiber tangent bundle of ψ̂ at the type II boundary hypersurfaces. Its smooth
sections are precisely those of the form ρ−1

II V where V is a smooth tangential vector

field on Ĉg,n which is tangent to the circle fibration of the type II hypersurface and

such that ψ̂∗(V ) = 0 and ρII is a collective defining function for the hypersurfaces
of type II. We think of this as a ‘cusp structure’. Extending the special case in [13]:

Theorem 1. The complete metrics of constant curvature −1 on the fibers of Cg,n
over Mg,n extend to be conformal to a smooth family of fiber Hermitian metrics on

the line bundle L̂ over the fibers of Ĉg,n −→ M̂g,n with a positive definite conformal
factor which is log-smooth.

A log-smooth function on a manifold with corners is smooth in the interior and log-
smooth at the boundary with an expansion with integer powers (as for the Taylor
series of a smooth function) with logarithmic factors with powers growing at most
linearly. A more detailed description of the asymptotic expansion is given in §5
and §6.

It then follows that the Weil–Petersson metric is also log-smooth on the resolved

manifold M̂g,n, which corresponds to the introduction of logarithmic coordinates
around the divisors. The passage to logarithmic variables means that the circle

bundles corresponding to the fibrations of the boundary hypersurfaces of M̂g,n,
over the divisors, extend off the boundary to infinite order. In §7 the push-forward
theorem from [12] is applied to (3) to yield the second major result of this paper
(see also the results of Mazzeo and Swoboda [11]). A holomorphic local defining
function for an exceptional divisor

(8) zj = exp(−s−1
j + iθj)

induces a defining function sj for the corresponding boundary hypersurface of M̂g,n

and also locally trivializes the normal circle bundle.

Theorem 2. On the resolved space M̂g,n the Weil–Petersson metric is θ-invariant
to infinite order at each of the boundary hypersurfaces and near any point in a
corner of codimension k, takes the form

(9) gWP = π

k∑

j=1

sj

(
ds2j
s2j

+ s2jdθ
2
j

)
+ g′WP, g

′
WP(∂θj , ·) = O(s4j ),

in terms of (8) for local holomorphic defining functions for the divisors. Here g′WP

is a log-smooth hermitian tensor which restricts to the corner to be the lift of the
Weil–Petersson metric on the k-fold intersection of divisors.

The leading order part of the metric in (9) is the same as the model metric
given by Yamada [27]. Note that the local fiber differentials dθj may be replaced
by connections forms, in fact it is natural to take (extensions of) the connections
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forms, αj , fixed by holomorphy and the hermitian structures on the normal bundles.
Then

(10) gWP = π

k∑

j=1

sj

(
ds2j
s2j

+ s2jα
2
j

)
+ g′′WP

where g′′WP has the same restriction properties as g′WP. It is also permissible to
replace the sj by hj = sj+O(s

2
j ) where the hj are the length functions arising from

the hermitian structures on the normal bundles, without changing the conclusion
regarding the remainder term (in fact the proof of (9) passes through this change
of variable).

Given the regularity results below for the lengths of the short closed geodesics,
the same form occurs in Fenchel–Nielsen coordinates, i.e. with the sj interpreted
as the normalized lengths of the nearby shrinking geodesics for the non-fixed di-
visors. The tangential metrics come from the covering of the components of the
k-fold intersection of divisors by a product of pointed moduli spaces. For Mg such
an asymptotic expansion has been deduced, from [13], using related methods by
Mazzeo and Swoboda [11].

As a corollary, in §11 we derive the formula for the length of the shrinking closed
geodesic near the j-th non-fixed divisor in terms of the logarithmic coordinates
sj = 1/ log(|zj |−1) for which we use the abbreviation ilog |zj |.

Corollary 1. The length of the shrinking geodesic is a log-smooth function of sj,
and has the form

(11) Lj(sj) = 2π2sj(1 + sje(sj))

where e is a log-smooth function up to the boundaries.

In the paper [20] of Wolf and Wolpert, it is claimed that Lj(sj) is real-analytic
in sj , which would preclude the appearance of logarithmic terms in e(sj) (as well
as being a stronger analytic statement). However there is an error in the bound
deduced from equation (2.2) in [20] which appears to invalidate the argument.

From the asymptotic expansion of the Weil–Petersson metric it follows that the
Ricci curvature has a similar expansion, see (8.2). Trapani in [19] showed that the
corresponding Ricci metric is complete. In §8 we show that this metric is locally
equal, to leading order, to a product of cusp metrics near the intersection of divisors;
this refines a result of Liu, Sun and Yau in [9].

The curvature tensor of the Weil–Petersson metric is also computed and specif-
ically the decay rates of the sectional curvature along the normal and tangential
directions near the divisors are given, see (9.6).

The curvature form of the fiber hyperbolic metric on the vertical tangent bundle
of ψ over Mg was computed by Wolpert [22] who showed that it pushes forward
to a multiple of the Kähler form of the Weil–Petersson metric. Reinterpreting this
as a local index theorem, Takhtajan and Zograf in [18] extended the result to the
pointed moduli space Mg,n, finding extra ‘boundary terms’ in the push-forward
as an additional Kähler form. This metric is given, as a cometric lifted using the
Weil–Petersson metric, by a sum over the fixed divisors in Mg,n+1 :

(12) GTZ(ζ1, ζ2) =
∑

j

∫

fib

Ej
ζ1ζ2
µH

, ζ1, ζ2 ∈ Qp, p ∈ Mg,n.
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Here Ej is a boundary forcing term, the solution of (∆ + 2)Ej = 0 which is in L2

on the fibers including up to the marked points and nodes, except for a prescribed
singularity (corresponding to the non-L2 formal solution) at the point corresponding
to the jth fixed divisor denoted as Fj ; in [18] it is obtained as an Eisenstein series.
Such a function is well-defined on any stable Riemann surface with cusps; it is
strictly positive away from the cusps and, with these resolved to boundaries, Ej
is smooth up to, and vanishes simply at each cusp boundary except the ‘forcing

boundary’ where it has a singularity s−2 where the metric is locally ds2

s2 + s2dθ2.
The asymptotic behaviour of GTZ is determined by the structure of the Ej . In [16]
the Kähler potential and Chern forms of this metric were calculated.

Each boundary hypersurface of M̂g,n corresponds to either two or three bound-

ary hypersurfaces in the resolved universal curve Ĉg,n, depending on whether the
node to which this gives rise disconnects the Riemann surface or not. These have
interior fibers which are one or two connected Riemann surfaces with two nodes
and a cylindrical ‘neck’ joining the nodes. The behavior of Ej is slightly different
in the two cases. If the Riemann surface remains connected without the neck, then
Ej approaches the corresponding boundary forcing term for this Riemann surface
and vanishes simply at the neck with coefficient being a bridging function discussed
in the body of the paper. In case of separation into two Riemann surfaces again
Ej approaches the ‘local’ Ej for the component that meets Fj , it vanishes simply
on the neck and vanishes to fourth order at the second component with leading
coefficient which is the product of a scattering (or L-function) constant and the
singular boundary term E∗ on this Riemann surface with pole at the node where it
meets the neck. In all cases Ej is globally log-smooth once multiplied by the square
of a defining function for Fj .

This description can be iterated to determine the precise leading term of Ej at

a boundary surface of codimension k in M̂g,n. This corresponds to the intersection

of k divisors in Mg,n and the fiber is the initial Riemann surface subject to k
degenerations, each either the shrinking of a geodesic or the ‘bubbling off’ of a
sphere due to the collision of marked points (or marked points with nodes). In all
cases the fixed divisor Fj meets one of the component surfaces and Ej approaches
the corresponding boundary forcing term there. Any other component is connected
to Fj through one or more paths, passing through a sequence of nodes and necks.
Consider those paths which pass through the minimum number, σ, of necks. Each
of these gives rise to part of the leading term of Ej at the Riemann surface in
question; it vanishes to order 4σ there with coefficient the E∗ for that Riemann
surface with pole at the node through which the path entered, and another constant
coefficient formed by a product of scattering (L-function) factors corresponding to
the sequence of nodes through which the path passes; thus the leading term of Ej
is in general a sum of such terms but all are positive. At the necks essentially
the same conclusion holds except that the order of vanishing is 4σ + 1 with the
coefficient a bridging function.

The asymptotic behavior of Ej at the boundary of M̂g,n leads to a corresponding
asymptotic expansion for the Takhtajan–Zograf metric, analogous to (9), but with
combinatorial complications; this refines results of Obitsu, To and Weng [14]. At

the interior of a boundary hypersurface of M̂g,n the behavior is relatively simple

if the corresponding divisor lifts from Mg,n. Namely the divisor itself has a local
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covering by either a moduli space Mg−1,n+2 if the node does not separate and

otherwise by some product Mg1,n1+1 × Mg2,n2+1, n1 + n2 = n, g1 + g2 = g − 1.
Then

(13)
gTZ = h(ds2 + s4dθ2) + sh1gTZ,g1,n1

+ sh2gTZ,g2,n2
+O(s2), n1, n2 > 0

gTZ = h(ds2 + s4dθ2) + sh1gTZ,g1,n + s4h2gTZ,g2,1 +O(s2), n1 = n

has log-smooth coefficients. Here, the coefficients h, h1 and h2 are θ−invariant to
all orders in s and positive but not constant. We do not completely explore the
asymptotics of gTZ, but it is bounded above by a multiple of the Weil–Petersson
metric and always vanishes relative to it in normal directions to the boundary faces;
the same is therefore true of the corresponding Kähler form.

The authors would like to acknowledge helpful conversations with Mike Artin,
Rafe Mazzeo, David Mumford, Jan Swoboda, Scott Wolpert and Mike Wolf and also
Semyon Dyatlov for comments on the manuscript and assistance with the figures.
We would also like to thank the referee for a careful reading and valuable comments.

1. Lefschetz maps

We consider a complex manifold with normally intersecting and self-intersecting
divisors, (C,G∗). Thus the {Gi} are a finite collection of closed immersed connected
complex hypersurfaces and near each point of C there are admissible coordinates
(z∗, τ∗) where the zl define the local divisors passing through the point as {zl = 0}.
On such a manifold there is a well-defined ‘logarithmic’ complex tangent bundle
DT 1,0C and corresponding cotangent bundle DΛ1,0C determined by the G∗. Namely
the spaces of locally holomorphic sections of DT 1,0C are the holomorphic vector
fields which are tangent to all the local divisors. In admissible coordinates DT 1,0C
is spanned by the holomorphic vector fields zl∂zl and ∂τk . The complex dual of this
bundle, DΛ1,0C, is locally spanned in these coordinates by the dzl/zl and dτk. The
universal curve Cg,n has such a structure (except for the orbifold points). And there

is a natural map from Cg,n to the compactified moduli space Mg,n which will be
discussed below.

We consider Lefschetz maps, which have singularities modelled on the ‘plumbing
variety’

(1.1) φ : C2 ∋ (z, w) 7−→ t = zw ∈ C.

Definition 1. A Lefschetz map φ : C −→M is a holomorphic map between complex
manifolds (subsequently orbifolds) with the following properties

(1) The fiber dimension is one: dimC C = dimCM + 1.
(2) The fibers of φ are compact.
(3) Both domain and range carry normally intersecting (and self-intersecting)

divisors which will be denoted (C,G∗, F∗) and (M,G′
∗).

(4) The Fl, l = 1, . . . , n are ‘fixed divisors’, without self-intersections or inter-
sections with the other F∗ and such that, for each i,

(1.2) φ : Fi −→M is a biholomorphism.

(5) The other divisors, Gi, in C map onto the divisors in M :

(1.3) φ(Gi) = G′
i.
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(6) The Gi have self-intersections, Si, of codimension two (if they exist) and
for different i, these are also disjoint in C; outside the Si, φ has surjective
differential.

(7) Near each double point p ∈ Si ⊂ Gi there are admissible coordinates
z, w, zr, τj in C and coordinates t, z′r, τ

′
j near the image of p in M such

that

(1.4) φ∗t = zw, φ∗τ ′j = τj , φ
∗z′r = zr,

where Gi is locally defined by {z = 0}∪{w = 0} and the z′r define the local
divisors through p other than G′

i which is defined by t = 0.

