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TheMAJORANADEMONSTRATORisanultralow-backgroundexperiment searching forneutrinolessdouble-
betadecay in 76Ge.Theheavily shieldedarrayofgermaniumdetectors, placednearlyamileundergroundat the
Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics.
Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard
model but predicted by someof its extensions. If such particles exist, theymight be detected in theMAJORANA

DEMONSTRATORby searching formultiple-detector eventswith individual-detector energy depositions down
to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking.
New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e=1000.

DOI: 10.1103/PhysRevLett.120.211804

Lightly ionizing particles (LIPs) are hypothetical
particles for which the electromagnetic interaction is sup-
pressed compared to particles like charged hadrons and
leptons. A particle with a charge q ¼ e=f that is reduced by
a factor f relative to the electron charge e is expected to
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have weaker electromagnetic interactions than standard
singly charged particles. These particles are often referred
to as milli- or minicharged particles (MCPs) in the
literature. In this Letter, we refer to them as LIPs, since
this designation describes the energy loss phenomenology
related to a class of detection techniques. The term LIPs
includes MCPs, since their signature would be diminished
ionization, but it does not preclude other possible particles.
The standard model (SM) of particle physics does not

include free fractionally charged particles [1], since the
quarks are bound within hadrons and do not exist as free
particles. However, the SM is known to be incomplete,
since it cannot explain the nature of dark matter or dark
energy. Unbound quarks, noninteger-charged bound states
of quarks, or new leptons with a fractional charge are a few
possible candidates with LIP character that occur in
proposed extensions of the SM. There are a variety of
theories that permit an MCP including, for example, a
fermion singlet [2,3], an additional mirror U(1) paraphoton
that can mix with the photon [4], neutrinos with electro-
magnetic couplings [5], vector particles [6], dark constitu-
ents bound to atoms [7], charge quantization [8–11], or
composite MCPs [12]. The phenomenology of these
models and their variants is very broad, justifying a variety
of search techniques and leading to a rich experimental
literature.
Although the masses of these particles can lie above the

reach of current accelerators, experimental constraints on
masses and charges of MCPs have been derived from fixed
target accelerators [13–20], colliders [21–28], stellar models
[3,29–31], the cosmic microwave background [29,30,
32–37], big-bang nucleosynthesis [30], Supernova 1987A
[30,38], neutron stars [39,40], pulsars and gamma ray bursts
[41], galaxy clusters [42], the Lamb shift [29,43,44], dark
cosmic ray searches [45], positronium decay [46], reactor
neutrinos [47,48], and the μmagneticmoment [29]. An early
levitation experiment [49] found an indication for the
existence for fractional charges that was not confirmed by
following efforts [50,51]. Millikan’s method is a long-
standing technique to search for fractional charges [52],
combining the advantage of large probe sizes and high
counting statistics. Brownian motion, however, limits this
method’s sensitivity [53].Direct searches forLIPs, including
MACRO [54,55], Kamiokande-II [56], and LSD [57] placed
stringent limits on the LIP flux for 0.4 < f < 6. The
Cryogenic Dark Matter search (CDMS) experiment
[58,59] placed limits on exotic particles with f < 200 using
a direct search technique. A 2009 review [60] summarizes
the experimental state of the field prior to the results of
CDMS in 2010. References [3,61] provide a broad list of
references, give a recent overview of the results over the past
decade, and discuss the mass-charge parameter space. Here,
we describe an improved direct search for such particles.
The MAJORANA DEMONSTRATOR [62,63] is located at a

