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Taphonomic studies of fossil preservation in coarse-grained siliciclastic environments

by

Sharon Audrey Newman

Submitted to the Department of Earth, Atmospheric and Planetary Sciences on November 3 0 th

2017 in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy

Abstract

Ediacaran and early Cambrian sandy and silty sediments commonly preserve microbial fossils

and textures as well as the fossils of soft-bodied organisms. The rarity of similar fossils and

textures in coarse-grained siliciclastic strata of the later Phanerozoic suggests that a taphonomic

window facilitated this mode of fossil preservation. However, environmental and biological

factors that promoted fossilization remain unclear. To experimentally identify mechanisms of

preservation in siliciclastic sediments, cyanobacteria and soft tissues (scallop adductor muscles)

were incubated in silica sand or clay minerals for up to two months. Clay mineral veneers coated

both cyanobacterial filaments and the surfaces of soft tissues and were formed by two main

processes: 1) the adhesion of fine particles from the sediment and 2) the precipitation of

authigenic minerals. Photosynthetic, sheathed microorganisms were best preserved in the

presence of high concentrations of dissolved silica (>0. 1 mM) and suspended fine particles (>5.6

mg/L) in solution. We showed that these organisms could be preserved in oxic environments and

that the degradation of cyanobacteria by heterotrophic microorganisms was not necessary for

fossilization. In contrast, soft tissues buried in sand/clay were preserved under anaerobic
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conditions and mineral veneers around them contained reduced iron. All scallops decayed in the

presence of endogenous bacteria and the redox cycling of iron that included the microbial

reduction of iron(III). We showed that the early precipitation of silica and the formation of

microbial death masks is not critical for preservation. Additionally, when the degradation of soft

tissues advanced within the first 15 to 30 days, all soft tissues decayed completely and left no

morphological imprint. Taken together, these results show that the early microbial reduction of

iron(III) present in sedimentary minerals and the formation of mineral veneers are critical for the

preservation of organic material. The same processes may have facilitated the formation of

exceptionally preserved fossils and textures throughout the Ediacaran and early Cambrian.

Future studies should focus on the roles of iron redox cycling, sediment composition and

microbial metabolisms in the preservation of soft tissues to better understand mechanisms for

Ediacaran-style preservation in siliciclastic environments.

Thesis Supervisor: Tanja Bosak

Associate Professor

Department of Earth, Atmospheric and Planetary Sciences
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Chapter 1. Introduction

Photosynthetic microbial mats and soft-bodied organisms were commonly preserved in

Ediacaran (~635-541 Ma) and early Cambrian (~541-520 Ma) siliciclastic sediments. Fossil

impressions of macrofauna and sedimentary patterns/textures attributed to microbial mats are

considered temporally unique because few examples exist outside of intertidal and subtidal

siliciclastic environments of the terminal Proterozoic and early Phanerozoic. Thus, a taphonomic

window must have opened and closed during this interval of time to facilitate their preservation.

Previous studies have attempted to identify key factors in Ediacaran-style preservation through

investigations of the fossil record (e.g., Gehling, 1999; Gaines et al., 2008; Callow and Brasier,

2009; Tarhan et al., 2016) and taphonomic experimentation (e.g., Darroch et al., 2012; Naimark

et al., 2016; Sagemann et al., 1999; Wilson and Butterfield, 2014). Despite significant advances

in our understanding of fossilization processes in siliciclastic settings, the specific mechanisms

of preservation in these settings remain largely unconstrained.

Unique environmental conditions during the Ediacaran Period likely contributed to the

exceptional preservation of both soft-bodied organisms and microbial fossils/textures in

siliciclastic sediments. For example, high concentrations of dissolved silica in Ediacaran

porewaters may have facilitated preservation (Callow and Brasier, 2009; Tarhan et al., 2016); the

early precipitation of amorphous silica has been shown to permineralize microbial mats, trees

and other organisms (Schultze-Lam et al., 1995; Mustoe, 2008) and similar mechanisms are

thought to have facilitated the precipitation of amorphous silica on the surfaces of organic

material during the Precambrian. Callow and Brasier (2009) proposed a model of preservation

that invoked a steep redox gradient and high porewater concentrations of dissolved silica. Tarhan
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et al. (2016) proposed a similar model in which supersaturated oceans promoted the formation of

siliceous cements around soft tissues. However, the formation of cherts in peritidal environments

of the Precambrian suggests that most marine waters were not supersaturated with respect to

amorphous silica (Maliva et al., 2005). Thus, additional environmental and biological factors

must be considered when explaining exceptional preservation in siliciclastic sediments.

Additionally, microbial mats were widespread on the Precambrian seafloor due to the

effective absence of grazing and bioturbating metazoans (Seilacher and Pfluiger, 1994). This

contrasts with modern environments, where microbial mats are restricted to settings that are

hostile to macrofaunal predators (e.g., highly alkaline, anoxic, saline). The existence of

widespread microbial mats during the Precambrian would have, in itself, increased the likelihood

of microbial preservation in the rock record, due to the sheer increase in the diversity and extent

of microbial biofilms. Moreover, several studies have noted the frequent association of microbial

patterns, textures and fossils with well-preserved macrofossil impressions and hypothesized that

microbial mats may have played a role in the fossilization of soft-bodied organisms (Gehling,

1999; Callow and Brasier, 2009). Several modes of preservation were proposed, including the

development of sealing photosynthetic mats over the surface of sediments and soft tissues. The

mats are thought to have created an anoxic microenvironment around decaying soft tissues and

facilitated the formation of protective minerals (e.g., pyrite) around tissue surfaces (Gehling,

1999).

The precipitation of authigenic minerals is critical to the preservation of organic material

and its eventual incorporation into the siliciclastic rock record. There has been extensive

investigation into the mechanisms involved in the precipitation of such minerals, especially

related to the formation of authigenic clay minerals on bacterial surfaces (Ferris et al., 1987;
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Konhauser, 1997; Konhauser et al., 1998; Konhauser and Urrutia, 1999). Microbial surfaces are

negatively charged due to the presence of various functional groups (e.g., carboxyl and

phosphate groups within the cell wall of Gram-positive bacteria, Mera and Beveridge, 1993).

Therefore, positively charged ions in natural aquatic systems (e.g., iron(II), iron(III),

aluminum(III)) can bind to microbial surfaces and promote the nucleation of clay minerals

(Konhauser et al., 1998; Konhauser and Urrutia, 1999; Newman et al., 2016, 2017) and other

mineral phases such as calcium carbonate (Bosak and Newman, 2003; Bosak et al., 2004).

Konhauser et al. (1998, 1999) reported the formation of iron-rich clay minerals on bacterial

surfaces in culture and natural riverine settings. Similarly, Michalopoulos and Aller (2004, 1995)

investigated the formation of clay minerals on diatoms in the clay- and iron-rich subsurface

sediments of the Amazon delta, demonstrating the occurrence of authigenic mineral precipitation

within months to years in this environment.

The formation of mineral veneers around soft tissues likely involves similar processes as

well as heterotrophic decay (Briggs and Kear, 1994; Briggs, 2003). The metabolic activities of

heterotrophic microorganisms such as iron- and sulfate-reducing bacteria may create

microenvironments that favor the formation of authigenic minerals (Petrovich, 2001; Briggs,

2003). In fact, the products of these metabolic reactions are the very ions that facilitate mineral

formation (e.g., iron(II) is produced during dissimilatory iron(III) reduction). Thus, the activities

of microorganisms can promote the fossilization of soft tissues by facilitating the formation of

authigenic mineral veneers or prevent it by degrading the tissues before authigenic minerals can

form.

In this Thesis we use experimental taphonomy to reconstruct macrofaunal and microbial

preservation in shallow marine, coarse-grained siliciclastic settings. We suggest that the
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formation of clay mineral veneers on organic material may have promoted the preservation of

fossils and sedimentary textures in some Ediacaran and early Cambrian coarse-grained

siliciclastic sediments (Gehling, 1999; Mapstone and McIlroy, 2006; Callow and Brasier, 2009).

Impressions of soft tissues associated with microbial sedimentary structures have been reported

in Ediacaran strata characterized by layers of fine-grained material between fossiliferous

sandstones. For example, the Ediacara Member of South Australia (Rawnsley Quartzite, e.g.,

Gehling, 1999) contains cm-thick horizons of silt and clay as well as thin, aluminosilicate

laminae between part and counterpart impressions. Our findings may also have implications for

fine-grained sediments composed of silts and clays. Examples of exceptionally preserved

carbonaceous compressions associated with clay minerals are found throughout the Ediacaran

and early Cambrian rock record (Laflamme et al., 2011; Anderson et al., 2011; Cai et al., 2012).

It is likely that these fossils formed by the authigenic mineral replacement of soft tissues (Gaines

et al., 2008; see Orr et al., 1998 for similar mechanisms in deepwater settings) in combination

with the trapping of fine particles from the sediment. Thus, the preservational models proposed

in the current Thesis provide mechanistic explanations for the formation of macrofossil

impressions and microbial patterns/textures observed in the siliciclastic rock record.

Thesis foci and layout

This Thesis includes the Introduction (Chapter 1), two chapters describing studies that have been

published in Geology and Geobiology (Chapters 2 and 3, respectively), a chapter that has been

prepared for submission to Nature Geoscience (Chapter 4), a chapter that has been prepared for

submission to Palaios and the Conclusion (Chapter 5). Previously published chapters have been

reformatted in the current Thesis for internal consistency. All chapters describe the use of
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experimental taphonomy to investigate the preservation of photosynthetic microbial mats and

soft tissues in siliciclastic substrates.

In Chapter 2, we demonstrated a mechanism for microbial fossilization in siliciclastic

settings. This mechanism combines the trapping of fine particles from the sediment onto thick

microbial sheaths with the precipitation of clay minerals from ions in solution. To determine

environmental conditions conducive to the preservation of cyanobacteria in siliciclastic

environments, we incubated cyanobacterial cells in silica sand for one month. Microbial

preservation occurred under oxic conditions and the degradation of cyanobacterial cells was

minimal. The formation of clay veneers was facilitated by high concentrations of dissolved silica

(>0.1 mM) and fine particles (>5.6 mg/L) that were suspended in solution.

Chapter 3 advances our understanding of microbial preservation in coarse-grained

siliciclastic environments by investigating additional environmental and biological factors that

affect the formation of mineral veneers around microbial filaments. In this chapter, we constrain

fluid energies that lead to the preservation of sheathed cyanobacteria. Agitation generated by

waves and currents is required to first suspend and then deposit fine particles onto cyanobacterial

mats. Thus, siliciclastic environments that do not suspend sand, but contain suspended silt and

clay minerals, preferentially preserve microbial mats and fossils. This process also preferentially

preserves microorganisms with thick (>1 tm) sheaths that can trap suspended particles.

Previous taphonomic studies have shown that kaolinite preserves soft tissues better than

other clay minerals such as montmorillonite (Wilson and Butterfield, 2014; Naimark et al., 2016)

and that kaolinite may inhibit heterotrophic microbial growth (McMahon et al., 2016). However,

mechanisms involved in preservation by clay minerals are not well understood. In Chapter 4 of

this Thesis, we investigate the preservation of soft tissues (scallop adductor muscles) that were
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buried in kaolinite for 45 days and find that the formation of mineral veneers inhibits the decay

of soft tissues. The veneers around soft tissues form by the precipitation of authigenic clay

minerals as well as the adhesion of micron-sized clay minerals from the sediment. These mineral

coatings provide structural support for the soft tissues and also inhibit interactions between the

organic material and heterotrophic microorganisms.

Microbial mats and high concentrations of seawater silica are hypothesized to have

played a role in the preservation of soft, labile tissues by facilitating the formation of authigenic

minerals such as pyrite or amorphous silica on the surfaces of tissues (Gehling, 1999; Tarhan et

al., 2016). To test these hypotheses, Chapter 5 investigates the effects of microbial mats, illite

and water chemistry on the preservation of scallop adductor muscles buried in silica sand. In

doing this, we determine the relative importance of these environmental and biological factors in

the preservation of soft-bodied, macroscopic organisms. Future work will involve using DNA

analyses to characterize the microbial communities that grow around soft tissues during

incubation. Samples have already been collected and this data will be incorporated into a

separate manuscript that is not included in the current Thesis.

Results from taphonomic experiments described by all Thesis chapters are compared to

the siliciclastic rock record. We pay particular attention to the Ediacaran Period, when soft

tissues and microbial textures were exceptionally preserved in sandy and silty sediments.
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2.1 Abstract

Ediacaran sedimentary successions are noted for the preservation of microbes and microbial

textures on the surfaces of sandstones and siltstones. Although microorganisms have been

preserved in coarse-grained siliciclastic sand throughout geologic history, the exceptional

preservation of microbes in Ediacaran sediments suggests the potential for a unique taphonomic

window. Here, we identify conditions conducive to the fossilization of filamentous cyanobacteria

growing in the presence of siliciclastic sand and demonstrate that the sheaths of filamentous

cyanobacteria can become coated by clay minerals within days under oxic conditions. Smooth,

extensive mineral coatings develop in the presence of 5.6 to 55.6 mg/L of suspended clay and 0.1

mM or greater concentrations of dissolved silica. Thus, elevated concentrations of seawater silica

and the delivery of suspended clays promote microbial preservation on sandy and silty surfaces.

These factors likely facilitated microbial fossilization in coarse-grained siliciclastic sand
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throughout the Ediacaran Period and may have also contributed to microbial fossilization in

siliciclastic deposits at other times throughout Earth's history.

2.2 Introduction

Microbial fossils and textures are commonly found in Ediacaran coarse-grained siliciclastic sand

(Vidal and Moczydowska, 1992; Gehling, 1999; Schieber et al., 2007; Moczydlowska, 2008;

Callow and Brasier, 2009; Cohen et al., 2009). Although microbially induced sedimentary

structures (MISSs; Noffke et al., 2001) occur in a variety of coarse-grained sediments, ranging in

age from Archaean to modem (e.g., Noffke, 2000; Noffke et al., 2006; Schieber et al., 2007;

Noffke, 2010), abundant and commonly exceptionally preserved microbial fossils and MISSs

have been reported in Ediacaran siliciclastic sediments of tidal to shallow marine

origin (Hagadorn and Bottjer, 1997; Callow and Brasier, 2009). Therefore, a unique

environmental window may have facilitated the exceptional preservation of microorganisms in a

range of Ediacaran sediments. Microbial mats were widespread during the Precambrian

(Seilacher and Pflflger, 1994; Seilacher, 1999) but became less common in subtidal and intertidal

environments after the Cambrian Period. A recent review lists occurrences and environmental

distributions of Precambrian and Phanerozoic MISSs (Davies et al., 2016, their table 1) that

support a notable shift in the environmental distribution of post-Cambrian MISSs; the vast

majority of post-Cambrian MISSs are found in restricted or non-marine settings. This likely

reflects an environmental restriction caused by the radiation of grazing and bioturbating

metazoans (Bottjer et al., 2000) that destroy microbial mats and overprint microbial signatures in

the rock record (Byers, 1983; Hagadorn and Bottjer, 1997; Pflueger, 1999; Gehling, 1999;
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Bottjer et al., 2000). Thus, the absence of megafaunal predation and sediment bioturbation may

have been an essential condition for microbial preservation in Ediacaran siliciclastics.

Additional hypotheses addressing the Ediacaran-type preservation of microbial textures have

invoked differences in Precambrian seawater chemistry and organic decay (Gehling, 1999;

Callow and Brasier, 2009). To date, these hypotheses have focused primarily on fossilization

during organic decay in the anoxic zone of sediments, below the sediment-water interface. For

example, Callow and Brasier (2009) suggested that a shallowing of the Ediacaran seafloor redox

boundary reduced the degradation of organic matter and enhanced microbial preservation.

Elevated concentrations of silica in Precambrian oceans (Siever, 1957; Maliva et al., 2005)

are also hypothesized to have enhanced early fossilization through the precipitation of authigenic

silicate minerals (Gehling, 1999; Callow and Brasier, 2009). Although most studies of modem

systems do not specifically address fossilization or the role of silica concentrations in microbial

preservation, experimental evidence has indicated the role of iron in the precipitation of clay

minerals around cell walls (e.g., Urrutia and Beveridge, 1994; Konhauser et al., 1998; Konhauser

and Urrutia, 1999; Fein et al., 2002).

Here, we experimentally identify conditions most conducive to the development of smooth,

shape-preserving mineral coatings around cyanobacteria grown on siliciclastic sand. We evaluate

the influences of microbial trapping of suspended clay, clay loading and seawater silica

concentrations. Our results confirm that both dissolved silica and suspended clay promote the

formation of mineral coatings around actively growing, photosynthetic organisms under oxic

conditions. We also suggest that optimal conditions existed during the terminal Proterozoic

24



(i.e., high concentrations of dissolved silica and suspended sediment in combination with the

relative absence of grazing metazoans) which resulted in the exceptional preservation of

microbes and microbial textures in Ediacaran sandy environments.

2.3 Methods

Mixed communities of filamentous cyanobacteria were grown in plastic culture jars (190 mL;

BioExpress, Kaysville, Utah, USA) containing artificial seawater (Supplementary Table 2.1).

The seawater contained either high (0.1 or 0.4 mM) or low (0 mM) initial concentrations of

added silica (reagent-grade sodium silicate solution: [Na2O(Si02)x-H 2O]; Sigma-Aldrich, St.

Louis, Missouri, USA). Microbes were grown on (1) autoclaved siliciclastic beach sand

(purchased from the Ottawa Silica Company, Ottawa, Illinois, USA) composed of quartz and

0.03 wt% clays (iron-, calcium-, potassium-, magnesium- and sodium-rich aluminosilicates) or

(2) powdered illite (purchased from Time Laboratories, Pocatello, Idaho, USA; 100% clay

fraction, similarly composed of iron-, calcium-, potassium-, magnesium- and sodium-rich

aluminosilicates). Continuous agitation on orbital shakers (VWR Mini Shakers; VWR

International, Radnor, Pennsylvania, USA) suspended finer silt and clay but did not move larger

quartz grains (Supplementary Fig. 2.1), thus mimicking the conditions at seafloors below the

fair-weather wave base. Cyanobacterial filaments clustered into aggregates (1 to 5 mm in

diameter) that were gently agitated by the fluid motion. To separate cyanobacteria from the

substrate and allow ions to pass freely between the sediment and the solution, we packed the

sand into dialysis membranes (Standard RC, pore size 12-14 kilodaltons [atomic mass unit];

Spectrum Labs, Rancho Dominguez, California, USA). This prevented the suspension of fine

sediment from the sand (Supplementary Fig. 2.1). To determine if any clay nuclei passed through
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the dialysis membrane into the surrounding solution, a sterile medium was incubated for two

months in the presence of membrane-enclosed sand and then filtered using a 0.22 mm Millipore

filter. All samples were imaged using a Zeiss Supra Scanning Electron Microscope with an

energy dispersive X-ray spectrometer at 10 kV (Center for Nanoscale Systems, Harvard

University, Massachusetts, USA). Experimental conditions are given in Supplementary Table

2.2.

2.4 Results

Cyanobacteria sampled immediately before inoculation were not covered in minerals (Fig. 2.1).

After only 5 d of growth on siliciclastic sand or illite powder in continuously agitated media

(Supplementary Fig 2.1), most cyanobacterial filaments were coated by clay minerals. Uncoated

cyanobacterial filaments were generally thinner than one pm, whereas the thickness of coated

filaments ranged from one to 1.5 gm (Fig. 2.2). Mineral coatings around cells were composed of

some angular grains with crystalline appearances and smoother, less angular ones (Figs. 2.1 and

2.2). The most extensive coating developed around filaments when the medium contained 0.1

mM or greater concentrations of initial silica (Fig. 2.2). Aluminosilicate minerals were rich in

iron, calcium, potassium, magnesium and sodium. Their elemental composition was similar or

identical to that of minerals found in the clay fraction of the beach sand or illite (Fig. 2.1,

Supplementary Fig. 2.2). These experiments showed that cyanobacterial filaments could be

coated within weeks in actively growing, well-aerated cultures and before extensive organic

decay.

The compositional similarity between minerals around cells and clay minerals in the

siliciclastic sand suggested that cyanobacteria trapped suspended minerals from the solution (Fig.
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2.1, Supplementary Fig. 2.2). To test this, we enclosed siliciclastic sand in dialysis bags. The

pore size of the dialysis membranes is smaller than the diameter of both cyanobacteria (0.5-40

mm) and sand grains (>62.5 mm) and hinders the release of particles larger than 12-14

kilodaltons into suspension. Cyanobacteria growing under these conditions remained uncoated

after 5 d, although the same amount of time was sufficient to generate coating in experiments

without dialysis bags. After one month of incubation in the presence of dialysis bags, the

filaments contained only rare aluminosilicate grains, which smoothly covered cells (Fig. 2.2,

Supplementary Fig. 2.3). The absence of a continuous coating of minerals underscored the

importance of suspended minerals in the encrustation of microbial filaments.

Because the pore size of dialysis membranes is larger than the unit cell of various clays (e.g.,

~400 daltons for illite), some clay nuclei may have escaped the dialysis barrier. To test this, we

incubated 100 mL of sterile media in the presence of sand enclosed within dialysis membranes

for two months. The presence of chlorine-, sodium- and potassium-rich clay minerals in the

filtrate suggested that some fine-grained clay nuclei may have passed through the dialysis

barrier. However, the EDS spectra of these minerals were different from those of small

aluminosilicates that formed around filaments during the month-long incubation of cyanobacteria

(Supplementary Fig. 2.3), indicating that the latter minerals were precipitated and not trapped

from the solution.

The trapping of suspended clay particles by cyanobacterial sheaths played a critical role in

the preservation of cyanobacterial filaments in our experiments. Therefore, we sought to

investigate the appearance of mineral coating as a function of the quantity of suspended clays (0,

5.6, and 55.6 mg/L). As expected, the smoothest, most extensive coating developed in the
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presence of 55.6 mg/L clay (Fig. 2.2). Thus, higher concentrations of suspended fine-grained

sediment promote the encrustation of cyanobacterial filaments by clay minerals.

2.5 Discussion

2.5.1 Microbial trapping and precipitation of aluminosilicates

Previous research demonstrated the microbial ability to precipitate clay minerals in cultures and

natural environments (Konhauser et al., 1993, 1998; Urrutia and Beveridge, 1994; Konhauser

and Urrutia, 1999). However, these studies did not address the contribution of sediment trapping

by sticky microbial surfaces, although this process is likely to occur in nature. Here, we show

that trapping can preserve the shape of cyanobacterial filaments within days, but fine-grained

clay minerals precipitate much more slowly in the absence of abundant clay nuclei. Thus, the

trapping of clay minerals from suspension appears to be critical to cyanobacterial preservation

because it is the faster and more extensive process.

Precipitation of authigenic clays in modern environments occurs in natural riverine systems

and anoxic settings that contain elevated concentrations of iron (Michalopoulos and Aller, 1995;

Konhauser and Urrutia, 1999). For example, Michalopoulos and Aller (1995) reported authigenic

clay formation in anoxic sediments from the Amazon River delta, where the concentrations of

dissolved iron(II) range from 0.3 to 0.7 mM (Aller et al., 1986). Microbes in these environments

can bind iron (or other cations, e.g., aluminum) onto cell walls, which subsequently promotes

clay formation by lowering the activation energy of aluminosilicate nucleation (Ferris et al.,

1987; Konhauser et al., 1994, 1998). In contrast, our experiments demonstrate that cyanobacteria

mediate the precipitation of clay minerals at monthly timescales (Fig. 2.2, Supplementary Fig.