It follows that each of the fibers is a nodal Riemann surface, with marked points
from the intersections with the Fl. The Lefschetz map is said to be stable if each
of the component Riemann surfaces (when the nodal points are separated) in the
fibers are stable; i.e. for each component the genus g and the total number of nodes
and punctures n satisfy 2g − 2 + n > 0.

Consider the invariance properties of the local form of the ‘plumbing’ model for
a Lefschetz map as in (1.1) near the singular surfaces Si :

(1.5) {(z, w) ∈ C; |z|, |w| < δ} ∋ (z, w) 7−→ zw ∈ C.

This normal form can be regained after separate holomorphic changes of coordinates
in the disk z = 0 and w = 0.

Lemma 1. Suppose that

(1.6) z 7−→ z(1 + zf(z)), w 7−→ w(1 + wg(w))

are separate holomorphic coordinate changes fixing the origins, then there are holo-
morphic functions (germs near the origin) a(w), b(z) and e(z, w) such that

(1.7) Z = z(1 + zf(z) + wa(w) + zwe(z, w)),

W = w(1 + wg(w) + zb(z) + zwe(z, w)) satisfy ZW = t.

Proof. The identity we aim for is

(1.8) zw(1 + zf(z) + wa(w) + wze(z, w))(1 + wg(w) + zb(z) + wze(z, w)) = zw.

Cancelling factors and expanding out this becomes

(1.9) wg(w) + zb(z) + zwe(z, w) + zf(z) + wa(w) + zwe(z, w) + zwf(z)g(w)

+ z2b(z)f(z) + z2wf(z)e(z, w) + w2g(w)a(w) + zwa(w)b(z) + zw2a(w)e(z, w)

+ w2zg(w)e(z, w) + z2wb(z)e(z, w) + z2w2e2(z, w) = zwh(zw)

Separating out the ‘pure terms’ it follows that (1.9) is a consequence of demanding

(1.10)

w (g(w) + a(w) + wg(w)a(w)) = 0 ⇐⇒ a(w) = −(1 + wg(w))−1g(w)

z (b(z) + f(z) + zb(z)f(z)) = 0 ⇐⇒ b(z) = −(1 + zf(z))−1f(z)

zw
(
2e(z, w) + f(z)g(w)+zf(z)e(z, w) + a(w)b(z) + wa(w)e(z, w)

+wg(w)e(z, w) + zb(z)e(z, w) + zwe2(z, w))
)
= 0.

By the implicit function theorem the last equation has a unique, and holomorphic,
solution with e(z, w) close to − 1

2f(z)g(w) for z, w small. �
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Holomorphic dependence on parameters follows from the same argument, so the
result carries over to the case of a Lefschetz map with base of dimension greater
than one, in the sense above, locally near each singular surface.

Corollary 2. For a stable Lefschetz fibration there are holomorphic coordinates
near each singular point in terms of which both the Lefschetz map and the family
of hyperbolic metrics on the singular fibre are in normal form.

Conversely:

Lemma 2. Any local holomorphic coordinate transformation in z, w near a singular
point which leaves the form of the family of hyperbolic metrics and the coordinate
form of the Lefschetz map unchanged can only change the defining function for the
divisor in the base from t to ct(1 + th(t)) where |c| = 1.

Proof. If a coordinate transformation preserves the normal form for the Lefschetz
map it must fix the singular point and hence the preimage of its image in the base.
Thus it must map the surfaces z = 0 and w = 0 into themselves, or each other.
The latter possibility can be ignored, since we may simply exchange z and w and
preserve the form. Thus the normal form of the hyperbolic metric near the ends fixes
the conformal structure near the end and hence the coordinates up to a constant
factor of norm 1. The coordinate transformation on the total space must therefore
be of the form z 7−→ eiθz(1+zf(z)+wF (z, w)), w 7−→ eiθ

′

w(1+wg(w)+zG(z, w))
with θ and θ′ real. Thus

t 7−→ ei(θ+θ
′)t(1 +O(z, w)) = ct(1 + th(t)) =⇒ |c| = 1.

�

Proposition 1. The divisors G′
i in the base of a stable Lefschetz map have natural

hermitian structures on their normal bundles.

Proof. The possible changes of local holomorphic defining function for a divisor
G∗
i in the base, in terms of which the Lefschetz map takes normal form near the

corresponding Si, are limited to have differential of norm one on the divisor and
hence induce a hermitian structure. �

As the name indicates, if one fiber of a Lefschetz map is stable then the map is
stable in a neighborhood of that fiber. In the case of a singular fiber the arithmetic
genus ga is the sum of the number of pairs of nodal points and the genus from each
of the components of the nodal surface with nodes separated and it follows that
ga + 2n > 2 is then constant.

Away from the self-intersections, Si, of the Gi, φ is a holomorphic submersion
mapping the divisors Gi onto the G′

i so the logarithmic differentials dz′i/z
′
i pull back

to be dzi/zi. Near p ∈ Si this remains true for the divisors other than G′
i, locally

defined by t which, by (1.4) satisfies

(1.11) φ∗(dt/t) = dz/z + dw/w.

So at these points, φ∗ maps DΛ1,0
φ(p)M injectively to DΛ1,0

p C and hence there is a

well-defined dual log-differential which is still surjective

(1.12) φ∗ : DT 1,0
p C −→ DT 1,0

φ(p)M, ∀ p ∈ C.

In this sense a Lefschetz map is a ‘log fibration’ (the complex analog of the b-
fibrations considered in the real case below).
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Lemma 3. The null bundle of the logarithmic differential L = Lφ ⊂ DT 1,0C is a
holomorphic subbundle which reduces to the fiber tangent bundle at regular points.

Proof. This is immediate from the local form of φ required in the definition. Near
regular points of the map. the fiber is smooth and L is spanned by a non-vanishing
holomorphic vector field tangent to the fibers. Near singular points there are coor-
dinates as in (1.4) and the log-differential has null space spanned by z∂z−w∂w. �

The fiber ∂-operator on regular fibers is naturally a differential operator

∂ : C∞(Creg;L) −→ C∞(Creg;L⊗ L
−1

).

Lemma 4. The fiber ∂-operator extends smoothly to a ‘log-differential’ operator

(1.13) D∂ : C∞(C;L) −→ {u ∈ C∞(C;L ⊗ L
−1

);u = 0 at
⋃

i

Si ∪
⋃

l

Fl}.

Proof. This is clear away from the singular points Si ⊂ C. Near each such point in
local coordinates (1.4),

(1.14) D∂(a(z∂z − w∂w)) =
1

2
(z̄∂z̄ − w̄∂w̄a) (z∂z − w∂w) · (

dz̄

z̄
+
dw̄

w̄
)

where the two local components of the singular fiber are z = 0 and w = 0 and the
coefficient vanishes at the Si. �

The stability assumption on the fibers and an application of Riemann–Roch show
that D∂ is injective on each fiber since the null space consists of holomorphic vector
fields vanishing at the fixed divisors and, on the Gi at the Si.

As already noted the essential property of the Knudsen-Deligne-Mumford Lef-
schetz map Cg,n −→ Mg,n is that it is universal for stable Lefschetz maps. Namely

Theorem 3 (Knudsen–Deligne–Mumford[3, 7]). For any stable Lefschetz map, in
the sense of Definition 1, there is a unique commuting square of holomorphic maps

(1.15) C
χ#

//

φ

��

Cg,n

ψ

��

M
χ

// Mg,n

where χ# is a fiber biholomorphism.

In [17], Robbin and Salamon give an infinitesimal criterion for such universality
at the germ level. We proceed to review this result.

The operator D∂ in (1.13) is not surjective, in fact again by Riemann-Roch
its image has complement of dimension 3ga − 3 + n. As noted above, a Lefschetz
map has surjective log-differential. It follows that any smooth log vector field (i.e.
tangent to the divisors) on the base is φ-related to such a smooth vector field on
C. Consider the sheaf over M with sections over an open set O ⊂M

(1.16) E(O)

= {V ∈ C∞(φ−1(O);T 1,0C) : ∃ v ∈ C∞(O;T 1,0M); ∂v = 0, φp∗V (p) = v(φ(p))}
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consisting of the vector fields which are φ-related to a holomorphic vector field on
O. As the null space of φ∗

(1.17) C∞(φ−1(O);L) ⊂ E(O)

with the quotient being the holomorphic vector fields on O.

Lemma 5. For a Lefschetz map the operator D∂ extends to E :

(1.18) D∂ : E(O) −→ {u ∈ C∞(φ−1(O);L ⊗ L
−1

);u = 0 at
⋃

i

Si ∪
⋃

l

Fl}.

Proof. On a coordinate patch U ⊂ φ−1(O) ⊂ C, as in the definition of a Lefschetz
map, an element u ∈ E(O) restricts to be of the form

(1.19) u = v + w, w ∈ C∞(U ;L)

and defining D∂u = D∂w is independent of choices. �

Now, the result alluded to above is

Proposition 2 (Robbin–Salamon [17]). A Lefschetz map is universal (at the germ
level) at a given fiber if and only if D∂ in (1.18) is an isomorphism.

Proof. See [17]. A proof using techniques much closer to those used here can also
be constructed. �

Note that Robbin and Salamon in [17] proceed to construct such germs of uni-
versal Lefschetz fibrations (as ‘unfoldings’ of the central fiber) and use these to
(re-)construct the Knudsen-Deligne-Mumford compactification.

Proposition 3. For each fiber of φ, sections of the bundle L ⊗ L
−1

which vanish
at the Fl and Si may be paired with ‘quadratic differentials’ to give a natural and
non-degenerate complex pairing

(1.20) {u ∈ C∞(φ−1(O);L ⊗ L
−1

)
∣∣
φ−1(m)

;u = 0 at
⋃

i

Si and
⋃

l

Fl}

× {q ∈ C∞(φ−1(O);L−2)
∣∣
φ−1(m)

; q = 0 at
⋃

l

Fl}

∋ (u, q) 7−→

∫

fib

(u · q) ∈ C.

Proof. At regular fibers, away from the Fl, the sections are of the form u = u′∂z ·dz
and q = q′dz2 with u′ and q′ smooth. The complex pairing of ∂z and dz allows this
to be interpreted as a local area form

(1.21) u′q′dz · dz.

Near a fixed divisor with z and admissible fiber coordinate u = u′z∂z · dz̄/z̄ and
q = q′(dz/z)2 where by hypothesis u′ vanishes at z = 0 as does q′.Working in polar
coordinates z = reiθ the area form in (1.21) becomes

(1.22) u′q′
dz̄

z̄
·
dz

z
= u′q′

dr

r
dθ.

Since both u′ and q′ vanish at r = 0 this is a multiple of the standard area form in
polar coordinates rdrdθ and so the integral pairing extends across these divisors.
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On the singular fibers the same discussion applies near the fixed divisors. Near
a nodal point, in some Si, there are Lefschetz coordinates z and w. By assumption
u = u′(z∂z − w∂w) · (

dz̄
z̄ + dw̄

w̄ ) with u′ vanishing at z = 0 or w = 0 on the two
intersecting parts of the fiber. Similarly

(1.23) q = q′(
dz

z
+
dw

w
)2

where the compatibility condition on q′ is that it have a well-defined value at
z = w = 0, approached continuously from both local parts of the fiber. Thus the
local area form given by the pairing becomes

(1.24) u′q′
dr

r
dθ

which is bounded by Cdrdθ locally. The resulting pairing integral is finite, but
more significantly the leading terms in the integral at w = 0 and z = 0 cancel.

That the resulting pairing is non-degenerate on the smooth sections is then
clear. �

Although somewhat ad hoc in appearance this pairing actually corresponds to a
natural distributional pairing on real resolved spaces.

Proposition 4. In terms of the pairing (1.20), the range of D∂ in (1.13) is natu-
rally identified, over each fiber with the annihilator of

(1.25) Q̃(m) = {ζ ∈ C∞(π−1(m);L−2); ζ = 0 at
⋃

l

Fl and ∂ζ = 0}.

