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Abstract

In this thesis, I present architectures for quantum information processing where pho-
tons are used as the quantum bit (qubit) or for mediating entanglement between other
qubits. The emphasis of this research is to simplify the basic building blocks required
in such processors. The all-photonic repeater and computing architectures do not re-
quire material nonlinearities, and their resource requirements are reduced by several
orders of magnitude. The photon-mediated atomic memory architecture is designed
to work with faulty memories and experimentally demonstrated values of coherence
time and photonic coupling efficiency. In the quantum network architecture, the only
operation at every node is probabilistic Bell measurement.
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along all edges, each of which succeed with probability p (dashed lines).

(b) In the second (internal) phase, entanglement swaps are attempted

within each repeater node based on the successes and failures of the

neighboring links in the first phase-with the objective of creating

an unbroken end-to-end connection between Alice and Bob. Each of

these internal connections succeed with probability q. Memories can

hold qubits for one time slot . . . . . . . . . . . . . . . . . . . . . . . 140
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5-4 Entanglement generation rate as a function of the Alice-Bob separa-

tion along X and Y (on a square grid) as a function of (p, q); (a)

Rg(p, q) is the rate attained by a global-knowledge-based protocol we

propose where each node, in each time step, knows whether any link in

the entire network succeeded or failed to establish entanglement. For

the case of q = 1, Rg is distance independent when p is greater than

the bond percolation threshold (0.5 for the square lattice) and decays

exponentially if it is below the threshold. (b) R(UB) (0.6) is the distance-

independent Pirandola rate upper bound for p = 0.6, achieving which

requires perfect quantum processing at repeater nodes. Rg(0.6, 1) is

also distance independent, and within a factor 3.6 of R(UB)(0.6). With

q < 1, e.g., Rg(0.6, 0.9), the rate decays exponentially with distance.

R(UB) is an upper bound on the rate attainable with global-knowledge

by any protocol. (c) Ri.c is attained by a protocol we propose where

each node, in each time step, only needs to know the link state of

neighboring edges. The rate-distance scaling exponent of Rj0c is clearly

worse than Rg, but is significantly superior to that of a linear repeater

chain along the shortest path, Rln, demonstrating multi-path routing

advantage even with local link-state knowledge. (d) Contour plot of

the entanglement generation rate with the local rule when p = 0.6 and

q = 0.9. Although the Alice to Bob distance along the network links is

X + Y, there is a noticeable enhancement in the rate along the X = Y

direction because of more Alice-Bob paths of similar length. . . . . . 145

5-5 The entanglement swap rule used at the repeater u in the dotted box

in the case of local link-state knowledge. v and w are the repeaters

closest to Alice and Bob, respectively, with a direct edge to u. (a) If

two or three links are up, the memories linked to v and w undergo

an entanglement swap. (b) If four links are up, the remaining two

memories also undergo an entanglement swap. . . . . . . . . . . . . . 147
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5-6 f(p, q)/pq quantifies the improvement in the scaling of Ri.c(p, q) with

respect to Rli1(p, q) with respect to the Alice-Bob Manhattan distance,

n. f(p, q)/pq increases as p is reduced in [1, pc] but changing q has a

negligible effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5-7 Network used to prove the lower bound on entanglement generation

rate with our local routing rule which shows that scaling of the rate

with Alice-Bob Manhattan (L) distance for our rule is better than the

scaling of the rate along a linear repeater chain along the shortest path

between Alice-Bob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5-8 Entanglement generation rates with different distance metrics. RL1 and

RL2 are evaluated using the L' and L2 norms respectively. The distance

metric for Ri, (iteration 1) is calculated using RLi, and Ri2 (iteration

2) is calculated using Rij. Ri2 and RL1 are nearly indistinguishable as

they almost coincide. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5-9 (a) Multi-flow routing for two Alice-Bob pairs that lie along the sides

of a 6 x 6 square, embedded in a 100 x 100 grid; (b) rate region (RI, R 2 )

with different rules at repeater nodes, each employing local link-state

knowledge, for p = q = 0.9. (c) Multi flow routing when the Alice-Bob

paths cross (d) multiflow rate region for two local-knowledge rules. . . 156

5-10 A heat map plotting Pusage, the probability that a given repeater node

is involved in a successful creation of a shared ebit generated between

Alice and Bob, separated by 6 hops in an underlying square grid topol-

ogy, when our local rule is employed. We assume p = 0.9 and q = 0.9. 157

6-1 Storage-and release design. Solid lines are optical waveguides, while

dashed lines represent electrical control signals. PNRD: photon number

resolving detector. The inset illustrates the power spectrum coupled

out of the signal filter in its closed configuration and the spectrum

arriving at the idler detector. . . . . . . . . . . . . . . . . . . . . . . 163
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6-2 (a) Schematic layout of the photonic integrated circuit composed of a

high-Q thermally tunable ring for efficient pair generation by sponta-

neous four-wave mixing, followed by a DBR for pump rejection and the

add-drop ring-resonator filters for the demultiplexing of signal and idler

photons. Convenient optical coupling to a single-mode polarization-

maintaining fiber array is achieved via focusing grating couplers sep-

arated by a 127pm pitch. (b) Schematic transmission spectrum of

the first ring around the pump wavelength wp. When one of the ring

resonances is tuned to the laser at wp, signal and idler photons are

produced in correlated pairs at neighboring resonance wavelengths W,

and wi, respectively. (Pairs are also generated at wavelengths spaced

by multiple free spectral ranges.) (c) Schematic transmission spectrum

of the DBR with the stop band overlapping with the pump wavelength

wp. (d) Add-drop filter spectrum tuned to route idler photons to the

drop port. (e) First experimental setup: single-chip pump rejection.