depth of 4850 ft at the Sanford Underground Research

Facility [64]. In addition to its primary goal of searching for
neutrinoless double-beta decay, its ultralow-background
configuration permits additional physics studies including
searches for dark matter, axions, and exotic physics [65].
Two modules contain 44.1 kg of high-purity germanium
detectors, 29.7 kg of which are enriched to 88% 76Ge. Fifty-
eight detector units are installed in strings of three, four, or
five detectors. The detector masses, diameters, and heights
range from 0.5 to 1 kg, 6 to 8 cm, and 3 to 4 cm,
respectively. A sketch of the setup can be seen in Fig. 1, and
a detailed description can be found in Ref. [62]. The
MAJORANA DEMONSTRATOR detectors are 3–5 times
thicker than those used in CDMS, providing a higher
sensitivity to lower-energy deposits per crossing and hence
higher values of f at comparable energy thresholds. The
low thresholds, excellent energy resolution, reduced elec-
tronic noise, and pulse shape characteristics of the p-type
point contact detectors [66–69] allow a competitive LIP
search based on the DEMONSTRATOR data.
The analysis presented here includes data taken from

June 2015 until March 2017. Excluding calibration, com-
missioning, and blind data, the analyzed data include
285 days of live time, of which 121 days were taken with
both modules operating in the final DEMONSTRATOR

configuration [63]. This corresponds to a total exposure
of 4993 kg days for all detectors. Physics runs are typically
one hour long. Since the set of operable detectors and their
respective thresholds changed over the course of data
taking, our simulation mirrored the changing conditions
on a run-by-run basis. For several runs, the threshold was
increased to avoid noise introduced by external work
during the construction phase.
The flux [ΦðfÞ] of LIPs through the detector array is

given as

ΦðfÞ ¼ n
P

i

P
m Ai;mϵi;mtiΩi;m

; ð1Þ

where n is the number of detected interactions. For zero
candidates, an upper bound on Φ can be set using the

FIG. 1. Sketch of the detector arrangement and the vectors used
in the background rejection cut. The gray shading indicates four
detectors that triggered in this example. Left: Vectors connecting
the detector centers for a sample noise or background event,
which do not point to a common location. Middle: Definition of
the angles used in the tracking algorithm. Right: For a simulated
LIP, the variation of directions (Δ cos θ and Δϕ) is smaller.
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method of Feldman and Cousins in Ref. [70]. The sum
index i is over data runs, and index m is over the
multiplicity values considered for LIP candidates. The
multiplicity is defined as the number of detectors with
signals above the threshold within a 4-μs-long coincidence
window. We consider events with m ¼ 4, 5, and 6. The
length of a run is given by its dead-time corrected live time
(ti). The detection efficiency (ϵ) depends on each detector’s
threshold and the geometry of the active detectors, both of
which vary run by run. On average, 70% of the detectors
are operable. The detection threshold was estimated by
analyzing the baseline noise of each recorded waveform
and verified in special forced trigger data. The detector
baseline traces are processed with a trapezoidal filter. From
the distribution of the integrated values of the flattop, we
can estimate the energy at which we would detect events
with a 99.7% or greater probability. For the majority of the
runs, the individual thresholds are between 0.8 and 2 keV.
The surface area (Ai;m) for an incident LIP is taken as
the end cap area of the smallest detector crossed. For the
DEMONSTRATOR detectors, A ¼ 30–37 cm2 (�1 cm2). The
MAGE [71,72] framework, based on GEANT4 [73], was used
to estimate Ai;m and the solid angle Ω for each run.
Simulated noninteracting particles were used as a proxy
for LIPs and propagated through the array with varying
angles of incidence. Since the path length through detectors
depends on the LIP trajectory angle through the array, the
efficiency is a function of the incident angle there-
fore depends on the impinging flux distribution. CDMS
assumed an isotropic distribution from above [59]. We
present results for that same distribution for comparison as
well as results for a cos2θ distribution, where θ is the polar
angle. The latter function is a proxy for particles created in
the upper atmosphere [60]. For m ¼ 4 events, the average
solid angle is ∼2.4 sr (1.5 sr) for a uniform flux from above
(cos2θ distribution). The exact number varies for each run.
Larger m’s have a smaller number of possible detector
combinations and, hence, smaller Ω. For m ¼ 5 and 6, the
average solid angles are 1 (0.6) and 0.06 sr (0.02 sr),
respectively.
For large f, LIPs interact potentially only once in a