Proof. The range of D∂ in (1.14) is closed with finite-dimensional complement for
each fiber since the domain differs from the standard domain on the disjoint union
of the Riemann surfaces, into which each fiber decomposed, by a finite-dimensional
space. The restriction of the pairing to a finite dimensional complement and to
an appropriate finite-dimensional subspace of the space of quadratic differentials
in (1.20) is therefore non-degenerate. On the other hand the space of holomorphic

quadratic differentials, in this sense, pairs to zero with the range of D∂ and has
the same dimension as the complementary space so is indeed the annihilator of the
range. �

Note there is a certain inconsistency in notation regarding the extension of Q

to the compactification by Q̃, since following the convention of denoting extensions
to the compactification by a ‘bar’ would conflict with the notation for complex
conjugation.

That Q̃ is a holomorphic bundle over M is again a consequence of stability,
that its rank is constant. This follows from algebraic-geometric arguments or from
the known holomorphy of the log cotangent bundle to Mg,n and the pointwise

identification of it with Q̃.
Now the extended operator D∂ in (1.18) defines a bundle map

(1.26) DT 1,0M −→ (Q̃)′, DΛ1,0M −→ Q̃

and Proposition 2 of Robbin-Salamon asserts that this is an isomorphism, precisely
when the Lefschetz map is universal at a germ level. This is the identification q̃ of
(5) in the case of Mg,n.
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2. Real and metric resolutions

Although regular, or at least minimally singular, in themselves (in particular
‘flat’), it is necessary for analytic purposes to resolve the Lefschetz fibrations con-
sidered above. The construction here is a direct generalization of the constructions
in [13]. Although it is not discussed here, there is a simpler (non-logarithmic)

resolution which is appropriate for the analysis of the fiber D∂.
The first step in the resolution is to blow up, in the real sense, the divisors, in

both domain and range. Since any intersections or self-intersections are normal, i.e.
transversal, there is no ambiguity in terms of the order chosen in doing this. Since
we insist, as a matter of definition or notation, that the boundary hypersurfaces of
a manifold with corners be embedded, and this need not be the case here, the result
may only be a tied manifold – a smooth manifold locally modelled on the products
[0,∞)k × (−∞,∞)n−k but with possibly non-embedded boundary hypersurfaces.

Definition 2. If (M,G∗) is a complex manifold with normally intersecting divisors,
then the real resolution

(2.1) M̃ = [M ;G∗]R

is a tied manifold (so with corners).

Locally the complex variables zl defining the divisors lift to rle
iθl in the real

blow-up so the boundaries carry circle fibrations. The logarithmic tangent and
cotangent bundles lift to be canonically isomorphic to the corresponding b-tangent
and cotangent bundles, which therefore carry induced complex structures; namely

(2.2) z∂z lifts to r∂r + i∂θ.

This definition can be applied to both the domain and the range for the ‘plumbing
variety’ model for a Lefschetz map (1.1). Real blow-up of the two divisors z = 0 and
w = 0, introduces polar coordinates z = r1e

iθ1 and w = r2e
iθ2 and similarly blow

up of t = 0 introduces t = reiθ in the range space. The local Lefschetz maps then
lifts to be a fibration in the angular variables with a simple b-fibration condition
satisfied in the radial variables

(2.3)
φ̃(r1, r2, θ1, θ2) = (r, θ)

r = r1r2, θ = θ1 + θ2.

Thus the lifted map is indeed a b-fibration. Globalizing this statement gives:

Proposition 5. A Lefschetz map between complex manifolds with divisors lifts to
a b-fibration

(2.4) C̃

βR

��

φ̃
// M̃

βR

��

C
φ

// M

which is ‘simple’ in the sense that it is the real analog of a Lefschetz map and each
boundary defining function in the base lifts, locally, to be a product of at most two
factors as in (2.3).

However, to resolve the metric we need to go further.
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Definition 3. The metric resolution of a Lefschetz fibration is defined from the real
resolution in Definition 2 by

(1) Logarithmic resolution of the boundary hypersurfaces in both domain and
range, i.e. by introduction of the function ilog ρ = 1/ log(1/ρ) in place of
each (local) boundary defining function ρ . This results in tied manifolds
in domain and range mapping smoothly, and homeomorphically, to the

resolutions in Definition 2; the resolved range space is denote M̂.
(2) Further radial blow-up, in the domain, of the preimages after the first step

of the boundary faces of codimension-two in Definition 2.4 resulting in the

tied manifold with corners manifolds Ĉ.

To illustrate the resolution, we give the example when there is one nodal intersec-
tion explicitly in terms of local coordinates. Locally the fibration is given by the
following plumbing variety

P = {(z, w) ∈ C
2; ∃ t ∈ C, zw = t, |z| ≤

3

4
, |w| ≤

3

4
, |t| ≤

1

2
},

P
φ

−→ D 1
2
= {t ∈ C; |t| ≤

1

2
}.

The real resolution introduces polar coordinates

z = rze
iθz , w = rwe

iθw , t = rte
iθt .

Step (1) above, the logarithmic resolution, introduces variables ilog ρ = 1/ log(1/ρ)
for the radial variables

sz = ilog rz , sw = ilog rw, s = ilog rt.

Step (2), the radial blow-up, resolves the singularity in s = szsw
sz+sw

by introducing

polar coordinates for (sz, sw) :

(sz , sw) = (RRz , RRw), R =
√
s2z + s2w.

Figure 1 indicate the resolution of the domain space. The first step illustrates the
blow-up of complex divisors, each becoming a boundary hypersurface (with circle
bundle). The second ‘trivial’ step on the left corresponds to the replacement of
the radial defining functions by their (doubly inverted) logarithms. The radial
blow up amounts to the introduction of polar coordinates around the corners which
correspond to the nodal surfaces.

In the case of a multi-Lefschetz fibration, the local coordinate description (with
more parameters) is the same but in various factors. Performing the two operations
(1) and (2) in the opposite order is by no means equivalent. Although we use the
same notation for the resolutions in domain and range note that an extra step
is involved in the domain, where the codimension two intersections of the divisors
corresponding to the nodal surfaces are resolved to become boundary hypersurfaces.
It is for this reason that we distinguish notationally between Cg,n and Mg,n+1,

which are the same space, but their real resolutions, Ĉg,n and M̂g,n+1, are different
– because the former is viewed as the domain of a Lefschetz map while the latter
is the range (of a different map); so it is the Lefschetz map itself which is resolved
by this construction.
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×(S1)2

×(S1)2×(S1)2

w = 0

z = 0

rz

rw

re
iθ

ilog

sw

sz

R =
p

s2
z
+ s2

w

Figure 1. Local form of the metric resolution

Proposition 6. After the ‘metric resolution’ of domain and range a Lefschetz map
φ : C −→M lifts to a b-fibration

(2.5) φ̂ : Ĉ −→ M̂.

Proof. As noted in Proposition 5, after the initial real resolution the lift of φ is
smooth and a b-fibration. However, after the logarithmic step in Definition 3 regu-
larity (and indeed existence) fails precisely in the new normal variables, the defining
functions ilog ρ. Tangential regularity is unaffected and there is no issue where the
map is a fibration, but from the local form (2.3) away from the new boundaries,

(2.6) φ∗ ilog r =
ilog r1 ilog r2

ilog r1 + ilog r2

and the right side is not smooth. However, the second blow-up introduces the
radial variable R = ilog r1 + ilog r2 as defining function for the new hypersurface
and makes the ‘angular functions’ w1 = ilog r1/R and w2 = ilog r2/R smooth local
boundary defining functions, so then

(2.7) φ̂∗ ilog r = Rw1w2

is indeed smooth and shows the resulting map to be a b-fibration. Although the
lifted boundary defining function is the product of three boundary defining functions
only two of these can vanish simultaneously. �

After the metric resolution, the domain space Ĉ has three types of boundary
hypersurfaces. The fixed hypersurfaces denoted F∗, which correspond to the marked
points. These do not have self-intersections nor do they intersect among themselves.
The second class of boundary hypersurfaces are the lifts (proper transforms) of the
original Lefschetz divisors, we denote them HI,∗. The third class, HII,∗ arise from
the final blow up of the codimension two surfaces formed by the singular points

of the Lefschetz map. These last two classes fiber under φ̂. The fibers of the HI,∗

consist of circle bundles over the component Riemann surfaces of singular fibers of
φ with the marked points blown up in the base of the circle fibrations (forming the
intersections with the F∗) and the nodal points similarly blown up (and separated)
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forming the intersections with the HII,∗. Thus these fibers are all circle bundles
over Riemann surfaces with (resolved) cusp boundaries. The fibers of the HII,∗

cylinders each carry torus bundles, linking the boundary curves of the fibers of
HI,∗ corresponding to the nodes.

The boundaries of the resolved base M̂ also carry circle bundles, over which the
boundary faces above fiber. From Proposition 1, the normal bundle of any G′

i is
trivial, hence there is a uniquely defined circle bundle. The faces HII,∗ fiber over
the original intersection of the divisors in M as a torus bundle over a cylinder, with
a circle subbundle corresponding to the diagonal action in the angular variables in
(2.3).

Proposition 7. The circle bundles, and torus bundles in the case of HII ⊂ Ĉ,

over the boundary hypersurfaces of M̂ and Ĉ have well-defined extensions off the
boundaries up to infinite order and the rotation-invariant defining functions are
determined up to second order.

Proof. A complex hypersurface in a complex manifold has a local defining function
z which is well-defined up to a non-vanishing complex multiple so another defining
function is

(2.8) z′ = αz(1 + zβ(z))

where α is independent of z. Thus a branch of the logarithm satisfies

(2.9) log z′ = log z + logα+ log(1 + zβ).

In terms of ρ = ilog |z| the last term vanishes to infinite order with ρ so the circle
action, given by the imaginary part of (2.9) is defined up to infinite order. The real
part of (2.9) shows that the new defining function for the hypersurface is

ρ′ = ilog |z′| =
ilog |z|

1− i log |z| log |α|+ log |1 + zβ|
= ρ+O(ρ2).

Thus there is a determined class of defining functions differing only by second order
terms. Under the further, radial, blow up the torus bundle and defining function

(2.10) ρII = ρ1 + ρ2

have similarly well-defined extensions. �

Definition 4. The space of smooth ‘rotationally flat’ functions on Ĉ which are in-

variant to infinite order under the circle and torus actions will be denoted C∞
θ (Ĉ) ⊂

C∞(Ĉ).

There is a similar notion on M̂ and for metrics on Ĉ and M̂ and other bundles to
which the circle and torus actions naturally extend. The discussion above shows
that the boundary defining functions are all rotationally flat,

(2.11) ρF , ρI, ρII ∈ C∞
θ (Ĉ).

Such a defining function, determined to leading order, is particularly relevant at

the boundary hypersurfaces, HII,∗ ⊂ Ĉ, corresponding to the blow-up of the variety
of singular points of the Lefschetz fibration; we say it determines a cusp structure

there and denote by ρII ∈ C∞(M̂) an admissible defining function in this sense. As

a direct consequence of Proposition 6, the null bundle of the differential φ̂∗ extends

smoothly to a subbundle of bTM̂. The holomorphy of φ means this has a complex
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structure away from the boundaries but this does not extend to a complex structure
on the null bundle, just corresponding to the fact that the null bundle after the first
resolution does not lift to the null bundle of the differential after the second stage.
Rather it lifts to a rescaled version of this, corresponding to the ‘cusp’ structure at
HII,∗.

HII

HI

HI

Figure 2. The metric resolution that introduces two boundary
hypersurfaces HI and HII

Lemma 6. The null bundle of the Lefschetz map lifts, with its complex structure,
to the rescaled bundle which has global sections

(2.12) C∞(Ĉ; L̂) = {v ∈ C∞(Ĉ; bTM̂); φ̂∗(v) = 0 and vρII = O(ρ2
II
)}

and is equivariant to infinite order with respect to the circle and torus actions.

Proof. The result is immediate away fromHII,∗. In plumbing coordinates z = r1e
iθ1 ,

w = r2e
iθ2 near the singular points the null space of the differential of φ lifts in

terms of ρi = ilog ri to be spanned by

(2.13)

v = r1∂r1 − r2∂r2 + i(∂θ1 − ∂θ2) = ρ21∂ρ1 − ρ22∂ρ2 + i(∂θ1 − ∂θ2),

v(ρ1 + ρ2) = ρ21 − ρ22 = (ρ1 + ρ2)
2

(
ρ1

ρ1 + ρ2
−

ρ2
ρ1 + ρ2

)
.

