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Abstract

Quantum key distribution (QKD) exploits the inherent strangeness of quantum me-
chanics to improve secure communication, enabling two pre-authenticated partici-
pants to establish symmetric encryption keys over long distances, without making
any assumptions about the computational abilities of an adversary. QKD commonly
relies on the transmission and detection of single photons to distribute the secret
keys, but the secret-key generation rates are often limited by hardware, namely the
ability to produce or detect nonclassical states of light. We address this challenge by
using high-dimensional encoding to increase the secure information yield per detected
photon. In this thesis, we present security analysis for and the first demonstrations of
a resource-efficient high-dimensional QKD protocol, including two varieties of imple-
mentation that each have different strengths and weaknesses. We introduce a 42-km
deployed fiber testbed that we use to demonstrate our high-dimensional QKD proto-
col. We also demonstrate the violation of a steering inequality, confirming that we can
produce entanglement in the lab and distribute it over the deployed fiber. By these
experiments, we demonstrate both the utility of our high-dimensional QKD protocol
and the feasibility of our testbed for further applications in quantum communication
and networking.
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Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation for quantum key distribution

1.1.1 The quantum menace

As a society, we rely heavily on communication networks: we conduct financial trans-

actions, we transmit personal and/or sensitive information, and we socially interact

with other people. We store data on remote cloud servers to retrieve it from any

physical location. We conduct searches to access a wide range of information. How-

ever, we cannot always control the route our data packets take between source and

destination [9, 101. On untrusted routes, our data is vulnerable to interception by

unauthorized agents, and it should not have to be. Encryption is vital for securing

our data'.

To encrypt our communications, most of today's secure Internet traffic uses public-

key cryptography to authenticate and establish shared session keys between remote

entities. However, public-key cryptosystems are not unconditionally secure; their se-

curity relies on the difficulty of solving certain mathematical problems and on the

assumption that the computational resources needed to solve those problems are un-

feasible for an adversary. Three of the most commonly used public-key schemes,

Diffie-Hellman (DH) [12], RSA [13], and elliptic curve cryptography (ECC) [14, 15],

'And for keeping it private - security 1 privacy, but both are important 1111.
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underpin most of the cryptography used on the Internet today [161. These cryptosys-

tems all rely on the hardness of integer factorization or computing discrete logarithms.

A quantum computer implementing Shor's algorithm [171 could (in theory) break DH,

RSA, and ECC easily by finding discrete logarithms and factoring numbers in poly-

nomial time - scaling exponentially better than the current best known classical

algorithm, the number field sieve [18, 19].

In light of this quantum threat, Mosca motivates the investigation of quantum-

resistant cryptographic solutions by comparing three time intervals [20]:

1. The security shelf-life, or how long the cryptographic keys must remain secure

(denoted as x).

2. The migration time, or how long it will take to deploy a set of quantum-safe

security tools (denoted as y).

3. The collapse time, or how long it will take for a quantum computer (or some-

thing else) to break the currently deployed public-key tools (denoted as z).

If x + y > z, the current cryptosystem is vulnerable [201. Various academics [21],

government agencies [22], and international working groups [16] are concerned about

mitigating the threat to secure communication posed by quantum computers.

1.1.2 The quantum strikes back

Besides posing a threat to the secure Internet as we know it, quantum information

processing (QIP) offers a potential solution in the form of quantum key distribution

(QKD). QKD enables two pre-authenticated participants, traditionally known as Al-

ice and Bob, to establish secret, identical keys over long distances [23]. The output

keys have universally composable security [24], allowing them to be used as inputs to

classical encryption schemes such as the one-time pad (OTP) [25].

The OTP is a symmetric encryption scheme that offers information-theoretic secu-

rity, which does not require assumptions about an adversary's abilities and is therefore

not susceptible to any potential speedups provided by a quantum computer. The OTP
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requires the two users to hold identical and secret keys. To encrypt, each plaintext

bit is combined with a key bit by the exclusive-or (XOR) operation. The result-

ing ciphertext is decrypted by XOR-ing with the same key. Barring human factors

such as theft, loss, improper disposal, or reuse of the key, the OTP is provably (i.e.,

information-theoretically) secure [261. However, because the keys must be at least as

long as the plaintext, the challenging aspect of the OTP is secure key exchange. His-

torically, this restricted the use of the OTP to ultra-secure, low-bandwidth channels

[27]. QKD aims to solve the key exchange problem by enabling two geographically

separated users to establish a symmetric encryption key with security based on the

laws of physics.

A special feature of QKD is its ability to provide intrusion detection during the

key exchange process. Alice and Bob can detect the interference of an adversary,

traditionally known as Eve. Eve's interference can be quantified, and if it is beyond

an acceptable threshold, Alice and Bob will abort the protocol rather than use an

insecure key [231. However, a potential drawback of QKD is the requirement that

Alice and Bob have previously authenticated themselves to each other [281, which

necessitates that they hold a prior shared secret. For this reason, QKD is best un-

derstood as a tool to expand a short secret key to a much longer secret key, rather

than a tool to generate unconditionally secure keys from scratch [29]. Secure schemes

exist to establish authentication using a key much shorter than the messages to be

authenticated [301, and therefore, following a precedent set by two of the inventors of

QKD [29, 311, our work will assume that Alice and Bob are already authenticated.

However, QKD is not a security panacea: it obviates the mathematical complexity

assumptions currently required by common encryption schemes only to replace them

with a legion of new assumptions related to physical implementations [32, 33]. Despite

these new challenges, QKD is expected to become an increasingly valuable tool for

securing communications [34].
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1.2 High-dimensional quantum states

1.2.1 High-dimensional quantum information processing

In QKD, Alice sends quantum states to Bob. The quantum states are traditionally

carried by so-called flying qubits - photons. A qubit, or quantum bit, is a quantum

system that can be in one of two states. For photons, the states can be represented by

physical degrees of freedom, including but not limited to polarization, frequency, or

spatial mode. The first QKD protocols used qubits based on the polarization states

of photons [31, 35, 36].

High-dimensional (or large-alphabet) QIP aims to encode more than one bit of

information per photon by using photonic degrees of freedom with dimension d > 2.

Candidate degrees of freedom for qudits (the d-dimensional equivalent of a qubit)

include frequency, time, spatial mode, momentum, or orbital angular momentum

(OAM) mode. (Polarization is not a good candidate for qudits, as there are only

two orthogonal polarization states; however, it can be combined with other degrees

of freedom to produce hyperentangled states [37].)

Compared to qubit states, high-dimensional quantum states can provide practical

advantages for QIP in terms of resource usage, or task efficiency. For instance, high-

dimensional quantum states make it easier to violate Bell-like inequalities in tests

of local realism [38-42]. The state fidelity [40, 43] and detection efficiency [41, 441

required for violation are both lower for qudits compared to qubits. Working with d >

2 can also reduce the number of entangled photons required to collectively teleport the

state of multiple qubits [45]. Qudit states can also provide some efficiency advantages

over classical information processing. Brukner et al. proved that every Bell (or

high-dimensional Bell-like) inequality is associated with a communication complexity

problem, and states that violate the inequality can be used to solve the communication

problem more efficiently than any classical protocol could [46, 471.

High-dimensional QIP could also lead to more efficient quantum gates [481 or

quantum error correction [491. Qudit states are also interesting for use in quan-

tum metrology, as they could lead to improved sensitivity; for example, using high-
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dimensional OAM states could provide greater sensitivity (compared using to qubit

states) in angular resolution [50].

Most relevantly for this work, high-dimensional quantum states can potentially

have a large information content per photon [51, 52], and high-dimensional encoding

can provide higher resilience to loss and noise in QKD [53-551.

1.2.2 High-dimensional quantum key distribution

In high-dimensional (i.e., large-alphabet) QKD [56], Alice transmits qudits to Bob

to establish a key at a potentially higher rate than that afforded by traditional, two-

level QKD protocols. Because QKD is primarily motivated by the OTP 2, and because

OTP encryption consumes one key bit for each bit of plaintext, key generation rates

should ideally approach data communication rates. However, state-of-the-art QKD

systems have not yet demonstrated secret-key rates higher than Mbps [3, 59].

The first QKD protocols relied on binary encoding in discrete polarization states

[31, 35, 361, which could result in at most one bit of secure information per detected

photon. Since single photons of light are difficult to reliably produce and detect,

the motivation for large-alphabet QKD is to increase the information per detected

photon above the one-bit limit of binary QKD. Instead of polarization, there are a

variety of other candidate degrees of freedom. To date, studies of large-alphabet

QKD have investigated position-momentum in free-space [60-62], spatial modes in

multicore fibers [63, 64], time-energy [2, 4, 52, 65-761, and OAM modes [77-791.

1.2.3 High-dimensional time-energy entanglement

To implement QKD in today's telecommunications infrastructure, time-energy qu-

dits are particularly appealing because they are preserved when transmitted through

2 The QKD outputs can be used with any symmetric encryption protocol, including block ciphers
such as AES. Such schemes are not information-theoretically secure, but quantum computing is
expected to provide only a quadratic speedup in cracking block ciphers [571, making their continued
use more feasible than encryption schemes that rely on integer factorization or discrete logarithms.
Block ciphers benefit from frequent key refreshing, which is challenging classically but can be aided
by QKD [23]; indeed, QKD has been demonstrated in conjunction with real-time AES-256 encryption
with rekeying [58].
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single-mode optical fiber, which is not true for polarization, position-momentum,

or OAM modes. The time-energy correlations are also compatible with wavelength

division multiplexing (WDM) systems, which can potentially reduce infrastructure re-

quirements by combining several quantum and/or classical signals on the same optical

fiber.

Optical fiber has two low-loss spectral windows around 1310 nm and 1550 nm.

Advanced time-energy-entangled photon pair sources have been developed for both

windows using either spontaneous four-wave mixing [80-831 or spontaneous paramet-

ric downconversion (SPDC) [84-861. In this thesis, we focus on high-dimensional

time-energy entanglement produced by SPDC [871. SPDC is a nonlinear optical pro-

cess that converts a pump photon into two daughter photons (called signal and idler),

while conserving both energy and momentum. The signal and idler photons are corre-

lated in emission time and anticorrelated in frequency. SPDC can produce entangled

states with a very large number of dimensions, d, and thus a very high information

content, log 2 d bits, per photon [51, 521.

Time-energy entanglement can be verified using a Franson interferometer [88],

which comprises two unbalanced interferometers, one at Alice's location and one at

Bob's. The original Franson interferometer setup analyzes only two temporal modes,

but by increasing the number of interferometers, multiple temporal modes can be

measured [75, 89-91]. An alternative measurement strategy uses interferometers and

polarizing beamsplitters to convert timing information to polarization [43, 921. How-

ever, these methods measure discrete temporal modes defined by the interferometer

delays, and the setups become more complex as d gets larger.

Compared to these interferometric techniques, quasi-continuous measurements of

time and frequency can be simpler to implement, assuming the availability of more

specialized hardware with sufficiently high temporal and spectral resolution. The

continous degrees of freedom are discretized by the measurement resolution. Us-

ing fast single-photon detectors, time can be measured by direct detection, while

frequency can be measured by applying a frequency-dependent temporal shift, e.g.,

using dispersion [2, 73, 93]. Alternatively, frequency can be measured directly using
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a spectrometer, and timing information can be converted to frequency by applying

a time-dependent frequency shift, e.g., using a time lens [67, 94]. These continuous

measurements can access the large information bandwidth of time-energy-entangled

photons for QKD and other applications.

1.3 Field demonstrations of quantum key distribu-

tion

Two-dimensional QKD protocols have been demonstrated in long-distance testbeds

around the world in both atmospheric channels [95-102] and over deployed fibers

[7, 58, 103-1131. Many multi-node fiber network testbeds have also been established

for binary QKD [103, 106, 108-111], demonstrating long-term, stable operation and

integration with software systems that manage and use the output keys.

On the other hand, high-dimensional QKD experiments have generally been lim-

ited to in-lab demonstrations [4, 52, 60, 62, 65, 67, 71, 75, 78, 79], although a recent

field test combined two polarization modes and two OAM modes to produce four-

dimensional states for QKD over an atmospheric channel [114].

1.4 Outline of this thesis

In this thesis, we describe the first lab and field demonstrations of a recently devel-

oped high-dimensional QKD protocol based on time-energy entanglement. Our field

demonstration is in fact the first field demonstration of any high-dimensional QKD

protocol. In Chapter 2, we introduce essential background information on QKD se-

curity and provide context for different families of protocols. In particular, we define

and compare the entanglement-based (EB) and prepare-and-measure (P&M) imple-

mentations of QKD, both of which are investigated in this thesis. In Chapter 3, we

introduce our protocol, dispersive-optics QKD (DO-QKD), and also detail its security

analysis. The development of DO-QKD and its first security proof were led by Jacob

Mower, in collaboration with Zheshen Zhang and Prof. Jeffrey Shapiro. The first
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security proof holds in the asymptotic regime, when the output keys are assumed to

be infinitely long. This thesis extends the proof to the more realistic regime of finite-

length keys. The finite-key security proof for DO-QKD is also contained in Chapter 3.

In Chapter 4, we describe the P&M implementation of DO-QKD and also introduce

the 42-km deployed-fiber testbed that runs between MIT in Cambridge, MA, and MIT

Lincoln Laboratory (LL) in Lexington, MA. All field demonstrations in this thesis

occurred in this testbed, in collaboration with the Optical Communications Technol-

ogy Group at LL. We present both lab and field demonstrations of P&M DO-QKD

and discuss the utility of high-dimensional time-energy encoding. In Chapter 5, we

present our work on the EB implementation of DO-QKD, including the construction

of SPDC sources, an in-lab demonstration in collaboration with the single-photon de-

tector groups from NIST Boulder and NASA's Jet Propulsion Laboratory, and steps

toward a field demonstration in the testbed. We also include further discussion of the

trade-offs resulting from high-dimensional time-energy encoding. In Chapter 6, we

describe a high-dimensional Einstein-Podolsky-Rosen steering experiment that uses

the same setup as EB DO-QKD to confirm the presence and successful distribution of

entanglement. In Chapter 7, we summarize our contributions and present suggestions

for further work.
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Chapter 2

General background on quantum key

distribution

In this chapter, we describe some relevant background on QKD protocols and their

security. This material provides context for later chapters and will be subsequently

expanded upon as needed.

2.1 Goals, assumptions, and attack classifications

QKD enables two parties separated at a distance, traditionally called Alice and Bob,

to communicate securely with each other without requiring assumptions about the

resources available to an adversary, Eve1 . After the successful implementation of a

QKD protocol, Alice and Bob should hold keys that are identical and secret, i.e.,

known only to them. The most useful figure of merit of a QKD system is the secret-

key rate, i.e., the rate in bits per second at which Alice and Bob build up their secret

and identical keys. The secret-key rate is affected by all aspects of the physical system,

namely the transmitter, the receiver, and the channel, as well as by theoretical factors

such as the protocol choice.

Alice and Bob are connected by an insecure quantum channel and a public but

1In classical cryptography, Eve is merely an eavesdropper, and a malicious active attacker is
called Mallory [27], but in QKD, Mallory's attributes are given to Eve.
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authenticated classical channel. Eve is assumed to have full control over the quan-

tum channel, constrained only by the laws of physics, and all loss, noise, and other

non-idealities caused by this channel are attributed to Eve. However, Eve can only

eavesdrop on messages passed on the classical channel. The authentication of the

classical channel prevents Eve from staging a man-in-the-middle attack or otherwise

interfering with messages passed on this channel. She cannot alter or block messages

sent by Alice or Bob or inject her own messages. Additionally, Alice and Bob assume

that Eve cannot access their laboratories; that is, she cannot access their physical

setups and measurement settings [231.

Although Eve is, in theory, constrained only by the laws of physics, it is useful to

categorize her possible attacks, listed here from weakest to strongest [1151:

1. Individual attacks: Eve can only interact with Alice's transmitted signals one-

by-one, and she must make her measurements after Alice and Bob perform

sifting but before they begin their classical postprocessing.

2. Collective attacks: Eve can make a joint measurement over all of Alice's trans-

mitted photons, and she can make her measurement after Alice and Bob's clas-

sical postprocessing is complete, taking advantage of additional information

leaked over the classical channel during postprocessing.

3. Coherent, or general, attacks: Eve can do anything compatible with the laws of

physics.

It is proven for some cases that the security bounds against coherent attacks are

equivalent to to those for collective attacks [23, 115, 116].