The add-drop rings are both tuned on resonance with the pump. Light

is collected from the common throughport. (f) Second experimental

setup: Correlated photon pairs generated in chip A are sent via a fiber

to chip B where further pump rejection and signal or idler demulti-

plexing are performed before spectral characterization or coincidence

measurements with off-chip SNSPDs. . . . . . . . . . . . . . . . . . . 165
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6-3 Optical micrograph of the source (one of four on the chip in an area

of 2.4 by 1.36mm2 ). Two grating couplers are not shown. (1) Grating

couplers used to couple (collect) light to (from) the system are shown

on the right. The input light is split by (2) a 2:1 multimode inter-

ferometer for optical alignment. Pump light is then routed via (3) a

500-by-220-nm ridge waveguide to (4) the pair-generation ring. The

pump is removed with (5) the DBR, which is divided into two sections

1(6) Fabry-Perot resonances due to the division can be controlled with

the thermo-optic phase shifter [61]. The multiplexed signal and idler

photon combs are then split off for spectral monitoring at (7) the direc-

tional coupler before demultiplexing and/or further filtering with the

(8) signal and (9) idler add-drop rings. (10) The p-doped/intrinsic/n-

doped germanium photodiodes were not used during the experiment;

however, they could be used to monitor the add-drop ring alignment. 166

6-4 a) Schematic of the coupled cavity detector. Similar to a Q-switched

laser, cavity A1 is in a high-Q state due to destructive interference

between its output decay channel and light returning from cavity A 2 .

Injecting a signal photon into A 2 disrupts this interference condition,

creating a low-Q configuration which quickly flushes out (b) the energy

stored in the composite system. c) A possible experimental implemen-

tation of the coupled cavity configuration using a photonic crystal.

Here A 1 is the tunnel cavity, and A 2 is the signal cavity. . . . . . . . 167
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Chapter 1

Introduction

Quantum mechanical effects are prevalent in computers today. Quantum effects like

tunneling and discretization of energy levels form the basis of solid state physics used

in transistors. However, even though the internal dynamics of these computers is

dictated by quantum mechanical effects, their operation can be described classically

i.e., a mechanical system can simulate a transistor based computer with a number of

components proportional to the number of transistors. Hence, conventional computers

are still classical computers.

However, recent experiments have shown that it is possible to isolate quantum

mechanical systems from the environment sufficiently well so that superposition and

entanglement play a major role. Unlike classical computers, these systems cannot be

efficiently described with a system of any components following the laws of classical

mechanics. This forms the basis of quantum information processors which can be

used to accomplish computing and communication tasks beyond the capabilities of

classical systems.

1.1 Quantum computing

Quantum computers use superposition and entanglement to perform several computa-

tional tasks, including prime factorization 17], optimization [8, 9], database search [10],

machine learning [11], and quantum chemistry simulations 1121 more efficiently than
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classical computers. In some of these examples, quantum computers with resources

(both space and time) scaling polynomially in the size of the problem can solve prob-

lems that have no polynomially scaling algorithm on a classical computer. Hence, in

addition to practical motivations to building quantum computers, a quantum com-

puter would provide strong evidence against the extended Church-Turing Thesis.

A quantum computer is composed of quantum bits or qubits. Since a quantum bit

represents a quantum state, it is often written in the Dirac notation as I0)L for a qubit

in the zero state and as 1)L for a qubit in the one state. However, since a quantum bit

can be in a superposition of zero and one, a single qubit in general can be in the state

cO I1)4 + c 1 1) with Ico1 2 + Ic112 = 1. Furthermore, a system of n entangled qubits

can be in the state ZiEBCi )L where B, is the set of all n bit binary numbers and

ZiEB,, |c,12 = 1. Hence, tracking the evolution of a general system of n qubits requires

tracking the evolution of 2" coefficients (ci) which is inefficient in general. However,

this does not automatically mean that an n qubit quantum computer allows us to

obtain the results of 2' computations; measurement of an n qubit system collapses

the state and only gives n bits of information. Quantum algorithms maneuver the

state in such a way that the measurement result contains information about a large

number of coefficients, and calculating the measurement outcome would require a

large amount of classical computation.

There have been proposals of analog computing in systems ranging from mechani-

cal gears [13] to soap bubbles for solving NP-complete problems (see [14] for a review).