detector (cf. Fig. 2), leading to large energy-deposit
fluctuations. Following Refs. [59,74], we calculate the
expected energy-loss distribution based on the single-
interaction energy loss. The photoabsorption ionization
model [75] was used to calculate the interaction cross
section. This probability distribution function (PDF) for the
single-interaction energy loss is convolved with itself N
times to derive the PDF for N such interactions [76];
cf. Fig. 3. The number of interactions per unit path length
through a detector was calculated using the approach of
Ref. [77]. The result is a function of f as shown in Fig. 2.
The expected energy deposited as a function of the track
length and f is shown in Fig. 4. The probability that a LIP
with f deposits enough energy to exceed the detector

threshold is calculated for simulated events. The total
efficiency is the product of these individual detector
probabilities.
For each run and detector, the data acquisition threshold

is applied in combination with the simulation, resulting in a
run-dependent detection efficiency for LIPs with a given m
and trajectory. The simulated efficiency distributions also
take into account inoperable channels and exclude them
from the analysis.
Two factors give non-negligible contributions to the

uncertainty of the efficiency ϵ. One is the uncertainty in
the traversed-detector path length that determines the
number of interactions. This results from uncertainty in
the thickness of the dead layer at the outer surface of each
detector. The other factor is that the detectors have a finite
energy resolution. Both effects contribute to the uncertainty
in the probability that a LIP energy deposit will be above
the threshold, especially for large f and small energy
depositions. In order to estimate systematic uncertainties,

f
0 200 400 600 800 1000

Pa
th

 le
ng

th
 (

m
m

)

20

40

60

A
ve

ra
ge

 n
um

be
r 

of
 in

te
ra

ct
io

ns
 p

er
 e

ve
nt

3−10

1−10

10

310

510

FIG. 2. Average number of interactions for one LIP event
in germanium as a function of the path length and the parameter
f ¼ e=q.

energy (eV)
1 10 210 310 410 510 610 710

en
er

gy
 d

ep
os

it 
pr

ob
ab

ili
ty

 p
er

 e
V

7−10

6−10

5−10

4−10

3−10

2−10

1−10
N = 1
N = 5
N = 10

2N = 10
3N = 10
4N = 10

FIG. 3. Expected energy loss for several numbers of interaction
N. All curves are calculated Poisson-weighted convolutions of
the single interaction distribution.

PHYSICAL REVIEW LETTERS 120, 211804 (2018)

211804-3



we analyzed the simulated efficiencies 100 times for each
individual run, varying the track length l inside each
detector traversed and the energy resolution. The values
were drawn from Gaussian distributions around the mean
value of each parameter, with widths σl ¼ �1 mm,
σn ¼

ffiffiffi
n

p
, and FWHME ¼ 0.2 keV, respectively. The

energy resolution value corresponds to the FWHM below
10 keV in the DEMONSTRATOR [65]. Finally, all the
efficiencies for a given data set and multiplicity m are
combined in one histogram. In Fig. 5, the distribution of
efficiencies for m ¼ 4 events is drawn. The width of the
distribution for each value of f is used as the systematic
uncertainty. This conservative approach allows us to show
that our sensitivity is mostly independent of short-lived
variations in detector settings.

In each detector within the DEMONSTRATOR, a fair
number of nonphysics events contribute to the low-energy
backgrounds. These include noise, microphonics during
nitrogen fills, and pulser cross talk. A multiplicity require-
ment of 4 ≤ m ≤ 6 eliminates the majority (≈97%) of these
without significant additional analysis. In addition, a one-
second anticoincidence time with the muon veto of the
DEMONSTRATOR excludes cosmogenic background. All
events surviving events from the 285 days of live time
(corresponding to 4993 kg days) are depicted in Fig. 6.
There is no requirement on the geometric arrangement
allowing us to greatly increase Ω, and therefore sensitivity,
relative to the CDMS experiment. In other words, instead of
searching only for particles from above, we also search for
LIPs that traverse multiple strings.
Because of the variation of detector sizes and variety of