Since ρII = ρ1 + ρ2 is a local admissible defining function for HII,∗ ⊂ M̂ and the

projective functions are smooth on M̂ this shows that the null bundle lifts to (2.12)
with its complex structure remaining smooth. �

3. Log-smoothness of the fiber metrics

We proceed to outline the proof of Theorem 1 in the context of the metric

resolution of a general smooth stable Lefschetz fibration, as defined above, Ĉ −→

M̂. Before the real resolution, the regular fibers of C −→M are Riemann surfaces,
with punctures where they intersect the fixed divisors Fi ⊂ C which are mapped
surjectively to M. These fixed divisors cannot intersect, and in consequence the
regular fibers are naturally pointed Riemann surfaces. Similarly, the singular fibers
are nodal Riemann surfaces, with punctures at the intersections with the Fi, which
are disjoint from the nodes. The assumed stability implies the stability of each
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of the component punctured Riemann surfaces, after each of the nodes has been
separated into a pair of punctures.

Under these assumptions of stability on each fiber there is a unique Riemannian
metric of curvature −1 and finite area which is complete outside the nodes and
marked points; these are the hyperbolic fiber metrics. We extend the main result
of [13], which corresponds to the formation of a single node, to the general case.
The basic properties of log-smooth functions on a manifold with corners, in this case

Ĉ, are recalled in the Appendix. In particular, rotational flatness, meaning that
application of a generator of the circle action corresponding to a resolved divisor in

M̂ lifted from the base yields an object vanishing to infinite order at the preimage
of that resolved divisor, extends directly to the log-smooth case.

Theorem 4. The hyperbolic fiber metrics for a stable Lefschetz map form a log-
smooth rotationally flat family of hermitian metrics on the complex line bundle L̂
over Ĉ.

Theorem 1, the universal case Ĉg,n −→ M̂g,n, follows from the uniqueness of the
fiber metrics by localizing in the base and passing to a finite cover to remove the
orbifold points.

The proof is carried out in the subsequent sections concluding in Section 6 as
follows:

(1) In Section 4 by slightly extending the ‘grafting’ construction of Obitsu and
Wolpert we construct, in Proposition 8, a smooth family of Hermitian fiber
metrics on L̂ which has constant curvature −1 near the nodal parts and
the fixed divisors, is rotational invariant to infinite order at the preimage
of each divisor in the base and reduces to the standard cusp metric on the
singular fibers up to quadratic error.

(2) In Section 5 we examine in detail the properties of (∆+2)−1 for this family
of metrics since this is the operator appearing in the linearization of the
curvature equation in the form

(3.1) (∆gpl + 2)u = h = −1−R(gpl).

First we show the uniform boundedness of this operator on appropriate
spaces in which the parameters are incorporated. Next we show, induc-
tively, the existence of rotationally invariant solutions in the sense of formal
log-power series at the boundary faces lying in the preimages of the divi-
sors. Combining these two results shows that (∆+2)−1 acts on log-smooth
rotationally invariant data.

(3) From the ‘grafted’ family of metrics from Proposition 8 below, the regularity
of the constant curvature family is obtained in Section 6 by solving the
equation for the conformal factor e2f

(3.2) ∆gplf + e2f +R(gpl) = 0.

This is first shown to have a formal log-power series solution, by iteration of
the corresponding result for the linearized equation, and then an application
of the implicit function theorem shows that this is the expansion of the
unique solution to (3.2) on the regular fibers.

In Section 7 this result is applied to yield a corresponding regularity statement
for the Weil-Petersson metric.
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4. The grafted metric

We carry through the construction of a family of metrics on L̂ near a given sin-

gular fiber of ψ̂ as described in Step (1) above. As already noted, this is essentially
the construction of Obitsu and Wolpert [15] . Initially we work locally in the base
in the original holomorphic setting, for the universal case passing to a finite cover
of the base to remove orbifold points, but then the metric can be averaged over the
finite group action.

If the base fiber has k pairs of nodal points it lies in the intersection of k local
divisors over which the family is holomorphic. The uniformization theorem, with
smooth parameters, shows the existence of a smooth family of hyperbolic met-
rics for this restricted family. Away from the 2k nodal points the family forms a
smooth fibration, so with smoothly varying complex structures and in a smooth
local trivialization give a smooth family of Hermitian metrics.

Near each of the nodal points there are holomorphic coordinates in which the
map is the product of a Lefschetz map and a projection; the k-fold divisor is a
smooth submanifold of the zero set of the Lefschetz factor and the hyperbolic fam-
ily over this submanifold has cusp singularities along an intersection of k−1 divisors
contained in the intersecting pair of divisors defined by the local Lefschetz singu-
larity. In this sense the complex structure on the fiber near the nodal points can be
arranged to be locally constant. On each fiber there is a holomorphic coordinate
near the cusp point in terms of which the metric take the standard cusp form. This
fiber holomorphic coordinate can be extended smoothly to yield a smooth, but not
holomorphic, complex defining function for the nodal surface. This allows the fam-
ily of constant curvature metrics to be extended off the singular surface, near the
nodal crossing, by the plumbing metric. This yields a local extension of the initial
family of metrics to hyperbolic metrics which are smooth on L̂ near each of the
nodal points.

Finally these 2k+1 families – the plumbing metric near each of the 2k resolved
nodes and a smooth family elsewhere – may be combined to give a smooth family
of rotationally flat metrics on L̂.

Proposition 8. Near each point in a k-fold intersection of divisors in M̂ there is a
smooth family of Hermitian metrics on L̂ which restricts to the hyperbolic metrics
over the intersection of divisors, is equal to the plumbing metric near the resolved
nodes HII,∗ and to the standard metric near the fixed divisors, is rotationally flat
and has curvature equal to −1 to second order at the divisors in HI,∗.

Proof. The various families discussed above are Hermitian, for the same bundle
and are rotationally flat. The different local components of HII,∗ do not intersect

so the discussion reduces to the case of a single Lefschetz factor in Ĉ, patching
the extension of the limiting metric to the grafting metric. Since they differ only
by quadratic terms in ρI away from (but near) HII,∗ it is only necessary to use a
rotationally flat partition of unity to combine the conformal factors. �

5. The linearized operator

The boundary of the metric resolution of the total space, Ĉ, has in general,
three types of boundary hypersurfaces. There are the ‘fixed’ hypersurfaces, F∗,
arising from the resolution of marked points, the collective hypersurfacesHI,∗ which
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are fibered by the resolved Riemann surface and the ‘necks’, HII,∗, coming from
the resolution of the nodal surfaces. Defining functions for these hypersurfaces
will be denoted ρF , ρI and ρII with the same notation used for the restrictions of
these functions to the other hypersurfaces, where they are again boundary defining
functions. Note that the collective hypersurfaces F and HII (each consisting of
embedded boundary hypersurfaces intersecting to produce corners) do not meet
each other, so each only meets the collective hypersurface HI. It should be noted
that, the defining function ρI,i can be taken to be the preimage of a defining function
for the corresponding resolved divisor in the base, except near the component, HII,i,
of HII corresponding to the related node, where ρI,iρII,i is a multiple of the defining
function from the base.

The grafted metric is equal to the plumbing metric near the intersection of the
boundary faces HI and HII and so, in terms of the local coordinates introduced in
Section 2, takes the form

(5.1) g =
π2s2

sin2( πssw )

(
ds2w
s4w

+ dθ2w

)
=

π2s2

sin2( π
1+ρz

)

(
dρ2z

s2(1 + ρz)4
+ dθ2z

)
.

Here s = ilog |t|, sw = ilog |w|, ρz = ilog |z|/ ilog |w|.
The Laplacian of the metric near the boundary of HI is

(5.2) ∆I = −
sin2( πssw )

( πssw )2

(
(sw∂sw )

2 + sw∂sw +
1

s2w
∂θw

)
,

where sw = ρII is the boundary defining function of HII and hence a variable
restricted on HI. Similarly, near HII the Laplacian is

(5.3) ∆II = −
sin2( π

1+ρz
)

( π
1+ρz

)2

(
(1 + ρz)

2∂2ρz + 2(1 + ρz)∂ρz +
∂2θ

s2(1 + ρz)2

)

with ρz = ρI is the boundary defining function of HI and a variable on HII.
The plumbing metric is rotationally invariant to infinite order near all boundary

hypersurfaces. Let C∞
θ (Ĉ) ⊂ C∞(Ĉ) denote the subspace annihilated to infinite or-

der at each boundary hypersurface by the corresponding generator(s) of the circle
bundle(s) Dθ, see Definition 4. So to each hypersurface in HI and F there cor-
responds one generator and to each component of HII there correspond two; note
that as discussed in Proposition 7 these are all defined up to infinite order in view
of the introduction of logarithmic variables.

As indicated in Step (2) in §3, we first study the linearized equation (3.1):

(∆gpl + 2)u = h = −1−R(gpl).

Since −2 is outside the spectrum of ∆ the resolvent ‖(∆+2)−1‖ ≤ 1 on the regular

fibers of Ĉ has a bound, in terms of the L2 norm on the fibers, which is independent

of the parameters. In [13, Proposition 3] the space L2
b(M̂ ;L2(dg)) of L2 functions,

with respect to the b-volume form on the base, with values in the fiber L2 spaces is

identified with the total weighted L2 space ρ
− 1

2

II L2
b(Ĉ). This statement is a tautology

except near the nodal hypersurfaces defined by the ρII. Since these are disjoint, the
argument for a single node in [13] carries over unchanged, as does the commutation
argument giving higher regularity with respect to tangential differentiation in all
variables. In consequence the uniform solvability of (3.1), in spaces including the
parameters, follows from these same arguments.



METRESMOD 21

Proposition 9. For the Laplacian of the grafted metric

(5.4) (∆+ 2)−1 : ρ
− 1

2

II
Hk

b (Ĉ) −→ ρ
− 1

2

II
Hk

b (Ĉ) ∀ k ∈ N.

In particular this result holds for k = ∞, where the spaces become the L2 based

conormal spaces, so conormality on Ĉ up to the boundaries for the solution of
(∆ + 2)u = h follow from conormality for the forcing term. Defining functions in
the base commute with the operator so (vanishing) weights with respect to these
commute with the inverse.

More refined regularity properties for the family (∆+2)−1 follow from an iterative
construction of formal series solutions locally near the preimage of a point in an

intersection of divisors in M̂ , and is based on the solution to two model problems
which are described explicitly below and we note their basic solvability properties
here.

The first model operator is ∆I + 2, obtained from ∆ + 2 by restriction to the

fibers of the hypersurface HI above the interior of a particular corner in M̂, i.e.
intersection of divisors. These fibers are Riemann surfaces with constant curvature
cusp metrics. The main issue here is the appearance of logarithmic terms, so of order
log log 1/|t| with respect to the original complex parameters. Thus the solution we
obtain is log-smooth rather than a true formal power series.

Lemma 7. The L2 inverse of ∆ + 2, for a cusp metric on a Riemann surface S,
applied to functions rotationally-invariant at the ends, satisfies

(5.5) h =
∑

0≤j≤k

ρII(log ρII)
jhj, hj ∈ C∞

θ (S) =⇒

(∆+ 2)−1h =
∑

0≤j≤k+1

ρII(log ρII)
juj , uj ∈ C∞

θ (S).

Proof. The proof is the same as in [13, Lemma 4]. The Laplacian is essentially self-
adjoint and non-negative, so ∆+2 is invertible. Near the boundary the zero Fourier
mode satisfies a reduced, ordinary differential, equation with regular singular points
and having indicial roots 1 and −2 in terms of a defining function for the (resolved)
cusps. Then the form of solution (5.5) follows. �

The second model operator is the ordinary differential operator arising from∆+2
conjugated by ρII and restricted to the ‘necks’ HII and then projected onto the the
zero Fourier mode. The fibers are now cylinders, projecting to interval, I. These
operator have a regular singular points with two indicial roots, 0 and 3, where the
first corresponds to the simple vanishing in (5.5).

Lemma 8. For the (reduced) model operator ∆II + 2 the Dirichlet problem is
uniquely solvable and for smooth boundary data and a smooth forcing term has
solution

(5.6) If v± ∈ R, r =
∑

0≤j≤k

(log ρI)
jrj , rj ∈ C∞(I) then

(∆II + 2)v = r, v
∣∣
∂I

= v± =⇒ v =
∑

0≤j≤k

(log ρI)
jv′j +

∑

0≤j≤k+1

(log ρI)
jρ3

I
v′′j .