However, the maximum problem size in these systems is limited by errors; in all the

analog computing proposals to date, the output becomes noisier as the size of the

system increases. As a result, these systems do not present a path to obtaining better

scaling as compared to conventional computers. Quantum computers on the other

hand are not analog computers. Quantum error correction codes and fault tolerant

architectures have been developed which can suppress errors for any system size with

an overhead that is poly-logarithmic in the system size. There has been a recent

theoretical proposal for fault-tolerant quantum computing architecture with constant

overhead [15], although there are some problems which need to be solved including
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efficient decoders, raising the threshold and minimizing long range gates.

While these theoretical results show that it is possible to build a quantum com-

puter that far exceeds the capabilities of any classical computer in principle, practical

issues have prevented the experimental demonstration of such a system. Firstly,

fault-tolerant quantum computation requires the error in every component to be

below a certain finite threshold. Secondly, even if the error correction overhead is

poly-logarithmic in the size of the problem, the actual number of physical qubits re-

quired per logical qubit is large when operating near the error correction threshold

(the overhead diverges at the threshold). Finally, even though a quantum computer

scales better than a classical computer, reaching a problem size where this scaling ad-

vantage shows is challenging because of the incredible maturity of CMOS fabrication

used in classical computers. A recent paper investigating the resource requirements

for building an error-corrected quantum computer with ion-traps powerful enough to

solve problems that are beyond current capabilities, using currently proposed archi-

tectures, found that the quantum computer would have the size of a football field 116].
Building so many components while maintaining an error rate below threshold is a

daunting engineering challenge and it is quite likely that architectural improvements

will be required to bring this down.

1.2 Photonic quantum computing

Photonic quantum computing computing uses photons to encode qubits. In dual-rail

encoding, one photon in two spatial modes encodes a single qubit. i.e. 110) I0)L and

101) I 1). The subscript L signifies the qubit state. The modes could be temporal,

spatial, polarization or any other degree of freedom. In this thesis, the modes of the

dual rail qubit will be assumed to be spatial modes in different waveguides unless

specified otherwise.

Single qubit rotations in this encoding can be implemented with a single tunable

beamsplitter. Large tunable arrays of such beamsplitters have been demonstrated

with high visibility [17, 18, 19]. Furthermore, optical coupling between two spatially
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separated waveguides is negligible, and as a result, the qubit decoherence rate is

smaller than in other qubit systems [201. Photonic qubits are prone to errors due

to photon loss. However, since photon loss takes a dual-rail qubit outside the qubit

encoding, photon loss, even on a single qubit without error correction, is a detectable

error. As a result, error correction thresholds for photon loss are as high as 50 %

which is much higher than thresholds for errors that keep the qubit in the code space.

One major issue with photonic qubits is the difficulty in implementing two qubit

gates. Direct implementation of a two qubit gate requires an extremely large material

nonlinearity [21, 22, 231. Even with such large nonlinearities, the causal, noninstan-

taneous response of the nonlinearity [24, 251 and unwanted spectral entanglement

caused by the nonlinearity [261 lowers the gate fidelity. There has been work on over-

coming such effects [27], but the fidelity only approaches one in a large system of

coupled nonlinearities.

An alternative is to use effective nonlinearities induced by photon measurement [28,

291. Cluster state quantum computing [1] is a popular quantum computing paradigm

which uses such measurement induced nonlinearities. A cluster state is an entangled

state that can be depicted as a graph in which each node represents a qubit in the

state (0)L4+ 1)L)/V'2 and edges represent controlled-Z gates (see Fig. 1-1(a)). A sem-

inal paper by Raussendorf et al. [11 showed how any gate in circuit model quantum

computing can be mapped to adaptive measurements on a square grid cluster state as

shown in Fig. 1-2. In other words, a series of adaptive measurements on a square grid

cluster state can implement any quantum algorithm. Note that other lattice topolo-

gies which can be renormalized to a square lattice can also be used to implement any

quantum algorithm (see chapter 3 for more details). Cluster state quantum comput-

ing involves classical computing between measurements, and this makes cluster state

quantum computing more efficient than gate-based quantum computing in some ways.

As an example, Shor's Algorithm can be implemented using a cluster state of constant

depth in the size of the problem 130]. Furthermore, there are well-developed schemes

for fault-tolerant quantum computing with cluster states [31, 32, 33].

Cluster state quantum computing reduces the problem of implementing two-qubits
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Figure 1-1: (a) A cluster state. The circles represent qubits in the state (10) +| 1))/ v'
and edges represent controlled Z gates. Any quantum algorithm can be implemented
with adaptive measurements on such a square lattice i.e. such a square lattice is a
resource for universal quantum computation. (b) A three-qubit GHZ state.
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Figure 1-2: Any circuit model quantum computation (left) can be mapped to adaptive
measurements on a square grid cluster state (right). M., Mz represent measurement
in the X and Z bases respectively. Mi - M5 are measurements in bases that depend
on the intended single qubit rotation and previous measurement results. The thick
blue arrows represents information flow. For more details, see Ref. [1].
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gates to creating the entangled cluster state and adaptive measurement on this state.

