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Abstract

Bacteriorhodopsin (bR) is comprised of 7 trans-membrane helices that enclose a
retinylidene chromophore formed by a Schiff base (SB) between the retinal and Lys216.
Due to bR's relative availability, it serves as a model for other members of the rhodopsin
family, ion channels and GPCRs. Since its discovery in the 1970's, bR has been intensely
studied by various methods including: X-ray crystallography, EM, FT-IR, molecular
simulations, and NMR, etc. Despite numerous advances, details of its pump mechanism
remain elusive due to experimental limitations in sensitivity and/or resolution. Here, dynamic
nuclear polarization (DNP) is employed to boost the 1H NMR signal. With an enhancement
of 75, multidimensional spectra of low gyromagnetic nuclei were made possible. The
cryogenic experimental temperature also traps the various bR photocycle intermediates,
allowing them to be studied in situ. We are able to answer the one lingering question
regarding bR's primary proton transfer pathway and conduct distance measurements near
the active site.

The pathway of bR's primary proton transfer has been the subject of scrutiny for
many years. DNP MAS NMR bond length measurements of the SB proton reveal an
elongated N-H bond in L, the transfer of 1H in deprotonated MO, and a tight N-H bond in N
intermediate. The 1H chemical shift of -3.6 ppm in Mo indicates an alcohol hydrogen donor
partner. This strongly supports the SB H+ being relayed from the SB to Asp85 via Thr89 as
the pathway for bR's primary proton transfer.

Distance measurements obtained here are the first set of long-range DNP MAS NMR
measurements conducted on a uniformly labeled bR system. We find that the SB-D85
distance shrinks in the first half of the photocycle and is released after the primary proton
transfer. The decrease in distance between the two indicates helix C and helix G are moving
toward each other, which could be the reason why functional L is difficult to achieve. The
subsequent release of helix G provides an additional gate to the release of the torsion
energy in the chromophore. Meanwhile, the SB-D212 distance hardly changes.

Thesis Supervisor: Robert G. Griffin
Title: Professor of Chemistry and Director of the Francis Bitter Magnet Laboratory
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Chapter 1: Introduction

1.1 Motivation

In structural biology, membrane proteins are gateways to cells. They serve as the

entry and exit for ions, nutrients, drugs, waste products, proteins and DNA. They are also

responsible for the communication between cells and their environments. Any mutations

can result in diseases such as: heart disease where malfunctioning ion channels plays a

role, cystic fibrosis caused by mutations in the cystic fibrosis transmembrane conductance

regulator chloride ion channel. While 30% of the human genome codes for membrane

proteins, little is known about them. Membrane proteins are difficult to study because they

become unstable once extracted from their native environments and are challenging to

crystallize for X-ray crystallography studies. Solution NMR is a useful technique for solving

the structure of small proteins, but it is limited to small molecules due to an increase in

linewidth as a result of slower tumbling rate.

Solid state NMR is the powerful method of choice for the study of many biological

systems in their native environment including membrane proteins. Due to its similar

homology and relative stability, Bacteriorhodopsin (bR) is an ideal model for members of the

rhodopsin family as well as for GPCRs, an important class of membrane proteins that

functions as signaling and cellular response. Understanding a biological system goes far

beyond the structure of a protein, it seeks for answers to functionalities.

Studies of bR using solid state NMR started in the 1980's mainly by Griffin and

Herzfeld.(1-5) Many questions to bR's function were answered, for example, the

configuration of the retinal was determined by the use the dihederal angle measurements.(6)

Different photocycle intermediates were successfully trapped and examined in situ.(7-10)

Presence of complex counterion was established from 15N chemical shifts of the

intermediates. Many of the results from MAS NMR were complimentary to results reported

from X-ray crystallography, FT IR, EM and molecular simulations.(1 1-20) It came to a period

where in order to dive deeper into the investigation of bR, advancements in technology are

needed to boost the NMR sensitivity and improve the resolution of the data. The low

sensitivity of NMR can be circumvented by the addition of dynamic nuclear polarization

(DNP). (21, 22) DNP was developed in Griffin's group at MIT and for the past decade, it has

expanded commercially worldwide.(23-31) In DNP, the large polarization of the electron is

transferred to the protons of the system, resulting in the NMR signal being enhanced. The
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boost in sensitivity translated into months of savings in acquisition time. Concurrently, new

developments in probes, spectrometer hardware has led MAS NMR to higher fields and to

faster spinning rates. With the advantages offered from DNP MAS NMR, we are able to

tackle the remaining mysterious in bR. In the following chapters applies DNP NMR

methodology to gain insight into the function of bR through distance measurements with

dipolar recoupling and 'H local environments at the active site.

1.2 Thesis outline

My PhD has focused mainly on novel applications of dynamic nuclear polarization

(DNP) at higher fields, and using this technology to understand something that would be

impossible otherwise, even though improving technical details on the side was unavoidable.

We start with introductory Chapter 2 that goes over what DNP is, how it works, and the

latest research that is being done in the field.(23, 32) In Chapter 3, we investigate howl 3CH 3

and - 15 NH3* signals disappear due to the interference of the molecular motions with the 1H

decoupling at a broad range of temperatures (77K to 300K), with a special emphasize

around DNP experimental temperatures.(33) We investigate the effect of these dynamic

processes on the NMR lineshapes and signal intensities in several systems: (1)

microcrystalline APG, (2) membrane protein bR, (3) amyloid fibrils P13-SH3, (4) monomeric

alanine-CD 3 and (5) the protonated and deuterated dipeptide N-Ac-VL over 78-300 K. In

APG, the 3-site hopping of the Ala-Cp peak disappears completely at 112 K, concomitant

with the attenuation of CP signals from other 13C's and 15N's. In bR and P13-SH3, the methyl

groups are attenuated at -95 K while all other 13C's remain unaffected. 2 H labeling can

assist with recovering the spectral intensity.

Chapter 4 and Chapter 5 are focused on understanding the ion motive pumping

mechanism of the membrane protein, Bacteriorhodopsin using DNP MAS NMR. Despite

numerous studies by different techniques, details of the bR pump mechanism remain

elusive. DNP NMR experiments are done at cryogenic temperatures, which also trap the

various bR photocycle intermediates, allowing them to be studied in situ. Distance

measurements obtained from 3D fs-REDOR. Schiff base (SB)-D85 distance, Chapter 4,

shrinks in the first half of the photocycle and is released after the primary proton transfer.

The decrease in distance between the two indicates helix C and helix G are moving toward

each other. The subsequent release of helix G provides an additional gate to the release of

the torsion energy in the chromophore. Meanwhile, the SB-D212 distance hardly changes.

16



One question remains unanswered is bR's primary proton transfer pathway presented

in Chapter 5. Here we study bR's active site in the various intermediates of the photocycle.

The active site is comprised of a retinylidene chromophore that interacts via its SB with

nearby water molecules and amino acid residues. Bond length measurements of the SB

proton reveal an elongated N-H bond in L, the transfer of 'H in deprotonated Mo, and a tight

N-H bond in N intermediate. The 1H chemical shift of -3.6 ppm in Mo indicates an alcohol

hydrogen donor partner. This strongly supports the H' being relay from the SB to Asp85 via

Thr89 as the pathway for bR's primary proton transfer.

Lastly, Chapter 6 describes the studies of pharmaceutical formulations using DNP MAS

NMR. MAS should be widely applicable to studies of the structure of active pharmaceutical

ingredients (API) and formulations.(34) However, the low sensitivity encountered in

spectroscopy of natural abundance APIs present at low concentration has limited the

success of MAS experiments. Here, we demonstrate that DNP polarizing agents can be

added in-situ during the preparation of amorphous solid dispersions (ASDs) via spray drying

and hot-melt extrusion so that ASDs can be examined during drug development.
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Chapter 2: High Frequency Dynamic Nuclear Polarization

Adapted from Q.Z. Ni, E. Daviso, Thach V. Can, Evgeny Markhasin, Sudheer K. Jawla, Timothy M.
Swager, Richard J. Temkin, Judith Herzfeld and Robert G. Griffin, Accounts of Chemical Research 46
(2013) 1933-1941

During the three decades 1980-2010, magic angle spinning (MAS) NMR has developed

into the method of choice to examine many chemical, physical and biological problems. In

particular, a variety of dipolar recoupling methods to measure distances and torsion angles

can now constrain molecular structures to high resolution. However, applications are often

limited by the low sensitivity of the experiments, due in large part to the necessity of

observing spectra of low-g nuclei such as the I = % species 13C or 15N. The difficulty is still

greater when quadrupolar nuclei, such as 170 or 2 7Al, are involved. This problem has

stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful

approach is dynamic nuclear polarization (DNP) which takes advantage of the higher

equilibrium polarization of electrons (which conventionally manifests in the great sensitivity

advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic

polarizing agent and irradiated with microwaves to transfer the high polarization in the

electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser

and Slichter in 1953. However, these experiments were carried out on static samples, at

magnetic fields that are low by current standards. To be implemented in contemporary MAS

NMR experiments, DNP requires microwave sources operating in the subterahertz regime

- roughly 150-660 GHz - and cryogenic MAS probes. In addition, improvements were

required in the polarizing agents, because the high concentrations of conventional radicals

that were required to produce significant enhancements compromise spectral resolution.

In the last two decades scientific and technical advances have addressed these

problems and brought DNP to the point where it is achieving wide applicability. These

advances include the development of high frequency gyrotron microwave sources operating

in the subterahertz frequency range. In addition, low temperature MAS probes were

developed that permit in-situ microwave irradiation of the samples. And, finally, biradical

polarizing agents were developed that increased the efficiency of DNP experiments by

factors of -4 at considerably lower paramagnet concentrations than required with

monoradicals. Collectively these developments have made it possible to apply DNP to a

number of different scientific problems, most prominently in the biological and material

sciences, and achieve signal enhancements of -100 on a routine basis. This Account
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reviews these developments, including the primary mechanisms used to transfer

polarization in high frequency DNP, and the current choice of microwave sources and

biradical polarizing agents. In addition, we illustrate the utility of the technique with a

description of applications to membrane and amyloid proteins that emphasizes the unique

structural information that is available in these two cases.
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2.1. Introduction

Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has emerged as a

powerful, nondestructive method that can be used to characterize the structure and

dynamics of systems that are not accessible by either solution NMR or crystallography. In

particular, the last three decades have witnessed the development of MAS techniques to

probe various anisotropic interactions at the molecular and atomic scale via dipole

recoupling techniques 1. As a consequence, it is possible to measure internuclear distances

in amorphous and powder samples as well as in crystals. In principle, these measurements

provide copious high resolution information about the structure and dynamics of a variety of

biological systems such as peptides 2, membrane proteins 3-5, nanocrystals 6, amyloids 7-10,

and materials science. Given this versatility, the recent rapid expansion of MAS NMR is

expected to continue.

Despite the outstanding progress in this field, there remains an acute sensitivity

problem since MAS NMR usually involves direct detection of "C, "N or another low-g

species. Cross polarization (CP) techniques and operation at higher magnetic fields have

helped to address this issue. However, significantly higher sensitivity would help to bring

MAS NMR into a regime where it is truly widely applicable. The subject of this Account is

recent 102-103 fold improvements in MAS NMR sensitivity based on high frequency dynamic

nuclear polarization (DNP). As we will see, high frequency DNP is significantly changing the

landscape of what is possible with MAS NMR. This article illustrates this point with a

discussion of polarization transfer mechanisms, polarizing agents, instrumentation, and

recent applications of MAS DNP to complex heterogeneous systems.
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Figure 2.1: Polarizing agents commonly used for high field DNP experiments. (a) narrow line radicals
trityl and BDPA used for the SE; (b) TEMPO based biradicals TOTAPOL and bis-TEMPO-bis-ketal
(bTbk) used for the CE.

2.2. DNP Mechanism

DNP enhances NMR signals by transferring the large polarization of electrons to nearby

nuclei via microwave (pw) irradiation of electron-nuclear transitions ". Contemporary MAS
DNP experiments on insulating solids are usually based either on the solid effect (SE),
coupling an electron-nuclear spin pair, or the cross effect (CE), utilizing a pair of electrons in

the form of a biradical and a nuclear spin. A third mechanism, thermal mixing (TM), involves

multiple electrons and a homogeneously broadened EPR spectrum. However, at the high

fields and low temperatures (80-110 K) currently used in MAS experiments, TM has thus far
not provided an important polarization pathway. In all of these mechanisms it is necessary

to add a stable paramagnetic polarizing agent to the sample and the most commonly used

radicals are shown in Figure 2.1. Trityl and BDPA (or water soluble BDPA 12) support the

SE, whereas the TEMPO based biradicals TOTAPOL13 and bTbk14 are used for the CE.
The detailed polarization transfer schemes discussed below are closely linked to the shapes
of the high field EPR spectra of these molecules.
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Figure 2.2: (left) Energy level diagram illustrating DNP via the solid effect (SE). At thermal equilibrium
(left), populations are governed by the Boltzmann distribution. Mixing of states in the nuclear and
electron spin subspaces (right), leads to partially allowed double quantum (DQ) and zero quantum
(ZQ) transitions, and positive and negative enhancements, E , respectively. The mixing of states is
proportional to a constant q, which is inversely proportional to BO . Therefore, the enhancement in the

Solid Effect DNP scales as BO2 . (right) A plot of the enhancement from SA-BDPA as a function of
magnetic field (1H frequency) showing the positive and negative enhancements. CONMR and (DEPR are
the NMR and EPR frequencies and co +on are the sum and difference of the EPR and NMR
frequencies.

2.2.1. Solid Effect

The SE can be understood using a two-spin model involving one electron and one

nucleus, interacting via an electron-nuclear dipole coupling, and irradiation at nominally

forbidden electron transitions at w, = oOS wO illustrated in Figure 2.2. The Hamiltonian

applicable to the two spin system is

H = wosz -- wOI Z + CSZ+C* (2.1.1 )

where wos and woo are the electron and nuclear Larmor frequencies, respectively,

C = (-3 / 2)(ysy, / rs)sin9cos6ed6 is the usual term in the electron-nuclear dipole

Hamiltonian 16 and S and I are spin operators for electrons and nuclei, respectively. First

order perturbation theory yields the mixed eigenstates shown in the figure where the mixing

coefficient q = C/o0 , <1. The other terms in the electron-nuclear dipolar Hamiltonian (A, B,

E and F in Van Vleck notation) are also mix states, but the contributions are relatively small.

Irradiation of the partially allowed transitions by pw's gives rise to either positive (double
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Figure 2.3: Energy diagram illustrating DNP via the CE. At equilibrium (left), under the
matching condition, there is degeneracy and 1:1 population of the two shaded levels. The
EPR spectrum of an ideal biradical for CE (middle) has two narrow lines separated by the
nuclear Larmor frequency. Saturation of transitions near the first (second) EPR line gives
rise to a positive (negative) DNP enhancement (right). (bottom) Field profile for bTbk with an
enhancement E= 25014

quantum) or negative (zero quantum) enhancement of the nuclear polarization as illustrated

on the right of Figure 2.2.
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The SE is the dominant DNP mechanism in systems where the polarizing agent exhibits

a homogeneous EPR linewidth (6) and an inhomogeneous spectral breadth (A) smaller than

the nuclear Larmor frequency (6,A < w01). This condition is satisfied by radicals with high

molecular symmetry such as BDPA 7, SA-BDPA , and trityl OX063 , where the g tensors

are nearly isotropic and the hyperfine interaction is small. However, as the SE relies on the

mixing of nuclear states by electron-nuclear coupling, the enhancement scales as o .

Therefore, the SE becomes less efficient at high magnetic fields (> 3 T). Nevertheless,
recent research suggests that SE can be very efficient at high field provided that high

microwave power, and a large wis = YeBis is available. Enhancements as high as -144

have been achieved at 5 T. Finally, the SE can also be the dominant mechanism when

transition metals complexes, e.g. with Gd 3 , are used as polarizing agents. Since the

broadening of the EPR line in these systems is mainly induced by the zero field splitting, the

EPR line narrows at higher magnetic fields and metal-based polarizing agents may show

improved performances at higher fields19.

2.2.2. Cross effect

When A >o)> 6, DNP is governed by the CE and scales with a)-', leading to larger

enhancements at higher magnetic fields. At high fields, where the EPR spectrum is

dominated by g-anisotropy and inhomogeneously broadened, a three spin quantum

mechanical treatment is possible.2022 The Hamiltonian for the nuclear spin and two electrons

is

H =oOSISZ+OS2S 2 Z - 0wI, + S(AIS. + A 2S2z) I, +(BS,, + B2S2z)I. +d(3SzS,2 -5 - 92)-2J 1 -92

(2.1.2)

where the first three terms represent electron and nuclear Zeeman interactions, the fourth

and fifth describe the electron-nuclear coupling (with A and B denoting the secular and

psuedosecular hyperfine couplings23), the sixth represents the electron-electron dipolar

coupling and the last describes exchange coupling. This leads to the energy level diagram

for the CE is shown in Figure 2.3, and electron-electron-nuclear polarization transfer is

maximized when the central energy levels are degenerate. This occurs when the matching

condition wOOS - CO = o is fulfilled, where wos, and (os2 are the Larmor frequencies of

dipolar coupled electrons S, and S2 . The degeneracy leads to saturation of the four
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connected levels and enhanced nuclear polarization. A field profile obtained from bTbk is
shown at the bottom of Figure 2.3, and roughly represents the negative 1st derivative of the
EPR spectrum. Also shown are the positions in the EPR powder pattern that are irradiated
for optimal positive and negative enhancements.

Initially, high-field CE DNP experiments were performed with mono-radical species,
such as TEMPO24 25. In this situation, the frequency matching condition is fulfilled only for
the fraction of the radicals that adopt the correct relative orientation of their g-tensors. In
order to improve CE DNP, we introduced biradicals such as bis-TEMPO-n-ethylene glycol
(BTnE) 20 and TOTAPOL 13, consisting of two tethered TEMPO moieties to obtain relatively
short (-12 A) electron-electron distances independent of concentration. With these
polarizing agents, which have an e-e dipole coupling of 20-30 MHz, the enhancements were
-4-fold higher at an -4-fold lower e concentration. Figure 2.4 shows recent results obtained
using TOTAPOL from two standard samples, urea and proline. The observed e=181 and
e=134 are -2-fold higher than we initially reported for TOTAPOL at this field 26 due to
improvements in instrumentation - primarily gyrotron output power and lower temperatures
(vide infra).

A Bmicrowave on
microwave on

microwave off x 134

microwave off x 181

300 250 200 150 100 50 250 200 150 100 50 0 -5
13C Chemical Shift (ppm) 13C Chemical Shift (ppm)

Figure 2.4: 13C CP MAS NMR spectra of (A) 1M U-[ C-1 N] urea and (B) 0.5 M U-[ C-1 N] proline at
80 K with and without microwave irradiation. The DNP enhancements are e=181 and e=134,
respectively. Both samples contained 10 mM TOTAPOL in a 60/30/10 ratio of d8-glycerol/D 20/H20.
Experimental parameters are: 4 scans, recycle delay 4 s, microwave power -12.5 W, gB1 (1H)=83 kHz,
gB1 ( C)=71 kHz, cor/2n = 5 kHz.
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Figure 2.5: 1C CP DNP enhancements of U-1M[ C ,5N] urea with 10 mM TOTAPOL plotted as a
function of pw power at 80 K (left) and as a function of temperature at 12.5 W pw (right). Or/21t = 7
kHz.

2.3. Optimizing DNP Signal Enhancements

DNP enhancements are governed by a number of factors, including microwave power,

concentration and design of the polarizing agent, temperature, solvent, and the relaxation

times of the solvent and solute. We now review recent results aimed at optimizing the

efficiency of DNP experiments with a focus on the influence of these parameters on the

enhancements.

2.3.1 Microwave Power

Gyrotrons 11,27,28 are capable of producing 10's of watts of pw power with excellent

frequency stability and low phase noise, making them the current microwave source of

choice for DNP experiments. In particular, the low Q of the microwave circuit in the MAS

NMR probe necessitates copious power to generate a sufficient B1 to excite DNP transitions.

Furthermore, since the gyrotron is a fast wave device, it can operate at high powers for

extended periods of time, as is required for multidimensional NMR experiments that involve

signal averaging. Figure 2.5 (left) shows the enhancement as a function of pw power at 80

K obtained with a frequency tunable 250 GHz gyrotron29. The enhancement increases with

power, does not saturate at our maximum available power of 12.5 W, and extrapolates to a

limiting value emax~ 2 40. Similar dependences of e on pw power have been published

elsewhere. 30, 31 An alternative microwave source, that we explored sometime ago and
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currently in use in some labs 32 , is a low power (-10-100 mW) Gunn diode. However, the

enhancements are lower: on one sample, e -25 with 10 mW from the Gunn diode versus

e=185 with 1 W from the gyrotron 33. Thus, the data in Figure 5 suggest that with current

technology the gyrotron is the microwave source of choice for DNP experiments, especially

at microwave/ 1H NMR frequencies 263 GHz/400 MHz for e/1H. Currently gyrotron-based

DNP spectrometers are operating at microwave/ 1H NMR frequencies up to 460 GHz/700

MHz 30 and are expected to go still higher. Nevertheless, microwave technology does

improve with time, and it is possible that alternatives to the gyrotron and Gunn diode will be

available in the future.

2.3.2 Temperature and polarizing agents

Both the sample temperature and the nature of the polarizing agent profoundly

influence the DNP enhancements. Lower temperatures improve both the SE and CE

enhancements, most likely due to longer electron and proton relaxation times. Figure 2.5

(right) plots recent data showing the temperature dependence of the 1H DNP signal

enhancement in the range 80-140 K at 250 GHz/380 MHz with the TOTAPOL/urea sample

described above. Note that the DNP enhancement increases as the temperature

approaches 80 K, by a factor of 3.6 in the range 110 to 80 K.

It is well known that high concentrations of paramagnets dramatically broaden NMR

linewidths and attenuate integrated NMR signal intensities. It is for this reason that we

developed biradical polarizing agents with a -20-30 MHz intramolecular e-e dipole coupling

which yield -4-fold larger enhancements at -4-fold lower electron concentration than

monoradicals such as TEMPO 20. Our experiments performed on urea, proline,

bacteriorhodopsin (bR), and P13-SH3 fibrils 34 35suggest that optimal radical concentration of

TOTAPOL is 10-20 mM.

Finally, we note that biradicals such as bTbk14 (Figure 2.1) and bTbk-py36 have the

TEMPO moieties locked at ~90* with respect to one another, and therefore yield a relative

orientation of the two g-tensors that better satisfies the CE matching condition. These

polarizing agents have produced enhancements as large as 250 (Figure 2.3).

It was previously reported that 2 H labeled solvents improve 1H DNP enhancements, and

that even with 90-95% 2H labeling we can still efficiently CP to low gamma nuclei in the

target molecule.20' 37 Thus, while 1H dilution attenuates relaxation processes, even dilute
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Figure 2.6: (left) The ion-motive photocycle of bR. The subscript for each intermediate represents
the wavelength (in nm) of maximum visible absorption. (middle) 1N CP DNP spectra [4- 5N-Lys] bR
prepared with 15 mM TOTAPOL in 60/30/10 volume ratio of d8-glycerol/D 20/H20 in 0.3 M
guanidinium hydrochloride at pH 10. (A) the dark adapted (DA) state comprises a thermal equilibrium
mixture of bR555 and bR568 (B) Light adapted (LA), bR568, accumulated by 532 nm irradiation of the
rotating sample for 4 hours at 273 K (C) the Mo intermediate created by 532 nm irradiation of rotating
LA at 230 K. The spectra of all three intermediates were obtained in roughly 2 hours with a spinning
frequency of 7 kHz. (right) 2D spectrum obtained from DA bR illustrating the splittings observed at low
temperature doe to inequivalent sites.

protons mediate 1H- 1H spin diffusion, with the overall result of a higher enhancement. For

example, Akbey et al. 38 reported that perdeuteration of the (X-spectrin-SH3 domain led to

three to five times higher DNP enhancement (e-148) than obtained with protonated SH3. In

a more recent example we prepared 98% perdeuterated U-[2H, 13C,15N] bR and with 15 mM

TOTAPOL and observed e= 72, whereas for U-[1 H, 13C,1 5N]-bR we obtained e-35-43. 34, 39

Thus, perdeuterated proteins will likely be important for biological applications of DNP.