2.2 Outline of a general protocol

All QKD protocols have two main stages: signal exchange and measurement, which

occurs over the quantum channel, followed by classical postprocessing, which is ac-

companied by messages sent over the classical channel.
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There are two main categories of QKD implementations that differ in the signal

exchange and measurement stage; they are known as the entanglement-based (EB)

and prepare-and-measure (P&M) implementations. EB and P&M implementations

are mathematically equivalent, making the same security proofs true for both types

[23, 36]. In an EB implementation, Alice produces an entangled-photon pair and

transmits half of it over the quantum channel to Bob; they subsequently measure their

respective halves of the pair to obtain correlated results. In a P&M implementation,

Alice prepares quantum states by encoding information in some photonic degree of

freedom and transmits the photon over the quantum channel to Bob, who measures

it to recover the information that Alice encoded. The classical postprocessing stage

is the same for both EB and P&M implementations.

In both implementations, Alice and Bob use (at least) two different, complemen-

tary bases for measurement and/or encoding. After the signal exchange and mea-

surement stage is complete, Alice and Bob compare their basis choices (but not their

measurement results) for each clock cycle. They discard instances for which they used

different bases. The remaining instances are translated into correlated strings of bits

(for two-dimensional protocols) or symbols (for high-dimensional protocols) - the

raw keys.

Alice and Bob's raw keys are highly likely to contain errors, so to fix this, Alice

and Bob run the raw keys through these classical postprocessing steps:

1. Parameter estimation: Alice and Bob publicly compare a subset of their mea-

surement results to estimate relevant parameters of the quantum channel, such

as the error rate or detection rates. This subset must be randomly chosen. If

the value of any parameter is beyond some previously agreed-upon threshold,

Alice and Bob conclude that Eve's interference was too great to result in a

secure key, and they abort the protocol.

2. Error reconcilation: Alice and Bob use classical error correction to remove errors

from their raw keys. This step involves communication over the authenticated

classical channel and will leak information about the reconciled keys to Eve,
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even when using one-way communication to minimize the leakage.

3. Privacy amplification: Alice and Bob remove Eve's information about their

reconciled keys by using hash functions to distill secret (but shorter) keys [117,

1181.

2.3 Comparison of entanglement-based and prepare-

and-measure implementations

Although EB and P&M implementations of QKD are mathematically equivalent [361,
they are markedly different in setup complexity and utility. Despite significant devel-

opment of SPDC sources, including efficient sources based on waveguides [84-86, 119],

it can be difficult to produce high-quality entangled pairs at high rates. On the other

hand, P&M QKD transmitters require no entanglement sources. P&M QKD has

been studied using single-photon sources based on quantum dots [120-125] or defect

centers in diamond [1261, but the most common light source for P&M QKD is an

attenuated laser.

In P&M QKD, Alice uses an attenuated laser to produce weak coherent pulses

(WCPs). When the phase of each WCP is random, the state p of Alice's laser output

can be described by a Poissonian mixture of number states with average intensity

(photon number per WCP) p [23]:

00

p = : P(n, p) In) (nI, (2.1)
n=O

with

P(n, p) = .(2.2)
n!

For QKD, only pulses with n = 1 are desired; n = 0 pulses are considered vacuum and

make no contribution to the key, and pulses with n > 1 are susceptible to the photon-

number-splitting (PNS) attack [127, 128]. In a PNS attack, Eve can detect whether

a WCP contains n > 1 photons and act accordingly: for n < 1, she simply prevents
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the pulse from reaching Bob, while for n > 2, she splits the pulse. By transmitting

at least one photon to Bob while keeping the rest of the pulse for herself, Eve obtains

a copy of the quantum state that Alice sent to Bob. Eve can then measure the state

without introducing errors that Alice and Bob can detect.

To guard against a PNS attack, Alice can transmit pulses of varying intensities.

Alice and Bob then record the received photon statistics separately for each intensity.

The fraction of Bob's received signals corresponding to a given intensity should match

the fraction of signals that Alice transmitted with that intensity. This strategy is the

so-called decoy-state method [129-131]. Without decoy states, Alice would have to

keep her average photon number p very low to reduce the likelihood of transmitting

multi-photon pulses. A low value of p reduces the single-photon transmission rate and,

consequently, the secret-key rate: Alice's optimal intensity scales as t and the secret-

key rate scales as t2 , where t is the transmission of the quantum channel connecting

Alice and Bob. However, by using decoy states, Alice can achieve the same scaling

obtained by single-photon sources: the secret-key rate is linear in t [23j. Decoy states

allow Alice to maintain the secret-key rates attainable by single-photon sources while

using a convenient and potentially low-cost laser.

One appeal of P&M QKD transmitters is that they can be built using commercial,

off-the-shelf (COTS) components, such as lasers, modulators, and attenuators. They

can also be constructed compactly and in large numbers using photonic integrated

circuits [113, 132, 1331. Additionally, since Alice only prepares quantum states but

does not detect them, she requires no single-photon detectors, which can be costly and

potentially require cumbersome cooling systems. However, Alice does need multiple

satisfactory sources of random numbers: one to generate the raw key, one to determine

the basis used for each signal, and one to determine the intensity transmitted for each

signal.

The most significant advantage of P&M QKD over EB QKD is that P&M trans-

mitters currently operate at significantly higher rates. Current state-of-the-art P&M

systems are clocked at or around 1 GHz [3, 59, 134j, while bright SPDC sources pro-

duce high-quality entangled pairs at low-MHz-class rates [86]. The highest-rate QKD
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demonstrations reported to date use P&M systems [3, 59, 76].

Despite the higher secret-key rates achieved by P&M systems, EB QKD is not

obsolete, and it has its own advantages. Only EB systems, in combination with the

violation of a Bell inequality [40, 135-1381, can be used for device-independent (DI)

QKD [139-1431 - a category of QKD schemes that aims to eliminate the requirement

for trust in the physical implementation of a system. There is a disconnect between

a theoretical QKD security proof and the physical implementation of a protocol,

which can lead to hardware-related vulnerabilities that are not covered by the theory

[32, 33]. In addition to DI QKD, another unique application of EB QKD relates

to long-distance transmission: only EB QKD is compatible with quantum repeaters

[1441, which could counter the effects of loss in the quantum channel and connect

users separated by ever-greater distances.

2.4 Two protocol families: discrete and continuous

variables

EB and P&M refer to two different types of QKD implementation. We would also

like to compare two different families of QKD protocols.

2.4.1 Discrete-variable quantum key distribution

As the name implies, discrete-variable QKD protocols encode information in discrete

degrees of freedom of single photons, such as polarization [7, 31, 96] or discrete phases

(measured by interferometers with fixed phase differences between the two arms)

[59]. In the first QKD protocol, known as BB84 [31], Alice encoded information in

discrete polarization states using two complementary bases. In one basis, the so-called

rectilinear basis, Alice can produce either an IH) state with horizontal polarization

or a IV) state with vertical polarization. In the other basis, the diagonal basis, Alice

can produce either a diagonal state ID) = (IH) + V))/v'2 or an antidiagonal state

A) = (IH) - IV))/x/h. Security was initially based on the intuition that if Eve
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were to disturb the states transmitted from Alice to Bob, then on average, she would

introduce noticeable errors, and meanwhile, the laws of physics prevent Eve from

simply copying the state [1451.

Over time, these intuitive notions of security became more formalized. Early se-

curity proofs were based on entanglement distillation and then also on its correspon-

dence with QKD postprocessing [146-1481. Later proofs are based on information-

theoretic techniques that bound the length of the secret key that can be extracted

[24, 115, 149, 1501. Discrete-variable protocols such as BB84 are proven secure against

coherent (the most general) attacks [115, 1501.

Discrete-variable procotols use single-photon detectors and postselect only suc-

cessful detection events, i.e., if a photon is lost, then it does not contribute to the key.

Thus, loss impacts the secret-key rate because it affects the rate of detection events;

however, loss does not directly lead to errors in the raw keys.

2.4.2 Continuous-variable quantum key distribution

Continuous-variable (CV) QKD protocols use standard homodyne or heterodyne re-

ceivers to detect the modulation of either squeezed or, more commonly, coherent

states of light. Depending on the modulation scheme, CV QKD protocols have the

potential to extract > 1 bit of information per received signal.

The receivers can be COTS and are generally faster than single-photon detectors.

However, instead of postselecting on successful detection events, the receiver makes

a measurement at each clock cycle, and losses in the channel contribute to noise

at the receiver. Compared to discrete-variable QKD, Alice and Bob might be able

to build up their raw key more quickly, but more intensive error reconciliation is

required. Additionally, in terms of secret-key rates, CV QKD protocols perform

worse at higher loss. The maximum tolerable loss, and thus attainable distance, of

CV QKD is currently lower than that of discrete-variable QKD.

It has been shown that Gaussian attacks are optimal for both individual [1511 and

collective [152, 153] attacks against CV-QKD. Ref. [154] establishes security against

coherent attacks for CV protocols that use squeezed states. For CV protocols that use
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coherent states, Ref. [1551 proves security against collective attacks and can be easily

extended to show security against coherent attacks. Quantum de Finetti theorems

can reduce coherent attacks to collective attacks [1161, but this approach does not

scale well outside the asymptotic limit.

2.5 Finite-key security

In the asymptotic limit, the keys are infinitely long, and Alice and Bob have an

infinite number of samples with which to estimate the required parameters such as

the error rate. This scenario is unattainable, and realistic security must consider the

effects of finite-length keys. The most significant modifications to the security proof

are due to the effects of statistical fluctations in the parameters to be estimated [156].

Alice and Bob need to optimize over Eve's possible attacks that are compatible with

the observed parameter values, i.e., they must use the worst-case parameter values,

considering the statistical fluctations.

It can be nontrivial to translate a security proof from the asymptotic limit to the

finite-key regime. Initial finite-key security proofs assumed only collective attacks

[157, 1581. For some common protocols such as BB84, the collective-attack security

proof could be immediately extended to hold against coherent attacks by taking

advantage of symmetries in those protocols [157, 159]. For other protocols, such as

all CV QKD protocols, it took a few more years to develop techniques for finite-key

security proofs against coherent attacks [154, 1551.
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Chapter 3

Dispersive-optics quantum key

distribution: protocol and security,

including finite-key security

In this chapter, we introduce and define dispersive-optics QKD (DO-QKD), a new

large-alphabet QKD protocol that uses time-energy encoding, and we prove its se-

curity against collective attacks in the finite-key regime [721. We will later use our

finite-key security proof to analyze the security of our DO-QKD experiments.

The work on the development of DO-QKD and its asymptotic security proof was

led by Jacob Mower [21; we briefly summarize the asymptotic security in Section 3.2

because it is the essential starting point for the subsequent work.

3.1 Protocol definition

3.1.1 Signal exchange and measurement

Alice holds an SPDC source that produces pairs of time-energy entangled photons.

The biphoton state produced by the SPDC source in the vicinity of time t = 0 can
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be approximated as

| (2h)-1/ 2  dt AdtB [(A+ tB) _ (tA - tB)21I)=(7Ochor ff dtex 16a 2  cor
'I) j coh cor 3.1

x exp [ iw2(tA+tB) tAtB),

where goh is the coherence time of the SPDC pump field, and O-cor is the correlation

time between photons, which is set by the phase-matching bandwidth of the SPDC

source. ItAtB) - att(tA)Cit(tB)10), and t aB(tj) denotes the photon creation opera-

tor for Alice or Bob, respectively, at time tj. The largest possible alphabet size of

the protocol is determined by the Schmidt number K, i.e., the number of possible

information eigenstates in the system. This is approximately K - coh/(cor [52, 1601.

Time-energy entangled pairs produced by SPDC can easily achieve Schmidt numbers

in the thousands; for example, a source with a phase-matching bandwidth ~ 250

GHz [861 pumped by a continuous-wave (cw) laser with gcoh ~100 ns has a Schmidt

number K = 25, 000.

When Alice's SPDC source produces a photon pair, she keeps one photon and

sends the other into the quantum channel to Bob. Alice and Bob measure their

photons in the conjugate bases of time and frequency (energy). The time basis (TB)

corresponds to direct detection of photon arrival time; the frequency basis (FB) is

implemented by direct detection after group-velocity dispersion (GVD) is applied to

the photon. To Alice measures in the FB, she applies normal GVD to her photon.

When Bob measures in the FB, he applies anomalous GVD of magnitude equal to

that applied by Alice.

Alice and Bob use oppositely signed GVD because the photons produced by the

SPDC are correlated in arrival time but anticorrelated in frequency. If the entangled

photons whose state is described by Eq. (3.1) pass through dispersive media, then, in

the limit of long coherence time Ucoh, the correlation time -cor becomes

1
cor co2 c+ (J2,ALA + /2,BLB))(

\cor
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where 02,A (02,B) is the GVD introduced by Alice (Bob) over length LA (LB) [161J. If

we define /3L I 3 2,ALA +/ 3 2,BLB, then as /3L increases, the temporal correlation be-

tween Alice's and Bob's photons degrades. However, 'tor =cor if 3 2,ALA - -2,BLB.

Thus, if Alice and Bob both record photons in the FB, the original correlations be-

tween their photons can be recovered [2]. The use of GVD gives the protocol its

name, dispersive-optics QKD (DO-QKD).

In the rest of this thesis, we will use the notation

DA - - 2 2,ALA (3.3)
A2

DB = - A2 /2,BLB, (3.4)

where A is the photon wavelength. We will also use D to indicate a quantity of

dispersion when not specifically referencing Alice or Bob. The units of DA, DB, and

D are ps/nm.

A schematic of the DO-QKD protocol, including the SPEC source and the basis

measurements, is shown in Fig. 3-1.

3.1.2 Classical postprocessing

After the signal exchange and measurement stage, Alice and Bob sift their time-tagged

data into symbols. Each symbol is a temporal frame comprising M slots of duration

T.It, where Tsit is limited by the timing resolution of the single-photon detectors.

The total duration of a symbol is M x T,1,t.

Using the authenticated classical channel, Alice and Bob communicate their basis

choices and keep only the results from symbols for which they each registered a single

detection event while using the same basis. Alice and Bob convert each of these

detection events into a log 2 M-bit symbol, based on the temporal position of the

event within the frame, i.e., which slot contained the detected photon. The resulting

lists of symbols are the raw keys.

Postprocessing converts the raw keys into secure keys that are identical and se-

cret. Alice and Bob first use classical error correction to reconcile the differences
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...................c cCOMPter Computer

Figure 3-1: Schematic of the DO-QKD procotol. Alice holds the SPDC source. When
an entangled photon pair is produced, she keeps one photon and sends the other to Bob
using the quantum channel (QC). Alice and Bob have passive splitters that randomly
route each photon to one of the two measurements. If Alice measures in the TB (case 1),
then Bob's photon is projected into a temporal state. If Bob also measures in the TB, his
result is correlated with Alice's; otherwise, the measurement results are uncorrelated.
Similarly, if Alice measures in the FB (case 2), then Bob's photon is projected into a
frequency state. If Bob also measures in the FB, his result is again correlated with
Alice's; otherwise, the measurement results are uncorrelated. Alice and Bob are also
linked by an authenticated classical channel (CC) over which they communicate during
the classical postprocessing stage.

between their raw keys [1]. The resulting reconciled keys should be identical. Privacy

amplification removes information that Eve may hold about the reconciled keys. Pri-

vacy amplification is often implemented using 2-universal hash functions. A common

method is to multiply the reconciled keys by random Toeplitz matrices [118]. The

sifting and postprocessing steps are illustrated in Fig. 3-2.

3.2 Asymptotic security

The following security analysis quantifies the secure information shared using DO-

QKD, assuming that Eve can mount arbitrary collective attacks [2, 691 and that the

output keys are infinitely long. The analysis combines desirable aspects of discrete-

variable and CV QKD protocols. Like discrete-variable QKD, DO-QKD relies on the

detection of single photons. Losses reduce the rate of photon detection and thus of

key generation but do not add errors to the raw keys. This is preferable to the role

that loss plays in CV QKD, in which losses manifest themselves as noise in Bob's
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Figure 3-2: Sifting and classical postprocessing, illustrating one measurement basis. A
symbol is a temporal frame comprising M slots; in this illustration, M = 4. Sifting
converts Alice and Bob's measurement results into correlated raw keys with some errors.
Error correction is accomplished using a layered low-density parity check (LDPC) code
[11 and converts the raw keys to identical reconciled keys. Eve's information about the
reconciled keys is eliminated using privacy amplification, leaving Alice and Bob with
shorter but secret secure keys.
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measurements. However, using CV QKD, it is inherently possible to obtain more

than one secure bit per detected signal, while most discrete-variable QKD protocols

use binary encoding and are thus limited to one bit. This security proof for DO-QKD

adapts the Gaussian-state analysis of CV QKD [162, 1631 for single-photon QKD.