Starting from single photons, the cluster creation process can start with the creation

of 3-qubit Greenberger-Horne-Zeilinger (GHZ) states [34] which are equivalent to the

three qubit cluster state in Fig. 1-1(b), up to single qubit rotations. Since single qubit

operations with linear optics are relatively easy, we often compare states in terms of

equivalence up to single qubit rotations. 3-qubit GHZ states can be created from six

single photons using a probabilistic but heralded linear optic circuit with a success

probability of 1/32 [2]. Subsequently, small cluster state can be merged together

to form a larger cluster state using Type-I and Type-II fusion gates proposed in

Ref. [3], both of which succeed with probability 50%. Subsequent work has shown

how the success probability of Type-II fusion can be increased by injecting additional

ancilla states into the circuit [35, 36, 37]. Because of this enhancement in the success

probability, and the natural loss tolerance of Type-II fusion, we use only Type-IL

fusion to merge cluster states in this thesis. We defer further discussion of 3-qubit

GHZ creation and fusion gates to Chapter 2.

The entangling operations used to create cluster states with linear optics are

probabilistic. We will use two methods to create cluster states with probabilistic

gates: multiplexed generation of cluster states, which will be explored in Chapter 2,

and percolation based creation which will be explored in Chapters 3 and 4.

1.3 Quantum communication

Given the widespread use of light as an information carrier in modern communica-

tion systems, photons have an advantage over other systems as carriers of quantum

information.

Quantum communication can accomplish a number of tasks including the gen-

eration of shared secrets whose security relies only on the laws of physics (better

known as quantum key distribution or QKD) [38, 391, distributed quantum comput-

ing [40], improved sensing 141, 421, blind quantum computing (quantum computing

on encrypted data) [43], and secure private-bid auctions [441.
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Since a Bell pair shared between two parties can provide one bit of quantum

communication using teleportation, we quantify the quantum communication rate

with the entanglement generation rate.

For any direct-transmission protocol over the pure-loss optical channel of trans-

missivity q, assuming unlimited authenticated two-way public classical communica-

tion, it was recently shown that the entanglement generation rate cannot exceed

log2 (1/(1 - i)) bits per mode [451, which is ~ 1.44TI for r, < 1. We will refer to this

as the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) upper bound. For a pure-loss

channel, the PLOB bound improves over the Takeoka-Guha-Wilde (TGW) bound [461

by a factor of 2 in the il < 1 regime. The TGW bound is an upper bound on

the secret-key agreement capacity with unlimited two-way classical communication

P2 (M), applicable to a general quantum channel M. For the pure-loss channel Ar, the

PLOB bound coincides with the best-known achievable rate [47], thus establishing

P2 (Nq) = log2 (1/(1 - 7)) bits per mode. The ebits/s rate is obtained by multiplying

the bits/mode rate by the spatio-temporal-polarization bandwidth (modes/s), which

is governed by the channel geometry, and the transmitter and detector bandwidth.

Since loss increases exponentially with distance L in optical fiber (i.e., I = eaL), for

T7 < 1, the entanglement generation rate in single-hop quantum communication must

decay exponentially with the range L.

One of the big applications of quantum communication is quantum key distri-

bution (QKD) which enables two distant authenticated parties Alice and Bob, con-

nected via a quantum (e.g., optical) channel, to generate information-theoretically

secure shared secret bits. No knowledge of the channel conditions (noise model, or

any channel estimate) is required a priori to ensure security. However, the shared

secret is generated at a rate commensurate with the worst-case adversary physically

consistent with the channel conditions actually presented to Alice and Bob. The rea-

son is that all the perceived channel imperfections (anything that causes the channel

map to deviate from a noiseless identity transformation) is attributed to the actions

of the most powerful adversary allowed by physics-even though some (or all) of that

deviation of the channel from an identity map may actually stem from non-adversarial
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sources, such as losses due to free-space diffraction, fiber loss, detection inefficiency,

thermal noise from blackbody at the operating temperature and wavelength, and

detector noise. An important consequence of this assumption is that all the signal

power transmitted by Alice that is not collected by Bob is made available coherently

to the eavesdropper, Eve. This model for Eve is the intuition behind why the secret

key rate for a direct-transmission based QKD protocol must decrease linearly with 77,

the Alice-Bob power transmissivity, in the r < 1 regime [46, 45].

Quantum repeaters are devices that, when inserted along the length of the optical

channel, can help generate shared secret at a rate that surpasses the PLOB bound [451,

even when the repeaters themselves are not trusted.

1.4 Thesis outline

Chapter 2 presents schemes for an all-optical repeaters, several improvements to all-

optical repeater schemes and calculates the resource requirements for building useful

all-optical quantum repeaters using multiplexed creation of cluster states, accounting

for losses in detectors, sources and waveguides in the system. Our calculations show

that relatively small cluster states can act as useful quantum repeaters. However, the

multiplexed creation of cluster states is very inefficient. In chapter 3, we study a more

efficient path towards cluster state creation with non-deterministic gates using perco-

lation theory. We present a mapping from the success probability of linear optic fusion

operations to the bond percolation threshold of a logical graph, which allows us to

find lattices with properties desirable for linear optic quantum computing. Chapter 4

uses the percolation based creation of cluster states in an architecture for quantum

computing with atomic memories, that is tailored to nitrogen vacancy centers in di-

amond. In Chapter 5, we present the design of a quantum network architecture that