2.4 Applications of DNP MAS NMR

2.4.1 Bacteriorhodopsin

To date one of the most interesting examples of the application of DNP is to the light-

driven ion pump bR, which is a 26.6 kDa trans-membrane protein containing a retinal

chromophore. bR has been studied intensively since its discovery in the 1970's40 41, but the

mechanism by which it enforces vectorial action is still not understood and MAS NMR

studies can potentially elucidate the relevant structural details of the intermediates in its

photocycle (Figure 2.6 (left)). However, many of the intermediates can only be cryo-trapped

at low (-5%) concentrations, so that high signal-to-noise, and therefore DNP, is required to

observe their MAS NMR spectra. 4
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Figure 2.7: 1N- C spectrum obtained from dark adapted U-[ C, "N]-bR after selective excitation of
the 1N Schiff base, CP to the 0C-15 of the retinal and 1CE of Lys216, followed by RFDR mixing. The
spectrum shows cross-peaks between the Schiff base 15N and C-12,13,14,15,20 on the retinal
chromophore and "CE Lys216 27,33. The arrow indicates the trans-cis isomerization of the C13=C14
bond that occurs during the photocycle.

The retinal cofactor is covalently bonded to Lys216 via a protonated Schiff base linkage,

and the sensitivity of the unique 15N chemical shift of the Schiff base to its local environment

provides an excellent marker and probe of each photocycle intermediate. In the dark-

adapted (DA) state, bR exhibits two conformations: bR555 and bR568 in a ratio of 60:40

(Figure 2.6 (middle, A). After irradiation at 532 nm, DA is converted to light adapted (LA)

state in which only bR568 remains (Figure 2.6 (middle, B)). Upon the absorption of a photon,

the retinal isomerizes and cycles the protein through several intermediates that can be cryo-

trapped for observation in situ. Figure 2.6 (middle, C) shows the 1 D spectrum of Mo. With

low temperature DNP it is possible to perform 2D spectroscopy and a 13C-15N spectrum of

DA bR is shown in Figure 2.6 (right) showing that at 90 K there are actually four forms of bR

present - two each of the bR555 and bR568 .

We have also published the first DNP MAS NMR spectra of the K and L intermediates '"

While the K state showed just one Schiff base signal, it relaxed to several L states, of which

all but one are dead ends (relaxing back to bR). The data for the functional L state (the one

that relaxes to M) suggest that its Schiff base has a strong counterion. One of the possible

explanations would support the hypothesis that bR is an inward OH- pump, rather than an

outward H+ pump.

With the sensitivity available from DNP, it is also possible to record 3D correlation spectra

for the individual resonances in the DA state which has an effective molecular weight of ~ 85

kDa. Figure 2.7 shows cross-peaks between the Schiff base 15N and 13C-12,13,14,15,20 of

the retinal and 13C-E of Lys216 in the dark adapted state of bR. The experiment has been
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Figure 2.8: Comparison between room temperature and DNP enhanced, low temperature correlation
spectra of P13-SH3. The spectra were obtained with ZF-TEDOR recoupling (Qmt= 16 ins) from
samn le prepared from partially labeled fibrils ['5N, 1C] Pl3-H3 /[ 14N, 13C P13-SH3 (50:50 molar ratio).
(a) N- C intermolecular correlations in P13-SH3 fibrils at 300 K obtained at 750 MHz in 16 days of
acquisition time. (b). Same sample and identical spectral regions were recorded at 100 K and 400
MHz with DNP enhancement in 32 h. (c). Illustration of the 23 interstrand contacts established from

13 0 15

"C - 'N peaks in the 750 MHz spectra acquired at 300 K in a. (d) the 52 interstrand contacts
established from the 400 MHz DNP enhanced spectra recorded

conducted by using a Gaussian pulse to select the signals arising from the 5N of Lys216 in

both bRers and bR55 followed by a 5N- 1 C and then 13C-C diffusion via RFDR mixing.

Again the spectrum of bR would not be accessible sans DNP.

Its

2.4.2 Amyloid Fibrils

MAS NMR is also essential for studies of the structure of amyloid fibrils. Intermolecular

FC-gCor 2: N- 1C distances derived from MAS DNP experiments provide otherwise

unavailable structural constraints. The most straightforward approach is to measure long-

range tC-N distances with a ZF-TEDOR experiment 42. However, for distances 5 A, the

efficiency is low (< 5%), which vastly extends the acquisition time and severely limits the
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number of constraints that can be observed. The application of DNP to overcome this

situation has been demonstrated on mixed samples of ["N, 12C] P13-SH3 /[ 14N, 13 C] P13-

SH3 (50:50 molar ratio). Figure 2.8 compares the 15N- 3C intermolecular correlation spectra

obtained with ZF-TEDOR recoupling (Tmix= 16 ms) at 750 MHz without DNP and at 400

MHz with DNP, collected in 16 days and 32 hours respectively. The number of

intermolecular 15 N-13 C constraints detected was more than doubled due to the DNP with e ~

30 on 13C. The additional constraints obtained from DNP permitted us to establish that the

P13-SH3 protein strands are aligned in a parallel and in-register P-sheet arrangement 35.

In addition, it is clear that the approaches described here are widely applicable to other

areas of science, in particular materials problems - polymers, zeolites, surfaces,

semiconductors, etc. These experiments will likely include spectroscopy of quadrupolar

species such as 17043 and 2 7A144 as well as 1=1/2 species. We refer the interested reader to

other articles in this issue for a complete discussion of these very interesting applications.

Finally we note that, while most of the results described here were obtained at 250

GHz/380 MHz or 263 GHz/400 MHz, DNP experiments have recently been performed at

460 GHz/700 MHz 30 and at 395 GHz/600 MHz and 527 GHz/800 MHz

[http://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html]. Thus, DNP is rapidly

moving to higher frequency where the chemical shift resolution will improve and additional

systems will become accessible.

2.5 Conclusions

There are currently two important mechanisms that mediate high field DNP processes,

namely the SE and the CE. In addition, there are a number of important experimental

factors that influence the magnitudes of the enhancements, including microwave power,

temperature, and the nature of the polarizing agent. With currently available technology -

gyrotron microwave sources, MAS at 80 K, biradical polarizing agents, and partially

deuterated proteins - it is possible to obtain enhancements of 100 on many samples.

This enhancement, together with the improved Boltzmann factor of 300 K/80 K=3.75 due to

the lower temperature, yields sensitivity gains of 375 and time savings of >105 . Historically,

increases in sensitivity of NMR experiments by factors of 102-103 have dramatically changed

the landscape of what is possible with NMR, and we are beginning to witness the next step

in this movement due to high frequency DNP. We have illustrated this point with

applications of MAS DNP experiments to membrane proteins and fibrils which are typical of
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the biological materials that will be studied in the future. These results clearly illustrate that

many experiments that are not possible sans DNP, become feasible avec DNP. Thus, it is

clear that the increased availability of commercial instruments to perform DNP experiments

will open many new avenues of scientific and technical endeavor.

2.6. Acknowledgement

We thank Drs. Alexander Barnes, Bjorn Corzilius, Yongchao Su, Marvin J. Bayro and

David J. Ruben for their insightful discussions and Jeffrey Bryrant, Ajay Thakkar, for their

extensive technical assistance. This work was supported by National Institute of Health

Grants EB002804, EB001960, EB003151, EB001035, GM095843 and EB002026.

2.7. References

1. Griffin, R. G. Dipolar Recoupling in Mas Spectra of Biological Solids. Nat. Struct. Biol.
1998, 5, 508-512.
2. Rienstra, C. M.; Hohwy, M.; Mueller, L. J.; Jaroniec, C. P.; Reif, B.; Griffin, R. G.
Determination of Multiple Torsion-Angle Constraints in U-1 3c,15n-Labeled Peptides: 3d 1h-
15n-13c-lh Dipolar Chemical Shift Spectroscopy in Rotating Solids. J. Am. Chem. Soc.
2002, 124, 11908-11922.
3. Thompson, L. K.; McDermott, A. E.; Raap, J.; van der Wielen, C. M.; Lugtenburg, J.;
Herzfeld, J.; Griffin, R. G. Rotational Resonance Nmr Study of the Active Site Structure in
Bacteriorhodopsin: Conformation of the Schiff Base Linkage. Biochemistry 1992, 31, 7931.
4. Griffiths, J. M.; Lakshmi, K. V.; Bennett, A. E.; Raap, J.; Vanderwielen, C. M.;
Lugtenburg, J.; Herzfeld, J.; Griffin, R. G. Dipolar Correlation Nmr-Spectroscopy of a
Membrane-Protein. J. Am. Chem. Soc. 1994, 116, 10178-10181.
5. Cady, S. D.; Schmidt-Rohr, K.; Wang, J.; Soto, C.; DeGrado, W.; Hong, M. Structure
of the Amantadine Binding Site of Influenza M2 Proton Channels in Lipid Bilayers. Nature
2010, 463, 689-692.
6. Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.; Rehbein, K.; Oschkinat, H.
Structure of a Protein Determined by Solid-State Magic-Angle-Spinning Nmr Spectroscopy.
Nature 2002, 420, 98-102.
7. Jaroniec, C. P.; MacPhee, C. E.; Bajaj, V. S.; McMahon, M. T.; Dobson, C. M.; Griffin,
R. G. High Resolution Molecular Structure of a Peptide in an Amyloid Fibril Determined by
Mas Nmr Spectroscopy. Proc. Nat'. Acad. Sci. 2004, 101, 711-716.
8. Tycko, R. Molecular Structure of Amyloid Fibrils: Insights from Solid-State Nmr. Q
Rev Biophys 2006, 39, 1-55.
9. Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A. B.; Riek, R.; Meier, B. H.
Amyloid Fibrils of the Het-S(218-289) Prion Form a Beta Solenoid with a Triangular
Hydrophobic Core. Science 2008, 319, 1523-1526.
10. Bayro, M. J.; Maly, T.; Birkett, N.; MacPhee, C.; Dobson, C. M.; Griffin, R. G. High-
Resolution Mas Nmr Analysis of Pi3-Sh3 Amyloid Fibrils: Backbone Conformation and
Implications for Protofilament Assembly and Structure. Biochemistry 2010, 49, 7474-7488.
11. Maly, T.; Debelouchina, G. T.; Bajaj, V. S.; Hu, K.-N.; Joo, C.-G.; Mak-Jurkauskas, M.
L.; Sirigiri, J. R.; Wel, P. C. A. v. d.; Herzfeld, J.; Temkin, R. J., et al. Dynamic Nuclear
Polarization at High Magnetic Fields. J. Chem Physics 2008, 128, 052211.

35



12. Haze, 0.; Corzilius, B.; Smith, A. A.; Griffin, R. G.; Swager, T. M. Water-Soluble
Narrow-Line Radicals for Dynamic Nuclear Polarization. J. Am. Chem. Soc. 2012, 134,
14287-14290.
13. Song, C.; Hu, K.-N.; Joo, C.-G.; Swager, T. M.; Griffin, R. G. Totapol - a Biradical
Polarizing Agent for Dynamic Nuclear Polarization Experiments in Aqueous Media. J. Am
Chem. Soc 2006, 128, 11385-11390.
14. Matsuki, Y.; Maly, T.; Ouari, 0.; Lyubenova, S.; Herzfeld, J.; Prisner, T.; Tordo, P.;
Griffin, R. G. Dynamic Nuclear Polarization Using a Rigid Biradical. Angewandte Chemie
2009, 48, 4996-5000.
15. Can, T. V.; Caporini, M. A.; Mentink-Vigier, F.; Corzilius, B.; Walish, J. J.; Rosay, M.;
Maas, W. E.; Baldus, M.; Vega, S.; Swager, T. M., et al. Overhauser Effects in Insulating
Solids. Journal of Chemical Physics 2014, 141.
16. Goldman, M., Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford
University Press: London, 1970.
17. Becerra, L. R.; Gerfen, G. J.; Temkin, R. J.; Singel, D. J.; Griffin, R. G. Dynamic
Nuclear Polarization with a Cyclotron Resonance Maser at 5 T. Physical Review Letters
1993, 71, 3561-3564.
18. Hu, K.-N.; Bajaj, V. S.; Rosay, M. M.; Griffin, R. G. High Frequency Dynamic Nuclear
Polarization Using Mixtures of Tempo and Trityl Radicals. J. Chem. Phys. 2007, 126,
044512.
19. Corzilius, B.; Smith, A. A.; Barnes, A. B.; Luchinat, C.; Bertini, I.; Griffin, R. G. High
Field Dynamic Nuclear Polarization with High-Spin Transition Metal Ions. Jour. Amer. Chem.
Soc 2011, 133, 5648-5651.
20. Hu, K. N.; Yu, H. H.; Swager, T. M.; Griffin, R. G. Dynamic Nuclear Polarization with
Biradicals. J. Am. Chem. Soc. 2004, 126, 10844-10845.
21. Hu, K.-N.; Song, C.; Yu, H.-h.; Swager, T. M.; Griffin, R. G. High-Frequency Dynamic
Nuclear Polarization Using Biradicals: A Multifrequency Epr Lineshape Analysis. J. Chem.
Phys. 2008, 128, 052321.
22. Hu, K.-N.; Debelouchina, G. T.; Smith, A. A.; Griffin, R. G. Quantum Mechanical
Theory of Dynamic Nuclear Polarization in Solid Dielectrics. J. Chem. Physics 2011, 134,
125105.
23. Schweiger, A.; Jeschke, G., Principles of Pulsed Electron Paramagnetic Resonance.
Oxford University Press: 2001.
24. Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.;
Elena, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G. Dynamic Nuclear Polarization at 9t
Using a Novel 250 Ghz Gyrotron Microwave Source. J. Mag. Res. 2003, 160, 85-90.
25. Rosay, M.; Lansing, J. C.; Haddad, K. C.; Bachovchin, W. W.; Herzfeld, J.; Temkin,
R. J.; Griffin, R. G. High Frequency Dynamic Nuclear Polarization in Mas Spectra of
Membrane and Soluble Proteins. J. Am. Chem. Soc. 2003, 125, 13626-13627.
26. Barnes, A. B.; Corzilius, B.; Mak-Jurkauskas, M. L.; Andreas, L. B.; Bajaj, V. S.;
Matsuki, Y.; Belenky, M. L.; Lugtenburg, J.; Sirigiri, J. R.; Temkin, R. J., et al. Resolution and
Polarization Distribution in Cryogenic Dnp/Mas Experiments. Phys. Chem. Chem. Phys.
2010, 12.
27. Becerra, L. R.; Gerfen, G. J.; Bellew, B. F.; Bryant, J. A.; Hall, D. A.; Inati, S. J.;
Weber, R. T.; Un, S.; Prisner, T. F.; McDermott, A. E., et al. A Spectrometer for Dynamic
Nuclear-Polarization and Electron- Paramagnetic-Resonance at High-Frequencies. J. Magn.
Reson. Ser. A 1995, 117, 28-40.
28. Bajaj, V. S.; Hornstein, M. K.; Kreischer, K. E.; Sirigiri, J. R.; Woskov, P. P.; Mak-
Jurkauskas, M. L.; Herzfeld, J.; Temkin, R. J.; Griffin, R. G. 250 Ghz Cw Gyrotron Oscillator
for Dynamic Nuclear Polarization in Biological Solid State Nmr. J Magn Reson 2007, 189,
251-279.

36



29. Barnes, A. B.; Nanni, E. A.; Griffin, R. G.; Temkin, R. J. A 250 Ghz Gyrotron with a 3
Ghz Tuning Bandwidth for Dynamic Nuclear Polarization. J. Magn. Reson. 2012, 221, 147-
153.
30. Barnes, A. B.; Markhasin, E.; Daviso, E.; Michaelis, V. K.; Nanni, E. A.; Jawla, S.;
Mena, E.; DeRocher, R.; Thakkar, A.; Woskow, P., et al. Dynamic Nuclear Polarization at
700 Mhz/460 Ghz. J. Magn. Reson. 2012, 221, 1-7.
31. Barnes, A. B.; Mak-Jurkauskas, M. L.; Matsuki, Y.; Bajaj, V. S.; Wel, P. C. A. v. d.;
DeRocher, R.; Bryant, J.; Sirigiri, J. R.; Temkin, R. J.; Lugtenburg, J., et al. Cryogenic
Sample Exchange Nmr Probe for Magic Angle Spinning Dynamic Nuclear Polarization. Jour.
Magnetic Resonance 2009, 198, 261-270.
32. Thurber, K. R.; Yau, W.-M.; Tycko, R. Low-Temperature Dynamic Nuclear
Polarization at 9.4 T with a 30 Mw Microwave Source. Jour Magn Resonance 2010, 204,
303-313.
33. Gerfen, G. J.; Becerra, L. R.; Hall, D. A.; Griffin, R. G.; Temkin, R. J.; Singel, D. J.
High-Frequency (140 Ghz) Dynamic Nuclear-Polarization - Polarization Transfer to a Solute
in Frozen Aqueous-Solution. Journal of Chemical Physics 1995, 102, 9494-9497.
34. Bajaj, V. S.; Mak-Jurkauskas, M. L.; Belenky, M.; Herzfeld, J.; Griffin, R. G.
Functional and Shunt States of Bacteriorhodopsin Resolved by 250-Ghz Dynamic Nuclear
Polarization-Enhanced Solid-State Nmr Proc. Nat'. Acad. Sci. 2009, 106, 9244-9249.
35. Bayro, M. J.; Debelouchina, G. T.; Eddy, M. T.; Birkett, N. R.; MacPhee, C. E.; Rosay,
M.; Maas, W. E.; Dobson, C. M.; Griffin, R. G. Intermolecular Structure Determination of
Amyloid Fibrils with Magic-Angle Spinning, Dynamic Nuclear Polarization Nmr. J. Am. Chem.
Soc. 2011, 133, 13967-13974.
36. Kiesewetter, M.; Corzilius, B.; Smith, A. A.; Griffin, R. G.; Swager, T. M. Dynamic
Nuclear Polarization with a Water-Soluble Rigid Biradical. J. Am. Chem. Soc. 2012, 134,
4537-4540.
37. Rosay, M.; Weis, V.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G. Two-Dimensional
13c-13c Correlation Spectroscopy with Magic Angle Spinning and Dynamic Nuclear
Polarization. Journal of the American Chemical Society 2002, 124, 3214-3215.
38. Akbey, U.; Franks, W. T.; Linden, A.; Lange, S.; Griffin, R. G.; Rossum, B.-J. v.;
Oschkinat, H. Dynamic Nuclear Polarization of Deuterated Proteins. Angewandte Chemie
International Edition 2010, 49, 7803-7806.
39. Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G.;
Herzfeld, J. Gradual Winding of the Bacteriorhodopsin Chromophore in the First Half of Its
Ion-Motive Photocycle: A Dynamic Nuclear Polarization Enhanced Solid State Nmr Study.
Proc. Nat'. Acad. Sci. 2008, 105, 883-888.
40. Harbison, G. S.; Herzfeld, J.; Griffin, R. G. Solid-State 15n Nuclear Magnetic-
Resonance Study of the Schiff-Base in Bacteriorhodopsin. Biochemistry 1983, 22, 1-5.
41. Harbison, G. S.; Smith, S. 0.; Pardoen, J. A.; Courtin, J. M. L.; Lugtenburg, J.;
Herzfeld, J.; Mathies, R. A.; Griffin, R. G. Solid-State C-13 Nmr Detection of a Perturbed 6-
S-Trans Chromophore in Bacteriorhodopsin. Biochemistry 1985, 24, 6955-6962.
42. Jaroniec, C. P.; Filip, C.; Griffin, R. G. 3d Tedor Nmr Experiments for the
Simultaneous Measurement of Multiple Carbon-Nitrogen Distances in Uniformly C-13, N-15-
Labeled Solids. Journal of the American Chemical Society 2002, 124, 10728-10742.
43. Michaelis, V. K.; Markhasin, E.; Daviso, E.; Herzfeld, J.; Griffin, R. G. Dynamic
Nuclear Polarization of Oxygen-17. J. Phys. Chem. Lett. 2012, 3, 2030-2034.
44. Vitzthum, V.; Mieville, P.; Carnevale, D.; Caporini, M. A.; Gajan, D.; Cope, C.; Lelli,
M.; Zagdoun, A.; Rossini, A. J.; Lesage, A., et al. Dynamic Nuclear Polarization of
Quadrupolar Nuclei Using Cross Polarization from Protons: Surface-Enhanced Aluminium-
27 Nmr. Chem. Commun. 2012, 48, 1988-1990.

37



38



Chapter 3: Peptide and Protein Dynamics and Low-Temperature/DNP

Magic Angle Spinning NMR

Adapted from Q.Z. Ni, E. Markhasin, T. V. Can, B. Corzilius, K.O. Tan, A.B. Barnes, E. Daviso,

Y. C. Su, J. Herzfeld, and R. G. Griffin, Journal of Physical Chemistry 141 (2014) 064202

In DNP MAS NMR experiments at -80-110 K, the structurally important - 13 CH 3 and - 15 NH 3+

signals in MAS spectra of biological samples disappear due to the interference of the molecular

motions with the 1H decoupling. Here we investigate the effect of these dynamic processes on

the NMR lineshapes and signal intensities in several typical systems: (1) microcrystalline APG,
(2) membrane protein bR, (3) amyloid fibrils P13-SH3, (4) monomeric alanine-CD3 and (5) the

protonated and deuterated dipeptide N-Ac-VL over 78-300 K. In APG, the 3-site hopping of the

Ala-Cp peak disappears completely at 112 K, concomitant with the attenuation of CP signals

from other 13C's and 15N's. Similarly, the 15N signal from Ala-NH3* disappears -173 K,
concurrent with the attenuation in CP experiments of other 15N's as well as 13Cs. In bR and
P13-SH3, the methyl groups are attenuated at -95 K while all other 13C's remain unaffected.