2.3) under well-aerated conditions and in the presence of only moderate iron concentrations (<2
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mM). Most minerals that precipitated around cyanobacterial filaments under our experimental

conditions also lack detectable iron (Supplementary Fig. 2.3). Thus, elevated concentrations of

soluble iron and anoxic settings do not appear to be necessary for the preservation of

photosynthetic organisms and textures on the surfaces of siliciclastic bedding planes, such as

those described by Hagadorn and Bottjer (1997) and Gehling and Droser (2009).

2.5.2 The role of aqueous silica in cyanobacterial fossilization

High concentrations of silica (0.1 mM or greater) enhanced the extent and smoothness of

minerals coating cyanobacterial filaments in our experiments. These concentrations are higher

than most modern oceanic values but below saturation with respect to amorphous silica (Pilson,

1998, his chapter 8). We tentatively attribute the formation of smoother, more continuous

coatings in the presence of 0.1 and 0.4 mM silica to the precipitation of fine-grained

aluminosilicates around biologically trapped minerals (Siever and Woodford, 1973). The

adsorption of silica onto cationic metals bound to cells (Ferris et al., 1987; Konhauser et al.,

1993, 1998; Konhauser and Urrutia, 1999) or the direct adsorption of silica onto cyanobacterial

sheaths (Mera and Beveridge, 1993) may also contribute to smooth and continuous mineral

coating.

2.5.3 Geological significance

Our experiments show that elevated concentrations of silica and suspended clays may have

facilitated the exceptional preservation of microbes and microbial textures throughout the

Ediacaran Period (Banerjee and Jeevankumar, 2005; Noffke and Chafetz, 2012). This supports

the preservational models proposed by Callow and Brasier (2009) and Hagadorn and Bottjer
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(1997); the former authors suggested a relationship between the higher concentrations of silica

and Ediacaran preservation, whereas the latter noted abundant clay and mica on the surfaces of

bedding planes that preserve wrinkle structures.

The formation of molds around the sheaths of filamentous photosynthetic cyanobacteria

depends not only on the ability of these organisms to trap clay minerals, but also on the

availability of these minerals. Our experiments suggest that even coarse-grained environments

that are characterized by low concentrations of suspended clay (<100 mg/L) would allow for the

preservation of exceptional fossils, such as those found in Ediacaran sediments.

2.6 Conclusions

Our findings offer insights into the preservation of photosynthetic microbes and surface textures

in coarse siliciclastics. By using the extent and smoothness of mineral coating as indicators of

early cyanobacterial fossilization, we identify the following conditions as sufficient for the

preservation of mineral-rich microbial fossils and textures in coarse-grained siliciclastics: (1)

persistent concentrations of silica >0.1 mM and (2) the availability of suspended clays in solution

(5.6-55.6 mg/L). We suggest that these factors, in combination with reduced grazing and

bioturbation, contributed to the preservation of cyanobacteria and other photosynthetic

organisms throughout the Ediacaran Period and at other times in Earth history.
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Fig. 2.1. Representative scanning electron microscopy (SEM) images and SEM-EDS (energy-
dispersive X-ray spectroscopy) spectra of filamentous cyanobacteria and minerals. A) Inoculum
(day 0). B) Cells grown on beach sand for 5 days. C) Cells grown on illite powder for 5 days.
White boxes indicate areas analyzed by SEM-EDS. EDS spectra are located directly beneath
corresponding SEM images. Scale bars are 1 pm. Samples were coated with gold and palladium.
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Fig. 2.2. Effects of dissolved silica concentrations and clay loading on fossilization. A-D)
Cyanobacteria after 15 d of growth: A) Coated cyanobacterial filaments in solutions with 0 mM
initial silica. Circles mark uncoated cells. These cells lack thick sheaths. B) Smoother and more
extensive minerals coat cells grown in solution with 0.1 mM dissolved silica. C) Uncoated
cyanobacteria grown in solutions that lacked added clays or silica sand. D) Extensive coating in
the presence of 55.6 mg/L of clay. E) Sheathed filaments separated from sand by dialysis bags
lack any visible minerals after 5 days of growth. F) Sparse minerals (arrows) attached to sheaths
of cyanobacteria that had been separated from sand for one month. Scale bars are 1 Im (A, B)
and 2 pm (C-F). Samples were coated with gold and palladium.
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2.8 Supplementary Information
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Supplementary Fig. 2. 1. Schematic of experimental setup. A) Cyanobacterial aggregates growing
directly on siliciclastic sand in the presence of continuous fluid agitation (VWR Minishaker, 190
rpm, 3 mm orbital diameter). Ions, silt and clay minerals can be suspended, but sand grains
cannot. B) Cyanobacterial aggregates growing on a dialysis membrane in the presence of
continuous fluid agitation (VWR Minishaker, 190 rpm, 3 mm orbital diameter). Ions can pass
into solution, but sand grains, silt and clay minerals are trapped inside the dialysis bag. C)
Photograph of cyanobacterial aggregates after two weeks of growth. Culture jars are 6 8 mmn
(diameter) x 68 mmn (height).
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Supplementary Fig. 2.2. Representative SEM images and SEM-EDS spectra of sterile substrates.
A) Aggregates of clay minerals filtered from the siliciclastic sand and B) aggregates of illite used
in suspended sediment experiments. White boxes indicate analyzed areas. EDS spectra are
located to the right of corresponding SEM images. Scale bar: 10 ptm (A) and 1 tm (B). Samples
were coated with gold and palladium.
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Supplementary Fig. 2.3. Representative SEM images and SEM-EDS spectra of dialysis
experiments. A and B) minerals which passed through dialysis bags after less than two months in
sterile solutions. The minerals were collected by filtration. C and D) Minerals which formed
around cyanobacterial filaments in dialysis experiments after one month of cell growth. White
boxes indicate analyzed areas. EDS spectra are located beneath corresponding SEM images.
Scale bar: 1 pm. Samples were coated with gold and palladium.

38



Supplementary Table 2.1. List of ingredients used to make 1 L of artificial seawater.
Ingredient Amount Volume of stock solution added to 1

(g/L) L of medium
(mL)

0.5
5.15

34.45
10.0

1.00
4.82
0.09
0.74

1.0

Nitrate solution'
KNO3
NaNO3

Major "10x" solution'
Nitrilotriacetic Acid
NaCl
NaH2 PO4
KCl

Cast D Trace'
MnCl3*4H20
ZnSO4*7H20
CuSO4*5H20
Na2MoO4
Co(N0 3)2*6H20
H3B03

H2SO4 (concentrated)
NiCl 2

FeCl3'
Mg/Ca solution (5:1)'

CaCl 2*2H20
MgCl2*6H20

0.1
50.0

29.40
203.30

Sodium silicate solution"'* 0.09
NaClt  23.0
Na2SO4' 0.71
KCl' 1.48
NaHCO3' 0.34

Note: Underlined ingredients denote stock solutions. The individual components of each
stock solution are given (in g/L). The volume of stock solution (in mL) added to 1 L of the
basal medium is also given.

'Ingredient was added directly to 1 L of basal medium.
'Reagent grade sodium silicate solution (Na2O(SiO2)x- xH20) was purchased from

Sigma-Aldrich (St. Louis, MO).
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Supplementary Table 2.2. List of experimental conditions.
Substrate Clay Silica Dialysis membranes

(mg/L) concentration
(mM)

Siliciclastic sand 0.03* 0.0 no
Siliciclastic sand 0.03* 0.4 no
None 0.0 0.0 no
None 0.0 0.1 no
Illite 5.6 0.0 no
Illite 5.6 0.1 no
Illite 55.6 0.0 no
Illite 55.6 0.1 no
Siliciclastic sand 0.03* 0.4 yes

Note: Siliciclastic sand was purchased from the Ottawa Silica Co. (Ottawa, IL,
USA) and contained quartz, mica and clay minerals. Illite powder was purchased
from Time Laboratories (Pocatello, ID, USA) and was 100% clay fraction.

*Given as weight percent of siliciclastic sand.
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Chapter 3. Experimental fossilization of mat-forming cyanobacteria in coarse-
grained siliciclastic sediments

Forward

This chapter has been previously published in Geobiology as Newman et al. (2017). Citation:

Newman, S.A., Klepac-Ceraj, V., Mariotti, G., Pruss, S.B., Watson, N., Bosak, T., 2017.

Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic

sediments. Geobiology 15, 484-498. doi:10.1111/gbi.12229.

3.1 Abstract

Microbial fossils and textures are commonly preserved in Ediacaran and early Cambrian

coarse-grained siliciclastic sediments that were deposited in tidal and intertidal marine settings.

In contrast, the fossilization of microorganisms in similar marine environments of post-Cambrian

age is less frequently reported. Thus, temporal discrepancies in microbial preservation may have

resulted from the opening and closing of a unique taphonomic window during the terminal

Proterozoic and early Phanerozoic, respectively. Here, we expand upon previous work to identify

environmental factors which may have facilitated the preservation of cyanobacteria growing on

siliciclastic sand, by experimentally determining the ability of microbial mats to trap small,

suspended mineral grains and precipitate minerals from ions in solution. We show that (i) fine

grains coat the sheaths of filamentous cyanobacteria (e.g., Nodosilinea sp.) residing within the

mat, after less than one week of cell growth under aerobic conditions, (ii) clay minerals do not

coat sterile cellulose fibers and rarely coat unsheathed cyanobacterial cells (e.g., Nostoc sp.), (iii)

stronger disturbances (where culture jars were agitated at 170 rpm; 3 mm orbital diameter)

produce the smoothest and most extensive mineral veneers around cells, compared with those

41



agitated at slower rotational speeds (150 and 0 rpm), and (iv) mineral veneers coating

cyanobacterial cells are -1 tm in width. These new findings suggest that sheathed filamentous

cyanobacteria may be preferentially preserved under conditions of high fluid energy. We

integrate these results into a mechanistic model that explains the preservation of microbial fossils

and textures in Ediacaran sandstones and siltstones and in fine-grained siliciclastic deposits that

contain exceptionally preserved microbial mats.

3.2. Introduction

Exceptionally preserved microbial fossils and textures (including fossilized tubes and sheaths of

photosynthetic microorganisms, as well as microbially induced sedimentary structures, MISS)

commonly occur in coarse-grained siliciclastic sediments of the terminal Proterozoic (e.g., Vidal

and Moczydowska, 1992; Gehling, 1999; Noffke et al., 2006; Noffke, 2007; Moczydlowska,

2008; Callow and Brasier, 2009; Cohen et al., 2009; Gehling and Droser, 2009). MISS, which

are defined as textures formed by interactions between microorganisms and sediment surfaces

(Noffke et al., 2001), have been reported in various coarse-grained siliciclastic sediments

throughout the sedimentary record (Pruss et al., 2004; Noffke et al., 2003; Noffke, 2007;

Schieber et al., 2007). However, their frequent and arguably unique occurrence in subtidal and

intertidal marine environments of the Ediacaran and early Cambrian (see Davies et al., 2016,

their Table I for a compilation) is attributed to flourishing benthic microorganisms in these

settings (Seilacher and Pfltger, 1994; Mariotti et al., 2014) in the absence of effective grazing

and bioturbating metazoans (Byers, 1983; Pfliger and Gresse, 1996; Hagadorn and Bottjer,

1997; Gehling, 1999).
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In addition to organismal activity, seawater chemistry may also have influenced patterns of

microbial preservation in siliciclastic sediments through time. Concentrations of oceanic silica

were likely much higher during the terminal Proterozoic than today because the radiation of

silica-secreting organisms (e.g., siliceous sponges and diatoms) did not occur until the early

Phanerozoic (Siever, 1957; Maliva et al., 1989; Knoll and Kotrc, 2015). Thus, high

concentrations of dissolved silica are hypothesized to have contributed to the precipitation of

authigenic minerals and the subsequent fossilization of microorganisms (Callow and Brasier,

2009).

In a previous study by Newman, Mariotti, Pruss and Bosak (2016), the authors reveal the

rapid formation of mineral veneers around microbial cells growing as millimeter-wide microbial

aggregates on siliciclastic sand. The most extensive veneers formed in the presence of high

concentrations of dissolved silica (0.1 and 0.4 mm) and clay powder (5.5 and 55.6 mg of clay

powder/L medium). However, sandstones and siltstones more commonly preserve patterns and

textures of ancient microbial mats, rather than fossils of individual cyanobacteria or

cyanobacterial aggregates (e.g., Callow and Brasier, 2009). The current study explores the

potential of mat-forming cyanobacteria to become extensively coated by clay minerals after only

a few days of cell growth. Additionally, for the first time, we quantitatively characterize the

thickness of mineral coating that develops around cyanobacterial filaments under fully oxic

conditions, compare the fossilization potentials of sheathed and unsheathed cyanobacteria, test

the role of non-microbial organic surfaces in fossilization and directly investigate the importance

of fluid agitation in the mineral coating of cells. These experiments show that trapped suspended

clay minerals and sticky microbial sheaths contribute most critically to the rapid preservation of

photosynthetic microbes in sandy sediments. Based on these findings, we propose a mechanism
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to explain various occurrences of fossilized microbes and microbial textures in coarser

siliciclastics through time.

3.3 Methods

3.3.1 Growth media

We prepared artificial seawater with either low (0 mM) or high (0.1 or 0.4 mM) concentrations

of silica (reagent-grade sodium silicate solution (Na2O(SiO 2)x xH20, Sigma-Aldrich, St. Louis,

MO). This basal growth medium (see Supplementary Table 2.1 for a complete list of ingredients)

was prepared and stored in polypropylene containers (IL Nalgene, Thomas Scientific,

Swedesboro, NJ, USA), autoclaved at 121 'C for 40 min and then allowed to cool to room

temperature. A separate stock solution containing 203.3 g of MgCl2*6H20 and 29.4 g of

CaCl2*2H20/L of double-distilled water (5:1 molar concentration; equivalent to modem

seawater concentrations, Pilson, 2013) was filtered through a 0.2 pm membrane (AcroVac

Vacuum Filter, Pall Laboratory, Port Washington, NY, USA) and 50 mL of this solution was

added to 1 L of the autoclaved and cooled basal medium. The pH of the sterile medium was

measured with a portable, digital pH meter (WTW, Weilheim, Germany) and adjusted to 7.8 by

the addition of 1.0 M HCl/NaOH.

3.3.2 Cyanobacterial cultures

Mixed cyanobacterial communities were enriched from a natural microbial mat collected from

the Great Sippewissett Salt Marsh (lower Eastern Buzzards Bay, Cape Cod, MA, USA). The

cells were incubated in a 1.9 L plastic container (The Glad Products Co., Oakland, CA, USA) in

a silica-free medium in the absence of a solid substrate (e.g., sand or glass beads). This hindered
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the precipitation of minerals around cyanobacterial cells before inoculation. At the start of each

experiment, cell inoculum was first transferred into a conical tube (5 ml of culture into a 25 ml

tube, VWR International, Radnor, PA, USA) and allowed to settle for about 10 min. The liquid

was then discarded and replaced with a sterile, silica-free medium three times to wash cells and

prevent the transfer of any residual particles to the experimental culture jars (68 x 68 mm

diameter and height, BioExpress, Kaysville, UT, USA). Cyanobacteria were then immersed in

the experimental medium (see Table 3.1 for a list of experimental conditions), the cells were

dispersed by a hand-held mixer (Smart Stick, Cuisinart, East Windsor, NJ, USA) to ensure a

homogenous mixture of cells and 5 mL of this suspension was added to the surfaces of

autoclaved substrates (e.g., sand, glass beads and illite, see Table 3.1 and the text below) in

culture jars. Additional sterile media, containing the desired concentrations of silica, were added

to make up a final volume of 90 or 100 mL of medium in each jar. All experiments were

performed in duplicate.

Cyanobacteria were submerged in medium and continuously agitated on VWR Minishakers

(with a 3 or 15 mm orbital diameter, VWR International, Radnor, PA, USA; see Supplementary

Table 3.1 for a calculation of fluid velocity). Agitation was not large enough to mobilize larger

sand grains, but did suspend some fine particles in solution and supported the formation of 5

mm-wide cyanobacterial aggregates. The culture medium was replaced every three to four days

to maintain a semi-constant pH (7.8-8.6) as well as to provide a fresh supply of ions for

cyanobacterial growth. Visual observations and biweekly pH measurements confirmed that

cyanobacteria grew from the initial inoculum and photosynthesized throughout the course of all

experiments.
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3.3.3 Substrate composition and silica concentrations

To gain greater insight into the effects of sediment composition on the mineral coating around

cyanobacterial aggregates, cultures were grown on pure quartz sand (purchased from Sigma-

Aldrich, St. Louis, MO, USA), glass beads (purchased from Sigma-Aldrich, St. Louis, MO,

USA) and no substrate. Results from these experiments were compared with those from Newman

et al. (2016), where the authors incubated cyanobacterial cultures on siliciclastic sand and illite

powder. Samples were collected for SEM analyses during the first, third and last weeks of cell

growth and most experiments were terminated after one month. It is important to note that after

22 days of microbial incubation on glass beads and quartz sand, the pH of the medium rose

sharply (>9) and this change in pH may have directly affected the formation of minerals (e.g.,

CaCO3) around cyanobacterial filaments. Thus, for those experiments we consider data only

from the first 22 days of incubation (when the pH of the medium was <9). In a single

experiment, cyanobacteria were grown on siliciclastic sand in the presence of high (0.4 mM) and

low (0 mM) concentrations of silica for a total of 41 days to investigate changes in the mineral

coating of cells over time. Mineral coatings that formed in different experiments were sampled

and compared at identical time points, unless otherwise stated.

3.3.4 Organic surfaces

To test the ability of non-microbial organic surfaces to trap and precipitate clay minerals, we

incubated sterile cellulose fibers (Kimtech Science Kimwipes, Roswell, GA, USA) in a medium

containing high (0.1 mM or 0.4 mM) or low (0 mM) concentrations of silica over 20 g of

siliciclastic sand (beach sand, composed of quartz, micas and 0.03% w/w calcium-, iron-,

potassium-, magnesium- and/or sodium-rich clay minerals, purchased from the Ottawa Silica
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Company, Ottawa, IL, USA). Cellulose fibers were cut into squares (0.5 cm in diameter) and

autoclaved at 121 'C for 40 min before inoculation. The medium was replaced biweekly and the

samples were collected after one month and analyzed by SEM, as described below.

3.3.5 Suspended sediment

We determined the influence of suspended fine particles on the mineral coating of cyanobacterial

aggregates during one month of cyanobacterial incubation by altering (i) the amount of clay

added to solution and (ii) the fluid agitation in our culture jars. To manipulate clay load, we

added varying quantities of illite powder (0, 5.6, and 55.6 mg/L, purchased from Time

Laboratories, Pocatello, ID, USA) to the basal medium. In a separate series of experiments, we

compared cyanobacteria growing in the absence of mechanical agitation (0 rpm) to those

continuously agitated at moderate (150 rpm) and high (170 rpm) rotational speeds using VWR

Minishakers with a 15 mm orbital diameter (VWR International, Radnor, PA, USA, Table 3.1;

see Supplementary Methods and Supplementary Table 3.1 for fluid velocity calculations). These

experiments were performed in the presence of 20 g of siliciclastic sand, in a medium lacking

any added silica. This enabled us to focus specifically on the effect of increasing suspended

sediment on clay coating, rather than the combined effects of elevated silica concentrations and

the increase in suspended clay minerals. In the absence of agitation, microbial aggregates

attached to the sediment surface. To facilitate the formation of microbial aggregates and prevent

the growth of surface-attached microbial mats, we gently detached cells in these experiments

with sterile tweezers. Fluid agitation did not suspend larger sand grains, even though microbial

aggregates slowly moved sand grains in more highly agitated cultures by mechanisms described

in Mariotti et al. (2014).
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The weight of suspended fine particles in each agitation condition was measured by filtering

sterile media (90 mL/jar) that had been exposed to 20 g of siliciclastic sand and continuous fluid

agitation (0, 150, 170 rpm, VWR Minishakers, 15 mm orbital diameter). These solutions were

filtered using pre-weighed, 0.2 pm pore-size PTFE membranes (Millipore, Billerica, MA, USA),

and the collected particles were washed with double-distilled water. All membranes were

allowed to air-dry at room temperature for one week and weighed to determine the amount of

suspended fine particles.

3.3.6 Fossilization of microbial mats

To determine whether clay minerals would coat cyanobacterial filaments forming a microbial

mat, we inoculated 5 mL of cells suspended in experimental medium on 450 g of siliciclastic

sand in 2 L of sterile medium (3.8 L plastic culture jars, Carolina Biological Supply Company,

Burlington, NC, USA). This large volume of medium prevented a rapid increase in pH due to

microbial growth. The medium was titrated biweekly (with HCl/NaOH) to maintain a semi-

constant pH (ranging from 7 to 9). The cultures were agitated at slow speeds (50 rpm, VWR

Minishaker with a 15 mm orbital diameter, VWR International, Radnor PA, USA, Table 3.1) to

facilitate the growth of microbial mats and prevent the formation of microbial aggregates (which

requires faster agitation, >150 rpm). Microbial mats covered the sand surface after 41 days, at

which point we added 1 g of illite to the medium. We sampled the cultures on day 0, before the

addition of illite (day 41), 5 days after the addition of illite (day 46) and after two months of cell

growth (day 60). We did not add any clay to the control and sampled this culture at the same

time points.
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3.3.7 Concentration of dissolved silica

Concentrations of dissolved silica were measured in 25 mL samples, which were collected at

various time points throughout each preservation experiment. The samples were filtered using 60

mL syringes and 0.45 prm filters (VWR, Acrodisc syringe filter) and the filtrates were stored in

tightly capped polyethylene containers at -20'C. Silica standards were prepared by diluting a

concentrated silica solution (J.T. Baker "DILUT-IT" Silica Standard, original concentration of

16.4 mM) in 0 mM media to create two dilution series: (i) 0.025, 0.05, 0.075, 0.1 and 0.125 mM

silica (for 0 and 0.1 mM silica experiments) and (ii) 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9 mM silica

(for 0.4 mM silica experiments). The frozen samples were thawed overnight and diluted tenfold

in a medium containing 0 mM silica. Concentrations of silica were determined using the methods

described in House (1997). Optical densities of standards and samples were measured at 810 nm

using a BioTek microplate reader.