possible LIP trajectories, it is impossible to include a
CDMS-like energy consistency requirement; the path
lengths in different detectors are not necessarily compa-
rable. To reduce the remaining background within the high-
m sample, a tracking algorithm was applied. Each candi-
date event is compared to the simulated signature of a LIP.
A LIP will traverse the array in a straight line, and vectors
connecting pairs of triggered detectors (see the rightmost
panel in Fig. 1) should all point roughly to the same
direction on an imaginary sphere surrounding the array.
Since the exact location of the interaction within the
detector is unknown, the center of the detectors is used
as the start and end point of each vector. The direction of
these vectors can be described with two angles using
spherical coordinates θ and ϕ, depicted in Fig. 1.
Since their triggered detectors do not fall along a single

track, events due to instrumental effects and internal
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backgrounds will self-evidently have larger values
of Δθ and Δϕ, the differences in θ and ϕ determined
from different detector pairings in a single event.
Distinguishing muons from LIPs with the tracking algo-
rithm may seem more difficult; we can study such tracks by
choosing events that are triggered in coincidence with the
muon veto system. A minimally ionizing LIP with high f
(> 6) would not deposit enough energy to trigger the veto,
which is made of 2-inch-thick plastic scintillator panels and
has a trigger threshold of 1 MeV. For muon events, the
particle shower accompanying the muon tends to trigger
more than six detectors, or additional out-of-line detectors,
as shown by the red muon veto-coincident events in Fig. 6.
Simulations show that LIPs with f > 6 do not produce
significant showers, unlike muons. For f ¼ 1, 90% of the
events are accompanied by a shower. For f ¼ 6, this
number drops to only 7% and can be assumed to be close
to zero for higher f. Therefore, the simulated LIP events
show smaller spreads in θ and ϕ values than muon events.
Since our analysis requires linelike shower-free events, we
excluded limits below f ¼ 6 from our results.
A cut in Δθ and Δϕ, shown by the gray region in Fig. 6,

was chosen based on the LIP simulations. The efficiency
for retaining a LIP candidate in the tracking algorithm is
effectively unity with an uncertainty of less than 0.3%,
which is negligible compared to the other uncertainties.
Restricting the multiplicities to m ¼ 4, 5, or 6 events in the
DEMONSTRATOR data, we find no LIP candidate events in
the shaded area. Applying the Feldman and Cousins
procedure [70], a value of 2.44 (90% C.L.) is used as
the upper limit for n in Eq. (1).
Figure 7 displays the results as a function of f. For

charges between e=6 and e=30, a limit of 2 × 10−9 particles

per cm2 s sr is found. A deviation from the minimally
ionizing character (βγ ∼ 3) of the particle would result in a
higher detection efficiency. Hence, the limits presented are
conservative upper limits. Using the assumption that LIPs
are impinging with a cos2θ distribution would result in a
slightly smaller detection efficiency and, therefore, in a
limit that is about 38% above that of the isotropic model.
This work presents the first limits on massive relativistic

particles with a fractional charge using the unique features
of the MAJORANA DEMONSTRATOR. The large path length
due to thick detectors in combination with the low thresh-
olds allows for a sensitivity down to 1=1000 of an
elementary charge. These are the first results for a non-
accelerator-based experiment on the natural flux of lightly
ionizing particles with charges less than e=200 and an
improvement of the existing limits for charges between e=6
and e=200. The results presented will help to exclude
certain models or at least restrict their parameter space, e.g.,
for the millicharged dark matter presented in Ref. [45].
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Medioambientales y Tecnológicas, CIEMAT 28040,
Madrid, Spain.