However, both systems exhibit substantial losses of intensity at -243 K. Finally, with spectra of

Ala and N-Ac-VL we show that it is possible to extract site-specific dynamic data from the

temperature dependence of the intensity losses. Furthermore, 2H labeling can assist with

recovering the spectral intensity. Thus, our study provides insight into the dynamic behavior of

biological systems over a wide range of temperatures, and serves as a guide to optimizing the

sensitivity and resolution of structural data in low temperature DNP MAS NMR spectra.
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3.1 Introduction

Magic angle spinning (MAS) NMR spectroscopy is now established as a versatile and

essential tool in structural biology.1-9 In particular, advances in sample preparation,

methodology,'0-19 and labeling strategies have dramatically improved the resolution of MAS

spectra, thus making possible structural studies of large biomolecules not accessible with other

techniques.- 24 Nevertheless, the primary limiting factor of MAS NMR is its inherently low

sensitivity. An approach to circumvent this limitation is operation at cryogenic temperatures,

since the Boltzmann population scales as 1/T. 5'2 An even greater gain in sensitivity can be

achieved by integrating dynamic nuclear polarization (DNP) into the MAS NMR experiments,

where orders of magnitude enhancements of NMR signal intensities have been reported for

peptide and protein samples. 27-30 This permits experiments that are otherwise difficult or

impossible to perform. 31 3 5

To take advantage of this increased sensitivity, DNP/NMR experiments at 80-120 K are

becoming widely accessible and heavily utilized. However, to date, the tremendous sensitivity

gain overshadows the effects of molecular motions present in the ambient and low temperature

spectra. For example, in many cases, side chain and backbone resonances of structural

importance are absent for reasons that are glibly referred to as "dynamics" but are not clearly

delineated or understood. Early 2 H NMR studies on model compounds revealed threefold

hopping (at 103-106 s-') by -CD 3 and -ND 3* groups at 130-200 K and 200-310 K temperatures,

respectively 36-39 and there have been a few investigations of these threefold processes and

twofold flips of aromatic rings in peptides and proteins at low temperatures.4047 However, to the

best of our knowledge, none of them provide a detailed description of the effects of these

processes on the accompanying loss in signal intensity in MAS spectra, especially in the 80-120

K regime. Furthermore, recent observation of heteronuclear polarization transfer under DNP has

been attributed to methyl dynamics in proteins 48. Thus, the purpose of the experiments reported

here is to provide an overview of the global and site-specific spectral intensity losses as a

function of temperature. Thus, we combine data from 1H- 13C/ 1 5N cross polarization (CP), 13C

Bloch decay MAS experiments recorded from a series of temperature-dependent MAS NMR

spectra on five systems including: (1) the microcrystalline tripeptide alanyl-prolyl-glycine (APG),

(2) the membrane protein bacteriorhodopsin (bR), (3) amyloid fibrils of phosphatydinal-inositol-

3-kinase SH3 domain (P13-SH3), (4) monomeric -CH 3 and -CD3 alanine and (5) the protonated

and deuterated dipeptide N-acetyl-valyl-leucine (N-Ac-VL) over the temperature range 78-300 K.
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In APG we find that the motion of the -NH 3* and -CH 3 interferes with 1H decoupling and

also compromises CP efficiencies, leading to specific and complete attenuation of spectral lines

from these two groups at -173 K and -112 K, respectively. In addition, these intensity losses

propagate throughout the sample, causing a global loss of spectral intensity. At temperatures

around 80 K, the interfering motions approach the rigid lattice limit and the signal intensity fully

recovers. In this regime, the gain in signal intensity is purely due to the Boltzmann factor.

Two classes of larger protein systems commonly studied at low temperature and with DNP

include membrane and amyloid proteins.49-5 2 Examples of these systems include bR in its native

purple membrane and P13-SH3. In both of these cases, the signal minimum due to the

dynamics of -CH 3 groups occurs at a lower temperature (95 K) and appears to be localized as

opposed to the case of APG. In addition, other spectral regions such as the carbonyl and

aromatic resonances are not affected and exhibit improved signals. Finally, we show that

intensity losses due to dynamic process can be partially and in some cases completely

recovered by the introduction of 2 H labeling. In particular, the introduction of -CD 3 groups in Ala,
N-Ac-VL and the use of perdeuterated bR permit observation of these groups in cases where

spectral lines from the -CH 3 moiety are completely absent.

3.2 Experimental

3.2.1 Sample preparation

Both uniformly 13C, 15N-labeled and 15N-labeled APG samples were diluted to 10% with the

corresponding natural abundance APG to suppress any intermolecular couplings. This was

accomplished by dissolving the mixture of labeled APG/ natural abundance APG in a minimal

amount of water (- 45 mg/ml) followed by slow crystallization in a desiccator, and crystals

forming in about a week. 40 mg of each APG samples was packed into a 4 mm Revolution NMR

zirconia rotor.

Bacteriorhodopsin (bR), in its native purple membrane, was purified from Halobacterium

salinarum grown in uniformly 1C, "N-labeled peptone medium5 3 . Peptone was obtained from the

anaerobic acid hydrolysis of Methylophilus methylotrophus cells grown on 1C-labeled methanol
154and 1N-labeled ammonium sulfate.54 The purple membranes were isolated using the method of

Oesterhelt and Stoechenius 55. The sample was washed 3 times with 300 mM guanidine

hydrochloride at pH 10.0. The sample was pelleted after every wash by centrifugation for 2

hours at -43,000 g. The washed pellet was mixed with 5mM AMUPo1 56 or 15mM TOTAPOL57 in

41



"DNP juice" consisting of d8-glycerol/D 20/H20 (60/30/10 volume ratio) and centrifuged once

more.

The phosphatidyl-inositol-3-kinase SH3 domain P13-SH3 fibril sample was uniformly
13C, 15N-labeled at the F, V, Y and L residues. The fibrils were grown from a solution of

monomeric protein by incubation at pH 2.0 and 25*C for 14 days.58 "DNP juice" was adjusted to

pH 2.0 and supplemented with 15 mM TOTAPOL was added to the gel-like fibrils for

cryoprotection and DNP experiments. Both bR and P13-SH3 samples were packed into a 4 mm

sapphire rotor for DNP/NMR experiments.

[U- 13C,15N] and [-CD3-U- 13C,15N] alanine were purchased from Cambridge Isotope

Laboratories (CIL) and dissolved in water then crystallized in a desiccator. [U- 13C,15 N] N-acetyl-

L-Val-L-Leu (N-Ac-VL) and [1,2-13C] acetic anhydride were purchased from CIL. N-Ac-VL was

synthesized by New England Peptide (Gardner, MA), using standard solid-phase methods and

purified by HPLC. N-Ac-VL was crystallized from a 1:1 (v/v) H20:acetone solution.

3.2.2 NMR Spectroscopy

MAS spectra were recorded using a custom-designed triple resonance (1H, 13C, 15N)

cryogenic MAS probe equipped with a sample exchange system 59 on home-built NMR

spectrometer operating at 380 MHz 1H frequency (courtesy of Dr. D. J. Ruben). Two types of

1D NMR experiments were conducted for APG: 'H- 13C/ 15N cross polarization (CP) and 13C

Bloch decay. For CP experiments, a spin-lock field of 50 kHz was employed on the proton

channel. Experimental parameters including: recycle delay, CP Hartmann Hahn matching

conditions, CP duration and TPPM decoupling have all been optimized for all temperature

dependent experiments. 1H TPPM decoupling fields o1H/27t= 83 kHz or 100 kHz and or/27=

4.83 kHz were used unless stated otherwise.

Liquid nitrogen boil-off gas was used for both the bearing and drive gas streams, and the

spinning frequency was controlled by a Bruker MAS controller5 9. Both bearing and drive

streams were cooled using a custom-designed heat exchanger, and the temperature was

subsequently controlled using heating elements inside vacuum jacketed transfer lines with two

PID controllers (Lakeshore, Westerville, OH). The sample temperature was monitored using a

fiber optic temperature sensor (Neoptix, Quebec, Canada) that extends to the inside of the MAS

stator. The fiber optic thermometers were calibrated by immersion in liquid nitrogen at 77 K.

Note, during MAS experiments, we have consistently recorded temperatures in the range 72 K-
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77 K presumably due to Joule-Thompson cooling on the expansion of the N 2 gas from the jets
of drive cup and bearings of the stator.

3.2.3 DNP Experiments

In order to investigate methyl group dynamics at DNP temperatures, 'H, 13C, 15N CP and
homonuclear experiments were performed using a home-built DNP gyrotron instrument
operating at 250 GHz / 380 MHz with -14 W of microwave power.60' 61 Enhancement factors (c)
were calculated by comparing the signals obtained with and without pw irradiation.

3.2.4 Simulations

The simulations of the Ala-CH 3 group dynamics in APG were performed using GAMMA6 2

with 100 powder orientations chosen using ZCW scheme. 3 Details of the parameters used can
be found in SI. In order to simulate the three-site hopping mechanism, the simulations were
carried out in a composite Liouvillian space that facilitates mutual-exchange mechanism. The
dimensions of the exchange matrices for the four-spin CH 3 and CD3 spin systems are 256 x 256
and 2916 x 2916 respectively. The amount of time required to simulate the FID of one crystallite
orientation using one CPU core is -1 minute and -1.5 days for CH3 and CD 3 respectively. All
simulations took -2 weeks to compute using ETH Brutus cluster with 384 CPU cores. The

parameters chosen for the simulations are or/27= 4 .65 1 kHz, TPPM decoupling 01H/ 21c =83 kHz

with 6.9 ps pulses and phases 15 degree. The size of the quadrupole coupling used for 2 H
nuclei is 167 kHz.

(a) U-aNAPG T= 80 K

(b) U-[mN,"C}-APG

AJPs

182 177 172 85 55 45 35 25 15
3C ChemicaI SNft (ppm)

Figure 3.1 13C CP-MAS spectrum of [U- 15N] APG (a) and [U- 13C, "N] APG (b) at 80 K. Both samples were
diluted to 10% in unlabeled APG to minimize the intermolecular couplings. The linewidth of the Gly-CO is
27 Hz (0.28 ppm). In (b) the linewidth is broadened by 1C- C J-coupling evident in the doublet splitting in
the carbonyl region with the Gly-CO and Ala-CO showing one bond C,-Co J-couplings of -50 Hz. The fact
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that these resonances are not resolved in the aliphatic region is likely due to the presence of multiple J-
couplings.

3.3 Results

The 1 D 13C spectra in Figure 3.1 illustrate the spectral resolution of two microcrystalline

APG samples with differing isotopic labeling schemes at 80 K. In both cases, the spectra exhibit

resolution comparable to that obtained at room temperature. Specifically, Figure 3.a shows a
13C CP MAS NMR spectrum of [U- 12C,"N]-APG and in the absence of 1 3C- 1 3C J-couplings, the

linewidth of the Gly-CO is as narrow as 27 Hz (0.28 ppm). In comparison, the linewidths in the

spectrum of [U- 13C, 15 N]-APG (Figure 3.1b) increase by a factor of two or more primarily due to

one bond J-couplings and higher order cross terms that arises from the denser 13C network.

Nevertheless, resolved J-splittings (-50 Hz) can still be distinguished in two out of three
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258 K

.J\n__ 225 K A...\ ....

\/A.- 212K \

.AJA,".. 190 K

- 173 K \A

AJX\ 153 K

148 KJ~t 145 K
_AfijL 133 K

AJLAA. 112 K AJA A
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JJ -96 K ...
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180 170 70 60 50 40 30 20
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160 120 80 40
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Figure 3.2 Temperature-dependent 'H- C CP (left column) and 1H- 1N CP (right column) spectra of [U-
"C,"N] APG. Several important spectral changes are observed. In region (Ill), between 213 K and 148 K,
the intensity of the Ala-NH3+ peak is buried under the noise level at - 173 K, which couples with the partial
attenuation of the 1C spectrum. Region (IV), below 148 K, exhibits the disappearance of the Ala-CH 3
signal at -113 K, coincident with the signal dip in the 15N spectrum. The spectral changes are further
analyzed in Figure 3. The spectra were acquired with or/2n = 4.83 kHz, (O1H/2 n = 83 kHz for TPPM
decoupling
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carbonyls, each of which has only one J-coupled neighboring "C. On the other hand, each 13C

in the aliphatic region is J-coupled to multiple neighbors, which obscures the splitting. The

aliphatic carbons also have stronger CH dipolar coupling than that of carbonyl carbons, and

would require stronger decoupling and higher spinning frequencies to be averaged out

effectively. The data confirm that the optimal resolution in MAS spectra can be obtained with

sparsely labeled 13C samples.64 In addition, they demonstrate that high resolution in well-

ordered materials can be obtained at cryogenic temperatures (- 80 K).

Figure 3.2 illustrates the temperature dependence of the 'H-13C/1 5 N CP-MAS spectra

acquired in the range from 73 K to 295 K, where we observe several interesting spectral

changes. First, in the transition between regions I and I at 225 K, there is a doubling in all of

the side chain signals that is especially obvious on the Ala-C line (6=18 ppm at 295 K), as well

as Pro-Ca and Pro-C, (30 ppm and 35 ppm at 295 K, respectively). A recent calorimetric study of

APG crystals revealed that the spectral changes at 225 K, although in the vicinity of the famous

protein glass transition,65 are likely the result of a polymorphic phase transition 6 . Similar

spectral changes at -200 K were observed for the peptide N-f-MLF-OH. Second, in region Ill,

the intensity of Ala-Cp exhibits a local minimum that coincides with the disappearance of the 15N
signal from the -NH 3* group at -173 K. Third, at lower temperatures, in region IV between 148 K

and 96 K, a more significant loss of Ala-13CP signal intensity occurs. The intensity decreases

dramatically and the Ala-13Cp line disappears into the baseline at -112 K, and there is a

concurrent loss of spectral intensity in the 15N spectra at this temperature. We attribute the two

signal minima in regions Ill and IV at -173 K and -112 K to the threefold hopping rates of the -
NH3+ and -CH 3 groups, respectively, matching the 1H decoupling frequency. Finally, at lower

temperatures the hopping rate enters the slow exchange limit and the -CH 3 and -NH 3* lines

reappear, narrow and the intensity recovers fully at 73 K.

The temperature dependence of the signal intensity is a product of the Boltzmann factor,
which has a T1 dependence, and the intensity loss due to molecular motions, which varies with

temperature. In order to isolate the effect of molecular dynamics, the contribution from the

Boltzmann factor is removed by multiplying the integrated signal intensity by the corresponding

temperature. Figure 3.3a shows the normalized signal intensity of Ala-Cp (-CH 3 group) with (red

solid circles) and without (blue open circles) the correction for the Boltzmann factor. To correct

for the Boltzmann factor, the normalized intensity was calculated as (I -T)/(I -T.) where I is

the intensity at the highest temperature T, where experiments were performed and I is the

intensity at temperature T . To facilitate data presentation, without the correction for the
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Figure 3.3 Temperature dependence of the integrated peak intensities of [U-"C,"N]-APG. The vertical
dashed lines indicate the minima in the signal intensities at -112 K and -173 K due to the hopping of -
CH 3 and -NH 3+, respectively. (a) Ala-CO from H -13C CP with (red solid circles) and without (blue open
circles) Boltzmann correction at each temperature. b) Adjusted spectrum intensities of several peaks of
APG plotted as a function of temperature from 1H -' C Cp. Again, notice the two minima, -112 K where
the Ala-Cp peak broadens beyond detection, and -173 K. (c) 13C Bloch decay experiments show the first
minimum, indicating interference between methyl hopping and 11 decoupling. (d) Spectral intensities of
H - N CP alanine NH 3+as a function of temperature. The second minimum in (b) is due to the hopping

of Ala-NH3+ group.

Boltzmann factor, the normalized intensity was calculated differently as (i / i0) to where i. the

intensity at lowest temperature at which we perform experiments. Note that the integrated

signal intensities were adjusted when necessary by their relative 1H or 13C T 1's measured at

each temperature and incorporated into the intensity calculations. T1H and T13c values are
plotted as a function of temperature in Figure 3.8 in the supporting information.

The minima at -112 K and -173 K in Figure 3.3 are visible even without this correction and
are greatly amplified with the correction. Below 90 K and above 225 K, the adjusted signals in
red are essentially the same, indicating that the signal intensities are unaffected by the effect of
molecular dynamics in these regions. In particular, the signal intensity in these regions follows

46

0
Z

(b) IH-13C CP

e Ala Cp
SPro C.

o Gly C.

(d) IH-15N CPR

I 'I

Ala-15NH3
* Pro-CN

( Gly-HCN

I I

I I

9 Ala CO
a Pro C.

o Gly C.



closely the T' dependence, resulting in a factor of 4 times higher intensity at 73 K compared to

295 K. Figure 3.3b illustrates that other sites such as Pro-C0 and Gly-CO also exhibit two signal

minima in 'H- 13C CP experiments and the entire spectrum is uniformly attenuated at 112 K and

173 K. Figure 3.3c presents the data from the single-pulse 13C Bloch decay signals detected

with 1H decoupling that show a minimum at 112 K, and a set of 13C Bloch decay spectra is

included in Figure 3.9. Furthermore, at this temperature the Ala-CH 3 is also completely

attenuated (Figure 3.3a), whereas other sites are nearly unaffected. In combination, the data in

Figure 3.3b and 3.3c suggest that the signal minimum at -112 K is associated with the

threefold hopping rate of the Ala-CH 3, which approximates to the Rabi frequency of the 'H RF

fields during decoupling and/or CP. The minimum at -173 K is attributed to the hopping of the

Ala-NH3* which manifests itself in the disappearance of its 1H- 15N CP signal as shown in Figure

3.3d. In comparison to the 'H- 3C CP data (Figure 3.3b), the 1H- 15 N CP data also exhibit two

minima but in reverse intensity order: nearly uniform signal attenuation at -112 K and complete

signal attenuation of Ala-NH 3* at -173 K.

Motivated by the dramatic changes in signal intensities in the APG spectra, we extended

our studies to the membrane protein bR, and to amyloid fibrils formed by P13-SH3, to determine

if a similar behavior is observed in these systems. Figure 3.4a illustrates that attenuation of

methyl 13C resonances occurs in [U- 13C, 15N]-bR. However, because of spectral overlap in this

248 amino acid, uniformly 13C/1 'N labeled protein, the extraction of accurate intensity data for

these resonances is imprecise. Multidimensional experiments at higher fields are required to

obtain better resolution. In contrast, the spectra in Figure 3.4c of [ 13C, 1 5N-FVYL]-P13-SH3 are

greatly simplified, which permits the extraction of the intensity of different functional groups,

especially the Val-CH 3 and Leu-CH3. In general, the spectra show that the overall intensity of

carbonyl and aromatic 13C's in both samples increases as temperature decreases except

around 243 K (Figure 3.4b and 3.4d). In addition, the methyl groups exhibit another minimum

at
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Figure 3.4 Temperature-dependent 'H- C CP spectra of (a) [U- C, N] bacteriorhodopsin and (c)
[1C, N- FVYL]-P13-SH3 amyloid fibrils without Boltzmann correction. In (b) and (d) we show plots of
normalized intensities for carbonyl, aromatic and aliphatic regions in bR and P13-SH3 fibrils as a function
of temperature. Both carbonyl and aromatic experience a minimum in intensity around 243 K followed by
a steady increase as the temperature is decreased for both systems. The intensity of -CH 3 's in the
valines and leucines in P13-SH3 also reveals a minimum at -243 K, followed by a second minimum at
-95 K, where the intensity losses are again due to -CH 3 hopping interfering with 1H decoupling and spin-
lock fields. Both samples were cryoprotected in d8-glycerol/D20/H 20 (60/30/10 volume ratio). Full sets of
spectra at different temperatures are provided in Figure 3.10 and 3.11. The spectra were acquired with
Or/2n = 4.83 kHz for bR and 7 kHz for P13-SH3. In both cases, O)1H/

2 = 83 kHz for TPPM decoupling.

-95 K in the case of [ 13C, 15N-FVYL]-P13-SH3, but the intensities of the two -CH 3 containing

residues are partially recovered at 87 K and are expected to fully recover at lower temperatures.

Incorporation of DNP into the experiments in this temperature regime will, in addition to the

Boltzmann factor, boost the sensitivity. In Figure 3.12, we show 1D 'H- 13C CP spectra of

[13C, 15N-FVYL]-P13-SH3 obtained with a signal enhancement of 35. A 2D RFDR spectrum of

[13C, 15N-FVYL]-P13-SH3 fibril with Tmix=1.6 ms was acquired in approximately 4 hours. Without

DNP, the same spectrum would require one month to achieve the same S/N.

In Figure 3.4b and 3.4d, the intensities are normalized to those obtained at 275 K for bR and

283 K for P13-SH3. We note that the normalized intensities of the aromatic 13C's at - 80-90 K
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can be larger than the contribution from the Boltzmann factor. This is due to the fact that at 300
K there is already a significant loss in signal intensity in aromatic ring spectra due to the twofold

ring flips,67-70 which affects the polarization transfer during CP and interferes with decoupling.

This phenomenon was observed in N-f-MLF-OH where the 6, 8' and E, E' signals from the Phe

ring are absent in the 300 K 1 D spectra. They start to reappear at 250K-225K and are fully

developed at lower temperatures. 32 In addition, in ZF-TEDOR spectra of P13-SH3, the aromatic

region is essentially empty at 300 K but is intense and well resolved at 90 K.71 Thus, the broad

signal minimum around 243 K probably extends to the higher temperatures, ~ 280 K. Note also

that protein samples used for DNP are cryoprotected by the glass-forming mixture of

glycerol/water (60/40 volume ratio), as it is the case for the bR and P13-SH3 samples used in

our study. Therefore, the signal minimum at 243 K coincides with the freezing of the

glycerol/water mixture and a slowing of the twofold flips of the 24 aromatic rings in bR. We also

note that this temperature is close to that of the protein glass transition, although it is generally

centered at the somewhat lower temperature (~200 K).

L-Alanine N-acetyl-L-VaI-L-Leu
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Figure 3.5 Temperature dependent 13C MAS spectra of (a) [U-"C,"N]-Ala with a 13CH 3 ; (b)Ala- 13CD3; (c)
[U- H, C, "N] N-acetyl-L-Val-L-Leu (d) [U-2 H, 3C, N] N-acetyl-L-Val-L-Leu. The spectra were acquired
with (or/2n = 6.2 kHz, CO1H/ 27c = 100 kHz for TPPM decoupling.

49

(d) u-NH "C,,"N]



It would clearly be desirable to recover the signal loss due to the interference between

molecular dynamics and decoupling, and accordingly, we have examined the possibility of

labeling methyl groups as -CD 3's. 31, 37 The rationale behind this approach is that the 1st order 2 H

quadrupole coupling is inhomogeneous, the 2nd order 2H coupling is small at high fields, and 2 H-

2 H dipole couplings, proportional to y2 , are a factor of 42 smaller than 1H- 1H dipole couplings.

Thus, MAS itself should average the 2 H- 2 H and 2 H- 13C dipolar couplings and attenuate the

intensity losses. Figure 5 shows temperature-dependent spectra obtained from the monomeric

amino acid alanine containing either a -CH 3 or -CD 3 group. As expected the 13C MAS spectra

obtained from Ala-13CH 3 exhibit dramatic intensity losses around 165 K. Note that the intensity

also decreases uniformly across the spectrum and both the C, and Co resonances are

effectively suppressed as was the case in APG (Figure 3.2). However, with the - 13CD 3 present,

the Ala methyl line is not suppressed at 165 K and the intensity recovers at 81 K.

Nevertheless, there is still considerable intensity loss at 165 K, and, as discussed below, this is

probably due to the -CD 3 methyl hopping rate (~104-105 s-) being similar to magic angle

spinning frequency. By interpolating the data from the Arrhenius plot reported by Beshah et al.

for Ala-CD 3, we obtain hopping rates of 1.4 x 10 5 at 165 K and 1.6 x 10 3 at 127 K, 38 which

confirms our hypothesis.

To explore the intensity losses in two other amino acids, namely Leu and Val, we recorded

spectra of protonated and -CD 3 labeled N-Ac-VL. As shown in Figure 5c, the Val y, and Y2 lines

in protonated N-Ac-VL exhibit significant intensity losses and are absent in the spectrum for

T<116 K. Note also that the line from V,2 disappears in the interval 116-173 K whereas the V1

line persists to -116 K. This behavior is consistent with the fact that the threefold hopping rates,

measured with 2H spectra, for the two -CH 3 groups in Val differ by about an order of

magnitude 38 . Specifically, in N-Ac-DL-Val they are 4.8 x 105 and 2.8 x 106 at 118 K, and

therefore, the signal intensities of the methyl groups at 116 K (Figure 3.5d) are not severely

attenuated and still detectable as the hopping rates are -1-2 order of magnitude away from the

interference regime (~104-105 S-1). In contrast, the Leu-CH 3 line does not lose intensity even at

90 K and it can potentially be used for distance measurements at low temperatures. In

deuterated N-Ac-VL, both groups are present at 90 K but with reduced intensity.