only requires entanglement swaps at the repeater nodes, but provides several advan-

tages over a linear repeater chain. Finally, Chapter 6 presents both experimental and

theoretical work on devices for photonic quantum information processing that I was

involved in.
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Chapter 2

Resource costs for all-optical

quantum repeaters

2.1 Introduction

Quantum repeaters, proposed in Ref. [48], are devices which when inserted along the

length of the optical channel, can help generate shared secret at a rate that surpasses

the PLOB bound [45]. Quantum repeaters need not be trusted or physically secured

to ensure the security of the keys generated. If n quantum repeaters are inserted

along the length of a channel of transmissivity 7 connecting the communicating par-

ties Alice and Bob, and if there are absolutely no physical constraints placed on the

repeater nodes (i.e., the repeaters are assumed to be lossless, error-corrected, general

purpose quantum computers), then the maximum key rate achievable by Alice and

Bob is given by - log 2 (1 - 77min) bits/mode, where 7min = ( min(1, T12, . .. , jn+1) (with

T1 = 1 ... -n+1) is the transmissivity of the lossiest link between successive repeater

nodes 149] (see [501 for a different upper bound based on squashed entanglement [461).

Given n repeater nodes, their optimal placement is to lay them equally spaced in

transmissivity, in which case, the maximum rate is - log2 (1 - 71/(n+1)) bits/mode.

As n -+ oc, the rate is unbounded. However, assuming repeaters to be lossless error-

corrected quantum computers is not practical. A more practically relevant question

to ask is if the repeater nodes have finite resources with lossy and imperfect compo-
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nents (where 'resources' may be different physical entities depending upon the type

of quantum repeater and the protocol employed), then what rate can Alice and Bob

achieve, and what would it take to build repeater nodes to significantly outperform

Rdirect(7) = -log 2 (1 - 71) bits/mode. This is the topic addressed in this chapter,

for repeaters that are built solely using photonic components-single-photon sources,

detectors, electro-optic feedforward, but no matter-based quantum memories. As we

will see later, given physical constraints on a repeater node, placing more repeaters

(higher n) between Alice and Bob may not always improve the rate, i.e., depending

upon the total distance L (or equivalently, the transmissivity 7) between Alice and

Bob, and given the physical device constraints in a repeater node, there may be an

optimal number n*(ii) of nodes, which achieves the highest end-to-end rate.

In this chapter, we study two different all-optical repeater protocols: a protocol

based on mode multiplexing and entanglement swapping, and a one-way protocol

based on logical Bell measurements. We found several improvements for both proto-

cols to reduce resource requirements. We consider losses in sources, waveguides and

detectors in every step of the protocol, including the creation of the resource states for

our protocol. However, we do not consider 'multi-photon' errors that may stem from

multi-photon emissions from the source, detector dark clicks, or errors due to mode

mismatch in the sources. We should note however that the error correction schemes

analyzed here also provide some protection against depolarizing noise [51, 521, a vari-

ant of which arises when one assumes multi-photon errors, and errors stemming from

imperfect mode matching within the passive linear optical circuits at the repeater

nodes.

2.2 Preliminaries

We work with dual-rail photonic qubits, where the logical IO)L and I1)L are encoded

by a single photon in one of two orthogonal (spatial) modes. We use the term qubit

mode to refer to a set of 2 channels used to transmit a dual-rail qubit between repeater

stations. Hence, m qubit modes correspond to 2m physical channels.
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A photonic cluster state (or, graph state), on a graph G(V, E) with vertices in set

V and edges in set E, can be constructed by preparing each of the IVI qubits (one

stationed at each vertex) in the state (I0)L + I1)L)/V'f, and applying JEl controlled-

phase operations (a two-qubit unitary gate that applies a Pauli Z gate to the second

qubit if the first qubit is in the 1)L state and applies an identity otherwise) on each

pair of vertices that share an edge [1]. An ideal loss-less photonic cluster state on

graph G is a pure state, ML)G. A lossy cluster state on G is obtained when all the

photonic qubits of VO)G are transmitted through independent pure-loss beamsplitters

each of transmissivity q. We call 1 - 17 the loss rate of such a lossy cluster state.

Clearly, the loss rate of I)OG itself is 0.

Arbitrary photonic cluster states can be prepared-with non-unity probability-

using ideal single photons, passive linear optics (i.e., beamsplitters and phase shifters)

and single photon detectors [3]. As examples, in the absence of losses, a two-photon

maximally entangled (Bell) state can be prepared with success probability 3/16 [531,

whereas a three-photon maximally entangled (GHZ) state can be prepared with suc-

cess probability 1/32 [2J. Browne and Rudolph introduced linear-optic Type I and

Type II two-qubit fusion gates, which if successful (with probability 1/2), can fuse

two cluster fragments into one, according to specific rules [3]. These fusion gates,

in conjunction with Bell states and GHZ states, can be used to construct arbitrary

cluster states. The success probability of the fusion gates can be improved to 3/4

if additional (ancilla) single photons are available to be injected on-demand into an

otherwise-passive linear optical circuit, and if the detectors have up to two-photon

number resolution [36]. We will assume such boosted fusion gates in our all-optical

repeater construction described in this chapter.