Proof. This is the same proof as [13, Lemma 6]. Unique solvability follows by
integration by parts and positivity. The initial source of logarithmic terms is the
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‘second’ indicial root for ∆II + 2, even if r = 0 but the boundary data differ this
introduces a logarithmic term with coefficient vanishing to third order at the ends.
Ultimately this is an effect of scattering on HI. �

In the inductive argument we begin by solving (5.5) on the highest codimension
boundary face in the base, where it is uniform, and then extend the solution to
a neighborhood of the preimage. Near the (fixed) cusps this can be done so that
the extension remains in the null space of ∆ + 2 since the operator is actually
independent of the parameters. However along the boundary, HII, corresponding
to the resolved nodes this produces an error which is not rapidly vanishing. On
iteration this requires us to solve the same equation, but now with h ∈ ρ C∞(S)
and then the result is that the solution is a sum of two terms, one in ρ C∞(S) and
a more singular term in the space ρ log ρ C∞(S). Repeating this procedure results
in higher powers of logarithms. For this reason we devote considerable effort below
to controlling the growth rate of the powers of the logs of ρI and ρII in the formal
power series solution.

In [13] the log-smooth expansion of solutions to (3.1) was shown in the simplest
case where only one pair of nodes forms. Following that argument, with the minor
modifications due to the presence of the other cusps, this generalizes directly to
the case of a neighborhood of a point in a single hypersurface in the base. In
fact we extend this a little further by considering a neighborhood of a point of
(possibly) higher codimension in the base but with the coefficients of the forcing
term vanishing to infinite order in all but one of the defining functions.

Without loss of generality suppose that s1 is the distinguished defining function
and denote the others collectively as s′. Similarly, let ρI = ρI,1 and ρII = ρII,1 be

defining functions for HI,1 and HII,1 in Ĉ, always taken to reduce to s1 outside a
small neighborhood of the intersection HI,1 ∩HII,1. Then, as in [13], to capture the
special structure of the expansion, we introduced spaces of polynomials in log ρI
and log ρII with coefficients now in (s′)∞C∞

θ (Ĉ), the space of smooth functions in

Ĉ vanishing to infinite order at all the hypersurfaces defined by the s′ and also
rotationally invariant to infinite order under all the circle actions:

Pk =



u =

∑

0≤l+p≤k

(log ρI)
l(log ρII)

pul,p, ul,p ∈ (s′)∞C∞
θ (Ĉ)





Pk,mII =



u =

∑

0≤l+p≤k, p≤m

(log ρI)
l(log ρII)

pul,p, ul,p ∈ (s′)∞C∞
θ (Ĉ)



 , m ≤ k.

The second collection give the filtration of the first spaces by the maximal order of
powers of log ρII :

Proposition 10 (Compare Proposition 6 of [13]). For each k

(5.7) h ∈ ρIIP
k + ρIρIIP

k+1 =⇒ ∃ u ∈ ρIIP
k+1 + ρ2IρIIP

k+2,k+1
II

such that

(5.8) (∆+ 2)u− h ∈ s
(
ρIIP

k+1 + ρIρIIP
k+2
)
.

The form of the error allows for immediate iteration.
As noted above, this follows by slight extension of the arguments in [13], and

also directly from the more general result below.
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We proceed by induction over the local codimension m in the base. Thus the

boundary hypersurfaces in M̂ have defining functions si = st,i, i ∈ {1, . . . ,m}. We
proceed by separating these boundary hypersurfaces into collections corresponding
to choice of a subset L ⊂ {1, . . . ,m}, #(L) = p, L = {j1, . . . , jp}. First consider the
space of polynomials determined by a given multidegree κ = (κj1 , . . . , κjp) ∈ N

p
0

with smooth coefficients independent of the appropriate angular variables at the
boundary hypersurfaces faces and vanishing rapidly at the boundary faces on which
sj = 0 for j /∈ L; this space will be denoted

(5.9) s∞
∁LC

∞
θ (Ĉ), s∁L =


∏

j /∈L

sj


 .

Then the space of polynomials is

PκL = {
∑

αI,j+αII,j≤κj

aα
∏

j∈L

(log ρI,j)
αI,j (log ρII,j)

αII,j , aα ∈ s∞
∁LC

∞
θ (Ĉ)}.

Here α = (αj1 , . . . , αjp) ∈ (N2
0)
p with αj = (αI,j , αII,j) ∈ N2

0, j ∈ L are the indices
for the powers of logarithms in the two boundary defining functions ρI,j and ρII,j
near the hypersurface HII,j such that sj = ρI,jρII,j. This gives a well-defined space
of functions near the union of the boundary faces determined by L. We also make
use of subspaces which have relatively lower order in the second set of variables

PκL,II = {
∑

αI,j+αII,j≤κj

αII,j≤κj−1

aα
∏

j∈L

(log ρI,j)
αI,j (log ρII,j)

αII,j ; aα ∈ s∞
∁LC

∞
θ (Ĉ)}

Let ej be the multi-index (0, ..., 0, 1, 0, ..., 0) where the j-th entry is 1, and set

κ+ nej = (κ1, . . . , κj + n, . . . , κp) ∈ N
p
0.

Then consider the polynomials with an extra restriction on one index j that log ρII,j
cannot reach the top degree:

P
κ+2ej
L,II =

{
∑

αI,i+αII,i≤κi+2δijej
αII,j≤κj

aα
∏

j∈L

(log ρI,j)
αI,j (log ρII,j)

αII,j ; aα ∈ s∞
∁LC

∞
θ (Ĉ)}.

Let φ ∈ C∞
c (R) be a cut-off function with support near x = 0. Since ρII,i never

vanishes simultaneously with any other ρII,j , if we take φ with sufficiently small
support φ(ρII,i) is a function that is 1 near ρII,i = 0 and vanishes near ρII,j = 0 for
j 6= i. We also consider a collective boundary defining function for the HII,i

ρLII =
∏

j∈L

ρII,j.

Proposition 11. Suppose L ⊂ {1, 2, . . . ,m} and any κ ∈ N
p
0 then for any

(5.10) h ∈ LκL = ρL
II
PκL + ρL

II

∑

j∈L

ρI,jφ(ρII,j)P
κ
L,II,

there exists

(5.11) u ∈ UκL = ρLII
∑

i∈L

Pκ+eiL,II + ρLII
∑

j∈L

ρ2I,jφ(ρII,j)P
κ+2ej
L,II
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such that

(5.12) (∆+ 2)u− h =
∑

j∈L

sjgj , gj ∈ Lκ+1
L .

Proof. We first solve the equation on the most singular fiber S = {ρI,j = 0, ∀j ∈ L}
which is a punctured Riemann surface with cusp ends (from both the fixed divisors
and the nodes), where the function h has a finite expansion

(5.13) h =
∑

αj≤κj

aα
∏

j∈L

(log ρI,j)
αj

with coefficients aα which are polynomials in (log ρII,j)’s of multi-index orders at
most (κj − αj)’s respectively. For fixed (αI,1, . . . , αI,p) the equation

(5.14) (∆+ 2)
∑

αj≤κj

vα
∏

j∈L

(log ρI,j)
αj = h+ F,

where F is to vanish at S, induces equation on the coefficients restricted to S. These
form an upper-triangular matrix of b-differential operators, with diagonal entries
∆S + 2, so can be solved iteratively, over decreasing

∑
i∈L αI,i, and at each level

take the form

(5.15) (∆S + 2)vα = gα = hα +
∑

|β|>|α|

Pβvβ ,

where Pβ is the operator that extracts
∏
(log ρI,i)

αI,i terms from vβ . It therefore

follows inductively that gα ∈ Pκ−αL and that vα ∈ Pκ−α+1
L . It is important to recall

here that ρII,i and ρII,i′ cannot vanish simultaneously when i 6= i′. We proceed to
choose an extension of vα off S, but do this separately near ρII,i = 0 for each i.
Away from these hypersurfaces any smooth extension will suffice.

Consider the extension of the vα off S near ρII,i = 0. Since ρII,i′ > 0 for any
i′ 6= i, we may replace ρI,i′ by si′ in this region. The coefficients hα change, but the
form is preserved and the solutions vα are similarly transformed and the resulting
system is diagonal in i′. Replacing f by χ(si)f where χ is a smooth cutoff near zero
introduces an error which is in siLκL and so can be absorbed in the next iteration.
Now we can extend the vα from S to ρI,i = 0 near ρII,i = 0 as solutions of the same
equations although the Laplacian now may depend on si as a parameter. The error
term vanishes identically at si = 0 near ρII,i = 0.We may now proceed exactly as in
[13] to extend the coefficients vα along HII,i in such a way as to remove the leading
coefficient in ρII,i. Since this is all now uniform in si, and the same is true for the
removal of the second term in (5.10), which only involves the induced differential
equation on HII,i, this part of the solution is certainly of the form (5.11) and an
error as in (5.12). A similar construction near ρII,i′ = 0 for all other i′ completes
the proof. �

The results above allow the log-smoothness of the solution of the linearized
equation to be deduced from appropriate log-smoothness of the data in terms of
the spaces defined in (5.10) and (5.11) where we drop the suffix L when all boundary
hypersurfaces are involved. Here we abbreviate the indices and write

sα =

m∏

i=1

sαi

i , α = (α1, . . . , αm) ∈ N
m
0 .
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ρII,i = 0

ρII,i′ = 0

ρI,i = ρI,i′ = 0

Figure 3. The induction procedure with two nodes: curves with
two different degenerating directions approaching the nodal curve
with two nodes

Proposition 12. If h ∈ ρIIC∞
log(Ĉ) has expansions at each of the of boundary faces

of the form

(5.16) h ≃
∑

α∈Nm
0

fαs
α, fα ∈ Lα

then u = (∆+ 2)−1h ∈ C∞
log(Ĉ) has similar expansion

(5.17) u ≃
∑

α

uαs
α, uα ∈ Uα.

Proof. We first recall (see also the Appendix) the structure of the proof of Borel’s
Lemma, summing formal power series, in this context. Suppose xi ≥ 0, i = 1, . . . , ℓ
and y are respectively boundary defining functions and tangential coordinates near
a boundary point of codimension ℓ on a manifold with corners and

(5.18)
∑

α∈N
ℓ
0,β∈N

ℓ
0

αi<βi

fα,β(y)(log x)
αxβ

is a formal power series with smooth coefficients of fixed compact support. Then,
choosing a cutoff function χ ∈ C∞

c (Rℓ) which is identically equal to 1 near zero, the
series

(5.19) u =
∑

α∈N
ℓ
0,β∈N

ℓ
0

αi<βi

fα,β(y)(log x)
αxβχ(x/ǫα) ∈ C∞

log
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converges provided the ǫα decrease rapidly enough. In fact for an appropriate
choice, base on the norms of the coefficients, all the finite differences

(5.20) u(x, y)−
∑

|α|≤N

fα,β(y)(log x)
αxβ

are conormal and vanish to order N at the corner. The same arguments apply
when the coefficients are assumed to be on a manifold with corners but to vanish
to infinite order at all boundaries.

The ‘asymptotic sum’ so obtained is independent of the choices up to an error
in C∞

log which vanishes to infinite order at the corner. Such an error can be de-

composed, using a partition of unity in polar coordinates around (i.e. after blowing
up) the corner, and such that each term is non-zero only near one of the ℓ faces
of codimension ℓ − 1, i.e. {xi = 0}. This allows for the iterative construction of a
log-smooth function with expansions at each of the boundary hypersurfaces, pro-
vided these expansions are formally compatible in essentially the same sense as for
Taylor series.

So, to prove that the solution (∆ + 2)−1h is log-smooth we use Proposition 11

repeatedly, first on the highest codimension boundary face in the base M̂ so with
∁L = ∅ and with a smooth forcing term h with support disjoint from HII and

the fixed hypersurfaces in Ĉ. The formal solution obtained from iteration can be
summed to give

(5.21) um =
∑

α

sαvαχ(s/ǫα) ∈ ρIIC
∞
log(Ĉ).