The secure photon information efficiency (PIE) quantifies Alice and Bob's infor-

mation advantage over Eve in units of bits per detected photon coincidence (bpc).

In the asymptotic regime, assuming collective attacks, the secure PIE is given by

[23, 164]

O= /I(A; B) - x(A; E), (3.5)

where 0 < /3 < 1 quantifies the efficiency of the error reconciliation and I(A; B) is

Alice and Bob's mutual information, i.e., the information shared after making their

correlated photon detection measurements. x(A; E) is the Holevo information, i.e.,

the maximum information that Eve can access about Alice and Bob's measurements,

assuming that she is limited to arbitrary collective attacks [152, 1531.

An upper bound on x(A; E) is computed using the covariance matrix of Alice and

Bob's TB and FB measurements. The time-frequency covariance matrix (TFCM) is

given by [2]

~ rl7AA - 7AB) (3.6)
(1 - 77)-YA (I -+ 07BB

where IF is a four-by-four matrix composed of four two-by-two submatrices. Each

submatrix 1JK for J, K = A, B describes the covariance between the measurements

of parties J and K. The submatrices are given by

(u+v u+v

YA A = 16 8k

u+v (u+v)(4k2 +uv)
8k 4k2 uV

u-v u-v
T 16 8k

=A 'YBA u-v _ (u-v)(4k2+UV)
8k 4k

2UV

u+v u+v
BB = (16 8k )

u+v (u+v)(4k2 +uv)
8k 4k

2 UV
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where u 16u2 h, cor, and k 2D 12]. In IF, q represents the decrease in

correlations, and e represents the excess noise. These two parameters quantify the

effects of Eve's intrustion, channel noise, and setup imperfections.

Instead of directly measuring q and c, it is experimentally easier for Alice and Bob

to measure another parameter, (, the excess noise factor:

2 -(3.7)90

Here, 0 2 is the variance of the measured correlation between Alice and Bob's detected

photons, and o is the noiseless variance of that correlation (i.e., excluding Eve's

intrusion). Section 3.3.2 will explain that Alice and Bob only need to monitor the

excess noise factor in the FB, i.e., the excess spectral noise factor,

(7.2
= - 1. (3.8)

U2

Here, o.2J is the noiseless spectral correlation variance, which is determined by the

SPDC pump coherence time, 9coh, and the time-bandwidth product. u, is the mea-

sured spectral correlation variance between Alice and Bob's detected photons. Be-

cause the FB measurement converts frequency information to timing information, a-

is in practice derived from o-t, the two-photon correlation time after Alice and Bob

apply equal and opposite GVD of magnitude ID|, using the relationship (derived in

Appendix A)

or2 r 2 1D2o 2
ot2 =for + ID 2.,(3.9)

where o-or is the two-photon correlation time measured in the TB. Thus, the two-

photon spectral correlation is given by

X/O t cor (3.10)
|DI

Since a,- is inversely proportional to ID|, the precision of the frequency measurement

increases as the dispersion is increased.
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The relationship between q, 6, and is then given by

-271(K K2 _ 1) += (3.11)
K 2 +

where K is the Schmidt number of the SPDC source (which defines the maximum

alphabet size). Using their estimate for , Alice and Bob choose values of q and E

that maximize the Holevo information while satisfying Eq. (3.11) and the following

conditions [21:

1. Eve cannot increase Alice and Bob's Shannon information by interacting with

only Bob's photons, due to the data processing inequality.

2. The symplectic eigenvalues of the covariance matrix are greater than 1/2, sat-

isfying the Heisenberg uncertainty relation.

3. Eve can only degrade (and not improve) Alice and Bob's measured arrival-time

correlation.

The calculation of x(A; E) then follows from the symplectic decomposition of the

TFCM [2, 69].

3.3 Finite-key security

The security analysis presented thus far holds only in the asymptotic regime, when

the output keys are infinitely long. We now amend it to show more realistic security

in the finite-key regime. In practice, this amounts to subtracting correction terms

from the asymptotic secure PIE defined in Eq. (3.5) and updating the estimate of

the Holevo information. When the finite-key corrections are large compared to the

asymptotic secure PIE, then no secure key can be obtained.

The most significant cause of finite-key corrections is the statistical fluctuations

in the estimated parameters [156]. Finite-key security analysis provides an estimate

for the number of signals that Alice and Bob must exchange to estimate the excess

spectral noise factor with sufficient accuracy and attain a positive secure PIE.
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3.3.1 E. and revised secure photon information efficiency

Outside the asymptotic limit, a protocol cannot be completely secure but only E,-

secure, where E, is defined as the probability that the output key K differs from an

ideal key [156, 157]:
1

ES= |PKE - TK 0 PEfl- (3.12)
2

Here, PKE is the joint state between K and Eve's system, T K is the completely mixed

state on K, and PE is the state of Eve's system. Operationally, E, is the tolerated

failure probability of the entire protocol [156, 157, 165], where failure means that

at the conclusion of the protocol and unbeknownst to Alice and Bob, Eve holds

information about the output key.

The failure probability E, is the sum of the failure probabilities of each stage of

the protocol [156-158, 165, 166]:

E8 = EPA + &- + nPEEPE + EEC- (3-13)

Here, EPA is probability that privacy amplification fails, leaving Eve with some infor-

mation about Alice and Bob's secure keys. 7 is also related to privacy amplification;

it is the smoothing parameter for the smooth min-entropy, which characterizes the

amount of secure information that can be extracted using privacy amplification when

Eve can hold quantum information [1571. EEC is the probability that error correction

fails, leaving Alice and Bob with reconciled keys that are not identical. EPE is the

probability that parameter estimation fails, meaning that the real value of the param-

eter is outside the desired confidence interval, and nPE is the number of parameters

to be estimated. Failure of any stage of the protocol implies that Alice and Bob are

unaware that something has gone wrong [158].

The finite-key secure PIE for the DO-QKD protocol can then be written as [72,
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157-159, 165-1671:

ri 1 2
rN = n I3I(A; B) - X PE (A; E) - -log 2

N n EEC

2 1 g(3.14)
-log 2  -(2log 2 M+3) )(2(2/.4)
n EPA n

Here, the expression 1 I(A; B)-xPE (A; E) is nearly identical to the asymptotic secure

PIE defined in Eq. (3.5), but the subscript EPE indicates that the calculation of the

Holevo information must now include the finite-key effects on parameter estimation.

N is the total number of photon coincidences detected by Alice and Bob, using any

combination of basis choices. The quantity n = p2N denotes the number of detection

events for which Alice and Bob both chose the TB, where p is the probability that

the TB is chosen. We assume that Alice and Bob use the same value of p, and we will

see that this value need not be 1/2. Lastly, M is the alphabet size of the protocol.

3.3.2 Asymmetric basis selection

The factor n/N in Eq. (3.14) reflects the fact that not all of Alice and Bob's detection

events contribute to key generation. In particular, the sifted keys comprise only

detection events for which Alice and Bob both used the same basis. The first QKD

protocols [31, 35, 168] assumed that Alice and Bob choose the two measurement

bases with equal probabilities, limiting the probability of a same-basis coincidence to

at most 50%. It was later suggested that the probability of a same-basis detection

could be increased asymptotically to 1 if Alice and Bob choose one measurement basis

with a probability p > 1/2 [169]. However, Eve can also derive an advantage from

this choice: if she knows the preferred basis, then by using only that basis, she can

eavesdrop while introducing fewer errors (compared to the case when p = 1/2). This

gives Eve a better chance of remaining undetected by Alice and Bob. To remove Eve's

advantage, Alice and Bob must further modify the protocol: they divide their same-

basis detection events according to the measurement basis used, and they estimate

parameters separately for each basis. Security is ensured because if Eve chooses to
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eavesdrop in the preferred basis, then she introduces more errors in the other basis

[1691.

Because the insertion loss of the GVD elements reduces the photon detection rate

in the FB, the preferred basis for DO-QKD is the TB. By monitoring the excess

spectral noise factor ,, Alice and Bob can bound Eve's information about the TB

measurements. We assume that all m = (1 -p) 2 N of the FB coincidences are used for

parameter estimation to obtain a value for ,. The value of m is significant because

it affects Alice and Bob's ability to estimate , with sufficient confidence.

3.3.3 Modified parameter estimation

Alice and Bob have only a finite number of samples with which to estimate ,, and it

is important to know how well their estimate represents the entire dataset. The value

of EPE defines a confidence interval for the estimate of ,. Within this confidence

interval, Alice and Bob must use the worst-case estimate of , to upper-bound the

Holevo information.

In a sifted symbol-frame, Alice and Bob's detected photon arrival times, TA and

TB, are jointly-Gaussian random variables. Assuming that the sequence of Alice and

Bob's measurements is statistically independent, the estimate for o', the measured

two-photon correlation time after applying GVD, denoted &', has a x2 distribution:

(m - 1) -X(1 - EPE, m - 1)- (3.15)
cor

According to Eq. (3.10), the necessary estimate of the two-photon spectral correlation,

&', is related to &' by a constant factor, so &' also follows a x2 distribution. Then

an upper bound on o', is given by [158J:

/2 b/2 s 1- E
01WUB = W~ + -erf- (I - EPE) T7. (3.16)

This bound is valid for the confidence interval 1 - EPE. Then, the worst-case estimate
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for , within the confidence interval is

/2

_ 

w,UB -' U 1. (3.17) Sw,UB - 2U

WO

3.3.4 Numerical results

To ascertain whether DO-QKD can output secure keys in the finite-key regime, we

first compute the finite-key secure PIE and plot it for different alphabet sizes M E

{8, 16, 32, 64} as a function of N, the number of detected coincidences, in Fig. 3-

3, for E, = 10- [72]. An important figure of merit is the smallest N at which

Alice and Bob can obtain a useful amount of secure information. Fig. 3-3 shows

that this occurs around N _ 104 for the chosen parameter values. This value is

comparable to that obtained by traditional, discrete-variable QKD protocols, which

are generally able to extract a useful amount of secure information starting at N e

105 [23, 156, 157, 159, 165J, and orders of magnitude lower than that of CV QKD

protocols, which generally require N ? 108 [158, 170].

For all protocols, the inability to obtain secure key at lower N values is due to the

finite key length and its effect on Alice and Bob's parameter estimation. Statistical

fluctuations in the estimated values have the most deleterious effects on the finite-

key secure PIE [156, 159] because Alice and Bob must use the worst-case estimate

compatible with EPE for each parameter. As N gets smaller, the magnitude of the

statistical fluctuations increases and the worst-case estimate increasingly deviates

from the asymptotic value, lowering the secure PIE.

Fig. 3-4 plots the finite-key secure PIE as a function of channel length for M

8 and different values of N E {104,106,10 8, 1010, oo} [721. Besides illustrating the

deleterious effects of smaller N on the secure PIE, Fig. 3-4 also confirms that the

finite-key secure PIE, just like the asymptotic secure PIE [2], is unaffected by loss.

Fig. 3-4 also indicates that even assuming finite-key security, DO-QKD should reach

transmission distances > 200 km.

For each value of N, the value of p, the probability of choosing the TB, should

be determined numerically to maximize the secure PIE [165]. Fig. 3-5 plots the TB
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Figure 3-3: Plot of DO-QKD finite-key secure PIE in bpc, assuming that Alice and Bob
estimate &t = 1.l9cor, their detector timing jitter Tj = 2ocor/3, their system detection
efficiency is 93%, and their background count rate is 1 kcps. The security parameter
is E = 10-5 , the failure probability of the error correction is EEC = 1010, and the
reconciliation efficiency is # = 0.9. The average number of SPDC pairs per symbol-
frame is p = {0.119, 0.231, 0.411, 0.607} for M E {8, 16, 32, 64}, respectively. Relevant
parameters were chosen to match the asymptotic examples in Ref. [2].
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Figure 3-4: Finite-key secure PIE in bpc versus channel length for different N. Here,
M = 8, the channel loss is 0.2 dB/km, and all other parameters take the same values
as in Fig. 3-3 and Ref. [2]. From top to bottom: N = oc, N = 1010, N = 108, N - 106,
N - 104.
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selection probability p and compares the secure PIE using asymmetric basis selection

to the secure PIE using symmetric basis selection as functions of N for M = 8 [72].

p has an effect on the secure PIE through the factor n/N in Eq. (3.14). Choosing

p > 1/2 clearly boosts the secure PIE, which approaches its asymptotic value as

p -+ 1. In the symmetric case, where p = 1/2, Alice and Bob have on average

only N/2 coincidences that were measured in the same basis, and only the n = N/4

coincidences detected using the TB contributed to the key. When p = 1/2, the

maximum possible secure PIE, even for large N, reaches only 25% of the maximum,

asymptotic value. For all N that yield a positive secure PIE, it is optimal to choose

p > 1/2. However, the value of p does not change the minimum N required to obtain

a positive secure PIE.

3.3.5 Discussion

We have shown security against arbitrary collective attacks for DO-QKD in the finite-

key regime, and we can continue to use this security analysis for our experiments. For

the example parameters [2], Alice and Bob can reach > 90% of the asymptotic secure

PIE for an experimentally feasible number of detected coincidences, N a 107, and a

positive secure PIE is obtained after detecting as few as N ? 104 coincidences.

These threshold values of N are on par with the finite-key performance of discrete-

variable QKD [23, 156, 157, 159, 165]. In contrast, CV QKD protocols require more

measurements; for realistic parameter values, secure information is not obtained until

N e 108 [158, 1701. At zero loss, assuming collective attacks, some CV protocols

can achieve a positive secure PIE starting at N = 106, but the threshold N increases

rapidly as the loss increases; at 25% loss, N > 108 is required [154].

Although DO-QKD adapts the covariance matrix-based security analysis of Gaus-

sian CV QKD protocols, treating time and frequency as discretized continuous vari-

ables to obtain a secure PIE > 1 bpc, its performance under finite-key constraints

more closely resembles that of discrete-variable QKD. This is because DO-QKD re-

lies on postselecting detected photon coincidences and thus does not suffer from loss-

induced noise like CV QKD. Most importantly, the secure PIE of DO-QKD is not
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Figure 3-5: Numerically optimized value of p = probability of choosing the TB assuming
asymmetric basis selection (solid blue curve), for M = 8, alongside a comparison of the
secure PIE in bpc assuming asymmetric basis selection using this p (dashed red curve)
and symmetric basis selection (dash-dotted green curve). For all N, the secure-key
capacity is maximized by choosing p > 1/2. Using symmetric basis selection, the secure
PIE is limited to 25% of the asymptotic value.
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degraded by loss, even in the finite-key regime. This finite-key analysis further high-

lights the advantages of combining CV and single-photon QKD.
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Chapter 4

Prepare-and-measure dispersive

optics quantum key distribution

In this chapter, we describe the P&M implementation of DO-QKD, the MIT-LL

deployed-fiber testbed, and demonstrations of P&M DO-QKD both in the lab and

over the deployed fiber. Our demonstrations achieved record secret-key rates for each

channel loss tested [76].

4.1 Motivation

High-dimensional encoding is possible in a variety of degrees of freedom, and large-

alphabet QKD has been demonstrated in the laboratory using position-momentum

[62], spatial modes in multicore fibers [63, 641, time-energy [4, 52, 65, 67, 71, 751, and

OAM modes [77-79j. Of these, time-energy encoding is appealing for its compatibil-

ity with existing telecommunications infrastructure - which lowers the barriers to

widespread adoption of QKD. The time-energy correlations are robust over transmis-

sion in both fiber and free-space channels and are preserved in the presence of WDM

systems.

In high-dimensional temporal encoding, the position of a photon within a tempo-

ral frame comprising M time slots can convey as much as log 2 M bits of information,

as depicted in Fig. 4-1(a). Classically, this encoding is known as pulse position mod-
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ulation (PPM), and combined with single-photon detection, it achieves near-optimal

performance in terms of bits per detected photon [1711. Assuming a constant slot

duration, PPM exhibits a trade-off between the alphabet size M and the transmitted

symbol rate: an increase in the former directly corresponds to a decrease in the lat-

ter. The alphabet size determines how much information is encoded in each photon,

and the transmitted symbol rate directly impacts how many photons are received per

second. We take advantage of this trade-off to maximize the secret-key rate in the

presence of receiver saturation.