In DNP enhanced spectra of uniformly labeled bR, the intensity of methyl containing

residues is also reduced. Figure 6a shows a 2D RFDR spectrum of 1H uniformly labeled bR at

190 K with cross peaks corresponding to the 29 Ala and 18 Thr -CH 3's in bR that are not

resolved at 380 MHz. In contrast, at 90 K (Figure 3.6b) the Ala Cp, cross-peaks is no longer
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observed in the 1H bR sample while it is detected in the 2 H uniformly labeled bR. Similarly, Thr.

cross-peaks are partially attenuated in the 1H spectrum compared to that at 190 K, but it is fully

recovered in the spectrum of 2 H bR. This further verifies that an effective solution of methyl

group attenuation could involve deuteration.
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Figure 3.6 2D DNP enhanced 1C- C RFDR spectra of (A) U- H, C, N bR doped with 5 mM AMUPol at
190 K, (B) 92 K and (C) 2D RFDR of U-2 H, 1C, 1N bR containing 15mM TOTAPOL at 92 K. (B) and (C)
were acquired with DNP microwave irradiation. Enhancements of 75 and 71 were obtained, respectively.
All spectra were acquired with 2ms mixing, 30 kHz 13C pulses and 100 kHz 1H decoupling and spinning
frequency Wr/2p= 7 kHz at WoH/ 2p= 380 MHz. Both experiments took 7 hours with 6 s recycle delay, 128 t1
increments, and 32 scans per increment.
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Figure 3.7 Arrhenius plot of three-site hopping rate of the Ala -CH 3 group in APG. The least-square fit
(red line) yields an activation energy E. of 7.2 1 kJ/mol and pre-exponential constant A of ~ 2 x 10' s1.
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Although the loss of signal intensity of the methyl groups at low temperature impedes many

NMR experiments, including distance measurements, it encodes useful information the site-

specific about the dynamics of group, for instance the activation energy, Ea. The activation

energy contains rich details about the local chemical and structural environment, and they can

be extracted by first comparing experimental data at different temperatures with numerical

simulations. Figure 3.7 shows the Arrhenius plot of the -CH 3 group hoping rates of alanine

extracted from simulations of the signal intensities in APG measured by observing 13C signals

directly using a Bloch decay in the presence of 'H decoupling. (data from Figure 3.3c). The

least-square fit yields an activation energy Ea of 7.2 1 kJ/mol. This value is lower than the

literature value of 20.0 kJ/mo139 obtained for the monomeric amino acid alanine. The activation

energy of the -CH 3 group in alanine is higher than that in the APG probably due to tighter

crystal packing and thus more restricted rotation. Hence, the higher barrier for threefold hopping.

However, this analysis is complicated by the fact that the methyl group is not strictly an isolated

system, i.e. it is coupled to the nearby proton bath, especially the -NH 3' group via spin diffusion.

A more detailed study of this effect on the activation energy can be performed by deuteration of

the NH3* group.

3.4 DISCUSSION

It is well known that the hopping rates of -CH 3 and -NH 3* groups can be measured precisely

by analyzing the 2 H lineshape of the deuterated analogs of these groups. 36-39 Alternatively, Long

et al. showed a strong correlation between the intensity of Bloch decay signals of 15N and the

hopping rate in -NH 3 .
37 Using the same approach, we acquired 13C Bloch decay signals (Figure

3.3c) and assigned the signal minimum at -112 K to the interference between the methyl group

hopping and the 1H decoupling. Furthermore, the small signal attenuation (10%) of Pro-C, and

Gly-Co from Bloch decay experiments (Figure 3.3c) cannot account for the large signal loss

(60%) of the same resonances from CP experiments (Figure 3.3b), suggesting that the methyl

group hopping also causes inefficient CP at this temperature. This suggests that the hopping

rate of the methyl group in APG at -112 K is ~10_105 s-1, i.e. same order of magnitude as the

MAS frequency and/or 1H decoupling regime. The hopping rate can be extracted from the fitted

Arrhenius plot (Figure 3.7) and we obtained a hopping rate of -7 x 105 S~1, thus confirming our

hypothesis.

In practice, the decoupling field and the spin-locking field are very close in strength. Thus, it

is expected that interferences between these Rabi fields and the 3-site hopping occur at the
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same temperature. Interference between the spin-locking field and the molecular dynamics is

clearly the dominant mechanism responsible for the signal minimum at -173 K in the 1H- 13C CP

data, (Figure 3.3b) which does not appear in the 13C Bloch decay data (Figure 3.3c). At this

matching condition, the spin-lock is inefficient for methyl 1H's, causing a short 1H T1P.

Furthermore, due to rapid 'H- 1H spin diffusion and the combination of intra- and inter-molecular

contacts, the effect of a short T1j of the methyl 'H's readily distributes itself throughout the

molecule, resulting in a uniform signal loss at -173 K in the 1H- 13C CP data (Figure 3.3b). In

contrast, the destructive interference effect on the decoupling appears to be more localized to

the -CH 3 and -NH 3*. This is apparent in the signal minimum at -112 K in Figure 3.3b and 3.3c

as well as in the signal loss at -173 K in the 'H- 15N CP data, (Figure 3.3d) which is due to

interference of -NH 3+ hopping with both the decoupling and spin-lock fields.

The diffusive hopping of -CH 3 causes the first minimum at -112 K, and the second at -173

K is also caused by the similar phenomenon involving the -NH3' group. The temperature or

hopping rate at which the signal intensity is minimum is governed by both the Ea and the pre-

exponential factor of the Arrhenius equation, A. However, if the values of A are comparable,

then by comparing the previously published E. values, one can predict the temperature range at

which the intensity is minimum. The higher activation energy of the -NH3s group is due to its

ability to form hydrogen bonds.37 For example, the E. in Ala for -ND 3' is 40.5 kJ/mol,37 whereas

that for the -CD 3 group is 20.0 kJ/mol. 39 Long has shown the Ea of CD 3 and CH 3 groups are

comparable. Similar to the case of -CH 3, Long et al. shows that the hopping rate of -NH 3* in Ala

reaches 5 x 104 s-1 at 243 K, which is significantly higher than 173 K implied by our data,

pointing to lower activation energy in APG, given that the values of A are comparable in both

cases.

Our hypothesis on the correlation between molecular packing/ flexibility and the Ea is

further supported by the data on larger systems including the membrane protein bR (Figure

3.4a and 3.4b) and amyloid fibrils of P13-SH3 (Figure 3.4c and 3.4d). In contrast to the

tripeptide APG, in bR and P13-SH3 the hopping effect appears to be localized to the methyl

groups. In [FVYL-1 3 C,15 N] P13-SH3, a sample in which only methyl groups of Val and Leu are

labeled, we are able to observe the minimum in the intensity of the -CH 3 groups at -95 K,

compared to -112 K in APG, suggesting a lower Ea.

Our observations have a direct implication for the application of DNP to problems in

structural biology. Carbonyl 13Cs, together with the aromatic side chains, are the least affected

by the molecular dynamics and exhibit excellent sensitivity at low temperatures. This validates
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the approach using low temperature DNP to obtain long-range intermolecular distances

involving aromatic side chains71. Similarly, methyl groups are of proven importance in

measuring long-range contacts in proteins due to their position at the termini of many amino

acid side chains. Interestingly, as demonstrated by the data here, one cannot use DNP

experiments in the 80-120 K temperature range to measure distances associated with certain

protonated (-CH3) methyl groups. As hinted by the partial recovery of the methyl carbons at 87

K in Figure 3.3 and 3.4, the brute force solution to this problem is to perform experiments at

even lower temperatures, which would then require cooling using liquid helium. A promising

alternative approach is to fully or partially deuterate the methyl groups and it was demonstrated

some time ago that full deuteration largely prevents the intensity losses observed here. 6 Thus,

the benefit of this approach is twofold. First, it circumvents the detrimental intensity losses while

maintaining sufficient CP from adjacent protons. Second, deuteration of proteins has been

demonstrated to increase DNP enhancements by a factor of 3-4.31

We have initiated the investigation of such an approach. In particular, in Figure 3.5 we

compared spectra of alanine with -CD3 and -CH 3 methyl groups as well as between protonated

and fully deuterated N-acetyl-L-Val-L-Leu. The methyl group -CH 3 of alanine disappears

completely at 165 K while alanine -CD 3 signal experiences some level of attenuation but

nevertheless survives. In N-Ac-VL, the Val Cy1 and Cy2 possess different activation energies,

resulting in their disappearance at different temperatures, 90 K and 116 K respectively. This

behavior is delayed in the perdeuterated N-Ac-VL spectra, and more importantly, valine Cy1 and

Cy2 signals can still be observed at 90 K. These two carbons in N-Ac-Val were reported to have

distinct Ea's of 15.3 and 22.2 kJ/mol.38 Our results suggest that it is possible to maintain the

signals from methyl groups at low temperature by deuteration. Further investigations including

the incorporation of deuterium decoupling are underway and will be the topic of the subsequent

studies.

It is worth noting that the signal loss at -243 K can be as large as -70% in the case of bR

and occurs in the neighborhood of, but above, the temperature normally associated with the

protein glass transition. It appears that two mechanisms could be responsible for this effect.

First, this intensity loss could be due to the freezing of glycerol/water mixture. Thus, the signal

attenuation is related to the hydration of the sample and protein-water interactions and is,

therefore, ubiquitous in biological samples. Second, the loss could also be due to the 2-site

flipping of phenyl rings. bR contains 13 Phe's and 11 Tyr's in the amino acid sequence and

preliminary 2 H NMR data show intermediate exchange flipping rates at this temperature. We
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believe this is important since protein samples are frequently studied at temperatures slightly

lower than room temperature to slow some dynamic processes. Our results suggest that this

approach may be suboptimal in term of the overall sensitivity. It is therefore desirable to

perform such experiments at even lower temperatures, but to date, these temperatures are not

always achievable due to instrumental limitations.

Finally, the main focus of this article is to address the effect of temperature on the line

intensity of the -CH 3 group, along with solutions to alleviate the line-broadening effect at certain

temperatures due to interference between hopping mechanism with MAS frequency and/or 'H

decoupling and/or CP. While such interference is problematic for some experiments, this

temperature-dependent phenomena can be exploited and used to extract useful dynamic

information about the system. Thus, we present here a new method to extract the activation

energy of the-CH 3 group (Figure 3.7) by monitoring the change of 13C signal intensities as a

function of temperature. We are currently applying this novel approach to investigate the site-

specific motions of other biological macromolecules like proteins, which could reveal important

relations between the dynamics and functions of proteins.

3.5 CONCLUSION

In summary, we report effects of molecular motions on NMR signals of peptide and protein

samples at cryogenic temperatures. In the microcrystalline tripeptide APG, a first-order

polymorphic phase transition occurs at 225 K, which manifests itself in the line doubling in 13C

NMR spectra. At lower temperatures, we observe a destructive interference effect from the

threefold jump diffusion of the Ala-CH 3 (at -112 K) and of the Ala-NH 3+ (at -173 K) on the

proton decoupling and/or the CP spin-lock fields. The effect on the decoupling appears to be

localized, whereas the effect on the CP is readily transmitted throughout the molecule due to

fast 1H- 1H spin diffusion in a strongly coupled 1H bath.

We extend these experiments to larger biological systems consisting of the membrane

protein bacteriorhodopsin and amyloid fibrils formed from P13-SH3. At -243 K, both samples

exhibit significant signal loss, in the neighborhood of the protein glass transition. Similar to the

case of APG, the methyl groups are attenuated at low temperatures. However, the effect does

not propagate in an obvious way to other parts of the spectrum, which supports the approach of

using low temperature DNP to obtain long-range distances involving aromatic side chains.

Furthermore, the intensity minima occur at lower temperatures in these biological systems than

in APG (95 K vs. 112 K). Simulations of the intensity losses for the -CH 3 group in APG suggest

that it should be possible to use similar data to extract site-specific information on molecular
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dynamics. Finally, our study suggests deuteration of the methyl groups as -CD 3 as another

probe of long-range distance constraints using DNP at liquid nitrogen temperatures.

3.6 SUPPORTING INFORMATION

Spin-lattice relaxation, T1 for 13C and 1H measured with saturation recovery. Temperature

dependence of 13C Bloch decay spectra of APG. Full set of temperature-dependent 'H- 13C CP

spectra of [1 3C, 15N-FVYL]-P13-SH3. Full set of temperature-dependent 1 H- 13C CP spectra of bR.

1D 'H- 13 C CP spectra and 2D RFDR DNP spectrum of [ 13C, 15N-FVYL]-P13-SH3 fibril.
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Figure 3.8 13C CP MAS Spin lattice relaxation, T1 values at different temperatures for
(left) measured with saturation recovery experiments. The T1 values were acquired with
W1H/2Tr = 83 kHz for TPPM decoupling and WOH/2rr =380 MHz.
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Figure 3.9 Temperature-dependent direct 13C spectra of [U 3C,15 N] APG. The spectral changes are
plotted in Figure 3c. The spectra were acquired with w/2Tr = 4.83 kHz, W1H/ 2Tr = 83 kHz for TPPM
decoupling and WOH/2Tr =380 MHz.
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Figure 3.10 Temperature-dependent 'H- 13C CP spectra of [13C, "N- FVYL]-P13-SH3 amyloid fibrils.
Sample was cryoprotected in d 8-glycerol/D20/H20 (60/30/10 volume ratio). w/2Tr = 7 kHz, W1H/ 2 TT = 100
kHz for TPPM decoupling and WOH/2Tr =380 MHz.
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Figure 3.11 Temperature-dependent H- C CP spectra of [1C, "N]- bacteriorhodopsin. Sample was
cryoprotected in d8-glycerol/D20/H 20 (60/30/10 volume ratio). wdr2Tr = 4.83 kHz, W1H/2rr = 100 kHz for
TPPM decoupling and WOH/2rr =380 MHz.
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Figure 3.12 DNP-enhanced 1D and 2D spectra of [1C, N-FVYL]-P13-SH3 fibrils. (a)'H- 3C CP MAS

NMR spectra at 88 K measured with (top) and without (bottom) DNP, an enhancement of 35 was

obtained. The fibril was hydrated in 60/30/10 volume ratio of d 8-glycerol/D 20/H20 supplemented with 15

mM TOTAPOL. (b) DNP-enhanced 2D 1C- C RFDR acquired with 1.6 ms of mixing time and a total

experiment time of 4 hours. The dashed lines indicate the spin systems of tyrosine residues. The spectra

were acquired with wr/21r = 7 kHz, W1H/ 2 iT = 83 kHz for TPPM decoupling, and WoH/ 2 -rr =380 MHz.

The enhanced intensity greatly accelerates the acquisition of multidimensional spectra and

allows the investigation of low-temperature structural and dynamic behaviors such as

conformational disorder, polymorphism, and backbone and side chain motions. In the 2D RFDR

spectrum of [13C, 15N-FVYL]-P13-SH3, methyl containing valine and leucine residues are

recovered at 85 K.
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Notes S1. GAMMA simulation parameters.

Details of the parameters used can be found in SI. In order to simulate the three-site

hopping mechanism, the simulations were carried out in a composite Liouvillian space that

facilitates mutual-exchange mechanism. The dimensions of the exchange matrices for the four-

spin CH 3 and CD3 spin systems are 256 x 256 and 2916 x 2916 respectively. The amount of

time required to simulate the FID of one crystallite orientation using one CPU core is -1 minute

and -1.5 days for CH3 and CD3 respectively. All simulations took -2 weeks to compute using

ETH Brutus cluster with 384 CPU cores. The parameters chosen for the simulations are

(Or/27c=4.651 kHz, TPPM decoupling (O1H/ 27t= 83 kHz with 6.9 ps pulses and phases 15 degree.

The size of the quadrupole coupling used for 2H nuclei is 167 kHz.

ABBREVIATIONS

MAS: magic angle spinning; NMR: nuclear magnetic resonance; ssNMR: solid state NMR;

CP: cross polarization; DNP: dynamic nuclear polarization; RF: radio frequency; RFDR: radio

frequency-driven recoupling; S/N: signal to noise ratio; APG: alanyl-prolyl-glycine; bR:

bacteriorhodopsin; P13-SH3: phosphatydinal-inositol-3-kinase SH3 domain.
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Chapter 4: Primary Proton Pathway of Bacteriorhodopsin Revealed by DNP

Enhanced MAS NMR

Adapted from a manuscript in preparation by Q.Z. Ni, T. V. Can, E. Daviso, J. Herzfeld, and

R.G. Griffin.

Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-drive ion

pump. With its ready availability, bR has been thoroughly studied by many techniques.

Nevertheless, one major question remains unanswered is bR's primary proton transfer

pathway. Here we use dynamic nuclear polarization (DNP) MAS NMR to study bR's active

site in the various intermediates of the photocycle. The active site is comprised of a

retinylidene chromophore that interacts via its Schiff base (SB) with nearby water molecules

and amino acid residues. An essential feature of the experiments is signal enhancement by

a factor of 75 through the use of DNP. Bond length measurements of the SB proton reveal

an elongated N-H bond in L, the transfer of 'H in deprotonated MO, and a tight N-H bond in N

intermediate. The 'H chemical shift of -3.6 ppm in Mo indicates an alcohol hydrogen donor

partner. This strongly supports the H' being relay from the SB to Asp85 via Thr89 as the

pathway for bR's primary proton transfer.
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Figure 4.1 Photocycle of bR. The subscript next to each intermediate is the corresponding maximum
absorption wavelength (nm). The orientations and configurations of the chromophore for each
intermediate are displayed adjacent to the photocycle. The dark adapted (DA) state comprises a
mixture of bR555 (13-trans, 15-syn) and bR568 (13-trans, 15-anti). Illumination converts bR555 to bR568 ,
resulting in the light adapted (LA) state. The boxed region of the bR568 structure highlights the
hydrogen bond of the protonated SB for which water molecule wat402 is the acceptor. Wat402,
Asp85, Asp212, Arg82 and other water molecules make up the complex counterion (CI), which has a
(-1) charge density that stabilizes the positive charge on the nitrogen atom of the SB. The photocycle
of bR568 pumps one ion per photon, with resolved intermediates K, L Mo, Mn, N, and 0. The Schiff
base deprotonates in L--+Mo, with concomitant protonation of D85 on the extracellular side of the
chromophore, and reprotonates in Mn->N, with concomitant deprotonation of D96 on the cytoplasmic
side of the chromoDhore.

4.1 Introduction

Bacteriorhodopsin (bR), a 26kDa membrane protein found on the surfaces of archaeal
cells, functions as a light-driven ion pump, generating electrochemical gradients that drive
ATP synthesis. The seven transmembrane helices of bR enclose a retinylidene
chromophore formed by a Schiff base (SB) between a retinal molecule and Lys216. Due to
bR's relative availability, it serves as a model for other members of the rhodopsin family(1, 2)
and for GPCRs more generally. Since its discovery in the 1970's, bR has been intensely
studied by various methods including: X-ray crystallography,(4, 5) EM,(6, 7) IR,(8-11)
molecular simulations(12, 13) and NMR.(14-21) Although advancements in these
techniques have led to many insights over the years, the details of bR's pumping
mechanism remain unclear.
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The transduction of light energy involves a series of conformational and protonation

changes with the resolved intermediates in a photocycle shown in Figure 5.1 In the resting

state, protonation of the SB is stabilized by a delocalized complex counterion (CI)

comprising a hydrogen bonded complex of water molecules with Asp85, Asp212 and

Arg82.(15, 22) In the absence of light, bR exists in dark adapted (DA) state, a mixture of

bR555 (with a 13-cis, 15-syn chromophore) and bR5 68 (with an all-trans, 15-trans

chromophore).(23) When irradiated with green light at 278 K, bR555 converts to the more

stable bR56 8 , also known as the light adapted (LA) state.

bR568 is the active form of bR. Upon the absorption of light, the chromophore rapidly

isomerizes from all-trans, 15-trans to 13-cis, 15-trans, with thermal reisomerization occurring

only at the end of the photocycle.(24) The absorbed energy is stored in electrostatic form in

the K intermediate and converted to torsion in the functional L intermediate.(25) The torsion

leaves the SB connected to the extracellular side of the active site such that Asp85

becomes protonated when the SB becomes deprotonated in the transition from L to Mo. Due

to this "switch", reprotonation of the SB is associated with deprotonation of Asp96 in the

transition Mn to N. Lastly the SB thermal reisomerizes to bR568 in the 0 to bR568 transition. It

is vital that both photoisomization and thermal reisomerization occur when the SB is

protonated while the vectoriality of the pump requires connectivity change (the switch) occur

between deprotonation and reprotonation of the SB. The cycle repeats itself with a 1:1 ratio

between the photon absorbed and ion pumped.

bR56 8 is the active form of bR. Upon the absorption of light, the chromophore rapidly

isomerizes from all-trans, 15-trans to 13-cis, 15-trans, with thermal reisomerization occurring

only at the end of the photocycle. The absorbed energy is stored in electrostatic form in the

K intermediate and converted to torsion in the functional L intermediate.(25) The torsion

leaves the SB connected to the extracellular side of the active site such that Asp85

becomes protonated when the SB becomes deprotonated in the transition from L to Mo. Due

to this "switch", reprotonation of the SB is associated with deprotonation of Asp96 in the

transition Mn to N. Lastly the SB thermal reisomerizes to bR56 8 in the 0 to bR568 transition. It

is vital that both photoisomization and thermal reisomerization occur when the SB is

protonated while the vectoriality of the pump requires connectivity change (the switch) occur

between deprotonation and reprotonation of the SB. The cycle repeats itself with a 1:1 ratio

between the photon absorbed and ion pumped.
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Figure 4.2 Three proposed pathways by Bondar et al. for primary proton transfer from SB nitrogen
to Asp85, determined by computing minimum-energy reaction paths in Bacterirhodopsin using
quantum/classical mechanics (QM/MM).(13) (1a). the proton is transferred directly from SB to
Asp85 (2) the proton is relayed to Asp85 via Thr89. (3). The proton is transferred first to Asp212
and then to Asp85 along a proton wire via a water molecule.

Despite numerous breakthroughs over the years, a detailed mechanism of the primary

proton transfer that takes place in the L--Mo transition still remains elusive. The different

orientations of the SB and members of the Cl in multiple crystal structures were used by
Bondar et al. for QM/MM calculations to determine the mechanism of primary proton

transfer.(13) Calculations led to three possible pathways with the lowest energy barrier
shown in Figure 4.2. These pathways involve highly divergent mechanisms, i.e. they

require the SB to twist to varying degrees and different displacements of surrounding

residues, and therefore, it is unlikely for all three pathways to coexist. Narrowing down the
correct pathway involves seeking answers to additional questions: how does the proton of
the SB behave throughout the photocycle? And although the deprotonation is seen to occur

in M 0, does it occur instantaneously? Or does the SB prepare for deprotonation in

intermediates prior to Mo? The SB NH covalent bond and the local environment of the SB
1H in bR have never been closely investigated experimentally. Elucidating a membrane

protein's function requires dynamic snapshots of structural changes at the atomic level.

Here, we use MAS NMR in conjunction with dynamic nuclear polarization (DNP) to disclose

bR's primary proton pathway. We present thorough look at the proton of the SB through the
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bond length between the 'H and 15N of the SB and its 1H chemical shift in various photocycle

intermediates.

NMR is an exceptional tool in that it provides both chemical information (in common

with other spectroscopies) and distance information (in common with diffraction and

microscopy). In the case of MAS NMR, there is no requirement for either solubilization or

crystallization, making it a powerful tool in structural biology.(26-30) The major shortcoming

of NMR is in its low sensitivity, which becomes especially problematic when experiments are

focused around a single nitrogen site of a large molecule, in this the SB of bR. The low

sensitivity can be overcome with the addition of DNP, where the -660-fold greater

polarization of unpaired electrons is transferred to the protons and thence to the nuclei of

interest.(31-33) A graphical display to illustrate the major components of our DNP/MAS

NMR instrument is illustrated in Figure 4.6. DNP experiments are carried out at cryogenic

temperatures, which coincidently also traps the various bR photocycle intermediates.(34-36)

An enhancement of 75 was obtained on bR, corresponding to a savings of -5,600-fold in

acquisition time. This massive gain in sensitivity allows for multidimensional experiments to

be done on the low gamma 15N atom of the SB and its N-H 0 complex.