3.3.8 Scanning electron microscopy

Cyanobacterial samples were fixed using 2.5% glutaraldehyde in 0.1 M sodium cacodylate

buffer with 0.1% CaCl2 at pH 7.4. The fixed samples were incubated overnight at 4'C, washed

by three successive, 10 min incubations in 0.2 M sodium cacodylate buffer at 4'C without

centrifugation and dehydrated in an ethanol-water drying series (30%, 50%, 70%, 80%, 90%,

100%, 100%) with 20 min steps. Samples were attached to carbon tape and coated by gold and

palladium (Keck Facility, Whitehead Institute, MIT, Cambridge, MA, USA) and imaged by a

Zeiss Supra Scanning Electron Microscope with an energy-dispersive X-ray spectrometer at 10

kV (Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA) and a secondary

electron detector. The elemental compositions of select areas were analyzed using EDS at 10 kV.
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3.3.9 Transmission electron microscopy

Samples were fixed in 2.5% glutaraldehyde, 3% paraformaldehyde and 5% sucrose in a 0.1 M

sodium cacodylate buffer with a pH of 7.4. Cells were then post-fixed in 1% osmium tetraoxide

in a veronal acetate buffer, stained overnight in 0.5% uranyl acetate in veronal acetate buffer (pH

= 6.0) and dehydrated in an ethanol-water drying series (50%, 75%, 90%, 95%, 100%, 100%,

100%) with 15 to 20 min steps. Cells were then embedded in Embed 812 resin. Cyanobacterial

sections were cut using a diamond knife on a Reichert Ultracut E microtome (with a thickness

setting of 50 nm) and were stained with uranyl acetate and lead citrate. Transmission electron

microscopy was performed on a FEI Tecnai spirit at 80 KV and images were photographed with

an AMT CCD camera (Keck Facility, Whitehead Institute, MIT, Cambridge, MA, USA).

3.3.10 Image processing

We compared the thicknesses of coated and uncoated filamentous cyanobacteria to determine the

average thickness of mineral coatings for microbial aggregates and mats (after one month and

two months of incubation, respectively). SEM images were imported into Adobe Photoshop CS5

and processed in ImageJ (public domain software program, version 1.41) to determine the

relative thicknesses of cyanobacterial filaments (total area divided by width, in [m). Only

individual cyanobacterial filaments in the foreground of each image were analyzed because the

size and thickness of multifilament masses depended primarily on the total number of filaments,

rather than the presence or absence of mineral coatings. Clay minerals were identified (and

distinguished from EPS) by their morphology and size (see Results for a description of minerals

coating cyanobacteria). Cyanobacterial filaments were extracted from the image using the
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polygonal lasso tool and rotated until parallel with the vertical axis. For curved filaments, we

divided the entire filament into multiple, rectangular sections and cropped the ends of each

filament and/or filament section to ensure a uniform length of analyzed sections. The areas and

lengths of these sections were measured in ImageJ. When a single filament was divided into

multiple segments, the statistical analyses included only the thickest segment to avoid

misrepresenting multiple segments from the same filament as independent samples.

3.3.11 DNA extraction and Illumina sequencing

To characterize the composition of microbial communities, we analyzed four samples: two

replicates from cultures used to inoculate fossilization experiments and two samples of

experimental cultures grown on siliciclastic sand. Genomic DNA (250 pg per extraction) was

extracted using the PowerSoil DNA Isolation Kit (MoBio, Carlsbad, CA, USA) according to the

manufacturer's instructions and eluted in 35 pl of elution buffer. Upon extraction, DNA was

quantified using NanoDrop (Thermo Scientific, Inc., Wilmington, DE, USA) and sent to

Argonne National Laboratories on dry ice. V4 region of the 16S rRNA region (515F-806R) was

amplified using the Earth Microbiome Project barcoded primers with Illumina adaptors

(Caporaso et al., 2012). PCR products from respective samples were each tagged by a sample-

specific 12-base barcode (Caporaso et al., 2012). Briefly, template DNA was amplified using Q5

Hot Start High Fidelity Master Mix (NEB, Ipswich, MA, USA), Forward Primer (200 pM final

concentration) and Golay Barcode Tagged Reverse Primer (200 pM final concentration). The

conditions for PCR were as follows: denaturing step at 94'C for 3 min, with 35 cycles at 94'C

for 45 s, 50'C for 60 s and 72'C for 90 s, with a final extension of 10 min at 72'C. The PCR

amplicons were quantified using a plate reader and PicoGreen (Invitrogen, Carlsbad, CA, USA)

and pooled in equal concentrations into a single tube. This pool was cleaned up using UltraClean
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PCR Cleanup Kit (MoBio, Carlsbad, CA, USA) and quantified using the Qubit (Invitrogen,

Carlsbad, CA, USA). Four pM of the pooled samples (with 30% PhiX reference sequences) was

sequenced on a MiSeq Illumina sequencer (Illumina, San Diego, CA, USA).

3.4 Results

3.4.1 Microbial diversity

Microscopic observations revealed that sheathed, filamentous cyanobacteria (>1 pm wide, Fig.

3.1) were abundant in all cultures and under all experimental conditions. Also present were

heterocystous cyanobacteria and thinner (<1 pm wide) filamentous cyanobacteria (Fig. 3.1) with

thinner or absent sheaths. Cells were surrounded by extracellular polymeric substances (EPS,

Fig. 3.1 b). The increase in the size of microbial aggregates and the increase in pH after each

medium replacement confirmed that cyanobacteria grew and photosynthesized throughout the

experiments.

To determine the composition of the bacterial community in microbial aggregates, we

sequenced 16S rRNA genes of two samples of the inoculum and two samples harvested from

experimental cultures by Illumina sequencing. Cyanobacterial sequences accounted for 50 to

76% of OTUs in all analyzed samples (Fig. 3.2). The remaining OTUs belonged to three

additional phyla: Proteobacteria (13 to 24%), Bacteroidetes (9 to 23%) and Actinobacteria

(<2%, Fig. 3.2). The most abundant cyanobacterial sequences were those of a single genus,

Pseudoanabaenaceae (72 to 75% of all OTUs in the two experimental cultures, Fig. 3.2). These

OTUs were most similar to the sequences belonging to the genus Nodosilinea characterized as

filamentous cyanobacteria with thick sheaths (Perkerson et al., 2011). We attribute these OTUs

to the thickly sheathed cyanobacteria observed by microscopy. OTUs from Leptolyngbya, Nostoc

52



and two other genera of Pseudoanabaenaceae were present, but much less abundant.

Leptolyngbya, a filamentous cyanobacterium composed of single, thin trichomes, and generally

unsheathed (e.g., Taton et al., 2012) contributed 0.4 to 20% of OTUs. Nostoc, a heterocystous

cyanobacterium (Potts, 2000), contributed even fewer (0 to 0.2%). The cultures also contained

OTUs of Nostocaceae related to Anabaena, a cyanobacterium known to form heterocystous cells

(Prasanna et al., 2006, 0.1 to 5.9%). Thus, microscopic observations were in general agreement

with the molecular diversity of cyanobacteria in the samples.

Alphaproteobacteria related to Hyphomicrobiaceae, Rhizobiaceae and Rhodobacteraceae

and Gammaproteobacteria related to Chromatiaceae and HTCC2188 were the major

Proteobacteria in the samples. The presence of these OTUs indicated a potential for

methylotrophy, nitrogen fixation and anoxygenic photosynthesis in the cultures. The most

abundant sequences of Bacteroidetes belonged to Cytophagia (9 to 22%), supporting the

potential for aerobic degradation of polysaccharides and proteins (McBride et al., 2014),

including those in cyanobacterial sheaths. Similar proteobacterial communities are also reported

in association with some modern marine ooids (O'Reilly et al., 2016), where diatoms are more

abundant primary producers than cyanobacteria.

3.4.2 Minerals coating cyanobacterial aggregates

In all experiments, clay minerals coated filamentous cyanobacteria with thick sheaths (likely

Nodosilinea sp.) and some thin filamentous cyanobacteria (likely Leptolyngbya sp.) during the

first week of cell growth (Fig. 3.3). Beadlike cyanobacteria, which lacked thick sheaths (likely

Anabaena/Nostoc), were less frequently coated by minerals (Fig. 3.1 f). After 34 days of growth,

the coated cyanobacterial filaments were significantly thicker than uncoated filaments (coated:
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2.05 0.43 ptm, uncoated: 1.63 0.49 pim; t test, t = -3.01, df = 42, p < 0.01), indicating an

average coating thickness of 0.42 pim for these experiments. The minerals were present primarily

in association with filament sheaths and were typically absent from intercellular spaces (Figs.

3.1 f, 3.3b-d), although these spaces contained extracellular polymeric substances (EPS, Fig.

3.1 b). Minerals coating cyanobacterial filaments had varying morphologies, ranging from bulky

and platy (Fig. 3.1 c, d) to smaller and amorphous (Fig. 3.1 e). These minerals surrounded the

thick filament sheaths, but did not penetrate into the interior of the cells (Fig. 3.4). In fact, some

cyanobacterial cells escaped their sheaths, leaving empty, coated sheaths behind (Fig. 3.4c). All

these observations support the hypothesis that microbial sheaths play a key role in fossilization.

To further test the role of different organic surfaces in cyanobacterial fossilization on the

surfaces of sand and silt, we incubated sterile, hydrophilic cellulose fibers (Kimtech Science

Kimwipes, Roswell, GA, USA) on siliciclastic sand in media containing 0, 0.1 or 0.4 mM silica.

Although thick coatings developed around cyanobacterial cells after 5 days in the presence of 0.1

mM or 0.4 mM added silica, we did not observe any minerals associated with cellulose fibers

even after one month (Fig. 3.5), further emphasizing the importance of microbial surfaces and

sheaths in the formation of clay veneers.

To understand the origin of minerals associated with cyanobacterial sheaths, we compared

their composition to the composition of the solid substrate. Cyanobacteria in the inoculum

contained carbon and oxygen, as well as a few spots with aluminum, sodium and calcium (Fig.

3.6a, b). Cyanobacteria grown on pure quartz were coated extensively by Si0 2 and

aluminosilicates, with sporadic spots also containing iron (Fig. 3.6c, d). Cyanobacteria grown on

glass beads (composed of sodium, magnesium, silica and calcium) were less extensively coated

than in other experiments at similar time points. EDS spectra of cells grown in the presence of
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glass beads revealed small peaks of calcium, iron, magnesium, sodium and silica (Fig. 3.6e, f).

Together, these elemental analyses reveal a similarity between the composition and morphology

of minerals coating cyanobacterial cells and minerals found in the substrates, highlighting the

role of sediment trapping. Possible exceptions to this were iron-rich aluminosilicates found in

cultures incubated on pure quartz sand and iron-containing minerals coating cells grown on glass

beads (Fig. 3.6c, e). These iron-containing minerals lacked equivalents in the solid substrate (Fig.

3.6d, f) and formed by biological precipitation from ions in the medium.

3.4.3 Silica concentrations in solution

We incubated cyanobacteria in solutions containing different concentrations of silica (0 to 0.4

mM) to determine the role of silica in the formation of mineral coatings around cyanobacterial

cells. Smoother and more continuous coatings formed around cells grown in media with high

concentrations of silica (0.1 and 0.4 mM) compared with cells grown in the silica-free medium

(Fig. 3.7, see also Newman et al., 2016 for similar findings). Measurements of dissolved silica

concentrations confirmed that these concentrations matched the concentrations of silica in the

sterile experimental medium (0, 0.1 or 0.4 mM). Thus, the presence of different solid substrates

(e.g., siliciclastic sand, illite powder) did not measurably increase the concentration of silica and

experimental media were undersaturated with respect to the precipitation of amorphous silica

throughout the experiments.

3.4.4 Suspended sediment

To understand the relationship between suspended fine particles and fossilization, we incubated

cyanobacteria in culture jars with different amounts of illite added to the solution (0, 5.6 and 55.6
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mg/L) or in the presence of mechanical agitation that can suspend fine sediment (0, 150 or 170

rpm; 15 mm orbital diameter). Smoother, more extensive mineral coating formed in experiments

with higher concentrations of fine particles (5.6 and 55.6 mg/L) and faster mechanical agitation

(150 and 170 rpm, Fig. 3.7). These experiments also revealed conditions that were able to coat

thin filamentous cyanobacteria and heterocystous cells, which lacked thick sheaths (Fig. 3.7).

Namely, when 55.6 mg/L of illite was added to the medium or when increased agitation (170

rpm) suspended more clay minerals from the sand, nearly all filaments in the cyanobacterial

aggregates had a smooth, thick mineral veneer (~0.5 pm) and minerals were also present in the

extracellular spaces between cyanobacterial filaments (Fig. 3.7e, h). Minerals completely

enveloped cells within 5 days under these conditions and commonly preserved the shape and

texture of individual microbial filaments. Mechanical agitation suspended a measurable quantity

of fine particles into solution. As expected, large mechanical disturbances (170 rpm) suspended

the greatest amount of fine particles into solution (84 20 mg/L), whereas moderate disturbance

(150 rpm) and no motion suspended 14 1 mg/L and 5 3 mg/L of material, respectively. Thus,

increased loads of fine particles in suspension promoted the formation of mineral coatings

around cyanobacterial cells and the filling of intercellular spaces.

3.4.5 Preservation of microbial mats

Next, we determined whether the same mechanisms were able to preserve surface-attached

microbial mats. In the absence of added illite powder, cyanobacterial cells remained effectively

uncoated during incubation (60 days, Fig. 3.8a, b, Supplementary Fig. 3.1). In a separate

experiment, we added illite powder to the solution above the established mats (after 41 days of

microbial growth); the addition of clay mimics conditions expected in natural environments,
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where continuous or intermittent waves and currents suspend clay minerals and deliver them to

microbial mats. After only 5 days in the presence of added clay (46 days of microbial

incubation), we observed that cyanobacterial filaments in mats were covered by a smooth veneer

of platy minerals (Fig. 3.8c, d). Minerals were present both around filaments and in intercellular

spaces and preserved the shapes of individual cyanobacterial filaments. After 60 days (Fig. 3.8e),

cyanobacterial filaments in the mats with added clays were significantly thicker than those in

clay-free solutions that were sampled at the same time point (mats with clays: 2.77 1.05 pm,

clay-free mats: 1.07 0.26 pm, t test, t = 7.31, df = 21, p < .01), indicating that the average

coating thickness was 1.70 pm.

3.5 Discussion

3.5.1 Rapid and extensive coating of cyanobacterial filaments by clay minerals

Clay minerals around microbial cells are commonly reported in natural environments and can

precipitate in some microbial cultures (e.g., Konhauser et al., 1998; Konhauser and Urrutia,

1999; Phoenix and Konhauser, 2008). These microbe-mineral associations may be beneficial to

microbial growth. Firstly, clays have been shown to reduce the negative effects of UV irradiation

in bacteria (Bitton et al., 1972) and protect bacteria from environmental toxins by effectively

decreasing concentrations of harmful chemical species (Habte and Barrion, 1984; Phoenix and

Konhauser, 2008). Additionally, clays and iron-rich phosphates are thought to be important

sources of exchangeable nutrients (Stotzky and Rem, 1996; Phoenix and Konhauser, 2008),

particularly in nutrient-poor environments (Konhauser and Urrutia, 1999). Cyanobacteria in our

study likely experienced similar benefits, but we also note that the complete encrustation of

cyanobacteria by minerals (as observed in our suspended sediment experiments, Fig. 3.7) may
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have reduced the transport of cellular waste and nutrients and limited the penetration of sunlight.

The observed enrichment of thick-sheathed cyanobacteria in our experimental cultures (Fig. 3.2)

and the abundance of empty cyanobacterial sheaths (e.g., Fig. 3.4c) suggest that cyanobacteria

were able to avoid harmful effects of complete encrustation by escaping from their sheaths into

the surrounding medium.

The rapid formation of shape-preserving mineral coating is key to the preservation of

microbial fossils in the geologic record. Our experiments demonstrate that clay minerals can coat

cyanobacterial cells within weeks, under oxic conditions and without any noticeable interruption

to cell growth or photosynthetic abilities. These observations provide additional insight into

previous studies which have attributed enhanced microbial preservation to the presence of anoxic

conditions where photosynthetic organisms undergo moderate to extreme cell decay (e.g.,

Callow and Brasier, 2009).

3.5.2 Microbial trapping of sediment and the precipitation of clay minerals

Extracellular polymeric substances (EPS) and sheaths around cyanobacterial filaments have been

shown to facilitate the biological flocculation, trapping and precipitation of minerals (e.g., Bar-

Or and Shilo, 1988; Phoenix et al., 2000; Chen et al., 2011), especially in carbonate systems

(e.g., Merz-PreiB and Riding, 1999; Obst et al., 2009; Zippel and Neu, 2011). EPS are secreted

by most cyanobacteria into the surrounding environment (Wingender et al., 1999) and are

composed primarily of polysaccharides (Costerton et al., 1981), but also may contain proteins

and nucleic acids (Platt et al., 1985; Nielsen et al., 1997; Dignac et al., 1998). In contrast,

cyanobacterial sheaths, which are composed of carbohydrates, directly encapsulate microbial

cells (Tease and Walker, 1987; Wingender et al., 1999). In our experiments, minerals readily
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coated the surfaces of thick cyanobacterial sheaths (e.g., Figs. 3.1 and 3.3), but only filled the

intercellular spaces in experiments with the greatest amount of added illite powder and fluid

agitation (Fig. 3.7). Minerals may have preferentially coated microbial sheaths due to chemical

differences between bacterial sheaths and EPS (e.g., Nicolaus et al., 1999). Alternatively,

because the complete encrustation of microbial sheaths occurred over short timescales (i.e.,

weeks), such rapid and extensive coating may have prevented the subsequent release of EPS into

the surrounding environment and thus, hindered the coating of intercellular spaces in most

experiments. Regardless, our observations are consistent with reports of commonly and

exceptionally preserved cyanobacterial sheaths throughout the geologic record on a wide range

of sedimentary surfaces in siliciclastic environments (German and Podkovyrov, 2011; Sergeev et

al., 2011; Schopf et al., 2015).

Cyanobacterial sheaths in our experiments are encrusted by aluminum- and iron-rich

minerals identical to particles suspended from the underlying siliciclastic sand and illite powder.

Previous experiments demonstrated that most of these minerals are trapped from suspension

rather than precipitated (Newman et al., 2016). However, similar minerals also occur, albeit less

frequently, in the presence of quartz sand and glass beads even though these substrates contain

neither iron nor aluminum. This suggests that these iron- and aluminum-rich minerals can also

form through precipitation. For this process to occur, sources of aluminum and iron must be

present. Although generally considered toxic to cyanobacteria, the accumulation of aluminum

has been shown in the cultures of Anabaena cylindrica (Pettersson et al., 1986, 1988). Therefore,

the accumulation of aluminum and other metals by inoculum cells could have stimulated the

subsequent precipitation of minerals in our experiments.
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In contrast to aluminum, iron was not detected in cells from the inoculum or in the glass bead

and quartz sand substrates. This suggests that iron-rich minerals precipitated around cells from

ions present in the medium (Fig. 3.6c, e). Field and laboratory studies of microbe-mineral

interactions in iron-rich environments have proposed the essential role of iron in the nucleation

and precipitation of aluminosilicates (Ferris et al., 1988; Konhauser et al., 1993; Konhauser,

1997). Although iron-rich aluminosilicates were sometimes present in the coatings around

cyanobacteria (Fig. 3.6), these precipitates were not ubiquitous in these experiments, showing

that iron is not essential for the formation of mineral coatings around cyanobacterial cells.

3.5.3 A model for microbial preservation and implications for the geologic record

Shales and other rocks composed of fine-grained sediments are typical sources of the best-

preserved microbial fossils (e.g., Knoll, 1985; Schieber, 1986; Butterfield et al., 1988). Our

experiments investigating the effects of high clay load (e.g., 55.6 mg/L of medium) specifically

address conditions that are relevant to fossil preservation in these environments. In contrast,

conditions that probe lower clay loads highlight associations between exceptionally preserved

microbial fossils and textures, and sandy environments rich in clay and silt (e.g., Hagadom and

Bottjer, 1997; Banerjee and Jeevankumar, 2005; Lan and Chen, 2013; Menon et al., 2015). For

example, Banerjee and Jeevankumar (2005) identify a veneer of clay minerals coating the

microbially shaped surfaces of a Paleoproterozoic sandstone. Similarly, Hagadom and Bottjer

(1997) report the exceptional preservation of MISS in shallow subtidal to intertidal depositional

environments with inferred high concentrations of clay minerals and micas. Our experiments

provide a mechanistic explanation for these observations and constrain the amounts of clay and

other fine-grained minerals required to preserve microbial textures and fossils. We show that the
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trapping and binding of minerals and the microbially mediated mineral precipitation may have

promoted the preservation of microbial mats and features on sediment surfaces (e.g., wrinkle

structures). The same processes may have also fossilized microbial tubes and sheaths throughout

the Proterozoic and early Paleozoic. Moreover, MISS are also expected when microbial particles

and mats experience sediment loads larger than 13 mg/L and/or high concentrations of dissolved

silica (0.1 to 0.4 mM, Figs. 3.7 and 3.8).

Exceptionally preserved MISS and microbial fossils are frequently preserved in depositional

environments characterized by moderate to strong wave and tidal energies (e.g., Gehling, 1999;

Noffke et al., 2002; Gehling and Droser, 2009). Tidal currents have been found to play an

important role in the formation of modem microbial mats (Cuadrado et al., 2013, 2014), and may

also have promoted microbial fossilization in the siliciclastic record. In our study, we find

extensive, veneer-forming minerals coating cyanobacteria in cultures exposed to the greatest

fluid agitation (170 rpm), which suspended the largest quantity of fine particles (~84 mg/L).

However, the positive influence of fluid motion on microbial preservation may be limited; if the

wave energy is excessively strong, microbial mats will not be able to grow or can be broken up

and completely eroded (Noffke et al., 2002; Bosak et al., 2013; Mariotti et al., 2014).

Alternatively, if the environmental disturbances produce and sustain only weak fluid motion, fine

particles will not be suspended into solution. Thus, the fossilization of microbial mats on the

surfaces of barren, coarse-grained siliciclastic sand may occur as follows: (i) Microbial mats

develop in environments characterized by low or moderate wave energies that allow for the

initial colonization and growth (approximately one month, Bosak et al., 2013; Mariotti et al.,

2014; Fig. 3.9a). (ii) Intermittent storms suspend fine particles in the water column, but do not

erode microbial mats. This hydraulic agitation delivers a steady load of fine sediment (Fig. 3.9b).
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(iii) Trapped clay minerals promote the coating of microbial filaments and precipitation of

authigenic minerals around microbial cells within days to weeks (Fig. 3.9c). Depending on the

concentration of suspended clay minerals, this process may take as long as several weeks to

completely coat microbial filaments. However, under ideal conditions (e.g., high concentrations

of suspended sediment, -84 mg/L, which is consistent with values for modem shallow water

environments, see MacIntyre et al., 1996), microbial mats can become covered by clay minerals

in only a few days (Fig. 3.7). This preservation model builds upon previously proposed models

(e.g., Noffke et al., 2002), but does not require that mats be buried below layers of light-blocking

sediment. Instead, in the presence of moderate and intermittent hydraulic disturbances, the

preservation of microbial fossils and mat textures in coarser siliciclastic sediments may merely

require the formation of a thin, shape-preserving veneer of clay minerals around living

cyanobacteria and growing mats.