†Corresponding author.
massarczyk@lanl.gov

f
1 10 210 310

)
-1

 s
r

-1
 s

-2
 (

cm
L

IP
Φ

14−10

10−10

6−10

2−10

210

610

MAJORANA
CDMS
MACRO
Kamiokande-II
LSD

FIG. 7. LIP flux limit from above on the MAJORANA

DEMONSTRATOR using a 90% confidence level (black line) and
its 1σ uncertainty bands (dashed black lines). Results from
MACRO [55], Kamiokande-II [56], LSD [57], and CDMS
[59] are shown as well. All limits assume an isotropic flux.
As indicated in the text, a cos2θ distribution of LIPs would result
in a 38% less restrictive curve.

PHYSICAL REVIEW LETTERS 120, 211804 (2018)

211804-5



‡Present address: Los Alamos National Laboratory, Los
Alamos, New Mexico, USA.

[1] P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).
[2] L. Okun, M. Voloshin, and V. Zakharov, Phys. Lett. B 138,

115 (1984).
[3] N. Vinyoles and H. Vogel, J. Cosmol. Astropart. Phys. 03

(2016) 002.
[4] B. Holdom, Phys. Lett. 166B, 196 (1986).
[5] R. Foot, G. Joshi, H. Lew, and R. Volkas, Mod. Phys. Lett.

A 05, 95 (1990).
[6] E. Gabrielli, L. Marzola, M. Raidal, and H. Veermäe, J.

High Energy Phys. 08 (2015) 150.
[7] J. M. Cline, Z. Liu, and W. Xue, Phys. Rev. D 85, 101302

(2012).
[8] A. Y. Ignatiev, V. A. Kuzmin, and M. E. Shaposhnikov,

Phys. Lett. B 84, 315 (1979).
[9] X.-G. Wen and E. Witten, Nucl. Phys. B261, 651 (1985).

[10] A. Schellekens, Phys. Lett. B 237, 363 (1990).
[11] K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271

(1990).
[12] C. Kouvaris, Phys. Rev. D 88, 015001 (2013).
[13] J. Aubert et al., Phys. Lett. B 133, 461 (1983).
[14] F. Bergsma et al., Z. Phys. C 24, 217 (1984).
[15] E. Golowich and R.W. Robinett, Phys. Rev. D 35, 391

(1987).
[16] Y. D. He and P. B. Price, Phys. Rev. C 44, 1672 (1991).
[17] G. Hüntrup, D. Weidmann, S. E. Hirzebruch, E. Winkel, and

W. Heinrich, Phys. Rev. C 53, 358 (1996).
[18] D. Ghosh et al., Fiz. B 5, 135 (1996).
[19] A. A. Prinz et al., Phys. Rev. Lett. 81, 1175 (1998).
[20] D. E. Soper, M. Spannowsky, C. J. Wallace, and T. M. P.

Tait, Phys. Rev. D 90, 115005 (2014).
[21] F. Abe et al. (CDF Collaboration), Phys. Rev. D 46, R1889

(1992).
[22] D. Buskulic et al., Phys. Lett. B 303, 198 (1993).
[23] R. Akers et al., Z. Phys. C 67, 203 (1995).
[24] P. Abreu et al., Phys. Lett. B 396, 315 (1997).
[25] D. Acosta et al., Phys. Rev. Lett. 90, 131801 (2003).
[26] G. Abbiendi et al., Phys. Lett. B 572, 8 (2003).
[27] J. Jaeckel, M. Jankowiak, and M. Spannowsky, Phys. Dark

Universe 2, 111 (2013).
[28] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 87,

092008 (2013).
[29] M. I. Dobroliubov and A. Y. Ignatiev, Phys. Rev. Lett. 65,

679 (1990).
[30] S. Davidson, S. Hannestad, and G. Raffelt, J. High Energy

Phys. 05 (2000) 003.
[31] J. L. Feng, J. Smolinsky, and P. Tanedo, Phys. Rev. D 93,

115036 (2016).
[32] M. Ahlers, Phys. Rev. D 80, 023513 (2009).
[33] C. Burrage et al., J. Cosmol. Astropart. Phys. 11 (2009)

002.
[34] S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, Pis’ma

Zh. Eksp. Teor. Fiz. 79, 3 (2004) [JETP Lett. 79, 1 (2004)].
[35] Z. Berezhiani and A. Lepidi, Phys. Lett. B 681, 276

(2009).
[36] H. Vogel and J. Redondo, J. Cosmol. Astropart. Phys. 02

(2014) 029.
[37] A. D. Dolgov and A. S. Rudenko, J. Exp. Theor. Phys. 124,

564 (2017).