Several groups have used MAS NMR to study biologically important N-H N systems,

including RNase, hCMV protease and M2.(37, 38) However, N-H 0 investigations with

MAS NMR have been limited to organic models at ambient temperatures.(39-42)

Understanding N-H 0 is particularly crucial in systems such as bR as it plays a central role

in the active site. To obtain information on N-H 0 via other techniques including X-ray

crystallography or computational studies is either not possible or highly challenging, thus,

the H bond length is fixed at 1.00 A.(43) bR's hydrogen bond complex, (SB)N*-H- O(H2),

where N is the donor and 0 is the acceptor, is intimately associated with both the SB and

nearby counterion residues. The role of proton donor and acceptor becomes reversed in Mo,

where the 15N shift of the deprotonated SB is 20 ppm upfield relative to that in retinylidene

butylamine, suggesting that there is significant interaction with a hydrogen bond donor.(44)

It has been shown with MAS NMR that the Schiff base linkage in DA closely resembles

those of more weakly hydrogen bonded protonated model compounds.(44) However, there

hasn't been any other information on the SB proton in other intermediates. Our results show

the SB NH covalent bond is unusually long in the L intermediate. Interestingly, there is a

dipolar coupling between the two atoms in the deprotonated Mo intermediate. The newly

established NH bond is shorter than a typical amide NH bond in the N intermediate. In

addition, the 1H chemical shift values of the SB in various intermediates reveal that a weak
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Figure 4.3 (A). N- H double-DIPSHIFT results at 90 K in the DA, LA, L, Mo and N states. Each
data point was collected with 16K scans and 7 seconds recycle delay. The scaling factor (S) is the
ratio of the dipolar coupling constant of the amide backbone peak to the standard value of 10.8 kHz.
Integrated SB peak intensities were deconvoluted using Origin and then fitted using
SpinEvolution.(3) (B). Summary of the SB(N-H) bond length in various intermediates.

H-bond in the first half of the photocycle from LA to L. The upfield shift in 1H chemical shift in

Mo highly supports an alcohol hydrogen bond donor group to the SB nitrogen which leads to
the conclusion that the primary pathway of deprotonation from SB to Asp85 involves a
proton atom being relayed through Thr89.

4.2 Schiff Base N-H Bond length

Figure 4.3 shows the results of the double dipolar chemical shift (DIPSHIFT)
experiment employed to measure the dipolar coupling between the N and H nuclei of the SB.
Since the influence of dynamics is assumed to be negligible at cryogenic temperatures, the
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bond length is inferred directly from the measured dipolar coupling. In Figure 4.3A, the

integrated SB peak intensities are plotted as a function of evolution time up to one rotor

period. The scaling factor (S) is the ratio of the measured dipolar coupling constant of the

amide backbone peak to the standard value of 10.8 kHz. S is then used to adjust the

coupling constant obtained from the SB N-H bond in DA, LA, L, MO and N. Note that all the

subscripts adjacent to the intermediates are the maximum visible absorption frequencies in

nm of that particular intermediate except for the case of the L intermediate, where the

subscripts are the 15N chemical shifts values of the SB in ppm.

In the DA state, the bond length for bR5 68 is slightly shorter than for bR55 5 indicating

somewhat weaker H-bond donation. The bond length obtained from Figure 4.3A are plotted

together in chronological order of bR's photocycle, shown in Figure 4.3B. Each error bar in

this figure was estimated from a pair of simulated DIPSHIFT curves corresponding to the

upper and lower bounds of the measured distance. It can be seen that the bond length of

bR568/LA remains the same throughout all intermediates. The length of a standard amide

bond of 1.04 A is plotted across with a dotted line. The bond length in all intermediates

except N, are longer than that of the amide bond. In L181, the strength of the coupling

constant is similar to that of LA The N-H bond is elongated in L185 and unusually short in N,

corresponding to strong H-bond donation in L185 and a weaker than in bR568 H-bond donation

in N. The former suggests that the SB in L185 is ready to deprotonate and that, while the SB

is reprotonated in N, it has not yet found a H-bond partner.

4.3 Local Environment of the Schiff Base 'H

The SB H-bond is at the heart of the action in bR. From the NH correlation experiments

in Figure 4.4, we obtain the 1H chemical shifts summarized in Table 4.5 for the DA, LA, K, L,

Mo and N intermediates. The experimental uncertainties listed for the 15N, 1H chemical shifts

are determined by the peak's linewidth at half height. Laser irradiation at different

temperatures yields different populations of the photocycle intermediates due to different

barriers for forward and backward conversion. For example, when trapping the K

intermediate, a portion of bR is always found in the bR56 8 state because there is a photo-

equilibrium between the two at 90K. The 1H chemical shift of the residual LA can be seen to

have the same value in all intermediates, another indication that the spectra can be

compared reliably with respect to each other.

Since the different forms are readily distinguished and assigned from 15N spectra, the

2D spectra provide clear assignments of corresponding 1H frequencies. Between the two
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Figure 4.4. Two dimensional 15N- 1H HETCOR spectra of DA, LA K, L, MO, and N intermediates13 151 1
of [U- C, N]bR. The 1H and 1N chemical shifts of the SB proton are listed in Table 1. The
experimental scaling factor ranged from 0.453 to 0.547. Assignments of the different
intermediates within a particular trapping procedure are labeled.

species present in the dark, bR568 has a lower 15N and higher 1H chemical shift than bR555 .
The difference corresponds to a slightly stronger H-bond in bR555, which is attributed to its

13-cis,15-syn configuration, vs. the 13-trans,15 anti configuration in bR568. The weak
hydrogen bond in bR568 is considered to be an important basis for the functionality of its
photocycle.(21) As the SB loses its hydrogen bond partner in K, the 1H chemical shift shifts

slightly downfield to -13.3 ppm.

In the L intermediate, where the SB reestablishes interactions with a Cl, has been

reported to have a total of four conformations, of which only L185 is functional. I.e., only L185

progresses to the M state rather than regresses to bR568.(35) Under our trapping conditions,

Figure 4.4 only shows NH crosspeaks for L185, 1-1 81 and LA. In both of the L states, the 1H

chemical shifts are slightly lower than that of LA state, due to the stronger counterion

interactions in L. This suggests that the water hydrogen bonded to the SB becomes more
polarized. N-H bond becomes more polar in nature as the hydrogen bond strengthens. The
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highly polarized hydrogen bond suggests an inward-drive hydroxyl pump instead of an

outward proton pump.(15, 45)

Table 4.5 15N, 1 H Chemical Shifts and bond length of the

Schiff Base in bR

Intermediate
bR5 55

bR568 in DA

bR568 in LA

K

L165 (an unstable L)

L174 (an unstable L)

L181 (an unstable L)

L185 (functional L)

Mo (early M)

Mn (late M)

N

15 N (ppm)
173.5 0.65

165.4 0.60

165.4 0.60

156.5 0.72

165.4 0.60

174.3 1.02

181.2 1.2

184.9 1.0

318.4 0.63

312.0 0.65

173.3 0.65

'H (ppm)
13.2 0.4

12.2 0.4

12.2 0.5

13.3 0.3

11.1 0.3

11.8 0.4

3.6 0.3

16.0 0.3

Bond
Length (A)
1.10 0.02

1.08 0.03

1.06 0.02

1.06

1.16

1.45

0.03

0.03

0.02

1.01 0.02

The 1H chemical shift remains -12 ppm in the first half of the photocycle, until Mo,

where it shifts upfield to -3.6ppm. Lastly,

in N intermediate is -16ppm.

after reprotonation, the 1H chemical shift of the SB

4.4 Primary proton pathway revealed

Differences in the 1H chemical shifts result from different distributions of the electron

density upon the (SB)N-H-. 0 formation. In general, 1H frequency moves downfield with

formation with an acceptor, such as oxygen or nitrogen. Downfield shifts of the amide

proton correlates to shorter H-bond length. As the H-bond strength increases, the proton

atom experiences an increase (less deshielded, decrease in chemical shift) while the

nitrogen atom experiences a decrease in charge density (more deshielded, increase in

chemical shift). Summary of all the chemical shift values are listed in Table 4.5.

Earlier studies comparing the nitrogen chemical shifts of bR568 SB with halide salts of

retinylidenebutyl [15N] imine showed the isotropic shift of bR568 is 11 ppm further upfield than
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any of the model compounds, suggesting an unusually weak hydrogen bond.(21) Our

experimental results for bR568 agree with this finding. 1H chemical shift is -12 ppm, indicating

that it is part of a weak H-bond. The 1H chemical shift measured in Figure 4.4 identifies the

strength of the H-bond in that particular intermediate. The strength of the SB NH covalent

bond in the first half of the photocycle is weaker than that of an amide backbone bond.

Instead of a gradual weakening in bond strength, the NH bond remains weak from the very

beginning of the photocycle. While the Cl is responsible for the overall electrostatic steering

and for keeping the SB connected to the extracellular side of bR, they don't vary amongst

the intermediates. The closest molecule of the Cl to the SB is a water molecule,

Wat402.(13) Molecular simulation has shown that the water molecule that situates in

between the SB and the aspartic residues has the role of maintaining a stable configuration

of the protonated SB.(43) Regardless of the identity of the Cl, the polarization of the SB

nitrogen relies more so on the overall strength/charge of the complex counterion. This

explains why the 1H chemical shift doesn't experience great variation from each other in the

first half of the photocycle.

The lower 15N frequency for K represents the less shielded nitrogen atom,

corresponding to the slightly higher 1H chemical shift value. In K, the SB loses contact with

its CI,(46) and the NH of the SB bond is claimed to rotate from diffraction and FTIR

measurements.(47) The 1H and 15N chemical shift of both L185 and L181 are slightly lower and

higher than that of LA, respectively.(21) The long NH bond in L intermediate could be the

major cause to the 'opsin shift' observed, where bR's absorption maximum of its retinal

protonated SB chromophore is shifted to the red.(48) The elongated NH bond length

measured in L shows that L sets the stage for the primary deprotonation from the SB to

Asp85 in the L to Mo transition.

The hydrogen bond interactions in L are lost in the Mo intermediate and 15N chemical

shift of the SB shifts downfield to 318 ppm, which is 12 ppm less than the standard

retinylidene butylimine. This offset argues for the presence of a hydrogen bond donor water

at the SB and that the roles of hydrogen bond donor and acceptor become reserved in

Mo.(21) The SB proton was originally hydrogen bonded to wat402 loses its contact and

rotates towards cytoplasmic side during the switch. The dipolar coupling measured for Mo in

Figure 4.3 confirms the presence of a hydrogen bond donor. Nango et al. reported that the

hydrogen bond interaction from the protonated SB to wat452 or Thr89 creates a pathway in

the initial proton transfer to Asp85.(49) The 1H chemical shift of the SB in Mo strongly
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indicates the donor is that of an alcohol. Our findings supports the idea that there has been

a 1H relay from the SB to Asp85 via Thr89 in the L to Motransition.

After the switch from Mo to Mn, the 15N chemical shift of the SB in N shows that it has an
extraordinary weak counterion as a result of different charges and rearrangements of the

elements of the Cl. FTIR studies also indicated that the conformational change of the

protein backbone is the largest in N.(50) The different environment attributes to the much

higher 1H chemical shift (-16 ppm) of the newly established SB NH bond. The distance

measurement in N is consistent with Amax absorption values indicating a relaxed

chromophore. (51)

20 L Mo-20

1sp C Asp$115C p212C sp85C py

40sp85Cs Aspi Ck 40
Ext. Aspk Ext. A

E 50 Asp115Cay sp85C. 50

Asp85C,, 4 Asp1 Cy
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Figure 4.6 Long range 13C-13C chemical shift correlation RFDR spectra of [U-
13C, 15N]bR doped with 5mM AMUPol displaying contact between Asp85-C. and Thr89-
Cp in L (left) and in Mo intermediate (right). Three conformations of Asp85-Cs, are
observed in L (174.4, 173.2, and 172.3)ppm, they correspond to the functional and
nonfunctional forms of the L and LA intermediate. Only the Asp85-C, conformation at
174.4 ppm correlates to Thr89-Cp, representing the difficulty of obtaining functional L185.
In L to Mo, Asp85 reorganizes to develop a strong hydrogen bond with Thr89, which
results the chemical shift of Thr89-Cp to shift upfield from 68.2 ppm to 64.75 ppm.
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4.5 Thr89 - Asp 85 proximity

Fig. 4.6 shows 13C- 13C correlations between the C. of aspartate residues with
various upfield carbons. In these spectra, we see the characteristic upfield shift of the Cy of
Asp85 (from 169 ppm to 174 ppm) upon protonation in the L--Mo transition. In Mo, the Cy of
Asp85 is clearly correlated with the Cp of Thr89. As usual, the results are more complicated
for L because multiple forms of the intermediate are typically trapped along with some LA.
Interestingly, these variations are reflected in the Cp, cross-peak of Asp85 which shows that
at least three species are present (as in the L panel of Fig. 4). However, only one of these
species shows a correlation between the Cp of Thr89 and the C. of Asp85 analogous to that

in Mo. Thus, it seems likely that this is the functional L, i.e., the precursor for Mo. Significantly,
the change in the protonation states of the SB and Asp85 in going from L to Mo also affects
the chemical shift of the Cs of Thr89. This is consistent with Thr89 being caught in a
hydrogen bonded chain between the SB and Asp85.
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Figure 4.7. The components of the 250GHz/38OMHz DNP MAS NMR instrumentation used for the
experiments presented. In chronological order, bR DNP sample is packed in a 4mm sapphire rotor
and placed in the stator housing of the triple resonance probe head. Visible light is delivered to the
sample through in situ laser irradiation to initiate bR's photocycle. The sample is then cooled to
cryogenic temperatures where the isolated intermediate is trapped. The low sensitivity of the NMR
signal is enhanced by the addition of dynamic nuclear polarization (DNP) through constant wave
microwave irradiation traveling from the gyrotron through the connecting wavelength to the MAS
NMR probe.
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4.6 Experimental

4.6.1 Sample preparation

Bacteriorhodopsin (bR), in its native purple membrane, was purified from Halobacterium

salinarum grown in uniformly 1C, N-labeled peptone medium.(52) The peptone was

obtained from the anaerobic acid hydrolysis of Methylophilus methylotrophus cells grown on

C-labeled methanol and 1N-labeled ammonium sulfate.(53) The purple membranes were

isolated using the method of Oesterhelt and Stoechenius.(54) The sample was washed 3

times with 300 mM guanidine hydrochloride at pH 10.0. The sample was pelleted after each

wash by centrifugation for 2 hours at -43,000 g. The washed pellet was mixed with 5mM

AMUPol polarizing agent(55) in d8-glycerol/D 20/H20 (60/30/10 volume ratio) and centrifuged

once more.

4.6.2 Trapping photocycle intermediates

Two types of light sources were used to generate bR photocycle intermediates: a diode-

pumped solid state laser from Coherent operating at 532 nm (green) and 1W krypton laser

from Cambridge Laser Laboratory emitting 647 nm (red). The photocycle intermediates were

generated according to previous protocols:(56)

-LA was generated by irradiation of the dark-adapted bR sample with green light for 3

hours at 278 K.

-K was generated by irradiation of bR in LA state at 100 K with green light for 2 hours.

-L was generated by irradiation of bR in LA state at 150 K with red laser light for 3 hours.

-MO was generated by irradiation of bR in LA state with green laser light at 210 K for 45

minutes.

-N was generated by irradiation of bR in LA state at 240 K with red laser light for 3 hours.

Each photocycle intermediate was kinetically trapped at 100 K, where spectra were acquired

in the dark. During all stages, the bR sample was kept spinning by nitrogen gas through the

bearing and drive lines of the magic angle spinning (MAS) probe.

4.5.3 DNP NMR Spectroscopy

All experiments were conducted with a DNP instrumentation consisting a gyrotron

producing microwaves at 250 GHz(57, 58) and a 380 MHz/ 9T solid state NMR

spectrometer equipped with a 4mm MAS triple channel (1H, 13C, 15 N) DNP probe at

cryogenic temperatures.(59-61)
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4.6.3.1 DIPSHIFT

NH bond lengths were measured using the dipolar-doubled 2D 15N- 1H dipolar chemical

shift (DIPSHIFT) correlation experiment(62) under 5kHz MAS. 1H homonuclear decoupling

of 100kHz was conducted with MREV8 sequence, which has a theoretical scaling factor of

0.477.(63) The experimental scaling factor at 90 K was measured using the amide

backbone peak of bacteriorhodopsin and was found to be between 0.9-1 of the coupling

constant for a typical NH bond of 1.04 A.

4.6.3.2 HETCOR

Two-dimensional 15N- 1H HETCOR spectra were measured under 5 kHz MAS. In the

HETCOR pulse sequence, the homonuclear dipolar coupling to is averaged to zero under

MREV8 homonuclear decoupling and the heteronuclear dipolar couplings are averaged by

magic angle spinning during t1 evolution. Then cross polarization transfers the frequency

encoded 1H polarization to nitrogen for acquisition. For cross polarization, the contact time

was 0.15 ms except for Mo (0.9 ms), with a 50 kHz spin lock field on 1H. 1H homonuclear

decoupling during the t1 evolution of 100 us and 32 increments was carried out using

MREV8 sequence with 100 kHz decoupling.

1H chemical shifts were obtained by multiplying the acquired values by the MREV8

experimental scaling factors, which were determined using the amide and arginine

crosspeaks (not shown) as internal references set to 9.1 and 8.28 ppm, respectively. The

experimental scaling factor ranged from 0.453 to 0.547. 100kHz of 1H decoupling was used

during acquisition to eliminate spin diffusion effects. In addition, to compensate the minor

offsets between the theoretical and the experimental scaling factor.

4.7 ABBREVIATIONS

bR, bacteriorhodopsin; SB, Schiff base; DA, dark adapted; LA, light adapted; DNP, dynamic

nuclear polarization; MAS NMR, magic angle spinning nuclear magnetic resonance; rf, radio

frequency; CP, cross polarization; TPPM, two-pulse phase-modulated; RFDR, radio

frequency driven recoupling; REDOR, fs; frequency
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Chapter 5: Insights into the Ion-motive Photocycle of

Bacteriorhodopsin Using DNP-enhanced Solid-state NMR to Probe

the Active Site

Adapted from a manuscript in preparation by Q.Z. Ni, E. Daviso, T. V. Can, J. Herzfeld, and

R.G. Griffin.

The 26 kDa light-driven ion pump, bacteriorhodospin (bR) is comprised of 7 trans-

membrane helices that enclose a retinylidene chromophore formed by a Schiff base (SB)

between the retinal and K216. Despite numerous studies by different techniques, details of

the bR pump mechanism remain elusive due to experimental limitations in sensitivity and/or

resolution. Here, dynamic nuclear polarization (DNP) is employed to boost the 1H NMR

signal by transferring polarization from electrons of polarizing agents. DNP NMR

experiments are done at cryogenic temperatures, which also trap the various bR photocycle

intermediates (DA, LA, K, L, MO, and N), allowing them to be studied in situ. With an

enhancement of 75, we are able to follow elements of the active site via multidimensional

spectra. Distance measurements obtained from 3D fs-REDOR presented here are the first

set of long-range DNP MAS NMR distance measurements conducted on a uniformly labeled

bR system. We find that the SB-D85 distance shrinks in the first half of the photocycle and is

released after the primary proton transfer that neutralizes the opposing charges on the two

parties. The decrease in distance between the two indicates helix C and helix G are moving

toward each other, which could be the reason why functional L is difficult to achieve. The

subsequent release of helix G provides an additional gate to the release of the torsion

energy in the chromophore. Meanwhile, the SB-D212 distance hardly changes.
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5.1 Introduction

Ion pumps are ubiquitous in nature. To understand how they function requires a thorough

investigation of the details of their pumping mechanisms. bR is a 26 kDa light-driven proton

exporter (or hydroxide importer) found in the purple patches of the cell membrane of

Halobacterium salinarium. Similar to other members of the rhodopsin family, bR contains a

retinylidene chromophore linked to K216 through a Schiff base (SB). Since its discovery in

the 1970's, bR has been heavily studied by various methods including X-ray

crystallography,(1, 2) electron microscopy,(3, 4) IR spectroscopy,(5-8) molecular

simulations(9, 10) and NMR.(11-18) Although advances in these techniques have led to

many highly complementary breakthroughs; details of bR's pumping mechanism remain

unclear.
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Figure 5.1 (A) Photocycle of bR. Dark adapted (DA) state consists of both bR555 (13-cis, 15-syn) and
bR568 (13-trans, 15-anti). Upon the absorption of light, bR555 converts to bR568, known as the light
adapted (L.A). The retinal then adapts (13-cis, 15-anti) configuration in the remaining intermediates K,
L MO, Mn, and N, and 0 before relaxing back to all trans configuration. The number next to the
intermediates represents the Amax values of that particular intermediate. The Schiff base deprotonates
in L--> MO, and reprotonates in Mn--N. Each intermediate can be isolated by laser irradiation and
trapped at cryogenic temperatures for DNP NMR experiments. (B) Structure of the active site in the
LA state showing the SB and its complex counterion charge delocalization. Hydrogen bonded
complex counterion contains two acidic residues, D85 and D212, and one basic residue R82.
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At rest without illumination, bR exists in the dark-adapted (DA) state, which comprises a

mixture of bR55 5 (with a 13-cis, 15-syn chromophore) and bR56 8 (with a 13-trans, 15-anti

chromophore). When irradiated with green light at 50C, bR555 converts to the more stable

bR568, also known as the light adapted (LA) state. From here, the ion-motive photocycle is

initiated with optically distinct intermediates (see Fig. 5.1A), where the subscripts indicate

the corresponding Amax absorption values. Light absorption causes the chromophore of bR568

to rapidly isomerize to the 13-cis, 15-anti configuration. The absorbed energy is stored in

electrostatic form in the K intermediate and is converted to torsional energy in the L

intermediate.(19)A decrease in the pKa of the SB causes it to deprotonate in the L-+ Mo

transition, while D85 becomes protonated.(20) Once the SB deprotonates, it undergoes "the

switch", Mo->Mn, where it is freed from the electrostatically enforced torsion and changes its

connectivity from the extracellular side of the protein to the intracellular side. In Mn->N

transition, the reprotonation of the SB is associated with the deprotonation of D96.

The strong degree of shielding in 15N chemical shift values of the SB which is correlated

to the degree of charge delocalization on the SB counterion,(21) suggest that SB counterion

is extraordinarily delocalized. Such delocalization of the SB counterion can be explained by

the presence of a hydrogen-bonded complex counterion consisting of polar residues and

water.(Fig. 5.1B) Diffraction results subsequently showed that the complex counterion (CI)

comprises D85, D212, R82 and a water molecules.(22) Hydrogen bonds among these

residues delocalize the overall (-1) charge, thereby stabilizing protonation of the SB. Close

examination of relationships among these groups during the proton transfer steps of the

photocycle will assist in elucidating further details of the vectorial action of the pump.

The aspartic acids in bR have been heavily studied since the 1980's. There are nine

aspartic acids in bR, four of which are in the hydrophobic core of the protein, D85, D96,

D115 and D212.(23, 24) In particular, D212 and D85 are located near the active site.

Studies used site directed mutagenesis(25) and phototrophically negative mutants(26) by

Glu and/or Asn to distinguish the aspartic acids from each other for assignments. Infrared

experiments first demonstrated that the carboxylate groups in aspartate are protonated and

deprotonated during the photocycle. (27, 28) In addition, D96 and D115 are found to be

protonated while and D85 and D212 are deprotonated in the ground state.(29, 30) D85 is

located near the SB and D96 is located -12 A from the SB towards the cytoplasmic side of

the protein. Both residues undergo protonation changes during the bR photocycle.