Fig. 4-1(b) is a representative plot of secret-key rate versus channel length for

binary encoding with realizable parameters. Three regimes of distance/loss are indi-

cated. In normal operation (Region II), the secret-key rate decreases exponentially

with distance until the received photon flux is comparable to the background counts

of the detector(s). At distances/ losses beyond this cutoff point (Region III), the corre-

lations between sender and receiver are masked by the background and the secret-key

rate drops abruptly. However, at short distances, i.e., low losses (Region I), the

secret-key rate is limited when some component of the receiver hardware - such as

the detectors or the readout electronics - is saturated by the incoming photon flux,

as illustrated in Fig. 4-1(b). In this regime, which extends to approximately 100 km

for these parameters, the best strategy to maximize the secret-key rate is to reduce

the transmitted photon rate by increasing the alphabet size until the receiver is just

below saturation. Although much research has focused on extending the range of

QKD links well beyond 100 km [8, 134, 172, 1731, shorter links should not be ignored

- even at distances ~ 40 km, secret-key rates lag behind classical data communica-

tion rates by orders of magnitude [3, 59]. Futhermore, deployed QKD networks will

include a variety of link lengths with potentially different optimal technologies; thus,

we focus here on using high-dimensional encoding to maximize secret-key rates over

metropolitan-area distances of tens of kilometers.
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Figure 4-1: (a) In high-dimensional temporal encoding (pulse position modulation),
information is encoded in the position of an optical pulse within M slots, depicted here
for alphabet size M e {2, 4, 8, 16}. For a fixed slot duration, the alphabet size and the
transmitted pulse rate are inversely proportional. (b) Representative plot of secret-key
rate versus channel length for a traditional two-dimensional QKD protocol, assuming a
5 symbols/second modulation rate, a 0.2 dB/km channel loss, a 1 kcps background count
rate, a 93% detector efficiency, and a 100 ns detector reset time after each detection
event. Three regions are denoted: I. At short distances, 0-100 km (or correspondingly,
low losses, 0-20 dB), the secret-key rate is limited by detector saturation. 1I. For higher
losses (normal operation), the secret-key rate decays exponentially with distance. III.
At even higher losses (> 300 km), a cutoff is reached when Bob's received photon rate
becomes comparable to his detectors' background count rate. The error rate grows and
the secret-key rate drops abruptly.
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4.2 Prepare-and-measure implementation

In the P&M implementation of DO-QKD, Alice holds a broadband light source, such

as a superluminescent diode (SLD), and filters it to the order of 0.1 nm of spectral

bandwidth. Alice uses PPM, a programmable pulse pattern generator (PPG), and an

electro-optic modulator (EOM) to encode a data pattern that will become the raw

key. To transmit in the TB, Alice sends the PPM signal to Bob, and in the FB, she

applies GVD to the signal before sending it to Bob. Alice should use a random basis

for each transmitted symbol, or more specifically, the basis choice for each symbol

must appear random to Eve, and Alice must also record which basis was used for

each symbol. In EB QKD, the basis choice is often indicated by which detector

fired, making it easy to glean which-basis information from Alice's or Bob's recorded

measurements. In P&M DO-QKD, Alice could select a basis for each symbol using

active optical switches that deterministically route a pulse through GVD in one arm

or, in the other arm, a variable optical attenuator (VOA) to match the insertion loss

of the GVD element. After the two arms are recombined, Alice applies extra GVD

to precompensate for the dispersion incurred over the fiber channel, and she uses

another VOA to keep the average number of photons below one per pulse.

Bob makes the same TB or FB measurements as in the EB DO-QKD protocol;

his random basis choices can be implemented using a passive splitter. The essential

components of the P&M DO-QKD transmitter and receiver are shown in Fig. 4-2.

Alice's second VOA is operated at multiple preset levels of attenuation, corre-

sponding to different intensities for the signal state, which is used for generating

secure key, and one or more weaker decoy states, which are used for channel moni-

toring to guard against PNS attacks [130, 131, 174-176]. As with the basis choice,

Alice's intensity for each transmitted symbol should appear random to Eve, and Alice

must record which intensity was used for each symbol.

To aid the sifting, Alice can also transmit a synchronization signal to Bob. An

auxiliary ouput of the PPG is used to drive another EOM that carves the cw output

of a laser diode into periodic sync pulses. At Bob's receiver, the pulses are detected
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Alice

To Bob

Bob 2 SLD: superluminescent diode
o o LD: Ilaser diode

BPF: bandpass filter
PPG: pulse pattern generator

From Alice tEOM: electro-optic modulator
ND: normal dispersion

* AD: anomalous dispersion
-- - VOA: variable optical attenuator

DCM: dispersion compensating module

Figure 4-2: Schematic of the P&M DO-QKD protocol. Alice's light source is a filtered
SLD; she uses an EOM driven by a programmable PPG to encode the raw key. Active
optical switches allow Alice to deterministically route the signal to one of two arms that
implement the basis choice: in the upper arm (FB), GVD is applied, and in the lower
arm (TB), the signal is attenuated to match the insertion loss of the GVD element.
Alice precompensates for the dispersion in the channel and attenuates the signal to
the appropriate intensity for either signal or decoy pulses before transmitting it to
Bob. Alice uses a second modulator and an auxiliary output of the PPG to produce
periodic synchronization pulses that are also transmitted to Bob. Bob detects the
synchronization pulses classically, and he detects the quantum signals using the same
measurement setup as in the EB DO-QKD protocol. Thin, solid lines indicate optical
connections, and thick, dashed lines indicate electrical connections.
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classically using a linear-mode avalanche photodiode (APD). The sync signal is used

to determine the symbol and slot edges during sifting, i.e., when Bob demodulates

the PPM signal.

The experiments described here are only a proof of principle because Alice's setup

differed from an ideal P&M QKD transmitter in several important aspects:

" The raw key data encoded by Alice must come from a trusted source of random

numbers; however, we deterministically encoded a repeating pattern of symbols

to simplify the PPM demodulation.

* Alice's basis choice for each frame must also come from a trusted source of

random numbers (she is allowed to use asymmetric basis switching), and she

must know which basis was used for each transmitted frame (for example, us-

ing active optical switches, as depicted in Fig. 4-2); however, we used manual

basis switching: Alice and Bob used the same basis for an entire dataset, and

we combined datasets to perform the key generation and the security checks,

because of constraints in the available hardware and the added complexity of

the driving and time-tagging electronics.

" Alice's choice of photon intensity, i.e., her choice whether to transmit a signal

or a decoy state, must also come from a trusted source of random numbers,

and she must know which intensity was used for each transmitted frame (for

example, using a programmable VOA or by inserting another EOM to control

the intensity of the cw light that reaches the PPM-encoding EOM); however, we

used manual decoy states: Alice used the same intensity for an entire dataset,

and we combined datasets to perform the key generation and the security checks,

again because of constraints in the available hardware and the added complexity

of the driving and time-tagging electronics.

We emphasize that these experimental simplifications relate to problems of classical

engineering and do not detract from the quantum aspects of this work. A dedicated

field-programmable gate array (FPGA) could have simplified the sifting and clock
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recovery; however, we chose to work with available COTS time-taggers (Picoquant

HydraHarp 400) and perform as many postprocessing tasks as possible using soft-

ware. Similarly, a custom FPGA could have aided with implementing and tracking

Alice's random data/basis/intensity choices; however, we chose to work with a COTS

PPG, which provided a mechanism for Alice to drive but not easily track her ran-

dom outputs. Additionally, at the time of the experiments, only one optical input

to a detector array was available. There are precedents for deterministic raw key

encoding, manual basis switching and manual decoy states in early proof-of-principle

demonstrations of other QKD protocols [177, 1781.

4.2.1 Security proof modifications

In EB DO-QKD, Alice and Bob estimate o-,, the two-photon spectral correlation [71J,
by measuring the timing correlations between their photons measured in the FB. For

P&M DO-QKD, we use an alternate formulation of ,. It is more experimentally

relevant to measure how well the GVD applied to a PPM pulse is cancelled in the

FB, and thus, we want to minimize c' = o.2 - a2, where again o- represents the

two-photon spectral correlation width including Eve's effects, and 6r, is the noiseless

spectral correlation. To clarify, the measured o', is related to the increase in the two-

photon spectral correlation width, and not to the width itself. Keeping the definition

of , from Eq. (3.8), we can rewrite , in terms of the experimentally measured o'

as

0_W12(4.1)

wo

We can use the same finite-key analysis presented in Section 3.3.3 to obtain worst-case

estimates for o' and .

Finally, the secure PIE is revised. Since only Bob detects photons, no photon

coincidences are recorded; thus, the units of the secure PIE become bits per detected

photon (bit/photon), or simply bits. Decoy-state analysis must be added to the

calculation of the secure PIE [175]. In the asymptotic regime, the secure PIE including
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decoy-state analysis is

roo,decoy -(A; B) ( FLB) 102 M - F BxUB (A; E), (4.2)

where FLB is a lower bound on the fraction of Bob's detection events that came from a

single-photon transmission by Alice and XUB(A; E) is an upper bound on the Holevo

information. Decoy-state measurements contribute to the estimation of FLB and

xUB(A; E). In the finite-key regime, we must also consider the effects of a finite sample

size on the estimation of the parameters related to decoy states [1761, in addition to

the penalty terms from Eq. (3.14) and the impact on the Holevo information.

4.3 Deployed-fiber testbed

For field tests of this and other quantum networking applications, we have established

a 42-km deployed-fiber testbed in collaboration with LL. The testbed comprises two

strands of dark (i.e., carrying no other light) fiber running in parallel between the

main campus of MIT in Cambridge, MA, and LL in Lexington, MA, as approximately

illustrated in Fig. 4-3. Compared to the same length of fiber on a spool in the lab,

installed fibers have higher losses due to large numbers of splices and bends.

The loss can be measured using a laser and an optical power meter, but greater

information is given by an optical time domain reflectometer (OTDR). OTDRs trans-

mit pulses and measure and time the backscattered power to determine the location

and loss of splices in an optical fiber. An OTDR measurement requires access to only

one end of the fiber, making it a convenient tool for characterizing deployed fibers.

Fig. 4-4 shows a representative OTDR trace of one of the deployed fibers, as measured

from the LL end.

The loss over the deployed fiber fluctuates from day to day. For a quasi-long-term

measurement of the round-trip loss, the output of a cw laser was split at LL; half

of the power was monitored by a local power meter while the other half traversed

down one of the dark fibers to MIT, through a short jumper, and back to LL over
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Figure 4-3: Illustration of the MIT-LL deployed-fiber testbed. Locations of MIT and
LL are accurate, but the fiber path is an artistic rendering.
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Figure 4-4: Representative OTDR trace from LL to campus. The x-axis shows distance
in feet; the y-axis shows relative backscattered power in dB. The slope of the trace
indicates the loss of the fiber without splices; discontinuities and/or spikes indicate
large losses and/or backreflections that are characteristic of splices. Around 110,000
feet, there appears to be a gain in the fiber; this is most likely due to a patch of
non-standard (probably dispersion-shifted) fiber that is part of the link.
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the other dark fiber, where it was measured with a power meter. The difference

between the readings from the two power meters, recorded over four days in August

2014, is plotted in Fig. 4-5. Large swings of about 0.1 dB appear on weekdays but

not on weekends. Some of the observed fluctuations could be related to polarization

drifts over the fiber and polarization-dependent loss at the power meter. The cause

of the long-term average drift toward lower loss is currently unknown. Besides small-

scale fluctuations like those shown in Fig. 4-5, the one-way loss varies on the order

of one dB from day to day, over months and years. One-way loss measurements are

conducted by measuring the power of a cw laser at one end of the fiber (usually at

MIT), sending the light over the deployed fiber, and measuring the received power

at the other end (usually at LL). The power meters on either end of the fiber may

not be identically calibrated, but the observed variation in loss is too large to be

solely attributed to calibration differences or the non-repeatability of connecting two

FC/PC fiber connectors. At the time of the demonstration reported in this chapter,

the measured loss was 12.7 dB - equivalent to 63.5 km of standard single-mode fiber

on a spool (assuming standard loss of 0.2 dB/km). In December 2016, one of the

fibers broke; after it was repaired, the loss increased to - 16 dB.

For DO-QKD, we are particularly interested in the dispersion of the deployed

fiber. The dispersion incurred over the fiber channel must be properly compensated

(or at least quantified), or the security analysis of the protocol would be affected. To

characterize the one-way dispersion, the output of a pulsed laser was transmitted over

the fiber from MIT to LL. At LL, the received power was first amplified by an erbium-

doped fiber amplifier (EDFA) and then split; the pulses in each arm were passed

through a bandpass filter with a tunable center wavelength before being detected

classically by a photodiode. The center wavelength of one bandpass filter was fixed

while the other was swept through the wavelength region of interest (approx. 1559-

1563 nm). The relative delay between the detected pulses was recorded using an

oscilloscope. This delay is plotted as a function of the center wavelength of the swept

filter in Fig. 4-6. The quantity of interest, the GVD induced by the deployed fiber, is

the slope of the delay-vs.-wavelength line, and its value is 693 ps/nm.
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Figure 4-6: One-way dispersion over the deployed fiber, measured by recording the
delay experienced by pulses transmitted from MIT to LL. The size of the error bars was
determined by the uncertainty in reading the delay from the oscilloscope. The quantity
of interest is the slope of the linear fit, 693 ps/nm.
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An arguably more precise method to characterize chromatic dispersion in optical

fibers is by measuring the phase shift experienced by a sinusoidally modulated cw laser

as its wavelength is tuned [179, 1801. However, this method requires simultaneous

access to both ends of the fiber, which the deployed fiber does not allow. This method

was used to characterize the 41-km fiber spool that was used to test the P&M DO-

QKD system; the measured dispersion was 685 ps/nm.

4.4 Results

We implemented a proof-of-principle demonstration of P&M DO-QKD. All compo-

nents of Alice's and Bob's setups, apart from Bob's single-photon detectors, were

commercially available. Bob's single-photon detectors were niobium nitride (NbN)

superconducting nanowire single-photon detectors (SNSPDs) capable of counting at

hundreds of Mcps rates, with timing resolution of tens of picoseconds and few kcps

dark count rates [181]. Bob had access to four NbN nanowires that are interleaved

in a circular array and illuminated by a single optical fiber. Because the entire quad

of nanowires has only one optical input, the quad is effectively one detector. The

effective effiency of this single detector was 68%. With only one detector, Bob could

not easily measure in both the TB and the FB during the same data acquisition in-

terval, so Bob retained the same basis for the duration of each interval (on the order

of 1-10s of minutes, depending on the received photon flux). However, although the

quad has only a single optical input, each of the nanowires in the quad has its own RF

output, each of which is timetagged using a Picoquant Hydraharp with 1 ps timing

resolution. The four nanowires do not have the same timing jitter, so the sifting and

security checks for each nanowire were processed separately in software.

Just as Bob used a single basis for an entire data acquisition interval, Alice also

used a single basis, as well as a single intensity, for an entire interval. Alice transmitted

signal pulses with average intensity p = 0.5 photons per pulse and decoy pulses with

average intensity v = p/10 = 0.05 photons per pulse. The pulses were - 50 ps

FWHM, as verified using a classical photodiode. The light source was an SLD filtered
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to 0.2 nm (25 GHz). The pulses were produced using a lithium niobate EOM driven

by a programmable PPG (Anritsu MP1763B). The 50-ps pulses were centered in slots

of duration 240 ps. M slots comprised a symbol, with M E {4, 8,16, 32}. Between

each M-slot symbol, an additional two guard slots were included to act as buffers.

Different datasets corresponding to Alice's and Bob's different choices of intensity

and basis were combined using software. Numerical optimization (implementated in

MATLAB) determined the effective fraction of time for each person to use each basis

and intensity to maximize the secret-key rate. The finite-key security parameter used

in the optimization was E, = 10-10, which is the standard value chosen in several

other experiments [8, 59, 112, 1131.

To implement the FB measurements, custom GVD elements with +10, 000 ps/nm

of dispersion were manufactured by Proximion AB. The operating principle is based

on chirped fiber Bragg gratings (FBGs) that introduce wavelength-dependent time

delays. Compared to the length of standard single-mode fiber required to effect the

same magnitude of dispersion (588 km A 17 ps/nm/km and 0.2 dB/km), the insertion

loss of these FBG-based elements is significantly lower (< 4 dB).

The P&M DO-QKD system was tested with three different channel configurations:

1. Alice and Bob were both located at LL, connected by a short patch cable with

negligible loss (the "back-to-back" configuration).

2. Alice and Bob were both located at LL, connected by a 41-km spool of standard

single-mode fiber with 7.6 dB loss. Alice's transmitter included a spool of

dispersion-compensating fiber (DCF) to precompensate for the GVD of the 41-

km spool.