[38] R. N. Mohapatra and I. Z. Rothstein, Phys. Lett. B 247, 593
(1990).

[39] X. Huang, X.-P. Zheng, W.-H. Wang, and S.-Z. Li, Phys.
Rev. D 91, 123513 (2015).

[40] M. Korwar and A. M. Thalapillil, arXiv:1709.07888.
[41] A. K. Kvam and D. C. Latimer, arXiv:1412.0708.
[42] K. Kadota, T. Sekiguchia, and H. Tashirob, arXiv:1602

.04009.
[43] S. Davidson, B. Campbell, and D. C. Bailey, Phys. Rev. D

43, 2314 (1991).
[44] M. Glück, S. Rakshit, and E. Reya, Phys. Rev. D 76, 091701

(2007).
[45] P.-K. Hu, A. Kusenko, and V. Takhistov, Phys. Lett. B 768,

18 (2017).
[46] A. Badertscher, P. Crivelli, W. Fetscher, U. Gendotti, S. N.

Gninenko, V. Postoev, A. Rubbia, V. Samoylenko, and D.
Sillou, Phys. Rev. D 75, 032004 (2007).

[47] S. N. Gninenko, N. V. Krasnikov, and A. Rubbia, Phys. Rev.
D 75, 075014 (2007).

[48] J.-W. Chen, H.-C. Chi, H.-B. Li, C.-P. Liu, L. Singh, H. T.
Wong, C.-L. Wu, and C.-P. Wu, Phys. Rev. D 90, 011301
(2014).

[49] G. S. LaRue, J. D. Phillips, and W.M. Fairbank, Phys. Rev.
Lett. 46, 967 (1981).

[50] P. Smith, G. J. Homer, J. D. Lewin, H. E. Walford, andW. G.
Jones, Phys. Lett. B 153, 188 (1985).

[51] D. C. Moore, A. D. Rider, and G. Gratta, Phys. Rev. Lett.
113, 251801 (2014).

[52] P. C. Kim, E. R. Lee, I. T. Lee, M. L. Perl, V. Halyo, and D.
Loomba, Phys. Rev. Lett. 99, 161804 (2007).

[53] V. Halyo, P. Kim, E. R. Lee, I. T. Lee, D. Loomba, and M. L.
Perl, Phys. Rev. Lett. 84, 2576 (2000).

[54] M. Ambrosio et al., Phys. Rev. D 62, 052003 (2000).
[55] M. Ambrosio et al., arXiv:hep-ex/0402006.
[56] M. Mori et al., Phys. Rev. D 43, 2843 (1991).
[57] M. Aglietta et al., Astropart. Phys. 2, 29 (1994).
[58] Z. Ahmed et al. (CDMS II Collaboration), Science 327,

1619 (2010).
[59] R. Agnese et al. (CDMS Collaboration), Phys. Rev. Lett.

114, 111302 (2015).
[60] M. L. Perl, E. R. Lee, and D. Loomba, Annu. Rev. Nucl.

Part. Sci. 59, 47 (2009).
[61] A. Haas, C. S. Hill, E. Izaguirre, and I. Yavin, Phys. Lett. B

746, 117 (2015).
[62] N. Abgrall et al., Adv. High Energy Phys. 2014, 1 (2014).
[63] C. Aalseth et al., Phys. Rev. Lett. 120, 132502 (2018).
[64] J. Heise, J. Phys. Conf. Ser. 606, 012015 (2015).
[65] N. Abgrall et al. (MAJORANA Collaboration), Phys. Rev.