Chemical shift values of the D-C, and their protonation states in the native state were
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previously reported using [4-13C]Asp-labeled bR. (31) Since then, due to experimental

limitations, a thorough empirical analysis of the internal aspartic acids through the

photocycle has yet to be done. Further revelations require techniques that can provide both

sufficient sensitivity and resolution at the atomic scale.

NMR is a particularly versatile tool because it provides both chemical information

through chemical shielding values and structural information through dipole interaction

measurements. In the past, solid state NMR has proven to be one of the most unambiguous

methods for characterizing details of the chromophore in bR.(32-34) The major difficulty with

NMR lies in its low sensitivity, making it challenging to acquire multidimensional data for

quantitative measurements. Experiments become particularly challenging when the target of

interest revolves around a single low gyromagnetic ratio nitrogen atom. The low sensitivity

can be addressed via the use of dynamic nuclear polarization (DNP). Typically for biological

systems, DNP transfers the polarization from electrons in the polarizing agent to the protons

in a system and thence to the nuclei of interest.(35, 36) DNP NMR experiments are done at

cryogenic temperatures,(37) which coincidently also traps the various bR photocycle

intermediates, allowing the stages of transport to be studied in situ.(1 9, 38) An enhancement

of 75 was obtained for bR, corresponding to a savings of -5600-fold in acquisition time. With

this boost in sensitivity, we are able to conduct three-dimensional NMR spectroscopy to

monitor the active site residues and measure their distances to the SB in various photocycle

intermediates.

The solid-state NMR techniques employed here are intended to study bR's photocycle in

three sections: 1) 15N chemical shifts of the SB. 2) 13C chemical shifts of the internal aspartic

acids and their protonation states. In particular, the Cp signals of the four internal aspartic

acids are identified in each intermediate. 3) distance measurements between the SB

nitrogen atom and Cg's of the two aspartic acids at the active site using 3D frequency

selective (fs)-REDOR experiment. From the distance measurements, the decreasing

distance between D85-SB provides insights into the helical movements throughout the

photocycle, which is critical for the vectorality of the ion motive pump.

5.2 Experimental

5.2.1 Sample preparation

Bacteriorhodopsin (bR), in its native purple membrane, was purified from Halobacterium

salinarum grown in uniformly 1C, N-labeled peptone medium.(39) The peptone was

obtained from the anaerobic acid hydrolysis of Methylophilus methylotrophus cells grown on
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1C-labeled methanol and 1N-labeled ammonium sulfate.(40) The purple membranes were

isolated using the method of Oesterhelt and Stoechenius.(41) The sample was washed 3

times with 300 mM guanidine hydrochloride at pH 10.0. The sample was pelleted after each

wash by centrifugation for 2 hours at -43,000 g. The washed pellet was mixed with 5mM

AMUPol polarizing agent(42) in d8-glycerol/D 20/H 20 (60/30/10 volume ratio) and centrifuged

once more.

5.2.2 Trapping photocycle intermediates

Two types of light sources were used to generate bR photocycle intermediates: a diode-

pumped solid state laser from Coherent operating at 532 nm (green) and 1W krypton laser

from Cambridge Laser Laboratory emitting 647 nm (red). The photocycle intermediates were

generated according to previous protocols:(43)

-LA was generated by irradiation of the dark-adapted, bR sample with green light for

3 hours at 278 K.

-K was generated by irradiation of bR in LA state at 100 K with green light for 2 hours.

-L was generated by irradiation of bR in LA state at 150 K with red laser light for 3

hours.

-Mo was generated by irradiation of bR in LA state with green laser light at 210 K for

45 minutes.

-N was generated by irradiation of bR in LA state at 240 K with red laser light for 3

hours.

Each photocycle intermediate was kinetically trapped at 100 K, where spectra were acquired

in the dark. During all stages, the bR sample was kept spinning by nitrogen gas through the

bearing and drive lines of the magic angle spinning (MAS) probe.

5.2.3 DNP NMR Spectroscopy

DNP enhanced MAS NMR spectra were recorded on a custom built 380 MHz/9T solid

state NMR spectrometer equipped with a 4mm MAS e-/H/ 3 C/15 N probe,(44) and a 250 GHz

gyrotron.(45, 46) During DNP experiments, the temperature was kept at around 100 K.

Referencing was done to DSS 13C signals of adamantine at room temperature and

reconfirmed with the 15N chemical shift of the SB at 100 K. All experiments used 100 kHz of

proton TPPM(47) decoupling during acquisition. 15N cross polarization (CP) experiments

were recorded using ramp CP from 1H to 15N with a contact time of 0.5 ms. Each 1D

spectrum was acquired with 7 s recycle delay and 1024 scans.
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5.2.3.1 CP-RFDR-REDOR

The RFDR(48) part of the experiment is initiated by cross polarization, followed by a
chemical shift evolution period, t1. A pair of w/2 pulses encompassing the longitudinal mixing
period T, prepares the spin polarizations for exchange and returns them to the transverse
plane.(49) Rotor synchronized Tr pulses were applied during the mixing period to induce
exchange via homonuclear dipole-dipole couplings. The w pulses were altemated according
to the XY-16 phase cycling scheme to compensate for resonance offsets and pulse

imperfections. The subsequent REDOR part of the experiment uses a 3C- N filter to
eliminate N C, and Q Ca signals in t2. RFDR and REDOR filter lengths were 1.184 ms and
1.48 ms, respectively. CW/TPPM stands for CW during the pulsing on other channel and
TPPM during the gaps. Two-dimensional 13C- 13C spectra were acquired with (120, 896)
complex points with dwell times (32, 20) ps. Each FID was obtained with 16 scans of 7
seconds recycle delay.

5.2.3.2 CP-RFDR-REDOR-fs-REDOR

Measurements of the distance between the D-Cy and the Schiff base N were performed
using the CP-RFDR- REDOR-frequency selective (fs)-REDOR(50) sequence at wr/2Tr =
6.757 kHz and recycle delay 6.8s. Parameters used for the RFDR and REDOR filter are
similar to the CP-RFDR-REDOR section mentioned above and the durations were 1.184
and 1.48 ms, respectively. RF was 50 kHz on the carbon channel during the RFDR, and 30
kHz on the nitrogen channel during the REDOR filter and mixing periods. During fs-REDOR,
the (t2) Gaussian 180* selective pulse lengths were 0.35 ms and 2.5 ms for D-Cy and K-216
"N4 of SB, respectively. S and So signals were recorded with and without the 15N selective
pulse, in alternatingly fashion at every increment of the indirect dimension. Experimental
data were obtained with 128 and 384 transients for t2 < 15ms and t2 > 15ms, respectively.
Signals of the D85 and D212 were then integrated in Sparky using the same processing
parameters for both S and So. Values of S/So were then plotted vs. the fs-REDOR mixing
time (t2 ), from 0 to 25 ms. Experimental S/So fs-REDOR dephasing curves are plotted for
LA, L, Mo and N intermediates. Experimental data were fitted with Bessel function,(51) using
scaling factor 0.9 to compensate for experimental imperfections.
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Figure 5.2 15N spectra of photocycle intermediates of bR: (A) dark adapted, (B) light adapated, (C) K,
(D) functional and nonfunction L, (E) Mo, and (F) N. In (A-B), 1- N]lysine-bR was used with 20mM
TOTAPOL, resulting in an enhancemnt of 45. In (C-F), U[ C, N]-bR was used with 5mM AMUPol,
resulting in an enhancement of 75. Expansions of the SB region are shown for intermediates: K, L, Mo
and N.

5.3 Results

5.3.1 Views from the Schiff base

In the dark adapted state (DA), bR55f and bR568 exist in the expected 60:40 ratio.(Fig.

5.2A) Upon laser irradiation at 50C, most of the bR55 is converted to bR56 8 (Fig. 5.2B), the

LA resting state for the ion-motive photocycle. After photoisomerization to the K intermediate,

the 15N SB peak appears at 155 ppm.(Fig. 5.2C) There are four substates of L: L165 , L1 74 ,
L18 1, and L 185.(Fig. 5.2D)(19) Deprotonation in Mo causes the 15N chemical shift of the SB to

be drastically shifted downfield to 318ppm (Fig. 5.2E). Continuing forward in the photocycle

to N, where the reprotonation of the SB causes its 15N chemical shift to shift upfield to 173.3

ppm,(Fig. 5.2F) similar to those intermediates prior to Mo.

5.3.2 Role of the Aspartic acids

The aspartic acids play a crucial role in the proton pumping mechanism, and therefore,

we examine each aspartic acid in greater detail. Fig. 5.3 shows the aspartic acid region of a
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Figure 5.3 Two dimensional 1C- C chemical shift correlation RFDR spectra of [U- C, N]bR doped

with 5mM AMUPol displaying side chain methylene to carboxyl Coy cross peaks of D residues. The

crosspeaks for the buried aspartate residues (D85 and D212 in the active site (red), and D96 and

D115 elsewhere) can be followed through different states: (B) DA, (B) LA, (C) K, (D) L, (E) Mo, and (F)

N. To eliminate amide signals, the 2D RFDR sequence was followed by a REDOR one bond 13C- 15N
dipolar filter (see Methods).

2D homonuclear RFDR 13C- 13C chemical shift correlation spectrum of bR displaying the

aspartic side chain methylene to carboxyl (Cbg) crosspeaks in various intermediates. In Fig.
5.3A and 5.3B, the chemical shift values of the aspartic acids of bR in DA and LA are in

agreement with previously published values.(23, 31) The D212 chemical shift increases

from 175 ppm in LA to 176.9 ppm in Mo. D85 stays at 172.4 ppm from LA to L and then

deprotonates to 167.4 ppm in Mo. D115 remains at 169.2 ppm from DA to N, with slight

variations in chemical shift values in K and L. D96 was detected in DA, K, Mo and N, the

chemical shift value remains at 170.6 ppm.

Distances between D85, D212 and SB were measured by using the pulse sequence is

shown in Fig. 5.4. This experiment allows for distance measurements in a large spin system

where multiple internuclear distances can be determined. The pulse sequence is broken

down into three sections, beginning with the coherence transfer to C', and CO in RFDR, a

subsequent REDOR filter that eliminates one-bond signals from nuclei directly bonded to a

15N nucleus (such as Asn C,, and Gin CB), and a frequency selective REDOR, where the
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Fig. 5.4. Three dimensional DNP experiment for the measurement of dipolar couplings between
the Schiff base nitrogen atom and D85 C. in [U-"C,"N]bR. Spectra were recorded at 9 T, 380
MHz, O(r = 6.757 kHz. Narrow and wide rectangles stand for n /2 and n pulses respectively. Starting
with cross polarization from 1H to 1C with contact time of 0.7ms, followed by t1 evolution on
carbon. The remainder of the pulse sequence contains three parts: RFDR, REDOR filter and
frequency selective REDOR. Both RFDR and REDOR filter times were 1.184 ms. REDOR and
FSR 1N p pulses length were 16.6 ms for 30 kHz rf irradiation. During fs-REDOR, selective
Gaussian pulses of 0.35ms and 2.5ms were applied on the D-Cy and the SB respectively.
Gaussian selective pulses were divided into 64 steps. The z-filters were 50ms. Proton decoupling
was 100 kHz was used for both mixing and acquisition period.

frequency selective spin echo refocuses the multiple homonuclear and heteronuclear spin-

spin interactions.(1 1) D85-SB distance in LA, L, Mo, and N are measured to be 4.7 A, 4.3 A,

4.2 A and 4.6 A, respectively while the D212-SB distance remained around 4.5 A in LA, L

and Mo.

5.4 DISCUSSION

The 15N signal of the SB in Fig. 5.2 is an excellent probe of the active site. It is also a

reliable method to verify the presence of a particular isolated intermediate. Upon the

absorption of light, the retinal photoisomerizes to the K intermediate, where the chemical

shift of the SB is 10 ppm upfield from where it was in LA. This upfield shift has been

attributed to a loss of contact of the SB with its Cl, which is partially re-established in L by

torsion of the chromophore. Of the four substates of L, only L185 progresses to Mo while the

others convert to LA upon thermal relaxation. (Fig. 5.2D)(1 9) The deprotonation of the SB in

Mo causes 1N chemical shift to drastically shift downfield to 318 ppm; however, this is not

nearly as far downfield as that of retinylidene butylimine, strongly suggesting the presence

of a hydrogen bond donor nearby. Lastly, the SB reclaims its role as a hydrogen bond donor

when it reprotonates in the N intermediate.
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Fig. 5.5. Dephasing curves of the distances measured from C, in D85(red) and D212 (green) to
the SB nitrogen in LA, L M0, and N [U-13C,15N]bR. Simulated curves are plotted for distances 4.0
to 5.5 A in increments of 0.5 A. (black dotted line) S and reference So curves were acquired with
and without the Gaussian pulse on '' of the experiment in Fig 5, with varying t2 mixing times
from 0 to 25ms. (see Methods).

On the basis of the 2D RFDR spectra, we are able to follow the C, and Ce chemical shift

values of the internal aspartic acids as well as their protonation states through the

photocycle. In DA, D85 and D212 each have two signals due to the presence of 13-cis, 15-

syn and all-trans chromophores. We notice several differences between the DA and LA.

First, the ratio between bR555 and bR568 is discerned in DA, whereas LA is populated mostly
with bR568. For both residues the Cg of D212 appears a bit further downfield in LA, indicating
that the residue experiences a more hydrophilic environment.

In K, Fig. 5.3C, an additional peak is detected for 085 in the 1 3-cis, 15 anti configuration.
Since isomerization reduces the interaction of the SB with its complex counterion,

perturbation of the residues comprising the complex is expected. Surprisingly, heterogeneity
in the cross peaks does not appear to be present in the L intermediate (Fig. 5.3D).
Apparently the renewed interaction of the SB with its counterion in functional L is not
distinguishable because after releasing some of the strain in K, the configuration of the
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retinal results in a downfield shift in the SB nitrogen, and therefore, yields similar chemical

environment to the SB in LA.

In Mo, Fig. 5.3E, D85 becomes protonated and therefore its Cg is shifted substantially

upfield, from 172.9 ppm to 168.7 ppm, in agreement with previous findings.(31) The low and

broad intensity of the D212 crosspeak suggests that the residue is in a more flexible

environment in Mo intermediate.

In agreement with FTIR results, D85 remains protonated in N intermediate, (Fig. 5.3F)

suggesting that the deprotonation of D85 doesn't occur until after the N intermediate, either

during the 0 intermediate or the decay of 0 to LA.(52) Time-resolved visible absorption

studies and photoelectric measurements have shown that D96 donates a proton to the SB

during the M->N transition and it reprotonates during N decay.(53) Our results imply that

D96 is in a more flexible environment and isn't detected in N. The minor variations in the

chemical shifts confirm that D212 remains deprotonated and D115 protonated throughout

the photocycle.

5.4.1 3D Distance Measurements between D85, D212 and SB

Distance measurements provide crucial insights into the active site of bR. In the past, X-

ray crystallography and EM have offered numerous bR structures, however these

techniques have modest resolution and cannot distinguish among structures in mixtures.(1-3,

54) The resolution of C, signals for D85 and D212 in Fig. 5.3, provides the basis for

distance measurements. With the signal enhancement provided by DNP, we employ a 3D

fs-REDOR experiment (Fig. 5.4) to measure the distances between C atoms of aspartic

acids and the 15N atom of the SB in different intermediates. The results are presented in Fig.

5.5.

In LA, the D85-SB distance is shorter than the D212 distance, supporting the claim that

D85 is more strongly hydrogen bonded to the interior water 402 than D212.(22) D85 in LA

has the longest distance, consistent with the well-known stabilization of the resting state of

the SB by delocalization of the balancing negative charge across a hydrogen-bonded

complex of multiple residues and water molecules.

A gradual decrease in the SB-D85 distance is observed from LA to Mo. A local bend of

helix C toward the center of the hydrophobic core is unique in L.(55) The helix C movement

inward is crucial as it sets the stage for the primary 'H transfer to occur between the SB and

D85. Previous NMR studies also reported observations of D85 approaching the SB in L.(56,

57) The need for inward helical movement could also explain why only the functional L181

proceeds forward while the other nonfunctional L's fail. However, since the pump is known
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to be highly efficient, there may not be as many failed L's at room temperature than at -150

K, at which the L intermediate was isolated.

The relatively short distance in Mo agrees with the fact that the active site has not yet

had a chance to relax after the deprotonation of the SB and protonation of D85. Oka and

coworkers used a mercury mutant at residue 222 of bR to observe the structural changes in

helix G between DA and Mn. The mutated residue 222 on helix G is seen to move by 2.1 A

towards the directly opposing helix C in Mn.(58) The longer distance found in N indicates

that the once contracted SB-D85 distance is now released. The release of the interhelical

attraction breaks/gates the interactions found in previous intermediates. Meanwhile, the SB-

D212 distance remains at -4.5 A in intermediates LA, L and Mo. The constant distance is

not surprising because the SB and D212 are one turn apart on the Helix G.

5.5 CONCLUSION

DNP-enhanced NMR spectroscopy has provided unique insights into bR's proton

transport pump. We are able to obtain snapshots of key elements in bR's pumping

mechanism, which include the SB and residues D85, D96 and D212. Quantitative distance

measurements between the SB and D85 indicates that the two helices C and G, which

largely compose the active site are being drawn closer together from LA -- L -+ Mo. The

increase in SB-D85 distance from Mo-- N supports the release of the interhelical attraction

after neutralization of charges on both sides. These factors along with the untwisting of the

retinylidene in Mo -> Mn, contributes to the vectoriality of bR's ion motive pump.

5.6 ABBREVIATIONS

bR, bacteriorhodopsin; SB, Schiff base; DA, dark adapted; LA, light adapted; DNP, dynamic

nuclear polarization; MAS NMR, magic angle spinning nuclear magnetic resonance; rf, radio

frequency; CP, cross polarization; TPPM, two-pulse phase-modulated; RFDR, radio

frequency driven recoupling; REDOR, fs; frequency
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Chapter 6: In-Situ Characterization of Pharmaceutical Formulations

by Dynamic Nuclear Polarization Enhanced MAS NMR

Adapted from Q.Z. Ni, F. Y. Yang, T. V. Can, I. Sergeyev, S. M. D'Addio, S. K. Jawla, Y. Li, M.

P. Lipert, W Xu, R. Williamson, A. Leone, R. G. Griffin, Y.C. Su, Journal of Physical

Chemistry B 121 (2017) 8132

A principal advantage of magic angle spinning (MAS) NMR spectroscopy lies in its

ability to determine molecular structure in a non-invasive and quantitative manner.

Accordingly, MAS should be widely applicable to studies of the structure of active

pharmaceutical ingredients (API) and formulations. However, the low sensitivity encountered

in spectroscopy of natural abundance APIs present at low concentration has limited the

success of MAS experiments. Dynamic nuclear polarization (DNP) enhances NMR

sensitivity and can be used to circumvent this problem agent able paramagnetic polarizing

can be incorporated into the system without altering the integrity of solid dosages. Here, we

demonstrate that DNP polarizing agents can be added in-situ during the preparation of

amorphous solid dispersions (ASDs) via spray drying and hot-melt extrusion so that ASDs

can be examined during drug development. Specifically, the dependence of DNP

enhancement on sample composition, radical concentration, relaxation properties of the API

and excipients, types of polarizing agents and proton density, has been thoroughly

investigated. Optimal enhancement values are obtained from ASDs containing 1% w/w

radical concentration. Both polarizing agents TOTAPOL and AMUPol provided reasonable

enhancements. Partial deuteration of the excipient produced 3x higher enhancement values.

With these parameters, an ASD containing posaconazole and vinyl acetate yields a 32-fold

enhancement which presumably results in a reduction of NMR measurement time by -1,000.

This boost in signal intensity enables the full assignment of the natural abundance

pharmaceutical formulation through multidimensional correlation experiments
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6.1 Introduction

The stability, solubility, and bioavailability of active pharmaceutical ingredients (APIs)

are key determining factors of pharmaceutical formulation performance. Drug molecules can

undergo undesired phase transformations, such as amorphous and crystalline

interconversion, salt formation, and disproportionation induced by chemical, physical and

pharmaceutical processes - transformations that often result in significant alterations in drug

bioavailability. As a consequence analysis by differential scanning calorimetry (DSC),

thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), Raman, and mass

spectrometry are routinely employed to monitor the physicochemical properties of an API

during drug formulation. In addition to these techniques, magic angle spinning (MAS) NMR

can shed light on atomic scale molecular structures, quantify various solid-state forms, and

probe molecular dynamics and chemical interactions in a nondestructive and noninvasive

manner.1-7 Although powerful, high throughput measurements by MAS are limited due to the

inherently low sensitivity. Detection becomes even more challenging in enabled formulations

that contain small amounts of poorly soluble API dispersed in a polymeric matrix for

enhancing bioavailability. Furthermore, MAS detection on nuclei other than 1H suffers from

both the low natural abundance and the low gyromagnetic ratios of 13C and 15N when

compare to 1H , making it impractical to perform multidimensional correlation experiments in

a reasonable amount of time for exploration of subtle molecular information.

The sensitivity of NMR can be improved by 2-3 orders of magnitude8- 4 by using

dynamic nuclear polarization (DNP), which transfers the high polarization of unpaired

electrons to nearby nuclei such as 'H, 13C, and 15N via microwave irradiation of the electron-

nuclear transitions. The maximum theoretical enhancement factor is given by Smax= ge/gn

=658 where ge and gn are the gyromagnetic ratios of the electron and nuclei, respectively.

Thus, even a fraction of this translates into a time saving of months or years, enabling many

otherwise infeasible experiments to be performed. 5' 16 The recent developments of high-

power microwave sources, NMR probes for cryogenic MAS, biradical polarizing agents, and

new sample preparation methods, have enabled DNP to be successfully applied to

investigate the dynamics and structures of microcrystalline peptides, membrane proteins,

amyloid fibrils, natural products and catalytic materials. 17-29

Recent studies have demonstrated the considerable potential of DNP in applications to

pharmaceutical chemistry.30 36 The major challenge to successful DNP experiments lies in

developing a suitable method of introducing polarizing agents into to the sample for optimum

signal enhancement without sample disruption. A number of methods for preparing DNP
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pharmaceutical samples have been reported, including polymer film casting and glass

forming methods.34' 3. In addition, Emsley and coworkers have successfully demonstrated

an innovative impregnation method on the pharmaceutical formulations with an organic

solvent (1,1,2,2-tetrachloroethane) containing polarizing agents.24 Enhancements in the

range of 40-90 were obtained for commercial formulations containing cetirzine

dihydrochloride and excipients povidone, magnesium stearate, hypromellose, and lactose.

These enhancements allow rapid characterization via one- and two-dimensional MAS

spectra of these formulations with drug loading <10%. Very interestingly, molecular contacts

between the API and povidone were evident in the 1H -15N correlation spectra. However, the

use of organic solvents to dissolve radicals and impregnate formulations of interest can

result in perturbations of physical and chemical properties of the components in a

formulation. Indeed, in a study of theophylline, the impregnation strategy has been found to

induce phase conversions that require further improved for broader application.36 Beyond

this, the use of solvents requires that polarizing agents have significantly different solubility

from other components in the formulation, which limits the practical applications. Therefore,

it is preferable to avoid solvents when incorporating polarizing agents into the sample.