Note that although the preimage of s = 0 in Ĉ has points of codimension m + 1
the series is constructed uniformly at the union of the m+ 1 faces of codimension
m and the same asymptotic summation principles apply to (5.21). Moreover the
error term

(5.22) hm−1 = h− (∆+ 2)um

is log-smooth, has expansion with powers coming only from those in the errors in
(5.12) at all boundary hypersurfaces and vanishes to infinite order at the preimage
of s = 0. Thus, using a polar partition of unity in s it may be divided into m pieces,
each of which vanishes to infinite order with one of the si.

This allows Proposition 11 to be applied, now with #(L) = m−1 and the general
case to be proved by induction. �

6. The curvature equation

In the previous section we showed that the solution to the linearized equa-
tion (3.1) with a log-smooth forcing term is log-smooth. Now we iteratively apply
Proposition 12 to the full curvature equation to arrive at the same conclusion for
the solution to (3.2). Note that the log-smooth functions form a ring.

Proposition 13. The curvature equation (3.2) has a solution in log-power series

(6.1) f ∼
∑

α

uαs
α, uα ∈ Uα

where the Uα are defined by (5.11).
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Proof. To get the expansion for the nonlinear equation, we write it as

(6.2) (∆+ 2)f = −R− 1− (e2f − 1− 2f).

Consider the formal solution of the linearized equation (∆ + 2)f1 ∼ −R − 1.
from (5.17)

f1 =
∑

α≥2

sαf1,α, f1,α ∈ Uα.

Now we solve the nonlinear equation (6.2) by taking

(6.3) f =

∞∑

i=1

fi, fi =
∑

α≥2i

sαfi,α,

which gives
∞∑

i=1

(∆+ 2)fi = −R− 1−
∞∑

k=2

2k

k!
(

∞∑

i=1

fi)
k.

Now we require that for j ≥ 2

(∆+ 2)fj = −
∞∑

k=2

2k

k!

[
(

j−1∑

i=1

fi)
k − (

j−2∑

i=1

fi)
k

]
= fj−1Qj(f1, . . . , fj−1)

where Qj is a polynomial with no constant term. Assuming inductively that

(6.4) fk =
∑

α≥2k

sαfk,α, fk,α ∈ Uα

for k ≤ j − 1 as in (6.1), the right hand side is in
∑
α≥2j s

αLα. Applying Proposi-
tion 12, we obtain the inductive conclusion that

fj =
∑

α≥2j

sαfj,α, fj,α ∈ Uα.

This shows the existence of a formal solution as in (6.1). �

Now the structure of the actual solution follows from an application of the Im-
plicit Function Theorem.

Proof of Theorem 4. It suffices to show that there is a function f ∈ C∞
log(Ĉ) sat-

isfying the curvature equation (3.2) since then e2fgpl is the family of hyperbolic
metrics.

Writing f = f0 + f̃ , where f0 is a sum of the formal solution obtained from
Proposition 13 by Borel’s lemma. Then f̃ should satisfy

(∆+ 2)f̃ = −
(
2f̃(e2f0 − 1) + e2f0(e2f̃ − 1− 2f̃)− g

)
.

We can apply Proposition 9 to see the solvability of this equation in the space

sNHN
b (Ĉ) restricted to a region where at least one of the si is small. The uniqueness

of the hyperbolic metric shows that the f̃ is in fact smooth and vanishes to infinite
order with each of the si, essentially as in [13, Proposition 8]. �
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7. The Weil–Petersson metric

The Weil–Petersson metric is most easily realized at m ∈ Mg,n in terms of the

dual metric, an Hermitian metric on the logarithmic cotangent bundle, DΛ
(1,0)
m .

The definition uses the identification (3). The bundle of quadratic logarithmic
differentials on the resolution of the marked Riemann surface Z = Zm representing
m ∈ Mg,n satisfies

(DΛ(1,0)Z)2 ⊗ (DΛ(1,0)Z)2 = (DΛ(1,1)Z)2.

The hyperbolic metric on Z, complete outside the marked points and fixed uniquely
by the complex structure, has area form given in terms of a holomorphic coordinate
vanishing at a marked point

(7.1)
dzdz̄

|z|2(log |z|)2
.

By definition, the vector space QZ of holomorphic quadratic differentials on a
punctured Riemann surface consists of those holomorphic sections of (DΛ(1,0)Z)2

which vanish at the marked points. Dividing the product of one such form and
the complex conjugate of another by the area form therefore gives a continuous
section of DΛ(1,1)Z which is smooth away from the marked points near which it has
a bound

(7.2)
∣∣q1q̄2
µm

∣∣ ≤ C(log |z|)2dzdz̄, q1, q2 ∈ QZ,

and so is integrable. This integral gives the dual Weil–Petersson metric, as an
Hermitian form, by push-forward under the Lefschetz map

(7.3)

DΛ(1,0)
m Mg,n = QZm

DΛ(1,0)
m Mg,n ⊗ DΛ(0,1)

m Mg,n ∋ (q1, q2) 7−→ GWP(ζ1, ζ2) = φ∗

(
q1q̄2
µm

)
.

Standard proofs of the Riemann mapping theorem for marked Riemann surfaces
show the smoothness (indeed real-analyticity) of µm on the moduli space and hence
that GWP is similarly smooth as a metric on Mg,n.

We proceed to analyze the behavior of the Weil–Petersson (co-)metric near a
boundary point m̄ ∈ Mg,n \Mg,n, so in some intersection of the G′

i, corresponding

to the number of geodesics which have been pinched to nodes. The fiber of ψ above
m̄ is a nodal Riemann surfaces lying in one or more of the Gi. The null bundle

L̃ψ, of the log differential of ψ again reduces to the log tangent bundle of the nodal

surface, in effect separating nodes to punctures. However the corresponding space

of holomorphic quadratic differentials, Q̃m̄, which is naturally isomorphic to the
logarithmic cotangent space DΛm̄Mg,n consists of those holomorphic sections of

the square of the dual bundle (L̃ψ)
−2 which vanish at the marked points but at

nodal points, in one of the Si, are simply required to take a consistent value, the
same at the two punctures representing the node. Thus in place of (7.2), which
again holds at the marked points, only the much weaker bound

(7.4)
∣∣q1q̄2
µm̄

∣∣ ≤ C(log |z|)2
dzdz̄

|z|2
, q1, q2 ∈ Q̃m̄

generally holds near the nodes. This does not imply integrability so the co-metric
is singular at m̄.
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The structure of the area form at the singular fibers has been analysed in detail,

above, by passing to the real resolution ψ̂ : Ĉg,n −→ M̂g,n; see Theorem 1. The
compactified moduli space is resolved, to a tied manifold, with boundary hyper-
surfaces replacing the exceptional divisors with their logarithmic real blow up, as
for the fixed divisors (which are in the universal curve). Thus each boundary hy-
persurface has a local defining function of the form si = ilog |zi| and forms a circle
bundle over the corresponding divisor given locally by zi = 0.

Lemma 9. The lift of the logarithmic tangent bundle DΛMg,n to M̂g,n is naturally

identified with corresponding (iterated) cusp bundle with local spanning sections dsi
s2
i

,

dθi and dwj at any boundary face.

Proof. This is just the computation

(7.5)
dzi
zi

=
d|zi|

|zi|
+ idθ =

dsi
s2i

+ idθ, si = ilog |zi| = (log |zi|
−1)−1.

�

The preimage in M̂g,n of m̄ ∈ Mg,n lying in a k-fold intersection of the divisors,

G′
i′ , is a product of k circles through a boundary point of codimension k in M̂g,n.

The preimage in Ĉg,n of the singular fiber Zm̄ ⊂ Cg,n above m̄ is a product over
this k-torus with a factor which is an ‘articulated manifold’ (the real analog of a
nodal surface) in the sense that it is a union of compact surfaces with boundaries

meeting only at (some) of their boundary faces Ẑ = ZI ∪ ZII. The component
manifolds forming ZI are resolutions of the Riemann surfaces (including ‘bubbled
off spheres’) into which the original Riemann surface has decomposed under nodal
degeneration. These can (and in the case of spheres must) have boundary faces
formed by the fixed divisors, with collective boundary defining function ρF ; the
other boundary faces arise from the resolution of the (separated) nodes which are
in common with components in ZII. The ZII are all cylinders, joining the two circles
forming the resolution of a node.

The hyperbolic fiber metric of the original Riemann surface induces the hyper-
bolic fiber metric on each of the components of ZI (which are necessarily stable)
which is therefore of the form (7.1) near its boundaries. The fiber metrics degener-
ate at the ZII in an adiabatic fashion; namely the metric approaches the pull back
of metric on the base of the circle fibration with the tangential part vanishing to
second order.

For the resolved universal curve, ψ̂ : Ĉg,n −→ M̂g,n, as shown above, is a real
Lefschetz map in the sense that it is a b-fibration, so has surjective b-differential
and the defining functions on the base each lift to be everywhere either locally a
defining function or the product of two

(7.6) ψ̂∗si = ρI,iρII,i.

The collective boundary hypersurfaces HI =
⋃
i{ρI,i = 0} and HII =

⋃
i{ρII,i = 0}

are without self-intersections (because in the case of HI these have been replaced
by intersections with components of HII through the blow up of the Si) and are the
unions of the parts of the fibers just described.

Lemma 10. If q1, q2 are families of holomorphic logarithmic quadratic differentials

on Ĉg,n, near a boundary fiber, then if νψ̂ is a positive section of the b-fiber density
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bundle for ψ̂,

(7.7)
q1q̄2
µH

= aρ−3
II
ρ∞F νψ̂, 0 < a ∈ C∞

log(Ĉg,n)

Proof. This is a refinement of the computation above leading to (7.2), (7.4). Near
the fixed hypersurfaces the metric has a cusp singularity so the fiber area form is

(7.8) µH = α
dρFdθF
ρF

, 0 < α ∈ C∞
log.

The product of the holomorphic quadratic differentials vanishes in terms of the
holomorphic coordinates so

(7.9) q1q̄2 = e−2/ρF b(
dρFdθF
ρ2F

)2, b ∈ C∞.

The quotient is therefore rapidly decreasing at the fixed boundary hypersurfaces,
giving the formal factor of ρ∞F in (7.7).

It remains to analyse the behaviour at ZII, including at the corresponding bound-
ary faces of ZI. These cover the nodal points at which the holomorphic quadratic
differentials do not necessarily vanish. The structure of the area form is essentially
the same as in (7.8) with ρII replacing ρF but extends along HII; Lemma 9 (and
the uniform analysis of the metric) shows that

(7.10) µH = α
dρIIdθII
ρII

, 0 < α ∈ C∞
log.

The exponential factor in (7.9) is then missing, so

(7.11) q1q̄2 = bρ−4
II (dρIIdθII))

2, b ∈ C∞.

and (7.7) follows. �

The holomorphic quadratic differentials which vanish at a nodal point (so in
some Si) correspond to the ‘tangential’ (logarithmic) differentials on Mg,n at that
point, those which are smooth up to the divisor (although possibly singular along
it as logarithmic differentials). If either q1 or q2 lies in this subspace then at least
one exponentially vanishing factor occurs and (7.7) is replaced by

(7.12)
q1q̄2
µH

= aρ∞II,iρ
∞
F νψ̂, 0 < a ∈ C∞

log(Ĉg,n) near HII,i,

the corresponding component of ZII. In this case the area form is locally integrable
whereas in the ‘normal’ case, (7.7) it is singular at ZII.

Proof of Theorem 2. As noted in (7.3), the Weil–Petersson metric, defined through
the dual metric on DΛ(1,0)M, is given by push forward under the Lefschetz map ψ.
Lifting under the metric resolution, it follows that

(7.13) GWP(ζ1, ζ2) = ψ̂∗(
q1q̄2
µm

)

where the qi are holomorphic quadratic differentials representing the ζi. Here we
may think of the ζi as holomorphic sections of DΛ(1,0)Mg,n near some point m̄

and the qi as the corresponding sections of Q̃Mg,n, hence holomorphic quadratic

differentials near the fiber above m̄. Since ψ̂ is a b-fibration the push-forward the-
orem in [12] applies. In principal this is in the context of manifolds with corners,
rather than the slightly more general case of tied manifolds with orbifold points as
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encountered here. However the fibers are globally manifolds with boundaries and
the result is essentially local in the base. The same remark applies to the presence
of orbifold points since these are also in the base directions, so one can always apply
the result in [12] to an appropriate finite local cover and then take the quotient.