Lett. 118, 161801 (2017).
[66] P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl,

IEEE Trans. Nucl. Sci. 36, 926 (1989).
[67] P. S. Barbeau, J. I. Collar, and O. Tench, J. Cosmol.

Astropart. Phys. 09 (2007) 009.
[68] E. Aguayo et al., arXiv:1109.6913.
[69] R. Cooper, D. C. Radford, K. Lagergren, J. F. Colaresi, L.

Darken, R. Henning, M. G. Marino, and K. M. Yocum,
Nucl. Instrum. Methods Phys. Res., Sect. A 629, 303
(2011).

[70] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873
(1998).

PHYSICAL REVIEW LETTERS 120, 211804 (2018)

211804-6

https://doi.org/10.1103/PhysRevLett.45.1
https://doi.org/10.1016/0370-2693(84)91884-7
https://doi.org/10.1016/0370-2693(84)91884-7
https://doi.org/10.1088/1475-7516/2016/03/002
https://doi.org/10.1088/1475-7516/2016/03/002
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1142/S0217732390000123
https://doi.org/10.1142/S0217732390000123
https://doi.org/10.1007/JHEP08(2015)150
https://doi.org/10.1007/JHEP08(2015)150
https://doi.org/10.1103/PhysRevD.85.101302
https://doi.org/10.1103/PhysRevD.85.101302
https://doi.org/10.1016/0370-2693(79)90048-0
https://doi.org/10.1016/0550-3213(85)90592-9
https://doi.org/10.1016/0370-2693(90)91190-M
https://doi.org/10.1103/PhysRevD.41.271
https://doi.org/10.1103/PhysRevD.41.271
https://doi.org/10.1103/PhysRevD.88.015001
https://doi.org/10.1016/0370-2693(83)90828-6
https://doi.org/10.1007/BF01410361
https://doi.org/10.1103/PhysRevD.35.391
https://doi.org/10.1103/PhysRevD.35.391
https://doi.org/10.1103/PhysRevC.44.1672
https://doi.org/10.1103/PhysRevC.53.358
https://doi.org/10.1103/PhysRevLett.81.1175
https://doi.org/10.1103/PhysRevD.90.115005
https://doi.org/10.1103/PhysRevD.46.R1889
https://doi.org/10.1103/PhysRevD.46.R1889
https://doi.org/10.1016/0370-2693(93)90066-Q
https://doi.org/10.1007/BF01571281
https://doi.org/10.1016/S0370-2693(97)00152-4
https://doi.org/10.1103/PhysRevLett.90.131801
https://doi.org/10.1016/S0370-2693(03)00639-7
https://doi.org/10.1016/j.dark.2013.06.001
https://doi.org/10.1016/j.dark.2013.06.001
https://doi.org/10.1103/PhysRevD.87.092008
https://doi.org/10.1103/PhysRevD.87.092008
https://doi.org/10.1103/PhysRevLett.65.679
https://doi.org/10.1103/PhysRevLett.65.679
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1103/PhysRevD.93.115036
https://doi.org/10.1103/PhysRevD.93.115036
https://doi.org/10.1103/PhysRevD.80.023513
https://doi.org/10.1088/1475-7516/2009/11/002
https://doi.org/10.1088/1475-7516/2009/11/002
https://doi.org/10.1134/1.1675909
https://doi.org/10.1016/j.physletb.2009.10.023
https://doi.org/10.1016/j.physletb.2009.10.023
https://doi.org/10.1088/1475-7516/2014/02/029
https://doi.org/10.1088/1475-7516/2014/02/029
https://doi.org/10.1134/S1063776117030116
https://doi.org/10.1134/S1063776117030116
https://doi.org/10.1016/0370-2693(90)91907-S
https://doi.org/10.1016/0370-2693(90)91907-S
https://doi.org/10.1103/PhysRevD.91.123513
https://doi.org/10.1103/PhysRevD.91.123513
http://arXiv.org/abs/1709.07888
http://arXiv.org/abs/1412.0708
http://arXiv.org/abs/1602.04009
http://arXiv.org/abs/1602.04009
https://doi.org/10.1103/PhysRevD.43.2314
https://doi.org/10.1103/PhysRevD.43.2314
https://doi.org/10.1103/PhysRevD.76.091701
https://doi.org/10.1103/PhysRevD.76.091701
https://doi.org/10.1016/j.physletb.2017.02.035
https://doi.org/10.1016/j.physletb.2017.02.035
https://doi.org/10.1103/PhysRevD.75.032004
https://doi.org/10.1103/PhysRevD.75.075014
https://doi.org/10.1103/PhysRevD.75.075014
https://doi.org/10.1103/PhysRevD.90.011301
https://doi.org/10.1103/PhysRevD.90.011301
https://doi.org/10.1103/PhysRevLett.46.967
https://doi.org/10.1103/PhysRevLett.46.967
https://doi.org/10.1016/0370-2693(85)91426-1
https://doi.org/10.1103/PhysRevLett.113.251801
https://doi.org/10.1103/PhysRevLett.113.251801
https://doi.org/10.1103/PhysRevLett.99.161804
https://doi.org/10.1103/PhysRevLett.84.2576
https://doi.org/10.1103/PhysRevD.62.052003
http://arXiv.org/abs/hep-ex/0402006
https://doi.org/10.1103/PhysRevD.43.2843
https://doi.org/10.1016/0927-6505(94)90015-9
https://doi.org/10.1126/science.1186112
https://doi.org/10.1126/science.1186112
https://doi.org/10.1103/PhysRevLett.114.111302
https://doi.org/10.1103/PhysRevLett.114.111302
https://doi.org/10.1146/annurev-nucl-121908-122035
https://doi.org/10.1146/annurev-nucl-121908-122035
https://doi.org/10.1016/j.physletb.2015.04.062
https://doi.org/10.1016/j.physletb.2015.04.062
https://doi.org/10.1155/2014/365432
https://doi.org/10.1103/PhysRevLett.120.132502
https://doi.org/10.1088/1742-6596/606/1/012015
https://doi.org/10.1103/PhysRevLett.118.161801
https://doi.org/10.1103/PhysRevLett.118.161801
https://doi.org/10.1109/23.34577
https://doi.org/10.1088/1475-7516/2007/09/009
https://doi.org/10.1088/1475-7516/2007/09/009
http://arXiv.org/abs/1109.6913
https://doi.org/10.1016/j.nima.2010.11.029
https://doi.org/10.1016/j.nima.2010.11.029
https://doi.org/10.1103/PhysRevD.57.3873
https://doi.org/10.1103/PhysRevD.57.3873