3.6 Conclusions

Fossilization of cyanobacteria in coarse-grained siliciclastic sediments requires a synergistic

contribution of mineral precipitation and the trapping of fine, suspended particles by filamentous

microorganisms. This process can occur within weeks in oxic solutions and creates -1 gm wide

coatings around cyanobacterial sheaths, but does not preserve the interiors of cells. High silica

concentrations in solution (0.1 mM), the presence of added clay minerals in the sediment (5.6 to

55.6 mg/L) and fluid agitation (150 to 170 rpm) coat cyanobacteria with the smoothest and most

continuous mineral layers. Sticky bacterial sheaths increase the fossilization potential under these

conditions and accumulate more minerals than non-microbial organic surfaces, spaces filled with

extracellular polymeric substances or unsheathed cyanobacteria. A combination of higher

concentrations of oceanic silica, the delivery of clay minerals by waves and currents and the
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absence of metazoan grazing and bioturbation may have preserved microbial textures and fossils

in subtidal and intertidal siliciclastic environments during the Proterozoic. The same conditions

may have been met in more restricted siliciclastic environments after the Cambrian Period.
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Fig. 3.1. Representative SEM images showing the morphological diversity of cyanobacteria and
mineral coatings. A and B) Cyanobacterial cells in the inoculum (day 0). The cells are not coated
by clay minerals. A) Thick filamentous cyanobacteria with sheaths (>1 tm wide, likely
Nodosilinea), thin filamentous cyanobacteria (<1 pm wide, likely Leptolyngbya) and unsheathed
or thinly sheathed cyanobacteria with cylindrical cells (likely Nostoc/Anabaena). B)
Extracellular polymeric substances (EPS) surround cells in the inoculum. C-E) Thick filaments
(>1 ptm wide) are coated by minerals. (c) Bulky minerals coat cyanobacterial filaments incubated
on siliciclastic sand and agitated at 150 rpm (41 days of incubation). D) Platy minerals coat
filaments incubated on illite powder and agitated at 150 rpm (15 days of incubation). E) Smooth,
extensive mineral coating encrusts filaments incubated on siliciclastic sand and agitated at 170
rpm (15 days of incubation). The entire surface is covered by small (<0.2 pm wide) mineral
grains. F) Unsheathed filaments with cylindrical cells (white arrows) remain uncoated after 15
days of microbial growth (agitated at 170 rpm on illite powder). All cultures were agitated on
VWR Minishakers with 15 mm orbital diameters (VWR International, Radnor, PA, USA). Scale
bar: A and B = 2 pm, C-F= 1 pm.
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Fig. 3.2. Microbial diversity of bacteria in experimental cultures and inoculum. 16S rRNA genes
were sequenced by Illumina sequencing. Experimental cultures incubated in the medium without
added silica (1. no agitation and 2. moderate agitation, 150 rpm, 15 mm orbital diameter) are
compared to the inoculum (two replicates). Nodosilinea, Leptolyngbya and Anabaena were the
most frequently represented cyanobacterial genera by OTU.
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Fig. 3.3. Representative SEM images of cyanobacteria grown on silica sand after A) 0 days, B) 4

days, C) 20 days and D) 41 days. The extent of mineral coverage and smoothness of coatings

increases during the first three weeks. Circles denote areas of extensive mineral coverage around

cyanobacterial filaments. Scale bar = 2 [im.
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Fig. 3.4. Electron microscopy images of cyanobacterial sheaths. A and B): Transmission electron
microscopy (TEM) images of cyanobacterial cells grown in the presence of 5.6 mg of illite
powder/L of medium. A) Inoculum cells are not coated in clay minerals (day 0). Fibrous material
around the cells is the sheath, which is at least as thick as the cell itself. B) After 15 days of
growth on illite powder, cyanobacterial cells are encrusted by small clay grains. Minerals do not
penetrate into the interiors of the cells, but instead coat the sheaths. C) SEM image of an empty
cyanobacterial sheath (cell culture grown on glass beads for 15 days). Scale bar: A and B = 800
nm, C = 200 nm.
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Fig. 3.5. Representative SEM images and EDS spectra showing the absence of mineral coating
around cellulose fibers incubated in media with low (0 mM) and high (0.1 mM) silica in the
presence of silica sand. A) and C) cellulose fibers in the medium containing 0 mM silica after 15
days. B) and D) cellulose fibers in the medium containing 0.1 mM silica after 15 days. Squares
denote areas analyzed by EDS. Scale bar: A and B = 10 pm; C and D = 2 pm.
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Fig. 3.6. Representative SEM images and EDS spectra of coated cyanobacteria and

corresponding solid substrates. A and B) inoculum that was not exposed to any minerals (day 0).

C) Cyanobacteria grown on a pure quartz substrate (after 14 days of incubation) and D) close-up

of quartz grain. E) Cyanobacteria grown on glass beads (after 14 days of incubation) and F)

close-up of a single glass bead. Square boxes indicate areas analyzed by EDS. Quartz substrate

and glass beads were purchased from Sigma-Aldrich (St. Louis, MO, USA).
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Fig. 3.7. Representative SEM images showing the mineral coating of cyanobacteria with varying
concentrations of silica (0-0.1 mM), clay added to solution (0-55.6 mg/L medium), and
mechanical disturbance (0-170 rpm, 15 mm orbital diameter) after 15 days of incubation.
Variations in silica concentrations: A) cyanobacteria grown in the presence of low silica
concentrations (0 mM) on powdered illite and B) cyanobacteria grown in the presence of high
silica concentrations (0.1 mM) on powdered illite. Variations in clay added to solution: C)
cyanobacteria grown without a solid substrate, D) cyanobacteria grown with 5.6 mg of illite
powder/L of medium and E) cyanobacteria grown with 55.6 mg of illite powder/L of medium.
Variations in mechanical disturbance: F) cyanobacteria grown without any agitation, G)
moderate agitation (150 rpm) and H) high agitation (170 rpm) on silica sand. Circles denote
areas of extensive mineral coverage of cyanobacterial filaments; arrows denote minimal and/or
localized mineral coverage. Scale bar = 1 gim.
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Fig. 3.8. Representative SEM images of cyanobacterial mats grown on silica sand. A) Cells
growing without illite remain uncoated after 41 days and B) 60 days of growth. C) Mat growth
after 41 days, immediately before the addition of 1 g illite. D) Mats coated in clay minerals 5
days after the addition of illite and E) coated mats after 60 days of microbial growth. Scale bar
1 pm.
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Fig. 3.9. Model of microbial mat preservation in sandy, marine environments. A) Microbial mat
colonizes marine environments with low to moderate wave energies. B) Intermittent storms
suspend fine particles into solution, but do not erode the microbial mat. C) Fine particles are
biologically trapped by the microbial mat, which promotes the precipitation of authigenic
minerals. A mineral veneer is formed in days to weeks.
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Table 3.1. List of experiments.

Substrate Amount of substrate Silica Organic Rotations per
added to culture jar concentration material minute

(g) of basal media (rpm)
(mM)

Silica sand 20.0 0.0, 0.1 or 0.4 cyanobacterial aggregates 190*
Silica sand 20.0 0.0, 0.1 or 0.4 cellulose fibers 190*
Quartz sand ~20.0 0.0 cyanobacterial aggregates 190*
Glass beads ~20.0 0.0 cyanobacterial aggregates 190*
Illite 0.0 0.0 or 0.1 cyanobacterial aggregates 190*
Illite 0.0005 0.0 or 0.1 cyanobacterial aggregates 190*
Illite 0.005 0.0 or 0.1 cyanobacterial aggregates 190*
Silica sand 20.0 0.0 cyanobacterial aggregates 0 **
Silica sand 20.0 0.0 cyanobacterial aggregates 150**
Silica sand 20.0 0.0 cyanobacterial aggregates 170**
Silica sand 450.0 0.1 cyanobacterial mat 50**

*VWR Minishaker (VWR International, Radnor, PA, USA), 3 mm orbital diameter.**VWR Minishaker (VWR International, Radnor, PA, USA), 15 mm orbital diameter.
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3.8 Supplementary Information

Supplementary Methods: Calculation of fluid velocity for a comparison of agitation across

experiments

Cyanobacteria were continuously submerged and agitated on a VWR Minishaker with a 3 or

15 mm orbital diameter (VWR International, Radnor, PA, USA). The orbital motion of the

shaker produced a rotating surface wave within the jar, with a highly complex associated flow

(Salek et al., 2011). Visual observations suggest that the horizontal motion of the shaker excited

the first mode of the wave, which is characterized by the lowest period among all the possible

modes (Reclari, 2013; Reclari et al. 2014). Assuming that the rotating wave is linear, i.e., the

wave height is smaller than the wavelength, and that the orbital motion of the shaker is small

compared to the fluid orbital motion associated with the wave, the maximum tangential velocity

over a wave cycle calculated near the bed at the most outward position in the jar reads

gHT
"= 27rDcosh(2Ellh/D)

where g is the gravitational acceleration, T is the oscillation period, calculated from the

dispersion relationship as 2r / tanh(2Ellh/D), h is the still water depth, D is the jar

diameter, H is the crest-to-trough wave height, which was directly measured with a ruler on the

side of the jar and i i is the first root of the derivative of the Bessel function of the first kind,

which has an approximate value of 1.841 (Reclari, 2013). This formula, despite being

approximated, gives a robust prediction that allows for a comparison of the intensity of the near

bed flow across different experiments (Supplementary Table 3.1).
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Supplementary Fig. 3.1. Microbial mat grown over silica sand. A) Microbial mat incubated for
60 days. B) Close-up of a piece of microbial mat. Scale bar = 8 cm (A) and 1.4 cm (B).
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Supplementary Table 3.1. Calculated fluid velocity for each experiment

Substrate Silica Organic Depth of Wave Fluid
concentration material medium in height velocity

of basal culture jar due to (cm/s)
media (cm) agitation
(mM) (cm)

Silica sand 0.0, 0.1 or cyanobacterial 2.5 0.7 3.1*
0.4 aggregates

Silica sand 0.0, 0.1 or cellulose fibers 2.5 0.7 3.1*
0.4

Quartz sand 0.0 cyanobacterial 2.5 0.7 3.1*
aggregates

Glass beads 0.0 cyanobacterial 2.5 0.7 3.1*
aggregates

Illite 0.0 or 0.1 cyanobacterial 2.5 0.7 3.1*
aggregates

Illite 0.0 or 0.1 cyanobacterial 2.5 0.7 3.1*
aggregates

Illite 0.0 or 0.1 cyanobacterial 2.5 0.7 3.1*
aggregates

Silica sand 0.0 cyanobacterial 2.8 0.0 0.0**
aggregates

Silica sand 0.0 cyanobacterial 2.8 1.1 4.2**
aggregates

Silica sand 0.0 cyanobacterial 2.8 2.2 8.4**
aggregates

Silica sand 0.1 cyanobacterial mat 13.0 0.5 0.2

Note: Fluid velocity was calculated for all experimental conditions assuming jars to be
non-conical cylinders. See Supplemental Methods.
* VWR Minishaker (VWR International, Radnor, PA, USA), 3 mm orbital diameter, 190
RPM.
**VWR Minishaker (VWR International, Radnor, PA, USA), 15 mm orbital diameter, 0,
150 or 170 RPM.
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Chapter 4. Rapid formation of clay veneers delays the decay of soft tissues in

kaolinite-rich environments

4.1 Abstract

Exceptionally preserved fossils of soft-bodied organisms from the terminal Proterozoic and early

Phanerozoic are found in sandstone and siltstone strata characterized by abundant clay-rich

layers. Previous taphonomic experiments have shown that clay minerals such as kaolinite can

inhibit the decay of soft tissues, but the respective roles of clay minerals and microbial processes

in preservation remain to be elucidated. Here we seek to identify some of these mechanisms by

incubating scallop muscles for 45 days in kaolinite or silica sand. We find that <0.5 mm thick

veneers readily form around soft tissues incubated in kaolinite, but equally thick veneers do not

form around tissues incubated in its absence. These veneers are comprised of kaolinite grains

from the sediment and newly formed amorphous aluminosilicate phases that precipitated in

iron(II)-rich porewaters. The mineral veneers preserve the macroscopic shape of the soft tissues

in spite of continued decay. We hypothesize that this process, combined with sediment

compaction during diagenesis, may have led to the formation of two-dimensional compression

fossils in fine-grained sediments that were not disturbed by bioturbation.

4.2 Introduction

Ediacaran and early Cambrian siliciclastic sediments yield exceptionally preserved fossils of

soft-bodied organisms (Narbonne, 2005; Laflamme et al., 2011; Anderson et al., 2011; Cai et al.,

2012). These include two-dimensional Burgess Shale-type compressions in shales (Gaines et al.,

2008, 2012) and impressions of soft tissues in some Ediacaran sandstones and siltstones
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(Narbonne, 2005; Callow and Brasier, 2009; Gehling and Droser, 2009). Because clay minerals

are commonly found in fossiliferous sandy sediments and can even form thin laminae between

part/counterpart fossil impressions (Gehling, 1999) or aluminosilicate veneers (Orr et al., 1998),

they are hypothesized to facilitate the preservation of soft-bodied organisms (Butterfield, 1990).

The mechanisms for this are unclear, but may involve the replacement of labile tissues during

early diagenesis (Orr et al., 1998) and the inhibition of heterotrophic microbial activity

(Butterfield, 1990; McMahon et al., 2016). A role for mat-forming microorganisms is also

suggested in the sealing of soft tissues beneath the sediment surface by forming "death masks"

which facilitate the precipitation of protective veneers of iron sulfide (Gehling, 1999; Darroch et

al., 2012; Liu, 2016). Additionally, microbial processes are hypothesized to have promoted the

precipitation of authigenic clays around degraded tissues (Petrovich, 2001). However, most of

these mechanisms, as well as the shape-preserving interplay between porewater chemistry,

mineral composition and microbial processes remain to be determined.

Taphonomic experiments are critical to our understanding of organic preservation because

they can test the effects of clay minerals on the decay of modem soft-bodied organisms and

provide information on the preservation of soft tissues in past environments. Previous studies

such as Naimark et al. (2016) and Wilson and Butterfield (2014) reported better preservation of

polychaetes and crustaceans in the presence of kaolinite relative to montmorillionite, calcite or

quartz. They suggested that kaolinite, an aluminum-rich clay, suppresses bacterial decay

enzymes in a process similar to tanning which polymerizes organic material (Wilson and

Butterfield, 2014). Additionally, experiments with microbial mats have demonstrated the

formation of extensive, clay-rich veneers around cyanobacterial filaments by processes of

trapping/binding and biomineral precipitation (Newman et al., 2016, 2017). Similarly, Martin et
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al. (2004) experimentally demonstrated the adhesion of fine particles from the sediment to

invertebrate eggs. However, organomineral interactions involved in the early decay and

preservation of soft tissues remain to be characterized.

This study uses experimental taphonomy to probe the role of kaolinite and microbial

processes in the preservation of soft tissues. Our experiments with kaolinite reconstruct soft

tissue preservation in mm- to cm-thick claystone strata (e.g., the Chengjiang and Burgess Shale,

Zhu and Li, 2001; Gabbott et al., 2008), but can also inform mechanistic models for mixed fine-

grained/coarse-grained siliciclastic layers (e.g., Gehling, 1999). Scallop adductor muscles were

selected as model tissues because they are readily available and are similar to Ediacaran

organisms in size (~5 cm), morphology (discoidal) and likely composition (muscle fibers). We

demonstrate that kaolinite particles from the sediment attach to the tissue surfaces and that

authigenic clay minerals form between these trapped/agglutinated particles within 45 days. This

combination of trapping and precipitation facilitates the formation of <0.5 mm-thick mineral

veneers around soft tissues, delays organic decay and preserves the shape of the degrading

tissues, with some loss of height due to decay and sediment compaction.

4.3 Results and Discussion

4.3.1 Visual observations after 45 days

To identify factors that lead to the delayed decay of soft tissues in fine-grained environments, we

incubated scallop tissues for 45 days in kaolinite (purchased from Santa Cruz Biotechnology,

Inc., Dallas, TX, USA). Control conditions tested decay in silica sand (purchased from the

Ottawa Silica Company, Ottawa, IL, USA). All experiments were conducted in triplicate. Before

incubation, scallop tissues were surficially sterilized by soaking specimens in 100% 200 proof
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ethanol for 20 minutes. This sterilization procedure eliminated surficial bacterial contaminants

but did not sterilize bacteria that were endogenous to the scallop. Soft tissues were incubated in

the presence of an artificial seawater medium characterized by high concentrations of silica (0.1

mM) and low concentrations of sulfate (7.94 mM) relative to modem seawater (Fig. 4.1,

Supplementary Fig. 4.1, see Newman et al. 2016, 2017 for medium composition). Sand, clay

minerals and the artificial seawater medium were sterilized before experimentation by

autoclaving at 121'C for 20 minutes. The surface of the medium was in contact with the

atmosphere and the culture jars were continuously agitated to facilitate fluid motion. However,

the appearance of dark patches in the sand/clay (Supplementary Fig. 4.2) pointed to the

establishment of anaerobic areas around the soft tissues due to microbial activity. We compared

and contrasted tissues incubated in kaolinite with those incubated in silica sand (control

experiments) over the same interval of time (Supplementary Fig. 4.1). The samples became

increasingly malodorous after about 5 days and remained such until the end of the experiment.

After 45 days of incubation, we recovered two out of three scallops from kaolinite, only

one out of three from silica sand (Fig. 4.2) and the remaining samples completely disintegrated

during incubation. By the end of the experiment, all scallops lost between 60.8 to 100% of

weight when incubated in kaolinite and between 29.7 to 100% when incubated in silica sand.

Only scallops exhumed from kaolinite had a dark coating (Fig. 4.2) and attempts to separate this

veneer from the tissues with tweezers were unsuccessful. In rare instances when we were able to

remove pieces of the coatings, the soft interiors of the samples immediately liquefied. In

contrast, coated scallops maintained their discoidal/ovoid shape throughout exhumation and later

treatments.
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4.3.2 Characterization of mineral veneers around soft tissues

To determine the composition of the dark coatings around soft tissues (Fig. 4.2b), we analyzed

scallops by scanning electron microscopy, X-ray spectroscopy (SEM-EDS) and selected area

electron diffraction (TEM-SAED). All fresh scallops were composed of carbon, oxygen and

trace amounts of nitrogen (Fig. 4.3), with spots of magnesium, chlorine, sodium and calcium

(Fig 4.3). In contrast, the dark coatings contained aluminum, silica, potassium, calcium,

magnesium and iron indicating that clay minerals coated scallop surfaces that had been in contact

with kaolinite (Fig. 4.3b, c). Minerals which comprised the coatings were either morphologically

indistinguishable from tissue surfaces (Fig. 4.3b) or occurred as discrete, platy grains (Fig. 4.3c).

The presence of both kaolinite grains and fine-grained particles which differed in composition

from the sterile kaolinite (iron, potassium-rich smectites, Fig. 4.4) in the coatings suggested that

some kaolinite grains adhered to the tissues and that new minerals, formed either as new phases

or as transformed materials from the original kaolinite, precipitated on the surfaces of the

decaying soft tissues. The coatings on the tissue surfaces were not covered by microbial biofilms

and contained only sporadic microbial cells; these microorganisms likely proliferated from

bacteria that were endogenous to the scallop tissues before incubation (Fig 4.3c, see methods).

Chemical assays demonstrated changes in the porewater chemistry due to the reduction of

iron and the dissolution of silica associated with the decay of soft tissues. In the sterile medium

and sediments, iron(II) was not detectable and dissolved iron(III) was present at micromolar

concentrations. However, the concentrations of iron(II) in the porewaters of some replicates rose

to 1.17 mM and those of iron(III) rose to 0.17 mM during the first 15 days of incubation, while

soft tissues were still visible in the replicate incubation jars. Concentrations of silica were two to

three times higher in sand/clay that contained soft tissues relative to the sterile sand/clay and

87



more than an order of magnitude higher than those in the sterile medium (Supplementary Table

4.1). These observations demonstrated active reduction of iron associated with heterotrophic

degradation and the concomitant release of silica due to the dissolution of quartz and clay

minerals. The lower concentrations of iron(II) and silica in samples that did not decay

completely were consistent with the drawdown of iron and silica due to the formation of iron and

silica-rich veneers.

To identify iron-rich mineral phases coating tissue surfaces, we used micro-X-ray

diffraction (pXRD, beamline 12.3.2), X-ray fluorescence (XRF, beamline 10.3.2) mapping and

iron K-edge X-ray absorption near edge spectroscopy (XANES, beamline 10.3.2) at the

Advanced Light Source (Berkeley, CA, USA). t-XRD analyses revealed that iron-, calcium- and

sodium-rich clays coated soft tissues incubated in both kaolinite and silica sand (Supplementary

Fig. 4.3). XRF mapping showed the accumulation of iron on all scallop tissues during burial

(Fig. 4.5, compare 4.5a with 4.5b). XANES spectra of the samples exhumed from kaolinite best

matched the following iron standard spectra (from the 10.3.2 iron standards database, ALS,

Berkeley, CA, USA): iron-rich basaltic glass and iron-rich clays. This best-fit match supported

the neoformed (possibly amorphous) nature of these minerals (Figs. 4.3, 4.4, 4.5). These

observations suggest that iron(II)-rich minerals were authigenic precipitates that incorporated

iron(II) released due to organic decay in the anoxic zone around the decaying tissues. Taken

together, this demonstrates that iron-rich mineral veneers, composed of precipitated and attached

minerals can form on scallop tissues incubated in either sandy or clay-rich environments.

However, only when soft tissues were incubated in kaolinite did visible, extensive veneers form

around tissue surfaces (Fig. 4.2b).
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4.3.3 Clay minerals facilitate the preservation of soft tissues

Our taphonomic experiments identify the formation of authigenic minerals under anoxic

conditions and in the presence of microbial iron reduction as conditions that best delay the decay

of scallop adductor muscles. Direct or indirect microbial iron reduction requires organic matter

(or H2) as the source of electrons, but does not require strict anoxia or the presence of sealing

layers; our system did not rely upon a sealing layer which acted as a barrier to sediment

permeability, as hypothesized by Gaines et al. (2012) and Gehling et al. (1999).

The formation of mineral veneers also requires sources of silica and aluminum. Because

more silica and iron(II) are released into the solution when soft tissues are present than when

they are absent (Fig. 4.5, Supplementary Table 4.1), organic decay seems to enable the

dissolution of labile sources of silica, iron(III) and aluminum in both kaolinite and silica sand.

These findings are consistent with Michalopoulos and Aller (2004), who reported the formation

of authigenic iron(II)-rich clay minerals around diatom frustules in modern silty sediments of the

Amazon delta and invoked microbial iron reduction in this process. Our experiments extend

these observations from small siliceous organisms in modern clay-rich deltaic systems to larger

organisms that lacked original mineral components and were preserved in Ediacaran sandstones

and siltstones.

Factors that control the rates of organic degradation around soft-bodied organisms remain

an open question. In fact, the mere presence of kaolinite did not delay the decay in all triplicate

experiments and the one scallop recovered from silica sand without kaolinite had lost the least

weight of all preserved samples (Fig. 4.2c). Thus, the overall availability of reactive iron(III) and

89



the activity of heterotrophic microorganisms in the sediment is likely of paramount importance

to the decay delay of soft tissues.