We will model a lossy single photon source of efficiency r, as one that emits, on

demand, the mixed state q, 1) (1+ (1 -I) |0) (01. We will use 17d for the efficiency of

all detectors in the system. We will consider that the cluster is created on a photonic

chip to allow for easier scalability after which the photons are coupled, with efficiency

Pc, to fiber with loss coefficient a and speed of light cf. Pff e0cch will denote the

survival probability of a photon on-chip during one feed-forward step, where 3 is the
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loss coefficient, ch is the speed of light and r, is the feed-forward time, all on-chip.

We will also use PO PGHZPc where PGHZ =s7d/(2 - rsd) [2] is the survival rate of

the photons that are input into a linear-optic circuit to produce 3-photon maximally-

entangled GHZ states. The final measurement step requires feed-forward in fiber. The

survival probability, Pff(fib), during feed-forward time in fiber, Tf, is Pff(fib) = eTf.

The values for device performance assumed for the plots that appear later in the

chapter, are summarized in Table 2.1.

2.3 Quantum repeaters based on mode multiplexing

and entanglement swapping

In this section, we will focus on a class of quantum repeaters that rely solely on

probabilistic BSMs, quantum memories, and multiplexing, i.e., the ability to 'switch'

qubits across (spatial, spectral, or temporal) modes. The essence of such a repeater

protocol was developed by Sinclair et al. [54], which employed spectral multiplexing in

multimode quantum memories across m parallel spectral channels, and entanglement

swapping using linear optics and single photon detectors (the success probability of

which can at most be 50%). Guha et al. analyzed the secret key rates achievable by

the above protocol, with a fixed m (memory size) and found that even when photon

loss is the only source of noise, the achievable key rate is of the form D77s, where

D, and s < 1 are constants that are functions of various losses in the system (viz.,

detection efficiencies, coupling losses, memory loading and readout efficiencies, and

BSM failure probability) [551. Since the exponent of q, i.e., s < 1, the key rate

beats the PLOB bound (which scales as: ocq for 77 < 1) beyond a certain minimum

distance determined by the actual values of the system's loss parameters, which is

around a couple of hundred kilometers for reasonable estimates of the losses [551.

However, since q = e in fiber, the rate achieved by this repeater protocol for a

fixed memory size still scales exponentially with the range L, albeit with a smaller

exponent compared to the best possible rate without any repeater, which could turn
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into a huge absolute improvement in the end-to-end secret key rate.

Azuma et al. recently proposed an all-photonic variant of this protocol in which

they substituted matter based quantum memories with optical cluster states [51],

based on a proposal by Varnava et al. to mimic a quantum memory (i.e., protect

against photon losses) by appending each physical photonic qubit by an entangled

'tree cluster' state [56]. As long as the losses incurred by each photon (i.e., photons

being protected as well as the additional photons in the trees added for loss pro-

tection) is less than 3 dB, the effective loss of the logical qubit can approach zero,

by increasing the size of the tree cluster, i.e., the number of photons in the logical

qubit [57]. Thus, Azuma et al.'s proposal showed the theoretical feasibility of a quan-

tum repeater architecture (i.e., one that can beat the scaling of direct-transmission

QKD) using only flying qubits, with the repeater nodes being equipped only with sin-

gle photon sources, passive linear-optical circuits (beamsplitters and phase shifters),

single photon detectors, and classical feedforward.

Azuma et al.'s result marked a promising conceptual leap towards all-optical quan-

tum repeaters. However, important unanswered questions remained, including the

achievable secure key generation rate and how it scales with distance (or loss), as

well as the physical resource requirements: e.g., the number of photon sources and

detectors at the repeater nodes. As an example, a calculation in their paper shows

that at a range of L = 5000 km, an entanglement-generation rate of 69 kHz is achiev-

able in a fiber based linear optic system with 100 kHz repetition rate, 150 ns feed

forward time and a source-detector efficiency product of 95% whereas sharing a sin-

gle entangled pair via a direct transmission scheme with the same parameters would

require 1081 years. The level of error protection required to achieve the aforesaid

repeater performance at L = 5000 km would require one to build entangled clusters

of ~ 10 4 photons per clock cycle at each repeater node. Building such a cluster using

linear optics and feed-forward [2, 58] would require around 1024 photon sources at

each repeater node. Furthermore, since every photon used for error correction is sent

between repeater nodes in [51], their scheme would require around 20, 000 parallel

channels connecting the neighboring nodes. Thus, while Ref. [51] crucially showed
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the theoretical feasibility of all-optical repeaters, further work is needed to address

their practical feasibility. These results open up a compelling line of research to in-

vestigate improved all-photonic repeater architectures of various genres which could

be built with practically feasible resources and also a thorough comparative study of

rates achievable with each such all-optical repeater scheme.

Our contributions in this section are twofold. The first is a rigorous analysis of: (a)

the secret key rates achievable with the aforesaid all-photonic repeater architecture

given the size of the cluster at each repeater station, and (b) the resources required

(e.g., number of single photon sources and detectors required at each repeater node)

to build that cluster, while taking into account each step in building the required

clusters using a network of passive linear optics (i.e., beamsplitters and phase shifters),

imperfect on-demand sources with loss (see section 2.2 for a description of the source),

single photon detectors (with some number resolving capability), and feed-forward.