Proposition 14 (See [12]). If φ̂ : Ĉ −→ M̂ is a b-fibration with compact fibers,
between manifolds with corners, with multiplicity at most two, in the sense that
each boundary defining function in the range is locally the product of at most two
boundary defining functions in the domain and νφ̂ is a non-vanishing fibre b-density

then

(7.14) C∞
log(Ĉ) ∋ a 7−→ φ̂∗(aνφ) = g +

∑

i′

ai′ log ρi′ , g, ai′ ∈ C∞
log(M̂).

If a vanishes to order j at the codimension two faces occurring as the common zero

surface in (7.6) for φ̂∗ρi′ then the corresponding coefficient ai′ vanishes to order j
at ρi′ = 0.

In brief the logarithmic multiplicity in the generalized Taylor series at boundary
faces in the range of such a push-forward is at most one degree higher, there is at
most one more factor of log ρi′ , and this only arises from the Taylor series at the
codimension two faces mapping onto a given boundary hypersurface. One can be
more precise about the sense in which it is the diagonal terms in the Taylor series
at the corners which contribute to the logarithmic coefficients.

Near a point in the local intersection of k exceptional divisors in the base, Mg,n,

we may always choose a local coordinate basis of DΛ(1,0), ζi′ = dzi′/zi′ , i
′ = 1, . . . , k,

ζ′j = dwj , over an open neighborhood O ⊂ Mg,n so that the corresponding holo-
morphic quadratic differentials are qi′ and q

′
j , where each qi′ vanishes at all Sl′ with

l′ 6= i′ and takes the value 1 at Si′ and the q′j are tangential in the sense that they

vanish all local Sl′ . Thus the q′j are holomorphic quadratic differentials when the
nodal points are separated and regarded as marked points on the resulting possibly
non-connected Riemann surface.

Applying Proposition 14 to compute the coefficients of the metric via (7.3) using
Lemma 10 and the subsequent remark we conclude that locally

(7.15)

GWP(
dzi′

zi′
,
dzi′

zi′
) ∈ ρ−3

i′ C∞(Ô) + log ρi′C
∞
log(Ô),

GWP(
dzi′

zi′
,
dzj′

zj′
) ∈ C∞

log(Ô), i′ 6= j′

GWP(dwj , dwk) ∈ C∞
log(Ô) ∀ j, k

where Ô is the preimage of O in M̂g,n.
The singular coefficients in (7.15) arise only from the boundary hypersurface

HII,i′ resolving Si′ in Ĉg,n. Consider the leading terms in the length, with respect
to the Weil–Petersson co-metric, of dzi′/zi′ , dropping the index for notational sim-
plicity. This is given by the push-forward formula. Since we have shown that they
differ by quadratic terms at the divisors, it suffices to replace the Weil–Petersson
metric by the grafting metric in the computation of the leading terms. The explicit
computation of the integral depends on the fibration being in model Lefschetz form
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and the metric reducing to the plumbing metric near the nodal points. To accom-
plish this we choose z to be fiber holomorphic but only smooth in the base, i.e.
arising from a non-holomorphic defining function for the corresponding G′

i.
Now the integral of the fiber area form which may be written out explicitly as

(7.16)

∫

|t|<|z|<1

µs

where µs is the quotient of |dz|4/|z|4 – the square of a quadratic differential with a
double pole – and the area form of the plumbing metric. So,

(7.17) µs =
|dz|2

|z|2
(log |z|)2

(
log |t|

π log |z|
sin

π log |z|

log |t|

)2

.

So, setting s = −1/ log |t|, r = −1/ log |z| we find

(7.18)

|dz|2

|z|2
=
drdθ

r2
,

µs =
drdθ

r4

( r

πs
sin

πs

r

)2
.

The integral then becomes

(7.19) 2π

∫ 1

s

dr

π2s2r2
sin2

πs

r
.

Changing variable to τ = s/r, so dr/r2 = −dτ/s, gives

(7.20)
1

πs3

∫ 1

s

(1− cos 2πτ)dτ =
1

πs3
(1− s+

sin 2πs

2π
).

The higher order terms in the coefficients of these diagonal terms arise from either
the difference of the conformal factor for the degenerating family of metrics, which

may give a term in log ρi′C∞
log(Ô), and the higher order terms in the quadratic

differential which produce a term in C∞
log(Ô).

To obtain the form (7.5) of the metric we must change from the non-holomorphic
defining functions for the divisors to holomorphic ones. As discussed in Proposi-
tion 7 this only changes the real boundary defining functions sj by quadratic terms
and the given decomposition of the metric is not altered by such changes. �

8. Ricci curvature and metric

The Ricci curvature of the Weil–Petersson metric itself defines a Kähler metric
on the moduli space; the quasi-isometry class was found by Trapani [19] and the
leading asymptotics at a divisor by Liu, Sun and Yau [9, 8]. Near the intersection
of k divisors, written out in terms of the singular coordinate basis

(8.1) αj = d log zi = d(−s−1
i + iθi), 1 ≤ i ≤ k; αj = dzj , 3g − 3 + n ≥ j > k

the full asymptotic expansion of the Weil–Petersson metric in turn yields a full
description of the asymptotic behaviour of the Ricci metric at the exceptional di-
visors:

Theorem 5. In terms of the coordinates si, θi and zl near an intersection of
exceptional divisors, the Ricci metric derived from the Weil–Petersson metric is
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θi-invariant to infinite order at si = 0, has log-smooth coefficients as an Hermitian
form in −ds−1

i + idθi and dzj and in this sense has leading part

(8.2) gRi =
3

4

k∑

i=1

(
ds2i
s2i

+ s2i dθ
2
i

)
+ h

where h is log-smooth and restricts to the exceptional divisor to be the induced Ricci
metric.

Proof. In terms of the coordinates in (8.1), the Weil–Petersson metric gWP is as in
(9). Computed in terms of the these complex differentials, the determinant of the
metric takes the form

(8.3)

det(gWP) = (

k∏

i=1

π
1

(log |zi|)3|zi|2
) det(gWP,z)

(
1 +

k∑

i=1

(ilog |si|)fi

)

log det(gWP) = C +

k∑

i=1

−3i log log |zi|+ log det gWP,z +
∑

i

ilog |si|f̃i

where the fi and f̃i are log-smooth with respect to the zi variable.
Since − log det(gWP) is a Kähler potential for the Ricci metric the leading normal

part of the metric is

(8.4)
3

4

∑

i

|dzi|2

(log |zi|)2|zi|2

Changing variables back to si = −1/ log |zi| gives (8.2) with the constants matching
Corollary 4.2 of [9]. �

Thus the Ricci metric of the Weil–Petersson metric is of the form of a ‘multi-
cusp’ metric, as exemplified by the product of Riemann surfaces with cusps. It is
shown in [9] that the Kähler-Einstein metric on the moduli space is quasi-isometric
to the Ricci metric; it presumably has similar regularity although this has not been
demonstrated. Since such metrics also appear in the setting of locally symmetric
spaces it is very natural to enquire as to the structure of the continuous spectrum
in these settings.

9. Sectional curvature

Written out in terms of the coordinate introduced by the real resolution as
in (8.1), the Weil–Petersson metric is given by the Hermitian form

(9.1)

gWP =
∑

gjl̄αjαl,

gjl̄ =





πs3j(1 + s2jγjj̄) j = l ≤ k

s3js
3
l γjl̄ j 6= l ≤ k

s3jγjl̄ j ≤ k, l > k

γjl̄ j, l > k

where the γjl̄ are log-smooth, have θj derivatives vanishing to infinite order at
sj = 0 and for j, l > k, gjl̄ restricts to the corner ∩j≤k{sj = 0} to give the
induced Weil–Petersson metric. The structure of the metric comes directly from
the formula (9) which shows that the co-metric with respect to the dual basis is
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log-smooth, with invertible tangential part, except for the diagonal components in
the ‘normal’ directions which are of the form

(9.2) gjj̄ = π−1s−3
j (1 + s2jδj), 1 ≤ j ≤ k

with δj log-smooth. The Fenchel–Nielsen coordinates are geodesic coordinates [1],
therefore restricting at {sj = 0} the cross terms gjl̄, j 6= l, vanish there. Note that
this is different from the plumbing coordinates used in (8.1). This implies that
the Kähler potential of the metric near the intersection of k divisors is given by a
log-smooth function with θj derivatives vanishing to infinite order at sj = 0 and
with expansion

(9.3) u(s1, . . . , sk, zk+1, . . . , z3g−3+n) = ψ(z, z̄) +
k∑

i=1

2πsi +
k∑

i=1

s2iφi(s, z, z̄),

where φi =
∑
j 6=i O(s

2
j ). The Weil–Petersson metric, given by the Kähler form

g = ∂∂u, is

(9.4) g =



πs3i +

3
2s

4
iφi +O(s5i ) O(s3i s

3
j) s3iφi,z̄

O(s3i s
3
j) πs3j +

3
2s

4
jφj +O(s5j ) s3jφj,z̄

s3iφi,z s3jφj,z ψzz̄ +O(
∑

i s
2
i )


 ,

1 ≤ i 6= j ≤ k

with the dual metric

(9.5) g−1 =



π−1s−3

i +O(s−2
i ) O(1) O(1)

O(1) π−1s−3
j +O(s−2

j ) O(1)

O(1) O(1) ψ−1
zz̄ +

∑
O(s2i )


 .

Proposition 15. The leading order of the curvature tensors of the Weil–Petersson
metric near the intersection of k divisors ∩kj=1{sj = 0} in the orthonormal basis

{ dsj
s
1
2
j

+ s
3
2

j idθj , dzl, 1 ≤ j ≤ k, l > k} are given by the matrices below with entries

(q, p) ∈ {i, j, ∗} × {i, j, ∗}:

(9.6)

R̃īiqp̄ = O



s−1
i s

1
2

i s
1
2

i

s
1
2

i s
1
2

i s
1
2

j s
1
2

i

s
1
2

i s
1
2

i si




R̃ij̄qp̄ = O



s

1
2

i sisj si

sisj s
1
2

j sj

si sj s
3
2

i s
3
2

j


 , R̃i∗̄qp̄ = O



s

1
2

i si s2i

si s
1
2

j s
3
2

i s
3
2

j

s2i s
3
2

i s
3
2

j s
3
2

i




R̃∗īqp̄ = O



s

1
2

i si s2i

si s
1
2

j s
3
2

i s
3
2

j

s2i s
3
2

i s
3
2

j s
3
2

i


 , R̃∗∗̄qp̄ = O




si s
3
2

i s
3
2

j s
3
2

i

s
3
2

i s
3
2

j sj s
3
2

j

s
3
2

i s
3
2

j 1




(q, p) ∈ {i, j, ∗} × {i, j, ∗}, 1 ≤ i, j ≤ k, k + 1 ≤ ∗ ≤ 3g − 3 + n,

where more specifically the sectional curvature of the normal direction R̃īiīi is given
by

(9.7) R̃īiīi = −
3π

4
s−1
i +O(si).
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Remark 1. The leading coefficient in (9.7) matches with the scalar curvature of the
leading term in (9) which gives

R = −
3π

2
s−1
i .

Proof. We show the computation of the case with one single divisor first k = 1, and
the computation with multiple divisors are similar. Consider the Kähler potential
u(s, z, z̄) for the Weil–Petersson metric, which should be

(9.8) u = φ(z, z̄) + 2πs+ s2ψ(s, z, z̄)

the metric gij̄ is given by (here ∂α = 1
2 (s

2∂s−i∂θ) and similarly ∂ᾱ = 1
2 (s

2∂s+i∂θ))
(9.9)

gij̄ = ∂i∂j̄u =

(
uαᾱ uαz̄
uᾱz uzz̄

)
=

(
πs3 + 3

2s
4ψ + 3

2s
5ψs +

1
4s

6ψss s3ψz̄ +
1
2s

4ψsz̄
s3ψz +

1
2s

4ψsz φzz̄ + s2ψzz̄

)
.