Based on observations from our study and assuming no bioturbation during the

Ediacaran/early Cambrian (Seilacher and Pfl~tger, 1994), we propose the following model of

preservation: (1) organisms are buried under a layer of sediment; (2) during the early stages of

decay (days, see Newman et al. 2016) kaolinite grains adhere to the organic surfaces and form a

discontinuous veneer; (3) over time, organic decay under anaerobic conditions facilitates the

release of silica, iron and aluminum and enables the formation of authigenic, cation-rich clay

mineral veneers on the surfaces of the decaying tissues; (4) this physical barrier slows down

microbially-catalyzed decay and preserves the shape of the organism; (5) the organic material in

the interior eventually decays, leading to compaction and a decrease in height, but preserves the

width and the length of the original tissue.

4.4 Conclusions

Our experiments demonstrate that muscle tissues can be protected by clay coatings in

shallow marine siliciclastic environments characterized by abundant clay mineral horizons.

Similar mechanisms can explain the preservation of two-dimensional compression fossils

observed in Burgess Shale-type deposits (Off et al., 1998) or part-counterpart impressions

(Gehling et al. 1999). Veneers composed of an authigenic component (see Orr et al., 1998 for

similar mechanisms in deep water settings) and sedimentary clay minerals that initially adhered

onto the organic surfaces may have facilitated the preservation of these fossils in clay-rich

sediments. Thin mineral veneers protected soft tissues from microbial decay by (1) inhibiting

physical contact between tissues and heterotrophic microorganisms and (2) providing support for
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the decaying soft tissues. Thin mineral veneers (<0.5 mm thick) may have facilitated the

preservation of two-dimensional compression fossils, whereas thicker, more extensive mineral

coatings would have inhibited soft tissue compression during diagenesis and facilitated the

formation of molds and three-dimensional casts in some Ediacaran and early Cambrian coarse-

grained siliciclastic sediments (Gehling, 1999; Narbonne, 2005; Mapstone and McIlroy, 2006;

Callow and Brasier, 2009; Meyer et al., 2014). Future experiments should determine the optimal

thickness and extent of mineral coverage required to form two- and three-dimensional fossils and

investigate the evolution of veneer formation at various time points throughout the burial

process.
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Fig. 4.1. Setup for taphonomic experiments. A) Scallop (ST) incubated in a 68 mm tall and wide
plastic jar with 30 g of kaolinite powder and covered by a -1.5 cm-thick layer of silica sand.
ASW marks the artificial seawater medium. B) Experimental jar in a larger container filled with
ASW.

A B

Fig. 4.2. Photographs of the decaying soft tissues after 45 days. A) Representative photograph of
scallop tissue before experiment on day 0. B) Scallop exhumed from kaolinite substrate. The
scallop surface is coated in dark, clay minerals. C) Scallop exhumed from a silica sand substrate
without kaolinite.
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Fig. 4.3. Representative scanning electron micrographs and energy dispersive X-ray spectra of
scallop tissues. All scallops were exhumed on day 45, unless otherwise stated. A) Scallop on day
0 (before incubation), B) scallop incubated in kaolinite; minerals coating soft tissues are
morphologically indistinguishable from the background organic material and C) scallop
incubated in kaolinite; mineral is bulky and platy. Arrows denote microbial cells. Samples were
coated with gold and palladium. Scale bar in all micrographs is 1 tm. White boxes denote areas
analyzed by SEM-EDS; the spectra of these areas are found below the corresponding SEM
images.
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Fig. 4.4. Scallop tissue incubated in kaolinite for 45 days. A) Bright-field transmission electron
microscopy (TEM) image of scallop tissue exhumed after 45 days. Crystalline minerals adhere to
tissue. The white small square on the crystalline mineral shows the area targeted for selected area
electron diffraction (SAED) shown in B. B) High resolution transmission electron microscopy
(HRTEM) showing interplanar d-spacing of 4 A. The SAED pattern from the mineral area
marked in A shows ring patterns of authigenic euhedral crystallite exhibiting monoclinic net
pattern characteristics of clay minerals (potassium and iron-rich illite/smectite). C) Represents
the area marked by the larger white square in panel A. The scallop tissue is characterized by
dark patches due to permineralization. The white square shows the area targeted for SAED. D)
SAED of the area marked in panel C. HRTEM images show microcrystalline minerals embedded
in the tissue with a uniform lattice fringe that corresponded to (001) plane with interplanar
spacing of 4 A. This is characteristic of potassium and iron-rich illite/smectite.
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Fig. 4.5. Chemical changes. X-ray fluorescence maps of calcium (green) and iron (red) on soft
tissue surfaces: A) Scallop before experiment (day 0) and B) scallop incubated in kaolinite for 45
days. Arrow denotes area of interest on scallop analyzed by XANES. C) Representative iron K-
edge XANES spectra for sterile kaolinite grains, scallop before experimentation (average of 5
spots) and scallop buried in kaolinite for 45 days. Best fit standard (iron-rich basaltic glass,
57.5%, ferrosmectite, 22.0% and kaolinite, 20.2%, sum sq: 9.9x10 5 ; 10.3.2 iron standard
database at 10.3.2 ALS, Berkeley, CA, USA) is plotted in red and residuals are plotted in grey.
D) Concentrations of dissolved silica (mM) and iron(II) (mM) in porewaters. X denotes
replicates that underwent complete degradation; check mark denote replicates with recovered
scallops after 45 days. R1-3 denotes replicates 1-3. Dashed red line denotes saturation with
respect to amorphous silica. Scale bar for A and B is 200 im.
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4.6 Supplementary Information

Supplementary Methods

Tissue preparation

To identify factors that determine the preservation of soft tissues by clay minerals, we incubated

scallop adductor muscles in kaolinite (Fig. 4.1, Supplementary Fig. 4.1); our experiments tested

soft tissue preservation in cm-thick layers of fine-grained material and reconstructed fossilization

in the clay-rich strata of the Ediacaran and early Cambrian (e.g., Zhu and Li, 2001; Gabbott et

al., 2008). Although many fossiliferous siliciclastic sediments of the Ediacaran and early

Cambrian included mixed substrate types (both fine-grained and coarse-grained particles, e.g.

Gehling, 1999), we buried soft tissues in kaolinite to specifically determine the role of clay

minerals in preservation. Fresh, untreated scallops were purchased from the New Deal Fish

Market (Cambridge, MA, USA) and the adductor muscles were cut from the shell on the same

day to kill the scallops. The adductor muscles were frozen at -20'C (for one to two days) until

the first day of the experiment to prevent soft tissue decay before incubation. Scallops were

thawed at room temperature on the first day of incubation. Scallops were rinsed with double

distilled water to remove dirt, sand and other impurities and sterilized by soaking in 100% 200

proof ethanol for 20 minutes; this procedure surficially sterilized the scallop tissues, but did not

sterilize endogenous bacteria. The ethanol was decanted by pouring and the scallop tissues were

left in the fume hood for one hour to evaporate excess ethanol. Any remaining ethanol was

removed by rinsing the scallops with filter-sterilized double distilled water (0.2 pm Nalgene

Rapid Flow Sterile Top Filters, VWR, Radnor, PA, USA). All excess water was removed by

pipetting and scallops were weighed. Previous experiments had shown no observable difference

98



in tissue decay between scallops frozen and sterilized with ethanol and those that were incubated

in silica sand immediately after their removal from the shell. However, the freezing and

sterilizing process removed surficial bacterial contaminants and allowed for us to determine the

role of endogenous bacteria in soft tissue decay.

Experimental setup

Scallops were incubated in sterile culture jars (diameter: 68 mm, height: 68 mm; Grenier Bio-

One, Kremsminster, Austria) in the presence of 30 g of kaolinite powder (Santa Cruz

Biotechnology, Inc., Dallas, TX, USA). The kaolinite powder was sterilized before

experimentation by autoclaving at 121 *C for 20 min. Scallops were buried a few cm below the

kaolinite surface (Fig. 4.1 a) and a 1.5 cm thick layer of sterile silica sand (autoclaved;

purchased from the Ottawa Silica Company, Ottawa, IL, USA) was added to the surface of

kaolinite to prevent the suspension of kaolinite into solution (Fig. 4. la). The culture jar with a

single scallop was placed in a larger plastic container with a closeable lid (18.7 x 16.5 x 11.4 cm

[1 x w x h], Sterilite Flip Top, Sterilite Corporation, Townsend, MA, USA); each container was

pre-filled with 1.5 L of sterile artificial seawater characterized by high concentrations of silica

(0.1 mM, see Newman et al. 2016, 2017 for the medium composition) (Fig. 4.1b). Control

conditions investigated the decay of scallop tissues buried in sterile silica sand (130 g, purchased

from the Ottawa Silica Company, Ottawa, IL, USA) without added kaolinite under identical

conditions to those described above (Supplementary Fig. 4.1 a, b). All experiments (kaolinite and

control experiments) were conducted in triplicate.

All undecayed tissues were exhumed on day 45 with a plastic serological pipette.

Exhumed scallops were rinsed with filter-sterilized double distilled water (0.2 [im Nalgene Rapid
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Flow Sterile Top Filters, VWR, Radnor, PA, USA) and placed in a sonicating bath for 10 min to

facilitate the removal of fine grains that were not tightly bound to the scallop surface. The

samples were weighed after rinsing and the weight loss was determined by calculating the

difference in weight (in g) of the samples before and after incubation. This number was divided

by the initial scallop weight and expressed as a percentage. This underestimated the weight of the

actual tissues incubated in kaolinite because of the presence of clay veneers, but it did not affect

comparisons between experiments because mineral veneers were thinner than 1 mm.

Throughout all experiments, the surface of the artificial seawater medium was in contact

with the atmosphere because the plastic containers were not air tight (Fig. 4. 1b, Supplementary

Fig. 4.1b). Culture jars were continuously agitated on VWR Minishakers (VWR International,

Radnor, PA, USA) to facilitate fluid motion. The medium was replaced every 5 to 10 days to

remove dissolved organic matter and to maintain a semi-constant pH (~7.5) in the water column.

Water chemistry

To measure changes in porewater chemistry associated with decay, iron(II), iron(III), dissolved

silica and sulfide were measured colorimetrically using a Biotek multiplate reader at the

following wavelengths: 562 (iron), 810 (silica) and 670 nm (sulfide). See Stookey (1970),

Newman et al. (2017) and Cline (1969) for methods describing iron, silica and sulfide

determination, respectively. Experiments were sampled 5 days after each replacement of the

medium. Porewater samples (<4 mL) were collected using 5 mL plastic syringes with 18 gauge

needles (VWR International, Radnor, PA, USA) ~6.5 cm below the substrate surface. All

porewater and water column samples were centrifuged aerobically for 10 minutes at 10,000

rotations per minute to separate particulate matter from the liquid medium. The supernatant was
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decanted and filtered aerobically through 0.2 tm sterile syringe filters with a polyethersulfone

membrane (Acrodisc®, Pall Laboratory, Westborough, MA, USA).

Electron microscopy

To identify the composition and distribution of minerals coating soft tissues, scallops were

imaged by scanning electron and transmission electron microscopy with electron dispersive

spectroscopy (SEM- and TEM-EDS). For all exhumed scallops, a small piece (~2 cm in width)

was isolated using a 1 mL plastic pipette tip to separate the tissue. Samples were imaged by TEM

using a JEOL 2010F transmission electron microscope (TEM, JOEL 2010F, JOEL, CA, USA)

and an energy dispersive spectrometer (EDS, Bruker silicon drift detector SDD, Bruker, MA,

USA). Samples for SEM were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer

with 0.1% CaCl2 (pH = 7.4). Samples were stored for 3 to 7 days at 4'C to ensure the complete

fixation of soft tissues. After this time, samples were rinsed twice for 10 min with a 0.1 mM

sodium cacodylate buffer solution (stored at 4'C), followed by 6 rinses with double distilled

water. Samples were dehydrated using an ethanol-water drying series (30%, 50%, 70%, 80%,

90%, 100%, 100%, 100%), with 20 min steps and left overnight in the fume hood to dry.

Dehydrated scallop tissues were transferred to carbon tape and coated with gold and palladium to

reduce SEM image charging (Keck Facility, Whitehead Institute, MIT, Cambridge, MA, USA).

All samples were imaged on a Zeiss Supra Scanning Electron Microscope with a secondary

electron detector (Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA).

Elemental composition in regions of interest was determined using an electron-dispersive X-ray

spectrometer operating at 10 kV.
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4.6.5 ptXRD

The composition of minerals coating scallop tissues was determined at the Advanced Light

Source (beamline 12.3.2, Berkeley, CA, USA) with a combination of micro-X-ray fluorescence

(ptXRD) mapping and micro-X-ray diffraction (iXRD) at 10 keV. Previously frozen samples

were thawed, but not dried, and placed on the sticky side of Kapton@ polyimide tape (DuPont,

Hayward CA, USA) for analysis. A 3 x 3 [tm XRF map was first generated and points with high

iron intensity were selected for diffraction. XRD data was processed using the program available

at the beamline and minerals were identified using the program HighScore Plus.

4.6.6 X-ray microprobe

We determined the spatial distribution and speciation of iron coating scallop tissues at the

Advanced Light Source (beamline 10.3.2, Berkeley, CA, USA) using micro-focused X-ray

fluorescence ([tXRF) mapping and iron K-edge X-ray adsorption near edge structure (pXANES)

spectroscopy, respectively. Pre-frozen samples (-80'C) were first thawed, air dried and then

mounted on the non-sticky side of Kapton@ polyimide tape (DuPont, Hayward CA, USA) for

analysis. tXRF maps were first generated using an incident beam at 100eV above the iron K-

edge and spots of interest were selected for XANES measurements. Fluorescence data were

recorded using a germanium (Ge) solid state detector (Canberra, ON, Canada). Fluorescence

emission counts were recorded for sulfur, iron, calcium, potassium, chlorine, silica and

phosphorous. XANES spectra were calibrated with an iron foil (first derivative maximum set at

7110.75 eV). Maps were recorded with a beam spot size of 6 x 6 pm. Spectra were recorded with

a beam spot size of 12 x 3 ptm. Spectra were least-square fitted using a large database of iron

bearing standard compounds (included in the 10.3.2 database). All spectra were deadtime-
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corrected, calibrated, pre-edge background subtracted and post-edge normalized using a suite of

LabVIEW based programs available at the beamline.
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Supplementary Fig. 4.1. Setup for control experiment. A) Scallop (ST) incubated in a 68 mm tall
and wide plastic jar with 30 g of silica sand. ASW marks the artificial seawater medium. B)
Experimental jar in a larger container filled with ASW.

A .- ~.B

Supplementary Fig. 4.2. Photographs of culture jars on day 45 before soft tissue exhumation.
Scallops (ST) buried in kaolinite: A) scallop remains intact and B) scallop has completely
decayed. Scallops buried in silica sand without kaolinite: C) scallop remains intact and D)
scallop has completely decayed. Arrows denote black patches, indicative of microbial activity.
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K: kaolinite (cation poor aluminosilicate)
CLI: Na-, Ca-, Fe-rich aluminosilicate
CL2: Mg-, Fe- rich aluminosilicate
CL3: Fe-rich aluminosilicate
*: Fe hydroxide hydrate
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Supplementary Fig. 4.3. uXRD spectra of A) scallop before experiment, day 0, B) scallop
incubated in kaolinite for 45 days and C) scallop incubated in silica sand without kaolinite for 45
days. For B) and C) the scallop background (A) was subtracted from the original spectra.
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Supplementary Table 4.1. Concentrations of silica, iron(II), iron(III) and sulfide in porewaters

Scallops incubated in clay/sand Sterile experiments, no scallops

Ions/dissolved Kaolinite Silica sand Kaolinite Silica sand

Day silica Rl' R21  R3 Rl R21 R3 RI R2 RI R2
silica (mM) 1.28 1.32 1.71 2.39 1.48 0.40 0.46 0.62 0.45 0.39

Fe2
+(mM) 0.17 0.20 0.14 >1.14* 0.34 >1.17* <0.01 <0.01 <0.01 <0.01

10 Fe3
+(mM) 0.10 0.09 0.14 >0.00* >0.06* >0.01* <0.01 <0.01 <0.01 <0.01

sulfide (ptM) 0.02 n.d. n.d. 1.22 6.53 37.99 -- -- -- --

silica (mM) -- -- -- -- -- -- 0.65 0.64 0.48 0.41

Fe2
+(mM) 0.05 0.11 0.15 >0.97* 0.13 >1.04* <0.01 <0.01 <0.01 <0.01

15 Fe3
+(mM) 0.10 >0.00* 0.08 >0.00* >0.17* >0.00* <0.01 <0.01 <0.01 <0.01

sulfide (pM) 1.05 2.59 n.d. 1.82 3.92 10.34 -- -- -- --

20 silica (mM) 1.45 1.10 0.96 2.01 0.72 1.70 0.36 0.38 0.27 0.29
silica (mM) 0.35 0.65 0.52 0.39 0.45 1.30 0.30 0.51 0.23 0.42

Fe2+(mM) <0.01 0.01 0.01 0.03 0.02 0.8 n.d. <0.01 <0.01 <0.01

30 Fe3+(mM) 0.01 0.05 0.04 0.06 0.12 0.11 <0.01 <0.01 <0.01 <0.01

sulfide (pM) n.d. n.d. 0.06 n.d. 1.39 1.61 -- -- -- --

silica (mM) 1.16 0.77 0.93 0.60 0.67 1.12 0.45 0.45 0.28 0.35

Fe2
+(mM) 0.02 <0.01 <0.01 0.01 <0.01 0.02 n.d n.d <0.01 <0.01

Fe3
+(mM) 0.04 0.03 0.02 0.12 0.13 0.29 <0.01 <0.01 <0.01 <0.01

sulfide (pM) n.d. n.d. n.d. n.d. n.d. 1.95 -- -- -- --

*Sample diluted 20x in 0.1 M NaCl water after the addition of ferrozine.

'Sample was successfully recovered on day 45.

Ri-R3 denotes replicates one through three.
n.d. denotes below the limit of detection.
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Chapter 5. Microbially mediated cycling of iron controls the decay and

preservation of soft tissues in siliciclastic environments

5.1 Abstract

Fossils of Ediacaran and early Cambrian soft-bodied organisms were commonly preserved on the

bedding soles of sandstones and siltstones as positive or negative impressions. The rarity of

similarly preserved organisms in siliciclastic sediments of the later Phanerozoic suggests that

temporally unique environmental conditions may have facilitated this type of preservation. Here

we used experimental taphonomy to test the roles of photosynthetic microbial mats, clay

minerals (kaolinite/illite) and porewater chemistries (concentrations of iron(II), iron(III), sulfide,

silica and oxygen) in the preservation of soft tissues. Specifically, we monitored the decay of the

scallop adductor muscle over 45 days. The presence of millimolar concentrations of iron(II) and

micromolar concentrations of sulfide in the porewaters provided evidence for organic decay

under anoxic conditions. The most extensive decay occurred in the presence of greater than 0.9

mM of iron(II) in porewaters that were saturated with respect to amorphous silica (>1.7 mM).

This indicated a strong coupling between organic decay, microbial iron reduction and the

dissolution of silicate minerals. Newly formed iron(II) and iron(III)-rich minerals and clay

minerals from the surrounding substrates also coated the surfaces of well-preserved soft tissues,

forming veneers around these tissues. Thus, we propose a role for iron redox cycling in the

formation of mineral veneers on soft tissue surfaces and the preservation of soft tissues in

siliciclastic sediments.
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5.2 Introduction

Soft-bodied organisms were frequently preserved on the beddings soles of Proterozoic and early

Cambrian siliciclastic sediments as external molds, positive casts and/or composite impressions.

This type of preservation rarely occurred at other times throughout geologic history. Thus, it is

likely that a taphonomic window facilitated the exceptional preservation of early macrofauna in

sandy and silty sediments. However, the mechanisms which preserved soft tissues remain to be

identified.

The absence of external polymers during the Ediacaran complicates questions of how and

why Ediacaran organisms were preserved. Because the siliciclastic rock record of the Ediacaran

Period contains abundant microbial fossils and textures (e.g., MISS, Noffke et al., 2001) that are

also commonly associated with the casts and molds of Ediacaran macrofauna (Hagadorn and

Bottjer, 1997; Mapstone and McIlroy, 2006), Gehling (1999) proposed a 'death mask' model of

macrofaunal preservation. This model invokes the formation of a sole veneer composed of iron

sulfide due to the presence of overlying microbial mats and the bacterial reduction of sulfate.

Other hypotheses consider the role of dissolved iron in macrofaunal preservation, mostly by

suggesting the release of iron(II) by iron(III)-reducing bacteria and the nucleation of iron-rich

clay minerals on soft tissue surfaces (Petrovich, 2001). Cations such as iron(II) are toxic to at

least some aerobic heterotrophic microorganisms and may contribute to the inhibition of soft

tissue decay (McMahon et al., 2016). The occurrence of laminae enriched in iron between some

part and counterpart reliefs (Gehling, 1999; Liu, 2016) may support these models of preservation

in a few, but not most, fossil localities. Aluminum has been shown to have negative effects on

bacterial growth (Pettersson et al., 1986, 1988), although some experiments have shown
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aluminum tolerance in heterotrophic bacteria (Fischer et al., 2002). Overall, microbial processes

involved in the preservation of these macroscopic organisms remain poorly constrained.

Ediacaran oceans are thought to have had higher concentrations of silica (estimates range up

to 2.2 mM, Siever, 1992; Konhauser et al., 2007) due to the effective absence of silica-secreting

organisms such as radiolarians, diatoms and sponges. However, the formation of cherts primarily

in peritidal environments suggests that most surface waters may not have been supersaturated

with respect to the formation of amorphous silica (Maliva et al., 1989). In spite of this, some

authors have proposed that the precipitation of opaline veneers around soft tissues facilitated the

preservation of casts and molds in Ediacaran/early Cambrian siliciclastic sediments (Callow and

Brasier, 2009; Tarhan et al., 2016). Tarhan et al. (2016) investigated fossils in a single unit in the

Ediacara Member of South Australia and determined that three-dimensional casts and molds

were preserved by silica-rich cements and were rarely found in association with iron sulfide or

clay-rich laminae. Although this study proposed an important role for early silicification in

fossilization, this mode of preservation may not be applicable to other fossil localities and the

conditions that enabled early silicification in sandstones remain poorly understood.

The current study aims to identify environmental and biological factors that inhibit the decay

of soft tissues buried in sandy substrates for 45 days. We selected scallop adductor muscles for

taphonomic experiments because they are morphologically similar to Ediacaran discoidal fauna

and lack a chitinous layer. The experiments determined the influence of various factors (such as

the presence of clay minerals and cyanobacterial mats) on soft tissue decay, characterized the

evolution of the porewater chemistry and identified conditions that are the best predictors of

decay/decay delay. Clay-rich and/or iron-rich veneers coated soft tissues that experienced the

least decay within 30 days. This suggested that the mineral veneers formed immediately around
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the decaying tissues and protected the labile, organic material from microbial degradation. These

results inform a mechanistic model for soft tissue preservation in coarse-grained siliciclastic

environments.