The formulation of amorphous solid dispersions (ASDs) is desirable since it enhances

drug solubility and bioavailability.38 Therefore, there is a strong need for new tools to monitor

and study the chemical and physical stability during the formulation development to ensure

a stable product is delivered to the clinic. DNP can play an essential role in enhancing the

capacity and efficiency of MAS NMR during early drug development and provide information

on the risks related to drug phase changes in ASDs. Therefore, we have designed a

protocol for the preparation of DNP samples with the goals of (1) introducing polarizing

agents in a non-invasive manner to maintain the integrity of the sample and (2) utilizing

intensity enhancement for rapid measurements to inform on formulation development. Our

strategy is to evaluate the in-situ incorporation of the polarizing agents during the processes

of spray drying (SD) and hot-melt extrusion (HME). These two processes are widely applied

for preparing ASDs in the pharmaceutical industry. Briefly, in SD, a solution containing API,
polymeric excipient, and free radicals, is sprayed against the flow of warm air that rapidly

evaporates the solvent and produces a dried powder. In HME, samples are made by

mechanically mixing the solid components at elevated temperatures, which creates an

intimately combined melt of all the components that is subsequently cooled and milled into a

powder.
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In our proposed method for sample preparation, the radicals are co-dissolved or co-

mixed with formulation components for SD and HME processes, respectively. In this report,

a clotrimazole-copovidone binary dispersion was used as a model system to investigate the

dependence of signal enhancement on the following parameters: concentration and type of

polarizing agent, proton density, and ASD methods. The optimized conditions were then

adopted to prepare an ASD composed of posaconazole and 2H-vinyl acetate, giving a

maximum DNP enhancement of 32. Our results also show no observable structure

perturbation or any phase conversion of drug substance. We show that the large signal

intensity increase assists in the full assignment of posaconazole resonances from two-

dimensional homo- and heteronuclear correlation experiments. To the best of our

knowledge, this is the first documented DNP study investigating pharmaceutical

formulations prepared by spray drying and hot-melt extrusion.
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Figure 6.1: (A) Chemical structures of the two APIs clotrimazole and posaconazole, (B) the
polymeric excipients copovidone (n:m = 1.2) and vinyl acetate, and (C) the biradical polarizing
agents TOTAPOL and AMUPol. All atoms in clotrimazole and posaconazole are labeled for NMR
resonance assignments in the subsequent DNP-enhanced experiments.

6.2 EXPERIMENTAL:

6.2.1 Materials

Molecular structures of the materials (API's, polymers and biradical polarizing agents)

used in our study are shown in Figure 6.1. Copovidone Kollidon® VA64, an amorphous

random copolymer of 1-viny-2-pyrrolidone and vinyl acetate (60:40 mass ratio and 45-70

kDa molecular weight), was obtained from BASF. Vinyl acetate (VA) was purchased from

Polymer Source, Inc. The API clotrimazole and posaconazole were products of Spectrum

Chemical Inc. and Merck Research Laboratories (MRL), respectively. TOTAPOL 3 and

103

A



AMUPol 4 are biradical polarizing agents and were both evaluated to enhance MAS NMR

signal intensities. TOTAPOL was

available from Dynupol, Inc., and AMUPOL was a gift from and Dr. Olivier Ouari and Prof.

Paul Tordo (Aix-Marseille Universite). Methanol (HPLC grade from Sigma-Aldrich) was used

as a solvent for the spray-drying process. All chemicals were used as received.

6.2.2 Sample preparation

Solid dispersions of all samples were prepared by either spray drying or hot-melt

extrusion (Figure 6.2). In both cases, a binary physical mixture of API and polymer at a

desired weight ratio was prepared by blending in a Turbula mixer. The drug loading (API to

polymer mass ratio) was 20% in all preparations, except for the 1 % (w/w) drug loading of

clotrimazole-copovidone ASD reported in the Supplementary Information (Figure 6.10),

which showcases the capability of DNP to detect very weak signals. Typically, -100 g of the

mixture was sealed in a 500 mL glass bottle and blended for 1 hr at room temperature. The

mixture then underwent spray drying or hot-melt extrusion processes as described below.

Pure API and polymer samples were made with the same protocol.

Spray drying was conducted on a ProCepT 4M8-TriX Formatrix spray dryer equipped

with a 0.6 mm bifluid nozzle. First, a solution of polymer and API in methanol (-20-40

mg/ml) with the desired amount of radical (0-2% weight ratio in the dried product) was

prepared. The solution was then sprayed against a stream of air flowing at 0.4 m 3/min. The

solution was fed into the atomizing nozzle at a rate of 5 mL/min and atomized using

compressed air at 70 psi. The inlet and outlet temperatures were 353 K and 323 K,

respectively. The dried powders were collected and stored at room temperature in 10 mL

amber glass bottles in a desiccator.

Hot-melt extrusion (HME) was performed with a customized micro twin screw extruder

(MP&R TM Model ME7.5) equipped with co-rotating conveying screws which have a diameter

and length/diameter ratio (L/D) of 7.5 mm and 15:1, respectively. 41' 4 2 In a typical process, -3

g of the blended binary physical mixture at a desired radical content were fed into the

extruder by a vibratory feeder. The barrel temperature was set at 418 K and the screw

frequency was 100 rpm. The hot-melt extrudates were collected, allowed to cool, milled into

powder via a benchtop mill (Polymix PX-MFC 90 D), and stored in a desiccator at room

temperature.
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Figure 6.2: (a) Pulse sequence for the frequency-swept integrated solid effect. 1H signals are
detected with a solid echo. (b) During the sweep, the spin system undergoes three adiabatic events
including DQ and ZQ at A and B, respectively, as well as electron spin inversion at 0. The semicircle
represents the relationship _ Q2 + adwhich is satisfied at A and B where Q is the microwave
frequency offset. The inversion leads to the constructive addition of DNP enhancement at A and B,
thus the name integrated solid effect.

6.2.3 DNP/NMR experiments

In order to assess the optimum sample condition, 1H- C/1 N cross polarization (CP)

experiments were performed on a home-built DNP/NMR instrument operating at 250

GHz/380 MHz with -14 W of microwave power.43 4 Spectra were recorded using a triple

resonance (1H, 13C and 15N) cryogenic MAS probe equipped with a sample exchange

system45 on a home-built NMR spectrometer operating at 9 T at T=85 K. Approximately 45

mg of each powder sample was packed into a 4 mm sapphire rotor. The spinning frequency

is wr/2-rr = 5.5 kHz unless stated otherwise. WIH/2Tr = 50 kHz was employed during CP and

a TPPM decoupling field WIH/2-rr = 100 kHz was used during acquisition. T1H was measured

using saturation recovery sequence (Figure 6.11). Enhancement factors (e) were calculated

by comparing the signals obtained with and without microwave irradiation.
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Further characterization by 2D correlation MAS was carried out on a 263 GHz/400 MHz

system (consisting of an Avance Ill HD console, Ascend 9.4 T NMR magnet, and 263 GHz

gyrotron) and a 395 GHz/600 MHz system (Avance Ill HD console, Ascend Aeon 14.1 T

magnet, and 395 GHz gyrotron). The microwave power at the sample was -10 W on both

systems. Approximately 20 mg of each powder sample was packed into 3.2 mm sapphire

rotors. At 400 MHz and 600 MHz, wr/2-rr = 9 kHz and 12.5 kHz, respectively. Two kinds of

2D NMR experiments were performed, including 13C- 13C refocused INADEQUATE

(Incredible Natural Abundance Double Quantum Transfer Experiment) of clotrimazole and

'H- 13C and 'H-15 N HETCOR (Heteronuclear Correlation) of posaconazole. The refocused

INADEQUATE spectra were acquired with a recycle delay of 2 s, 80 t1 increments, and 384

scans per increment, for a total experiment time of -17 hr. The HETCOR spectra of

posaconazole were acquired with a recycle delay of 3 s, 64 t1 increments, and 256 scans

per increment, for a total experiment time of approximately 14 hr. Both short and long

contact time (0.45 ms and 1.5 ms, respectively) HETCOR spectra were acquired to assist

with assignments. The sample temperature during these experiments was 99 2 K, as

calibrated using KBr. 6 2D spectra were processed with zero-filling to double the size and a

Gaussian window function centered at 0.1 and 50 Hz of broadening, in both the direct and

indirect dimensions. Quadrature detection in the indirect dimension was accomplished using

the States-TPPI scheme. All DNP/NMR pulse sequences are included in Figure 6.11.

6.3 RESULTS AND DISCUSSION:

6.3.1 Polarizing agent concentration

The enhancement and 1H relaxation properties of spray-dried samples with increasing

concentrations of TOTAPOL (0%, 0.5%, 0.75%, 1% and 2%, w/w) were measured and are

shown in Figure 6.3. Three different sample compositions were used, including pure API

clotrimazole (Figure 6.3A), pure polymer copovidone (Figure 6.3B), and a

clotrimazole/copovidone binary formulation (Figure 6.3C). We found that for samples

containing clotrimazole (Figure 6.3A and 3C), the optimal radical concentration was 1%. We

note that both SD and HME involve elevated temperatures especially HME (418 K, vide

supra), which can potentially lead to thermal degradation of nitroxide radicals. However, the

TGA analysis (data not shown) showed that TOTAPOL and AMUPol did not undergo

thermal degradation until temperatures of 516 K and 526 K, respectively, which is

significantly higher than the processing conditions. Furthermore, EPR spectra (Figure 6.12)
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share the same characteristics as the published data suggesting that the nitroxides

remained intact through the SD and HME processes.47 EPR spectra also showed no sign of

radical aggregation. To evaluate the possibilities of sample perturbations induced by the

addition of radicals, we have compared ASDs with and without TOTAPOL using ssNMR and

PXRD, shown respectively in Figure 6.13 and Figure 6.14. No chemical shift change is

observed in the 13C NMR spectra and the X-ray powder pattern also confirms the

amorphous nature of the ASDS, suggesting no amorphous to crystalline conversion.
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Figure 6.3: Dependence of DNP enhancement and spin-lattice relaxation property on radical
concentration for clotrimazole (A), copovidone (B), and spray dried clotrimazole-copovidone ASD (C).
Enhancement and T1 measurements are shown in the left and right columns, respectively.

Note also that, to date, DNP applications usually involve solutions of polarizing agents

and require 5-10 mM of biradical.8 The optimum concentration in our method is 2-3 times

higher, with 1% weight ratio corresponding to roughly 20 mM of biradical. This may be due
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to the spatial distribution of the radical in the solid state, where not all radicals are in close

proximity to the polymer and/or API.

In Figure 6.3B, the enhancement of copovidone signal monotonically increased with

increasing TOTAPOL and did not saturate at 2% TOTAPOL concentration. We attribute this

to polymer motions and hence, the very short T1 (1.6 s) of 1H in copovidone in the absence

of radical. In comparison, pure clotrimazole has much longer T1 (24 s). However, both

components in the clotrimazole/copovidone mixture exhibit essentially the same proton T1 of

-3.5 s (Figure 6.3C), suggesting a good miscibility of the components, which is an indicator

of stable pharmaceutical formulations. 48 The miscibility is further supported by the fact that

the DNP enhancement is uniform throughout the samples regardless of the radical

concentration. A good miscibility in a solid-state mixture is required for efficient 1H- 1H spin

diffusion, which in turn results in a uniform T1 and DNP enhancement. Thus, the DNP

enhancement may be a useful indicator of the miscibility of pharmaceutical formulations.

Both the enhancement and T1 values of the combined dispersion are roughly equal to the

weighted arithmetic average of the two individual components, indicating that the nitroxide is

evenly distributed amongst both members.

An optimum radical concentration is determined based on several parameters. On one

hand, higher polarizing agent concentrations provide a denser electron pool, which leads to

higher enhancement values. On the other hand, the electrons in the nitroxides are

paramagnetic species and lead to paramagnetic relaxation enhancement (PRE) effect. This

effect shortens the spin-lattice (T1) and spin-spin relaxation (T 2) times of nearby nuclei. As a

consequence, the PRE effect on T2 leads to line broadening, loss of resolution and the

inability to acquire multidimensional NMR experiments that require T2 for polarization

transfer.45' 49 Therefore, the optimal polarizing agent concentration is a balance of

maximizing electron to proton polarization transfer while minimizing PRE effects.
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6.3.2 Proton density

We have investigated the impact of proton density by comparing spray dried

intermediates containing either protonated or deuterated vinyl acetate (VA). Both samples

were loaded with 20% API clotrimazole and 1% TOTAPOL. Deuterated VA resulted in a

greater than threefold improvement in the DNP enhancement (12 vs. 3.6, Figure 6.4A),

similar to the result found previously in other sample preparation methods.50-5 2 In

experiments based on CP and detection on low gamma nuclei such as 13C or 15N, the

benefit of diluting 1H in the solvent is twofold. First, it reduces the ratio between the

populations of protons and electrons. Second, diluting the 1H bath lengthens the intrinsic

proton T1 of an undoped sample by attenuating 'H-'H dipole interactions and/or dynamics.

The remaining 1H concentration is sufficient to disperse the electron polarization via spin

diffusion and transferring that polarization to 13C or 15N via CP. Previous work from Griffin's

group has established glass-forming matrix containing glycerol-d8/D 20/H20 (60/30/10, v/v)

as a solvent of choice to form a frozen glassy matrix at T < 220 K, and it is used in the
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Figure 6.4: (A) Enhancement spectra of clotrimazole-vinyl solid dispersion samples: 1H vinyl
acetate (left) and 2H vinyl acetate (right). (B) Pulse sequence for measuring the dependence
of polarization transfer on DNP buildup time, tDNP and CP contact time, tcp. Build-up curves
of DNP (C) and CP (D) for 1H vinyl acetate (blue) and 2H vinyl acetate (red) containing
dispersions. In (C), API and polymer exhibit identical tDNP. In (D), CP buildup curves for API
and polymer are shown on the left and right, respectively. All data were obtained using 50
kHz of Droton sWin lock durina CP and 100 kHz 1H diDolar decouDlina durina acauisition at
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majority of DNP biological applications." , 53 Subsequent studies have explored the use of

organic solvents for applications involving insoluble materials; nevertheless, a deuteration

level of -90% remains standard. 49 54-57 In addition, Akbey et al. obtained a 3-5 fold larger

enhancement using perdeuterated then back exchanged SH3 protein instead of protonated

samples. 2

In Figure 6.4B-D, we study the effect of deuteration on polarization transfer processes

during DNP and CP. The pulse sequence for measuring these polarization dynamics is

shown in Figure 6.4B. After saturation (sat) irradiation, the magnetization of protons is

enhanced by DNP and then transferred to 13C via CP for detection. DNP

buildup curves in Figure 6.4C showed that the polarization for the protonated vinyl acetate

containing sample reached equilibrium at ~ 4 s, much faster than that for the deuterated one

(- 12 s). This is as expected since protonated polymer has denser 1H matrix for more

efficient spin diffusion. As shown in Figure 6.4D, we observed essentially the same CP

buildup curve for the signals from the clotrimazole (left curves in D), whereas signals of

protonated and deuterated VA displayed different CP dynamics (right curves in D).

Deuterated VA required significantly longer CP contact time (8 ms vs. 3 ms) which strongly

suggests intermolecular CP from 1H of the API to the 13C of the deuterated polymer.

Previously, such information was obtained via 'H- 1H and 19F- 1H spin diffusion between API

and polymer in formulations.2 Our result opens up a new possibility of obtaining

intermolecular contact between API and polymer in pharmaceutical formulations using

deuterated polymer excipients.
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6.3.3 Hot-melt extrusion vs. spray drying

With the full optimization of DNP enhancement for ASDs prepared via SD, our next goal is

to investigate the enhancement performance on dispersions prepared by different

techniques. Of particular interest is HME, a low-cost and environmentally friendly method

developed over the last three decades for preparing polymer-based ASDs of low solubility

drugs. Different from the SD process, where the radical-containing ASD is produced by
rapidly evaporating the volatile methanol solvent into hot air and has the advantage of a

lower processing temperature which minimizes the thermal degradation of nitroxide radicals,

the HME process involves mechanically mixing various ingredients at an elevated

processing temperature, thus requiring no solvent and no specific solubility of API, polymer

or DNP radical.

Figure 6.5 compares the DNP enhancement and T1  relaxation of

clotrimazole/copovidone ASDs produced by HME and SD, each with various TOTAPOL

concentrations. The HME curve shows that the enhancement reaches a maximum at 0.5%
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Figure 6.5. (A) DNP enhancement of extruded clotrimazole/copovidone dispersion with varying (w/w)
concentrations of TOTAPOL. (B) Similar enhancement of clotrimazole-copovidone with 1%
TOTAPOL prepared via SD and HME. (C) T1 of the HME samples, measured using a saturated
recycle delay value with 'H- C CP experiments with 50 kHz of proton spin lock during CP and 100
kHz 1H decoupling during acquisition at 380 MHz, 90 K. (D) Room temperature (blue) and low
temperature (red) T1 values of Clotrimazole-copovidone with 1% TOTAPOL prepared by SD and
HME.
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(w/w) radical concentration and remains saturated as the radical concentration is increased,

presumably allowing for a greater range of optimal radical concentration than the SD

method. Nevertheless, Figure 6.5B shows that both of these enabled formulation methods

yield comparable DNP performances, e=5 for clotrimazole/copovidone ASD with 1%

TOTAPOL.

HME T1H measurement exhibits a slightly weaker PRE effect on the relaxation at a higher

nitroxide concentration in Figure 6.5C. Due to slower molecular motions at the colder

temperatures, TIH values are roughly 4 times longer at cryogenic temperature than at

ambient temperatures as shown in Figure 6.5D. With 1% TOTAPOL (w/w), the T1 values

are approximately 1 s at 107 K for both HME and SD (as reported in Figure 6.3). The

absolute value of T1 is an indicator of factors such as particle size, humidity, API-polymer

interaction resulting from the dispersion processes as well as the PRE effect. The fact that

different processes are suitable for in-situ DNP sample preparation diversifies the collection

of pharmaceutical compounds and formulations accessible by our approach. Overall, the

two ASD methods yielded similar DNP performances, suggesting the forgiving nature of

introducing polarizing agents in wet and dry manners. Furthermore, it permits selection of

the method based on its advantages.
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Figure 6.6 DNP-enhanced natural-abundance 13C and 15N CP-MAS spectra showing
enhancements of (A) clotrimazole doped with 1% TOTAPOL and at 90 K and (B) 1% AMUPol at
104 K. Enhancements are 10 and 17 at 380 MHz, respectively. The 1C spectra were acquired with
8 scans, recycle delay of 4 s and the 15N spectrum was collected with recycle delay of 3 seconds
and 8k scans.

6.3.4 Enabling multidimensional MAS NMR spectroscopy for analyzing

pharmaceutical formulation

In the previous sections, DNP enhancements of various clotrimazole samples

conditions were investigated, including the concentration and types of polarizing agents,

proton density, and dispersion techniques. In this section, we present DNP/NMR structural
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investigations of the samples prepared by the enabled formulation methods. To this end, we

first further improved the DNP enhancement by using AMUPol instead of TOTAPOL as the

polarizing agent. Figure 6.6 shows the "C spectrum of clotrimazole doped with 1 %

TOTAPOL and 13C, 15N of the same API doped with 1% AMUPol taken at 380 MHz. The

enhancement with AMUPol was 17, which roughly doubled that obtained with TOTAPOL.
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Figure 6.7 2D 13C- 13C refocused INADEQUATE spectrum of clotrimazole showing intramolecular
contacts among 13C resonances as marked in the molecular structure on the right. The full spectrum
is included in the Figure 6.15. The 2D spectrum was acquired in 17 hr at 106 K on 400 MHz, 384
scans per increment, 2 s recycle delay and 80 t1 increments of a 27.7 us.

Our result is in good agreement with previous studies that established AMUPoI as the

radical of choice for DNP applications at ~ 100 K. 10, 40, 58 The superior performance of

AMUPol facilitates the detection of low natural abundance and low gamma nuclei such as
16N. In the 1D 1H- 15N CP of Figure 6.6, both nitrogen atoms on the imidazole group can be

assigned. The doubling of N1 and broadening of N2 suggest that the molecules may adopt

two different amorphous forms."

The large improvement in the sensitivity facilitates 2D 13C- 13C homonuclear correlation

experiments as shown in Figure 6.7. The homonuclear 13C- 13C spectrum of clotrimazole

was acquired using refocused-INADEQUATE, a pulse sequence establishing 13C-13C

correlations from magnetization transfer through J-couplings. 24 , 33, 60, 61 In Figure 6.7,

correlations of C4 with C1, C5, C8 are identified based on previous assignments. The

contacts between aromatic carbons are shown in the full 2D refocused-INADEQUATE in

Figure S6. The optimized parameters provide this successful a example of investigating

intramolecular carbon-carbon correlations of natural abundant drugs using DNP-enhanced
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MAS NMR.

These optimized sample conditions (vide supra) were also applied to the study of the

commercialized drug posaconazole, which is a triazole antifungal drug (trade name

Noxafil).62, 63 An ASD containing the API posaconazole and polymeric excipient 2 H-vinyl

acetate with 1% AMUPol was prepared via spray drying. The DNP-enhanced 13C spectra

are shown in Figure 6.8. An enhancement of 25 was obtained for the posaconazole ASD,
determined from the microwave-on and -off spectra spinning at 9 kHz in Figure 6.8A.
Previous studies have suggested the enhancement dependence on MAS frequencies.10 64,65

Further optimization exhibited a maximum enhancement of 32 at wr/2TT = 5kHz, as shown in

Figure S7. Compared to clotrimazole/2 H-vinyl acetate, higher DNP enhancement was

achieved for posaconazole/2H-vinyl acetate ASD, likely due to differing molec ular

interactions and packings between radicals and APIs. Deuteration of the polymer not only

improves the enhancement by a factor of 3-4, but also simplifies the analysis of API signals

by suppressing signals originated from the polymer. The 15N spectrum in Figure 6.8B was

acquired in 1 hr, while without DNP enhancement, it would have taken almost a month to
achieve the comparable sensitivity for the same amount of samples. All eight 15N atoms in

the drug molecule can be seen and tentatively assigned according to previous

publications.3 To complete the resonance assignments and establish the intramolecular

correlations, 2D heteronuclear experiments were conducted as illustrated in Figure 6.9.
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Figure 6.8 DNP-enhanced (A) 1C and (B) 1N CP-MAS spectra of natural abundance posaconazole-
deuterated vinyl acetate ASD. Both experiments were conducted with W/2-rr = 9 kHz. The
enhancement value dependence on spinning frequency is presented in Figure 6.16. The 1C

spectrum was recorded with 128 scans, recycle delay of 10 s. The 1 N spectrum was acquired with
1024 scans, recycle delay of 4 s.
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Pharmaceutical solids are often disordered and multicomponent systems, leading to low

resolution in spectroscopic investigations. To obtain unambiguous and high-resolution

information for structural elucidations, it is best to use 2D MAS NMR techniques to establish

intra- and intermolecular correlations. However, multidimensional correlation becomes

extremely challenging and often practically infeasible for low-y spins, such as "3C and 15N

rich drug molecules. DNP-enhanced 13C- and 15N-detected correlation experiments were

performed as shown in Figure 9A and B, respectively. Taking 2D 13C-'H HETCOR in
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Figure 6.9 2D DNP-enabled heteronuclear correlation spectra of natural abundance posaconazole-

221 10 15 0 1

2H vinyl acetate ASD: (A) "C- H and (B) 'N- H spectra with short and long mixing times. HETCOR

pulse sequence is shown in Figure 6.11. Each HETCOR experiment was acquired in 7 hours at 106

K with 3 s recycle delay, 64 t1 increments, and 256 scans per increment at Wr/2Tr = 9kHz. The "C- H

15 1

and 'N- H HETCOR spectra were acquired with FSLG homonuclear decoupling at 400 MHz and

600 MHz, respectively.
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Figure 6.9A, for example, the spectra were collected with 0.4 ms contact times for

correlations of short distances and 1.5 ms for long distances. In the 'H dimension, three

types of functional groups including aliphatic, aromatic-N, and aromatic protons can be

assigned. At the short mixing time (blue), the cross peaks between adjacent protons and

carbon are observed, e.g., cross peaks between C3, 4, 30, 31 and aliphatic protons; C18, 19

and aromatic protons. Giving a longer spin diffusion transfer (red), 13C-1H cross peaks of

those at a farther distance appear, e.g., aliphatic C27 and aromatic protons. Distance

information is encoded in these correlations at short and long diffusion times, facilitating the

assignments of most carbons. 62

2D 'H- 15N HETCOR spectra were also acquired at short (0.45 ms) and long (1.5 ms)

mixing times. (Figure 9B) Cross peaks are observed between all eight nitrogen atoms and

their neighboring protons including aliphatic, aromatic, and amide protons. Given the fact

that 15N has lower y (-4.316 MHz/T) and natural abundance (0.368%) among the spins of

interest in pharmaceutical molecules, it is worth emphasizing the success of acquiring these

2D spectra in 7 hrs, a reasonably short period of time for practical analysis. These results

have shown DNP as a powerful technique for enhancing ssNMR signal intensities for

investigating structures and probing interactions of natural abundance drugs and

formulations.