Note the metric itself, is of the form

(9.10)

(
s3(π + a′s) s3b′

s3b′ h′

)

where a′, b′ and h′ are again log-smooth and h′ is invertible.
The dual metric (always using the b-basis which becomes the cusp basis) is of

the form

(9.11)

g−1 = (det gij̄)
−1

(
uzz̄ −uαz̄
−uᾱz uαᾱ

)

=

(
π−1s−3 − 3

2s
−2π−2ψ − 1

πφ
−1
zz̄ ψz̄

− 1
2πφ

−1
zz̄ ψz φ−1

zz̄

)
+O

(
s−1 s
s s2

)

From here we compute the curvature tensor:

(9.12)

R11̄qp̄ = −

(
3π
4 s

5 +O(s6) O(s5)
O(s5) 3

2s
4ψzz̄ +O(s5)

)

R∗1̄qp̄ = −

(
3
4ψzs

5 +O(s6) O(s5)
O(s5) O(s3)

)

R1∗̄qp̄ = −

(
3
4ψz̄s

5 +O(s6) O(s5)
O(s5) O(s3)

)

R∗∗̄qp̄ = −

(
3
2ψzz̄s

4 +O(s5) O(s3)
O(s3) O(1)

)

In the orthonormal basis, we need to rescale the basis by changing from ds
s2 + idθ

to unit length vector ds

s
1
2

+ s
3
2 idθ, so effectively multiplying each entry with a ‘i’ or

‘̄i’ by s
− 3

2

i . Therefore,

(9.13)

R̃11̄qp̄ =

(
− 3π

4 s
−1 0

0 0

)
+O

(
1 s

1
2

s
1
2 s

)

R̃∗1̄qp̄ = O

(
s

1
2 s2

s2 s
3
2

)
, R̃1∗̄qp̄ = O

(
s

1
2 s2

s2 s
3
2

)
, R̃∗∗̄qp̄ = O

(
s s

3
2

s
3
2 1

)
.

�
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10. Takhtajan-Zograf metrics

To analyse the behaviour of the Takhtajan-Zograf metric(s) at the divisors of
Mg,n, n ≥ 1, we need (in addition to everything above) to see what happens to the
appropriate ‘Eisenstein series’ under degeneration.

If we have a punctured Riemann surface undergoing nodal degeneration with a
fixed cusp Bi we need to understand the behaviour of the Eisenstein series, which
can be realized as the solution to

(10.1) (∆+ 2)Ei(z) = 0, Ei(z) = x−2χ+ E′
i, E

′
i ∈ L2

where χ is a cut-off near Bi. So the behaviour of this follows from the analysis of
(∆+ 2)−1 above.

Lemma 11. On any connected compact Riemann surface with punctures, the
Eisenstein series Ei determined by (10.1) for the puncture Bi is strictly positive.

Proof. Maximum principle. �

For this Eisenstein series associated with any one marked point on a marked
Riemann surface the limit at another marked point

(10.2) L(i, p) = lim ρ−1
p Ei

is the value of some L-function.
Now consider the degeneracy of Ei at some k-fold (self-)intersection of divisors

at the boundary of Mg,n. The nodal Riemann surface corresponds to at most
k components of connected Riemann surfaces Mj of genus gj. Each component
has (possibly empty) finite set of nj + kj points, consisting of nj labelled marked
points and kj distinct but unlabelled nodal points; each component is stable in the
sense that 2gj + nj + kj > 2 and there is an involution pairing the nodal points
(collectively). At each boundary point, the b-cotangent bundle of Mg,n contains
as a subspace the b-cotangent bundle of Mgj ,nj+kj .

Now, for such a nodal Riemann surface in the boundary of the moduli space,
the ith marked point appears in precisely one of the components corresponding to
j = m(i). Each of the other components is connected to this particular component
by a chain of separating nodes. Let s(m(i), j) be the number of these nodes and
let n(i, j) formally denote the last node which is in the jth component Riemann
surface. We also let L(m(i), j) be the product of the L-functions corresponding to
the chain of intervening ‘linking’ nodes.

Proposition 16. Each Eisenstein series Ei is log-smooth on Ĉg,n (the metric res-
olution of the universal curve) and at a k-fold corner is of the form

(10.3) Ei =
∑

j

ρ
4σ(m(i),j)
i L(m(i), j)En(i,j)(Mgj ,nj+kj ).

For one of the ‘fixed divisors’ in Mg,n, n > 0, the corresponding Takhtajan-
Zograf metric is the push-forward in

(10.4) (q1, q2)TZ = φ∗(
E−1
i q1q̄2
µH

)

and the total metric is the sum over i; see [14].
The extra factor is therefore at worst O(x2) in terms of the logarithmic coordi-

nates, so does not affect the exponential decay from the vanishing (i.e. simple pole)
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of the quadratic differentials at the cusp face with which it is associated. In fact the
final effect is that there is one extra order of singularity at the nodal face relative
to the Weil–Petersson metric. The leading term can be extracted as before, except
that there is an overall constant which is global in nature and the Takhtajan-Zograf
metric will have the behaviour

(10.5) gTZ = cds2 + c′s4dθ2

in the normal direction to the divisor. According to Obitsu-To-Weng there is some
degeneracy in the tangential directions, see [14].

11. Lengths of short geodesics

For the plumbing model the shortest geodesic occurs in the middle of the hyper-
bolic neck, that is, at |z(θ)| =

√
|t| in terms of the original complex coordinates.

The length of this circle is 2π2s, s = ilog |t|. This provides an approximation to the
degenerating geodesic for the global hyperbolic metric both in terms of the length
and the position of the circle.

Proposition 17. In terms of the local fiber coordinate w = ilog |z|/s near the front
face of the metric resolution the short closed geodesic near a nodal point is of the
form

(11.1) γs(θ) = (w(s, θ), θ) = (2 + g(s) + g′(s, θ), θ)

where g(s) is log-smooth with g(0) = 0 and g′(s, θ) is smooth and vanishes to infinite
order as s ↓ 0; it follows that its length is

(11.2) Lγ(s) = 2π2s(1 + se(s))

where e is log-smooth.

Proof. On the metric resolution, near a nodal point, the degenerating hyperbolic
metric, takes the form

(11.3) g = e2s
2fZ(w)2

(
dw2

w2
+ w2s2dθ2

)
, Z(w) =

π/w

sin(π/w)

where f = f(w, s, θ)) is log-smooth and ∂θf = O(s∞).
To show that the actual degenerating geodesic is close to the curve for the model,

γ(θ) = (2, θ), consider the length of families of curves of the form

(11.4) γ(θ, s) = (w(s, θ), θ) = (2 + h(s) + su(θ, s), θ),

where h ∈ H1([0, 1)) and u ∈ H1
0 (S × [0, 1)) lies in the Hilbert subspace without

constant term, so
∫
udθ = 0. Then the length of the family satisfies

(11.5)
L(γ)

s
=

∫
es

2f(γ)Z(w)E
1
2 dθ, E =

(u′)2

w2
+ w2.

This is a C2 function near zero in [0, 1)s×H1([0, 1))×H1
0 (S× [0, 1)) which for small

s has a non-degenerate minimum at (h, u) = 0. Here the smoothness uses the fact
w > 0 and E > 0, so its inverse and square-root are strictly positive functions in
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L∞. Indeed, the derivative with respect to (h, u) evaluated on the tangent vector
(κ, υ) may be written in the form

(11.6)

∫
κα+ υ′β

α = es
2fZ(w)E

1
2

(
s2fw −

1

w
(1−

π

w
cot

π

w
) + E−1(

(u′)2

w3
+ w)

)

β = es
2fZ(w)E−1/2 u

′

w2
− s

∫
α

where the last integral is the unique in θ without constant term. So using L2 duality
this may be identified as a map, rather than a linear form,

(11.7) Ds : H
1([0, 1)× L2

0(S;H
1([0, 1)) ∋ (h, u) 7−→

(α, β) ∈ H1([0, 1))× L2
0(S;H

1([0, 1))

where the 0 subscript indicates the absence of the constant mode. As such it is
again C2 and its derivative at s = 0 is invertible. From the Implicit Function
Theorem, Ds has a unique 0 near 0 and from this the stated regularity of the curve
giving the unique geodesic follows directly. The log-smoothness of the length can
then be seen by evaluating the integral as a push-forward. �

Appendix: Log-smooth functions

In this appendix we recall the definition, and some of the basic properties, of
log-smooth conormal functions on a manifold with corners.

For a general compact manifold with corners the space of log-smooth functions,
denoted by C∞

log(M), is well defined in terms of iterated expansions at each of the

boundary faces. Proceeding by induction one can suppose that C∞
log(M) is well-

defined for any manifold with faces of codimension at most k. Then on a manifold
N with boundary faces of codimension up to k + 1 a function u ∈ C∞(N \ ∂N) is
in C∞

log(N) if it has expansions at each boundary hypersurface H = {ρ = 0} with

defining function ρ and for any (one) choice of collar decomposition {ρ < ǫ} =
H × [0, ǫ) :

(.8) u ≃
∞∑

l=0

l∑

j=0

ul,j(log ρ)
jρl, ul,j ∈ C∞

log(H)

where H can have boundary faces only up to codimension k. The precise meaning
of the expansion can be given in terms of conormal estimates. Namely if A(N) is
the space of bounded conormal functions, defined by the stability condition

(.9) Diffmb (N) · u ⊂ L∞(N) ∀ m

then the remainder terms in (.8) are required to satisfy

(.10) φ(ρ)


u−

M∑

l=0

l∑

j=0

ul,j(log ρ)
jρl


 ∈ ρM+1A(N) ∀ M

where φ ∈ C∞
c (R) has support in the collar and φ = 1 near 0.

Such an expansion at a boundary face implies similar expansions near the corners
contained in it. Indeed, again proceeding by induction over boundary codimension,
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the expansion of the coefficients in (.8) gives an expansion at any boundary face F
of H of the form

(.11) u ≃
∞∑

α,β≤α

uα,β(log ρ)
βρα, uα,β ∈ C∞

log(F )

where ρ now stands for the codim(F ) defining functions of F, one of which is by
assumption a defining function for N. Again the meaning of this expansion is that
the difference of u and the terms with |α| ≤ L should lie in RL−1

F A(M) where RF
is a radial defining function for F. The function u determines all the coefficients
in the expansion at any boundary face and it follows that there are compatibility
conditions across the higher codimension faces.

These compatibility conditions are between the expansions at different boundary
faces but the expansion at any one boundary face is unrestricted. This can be
seen by constructing appropriate elements of C∞

log(M). The series in (.11) can be

summed by choosing a cutoff χ ∈ C∞
c (Rp), where p is the codimension and χ = 1 in

a neighbourhood of the origin. Then, provided ǫl ↓ 0 converges sufficiently rapidly,
depending on the coefficients uα,β ∈ C∞

log(F ),

(.12) u =
∑

l

∞∑

|α|=l,β≤α

uα,β(log ρ)
βραχ(

ρ

ǫl
) ∈ C∞

log(M)

satisfies (.11). Moreover, if u′ ∈ C∞
log(M) has the same expansion at F then the

difference can be decomposed near F as a sum over the boundary hypersurfaces
containing F

(.13) u′ − u = u′′ +
∑

H⊃F

vH , vH ∈ C∞
log(M), supp(u′′) ∩ F = ∅

where each vH has a trivial expansion at all faces of codimension two or higher
which are not contained in H.

Since we construct functions below by iteration over such asymptotic sums it
is useful to consider subspaces of C∞

log(M) for which the expansions at a given

collection of boundary faces are trivial. We use the notation u
F
≡ 0 to indicate that

the expansion at the boundary face F is trivial.

Lemma 12. If u ∈ C∞
log(M) and u

F
≡ 0 at all boundary faces of codimension k then

u may be decomposed into a sum over boundary faces {G} of codimension k − 1

u =
∑

G

uG, uG ∈ C∞
log(M), uG

F
≡ 0.

Proof. If ff is a boundary face of M under the blow up of F the space {u ∈

C∞
log(M);u

F
≡ 0} lifts isomorphically to {v ∈ C∞

log([M ;F ]); v
ff
≡ 0}. After the blow

up of all boundary faces of codimension k, the lifts of the faces of codimension
k − 1 are disjoint. Thus, on the blown up space the lift of u can be divided into
pieces each of which has support disjoint from one of the (lifted) boundary faces of
codimension k− 1 by use of a partition of unity. These pieces therefore are the lifts
of a decomposition as desired. �
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