5.3 Methods

5.3.1 Experimental setup

To determine the preservation potential of molluscan muscle tissues in siliciclastic environments,

we incubated the adductor muscles of fresh Atlantic sea scallops (Placopecten magellanicus,

purchased from the New Deal Fish Market, Cambridge, MA, USA) in 130 g of silica sand

(purchased from the Ottawa Silica Company, Ottawa, Illinois, USA) for 45 days, unless

otherwise stated (Table 5.1). The sand was composed of quartz, mica and 0.03% clay minerals,

with grains that had an average diameter of ~250 pm. Before incubation, the adductor muscles,

hereafter referred to as soft tissues or simply, scallops, were cut from their shell to kill the

organism and immediately frozen at -20'C for one to two days to inhibit decay before incubation.

Scallops were thawed at room temperature on the first day of the experiment and rinsed in

double distilled water to remove dirt and additional impurities. Specimens were then sterilized by

immersion in 100% 200 proof ethanol for 20 minutes to remove surficial bacterial contaminants;

this procedure did not sterilize endogenous bacteria. The ethanol was decanted by pipetting and

the scallops were air-dried in the fume hood for one hour to facilitate the evaporation of the

remaining ethanol. Any trace ethanol that remained after this procedure was removed by rinsing

scallops with filter-sterilized double distilled water (0.2 [trm Nalgene Rapid Flow Sterile Top

Filters, VWR, Radnor, PA, USA). Wet scallops were weighed before incubation. All surficially

sterilized and air-dried scallops were then buried ~2 cm below the surface of the pre-sterilized
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silica sand/clay substrate (see below, Fig. 5.1 a-d) and incubated in the presence of an artificial

seawater medium characterized by high concentrations of dissolved silica (0.1 mM) and low

concentrations of sulfate (7.9 mM) (see Newman et al. 2016, 2017 for a complete list of medium

ingredients). The medium was replaced every 5 to 10 days.

A preliminary experiment in which we incubated soft tissues in the presence of

photosynthetic microbial mats and illite seemed to delay the decay of soft tissues. Thus, to

determine the effects of microbial mats and illite on soft tissue preservation, scallop tissues were

incubated (1) in the presence of cyanobacteria, (2) in the presence of 100 mg of illite powder

(Time Laboratories, Pocatello, ID, USA) or (3) in the absence of cyanobacteria or added clay

minerals (control experiments) (Fig. 5.1 a-b, d, Table 5.1). In the first case, cyanobacterial mats

were inoculated onto the sand surface in 10 mL of artificial seawater using a plastic, serological

pipette. In the second case, a layer of clay powder was placed above the sand surface and was in

physical contact with the soft tissues and covered by a ~1.5 cm-thick layer of sand to hinder the

suspension of illite particles into solution. Two culture jars, each containing a single scallop and

silica sand, were placed in a larger plastic container (26.5 x 15.5 x 14.0 cm [1 x w x h], Sterilite

Medium Clip Box, Sterilite Corporation, Townsend, MA, USA) that had been pre-filled with 2 L

of artificial seawater (Fig. 5.1 e, Table 5.1). Cyanobacteria were inoculated onto the substrate

surface several times throughout the experiments to facilitate the formation of cyanobacterial

mats (see Newman et al. 2017 for their description of the mat-forming cyanobacteria). Samples

for chemical assays were collected from the water column (~3 cm above the substrate surface) on

days 15, 30 and 45 (see details below). Soft tissues were recovered on days 30 or 45 with a

sterile plastic serological pipette. A gentle lifting motion from underneath the scallop removed

the undecayed tissue from the substrate without damaging it.
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Scallops buried in the presence of illite decayed as much as did scallops incubated under

other experimental conditions. Therefore, we decided to test the role of kaolinite in the delay of

organic decay. This clay has been previously shown to inhibit soft tissue decay (Chapter 4 of this

Thesis, Wilson and Butterfield, 2014; Naimark et al., 2016) and reduce the activity of aerobic

heterotrophic bacteria (McMahon et al., 2016). In the current experiment, soft tissues were

completely buried in 30 g of kaolinite (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) and

covered with an additional 1.5 cm-thick layer of silica sand to hinder the suspension of kaolinite

particles into solution (Fig. 5.1 c, Table 5.1). Control experiments investigated the decay of

scallop tissues buried in silica sand in the absence of kaolinite (Fig 5.1 d, Table 5.1). One culture

jar with a single buried scallop was placed in an 18.7 x 16.5 x 11.4 cm (length x width x height)

external container (Sterilite Flip Top, Sterilite Corporation, Townsend, MA, USA) that was pre-

filled with 1.5 mL of artificial seawater (Fig. 5. If, Table 5.1). Samples for chemical assays were

collected on days 1, 5, 10, 15, 30 and 45 (see details below). Soft tissues were recovered from

their containers on day 45 using a sterile serological pipette.

Sterile control experiments in duplicate jars with clay/sand that lacked soft tissues

showed the evolution of water chemistry in the absence of organic decay. Water sampled from

the water column and porewaters were collected on days 1, 5, 10, 15, 30 and 45 for silica, iron

(iron (II), total iron) and sulfide assays. Additional samples were collected on day 20 to

determine the concentration of dissolved silica.

5.3.2 Water chemistry

Water samples for chemical analyses were sampled 5 days after each replacement of the

medium. To collect samples from the water column, 45 mL of the medium was sampled ~3 cm
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above the clay/sand surface using a plastic serological pipette and the samples were stored in 50

mL conical centrifuge tubes (VWR International, Radnor, PA, USA). Porewater samples were

collected using 5 mL plastic syringes with 18 gauge needles (VWR International, Radnor, PA,

USA) -1.5 cm below the substrate surface (upper substrate) and -6.5 cm below the substrate

surface (lower substrate), unless otherwise stated. All porewater and water column samples were

centrifuged aerobically for 10 minutes at 10,000 rotations per minute to separate the particulate

matter from the liquid medium. The supernatant was decanted and filtered aerobically through

0.2 ptm sterile syringe filters with a polyethersulfone membrane (Acrodisc®, Pall Laboratory,

Westborough, MA, USA). A Biotek multiplate reader (Synergy 2, Winooski, VT, USA) was

used for colorimetric assays at the following wavelengths: 562 nm (iron), 670 nm (sulfide) and

810 nm (silica). All colorimetric measurements were conducted in triplicate.

Iron - Following the methods of Stookey (1970) for iron(II) and iron(III) determination, 100 [tL

of ferrozine reagent (3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)- 1,2,4-triazine, Aldrich

#160601, prepared in 1.0 M ammonium acetate solution, CH3COONH4, Aldrich #37233 1) was

added to 1 mL of experimental sample and stored at -20'C until analyzed. Standards were

prepared from stock solutions of 2.02 mM FeC12 and 6.16 mM FeCl3 and were diluted with 0.1

M solutions of NaCl; stock solutions were diluted with double distilled water and acidified with

2% HCl by volume. Total iron was determined by reducing iron(III) in samples and standards to

iron(II) by adding 150 pL of 1.4 M hydroxalamine hydrochloride (H2NOH.HCl, Aldrich #

379921) and 50 tL of 10 M ammonium acetate to 800 jiL of sample/standard. The concentration

of iron(III) was calculated by subtracting the previously determined concentration of iron(II)

from the total iron concentration in the same sample. The following standard dilution series were
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analyzed in tandem with experimental samples: 0, 0.01, 0.03, 0.04, 0.05, 0.10 mM of iron(II) and

0, 0.001, 0.003, 0.005, 0.025, 0.050 mM of iron(III)'total iron.

Several porewater samples exceeded the saturation limit for measurement and were

diluted 20x with 0.1 M NaCl water after the addition of ferrozine (Supplementary Table 5.1 and

5.2). The effect of sample dilution on the measurements was determined by assaying the

following standard dilution series, diluted 20x with a 0.1 M NaCl solution after the addition of

ferrozine: 0.0, 0.10, 0.25, 0.50, 1.01, 1.51 and 2.01 mM of iron(II). The results of undiluted and

diluted samples from the same experiments and time points were compared when possible.

Dilution had little to no effect on the measured concentration of iron(II) if the original

sample/standard contained less than 0.75 mM of iron(II) (Supplementary Fig. 5.1). However, this

concentration was underestimated in samples/standards that contained greater than 0.75 mM of

iron(II) (Supplementary Fig. 5.1). In contrast, assays consistently underestimated the

concentrations of total iron/iron(III) when samples were diluted after the addition of ferrozine.

Therefore, all measurements of iron(III) concentrations from samples that were diluted after the

addition of ferrozine are lower bounds.

Silica - Silica concentrations were determined following the methods described in Newman et al.

(2017). To determine the concentrations of dissolved silica, filtered and frozen samples that had

been stored at -20'C in tightly capped 15 mL conical centrifuge tubes were left at room

temperature until the liquid had completely thawed. Samples were diluted 1 Ox (unless otherwise

specified) in a silica-free, sterile medium. Two standard dilution series were prepared using a

concentrated silica standard (J.T. Baker "Dilut-IT" silica standard, 16.64 mM) and added to the

silica-free medium: (1) 0, 0.02, 0.04, 0.08, 0.10, 0.21, 0.42 and (2) 0, 0.21, 0.42, 0.83, 1.04, 2.08,

114



4.16 mM. Silica standards were also diluted 10 times. Potential contamination by silica from the

syringe filters (0.2 ptm, Acrodisc®, Pall Laboratory, Westborough, MA, USA) and needles

(VWR International, Radnor, PA, USA) was determined to be negligible. Only the

concentrations of dissolved silica in the water column (~3 cm above the substrate surface) and

lower substrate (~6.5 cm below the substrate surface) were measured because of limited sample

volume.

Sulfide - Dissolved sulfide concentrations (H 2S, HS- and S2-) were determined by adding 1 mL

of 0.05 M zinc acetate (Zn(CH3COO)2.2H20, Aldrich #383058, prepared in double distilled

water) to 200 pL of sample, using the modified method of Cline (1969). Samples were stored at

4*C until measurement. The 0.1 M stock solution of Na2S was prepared by adding 0.1 M of

sodium sulfide nonahydrate (Na2S-9H20, Aldrich #431648) to anaerobic double distilled water

that had been allowed to boil at 100"C. The solution was transferred to a hermetically sealed

container and the headspace of this bottle was flushed with C0 2:N2 (20:80, v/v) using standard

anaerobic techniques. Standards were prepared by diluting 100 mM Na2S with 0.05 M zinc

acetate (to 0.005, 0.01, 0.02, 0.05 and 0.1 mM concentrations). Before the colorimetric assay, 40

gL of diamine reagent was added to all samples and standards. This reagent included 1.6 g N,N

dimethyl-p-phenyldiamine sulfate salt (CH3)2NC 6H4NII2-112SO4 ], Aldrich #186384) and 4 g of

anhydrous ferric chloride (FeCl3, Aldrich #157740) dissolved in 100 ml of 6 N hydrochloric

acid.

pH - The pH of the water column and porewater was measured every 5 to 10 days using a

portable pH meter (WTW 3A30 110 pH 1970i, Wilhelm, Germany) and/or pH test strips
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(ColorpHast pH Test Strips 0-14, Millipore). The pH meter was used for all water column

samples and the pH of all porewater samples was measured using pH test strips. When possible,

pH values derived from the pH test strips and pH meter were compared for consistency.

5.3.3 Scanning electron and transmission electron microscopy

To identify the composition and distribution of minerals coating scallops, we used scanning

electron and transmission electron microscopy. Samples were prepared for SEM by fixing them

in 2.5% glutaraldehyde in a 0.1 M sodium cacodylate buffer with 0.1% CaCl2 (pH = 7.4). After 3

to 5 days, samples were removed from this buffer and rinsed with a 0.1 mM sodium cacodylate

buffer solution. Following this, samples were rinsed 6 times with double distilled water and then

dehydrated using the following ethanol-water drying series: 30%, 50%, 70%, 80%, 90%, 100%,

100%, 100%, with 20 min steps. Samples were allowed to air dry (for one day) and dehydrated

tissues were placed on carbon tape and coated with gold and palladium at the Keck Facility

(Whitehead Institute, MIT, Cambridge, MA, USA). Samples were imaged on a Zeiss Supra

scanning electron microscope with a secondary electron detector at the Center for Nanoscale

Systems (Harvard University, Cambridge, MA, USA). We determined elemental composition in

regions of interest using an electron-dispersive X-ray spectrometer operating at 10 kV.

To prepare samples for TEM analyses, pre-frozen scallop tissues (-80'C) were partially

thawed at room temperature for 5 to 10 min and a small piece of tissue (-2 mm) was removed

from the scallop with a sterile, plastic pipette tip. This tissue was then placed in a 1.7 mL

microcentrifuge tube (VWR International, Radnor, PA, USA), suspended in filter-sterilized

double distilled water (Arodisc@ Syringe Filters with Supor® Membrane, Pall Laboratory, Port

Washington, NY, USA) and shaken by hand for 1 min. Two tL of the suspended solution was
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placed on a LC-200 grid (Electron Microscopy Sciences, Cat # LC-200-Cu, PA, USA) for

analysis. Scallop tissues were imaged with a JEOL 201 OF transmission electron microscope

(TEM, JOEL 2010F, JOEL, CA, USA). Gold standard was used as a reference for SAED

determination of the sample. The high-angle annular dark field detector (HAADF, Gatan, CA,

USA) for atomic resolution scanning electron transmission microscopy in free-lens control mode

(STEM) and energy dispersive spectrometer (EDS, Bruker silicon drift detector SDD, Bruker,

MA, USA) enabled elemental analysis at nanoscale resolution. Images were taken using a digital

camera (Gatan Orius, Gatan, CA, USA) for TEM and STEM mode. SAED patterns were imaged

using Gatan digiscan unit (Gatan, CA, USA). TEM, STEM and SAED images were recorded and

treated using Gatan digital micrograph software (Gatan, CA, USA). EDS spectra were recorded

and treated using INCA program (Oxford instruments, UK).

5.3.4 X-ray microprobe

To identify the spatial distributions and oxidation states of elements coating scallop surfaces, we

analyzed soft tissues at the Advanced Light Source (beamline 10.3.2, Berkeley, CA, USA) using

micro-focused X-ray fluorescence (tXRF) mapping and iron and sulfur K-edge X-ray adsorption

near edge structure ([tXANES) spectroscopy, respectively. We analyzed scallops incubated for

45 days in the presence and absence of kaolinite or cyanobacteria. To identify changes in mineral

chemistry that preceded the final time point, samples incubated for 30 days with and without

cyanobacteria were also analyzed and compared with tissues incubated for 45 days under

identical conditions. Frozen samples (-80'C) were thawed and air-dried for ~1 h before analysis.

These samples were attached to the non-sticky side of Kapton@ polyimide tape (DuPont,

Hayward CA, USA). XRF elemental maps were generated using a 6 x 6 tm beam spot size and
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XANES spectra were generated using a beam spot size of 12 x 3 pm. Fluorescence data were

recorded using a germanium (Ge) solid state detector (Canberra, ON, Canada). For sulfur

calibration, a gypsum standard was used using the maximum of the main peak at 2482.75. XRF

counts were collected for sulfur, iron, calcium, potassium, chlorine, silica and phosphorous.

Sulfur and iron K-edge XANES spectra were acquired on spots of interest. The 10.3.2 iron

standard database was used to identify iron-bearing minerals.

5.4 Results

5.4.1 Visual observations

Soft tissues were buried in clay or sand for up to 45 days to identify factors that facilitate

or inhibit decay. The surface of the artificial seawater medium was in constant contact with the

atmosphere, but during the first two weeks of incubation, the degradation of soft tissues led to a

decrease in oxygen concentrations in the porewaters which remained anoxic for the remainder of

the experiment (Supplementary Fig. 5.2). The overlying solution became cloudy (Fig. 5.2) and

malodorous due to the release of degraded organic matter into the water column. Dark grey to

black patches formed around soft tissues during the first 15 to 30 days of incubation. The extent

of these patches increased with time in samples that underwent complete decay. These dark

patches were rarely present in jars with scallops that underwent the least amount of decay (Fig.

5.2, Supplementary Fig. 5.3). Thus, the formation of dark patches was an indicator of extensive

anaerobic heterotrophic activity and conditions that were less conducive to preservation. When

scallops were buried in kaolinite, 1 to 2 mm-thick grey patches appeared in the clay/sand around

all tissues during the first 15 days of incubation (Fig. 5.2). However, these patches were not

indicative of extensive decay. The substrates in sterile control experiments that lacked soft
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tissues did not change color, indicating that these environments remained sterile and aerobic (see

supplementary methods, results and figures for oxygen measurements).

In experiments with cyanobacteria, microbial mats began to form after the inoculation of

cyanobacteria. However, by day 15, the cells had detached from the surface of the substrate and

lost much of their green pigment. This indicated suboptimal conditions for cyanobacterial

growth. In fact, full microbial mats never formed on the substrate surface in spite of repeated

inoculations.

Wet scallops were weighed before burial and after removal from the substrate to quantify

decay during incubation. Between 16.3 to 100% of the initial weight was lost by day 30 and 29.7

to 100% by day 45 (Table 5.2). Containers in which scallops lost less than 50% of their initial

weight after 30 days consistently yielded well-preserved scallops on day 45 (Table 5.2). In

contrast, when samples lost more than 90% of the weight by day 30, the tissues decayed

completely by day 45 (Table 5.2). Only one out of three specimens were successfully exhumed

by the end of the experiment when scallops were buried in sand in the presence or absence of

cyanobacteria and illite. In contrast, when scallops were buried in kaolinite, two out of three

specimens were recovered (see Chapter 4 of this Thesis, Table 5.2). The measured weight loss

was consistent with the chemical evolution of the solution (see below) as well as with the

continued release of organic material into the overlying solution in spite of the weekly medium

replacements.

All soft tissues decayed during burial (Fig. 5.3). Scanning electron micrographs (SEMs)

of soft tissues before inoculation revealed intact muscle fibers that were distributed as parallel

bands and surrounded by connective tissues (Fig. 5.3a). In contrast, scallops exhumed on day 45
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had lost this banding, indicating extensive decay (Fig. 5.3b). We did not notice differences in

muscle morphologies between samples collected on days 30 and 45.

5.4.2 Chemical changes on the surface of the scallop tissues

We analyzed the elemental composition of soft tissues by SEM-EDS and TEM-SAED to identify

chemical changes occurring at the tissue surface during decay. Scallop tissues before incubation

were composed of carbon, oxygen, nitrogen, chlorine, magnesium, phosphorus, sodium and

sulfur (Fig. 5.3a, Fig. 5.4a, b). The surfaces of samples that had been incubated in the presence of

kaolinite or illite powder also accumulated silica, aluminum and potassium in the form of

micron-sized clay minerals (Fig. 5.3c, 5.4, Chapter 4 of this Thesis). Scallops incubated in

kaolinite were coated by authigenic and trapped minerals (see Chapter 4 of this Thesis) that were

visible by SEM. These samples also contained iron-rich organic sulfur groups that were not

found in the scallop before incubation. Scallops incubated in the presence of illite included

calcium-, iron-, magnesium-, potassium- and/or sodium-rich aluminosilicates (Fig. 5.3c). These

minerals were similar in composition to the sterile illite powder (Fig. 5.3d). Thus, a sediment-

derived component could not be excluded. Scallops incubated in silica sand contained both iron

(II) and iron (III)-rich minerals (Fig. 5.4).

5.4.3 Concentrations of ions and dissolved silica in solution

Changes in the concentrations of dissolved iron(II), iron(III), silica and sulfide documented

major chemical patterns during soft tissue decay and tracked heterotrophic activity in the

substrates. When concentrations of ions and dissolved silica in the porewater were detectable,

they were typically the highest in the lower substrate (~6.5 cm below the surface of the
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substrate), reached intermediate values in the upper substrate (1.5 cm below the surface of the

substrate) and were the lowest in the water column (~3 cm above the surface of the substrate)

(Supplementary Tables 5.1-5.4). Sterile control experiments provided baseline values for

understanding water chemistry in the absence of soft tissues. The concentrations of porewater

ions and silica in the absence of soft tissues were much lower (Supplementary Tables 5.1-5.4).

Thus, scallops were used as the organic electron donor and the resulting vertical gradient in ion

and silica concentrations was driven by the decay of buried tissues.

Microbial reduction of iron released abundant iron(II) into the porewaters

(Supplementary Table 5.1); in the presence of soft tissues, concentrations of iron(II) ranged from

below the limit of detection to 14.11 pM in the water column, 0.93 to >1102.82 PM in the upper

substrate and 1.81 to >1167.35 pM in the lower substrate (Fig. 5.5, Supplementary Table 5.1). In

the absence of scallop tissues, iron(II) values were orders of magnitude lower, ranging from

below the limit of detection to 0.02 pM in the water column, below the limit of detection to 0.27

ptM in the upper substrate and below the limit of detection to 0.27 [tM in the lower substrate

(Supplementary Table 5.1). The concentration of iron(II) in all cultures was the highest during

the first 30 days of incubation and declined during the last 15 days, suggesting a decline in

microbial iron reduction or the removal of reduced iron by mineral adsorption/precipitation

(Supplementary Table 5.1). Soft tissues in cultures with the highest concentrations of porewater

iron(II) (>1000 ptM) experienced the greatest amount of decay (Fig. 5.5, Supplementary Table

5.1). This would be expected for conditions most conducive to anaerobic organic decay resulting

from iron(II) or sulfate reduction.

The oxidative recycling of iron also increased concentrations of dissolved iron(III) to at

least an order of magnitude above those measured in substrates that lacked soft tissues
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(Supplementary Table 5.2). In experiments with scallop tissues, concentrations of iron(III)

ranged up to 8.8 VM in the water column, 188.50 pM in the upper substrate and 292.54 pM in

the lower substrate (Supplementary Table 5.2). Concentrations of iron(III) in sterile control

experiments ranged from 0.10 to 0.79 pM in all samples. This indicates that iron(III) was

released in the presence of soft tissues.

Concentrations of dissolved silica in the initial (sterile) medium ranged from 0.06 to 0.19

mM; those in the water column ranged from 0.05 to 0.97 and those in the porewater ranged from

0.35 to 2.39 mM (Fig. 5.5, Supplementary Table 5.3). Only in the presence of soft tissues did

concentrations of dissolved silica rise above 0.7 mM in the porewater (Supplementary Table

5.3). The water column was undersaturated with respect to the precipitation of amorphous silica

(<1.7 mM) in all experiments. However, porewaters in three experiments were close to or above

the saturation with respect to amorphous silica during the first 20 days of incubation

(Supplementary Table 5.3). The porewater samples in other experiments were undersaturated

with respect to silica. When dissolved silica concentrations in the porewater were lower than 1.7

mM, the scallop tissues experienced the least amount of decay. Those in culture jars where we

measured the highest concentrations of dissolved silica were completely degraded.

The water column did not contain detectable dissolved sulfide, but micromolar

concentrations of sulfide in the porewaters indicated active microbial sulfate reduction in the

presence of soft tissues (Supplementary Table 5.4). Sulfide concentrations in jars that contained

kaolinite were lower during the first 30 days than those in silica sand. With the exception of a

single replicate in the silica sand experiment (1.95 pM sulfide; Supplementary Table 5.4), sulfide

became undetectable by day 45 in all porewaters. The initial, sterile medium contained 7.9 mM

of sulfate. Thus, concentrations of sulfide less than 7.9 mM in most experimental media
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(Supplementary Table 5.4) indicated that microbial sulfate reduction did not consume all

available sulfate.