We find that the achievable secret key rate scales as Dr( bits/mode, where D and s <

1 are functions of the number of photon sources at each repeater node (the resource

constraint-which is parametrically related to the size of the cluster), all the 'inline'

losses (e.g., losses in the optical fiber or waveguide used while creating the cluster,

independent of the fiber loss between repeater stations), and the source and detector

efficiencies. With q ~ e-L in fiber, the key rate still scales exponentially with L,

but with a smaller exponent compared to the best direct-transmission protocol. This

is no surprise given the analysis of 155], since the tree-cluster construction of [511

essentially mimics an imperfect quantum memory, but one whose efficiency cannot

simply be modeled by a constant per mode as in Ref. [551. Using the cluster building

scheme proposed by Li et al. 1581, we find that to a good approximation, the resource

requirements are determined by the number of fusion steps k required to build the

cluster and hence, we calculate the performance of the best cluster that can be built

in k fusion steps. We use the scheme of Li et al. because it has been shown to be more

efficient than the scheme of Varnava et al. [2] at building clusters [581. Given all the

inline and device losses, we evaluate the number of photon sources (and detectors)

needed at each repeater node to beat the PLOB bound at a given total range L
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between Alice and Bob. We also prove that given the device losses, there is an

optimal spacing between the repeater nodes (which evaluates to roughly 1.5 km for

a set of system parameters), regardless of the overall range L.

Our second major contribution is a significant improvement to the all-photonic

repeater architecture in [51--both in terms of the resources required at each node

and the number of parallel optical channels connecting the neighboring nodes. We

find that barely beating the PLOB bound using the all-optical scheme of [51] requires

more than 1011 photon sources at each repeater node for realizing the required opti-

cal cluster states and measurements. It also requires 208 parallel channels connecting

neighboring nodes, even when assuming very optimistic device-loss parameters. As-

suming the same device losses, our improved repeater architecture reduces the number

of photon sources (to beat the PLOB bound) by 5 orders of magnitude, while reduc-

ing the number of channels to 8. In both these calculations, each source is used only

once per clock cycle, i.e., they are not temporally multiplexed. We prove a tight ana-

lytical lower bound for the performance of our improved scheme. These performance

advances are enabled primarily by the following: (1) using boosted fusion logic that

improves the success probability of the BSM to 75% by using four ancilla single pho-

tons [36], (2) employing a more resource-efficient scheme for creating tree clusters,

building on the work of Refs. [2, 58], (3) retaining all the ancilla photons used for

loss protection (i.e., to mimic a quantum memory) locally at the repeater nodes in a

lossy waveguide, and (4) optimizing the timing of several single qubit measurements.

2.3.1 Counterfactual error correction

The cluster state represented by a graph G(V, E) is an eigenstate of the |VI stabilizer

operators Xi JIjTeg(i)ZJ, where the index i runs over all the vertices, X, and Z,

are Pauli X and Z operators on qubit i and qubit j respectively, and K(i) is the

set of all nearest neighbor vertices of vertex i. One simple observation, given that

the cluster state is an eigenstate of the aforesaid stabilizer operators, is that an

X measurement on qubit i, and Z measurements on all but one of the qubits in

.A(i), would deterministically reveal what the outcome of a Z measurement on that
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unmeasured qubit in N(i) would have been, even if that unmeasured qubit had been

lost. This realization is at the heart of the tree-based counterfactual error correction

for protection against photon losses, developed by Varnava et al. [57]. The idea

is to attach a tree cluster to each physical photonic qubit in the graph state that

needs to be protected against qubit loss. One can then deduce the result of any

measurement on that qubit via an appropriate sequence of measurements on the

qubits of the attached tree. The physical qubit and the qubits of the tree together

form a protected (logical) qubit. We consider regular trees described by the branching

vector b {bo, bi, ... , bn}, which signifies that the root of the tree has bo children

nodes, and each of those nodes have b1 children nodes, and so on until bob, ... bm

nodes at depth m. For such regular trees used for loss-error protection, one can write

an explicit, yet recursive, expression for the success probability P of performing an

arbitrary single-qubit measurement on the protected qubit [57]. It was shown that

one can push P arbitrarily close to 1 as long as the probability of losing each photon

is less than 1/2. Fig. 2-1 illustrates how to attach a {3, 2, 2} tree, shown by the dark

(purple) shaded nodes, to a physical qubit of a cluster, shown by light (green) shaded

nodes. Note that after the tree cluster is attached to the physical qubit, X basis

measurements must be performed on the physical qubit itself and the root node of

the tree. These X basis measurements, if successful, create additional edges (shown

in dashed blue in Fig. 2-1) between each neighboring qubit of the root node and each

neighboring qubit of the physical qubit, after which the tree-protected logical qubit

is ready to use.