6.4 CONCLUSION

In summary, our study has served as the first documented example of an in-situ

preparation of DNP samples to support structural investigations of practical formulation

processes. Polarizing radicals have been successfully incorporated during routine

pharmaceutical production of solid dispersions including SD and HME. The DNP

enhancement has been optimized by investigating the sample and its relaxation parameters.

Partial deuteration of ASDs results in more than a threefold increase in enhancement value.

An optimum enhancement of 20-30 was obtained and enables detection of low drug loading

(i.e. 1%) formulations and the 2D homonuclear 13C-13C and heteronuclear 13C- 1H and "N-1 H

correlations for structural investigations of pharmaceutical formulations.
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6.6 SUPPORTING INFORMATION
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Figure 6.10 DNP enhanced microwave (mw)-on and -off spectra of clotrimzaole-copovidone
amorphous solid dispersions (ASD) at drug loadings (DL) of 1% (A) and 20% (B). All samples contain
1% TOTAPOL. A signal enhancment of 4 is obtained. The MW-on spectra were aquired with 2048
scans and a recycle delay (RD) of 2 seconds, at 93 K at 380 MHz (1H Lamor frequency).
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Figure 6.12. EPR characterization of radicals in CLT-copovidone ASDs in this study. (A) Spray dried
dispersion containing 1%TOTAPOL. (B) Spray dried dispersion containing 1% AMUPol. (C)
Normalized signal intensities of spray dried formulations of CLT (black) and CLT/copovidone (red)
with varying weight percentages of TOTAPOL concentrations. (D) Hot melt extrusion formulation
containing 0.5% TOTAPOL. All EPR spectra were acquired at 9 GHz.
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Figure 6.13. 13C CP-MAS spectra of Posaconazole-PVP amorphous solid dispersions doped with 0%
(black), 1 % (green) and 2% (red) TOTAPOL: (A) full spectra and (B) enlarged region of API peaks.
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Figure 6.14 X-ray powder diffraction patterns of crystalline
posaconzaole, PVP (blue), and posaconazole-PVP amorphous
(black), 1 % (green) and 2% (red) TOTAPOL.
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Figure 6.15 Full spectrum of '3C -13C refocused INADEQUATE correlation experiment of
Clotrimazole doped with 1% AMUPol. The 2D spectrum was acquired in 17 hr at 106 K on 400 MHz,
384 scans per increment, 2 s recycle delay and 80 t1 increments with 27.7 s t1 increment.

120

CrystaIn -

Amerphewspnezael*

P UPOUP 0_1=111-4WPASMs

1% TOTAPOL

2% TOTAPOL

210

230'

250

270

00

M

5



35

30-

25-

20-

15-

10-

5-

0-
4 6 8 10 12

MAS Frequency (kHz)

Figure 6.16 MAS frequency dependence of DNP enhancement of 13C
vinyl doped with 1 % AMUPol.

intensity for posaconazole-2H

121

-- - -- - 0C
0)
Ea)
C.)
C
Cu

-C
Cw

I I
0 2



6.7 REFERENCES:

1. Paudel, A.; Geppi, M.; Van den Mooter, G. Structural and Dynamic Properties of
Amorphous Solid Dispersions: The Role of Solid-State Nuclear Magnetic Resonance
Spectroscopy and Relaxometry. J. Pharm. Sci. 2014, 103, 2635-2662.
2. Pham, T. N.; Watson, S. A.; Edwards, A. J.; Chavda, M.; Clawson, J. S.; Strohmeier,
M.; Vogt, F. G. Analysis of Amorphous Solid Dispersions Using 2d Solid-State Nmr and 1h
T1 Relaxation Measurements. Mol. Pharm. 2010, 7, 1667-1691.
3. Nie, H.; Su, Y.; Zhang, M.; Song, Y.; Leone, A.; Taylor, L. S.; Marsac, P. J.; Li, T.;
Byrn, S. R. Solid-State Spectroscopic Investigation of Molecular Interactions between
Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions. Mol. Pharm.
2016, 13, 3964-3975.
4. Zencirci, N.; Griesser, U. J.; Gelbrich, T.; Apperley, D. C.; Harris, R. K. Crystal
Polymorphs of Barbital: News About a Classic Polymorphic System. Mol. Pharm. 2014, 11,
338-350.
5. Wats, A. E.; Maruyoshi, K.; Hughes, C. E.; Brown, S. P.; Harris, K. D. M. Combining
the Advantages of Powder X-Ray Diffraction and Nmr Crystallography in Structure
Determination of the Pharmaceutical Material Cimetidine Hydrochloride. Cryst. Growth Des.
2016, 16, 1798-1804.
6. Griffin, J. M.; Martin, D. R.; Brown, S. P. Distinguishing Anhydrous and Hydrous
Forms of an Active Pharmaceutical Ingredient in a Tablet Formulation Using Solid-State Nmr
Spectroscopy. Angew. Chem. Int. Ed. 2007, 46, 8036-8038.
7. Tatton, A. S.; Pham, T. N.; Vogt, F. G.; luga, D.; Edwards, A. J.; Brown, S. P.
Probing Intermolecular Interactions and Nitrogen Protonation in Pharmaceuticals by Novel
15n-Edited and 2d 14n-1h Solid-State Nmr. CrystEngComm 2012, 14, 2654-2659.
8. Su, Y.; Andreas, L.; Griffin, R. G. Magic Angle Spinning Nmr of Proteins: High-
Frequency Dynamic Nuclear Polarization and 1h Detection. Annu. Rev. Biochem. 2015, 84,
465-497.
9. Ni, Q. Z.; Daviso, E.; Can, T. V.; Markhasin, E.; Jawla, S. K.; Swager, T. M.; Temkin,
R. J.; Herzfeld, J.; Griffin, R. G. High Frequency Dynamic Nuclear Polarization. Acc. Chem.
Res. 2013.
10. Can, T. V.; Ni, Q. Z.; Griffin, R. G. Mechanisms of Dynamic Nuclear Polarization in
Insulating Solids. J. Magn. Reson. 2015, 253, 23-35.
11. Can, T. V.; Walish, J. J.; Swager, T. M.; Griffin, R. G. Time Domain Dnp with the
Novel Sequence. J. Chem. Phys. 2015, 143, 054201.
12. Barnes, A. B.; De Paepe, G.; van der Wel, P. C. A.; Hu, K.-N.; Joo, C.-G.; Bajaj, V.
S.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; Herzfeld, J.; Temkin, R. J., et al. High-Field
Dynamic Nuclear Polarization for Solid and Solution Biological Nmr. Appl. Magn. Reson
2008, 34, 237-263.
13. Lee, D.; Hediger, S.; De Paipe, G. Is Solid-State Nmr Enhanced by Dynamic
Nuclear Polarization? Solid State Nucl. Magn. Reson. 2015, 66-67, 6-20.
14. Smith, A. N.; Long, J. R. Dynamic Nuclear Polarization as an Enabling Technology
for Solid State Nuclear Magnetic Resonance Spectroscopy. Anal. Chem. 2016, 88, 122-132.
15. Ravera, E.; Corzilius, B.; Michaelis, V. K.; Luchinat, C.; Griffin, R. G.; Bertini, I. Dnp-
Enhanced Mas Nmr of Bovine Serum Albumin Sediments and Solutions. J. Phys. Chem. B
2014, 118, 2957-2965.
16. Becker-Baldus, J.; Bamann, C.; Saxena, K.; Gustmann, H.; Brown, L. J.; Brown, R. C.
D.; Reiter, C.; Bamberg, E.; Wachtveitl, J.; Schwalbe, H., et al. Enlightening the Photoactive
Site of Channelrhodopsin-2 by Dnp-Enhanced Solid-State Nmr Spectroscopy. Proc. Nati.
Acad. Sci. U.S.A. 2015, 112, 9896-9901.

122



17. Smith, A. N.; Caporini, M. A.; Fanucci, G. E.; Long, J. R. A Method for Dynamic
Nuclear Polarization Enhancement of Membrane Proteins. Angew. Chem. Int. Ed. Engl.
2015, 54, 1542-1546.
18. Daube, D.; Aladin, V.; Heiliger, J.; Wittmann, J. J.; Barthelmes, D.; Bengs, C.;
Schwalbe, H.; Corzilius, B. Heteronuclear Cross-Relaxation under Solid-State Dynamic
Nuclear Polarization. J. Am. Chem. Soc. 2016, 138, 16572-16575.
19. Hoff, D. E.; Albert, B. J.; Saliba, E. P.; Scott, F. J.; Choi, E. J.; Mardini, M.; Barnes, A.
B. Frequency Swept Microwaves for Hyperfine Decoupling and Time Domain Dynamic
Nuclear Polarization. Solid State Nuc. Magn. Reson. 2015, 72, 79-89.
20. Cheng, C. Y.; Han, S. I., Dynamic Nuclear Polarization Methods in Solids and
Solutions to Explore Membrane Proteins and Membrane Systems. In Annu. Rev. Phys.
Chem., Johnson, M. A.; Martinez, T. J., Eds. Annual Reviews: Palo Alto, 2013; Vol. 64, pp
507-532.
21. Wang, T.; Park, Y. B.; Caporini, M. A.; Rosay, M.; Zhong, L. H.; Cosgrove, D. J.;
Hong, M. Sensitivity-Enhanced Solid-State Nmr Detection of Expansin's Target in Plant Cell
Walls. Proc. Nat/. Acad. Sci. U.S.A. 2013, 110, 16444-16449.
22. Kobayashi, T.; Perras, F. A.; Slowing, I. I.; Sadow, A. D.; Pruski, M. Dynamic Nuclear
Polarization Solid-State Nmr in Heterogeneous Catalysis Research. ACS Catal. 2015, 5,
7055-7062.
23. Kubicki, D. J.; Rossini, A. J.; Purea, A.; Zagdoun, A.; Ouari, 0.; Tordo, P.; Engelke,
F.; Lesage, A.; Emsley, L. Amplifying Dynamic Nuclear Polarization of Frozen Solutions by
Incorporating Dielectric Particles. J. Am. Chem. Soc. 2014, 136, 15711-15718.
24. Rossini, A. J.; Widdifield, C. M.; Zagdoun, A.; Lelli, M.; Schwarzwalder, M.; Coperet,
C.; Lesage, A.; Emsley, L. Dynamic Nuclear Polarization Enhanced Nmr Spectroscopy for
Pharmaceutical Formulations. J. Am. Chem. Soc. 2014, 136, 2324-2334.
25. Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G.;
Herzfeld, J. Gradual Winding of the Bacteriorhodopsin Chromophore in the First Half of Its
Ion-Motive Photocycle: A Dynamic Nuclear Polarization Enhanced Solid State Nmr Study.
Proc. Nati. Acad. Sci. U. S. A. 2008, 105, 883-888.
26. Mollica, G.; Dekhil, M.; Ziarelli, F.; Thureau, P.; Viel, S. Quantitative Structural
Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear
Polarization Solid-State Nmr Spectroscopy. Angew. Chem.-Int. Edit. 2015, 54, 6028-6031.
27. Eva Pump; Jasmine Viger-Gravel; Edy Abou-Hamad; Manoja K. Samantaray; Bilel
Hamzaoui; Andrei Gurinov; Dalaver H. Anjum; David Gajan; Anne Lesage; Anissa
Bendjeriou-Sedjerari, et al. Reactive Surface Organometallic Complexes Observed Using
Dynamic Nuclear Polarization Surface Enhanced Nmr Spectroscopy. Chem. Sci. 2017, 8,
284-290.
28. Marker, K.; Paul, S.; Fernendez-de-Alba, C.; Lee, D.; Mouesca, J.-M.; Hedigerabc,
S.; Paepe*ab, G. D. Welcoming Natural Isotopic Abundance in Solid-State Nmr: Probing f~-
Stacking and Supramolecular Structure of Organic Nanoassemblies Using Dnp. Chem. Sci.
2017.
29. Ni, Q. Z.; Markhasin, E.; Can, T. V.; Corzilius, B.; Tan, K. 0.; Barnes, A. B.; Daviso,
E.; Su, Y.; Herzfeld, J.; Griffin, R. G. Peptide and Protein Dynamics and Low-
Temperature/Dnp Magic Angle Spinning Nmr. The Journal of Physical Chemistry B 2017,
121, 4997-5006.
30. Veinberg, S. L.; Johnston, K. E.; Jaroszewicz, M. J.; Kispal, B. M.; Mireault, C. R.;
Kobayashi, T.; Pruski, M.; Schurko, R. W. Natural Abundance N-14 and N-15 Solid-State
Nmr of Pharmaceuticals and Their Polymorphs. Phys. Chem. Chem. Phys. 2016, 18, 17713-
17730.
31. Elisei, E.; Filibian, M.; Carretta, P.; Colombo Serra, S.; Tedoldi, F.; Willart, J. F.;
Descamps, M.; Cesaro, A. Dynamic Nuclear Polarization of a Glassy Matrix Prepared by

123



Solid State Mechanochemical Amorphization of Crystalline Substances. Chem. Commun.
2015, 51, 2080-2083.
32. Hirsh, D. A.; Rossini, A. J.; Emsley, L.; Schurko, R. W. CI-35 Dynamic Nuclear
Polarization Solid-State Nmr of Active Pharmaceutical Ingredients. Phys. Chem. Chem.
Phys. 2016, 18, 25893-25904.
33. Marker, K.; Pingret, M.; Mouesca, J.-M.; Gasparutto, D.; Hediger, S.; De Pa6pe, G. A
New Tool for Nmr Crystallography: Complete 13c/15n Assignment of Organic Molecules at
Natural Isotopic Abundance Using Dnp-Enhanced Solid-State Nmr. J. Am. Chem. Soc. 2015,
137, 13796-13799.
34. Le, D.; Casano, G.; Phan, T. N. T.; Ziarelli, F.; Ouari, 0.; Aussenac, F.; Thureau, P.;
Mollica, G.; Gigmes, D.; Tordo, P., et al. Optimizing Sample Preparation Methods for
Dynamic Nuclear Polarization Solid-State Nmr of Synthetic Polymers. Macromolecules 2014,
47, 3909-3916.
35. Ong, T. C.; Mak-Jurkauskas, M. L.; Walish, J. J.; Michaelis, V. K.; Corzilius, B.; Smith,
A. A.; Clausen, A. M.; Cheetham, J. C.; Swager, T. M.; Griffin, R. G. Solvent-Free Dynamic
Nuclear Polarization of Amorphous and Crystalline Ortho-Terphenyl. J. Phys. Chem. B 2013,
117, 3040-3046.
36. Pinon, A. C.; Rossini, A. J.; Widdifield, C. M.; Gajan, D.; Emsley, L. Polymorphs of
Theophylline Characterized by Dnp Enhanced Solid-State Nmr. Mol. Pharmaceutics 2015,
12, 4146-4153.
37. Afeworki, M.; Schaefer, J. Mechanism of Dnp-Enhanced Polarization Transfer across
the Interface of Polycarbonate Polystyrene Heterogeneous Blends. Macromolecules 1992,
25, 4092-4096.
38. Yihong Qiu, Y. C., Geoff G.Z. Zhang, Developing Solid Oral Dosage Forms:
Pharmaceutical Theory and Practice. Elsevier Science Bv: Amsterdam, 2009; p 1-943.
39. Song, C.; Hu, K.-N.; Joo, C.-G.; Swager, T. M.; Griffin, R. G. Totapol: A Biradical
Polarizing Agent for Dynamic Nuclear Polarization Experiments in Aqueous Media. Journal
of the American Chemical Society 2006, 128, 11385-11390.
40. Sauvee, C.; Rosay, M.; Casano, G.; Aussenac, F.; Weber, R. T.; Ouari, 0.; Tordo, P.
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High
Frequency. Angew. Chem.-nt. Edit. 2013, 52,10858-10861.
41. Yang, F.; Su, Y.; Zhang, J.; DiNunzio, J.; Leone, A.; Huang, C.; Brown, C. D.
Rheology Guided Rational Selection of Processing Temperature to Prepare Copovidone-
Nifedipine Amorphous Solid Dispersions Via Hot Melt Extrusion (Hme). Mol. Pharm. 2016,
13, 3494-3505.
42. Yang, F.; Su, Y.; Zhu, L.; Brown, C. D.; Rosen, L. A.; Rosenberg, K. J. Rheological
and Solid-State Nmr Assessments of Copovidone/Clotrimazole Model Solid Dispersions. Int.
J. Pharm. 2016, 500, 20-31.
43. Barnes, A. B.; Nanni, E. A.; Herzfeld, J.; Griffin, R. G.; Temkin, R. J. A 250 Ghz
Gyrotron with a 3 Ghz Tuning Bandwidth for Dynamic Nuclear Polarization. J. Magn. Reson.
2012, 221, 147-153.
44. Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.;
Elena, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G. Dynamic Nuclear Polarization at 9t
Using a Novel 250 Ghz Gyrotron Microwave Source. 2003. J. Magn. Reson. 2011, 213, 404-
409.
45. Barnes, A. B.; Mak-Jurkauskas, M. L.; Matsuki, Y.; Bajaj, V. S.; van der Wel, P. C.
A.; DeRocher, R.; Bryant, J.; Sirigiri, J. R.; Temkin, R. J.; Lugtenburg, J., et al. Cryogenic
Sample Exchange Nmr Probe for Magic Angle Spinning Dynamic Nuclear Polarization. J.
Magn. Reson. 2009, 198, 261-270.

124



46. Thurber, K. R.; Tycko, R. Measurement of Sample Temperatures under Magic-Angle
Spinning from the Chemical Shift and Spin-Lattice Relaxation Rate of Br-79 in Kbr Powder.
J. Magn. Reson. 2009, 196, 84-87.
47. Mance, D.; Gast, P.; Huber, M.; Baldus, M.; lvanov, K. L. The Magnetic Field
Dependence of Cross-Effect Dynamic Nuclear Polarization under Magic Angle Spinning. J.
Chem. Phys. 2015, 142, 10.
48. Yuan, X.; Sperger, D.; Munson, E. J. Investigating Miscibility and Molecular Mobility
of Nifedipine-Pvp Amorphous Solid Dispersions Using Solid-State Nmr Spectroscopy. Mol.
Pharm. 2014, 11, 329-337.
49. Takahashi, H.; Fern ndez-de-Alba, C.; Lee, D.; Maurel, V.; Gambarelli, S.; Bardet,
M.; Hediger, S.; Barra, A.-L.; De Paepe, G. Optimization of an Absolute Sensitivity in a
Glassy Matrix During Dnp-Enhanced Multidimensional Solid-State Nmr Experiments. J.
Magn. Reson. 2014, 239, 91-99.
50. Hu, K.-N.; Song, C.; Yu, H.-h.; Swager, T. M.; Griffin, R. G. High-Frequency Dynamic
Nuclear Polarization Using Biradicals: A Multifrequency Epr Lineshape Analysis. J. Chem.
Phys. 2008, 128, 052321.
51. Hu, K.-N.; Yu, H.-h.; Swager, T. M.; Griffin, R. G. Dynamic Nuclear Polarization with
Biradicals. J. Am. Chem. Soc. 2004, 126, 10844-10845.
52. Akbey, U.; Franks, W. T.; Linden, A.; Lange, S.; Griffin, R. G.; Rossum, B.-J. v.;
Oschkinat, H. Dynamic Nuclear Polarization of Deuterated Proteins. Angew. Chem.-nt. Edit.
2010, 49, 7803-7806.
53. Rosay, M.; Weis, V.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G. Two-Dimensional
C-13-C-13 Correlation Spectroscopy with Magic Angle Spinning and Dynamic Nuclear
Polarization. J. Am. Chem. Soc. 2002, 124, 3214-3215.
54. Liao, S. Y.; Lee, M.; Wang, T.; Sergeyev, I. V.; Hong, M. Efficient Dnp Nmr of
Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location. J.
Biomol. NMR 2016, 64, 223-237.
55. Kiswandhi, A.; Lama, B.; Niedbalski, P.; Goderya, M.; Long, J.; Lumata, L. The Effect
of Glassing Solvent Deuteration and Gd3+ Doping on C-13 Dnp at 5 T. RSC Adv. 2016, 6,
38855-38860.
56. Perras, F. A.; Reinig, R. R.; Slowing, I. I.; Sadow, A. D.; Pruski, M. Effects of
Biradical Deuteration on the Performance of Dnp: Towards Better Performing Polarizing
Agents. Phys. Chem. Chem. Phys. 2016, 18, 65-69.
57. Lumata, L.; Merritt, M. E.; Kovacs, Z. Influence of Deuteration in the Glassing Matrix
on 13c Dynamic Nuclear Polarization. Phys. Chem. Chem. Phys. 2013, 15, 7032-7035.
58. Bouleau, E.; Saint-Bonnet, P.; Mentink-Vigier, F.; Takahashi, H.; Jacquot, J.-F.;
Bardet, M.; Aussenac, F.; Purea, A.; Engelke, F.; Hediger, S., et al. Pushing Nmr Sensitivity
Limits Using Dynamic Nuclear Polarization with Closed-Loop Cryogenic Helium Sample
Spinning. Chem. Sci. 2015, 6.
59. Mittapalli, S.; Mannava, M. K. C.; Khandavilli, U. B. R.; Allu, S.; Nangia, A. Soluble
Salts and Cocrystals of Clotrimazole. Cryst. Growth Des. 2015, 15, 2493-2504.
60. Lesage, A.; Bardet, M.; Emsley, L. Through-Bond Carbon-Carbon Connectivities in
Disordered Solids by Nmr. J. Am. Chem. Soc. 1999, 121, 10987-10993.
61. Cadars, S.; Sein, J.; Duma, L.; Lesage, A.; Pham, T. N.; Baltisberger, J. H.; Brown, S.
P.; Emsley, L. The Refocused Inadequate Mas Nmr Experiment in Multiple Spin-Systems:
Interpreting Observed Correlation Peaks and Optimising Lineshapes. Journal of Magnetic
Resonance 2007, 188, 24-34.
62. Zhong, W.; Yang, X.; Tong, W.; Martin, G. E. Structural Characterization of a Novel
Degradant of the Antifungal Agent Posaconazole. J. Pharm. Biomed. Anal. 2012, 66, 40-49.
63. Hilton, B. D.; Feng, W. Q.; Martin, G. E. Assignment of the N-15 Resonances of the
Antifungal Agent Posaconazole. J. Heterocycl. Chem. 2011, 48, 948-951.

125



64. Hu, K. N.; Song, C.; Yu, H. H.; Swager, T. M.; Griffin, R. G. High-Frequency Dynamic
Nuclear Polarization Using Biradicals: A Multifrequency Epr Lineshape Analysis. J. Chem.
Phys. 2008, 128, 052302.
65. Chaudhari, S. R.; Berruyer, P.; Gajan, D.; Reiter, C.; Engelke, F.; Silverio, D. L.;
Coperet, C.; Lelli, M.; Lesage, A.; Emsley, L. Dynamic Nuclear Polarization at 40 Khz Magic
Angle Spinning. Phys. Chem. Chem. Phys. 2016, 18, 10616-10622.

126