[71] M. Bauer et al., J. Phys. Conf. Ser. 39, 362 (2006).
[72] M. Boswell et al., IEEE Trans. Nucl. Sci. 58, 1212

(2011).
[73] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 506, 250 (2003).
[74] K. B. Prasad, Ph.D. thesis, Texas A&M University, 2013.

[75] W. Allison and J. Cobb, Annu. Rev. Nucl. Part. Sci. 30, 253
(1980).

[76] H. Bichsel, Nucl. Instrum. Methods Phys. Res., Sect. A 562,
154 (2006).

[77] H. Bichsel, Rev. Mod. Phys. 60, 663 (1988).
[78] N. Abgrall et al., Astropart. Phys. 93, 70 (2017).

PHYSICAL REVIEW LETTERS 120, 211804 (2018)

211804-7

https://doi.org/10.1088/1742-6596/39/1/097
https://doi.org/10.1109/TNS.2011.2144619
https://doi.org/10.1109/TNS.2011.2144619
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1146/annurev.ns.30.120180.001345
https://doi.org/10.1146/annurev.ns.30.120180.001345
https://doi.org/10.1016/j.nima.2006.03.009
https://doi.org/10.1016/j.nima.2006.03.009
https://doi.org/10.1103/RevModPhys.60.663
https://doi.org/10.1016/j.astropartphys.2017.01.013