5.4.4 pH

The pH of the water column was higher than that in the clay/sand substrates. In sterile control

experiments that lacked soft tissues, pH ranged from 8.0 to 8.2 in the water column and 6.5 to

7.5 in the upper and lower substrates (Supplementary Table 5.5) for both kaolinite and sand

substrates. pH values generally were lower when scallops were present and ranged from 6.98 to

8.14 in the water column, 4.5 to 7.3 in the upper substrate and 4.5 to 7.5 in the lower substrate

(Supplementary Table 5.5). However, pH values in replicate experiments that yielded

recoverable samples after 45 days were similar to those in which soft tissues had undergone

complete decay by that time point.

5.4.5 X-ray microprobe

Chemical changes occurred on the surfaces of soft tissues during the 45-day incubation interval.

X-ray fluorescence elemental mapping showed that sulfur was present in soft tissues before and

after burial (Fig. 5.6). Some iron was present on the tissue surfaces before burial, but the

abundance of this element increased with incubation time in all experiments (Fig. 5.6),

suggesting the accumulation of iron during decay. Iron K-edge XANES spectra acquired from

select spots on the tissue surfaces at the Advanced Light Source (Beamline 10.3.2, Berkeley, CA,

USA) offered information about the redox states of iron coating soft tissues. Samples incubated

in kaolinite contained reduced iron that best matched the following standards in the 10.3.2 iron

standard database: basalt glass, iron sulfate and iron-rich clay (Chapter 4 of this Thesis). Samples
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exhumed from silica sand matched with the following standards, revealing a potential for the

presence of both reduced and oxidized iron: iron sulfates, iron oxides and iron sulfides (10.3.2

iron standard database, Fig 5.6). Sulfur K-edge XANES suggested the presence of metal-bound

sulfates coating soft tissues as well as organic-bound sulfur (Fig. 5.6). Additional investigations

of the iron K-edge energies will be necessary to definitively classify the oxidation states of

minerals coating soft tissues.

5.5 Discussion

5.5.1 Iron promotes soft tissue preservation in silica-rich environments

Hypotheses regarding the formation of exceptionally preserved fossils in siliciclastic

environments often focus on the role of silica- and/or iron-rich minerals in fossilization processes

(e.g., Callow and Brasier, 2009; Petrovich, 2001; Tarhan et al. 2016; Gehling et al. 1999;

McMahon et al. 2016). Recent taphonomic investigations have advanced our understanding of

decay inhibition in modem soft tissues by hypothesizing the role of low pH and aluminum in the

cross-linking of organic compounds (Wilson and Butterfield, 2014) as well as the role of iron(II)

and aluminum (III) in the inhibition of aerobic microbial growth (McMahon et al., 2016).

However, the effects of microbial processes that control the cycling of dissolved iron and silica

around soft tissues remain unclear.

Our experiments show that the early decay of soft tissues under anaerobic and mixed

aerobic-anaerobic conditions stimulates the release of silica from sedimentary minerals into the

solution. Decay processes have been shown to increase the solubility of quartz minerals in

seawater, due to the mobilization of silica by dissolved organic compounds (Bennet and Siegel,

1987) and active redox cycling of iron in the presence of oxygenated surface waters (Morris and

124



Fletcher, 1987). However, it is unclear how and if the latter process applies to fine-grained

sediments because iron cycling in the current experiment did not have a clear effect on the

release of silica when kaolinite was present. Taken together, these processes may explain why

we detected the highest concentrations of dissolved silica and iron in experiments associated

with the most decay, moderate concentrations in those associated with the least decay and the

lowest concentrations in the absence of soft tissues (Fig. 5.5, Supplementary Tables 5.1, 5.3).

Our observations do not support some previously proposed models of fossilization which

suggest that seawaters saturated with respect to amorphous silica led to Ediacaran-style

preservation of macrofossils (e.g., Callow and Brasier, 2009; Tarhan et al., 2016). For example,

Tarhan et al. (2016) identify the formation of silica-rich cements around macrofossils in a single

locality, the Ediacara Member of South Australia. They suggest that the formation of these

siliceous veneers facilitated the preservation of soft-bodied organisms, but the universality of

their proposed mechanism remains to be determined. Our experiments show that although high

concentrations of dissolved silica may have accumulated within weeks around decaying soft

tissues buried in clay or sand, neither saturated waters nor the precipitation of amorphous silica

around soft tissues were key to preservation. Instead, our findings are in line with those of

Michalopolous and Aller (2004), who document the precipitation of iron-rich, smectite-type

minerals on siliceous surfaces in clay- and iron-rich environments. Our study expands these

observations from siliceous diatoms and deltaic muds (Michalopoulos and Aller, 2004) to animal

soft tissues and kaolinite-rich sandy environments. Thus, we suggest that in environments where

dissolved silica is not a limiting factor (i.e., the Ediacaran/early Cambrian seafloor), iron-rich

veneers will likely play a critical role in preservation processes.
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The link between metal-based microbial metabolisms and the preservation of organic

material has been widely explored in the literature (e.g., Konhauser et al., 2001; Michalopoulos

and Aller, 2004; Lftzow et al., 2006; Lalonde et al., 2012). For example, Petrovich (2001)

hypothesized a multi-step process in soft tissue preservation involving (1) the adsorption of

iron(II) (or other metals) from solution onto the surfaces of soft tissues, (2) the inhibition of

heterotrophic enzymatic activities through the preferential binding of iron(II) to reactive sites on

the soft tissues and (3) the formation of iron(II)-rich biominerals which promote the fossilization

of organic material. Our pXANES analyses support Petrovich (2001) by demonstrating the

formation of minerals that contain iron(II) and iron(III) on soft tissues recovered after 30 and 45

days (Fig. 5.6). These findings are largely consistent with the results of Michalopolous and Aller

(2004), which highlight the role of bacterial iron(III) reduction in the rapid formation (months to

years) of iron(II)-rich aluminosilicate minerals. Our findings show that even faster formation of

authigenic mineral veneers is possible in the presence of active microbial reduction of iron,

possibly through tanning processes which polymerize organic matter in the presence of metals.

The presence of iron-bound organic sulfur in the interior of tissue samples (Fig. 5.4) may have

served this role. However, the highest concentrations of porewater iron(II) (>1000 [M) are

indicative of extensive decay that outpaced preservation.

5.5.2 The effect of clay minerals on preservation

We observed the delayed decay of soft tissues in the presence of kaolinite, but not in the

presence of illite, although clay particles adhered to all scallops that were buried in clay minerals

(Fig. 5.3c, Chapter 4 of this Thesis). Kaolinite binds to scallop surfaces, facilitates the

precipitation of authigenic minerals and forms <0.5 mm-thick protective veneers around tissues

126



(Chapter 4 of this Thesis). However, when scallops were buried in the presence of a thin layer of

illite, we did not observe similar veneers on the tissue surfaces (Supplementary Fig. 5.3). This

likely occurred because only one side of the scallop was in physical contact with the illite grains.

Therefore, a continuous veneer composed of clay particles could not form around the entire

scallop, leaving large areas of tissue exposed to microorganisms. Secondly, illite is a cation-rich

clay and may not have the same preservative properties as kaolinite (Wilson and Butterfield,

2014; McMahon et al., 2016; Naimark et al., 2016). Although illite is commonly associated with

well-preserved soft-bodied fossils in the rock record, it is often attributed to the secondary

replacement of authigenic minerals during diagenesis (e.g., Gabbott et al., 2001). Thus, the role

of illite in preservation remains to be elucidated. Additional experiments should test the ratio of

tissue to clay minerals that is required to preserve soft tissues and determine if visible veneers

form around scallops buried in more illite than what was tested by the current study.

5.5.3 The balance between microbial activity and decay delay

Heterotrophic microbial activity plays an important, if not paramount role in determining the fate

of soft tissues during early diagenesis. Decay is thought to be facilitated by heterotrophic

microorganisms both endogenous to the soft tissues (e.g., Briggs et al., 1993; Eagan et al., 2017)

and from external sources (Briggs et al., 1993). In the current experiment, we attempted to

sterilize scallops by soaking them in ethanol before incubation. However, the rapid growth of

microbial communities in the clay and sand grains around the soft tissues (within 10 to 15 days)

across multiple experiments suggests that such sterilization methods were not effective and that

microbial communities grew. In natural environments, macroscopic organisms become fossilized

in sediments that are teeming with bacteria and organisms which undergo processes of
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preservation host microbial consortia even before death. Thus, taphonomic experiments must at

least consider the activity of endogenous microorganisms if natural conditions are to be

replicated in the laboratory.

The release of iron(II) and sulfide into porewaters demonstrated the presence of microbial

iron and sulfate reduction. At the same time, concentrations of dissolved iron(III) in the presence

of soft tissues were greater than those found in the sterile medium and clay or sand substrates

without buried tissues. This suggests that the microbial oxidation of iron(II) and the reduction of

iron(III)/sulfate were simultaneously occurring in our system. It is likely that oxidation occurred

near the surface of the substrate, where oxygen was present and iron and sulfate reduction took

place around the soft tissues that acted as localized sources of organic electron donors. Many

previous studies have focused on the role of sulfate reduction in the formation of Burgess Shale-

type fossils (Gabbott et al., 2004; Gaines et al., 2008, 2012). Gaines et al. (2012) suggested that a

permeability barrier limited sulfate diffusion into early Cambrian porewaters, thereby decreasing

sulfate reduction around carcasses and inhibiting decay. However, in the current experiments,

sulfate reduction had no observable effect on soft tissue preservation. Instead, we show that

microbial metabolisms and abiotic processes involved in the redox cycling of iron had the

greatest immediate effect on soft tissue decay/decay delay. Flocculation and sludge studies have

similarly demonstrated the importance of iron in the preservation of organic matter (Park et al.,

2006; Park and Novak, 2007).

The presence of active iron redox cycling provides another parallel between modem clay-

forming environments such as the actively mobilized layers of mud in river deltas

(Michalopoulos and Aller, 1995, 2004) and our experiments. Oxidative recycling of reduced iron

may ensure a continuous supply of the electron acceptor for organic decay. The presence of
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iron(III) coating sand grains in the original, sterile substrate and the release of millimolar

concentrations of iron(II) within the first two weeks after burial suggest that the availability of

iron did not limit microbial iron reduction in quartz-rich sand, regardless of whether clay

minerals were added or not. However, the importance of the recycling of iron(II) released by

microbial processes for the preservation of soft tissues remains to be tested by comparing tissue

preservation in the presence and absence of an oxic water column. In any case, the proximity of

the oxygenated water column to the reduced iron in the sediments and the wave- or current-

driven exchange between the water column and porewaters (Bosak et al., 2013) is consistent with

the physical and redox conditions at the sediment-water interface during the Ediacaran/early

Cambrian (Callow and Brasier, 2009), and the presence of oxygen-consuming macroscopic

organisms at the sediment surface during the Ediacaran Period (e.g., Runnegar, 1982).

The current study could not directly evaluate the effect of "microbial death masks"

composed of cyanobacterial mats that seal the soft tissues (Gehling, 1999), but does not support

the hypothesis of subsequent precipitation of iron sulfide phases within such masks (Gehling,

1999). Our experimental conditions instead revealed that cyanobacteria were not able to form

extensive mats over the buried scallops. Instead, cyanobacteria grew as clumps and their mass

decreased in time despite repeated inoculations throughout the incubation process

(Supplementary Fig. 5.3a). We attribute this to the unfavorable conditions for cyanobacterial

growth associated with extensive organic decay, including low porewater pH (4 to 6,

Supplementary Table 5.5) and an organic-rich and opaque water column (Fig. 5.2). These

experiments provide a realistic model for cyanobacterial growth in the presence of decomposing

tissues and suggest that the local environments around decaying soft tissues are hostile to the

establishment and extensive growth of photosynthetic microbial mats. However, scenarios in
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which more than a cm of sediment separates the decaying soft tissues from the cyanobacteria

could reduce the negative effects of decay on microbial mat growth. Future work should explore

the presence of thicker and/or less porous sediments which would protect microorganisms from

the negative effects of decay.

5.5.4 Importance of the extent and timing of soft tissue decay

Preliminary stages of fossilization require some decay (Briggs, 2003), while excessive decay is

of course disadvantageous for preservation (Briggs et al., 1993; Briggs and Kear, 1994; Briggs,

2003). Thus, a window of time must exist within which initial decay enables the replication of

soft tissues by minerals, but extensive decay is delayed to prevent the complete deterioration of

the macroscopic organism. The samples in our experiments lost between less than 20 to 100% of

their initial weight, and in no experiment was decay completely inhibited. The organic decay

provided the electron donors for iron and sulfate reduction. This released iron(II) that was

subsequently incorporated into mineral veneers. The timing of decay was critical to preservation;

experiments in which the decay of soft tissues was delayed during the first 30 days of incubation

consistently yielded the best preserved scallops on day 45 (Supplementary Fig. 5.3, Table 5.2).

In contrast, partially preserved or completely decayed scallops on day 30 had undergone

complete decay by day 45 (Supplementary Fig. 5.3, Table 5.2). Environmental variables that

track organic decay include high concentrations of iron(II)/dissolved silica and the formation of

black patches in the clay/sand surrounding soft tissues during the first two weeks after burial

(Fig. 2, Supplementary Fig. 5.3, Supplementary Tables 5.1-5.4). Taken together, this suggests

that environmental and biological conditions during the first month of burial are most important

in fossilization processes.
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5.5.5 A model for decay delay and implications for the fossil record

The siliciclastic fossil record of the Ediacaran and early Cambrian contains abundant and well-

preserved fossil impressions. Our study explored the delicate balance between microbial decay

and preservation and its findings establish the following model for soft tissue preservation:

(1) Soft-bodied organisms with endogenous communities of microorganisms are buried in

silica sand. Burial is important for preservation and endogenous bacteria facilitate the

initial decay of soft tissues. Within the first 10 to 15 days of burial, heterotrophic activity

contributes to the development of porewater anoxia, an increase in the concentrations of

iron(II)/sulfide/dissolved silica and a reduction in pH. These hostile conditions hinder the

establishment of photosynthetic mats at the sediment-water interface. In the absence of

sealing microbial mats, the sediment, porewater and tissues remain in contact with the

water column. This enables iron reduction, the formation of anoxic zones around soft

tissues and iron redox cycling closer to the sediment/water interface.

(2) High concentrations of porewater iron(II) and dissolved silica are indicative of the

complete decay of soft tissues. However, moderate concentrations of these ions in the

sediments are necessary for the formation of protective aluminosilicate veneers around

soft tissues. A continuous supply of iron(III) is also necessary to facilitate the

dissimilatory reduction of iron(III) to iron(II) and the formation of iron(II)-rich minerals

on tissue surfaces.

(3) During the first month of burial, fine particles from the sediment attach to the surfaces of

soft tissues. Extensive mineral veneers form around tissues only when specimens are

completely buried by clay. In this case, authigenic minerals can form between
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sedimentary fine particles within months. This creates a protective layer around the

tissues and reduces microbial access to tissue surfaces. Other environmental factors (e.g.,

the presence/absence of heterotrophic microorganisms, the availability of iron, the

availability of aluminum and silica) are of paramount importance to preservation.

(4) The first 15 to 30 days after the burial are critical for the preservation of soft tissues in

siliciclastic settings. Organisms and tissues that decay minimally (<40% loss of original

mass) during this interval are more likely to become incorporated into the fossil record

because it is during this window of time that protective minerals form on soft tissues

through processes of precipitation (see Newman et al., 2016). Tissues that are stabilized

by iron (likely through tanning processes) during the 30-day window of decay delay are

more likely to become replicated by minerals at a later point during diagenesis; this

would facilitate the formation of three-dimensional fossil impressions.

5.6 Conclusions

Soft-bodied organisms were commonly preserved in Ediacaran and early Cambrian sandstones

and siltstones. A number of factors enabled the preservation of soft tissues in taphonomic

experiments including, (1) the presence of clay minerals such as kaolinite that act as physical

barriers to heterotrophic microorganisms and provide nucleation sites for the precipitation of

authigenic aluminosilicates, (2) the activity of anaerobic heterotrophic microorganisms including

iron(III)-reducing microorganisms that release iron(II) and silica into porewaters around the soft

tissues and (3) the formation of protective iron-rich mineral veneers (e.g., clay minerals) around

soft tissues. The decay of soft tissues has to be delayed within the first month of burial. Soft

tissues that undergo minimal decay (<40% loss of mass) during this timeframe are most likely to
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be incorporated into the siliciclastic fossil record. Similar factors likely facilitated the formation

of soft tissue impressions in coarse-grained siliciclastic sediments during the Ediacaran and

contributed to the exceptional preservation of soft-bodied organisms in clay-rich sediments at

other times during Earth's history.
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Fig. 5.1. Setup for taphonomy experiments. Scallops (s) buried ~2 cm beneath the surface of the
sandy substrate in the presence of A) cyanobacteria in silica sand, B) silica sand covered by a
layer of illite powder (100 g), C) kaolinite powder or D) silica sand without added cyanobacteria
or clay minerals. Cy denotes cyanobacteria, i denotes illite and k denotes kaolinite. E and F)
Culture jars were incubated in external containers filled with artificial seawater. Scale bars for A-
D: 0.034 cm and E, F: 5 cm.
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Fig. 5.2. Photographs of decaying soft tissues at 1, 5, 15, 30 and 45 days. The rows show
different experimental conditions; the first four columns show progressively advanced time
points. The rightmost column shows specimens exhumed from the clay/sand substrate on day 45.
Scallop tissues incubated in kaolinite: A) a recovered scallop B) completely decayed tissues.
Scallop tissues incubated in silica sand without added clays or cyanobacteria: C) a recovered
scallop and D) completely decayed tissues. K denotes kaolinite and X denotes the complete
decay of soft tissues by the end of the experiment. Solid arrows point to the extensive black
patches in the clay/sand around the soft tissues that are indicative of heterotrophic microbial
activity. Dashed arrows point to the less extensive, dark grey patches in kaolinite that did not
result in the complete decay of soft tissues.
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Fig. 5.3. Representative scanning electron micrographs of scallop tissues A) before

experimentation (day 0) and B) incubated for 45 days in silica sand without added cyanobacteria

or clays. C) Scallop incubated in illite powder and D) sterile illite grains. Samples were coated

with gold and palladium. Scale bar in all micrographs is 1 pm. White boxes denote areas

analyzed by EDS; the spectra of these areas are found below the corresponding SEM images.
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Fig. 5.4. TEM-SAED analysis of scallop tissues before and after incubation in kaolinite and
silica sand. A) Bright-field transmission electron microscopy (TEM) image of scallop tissue
before the experiment. The scallop tissue before incubation had no apparent dark patches and
mineralized areas. B) HRTEM of the tissue area marked in A shows the absence of a diffraction
pattern due to the presence of amorphous organic carbon and the absence of crystalline or
microcrystalline minerals. C) Scallop tissue exhumed from kaolinite after 45 days. The scallop
tissue is encrusted by minerals. D) HRTEM of the area selected in panel C, showing uniform
lattice fringe of interplanar spacing of 4 A. The SAED of the same material demonstrated a
diffraction pattern of euhedral crystallite exhibiting monoclinic net pattern characteristics of clay
minerals (K, Fe-rich illite/smectite). E) Scallop exhumed from silica sand after 45 days. The
scallop is encrusted by dark minerals and F) HRTEM of the area selected in panel E, showing the
presence of iron oxyhydroxides. F) Scallop tissue exhumed from silica sand after 45 days and H)
close-up of mineral grains; diffraction patterns reveal the presence of iron (II, III) sulfides
associated with the soft tissues.
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Fig. 5.5. Concentrations of dissolved silica (mM), iron(II) (pM) and sulfide (pM) in
experimental porewaters. Saturation with respect to amorphous silica (-1.7 mM) is shown. Y
indicates tissues were recovered on day 45; N marks complete tissue decay by the end of the
experiment. RI -R3: experimental replicates one through three.
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Fig. 5.6. XRF maps with iron and sulfur K-edge XANES spectra. Elemental distribution maps of
A) scallop before incubation (day 0) and B) scallop after 45 days of incubation in silica sand.
Iron is in red and sulfur is in green. C) Sulfur K-edge spectra of scallop exhumed from sand and
standards from the 10.3.2 database. D) Iron K-edge spectra of scallop exhumed from sand. The
best fit standard from the 10.3.2 database (iron sulfate, 59.5%, goethite, 27.8% and pyrite,
11.9%, sum sq.: 7.9x10-5) is plotted in red. Residual is shown in grey.
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Table 5.1. List of experimental conditions

Experiment Variables Artificial Substrate* Number of Scallops exhumed Water column Porewater
no. tested* seawater scallops** on day sampled? sampled?

volume (L)
1 cyanobacteria 2 silica sand 2 30 and 45 Y N

illite powder 2 silica sand and illite 2 30 and 45 Y N
control 2 silica sand 2 30 and 45 Y N

2 kaolinite 1.5 kaolinite and silica 1 45 Y Y
powder sand
control 1.5 silica sand only 1 45 Y Y

3 kaolinite 1.5 kaolinite and silica 0 n/a Y Y
powder sand
control 1.5 silica sand 0 n/a Y Y

* Illite powder was purchased from Time Laboratories (Pocatello, ID, USA) and kaolinite powder was purchased from Santa Cruz
Biotechnology, Inc. (Dallas, TX, USA).
* * Individual scallops were incubated in culture jars (190 mL, Grenier Bio-One, Kremsmnster, Austria) which were placed
inside larger sterile containers with closeable lids (Sterilite Corporation, Townsend, MA, USA). Number of scallops indicates the
total number of scallops incubated in the large sterile boxes.
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Table 5.2. Weight loss of scallop tissues after 30 and 45 days of incubation

Experiment Variable tested Replicate % Weight loss**

Day 30 Day 45

1* cyanobacteria 1 100.0 99.0
2 16.3 33.0
3 95.3 99.5

illite 1 21.6 50.0
2 71.7 100.0
3 100.0 100.0

silica sand, no added 1 97.1 100.0
clays/cyanobacteria 2 17.6 36.1

3 100.0 100.0
2* kaolinite 1 n/a 72.5

2 n/a 60.8
3 n/a 100.0

silica sand, no added 1 n/a 100.0
clays/cyanobacteria 2 n/a 29.7

3 n/a 100.0
*See Table 5.1 for a list of experimental conditions.
* * Percent weight loss for each scallop was calculated by determining the
difference in weight between the exhumed and buried scallop tissues. This number
was divided by the initial scallop weight and expressed as a percentage. Tissues
exhumed on days 30 and 45 from the same experimental replicate were different
specimens incubated in the same container.
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5.8 Supplementary Information

Supplementary Methods

Dissolved oxygen concentrations were measured on days 10, 30 and 45 by injecting known

volumes of samples collected either from the porewater or from the water column with a syringe

into 60 mL serum bottles and measuring oxygen partial pressure change in the headspace. The

bottles were previously flushed with oxygen free nitrogen and oxygen diffused out of the

samples in less than 20 minutes. Oxygen partial pressure was measured by detecting changes in

the fluorescence lifetime of palladium (II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-

porphyrin (Pd-TFPP) (Lehner et al., 2015) using an in-house built fluorescence lifetime sensor

(Pajusalu et al., in prep). Due to unexpectedly large oxygen absorption rates of the reductive

compounds in the sample, the dissolved concentrations underestimate the actual oxygen

concentrations.