3. Alice was located at MIT and Bob was located at LL. They were connected by

the 42-km deployed fiber, which, on the day of the demonstration, was measured

to have 12.7 dB loss. Alice's transmitter again included the same spool of DCF

to precompensate for the GVD of the deployed fiber. The quantum signals were

transmitted over the strand of dark fiber with lower loss, and the periodic sync

pulses were transmitted over the other strand to eliminate crosstalk between

71



Back-to-Back 41-km spQol 42-km deployed fiber
Loss (dB) 0.1 7.6 12.7
Optimal M 16 8 4
Max. secret-key rate (bps) 23 x 106 5.4 x 106 1.2 x 106
Secure PIE (bit/photon):

Nanowire 1 1.46 0.82 0.41
Nanowire 2 1.33 0.79 0.35
Nanowire 3 1.42 0.96 0.60
Nanowire 4 1.37 0.94 0.61

Table 4.1: Summary of the maximum secret-key rates obtained in the three test cases.

the sync and quantum signals.

Table 4.1 summarizes the three test cases. Our results exemplify the rate trade-off

inherent to P&M high-dimensional time-energy QKD (and to PPM): for a fixed slot

duration, a larger alphabet size M increases the potential secure PIE but decreases

Alice's transmitted photon rate. The optimal M to maximize the secret-key rate

is a function of Bob's receivable photon rate. Fig. 4-7 displays the secret-key rates

obtained for each alphabet size M in the three test cases. The optimal M decreases

as loss increases.

We note that in the deployed-fiber case, our measurements alone do not confirm

whether M > 2 gives a higher secret-key rate than M = 2. We did not test the

case when M = 2 because DO-QKD is not optimal when M = 2. The secure PIE

presented in Eq. (4.2) holds only against the class of collective attacks, whereas tra-

ditional, two-dimensional protocols such BB84 [31] have proven security against the

most general, coherent attacks [591. Furthermore, Eq. (4.2) tends to yield a lower

secure PIE than that afforded by BB84. Ref. [59], the highest-rate BB84 demon-

stration for which secure PIE data is available, obtained 0.26 bit/photon with 10 dB

channel loss. At the same loss, a numerical simulation shows that P&M DO-QKD

with M = 2 achieves a secure PIE of 0.16 bit/photon. The numerical simulation uses

the measured parameters (e.g., Alice and Bob's timing correlations, detector timing

jitter) of the deployed-fiber test case. Over the deployed fiber with 12.7 dB loss,

DO-QKD with M = 2 should achieve a secret-key rate of 605 kbps, indicating that
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Figure 4-7: Experimental secret-key rates for all measured alphabet sizes of each test
case. Loss increases from left to right. The optimal M decreases as loss increases.
For experimental convenience, we did not increase the alphabet size once it became
apparent that doing so would not increase the secret-key rate.
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Figure 4-8: Experimental (stars) and theoretical (dashed curves) secret-key rates versus
channel loss. Colors correspond to optimal alphabet size M for each of the three test
configurations. Each theoretical curve uses a different set of experimental parameters

(e.g., detector timing jitter) that corresponds to each of the test configurations: Config
1 = Back-to-back; config. 2 = 41-km spool; config. 3 = 42-km deployed fiber.

increasing M provides a boost in the secret-key rate.

Results from the same numerical simulation, using the alphabet sizes and mea-

sured parameters corresponding to the maximum secret-key rate from each test con-

figuration, are plotted in Fig. 4-8, along with the experimental secret-key rates. The

reported values and theoretical curves include decoy state and finite-key analysis with

sample size N = 109 counts and security parameter 6, = 10-10 [72, 176]. The colors

in Fig. 4-8 correspond to alphabet size and thus to test configuration, since each con-

figuration had a different optimal alphabet size. The theoretical curves should not be

directly compared to each other because they are based on different experimentally

measured values. The theoretical curves are included to show that the numerical

simulation behaves qualitatively as expected as a function of channel loss.

74

-- M=16, Config. 1
-- M=8, Config. 2

M--M=4, Config. 3

-

-N -



4.5 Discussion

The optimal M to maximize the secret-key rate depends most strongly on Bob's

received photon rate, which is in turn a function of channel loss. If Bob had an

infinitely fast receiver, the highest secret-key rate would be obtained for the fastest

transmitter rate, which occurs for M = 2. However, Bob's receiver hardware is

usually rate-limited. The limit may be due to the single-photon detectors themselves;

for instance, SNSPDs exhibit reset times ranging from a few nanoseconds [181-184]

to several tens of nanoseconds [184-1861, depending on the choice of superconductor.

The detector readout electronics can also limit the receiver count rate, as is the case

for the commercial time-tagger in our system, which has a dead time of 80 ns per

channel, and also for the high-rate BB84 demonstration of Ref. [3].

When Bob's receivable photon rate is limited, increasing M > 2 allows Alice and

Bob to effectively produce secret keys even during the dead time. Thus, at short

distances and correspondingly low losses, we can expect a bottleneck due to the

maximum count rate of Bob's receiver.

Our results in Table 4.1 confirm that increased loss between Alice and Bob is

correlated with a decrease in the alphabet size that produced the highest secure key

rate. Considering the representative plot in Fig. 4-1(b), we expect that at short sep-

arations, say from 0-75 km, and correspondingly low losses, 0-15 dB, Bob's detectors

are likely to become saturated, meaning that P&M DO-QKD could be particularly

advantageous for high-rate QKD on shorter links, on the scale of metropolitan-area

networks. Slower receivers would derive greater benefits from the high-dimensional

protocol, as saturation would occur at lower incoming photon rates. Fig. 4-9 com-

pares our results to some notable previously published QKD experiments, and we see

that P&M DO-QKD currently outperforms the other systems in this low-loss regime.

Additionally, the 1.2 Mbps secure key rate over the deployed fiber is the highest

rate reported in a QKD field test to date. Table 4.2 compares this result to other tests

over installed fibers with similar losses [112, 1871. However, we note that Refs. [112,

187] feature real-time postprocessing, while our system performs postprocessing in
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Figure 4-9: Comparison of our P&M DO-QKD results to previously published QKD
system records, chosen to represent either secure throughput or distance records for a
variety of protocols. BB84/T12: secure throughput record for two-dimensional QKD
[3]. HD-QKD: secure throughput record for high-dimensional entanglement-based QKD
[4]. MDI-QKD: secure throughput record for measurement-device-independent QKD
[5]. CV/GMCS: distance record for continuous-variable QKD [6]. BBM92: secure
throughput record for two-dimensional entanglement-based QKD [7]. COW: distance
record for QKD [8].
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Ref. [187] Ref. [112] This work
Distance (km) 45 45 42
Loss (dB) 14.5 14.5 12.7
Secret-key rate (bps) 0.208 x 106 0.301 x 106 1.26 x 106
Secret-key rate normalized 0.586 x 106 0.848 x 106 2.35 x 106

to 10 dB loss (bps)

Table 4.2: Comparison of our P&M DO-QKD results to previously published QKD field
tests over installed fibers of similar length. Both comparison works used BB84.

software.

The high-dimensional time-energy encoding demonstrated by P&M DO-QKD of-

fers the ability to optimize the secret-key rate by varying the alphabet size M in

response to both receiver capabilities and channel loss. This is most advantageous

when Bob's receiver is saturated, which can often occur over metropolitan-area dis-

tances of tens of kilometers. By presenting and demonstrating a protocol intended

to adapt to the constraints of a particular link implementation, this work represents

a new approach to high-rate secure quantum communication optimized for use in

metropolitan areas.
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Chapter 5

Entanglement-based dispersive optics

quantum key distribution

In this chapter, we describe the implementation of EB DO-QKD, including the con-

struction of SPDC source(s), an in-laboratory experiment that is the first demon-

stration of a high-dimensional QKD protocol with security against arbitrary collec-

tive attacks, and steps toward demonstrating EB DO-QKD over the deployed-fiber

testbed.

5.1 Spontaneous parametric downconversion source(s)

For completely non-scientific reasons, two different SPDC sources were built: the

first on campus and the second at LL. The sources are functionally the same; they

are based on similar though non-identical type-II quasi-phased-matched periodically

poled potassium titanyl phosphate (PPKTP) waveguides fabricated by AdvR, Inc.

The waveguides are designed to convert pump light around 780 nm to orthogonally

polarized signal and idler photons at approximately 1560 nm, conserving energy. The

signal and idler wavelengths can be tuned over a few nanometers by adjusting the

pump wavelength, and because the fabrication is not uniform, different waveguides

on the same chip exhibit downconversion over slightly different wavelength ranges.

However, in contrast to other SPDC sources, such as those based on periodically
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poled lithium niobate (PPLN), temperature tuning has negligible effect on the phase-

matching of these type-II quasi-phased-matched waveguides in PPKTP. As a result,

for a given waveguide, the wavelength at which the signal and idler are degenerate

cannot be shifted.

In both source setups, the pump, signal, and idler beams are free-space coupled

into and out of the waveguide. The primary differences relate to separating the pump

beam from the daughter photons and splitting the orthogonally polarized signal and

idler beams.

5.1.1 Campus source setup

A schematic of the campus SPDC source setup is shown in Fig. 5-1. A half-wave

plate (HWP) placed before the PPKTP waveguide input rotates the polarization of

the pump beam before the pump is coupled into the waveguide. After the waveguide

output, a dichroic mirror reflects most (but not all) of the pump beam while trans-

mitting the signal and idler. Subsequent extinction of the pump is done by dielectric

mirrors that have > 99% reflectivity over telecom wavelengths but do not reflect the

780 nm pump. Any higher-order waveguide modes are removed from the SPDC out-

put beam by a 10 nm bandpass filter (BPF) 186]. The orthogonally polarized signal

and idler photons are coupled into the same polarization maintaining (PM) single-

mode fiber, which also filters out higher-order spatial modes. The fast and slow axes

of the PM fiber are aligned with the signal and idler polarizations, respectively. The

signal and idler are then separated using a fiber-based polarizing beamsplitter (PBS).

The phase-matching bandwidth of this source is 200 GHz.

Fig. 5-2 plots detected single and coincidence count rates as a function of the

pump power measured in free-space before the PPKTP waveguide. The detectors

used with the campus source were tungsten silicide (WSi) SNSPDs loaned as part

of a collaboration with NIST and JPL. The WSi detectors had system detection

efficiencies > 85%, full width at half maximum (FWHM) timing jitters Ti ~ 80 -

120 ps, background count rates on the order of 1 - 10 kHz, and maximum count rates

on the order of 1 MHz (values varied based on the specific detector channel). As
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PPKTP: periodically poled
DcM potassium titanyl phosphate
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Figure 5-1: Diagram of the campus SPDC source setup. A HWP rotates the pump
polarization before the PPTKP waveguide. A second HWP is placed after the waveguide
for fine polarization adjustment of the orthogonally polarized signal and idler photons,
to maximize the extinction when they are separated by a fiber-based PBS. The pump
is extinguished by a combination of dichroic and dielectric mirrors, and the signal and
idler photons are coupled into the same PM fiber. Thin, black lines indicate fiber
connections; blue lines indicate free-space transmission of the pump beam, and red
lines indicate free space transmission of the signal/idler beams.

the photon count rate increases, the observed timing jitter also increases. Fig. 5-2

shows detectable count rates approaching 9 MHz, but because the timing resolution

is degraded at high rates, it is better to constrain to the photon rate to < 5 MHz.

5.1.2 Lincoln source setup

The SPDC source at LL was built after the one on campus, and the experience of using

the campus source motivated some modifications in the LL setup. A schematic of the

LL SPDC source setup is shown in Fig. 5-3. In contrast to the campus setup, the pump

side of the LL setup has a quarter-wave plate (QWP) in additional to a HWP. The

QWP converts an elliptical polarization to a linear one. It was not needed on campus

because the pump source and SPDC setup were directly adjacent to each other, but

it is helpful at LL, where one of the pump sources (futher described in Section 5.1.3)

is located on a different optical table and connected to the SPDC source by 15 m of

non-PM fiber. To separate the pump from the signal and idler beams, the dichroic

mirror from the campus setup is replaced by two identical longpass filters (LPFs) that

have both greater extinction of the pump and higher transmission of the outputs.
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Figure 5-2: Singles and coincidence count rates as functions of pump power for the
campus SPDC source, detected using WSi SNSPDs. The discrepancy in the singles
rates should be attributed to suboptimal free-space to fiber coupling of both modes and
extra loss in the fiber connection to the "signal" detector channel.

82



PBS
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FC: fiber coupling LPF: longpass filter
QWP: quarter-wave plate BPF: bandpass filter
HWP: half-wave plate PBS: polarizing beamnsplitter
PPKTP: periodically poled LP: linear polarizer

potassium titanyl phosphate

Figure 5-3: Diagram of the LL SPDC source setup. A QWP and a HWP adjust the
pump polarization before the PPTKP waveguide. The pump is blocked by two identical
LPFs. A second HWP and QWP are placed after the waveguide for fine polarization
adjustment of the orthogonally polarized signal and idler photons, to maximize the
extinction when they are separated by a free-space PBS before being coupled into
separate PM fibers. A linear polarizer on the output of the reflected port of the PBS
improves the polarization extinction. Thin, black lines indicate fiber connections; blue
lines indicate free-space transmission of the pump beam, and red lines indicate free
space transmission of the signal/idler beams.

The LPFs are followed by a HWP and QWP for fine-tuning of the polarization and

then the same 10 nm BPF for cleaning up higher-order spatial modes. A free-space

PBS separates the signal and idler with greater extinction than the fiber-based PBS

from the campus setup, and a linear polarizer provides additional suppression of the

unwanted polarization at the reflected output of the PBS. The signal and idler photons

are coupled into separate PM fibers. The fiber coupling can be optimized individually

for each of the signal and idler beams to maximize the detected coincidence rate. The

phase-matching bandwidth of this source is 375 GHz.

Fig. 5-4 plots detected single and coincidence count rates as a function of the

pump power measured in free-space before the PPKTP waveguide. The pump was a

cw laser, and the detectors were quads of NbN SNSPDs, as described in Section 4.4.

However, only two nanowires from each quad were connected to the timetagger (ef-

fectively reducing the detection efficiency of each quad by 1/2).

5.1.3 Pulsed pump source(s)

Both SPDC source setups require a fiber-coupled 780 nm pump. For alignment and

characterization, we typically use a fiber-coupled tunable cw laser, but some DO-QKD
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Figure 5-4: Singles and coincidence count rates as functions of pump power for the LL
SPDC source, detected using NbN SNSPD quads.
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experiments call for pump pulses with FWHM duration - 1-10 ns. On campus, this

was accomplished by using a lithium niobate (LiNbO 3) EOM to carve the 780-nm

cw light into pulses of the desired duration. However, the average output power was

only ~ 3 mW. This was partially due to the low pulse duty cycle (- 1% for this

experiment), which we could have changed, but the other constraints on the output

power came from the EOM's high insertion loss and the susceptibility of LiNbO 3 to

photofractive damage at wavelengths < 1 Atm. Additionally, the EOM's low extinction

ratio (- 10 dB, measured indirectly by detecting the downconverted photons) meant

that the EOM did not sufficiently block the laser when the pump should have been

"off."

At LL, we were able to take advantage of existing hardware to improve the pump

pulse extinction ratio and increase the average output power. The full setup of the

improved pulsed pump source is illustrated in Fig. 5-5. An arbitrary waveform gen-

erator (AWG) was used to produce RF Gaussian pulses at a higher repetition rate

(31.25 MHz). These RF pulses were amplified and used to drive a telecom-band

LiNbO 3 EOM that was in all ways superior to the short-wavelength one: thanks to

significant investment in research and development motivated by the telecom indus-

try, COTS LiNbO 3 EOMs are available at telecom wavelengths with high extinction

and low insertion loss. The pulses thusly produced at 1560 nm were first amplified

by two stages of EDFAs to an average power > 3 W and then upconverted by second

harmonic generation (SHG) in a bulk PPLN crystal to produce Gaussian pulses with

high extinction at 780 nm. The measured SHG conversion efficiency was 5 %/W.