References

Lehner, P., Larmdorfer, C., Garcia-Robledo, E., Larsen, M., Borisov, S.M., Revsbech, N.P.,
Glud, R.N., Canfield, D.E., Klimant, I., 2015. LUMOS - A sensitive and reliable optode system
for measuring dissolved oxygen in the nanomolar range. PLoS One 10, 1-15.
doi: 10.1371/journal.pone.0128125.

Pajusalu M., Borlina C., Seager S., Bosak T., Ono S. Open-source networked fluorescence
lifetime sensor for sub part per million level oxygen measurements, in prep.
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Supplementary Results

Dissolved oxygen values were determined for the porewater (~6.5 cm below the sand/clay

surface) and water column (~3 cm above the sand/clay surface). Values for dissolved oxygen in

the porewaters were less than 8.12 2.8 pM. Dissolved oxygen values in the water column

ranged from 20.39 12.93 to 40.78 10.9 pM on day 10, 19.12 2.27 to 60.25 6.03 [tM on

day 30 and 32.02 5.66 to 63.76 15.74 pM on day 45. Observed increases in dissolved oxygen

concentrations as the experiments progressed likely resulted from the removal of decaying

organic material by replacement of the medium.
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Supplementary Fig. 5.1. Dilution curve for concentrations of iron(II). Standards were diluted 20x

after the addition of ferrozine and measured using colorimetric assays. Concentrations of diluted

standards that were originally greater than 0.75 mM were underestimated. Solid line represents

observed absorbance values for diluted standards; dashed line represents theoretical calculations

for absorbance values.
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by grey squares. Error bars are shown for triplicate measurements.
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Supplementary Fig. 5.3. Photographs of soft tissues at different time points (1, 5, 15, 30 and 45

days) and specimens exhumed from the sand on day 30 or 45. Photographs of decayed scallops
(s) or no scallop are to the right of corresponding time series photographs. Scallop tissues

incubated for 30 days in the presence of A) cyanobacterial mats, B) illite and C) silica sand

without added cyanobacteria/clay minerals. Scallops incubated for 45 days in the presence of D)
cyanobacteria, E) illite and F) silica sand without added cyanobacteria/clay minerals. I denotes

illite and X denotes the complete decay of soft tissues by the end of the experiment. Solid arrows

point to the formation of extensive black patches in the sand around the soft tissues. Culture jar
volume: 190 mL.
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Supplementary Table 5.1 a. Concentrations of iron(II) (pM) in experiments with kaolinite and silica sand.

Scallops buried in kaolinite Scallops buried in silica sand Sterile kaolinite, no tissues Sterile silica sand, no tissues

Da~ml* RI R2 R3~ RI R2 R3 RI R2 RI R2Day Sample*

I WC n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.02 n.d. n.d.

5 WC 0.05 0.07 n.d. 0.64 0.46 1.68 n.d. n.d. n.d. n.d.

WC n.d. 0.85 0.01 n.d. 0.01 n.d. 0.02 n.d. n.d. n.d.

10 PW1 22.41 87.04 21.00 >1074.22 14.93 92.81 0.11 n.d. 0.11 0.11

PW2 168.93 199.66 135.97 >1138.28 337.75 >1167.35 n.d. 0.04 0.27 0.27

WC 0.05 2.17 2.08 0.05 0.03 n.d. n.d. n.d. n.d. n.d.

15 PW1 21.30 23.64 111.95 >1102.82 40.81 >889.21 n.d. n.d. 0.02 n.d.

PW2 47.14 107.69 149.92 >966.27 126.55 >1041.53 0.07 0.02 0.09 0.09

WC n.d. 0.14 4.33 2.58 0.16 <0.01 <0.01 n.d. n.d. n.d.

30 PWl 1.56 2.37 8.19 86.42 11.61 25.54 0.02 n.d. 0.07 0.27

PW2 1.81 8.19 10.81 25.07 19.76 803.05 n.d. 0.09 0.23 0.14

WC 0.04 0.15 0.35 0.33 0.06 0.15 n.d. n.d. n.d. n.d.

45 PW1 1.34 1.65 12.10 1.94 0.93 4.43 n.d. n.d. n.d. n.d.

PW2 24.97 2.23 2.86 5.84 3.42 19.81 n.d. n.d. 0.14 0.05

Decay delay?' Y Y N N Y N n/a n/a n/a n/a
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*WC: Water column (~3 cm above the surface of the substrate); PW1: Upper porewater ( 1.5 cm below the surface of the
substrate); PW2: Lower porewater (~6.5 cm below the surface of the substrate).
'N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days. Experiments in which
scallops were successfully recovered on day 45 are bolded for emphasis.
R I-R3: Replicates one through three.
n.d. denotes below the limit of detection.
Iron(II) concentrations in the sterile medium were undetectable.

Supplementary
sand.

Table 5.1 b. Concentrations of iron(II) (pM) in the water columns of experiments with cyanobacteria, illite and

Scallops in the presence of
cyanobacteria

Scallops in the presence of illite
Scallops incubated in silica sand

(no added cyanobacteria or clay minerals)

Day RI R2 R3 R1 R2 R3 RI R2 R3

15 7.97 5.84 5.93 6.03 3.00 14.11 8.80 0.90 2.49

30 0.74 n.d. 8.11 0.14 n.d. 0.60 0.14 0.02 0.79

45 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Decay delay?' N Y N Y N N N Y N

'N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days. Experiments in which
scallops were successfully recovered on day 45 are bolded for emphasis.
RI -R3: Replicates one through three.
n.d. denotes below the limit of detection.
Iron(II) concentrations in the sterile medium were undetectable.
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Supplementary Table 5.2a. Concentrations
Scallops buried in

kaolinite

of iron(III) (pM) in experiments with kaolinite and sand.
Scallops buried in silica

sand
Sterile kaolinite, no

tissues
Sterile silica

sand, no tissues

Day Sample* RI R2 R3 RI R2 R3 RI R2 RI R2

1 WC 0.41 0.55 0.49 0.55 0.46 0.55 0.58 0.50 0.74 0.79

5 WC 0.95 2.63 0.55 6.00 2.36 6.51 0.25 0.30 0.60 0.47

WC 3.97 5.95 5.24 4.24 5.57 4.56 0.45 0.28 0.60 0.58

10 PW1 4.34 13.08 6.01 >0.00 17.66 24.59 0.25 0.28 0.33 0.44

PW2 100.56 88.72 144.95 >0.00 64.32 >0.69 0.17 0.18 0.63 0.60

WC 5.21 8.80 8.25 5.91 4.11 >0.22 0.41 0.36 0.47 0.44

15 PW1 29.32 10.64 188.50 >0.00 98.41 >0.00 0.41 0.28 0.53 0.47

PW2 100.09 >0.00 81.76 >0.00 168.94 >0.00 0.26 0.26 0.73 0.71

WC 0.36 0.47 2.11 4.74 3.58 0.44 0.27 0.35 0.35 0.40

30 PW1 11.45 12.42 12.09 112.07 44.86 79.84 0.32 0.22 0.38 0.13

PW2 8.57 47.00 36.68 61.25 119.87 113.39 0.22 0.10 0.38 0.49

WC 0.25 0.27 1.82 1.62 0.25 0.27 0.40 0.22 0.40 0.47

PWL 18.35 20.88 14.12 21.96 6.63 94.27 0.53 0.24 0.45 0.79

PW2 37.20 34.00 21.90 117.04 126.85 292.54 0.24 0.19 0.52 0.48

Decay delay?1 Y Y N N Y N n/a n/a n/a n/a

*WC: Water column samples (~3 cm above the surface of the substrate); PW1: Upper porewater samples (~1.5
cm below the surface of the substrate); PW2: Lower porewater samples (-6.5 cm below the surface of the
substrate)
'N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days. Experiments
in which scallops were successfully recovered on day 45 are bolded for emphasis.
R I-R3: Replicates one through three.
n.d. denotes below the limit of detection.
Iron(III) concentrations in the sterile medium ranged from 0.2 to 0.9 pM.
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Supplementary Table 5.2b. Concentrations
cyanobacteria, illite and silica sand.

Scallops in the presence
of cyanobacteria

of iron(III) (pM) in the water columns of experiments with

Scallops in the presence of
illite

Scallops incubated in silica sand
(no added cyanobacteria or clay)

Day RI R2 R3 R1 R2 R3 RI R2 R3

15 0.17 5.74 1.33 n.d. 1.25 n.d. 4.27 3.92 4.03

30 3.81 1.66 n.d. 1.40 1.51 1.36 4.25 0.90 2.24

45 1.35 0.17 1.38 0.99 0.89 0.73 1.75 0.33 1.11

Decay delay?' N Y N Y N N N Y N

'N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days.

Experiments in which scallops were successfully recovered on day 45 are bolded for emphasis.
RI -R3: Replicates one through three.

n.d. denotes below the limit of detection.
Iron(III) concentrations in the sterile medium ranged from 0.2 to 0.9 pM.
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5.3a. Concentrations of dissolved silica (mM) in experiments with kaolinite and sand.

Day Sample*
1 WC
5 WC

10 WC
10 PW2

15 WC
15 PW2

20 PW2

30 PW2

40 WC
PW2

45 WC
PW2

Scallops buried in kaolinite

R1
0.17
0.09
0.09
1.28
0.27

0.34
1.45
0.13
0.35
0.47
1.06
0.16
1.16

R2
0.10
0.19
0.09
1.32
0.16

0.28
1.10
0.07
0.65
0.43
0.87
0.21
0.77

R3
0.17
0.26
0.19
1.71
0.14

0.29
0.96
0.05
0.52
0.43
0.63
0.20
0.93

Scallops buried in silica sand

RI
0.14
0.18
0.16
2.39
0.13

0.39
2.01
0.28
0.39
0.43
0.85
0.21
0.60

R2
0.17
0.21
0.22
1.48
0.14

0.27
0.72
0.15
0.45
0.40
0.65
0.16
0.67

R3
0.17
0.97
0.30
0.40
0.15

0.24
1.70
0.23
1.30
0.50
1.03
0.13
1.12

Sterile kaolinite, no
tissues

RI
0.09
0.26
0.14
0.46
0.27
0.65
0.05
0.36
0.17
0.30

0.23
0.45

R2
0.16
0.33
0.22
0.62
0.27
0.64
0.02
0.38
0.02
0.51

0.27
0.45

Sterile silica sand,
no tissues

RI
0.17
0.11
0.19
0.45
0.14
0.48
0.21
0.27
0.18
0.23

0.09
0.28

R3
0.17
0.37
0.31
0.39
0.21
0.41
0.10
0.29
0.08
0.42

0.21
0.35

N I
Decay delay?] Y Y N N Y N n/a n/a i n/a n/a

*WC: Water column (-3 cm above the surface of the substrate); PW2: Lower porewater (-6.5 cm below the surface of the
substrate)
*N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days. Experiments in which
scallops were successfully recovered on day 45 are bolded for emphasis.
RI -R3: Replicates one through three.
Concentrations of dissolved silica in the sterile medium ranged from 0.06 to 0.19 mM.
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Supplementary Table 5.3b. Concentrations of dissolved silica (mM) in the water columns of experiments with
cyanobacteria, illite and sand.

Scallops in the presence of
cyanobacteria

Scallops in the presence of illite
Scallops incubated in silica sand
(no added cyanobacteria or clay)

day RI R2 R3 R1 R2 R3 RI R2 R3

15 0.18 0.12 0.16 0.09 0.09 0.12 0.13 0.19 0.17

30 0.05 0.13 0.06 0.08 0.06 0.12 0.18 0.10 0.08

45 0.14 0.09 0.17 0.07 0.15 0.07 0.13 0.09 0.08

Delay decay?' N Y N Y N N N Y N

'N denotes complete
which scallops were

decay after 45 days of incubation; Y denotes recovery of scallop after 45 days. Experiments in
successfully recovered on day 45 are bolded for emphasis.

Ri -R3: Replicates one through three.
Concentrations of dissolved silica in the sterile medium ranged from 0.06 to 0.19 mM.
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Table 5.4. Concentrations of porewater sulfide (pM) in experiments with kaolinite and sand.

Day Sample* R1 R2 R3 RI R2 R3

PW1 n.d. n.d. n.d. 5.29 2.85 n.d.
10

PW2 0.02 n.d. n.d. 1.22 6.53 37.99
PWL n.d. n.d. n.d. 5.20 3.06 n/a

15
PW2 1.05 2.59 n.d. 1.82 3.92 10.34

PW1 0.62 n.d. 0.02 1.90 n.d. n.d.
30

PW2 n.d. n.d. 0.06 n.d. 1.39 1.61
PW1 n.d. n.d. n.d. n.d. n.d. n.d.

45
PW2 n.d. n.d. n.d. n.d. n.d. 1.95

Decay delay?' Y Y N N Y N

*PWl: Upper porewater (~1.5 cm below the surface of the substrate); PW2: Lower porewater (~6.5
surface of the substrate)
'N denotes complete decay after 45 days of incubation; Y denotes recovery of scallop after 45 days.
Experiments in which scallops were successfully recovered on day 45 are bolded for emphasis.
R I-R3: Replicates one through three.
n.d. denotes below the limit of detection.
Concentrations of sulfide in the sterile medium were undetectable.
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5.5a. pH in experiments with kaolinite and sand.

Day Sample*

WC
5 PW1

PW2

WC
10 PWl

PW2

WC
15 PW1

PW2

WC
30 PW1

PW2

45
WC
PWI1
PW2

Scallops

RI
7.5

5.5
7.7

7.8
6.5
6.5
7.8

7.0
7.0
7.8
7.0
7.5

buried in kaolinite

R2
7.5

5.8
7.6

7.6
6.5
6.5
7.8
6.5
6.5
7.8
6.5
7.5

R3
7.4

5.8
7.6

7.6
6.0
6.0
7.8
6.5
6.5
7.9
6.8
7.0

Scallops buried in silica sand

RI
7.6

4.8
7.7

7.8
4.5
4.5
7.7
6.5
6.5
7.9
6.8
7.0

R2
7.4

6.2
7.7

7.8
7

6.5
7.8
6.5
7.0
8.0
6.8
7.5

R3
7.4

5.6
7.7

7.8
5.5
5.5
7.8
7.0
6

7.7
7.0
7.5

Sterile kaolinite, no
tissues

RI
8.2
7.0
6.5
8.2
7.5
7.0
8.2
7.5
7.0
8.4
7.5
7.0
8.3
7.5
7.0

R2
8.2
7.0
6.5
8.3
7.5
7.0
8.2
7.5
7.0
8.3
7.5
7.0
8.3
7.5
7.0

Sterile silica sand, no
tissues

RI
8.2
7.0
7.0
8.2
7.5
7.0
8.2
7.5
7.0
8.3
7.5
7.0
8.2
7.5
7.0

R2
8.2
7.0
7.0
8.2
7.5
7.0
8.2
7.5
7.0
8.3
7.5
7.0
8.3
7.5
7.0

*WC: Water column samples (~3 cm above the surface of the substrate); PW1: Upper porewater ( 1.5 cm below the surface of the
substrate); PW2: Lower porewater (~6.5 cm below the surface of the substrate)
**The sterile medium had a pH of 7.6.
R1 -R3: Replicates one through three.
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pH in experiments with cyanobacteria, illite and sand.

Day Sample*

5 WC
WC

10 PWl
PW2

WC
15 PW1

PW2

WC
20 PW1

PW2

WC
25 PW1

PW2

WC
30 PW1

PW2

45
WC
PWI1
PW2

Scallops in the presence of
cyanobacteria* *

R1
7.3
7.5
6.0
6.0
7.6
5.5
6.1
7.3
5.4
6.4
7.6
5.9
6.5

7.8
6.2
6.7
7.9
6.6
6.8

R2
7.0
7.5
6.2
6.0
7.8
5.8
6.8
7.7
7.0
5.7
7.7
6.0
6.4

8.0
6.9
6.4
8.0
6.8
6.6

R3
7.0
7.5
5.9
5.7
7.8
5.4
5.4
7.4
5.4
5.6
7.2
5.6
6.0
7.8
6.4
6.6
7.9
6.4
6.5

Scallops in the presence of
illite* *

RI
7.4
7.5
6.1
5.7
7.7
6.0
5.2
7.9
6.2
5.0
7.7
6.4
4.9
7.9
6.7
5.1
7.9
6.7
6.8

R2
7.0
7.6
6.0
6.3
7.9
6.4
6.2
7.6
6.9
6.9
7.8
7.0
7.2
8.0
n/a

7.3
8.1
7.3
7.2

*WC: Water column samples (-3 cm above the surface of the substrate); PW1:

R3
7.1
7.6
6.2
6.0
7.7
6.5
6.2
7.5
6.7
6.5
7.6
6.8
6.6
7.9

7.0
6.7
8.0
6.6
7.0

Scallops incubated in silica sand
(no added cyanobacteria or

clay)**
R1
7.5
7.6
6.1
5.9
7.7
6.4
6.3
7.6
6.5
6.8
7.7
7.0
6.7
7.9
7.0
6.6
8.0
6.9
7.0

R2
7.6
7.6
6.1
6.2
7.8
5.9
6.1
7.7
6.2
6.6
7.6
6.2
6.7
7.9
6.5
6.9
8.0
6.7
6.9

R3
7.5
7.5
6.0
6.0
7.7
6.2
6.4
7.5
6.7
6.6
7.9
6.8
6.9
7.9
6.9
6.8
8.0
6.9
7.1

Upper porewater (-1.5 cm below the
surface of the substrate); PW2: Lower porewater (-6.5 cm below the surface of the substrate)
**The sterile medium had a pH of 7.6.
Ri -R3: Replicates one through three.

160

Supplementary Table 5.5b



Chapter 6. Conclusions and Future Work

Fossiliferous sandy sediments containing the remains of non-skeletonized organisms are

commonly found in the Ediacaran/early Cambrian, but rarely occur outside of this interval of

time. This suggests that unique environmental and biological conditions facilitated the

exceptional preservation of organic material in subtidal and intertidal settings, but the specific

factors that play a role in preservation remain to be elucidated. Hypotheses invoking the roles of

high concentrations of oceanic silica, widespread microbial mats and/or the presence of clays in

the preservation of soft tissues abound, but empirical tests of these hypotheses are few. To bridge

this gap, this Thesis employs an experimental taphonomy approach. We use modern

cyanobacteria and soft tissues to identify biological, chemical and physical processes that lead to

the preservation of microbial and animal shapes in siliciclastic settings. Additionally, we develop

mechanistic models of preservation that focus on the roles of authigenic mineral precipitation

and the trapping of fine particles from the sediment. Experimental findings are then compared to

observations from the siliciclastic fossil record.

In the preceding chapters, we showed that the initial preservation of microorganisms and

soft tissues incubated in silica sand and kaolinite occurs within 30 to 45 days, during which time

authigenic and trapped minerals formed continuous veneers on organic surfaces. We tested the

role of dissolved silica in fossilization and showed that high concentrations (>0.1 mM) facilitated

the preservation of microbial filaments in oxic environments (Chapters 2 and 3). However,

solutions that were supersaturated with respect to amorphous silica indicated extensive decay and

reduced preservation of soft tissues in locally anaerobic sediments (Chapters 4 and 5). Thus, our

findings suggest a beneficial impact of moderate concentrations of dissolved silica (0.1 to 0.4

mM) on fossil preservation, but other factors such as the availability of iron and the presence and
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activity of sedimentary microorganisms have a more profound effect on preservation than silica

alone. Future experiments should evaluate the preservation of soft tissues in the presence of

different initial concentrations of dissolved silica in solution.

Microbial iron reduction was critical for the preservation of soft-bodied organisms that

were buried in siliciclastic sediments (Chapters 4 and 5). Both the microbial reduction of

iron(III) and the oxidation of iron(II) occurred in these experiments. These processes controlled

the amount of dissolved iron(II) that was directly incorporated into iron-rich minerals that

formed veneers around soft tissues (Chapters 4 and 5). However, as demonstrated in Chapters 2

and 3, iron was not an essential factor in microbial preservation in oxic environments. Thus, the

role of iron in fossilization requires further consideration. Iron is a cation that is frequently found

in natural settings and it is hypothesized to bind to organic substrates and facilitate the nucleation

of clays and other minerals. However, other cations such as aluminum may play an equal if not

more important role in the formation of authigenic minerals. In this Thesis, we did not measure

concentrations of aluminum in our solution during incubation. Therefore, it will be critical for

future experiments to test the effects of aluminum on the preservation of organic material and the

inhibition of heterotrophic microbial activities.

Both the composition of microbial surfaces and microbial metabolisms may play a role in

fossilization. In Chapter 2, we showed that microorganisms with thick sheaths (>1 pm) were

more likely to be coated in mineral veneers than those with thinner sheaths (<1 pm) or sheathless

cyanobacteria. Thus, organisms with thick, sticky sheaths are more likely to be preserved in

siliciclastic strata. To increase our understanding of how microbial sheaths may facilitate

preservation, it will be necessary to directly compare aerobic and anaerobic microorganisms with

and without sheaths. In doing so, we will not only be able to characterize the preservation
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potential of various bacteria, but also identify the specific mechanisms by which sheaths

facilitate the formation of mineral veneers.

All four chapters provide evidence for the role of clay minerals in the preservation of

organic material. Clay minerals readily form veneers around microbial filaments (Chapters 2 and

3) and the presence of kaolinite in the substrate facilitated veneer formation around soft tissues

(Chapters 4 and 5). However, our understanding of the role of clays in organic preservation is far

from complete. Future studies should test how different clay minerals promote or inhibit the

decay of soft tissues, the amount of clay required to facilitate preservation (i.e., the ratio of

clays:tissue) and the processes by which authigenic clay minerals form on organic surfaces in

predominantly sandy sediments. Longer studies should also investigate the decay of tissues

within organic veneers and the potential for these tissues to be preserved as two-dimensional

compressions or three-dimensional casts.

Future studies should also test the preservation potential of other soft-bodied organisms

(such as jellyfish, worms and shrimp). Scallop adductor muscles were selected for the previously

described experiments because they were readily available and are similar in size and

morphology (cm in size, discoidal) to Ediacaran megafauna. However, it will be important to

better constrain processes of decay/decay delay across a range of soft tissue types and sizes.

Overall, the experiments presented in this Thesis test various mechanisms for the

preservation of organic material in siliciclastic environments. Our results help to confirm or

disprove previous hypotheses regarding the preservation of fossils in Ediacaran and early

Cambrian sandy and silty environments by demonstrating that minerals precipitated and adhered

to organic material under moderate concentrations of dissolved silica (<1.7 mM) and porewater

iron (<1.0 mM). We propose that the most exceptionally preserved fossils are likely to be found
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in coarse-grained environments containing mm to cm-thick layers of clay minerals and that these

fossils will be physically associated with iron-rich aluminosilicate laminae that preserve fine

features. We suggest that this process likely facilitated the preservation of casts, molds and

sedimentary patterns in the coarse-grained siliciclastic rock record as well as the preservation of

two-dimensional carbonaceous compressions in shales.
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