The average in-fiber power of the SHG pulses exceeded 20 mW; this power was sub-

sequently attenuated as desired to pump the SPDC source. The PPLN setup was

previously designed, built, and aligned by Ben Dixon, Ryan Murphy, and Margaret

Pavlovich; it happened to be sitting in the lab unused, and thus we were able to

quickly incorporate it into the SPDC system with only some minor adjustments.
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AWG: arbitrary waveform generator To SPDC
LD: laser diode
EOM: electro-optic modulator
EDFA: erbium-doped fiber amplifier
BPF: bandpass filter

0 FC: fiber coupling
QWP: quarter-wave plate
HWP: half-wave plate
PPLN: periodically poled potassium lithium niobate
DM: dichroic mirror
VOA: variable optical attenuator

SBeamPPLN J 11111111111111 -0 block
DM

Figure 5-5: Diagram of pulsed SHG source. Gaussian RF pulses produced by an AWG
are used to drive a lithium niobate EOM, producing Gaussian optical pulses at 1560 nm.
The telecom pulses are amplified by two cascaded EDFAs, with a BPF between the first
and second stages to elimate unwanted amplified spontaneous emission. After being
launched into free space and passing through another BPF, the average optical power
is > 3 W. A QWP and HWP adjust the telecom pump polarization before the bulk
PPLN crystal. After the PPLN, the telecom and SHG are separated by a DM, and
after polarization adjustment by a HWP and QWP, the SHG is coupled into fiber. A
fiber-based VOA controls the SHG power that is sent to the SPDC source. Thick,
dashed lines indicate electrical connections; thin, black lines indicate fiber connections;
red lines indicate free space transmission at 1560 nm; and blue lines indicate free-space
transmission at 780 nm.
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Alice

PPKTP: periodically poled potassium titanyl phosphate on
DM: dichroic mirror
BPF: bandpass filter
FC: fiber coupling
ND: normal dispersion
AD: anomalous dispersion

Figure 5-6: Experimental setup for the EB DO-QKD demonstration with Alice and
Bob located in the same lab, which allows them to share a single timetagger. The
SPDC source is simplified in this illustration. Thin, solid lines indicate optical connec-
tions; thick, dashed lines indicate electrical connections; blue lines indicate free-space
transmission of the pump beam; and red lines indicate free space transmission of the
signal/idler beams.

5.2 Lab demonstration of entanglement-based dispersive-

optics quantum key distribution

The in-lab demonstration of EB DO-QKD occurred on campus using the campus

SPDC source and the NIST/JPL WSi SNSPDs. The photon detection efficiency from

source to detector was 3.3% and 0.77% for Alice and Bob, respectively, including

all coupling losses. Fig. 5-6 shows a schematic of the EB DO-QKD setup for this

demonstration. Whenever Alice and Bob are located in the same lab, they can share

a single timetagger, which provides a convenient shared clock for sifting.

5.2.1 Basis transformations using group velocity dispersion

In spite of the advantages of asymmetric basis switching (discussed in Section 3.3.2),

Alice and Bob used 50-50 splitters to switch between the two measurement bases

because that was what was available. The FB measurements were implemented using

COTS devices based on chirped FBGs (manufactured by Teraxion). The operating

principle is the same as that of the Proximion devices described in Section 4.4, but

87



unlike those devices, the Teraxion devices used in this demonstration apply GVD

that is periodic over 50-GHz (0.4 nm) spectral channels matched to the International

Telecommunication Union (ITU) grid, i.e., instead of being continuous over the spec-

tral width of the signal and idler photons, the group delay resets every 0.4 nm. The

magnitude of the applied group delay slope is IDI = 600 ps/0.4 nm.

Fig. 5-7 plots photon coincidences recorded between Alice and Bob's four possible

combinations of measurements in the TB and FB, with the SPDC source pumped by

a cw laser. If Alice and Bob both record photons in the TB, their photons have cor-

related arrival times within - 110 ps FWHM. This correlation width is dominated by

the timing jitter of Alice and Bob's detectors and time-tagging electronics; the corre-

lation time of this SPDC source, as determined by the phase-matching bandwidth, is

2.8 ps. If Alice and Bob measure in different bases, the correlation width is broadened

to - 630 ps, as expected for these GVD elements. Since the dispersion-broadened

photon temporal envelope exceeds the ~ 100 ps timing resolution of the SNSPDs,

precise spectral measurements can be made [93]. Lastly, if Alice and Bob both record

photons in the FB, they recover a narrow correlation width of 140 ps, exemplifying

nonlocal dispersion cancellation [161]. The mismatch between the correlation widths

measured with and without dispersion is an input to the excess spectral noise factor,

,, as described in Section 3.2.

5.2.2 Results

For this EB demonstration, the SPDC source was pumped with pulses with duration

1.49 ns FWHM. This value corresponds to a baseline (i.e., without Eve's interference)

frequency correlation of awO = 125 MHz (standard deviation) between Alice and Bob's

photons. The nonlocal dispersion cancellation of the FB measurements allowed Alice

and Bob to- resolve frequency correlations to a, = 273 MHz, giving them an excess

spectral noise factor ( = 3.74. Using this ,, the Holevo information was bounded

to x(A; E) = 1.56 bpc, including finite-key corrections with security parameter e, =

10-5.

The maximum reconciled information was 3I(A; B) = 2.39 bpc, obtained for
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Figure 5-7: Measured two-photon correlations for all combinations of Alice's and Bob's
measurement basis choices. When both Alice and Bob use the TB, the measured cor-
relations are limited by SNSPD timing jitter. When only one party uses the FB, the
measured correlations are broadened to a duration determined by the applied GVD.
When both Alice and Bob use the FB, narrow timing correlations are recovered.
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M = 64. Errors in the raw keys were reconciled using a multi-layer low-density

parity-check (LDPC) code that was specifically designed for high-dimensional QKD

applications [1]. The code performs efficient large-alphabet error correction from the

least significant to the most significant bit. It is particularly effective at correcting

errors caused by timing jitter, which comprise the vast majority of errors in the raw

keys. The efficiency # of the error correction code is defined as

mutual information reconciled by code (5.1)
I(A; B)

where I(A; B) is the mutual information of Alice and Bob's raw keys. The maximum

possible mutual information is log 2 M, but in practice I(A; B) is lowered by the effects

of detector timing jitter, background counts, and multipair emissions from the SPDC

source. Fig. 5-8 plots / obtained by this code as a function of the symbol error rate

(SER) for different alphabet sizes M E {16, 32, 64,128, 256, 512} and a large number

of datasets produced by the campus SPDC source.

Finally, to eliminate Eve's information about the reconciled keys, privacy ampli-

fication was implemented using hash functions based on multiplication by random

Toeplitz matrices [1181. Privacy amplification shortens a reconciled key that is n

symbols long to a secure key that is r < n symbols long, where the ratio r/n is given

by
r secure PIE (5.2)
n log 2 M

5.2.3 Discussion

In this demonstration, the maximum observed secret-key rate was 456 bps, and the

corresponding secure PIE was 0.83 bpc. The sample size was N - 3 x 105 counts,

which is relatively small: the secure PIE was only ~ 80% of its asymptotic value.

The penalty due to finite key lengths, AFK, was 0.20 bpc. With only an order-of-

magnitude increase in N, we can more than halve the finite-key correction to 0.07

bpc, and when N > 10', AFK < 0.01 bpc. We can easily increase N, and thus, the

secure PIE, by using a longer integration time and/or asymmetric basis selection.
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Figure 5-8: Reconciliation efficiency / obtained by the layered LDPC error reconcilia-
tion code [1], plotted as a function of the symbol error rate (SER) of the raw keys, for
alphabet sizes M E {16, 32, 64, 128, 256, 512}.

91



Another way to raise the secret-key rate is to increase the pump pulse rate while

maintaining the SPDC pair generation rate per pulse, i.e., while keeping the peak

power constant. In this demonstration, the average SPDC pair generation rate was

0.28 pairs/pulse, and the pump pulse repetition rate was 8.3 MHz. The pulse duty

cycle was low, ~ 1%, which leaves substantial room for improvement in the repetition

rate.

An alternate strategy is to increase the average entangled pair generation rate by

increasing the pump power. However, this also increases the likelihood of producing

multiple entangled pairs by a single pulse or during the same symbol. This is similar

to the trade-off Alice experiences in P&M QKD when determining the optimal average

photon number p of her attenuated laser transmitter: higher intensities increase

her transmission rate but also increase the risk of multi-photon emissions that are

susceptible to PNS attacks. The decoy-state method was developed to counter this

trade-off [129-131j. Decoy states are also helpful in EB QKD because some security

proofs assume a single photon pair is emitted per symbol or per pump pulse [69, 73,

175]. However, there is another issue related to multi-pair emissions that decoy states

do not solve.

Multi-pair emissions tend to reduce Alice and Bob's mutual information because

independent pairs, even if produced during the same pump pulse, are not correlated

with each other. Suppose two photon pairs are produced by a single pulse and that

Alice and Bob each detect only one photon, but their detected photons come from

different pairs. Then, the sifting algorithm would interpret these detection events as

a photon coincidence, but the detected arrival times would be uncorrelated. To ex-

emplify this effect, Fig. 5-9 plots the raw and reconciled mutual information (I(A; B)

and /I(A; B)) for M = 256 as functions of the pump power (or equivalently, the

entangled pair generation rate per slot). Higher pair generation rates correspond

to lower mutual information per photon coincidence. (The data in Fig. 5-9 were

recorded using a cw pump for the SPDC source, but the same relationship between

pump power and mutual information holds for pulsed pumping.)

The multi-pair emission rate can also be affected by the alphabet size. Photon
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Figure 5-10: Predicted raw mutual information and experimentally obtained raw and
reconciled mutual information (I(A; B) and /I(A; B)) for fixed pump power as functions
of log2 M.

pairs emitted during the same symbol, which has duration M x T1 t, are classified

as multi-pairs. For a fixed average pair generation rate per slot, the likelihood of

multi-pair emissions increases as M increases. Although a larger alphabet size leads

to a larger theoretical maximum mutual information, in practice the mutual infor-

mation does not increase indefinitely as M increases. This effect is illustrated in

Fig. 5-10, which plots the predicted, raw, and reconciled mutual information as func-

tions of log 2 M. The predicted mutual information was computed using a numerical

model that considers the effects of multi-pair emissions, loss, background counts, and

detector timing jitter on the mutual information.

Finally, there is yet another trade-off to consider, and that is the same one depicted

in Fig. 4-1(a): for a fixed slot duration, a larger M leads to a smaller rate of symbols

per second.

In summary, higher pump powers lead to higher entangled pair generation rates
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Figure 5-11: Reconciled mutual information rate in bits per second as functions of both
the pump power and the alphabet size.

(and thus to higher detected coincidence rates) but also reduce the secure PIE due

to the effects of multi-pair emissions on the mutual information. A larger M raises

the maximum possible secure PIE, but as M increases, multi-pair emissions eventu-

ally cause the secure PIE to decrease, assuming a fixed slot duration. Continuing

this assumption, a larger M also corresponds to a lower rate of symbols per sec-

ond. Fig. 5-11 plots Alice and Bob's reconciled mutual information rate in bits per

second as functions of both the pump power and the alphabet size, showing that

both pump power and M should not be increased indefinitely if the goal is to obtain

higher communication rates. Thus, several experimental parameters can and should

be optimized for each use scenario, considering channel loss, receivable photon rates,

etc.

We can improve upon this EB DO-QKD demonstration by optimizing these pa-

rameters, adding asymmetric basis switching, improving the source-to-detector cou-

pling, and/or updating the pulsed pump source. Most of these strategies affect the
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mutual information or the detected coincidence rate, but an as-yet unmentioned ap-

proach is targeted at reducing the Holevo information: by increasing D, the mag-

nitude of the GVD. This increases Alice and Bob's spectral resolution. For the

same observed value of o, increasing D reduces the corresponding value of or,

which in turn reduces &. With this motivation, the Proximion GVD elements, with

ID = 10, 000 ps/nm, were purchased after the completion of the lab demonstration

described in this section, to be used for DO-QKD experiments in the deployed-fiber

testbed (including the P&M experiments described in Chapter 4, which chronologi-

cally occurred after this demonstration).

5.3 Toward entanglement-based dispersive-optics quan-

tum key distribution over deployed fiber

For EB DO-QKD experiments in the deployed-fiber testbed, we use the LL SPDC

source. Alice and the SPDC source are located at LL. The detectors at LL are four

quads of NbN SNSPDs, as described in Section 4.4. (Some time after the demon-

stration of P&M DO-QKD, three additional quads became available.) Not all of the

quads have four operational nanowires, but this is not a huge concern because we are

also constrained by the number of available timetagging channels. The efficiency per

nanowire is between 13-17%, and FWHM timing jitters range from 58-90 ps. Bob is

located at MIT. Detectors at MIT are more (different) WSi SNSPDS with detection

efficiencies between 65-70% and FWHM timing jitters ranging from 200-290 ps.

5.3.1 Timing synchronization over deployed fiber

There are two significant challenges to counting coincidences between MIT and LL

over the deployed fiber. First, it goes without saying (but we'll say it anyway),

that when Alice and Bob are located on different ends of the deployed fiber, they

can no longer share a timetagger. Instead, Alice and Bob each have a Picoquant

Hydraharp. To obtain any useful timing correlations, the two Hydraharps require a
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shared frequency reference.

Fig. 5-12 displays results from the first photon coincidence counting measurements

over the deployed fiber. The acquisition time was ten seconds for each trial. These

initial experiments used a type-0 bulk PPLN SPDC source built by Ben Dixon (since

these experiments happened before the LL PPKTP source was built). The upper

plot of Fig. 5-12 shows an example of the cross-correlation between signal photons

detected at LL and idler photons detected on campus without any shared frequency

reference. No dispersion compensation was used; since the signal and idler spectral

widths are 13 nm, the expected temporal broadening due to fiber dispersion is 9 ns.

However, the correlation peak width is on the order of microseconds, which exceeds

the expected width by three orders of magnitude, even when accounting for dispersion.

Additionally, the signal-to-noise ratio is very low (or more accurately, the background

is unusually high).

In a subsequent test, we optically transmitted a 10 MHz reference signal (using

a laser diode and an EOM) from LL to campus to synchronize the frequency ref-

erences of the two Hydraharps. The lower plot of Fig. 5-12 shows an example of

the cross-correlation between signal photons detected at LL and idler photons de-

tected on campus in the presence of this optically shared frequency reference. Both

the correlation peak width and the signal-to-noise ratio are the expected order of

magnitude.

To maintain a permanent shared frequency reference between LL and campus,

identical COTS global positioning system (GPS) receivers were installed at both lo-

cations. Each receiver uses timing signals acquired from GPS satellites to discipline an

on-board oscillator that in turn drives several reference outputs, including a 10 MHz

sine wave. The GPS-derived 10 MHz signals provide frequency references for both

Hydraharps. Alice also connects the 10 MHz reference signal to the AWG in SPDC

pulsed pump source and to a PPG that outputs periodic pulses. Just as in the P&M

DO-QKD experiments, Alice uses the PPG and an EOM to modulate the cw out-

put of a laser diode to produce periodic sync pulses that can be transmitted over

the fiber to Bob. Alice also electrically connects the PPG output to her Hydraharp.
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Figure 5-12: Upper: cross-correlation between signal photons detected at LL and idler
photons detected on campus without a shared frequency reference between the two
timetaggers. Lower: the same cross-correlation when a 10 MHz frequency reference
was optically transmitted over the fiber to synchronize the two timetaggers; all other
aspects of the measurement were the same. For each plot, the acquisition time was 10 s.
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Alice

To Bob

PPKTP: periodically poled
potassium titanyl phosphate

Bob LPF: longpass filter
- - BPF: bandpass filter

rim " FC: fiber coupling
DCM: dispersion compensating module
GPS: Global Positioning System

From Alice PPG: pulse pattern generator
LD: laser diode

- - J EOM: electro-optic modulator
ND: normal dispersion
AD: anomalous dispersion

Figure 5-13: Experimental setup for the EB DO-QKD demonstration when using the
deployed fiber, including the GPS systems and associated frequency reference connec-
tions. The SPDC source is simplified in this illustration. Thin, solid lines indicate
optical connections; thick, dashed lines indicate electrical connections; blue lines in-
dicate free-space transmission of the pump beam; and red lines indicate free space
transmission of the signal/idler beams.

Fig. 5-13 shows a schematic of the EB DO-QKD setup when using the deployed fiber,

including the GPS systems and associated frequency reference connections. Alice pre-

compensates for the dispersion of the deployed fiber using a FBG-based dispersion

compensating module (DCM); it was recently obtained from Proximion AB and has

lower insertion loss than the spool of DCF mentioned in Section 4.4.

The other challenge to coincidence counting over the deployed fiber comes from the

fiber itself. Since it is outside the controllable laboratory environment, it is subject to

large temperature changes that can cause its effective round-trip length to change by

over ten meters in a single day (albeit a day when the outside temperature changed

by several tens of degrees Farenheit) [188]. Cross-correlations between photons de-

tected at LL and on campus over intervals of thirty minutes show large drifts of the
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Figure 5-14: Solid curve, left y-axis: temporal location of the peak in the cross-
correlation between signal photons detected at LL and idler photons detected on cam-
pus, as measured over 30 mins with the cross-correlation computed once per second.
Dashed curve, right y-axis: corresponding rate of change of the peak location.

coincidence peak in time. Fig. 5-14 is a representative plot that marks the location

of the cross-correlation peak, as well as the rate of change of the peak location, over

a thirty-minute acquisition period, when the cross-correlation is computed for each

second's worth of data (offline, not in real time).

The peak drift data plotted in Fig. 5-14 show a swing of nearly 80 ns in < 30 min-

utes. The equivalent length of fiber is ~ 16 m. Although length changes > 10 m have

been observed, they usually occur in the presence of large temperature changes over

many hours. In contrast, the data in Fig. 5-14 are representative of all of our thirty-

minute coincidence counting measurements on a summer day: each thirty-minute

integration period showed a swing of several 10s of ns. Using the same photon de-

tection events, Fig. 5-15 plots the cross-correlation for the full 30-min period. Values

on the x-axis of Fig. 5-15 correspond to values on the left y-axis of Fig. 5-14. In
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Figure 5-15: Cross-correlation between signal photons detected at LL and idler photons
detected on campus for 30 mins with timetaggers synced using GPS-based frequency
references.

Fig. 5-15, multiple discrete narrow peaks appear. Based on prior characterization of

the fiber link, we expect temperature-induced timing changes to manifest themselves

as slow, continuous drifts. Thus, we might expect Fig. 5-15 to contain a single, wide

peak corresponding to a continuous change in the deployed fiber length. However,

one possible explanation for the discrete peaks seen in Fig. 5-15 is that the rate of

fiber drift is not constant, going up to as much as 1 ns/s, as shown on the right y-axis

of Fig. 5-14. The times at which no narrow peaks appear in Fig. 5-15 are correlated

with high rates of fiber drift. This implies that when the fiber length is changing

rapidly, the coincidence rate at a given t is too low to contribute to a statistically

significant cross-correlation peak.

Despite this data, we remain unconvinced that length changes > 10 m are truly

occurring so rapidly and so frequently. The cause of our skepticism is the fact that

GPS-disciplined oscillators provide synchronization only to the order of nanoseconds.
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Fig. 5-12 clearly indicates that it is better to have the GPS-based 10 MHz refer-

ences than to not have them; they reduce the frequency difference between the two

timetaggers by several orders of magnitude. A concrete futher step to investigate the

remaining frequency mismatch is to test atomic frequency references at either end of

the deployed fiber.

5.3.2 Nonlocal dispersion cancellation over deployed fiber

We cannot estimate the temporal and spectral correlations between Alice's and Bob's

detected photons without correcting for the temporal drift of the cross-correlation

peak. We need to be able to isolate the correlation peak widths from any artificial

broadening or narrowing due to timing drifts. For the current detected coincidence

rates (on the order of 100 Hz) and the observed temporal drift, the path length

difference between Alice and Bob is not sufficiently stable to acquire enough samples

to estimate parameters and minimize the finite-key deductions in the secure PIE.

Although the cause of the observed temporal drift is not yet verified, we can use the

out-of-band sync pulses to reclock the detected photon arrival times at both Alice's

and Bob's timetaggers. Fig. 5-16 plots the timing correlations for all combinations

of basis choices after reclocking. The plots in Fig. 5-16 were produced using the

full thirty minutes' worth of data and stand in stark contrast to Fig. 5-15, which

corresponds to the Alice TB, Bob TB case without reclocking.

Using the reclocked timetags, we obtain , ~ 740 and x(A; E) > 5 bpc, which

is too high to obtain any positive secure PIE. The GVD is not sufficiently cancelled

between the TB and FB measurements. Comparing the widths of the correlation

peaks in Fig. 5-16, aA = 0o - -/ = 104 ps, even when deconvolving out the

effects of unequal detector timing jitters (differing by 90 ps FWHM).

Local measurements of dispersion cancellation at LL obtain UA = 30 ps, corre-

sponding to , ~ 10 and x(A; E) ~ 2 bpc. The target value of aA is on the order

of 1 ps. Part of the high -a can be attributed to the fact that the Proximion GVD

elements do not produce group delays that are flat across their - 4 nm passbands.

Instead, they each have a group delay ripple with magnitude - 65 ps/nm2 . The rip-
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Figure 5-16: Two-photon correlations measured over the deployed fiber for all combi-
nations of Alice's and Bob's measurement basis choices. Blue = measured data; red
Gaussian fits to data. The plots were produced using photon detection events acquired
for 30 mins; the detection events were reclocked using the periodic sync pulses recorded
by each of Alice's and Bob's timetaggers. In the Alice TB, Bob FB plot, the sharp
cutoff around 5 ns appears because the passband of Bob's GVD element cuts off part of
the idler spectrum. In the Alice TB, Bob TB and Alice FB, Bob FB plots, the auxiliary
peaks around 2 ns appear as an artifact of the reclocking, due to afterpulsing in the
periodic sync signal. This can be removed with updates to the algorithm.
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M SER I(A; B)
2 0.0557 0.691
4 0.1420 1.270
8 0.2649 1.613

16 0.3429 2.052
32 0.4079 2.515

Table 5.1: Raw key results for reclocked photon detection events measured over the
deployed fiber.

ple contributes to mismatch in the normal and anomalous GVD applied by Alice and

Bob. By filtering the signal and idler, we reduce the spectral width over which the

GVD ripple has an effect. After filtering to around 0.5 nm FWHM, with the filters'

center wavelengths set to maximize the detected coincidence rate, aA is reduced to

22.7 ps, which exceeds the target value by an order of magnitude but is also less than

one-fourth of the value obtained over the deployed fiber. Further work should con-

tinue to investigate whether the fiber, the timetaggers, or the reclocking are affecting

the measured timing correlation widths and oa.

5.3.3 Mutual information over deployed fiber

Table 5.1 summarizes the raw key results obtained using the reclocked photon de-

tection events. The reported values of I(A; B) were computed directly from the raw

keys and do not include error reconciliation. With these results, no secure PIE is

obtained.

5.3.4 Further work

To obtain a positive secure PIE over the deployed fiber, we need to improve the

nonlocal cancellation of GVD to reduce '. This could be aided by filtering the signal

and idler photons, at the expense of the coincidence rate, or by using a programmable

waveshaper to implement a custom group delay to offset the ripple in the Proximion

elements. We could even replace our GVD elements with ones that have a larger

value of ID1, which allows us to tolerate a larger temporal mismatch in the GVD
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cancellation. We also need to ascertain whether the GPS-based frequency references

are affecting the timing correlations between the photons detected by Alice and Bob.

An alternate strategy to combat fiber drift is to integrate the DO-QKD setup with

the LL fiber stabilization system described in Ref. [188]. The LL system can achieve

sub-wavelength stabilization of the round-trip fiber length. With some modifica-

tions, it should be adaptable for one-way stabilization. However, in its current state,

the stabilization system introduces an overwhelming amount of spontaneous Raman

scattering into the SPDC spectral channel. The system also requires modifications to

reduce the scattering.
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Chapter 6

High- dimensional

Einstein-Podolsky-Rosen steering

In this chapter, we introduce Einstein-Podolsky-Rosen (EPR) steering and describe

how it can be observed using the EB DO-QKD setup, both in the lab and over the

deployed fiber.

6.1 Introduction to Einstein-Podolsky-Rosen steer-

ing

EPR steering (or steerability) is a form of quantum correlation that lies between

entanglement and Bell nonlocality [189-192]. Entanglement, or equivalently, nonsep-

arability, refers to the fact that the composite state IT) of two particles A and B

cannot be written as the tensor product of the single-particle states IV)A) and 'l'B):

J'I) # I V)A) 9 1?)B), (6.1)

while a separable state can. If the composite state of Alice and Bob's systems is sep-

arable, then Alice and Bob's systems share only classical correlations. Two common

tests for quantum correlations, i.e., for entanglement, are entanglement witnesses and

Bell inequalities. An entanglement witness W is an observable with expectation value
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(01W1#) > 0 for all separable states 15) and (#1W10) < 0 for at least one entangled

state 1#) [193, 1941. Thus, measuring (01W10) < 0 would indicate that the state 1#) is

entangled. Alternatively, entanglement is implied by the violation of a Bell inequality,

which tests for Bell nonlocality [135]. Bell nonlocality rules out the existence of local

hidden variable models that describe reality [135, 195] and is the strongest form of

quantum correlation.

Like Bell inequalities, steering inequalities can also serve as tests for nonsepa-

rability. Steering is a type of quantum correlation that is strictly stronger than

entanglement and strictly weaker than Bell nonlocality [189-1911. That is, all states

that demonstrate steerability are also entangled/nonseparable, but not all nonsep-

arable states are steerable. Similarly, all states that violate a Bell inequality are

steerable (and also entangled/nonseparable), but not all steerable states demonstrate

Bell nonlocality [1961. All pure entangled states demonstrate both steerability and

Bell nonlocality [189], but some mixed entangled states can be steerable without be-

ing Bell-nonlocal (or nonseparable without being steerable). A well-studied example

of such mixed entangled states is the family of Werner states [1971. The Werner state

for qubits can be written as

W = (1 - T)- + g|r-)(W-|, (6.2)2 4

where I is the identity, ITv-) is a maximally entangled state, such as the singlet Bell

state, and 0 < q < 1 is a mixing parameter [189, 190, 1961. For qubits, the state is

nonseparable if and only if (iff) TI > 1 ent = 1/3, and the state violates the Clauser-

Horne-Shimony-Holt (CHSH) inequality [136] iff 1 > 1/v/_. To violate any form of

Bell inequality, the lower bound on T is TBell > 0.6565 [198]. However, the state is

steerable if 7 > 7steer = 1/2, which is strictly less than Bell [189, 1901. Refs. [189, 190]

generalize this analysis to higher-dimensional Werner states and also to other families

of states, and Ref. [196] experimentally demonstrates steering using qubit Werner

states that do not violate the CHSH inequality.

Steering can be defined as a task: Alice prepares a bipartite quantum state, sends
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half of it to Bob, and measures her own half. By measuring her system, Alice can

remotely steer Bob's system. She cannot deterministically prepare Bob's system in a

desired state (that would be superluminal signaling), but if she sends her measurement

results to Bob, Bob can measure his own system and check that his conditional states

have been steered [1951. After a sufficiently large number of repetitions, Bob can

estimate the strength of the correlations between his system and Alice's [195]. The

goal is for Alice to convince Bob that she can prepare entangled states and steer Bob's

system. The alternative is that Bob's system is described by some local hidden state

model [1891. A local hidden state model is the steering analogue of a local hidden

variable model in Bell tests.

As with Bell tests, steering experiments also have loopholes, but they are easier to

close than those of Bell tests. In particular, the detection efficiency required to close

the detection loophole is lower than the threshold for Bell tests [195, 199], and in

fact, the required efficiency can be made arbitrarily low [200]. As a result, loophole-

free steering experiments [201J were achieved years before loophole-free Bell tests

[137, 138, 202].

Entanglement and Bell nonlocality are both symmetric between Alice and Bob,

but as the task-based definition shows, steering is inherently asymmetric [189]. The

asymmetry of the steering task implies that Bob must trust both quantum mechanics

and his own measurements but need not trust Alice, her measurements, or the entan-

glement source [192]. This asymmetric trust allows for one-sided device-independent

QKD (1SDI-QKD) [203, 204J, where the security is tied to the violation of an EPR

steering inequality. Practically, 1SDI-QKD broadens the scope of possible scenarios

for QKD; for example, it is well-suited to scenarios when Bob is in a fixed, secure

location but Alice may be roaming in an untrusted region. Because it is experimen-

tally easier to violate a steering inequality than a Bell inequality, it is also easier to

implement 1SDI-QKD than fully DI QKD. For 1SDI-QKD, the detection loophole

must be closed, but as previously stated, the required efficiency is lower than that for

fully DI QKD [195, 203]. Additionally, the locality and freedom-of-choice loopholes

become irrelevant, since security proofs already assume that no information can leak
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out of Alice's or Bob's labs unless they allow it [2001.

Because steering is strictly stronger than entanglement, the violation of an EPR

steering inequality over some channel indicates that the channel preserves entangle-

ment. We can use the EB DO-QKD setup and the same TB and FB measurements

to test a high-dimensional EPR steering inequality over the deployed fiber, thereby

confirming that we can distribute time-energy entanglement from LL to MIT. Time-

energy entanglement is commonly verified using a Franson interferometer setup [881.

However, if we used a Franson interferometer to test for entanglement over the de-

ployed fiber, we would have to build and stabilize two separate interferometers located

on opposite ends of the deployed fiber, and we would have to maintain the path length

imbalances of the two interferometers such that their difference remains less than the

biphoton coherence length. This might require us to also build a new real-time feed-

back system. However, by testing steerability instead of Franson interference, we

can verify entanglement distribution without making any setup modifications and, in

particular, without requiring interferometric stability or real-time feedback.

6.2 Steering inequality for continous variables using

discretized measurements

The photons produced by the SPDC source are entangled in time and frequency, which

are continuous degrees of freedom. Ref. [205] introduces an EPR steering inequality

for continuous variables that relies on discretized measurements:

H (TB TA) + H (QBIQA) > og 2 (CW (6-3)
(AtBAWB)

A state that satisfies this inequality could be described by a local hidden state model.

We define the steering parameter, S, as the left-hand side (LHS) of this inequality:

S = H(TBITA) + H(QBIQA). Here, H(TBITA) is the discrete Shannon entropy of

measurements of the arrival time of Bob's photon conditioned on measurements of

the arrival time of Alice's photon. We assume that the range of possible arrival
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times, denoted Tf, is broken up into M discrete time slots of duration AtB; thus,

Tf = Mx AtB. Similarly, H(QBIQA) is the discrete Shannon entropy of measurements

of the frequency of Bob's photon conditioned on measurements of the frequency of

Alice's photon. We assume that the frequency is measured with resolution AWB.

We note that (6.3) explicitly depends on the resolution of Bob's measurements only.

We assume that Alice and Bob use the same measurement settings with temporal

resolution At = AtB and frequency resolution AW = AWB-

Using the dispersive FB measurements, the frequency resolution AW is related to

the temporal resolution At by
27rc At

Aw = 32D,(6.4)
A 2 'D

where A is the photon wavelength and D is the magnitude of the applied GVD in

units of ps/nm. In our experiment, A - 1560 nm and D - 10,000 ps/nm. We assume

that there are M discrete frequency slots of width At, and thus the range of possible

frequencies is Qf = M x A.

The analysis of the timetagged photon detection events follows the same sifting

procedure used for DO-QKD and illustrated in Fig. 3-2. Unlike DO-QKD, the steering

analysis does not require error reconciliation or privacy amplification. From the raw

keys, we build up M x M joint probability matrices for each of the two measurement

bases: PT(TA,TB) and PQ(QA, QB). For example, pT(a, b), the entry in the ath row

and bth column of PT, is the probability that using the TB, Alice detected her photon

in the ath slot and Bob detected his in the bth slot:

NT(a, b)
pT(a, b) = , b (6.5) NT B

where NT(a, b) is the number of instances when Alice detected her photon in the ath

slot and Bob detected his in the bth slot, and NTB is the total number of coincidences

detected using the TB. Similarly, p (a, b), the entry in the ath row and bth column

of PQ, is the probability that using the FB, Alice detected her photon in the ath slot
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and Bob detected his in the bth slot, and

p(a, b) = ,b) (6.6)
NFB

where NQ(a, b) and NFB are the FB analogues to NT(a, b) and NTB, respectively.

Using the joint probability matrices, we can compute all relevant entropies to obtain

the steering parameter, S. Without loss of generality, we define the entropies and

write all further calculations using only the TB; the results are the same for the FB.

H(TBITA) = H(TATB) - H(TA) (6.7)

H(TA,TB) = PT(a, b) log2 PT(a, b) (6-8)
ab

H(TA) = - pT(a)log 2 PT(a), (6.9)
a

where

pT(a) = Z:PT(a, b). (6.10)
b

We also compute JS, the uncertainty in S, by assuming that coincidence counts

follow Poissonian statistics. The uncertainty in number of counts NT(a, b) for a given

matrix entry is assumed to be 6NT(a, b) = V/NT(a, b). This uncertainty is propagated

through the probability and entropy calculations, as detailed in Appendix B.

6.3 Results and discussion

Fig. 6-1 plots the steering parameter as measured both locally at LL and over the

deployed fiber for M E {2, 4, 8} and 25 < At < 200 ps. The right-hand side (RHS) of

(6.3) is also plotted as a solid black curve. Violations of the steering inequality (6.3)

occur in the region under this curve. The size of the error bars is JS.

We define the degree of violation as the quantity

7re
log 2  - S(M, AtB), (6.11)
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Figure 6-1: Steering parameter, S, as a function of At for alphabet size M E {2, 4, 8},
measured locally at LL and over the deployed fiber. The black solid curve indicates the
value of the RHS of (6.3). Points under this curve indicate violations of the steering
inequality.
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i.e., the RHS of (6.3) minus the LHS of (6.3), where a positive value indicates that

(6.3) is violated and Bob's system could not be described by a local hidden state

model. Here, S(M, AtB) denotes the value of the steering parameter for a particular

choice of M and 'At = AtB (with AWB Oc AtB). The values of M and AtB both di-

rectly affect the degree of violation. For example, the degree of violation increases as

At decreases because this directly makes the RHS of (6.3) bigger. However, decreas-

ing At also indirectly affects S because the temporal resolution affects the entropy

calculations; decreasing At also indirectly causes S to increase, but this is offset by a

larger increase in the RHS of (6.3).

The degree of violation also increases as M decreases because this directly makes

S smaller. However, it is undesirable to make M arbitrarily small because this also

decreases the mutual information between Alice and Bob. Fig. 6-2 plots the raw

mutual information obtained for M = 4 in each basis, locally at LL and over the de-

ployed fiber. In theory, I(A; B) should be the same for each basis; in our experiments,

the mutual information obtained in the FB is lower due to the imperfect dispersion

cancellation of the Proximion GVD elements, as described in Section 5.3.2. The im-

perfect dispersion cancellation broadens the correlation peak width, which reduces

the mutual information. For the experiment over the deployed fiber, the mutual in-

formation in the FB is significantly lower than that of the TB because the timing

jitter of the FB SNSPD on campus was - 90 ps greater than that of the TB SNSPD,

which also broadens the correlation peak width and reduces the mutual information.

No steps were taken in the current analysis to correct for this difference in timing

jitter.

Fig. 6-2 shows that I(A; B) is minimal for small At, where the degree of violation

is greatest. We assume that applications of this EPR steering inequality will take

advantage of its high-dimensional nature, i.e., its ability to show steerability while also

exchanging a large amount of mutual information per detected photon coincidence

[2061. Therefore, a high degree of violation alone is not necessarily satisfactory; we

would like to violate the steering inequality with sufficient confidence (in this case, a

situation-dependent number of standard deviations), while also achieving high mutual
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Local Fiber

M At Degree of SS I(A; B) I(A; B) Degree of JS I(A; B) I(A; B)
(ps) violation in TB in FB violation in TB in FB
25 5.473 0.005 0.007 0.003 5.463 0.116 0.000 0.000

2 50 3.567 0.004 0.074 0.030 3.466 0.083 0.002 0.000
100 1.958 0.118 0.310 0.184 1.503 0.061 0.033 0.006
25 3.647 0.012 0.120 0.048 3.469 0.249 0.004 0.001

4 50 2.298 0.013 0.509 0.297 1.538 0.185 0.054 0.013
100 1.247 0.118 0.996 0.774 -0.062 0.158 0.340 0.109
25 2.435 0.043 0.594 0.338 1.550 0.519 0.061 0.017

8 50 1.700 0.118 1.266 0.942 0.008 0.463 0.388 0.123
100 0.906 0.147 1.845 1.587 -0.925 0.724 1.023 0.552

Table 6.1: Steering results for selected values of At, highlighting the tradeoff between
degree of violation and mutual information.

information. Table 6.1 lists the degree of violation as defined in (6.11), SS, and

mutual information in both bases, obtained locally and over the deployed fiber, for

some combinations of M and AtB, reiterating the trade-off between high degree of

violation and high mutual information.

To our knowledge, this is the first demonstrated violation of a high-dimensional

EPR steering inequality over a deployed fiber, and possibly the first violation of any

steering inequality over a deployed fiber. We note that when using our dispersion-

based frequency measurements with IDI = 10, 000 ps/nm, the RHS of (6.3) constrains

AtB < 330 ps. This implies the need for high-resolution single-photon detectors,

which have only become widely available at telecom wavelengths in the past few

years.

By violating the high-dimensional EPR steering inequality in the lab and over the

deployed fiber, we confirm that our SPDC source produces pairs of entangled photonsi

and that we can successfully distribute entanglement (or equivalently, nonseparabil-

ity) over the fiber link. This marks an important milestone in the development of our

Boston-area quantum network.

'Performing QKD experiments does not necessarily confirm the presence of entanglement. QKD
does not explicitly require entangled photons but does require that the channel is not entanglement-
breaking [23].
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Chapter 7

Summary and outlook

We described DO-QKD and its first security proof, which shows asymptotic security

against the class of arbitrary collective attacks [2]. As part of this thesis, we extended

the security proof to show that DO-QKD still provides security against collective

attacks even in the realistic regime of finite-length keys [721. Assuming achievable

parameters, we numerically showed that DO-QKD obtains > 90% of the asymptotic

secure PIE for an experimentally feasible number of detected coincidences, N ~ 107,

with performance on par with other single-photon QKD protocols.

We then described the P&M implementation of DO-QKD, including demonstra-

tions both in the lab and over our newly developed, 42-km deployed-fiber testbed

running between MIT and MITLL. By the combined advantages of high-dimensional

encoding and fast single-photon detectors, we achieved record secret-key rates for

each channel loss tested [761.

We then described the EB implementation of DO-QKD, including the construc-

tion of multiple SPDC sources, the first demonstration in the lab [71J, and steps

toward demonstrating DO-QKD over the deployed fiber. We then noted that the

same EB DO-QKD setup could be used to violate an EPR steering inequality with-

out requiring interferometric stability or real-time feedback. Since steering is a type

of quantum correlation that is strictly stronger than entanglement, a violation of a

steering inequality is also a proof of entanglement. We violated a high-dimensional

EPR steering inequality in the lab and over the deployed fiber, confirming that our
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SPDC source produces pairs of entangled photons and that we can successfully dis-

tribute the entanglement over the fiber link. In doing so, we have performed the first

demonstration of the violation of a high-dimensional EPR steering inequality over a

deployed fiber.

The deployed-fiber experiments require further investigation related to timing ac-

curacy, which we expect would only improve upon the results presented here. To

successfully demonstrate EB DO-QKD over the deployed fiber, we would have to

improve the nonlocal dispersion cancellation. We note that Ref. [73] is an updated

security proof for DO-QKD that holds against general attacks, albeit with more pes-

simistic secret-key rates, compared to the proofs presented here, and it would be

useful to apply that proof to the current or any future data. Also in the future,

the EB DO-QKD setup could be integrated with the LL fiber stabilization system

described in Ref. [188], pending some modifications relating to reducing noise caused

by that system.

Ultimately, we have demonstrated both the utility of high-dimensional QKD and

the feasibility of our testbed for further applications in quantum communication and

networking. In the future, the testbed could serve as one link in a multi-node Boston-

area quantum network. Besides providing point-to-point links between a larger num-

ber of locations, quantum networks also enable advanced applications involving more

than two users, such as measurement-device-independent QKD [207], a QKD variant

in which Alice and Bob are joined by Charlie, a referee, to produce secure keys while

removing the need for trust in the single-photon detectors. The resources developed

during this work provide a foundation for future demonstrations of new quantum

networking applications and capabilities.

118



Appendix A

Timing correlations after applying

dispersion

In this appendix, we mathematically verify the relationship between O-t, the two-

photon correlation time after applying GVD, and a-, the spectral correlation between

Alice and Bob's detected photons.

We start by writing the original two-photon correlation time, assuming a non-

specific biphoton state, as

Oc20r= J dtdu(t - U)2( ks(t)E(u)Ei(u)Es(t)). (A.1)

When applying equal and opposite GVD with magnitude D, the field operators are

described in the frequency domain as

sA(t) dw As(w)e-iwteiDw 2/2 (A.2)
f 2,7r

E[ (t) = -A,~~ -~22 (A.3)
2r

where w is defined as the detuning from wp/2, and wp is the pump frequency of the

SPDC source. The phase oc u 2 is due to the GVD. Subscripts S denote the signal

photon and I denote the idler photon.

Using these field operators, the two-photon correlation time after Alice applies
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normal GVD and Bob applies anomalous GVD is then

f
2= ddu wd] )dtdu (t - u) 2K At(w')At () Z A, s(w ) )

x exp [it(w' - W) + in( ' - ) + iD(w 2  2 2 +

We make a change of variables t = t u and obtain

2 = I dt+dt d w t2 (At ( )At ,)jA ) As(w))2 2 j- (27)4 - S I

i(w' - w)(t+ + t_) + i( ' (t+ - t_)x exp 2

xep iD (W2 _ 2 _;/2 +(')

Then we define w - w w' and (a - ', resulting in

2 1
t 2

dw+dw-d+d - d2
(27r)

4

( w-) At +

xexpit+(-W- - -)
1 2

As( +, +

+it_ ( _ - W-) +iD(w + w-- + )
2 2

(A.6)

dt+ exp it(-W- - )27r6(w_L 2J

Ats (
x 27r6(w- + -) exp

) At + 2 A

it_(_-w)

2 s 2

iD(w~w- - +)

2

(A.8)
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We use

1 I
to obtain

2 -1 dL dw+-dw<+ <- 2

4j (27r)4 -

(A.7)
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After carrying out the integral over _, we obtain

2 = I dw+dwd-+ 2
t 4 f (27r) 3 -

( + - A + - A(+ +

x exp it-w_ + 2+ 

(A.9)

We will use

S-27 d 2 (A. 10)

so to solve Eq. (A.9), we must integrate by parts twice. Doing so, we obtain

S2 -27r {dw+dw-d+
~t = 4 J (2 7r)3-

d(w_) 2 ZsS ( 2~w Ai (+ w

x exp 2

(A. 11)

To differentiate the expectation value in Eq. (A.11), we rewrite the operators as

A(w) = Jdt(t)ewt (A.12)

121

xK A s +-

dt- t2 e-i-w--

At 
2 As +



After differentiating twice with respect to w_, we obtain

t = (7dw+d+ dtdudt'du'(E (t') E(u')E, (u) Es (t)) 6(w)

x exp (t

x exp (t

2

x -(t+t'

+2- (t +

- t') + (u

+ t' - (a + U')) + iDw_ (w+ +

D22

-U (+U'))2_ - (U 9 + + 2
4

iD
t' - (u + U')) 2 P+ +) W

(A.13)

After integrating over w_, we obtain

2= 1 J +d tdudt'du'

x (s (t')sji(u')s1 (u) s(t)) exp iw+ (t -t') +

1
2

D2
(t+t'-(u+u))2- 4 + +2

+2 (t

- U
(A.14)

+ t' - (u + U')) ( GO+ +)

For notational ease, we divide at into three terms, at X1 + X2 + X3, where

(w+2d') dtdudt'du' ( t )t (u/')Ei (u) ) s (t))

x exp (t - t')

X2-1
4

+ 2 (u

j (2r) )-, U s()

x exp (t -t') + (u -
2

I) ((
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X1 -

- (U + U')) ,

(A.15)

(A. 16)
+ +)2

- u (t + t'



and

X 1 = dw+ dtdudt'du' (Et (t') Eli (u') Ei (u) Es (t))

x exp i+ (t - t') + (u -U')

x (D(t + t', (u + u')) (w+ + +-

It can be easily shown by integrating over w+ and + that X1 simplifies to

X1 J dtdu(t - U)2 kt(t E(u)g,(u)Zs(t))

W w2
= 
0 cor,

We will show a few more steps of the simplification of X2 , starting with

X2 = (D 2

(D 2

k (u) s(t)) exp [<+dtdudu' ((tt (u')

dw+ dtdudt'du'( ((t'') Ej (W)E 1 (U) Es (t))(27r)2

x exp (t - t') + (u - u') w+ +-

After integration by parts and using Eq. (A.12) to rewrite the operators, we obtain

= - D dtdUdtdwdwds(w))6(t - t')

d2d
xdt'2 (exp [iw't' + iu(~ W ) iwt])

- D2 dtduduidwddw'd< (As ()
j (27r)4

At(')AI( )As(w))6(u - u')
(A.20)

x du'2 (exp[it(w - w') + iu' ' - iun])

- 2D2  dtdudt'du' dwddw'dt' s N')Z,( ')ZI( A s(w))

d d
x 6t - t')6(u - U) dt' du' (exp[iw't' + i<'U' - iv - iwt]).
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(A. 18)

dtdudt'( (t) (u) k,(u) ks(t)) exp iw+(t - t') 2

U'/) C{(u

(A.19)

-



After taking the derivatives and integrating over the 6-functions, we obtain

X2= -D 2  dtdu dwd~dw'd(' ( A(' ')AZ(t)s(w))

x (-W'2 _ 2 - 2w' ') exp[it(w' - w) + iu((' -

After simplifying more 6-functions, we obtain

X2 = D 2 f

= D2J

(2w) (A's(w)A()Ai( )As(w))(w + )2

(A.21)

(A.22)

It turns out that X3 is the tricky term, since it contains one power of time and

one power of frequency. X3 has the form f(x) = f dxx exp[iax], which does not

converge, but its Cauchy principal value is zero, and thus we can simplify the integral

as X3 = 0.

Therefore, ot, the two-photon correlation time after applying GVD is related to

oW by by O2 = O2 + D 2Uw2
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Appendix B

Uncertainty in the steering. parameter

In this appendix, we derive an expression for 6S, the uncertainty in the steering

parameter. The steering parameter is defined as the left-hand side of the inequality

(6.3). Without loss of generality, we write most calculations using only the time basis

(TB); the results are the same, with different subscripts, for the frequency basis (FB).

PT(TA, TB) is an M x M joint probability matrix of Alice and Bob's measurements

in the TB, built using the raw keys. pT(a, b), the entry in the ath row and bth column

of PT, is the probability that using the TB, Alice detected her photon in the ath slot

and Bob detected his in the bth slot:

PT(a, b) = NT(a, b) (B.1)
NT B

where NT(a, b) is the number of instances when Alice detected her photon in the ath

slot and Bob detected his in the bth slot, and NTB is the total number of coincidences

detected using the TB. Assuming that coincidence counts follow Poissonian statistics,

the uncertainty in number of counts NT(a, b) for a given matrix entry is 6NT(a, b) =

NT(a, b). Then, the uncertainty in NTB, the total number of coincidences detected

using the TB, is

6NTB= 6NT(a, b)2 = VNTB. (B.2)
a,b
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Then, the uncertainty in each matrix entry pT(a, b) is

NT(a, b) 2

NT(a, b) )
+ (:NTB 2

NTB

I a~) 2 + 2
=\1(N-T(a, b))( NTB)

SNT(a, b) + NTB

To compute uncertainties of entropies, we will use

6 (092PT~, b) 1 6 pT(a, b)
(log2PT(ab))lg2 p(a, b)

We will also use the entropy formulas

H(TBITA) = H(TATB) - H(TA)

H(TA, TB)

H(TA)

.- PT(a, b) log 2 PT(a, b)
ab

= - pT(a)1og 2pT(a),

where

PT (a) = pT (a, b).
b

Computing the uncertainty in H(TA, TB), the joint entropy, we have

6 (PT (a, b) log 2 PT (a, b))

PT (a, b) log 2 PT (a, b)

6H(TA, TB)

6pT(a, b) 2

PT(a, b) )
(6 (log2 PT (a, b)) ) 2

og2 PT(a, b)

(6 (pT (a, b) log 2 PT(a, b))) 2 .
a,b
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PT(a, b)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)



To compute the uncertainty in H(TA), the Shannon entropy, we have

6PT (a) = Z(pT (a, b)) 2  (B.11)
b

6 ( PT (a) 10lo2 PT (a) = PTs 2 +(6 (10g2 PT (a) )2 ( B. 12)
\ P() + (log 2 PT (a)

6H(TA) = (6 (PT (a) log2 PT (a)))2. (B.13)

Then, the uncertainty in H(TBITA), the conditional entropy, is

6H(TB TA) = (SH(TATB +(SH(TA) 2 . (B.14)

Using similar calculations to compute 6H(QBIQA), we can obtain

6S = V/(6H(TBTA)) + (6H(QBQA)) 2 . (B.15)
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