2.3.2 Repeater architecture

Before discussing the all-photonic repeater architecture, it is instructive to review

a generic quantum repeater architecture based on multimode quantum memories,

probabilistic BSMs, and multiplexing over m orthogonal qubit modes depicted in

Figs. 2-2(a) and (b), which was proposed by [541, and analyzed in Ref. 155]. Alice

and Bob are separated by optical fiber of length L (i.e., end-to-end transmissivity,

r7 = e'), interspersed with n repeater stations spaced Lo = L/n apart, with Alice
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Physical qubit
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Figure 2-1: Attaching a {3,2,2} tree to a node of a photonic cluster.

and Bob Lo/2 away from the terminal repeaters in the chain.

Each of the n repeater nodes (or, 'major nodes'), shown by a gray box, consists of a

multimode quantum memory straddled between sources of m Bell pairs on its left and

another m on its right. Each major node loads one half of an entangled Bell state onto

the memory, while transmitting the other half towards the middle of the adjoining

elementary link. Each major node does the above synchronously on every clock cycle.

At the center of each elementary link is a 'minor node', shown as dark-blue-shaded

boxes at the bottom in Fig. 2-2(b). After the qubits from the major nodes reach

the minor nodes (i.e., after propagation through a distance Lo/2), each minor node,

simultaneously, performs BSMs on each of the m pairs of qubits received from the

repeater nodes on its either side. The successful BSMs within each elementary link

are shown by thick (green) line segments. Immediately after the minor node BSMs,

each minor node sends back the information-about which (of the m) qubit modes

were successfully measured-to its two neighboring major nodes, on an authenticated

classical channel. Upon receipt of that information, each major node performs a

BSM on two qubits held in its memory that had been entangled halves of qubits that

participated in successful BSMs at the minor node to the left of that major node, and

the minor node to its right, respectively. Simultaneous with the minor-node BSMs,

Alice and Bob measure, in one of the two randomly-chosen mutually-unbiased bases,
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the m qubits they receive at their respective ends of the terminal half-elementary-link

segments (see Fig. 2-2(b)), and send the information about which channels generated

a 'click' on their detectors, back to their respective neighboring major nodes. Finally,

each major node sends the information on whether its BSM succeeded, to Alice and

Bob. Hence, at every clock cycle, with some probability (i.e., if all the minor nodes

heralded at least one success each, all major node BSMs were successful, Alice and

Bob both detect a photon on at least one of the m qubit modes each while using the

same measurement bases), Alice and Bob obtain a shared (raw, sifted) bit. A long

sequence of sifted bits is thereafter used to distill a quantum-secure shared secret via

error correction and privacy amplification.

The all-optical repeater architecture we will now discuss builds upon a recent pro-

posal by Azuma et al. [51], although there are some important differences, which we

will point out later in Section 2.3.7. The key idea is to mimic a quantum memory

(whose goal is essentially to protect photonic qubits against loss for a certain time

duration) by using the tree cluster approach described in Section 2.2. The authors

of [51] went one step further and subsumed the functionalities of all the subcompo-

nents of the major node (the quantum memory as well as the 2m Bell pair sources)

into one single giant optical cluster state, which we will describe next. Fig. 2-2(c)

illustrates the construction of this cluster. We start with a depth-2 star cluster with

a degree-2m root node, and 4m + 1 total qubits. The 'outer' qubits, shown as white

circles, play an analogous role to the white qubits in Fig. 2-2(a) that are transmitted

to the minor nodes on fiber channels. The 2m 'inner' qubits, shown as gray circles,

are each attached with a tree cluster of an appropriately-chosen branching vector b,

thereby creating a giant tree cluster. The loss-protected (logical) inner qubits play a

dual role, that of the black qubits in Fig. 2-2(a) that are held in the quantum mem-

ories locally at the major nodes, and that of the memories themselves. We make the

two X measurements corresponding to each tree appended to the star, as described

in the previous section (i.e., a total of 4m X measurements). Finally, we make a Y

measurement on the root node of the star, which has an effect of creating a clique

among all the (logical) inner qubits, shown by black circles in Fig. 2-2(c). The clique
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Figure 2-2: (a) and (b) show schematics of one elementary link, and a chain of
them connecting Alice and Bob, respectively, for a repeater architecture that employs
quantum memories, Bell pair sources, probabilistic BSMs, and multiplexing over m
orthogonal qubit modes (parallel channels). (c) depicts the construction of a photonic
cluster state that can subsume the roles of the quantum memory and the Bell pair
sources, thereby resulting in a quantum repeater architecture based solely on 'flying'
qubits. The outer (white) photonic qubits are transmitted on the fiber channels, and
the inner (black) qubits are held locally in a (lossy) waveguide at the repeater node.
See text for a detailed description.

of the 2m logical inner qubits, connected to the 2m outer qubits, forms the full pho-

tonic cluster state that each major node creates every clock cycle, and sends out the

2m outer qubits (the white circles) towards the neighboring minor nodes (m to the

left and m to the right) on fiber channels. Note that the final cluster state (after the

X and Y measurements) is not a tree.

Each major node is equipped with single photon sources, reconfigurable passive

linear optics, and single photon detectors. The clusters are created using linear op-
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tics and feed-forward [2, 58]. Since the cluster creation process is probabilistic, the

resources (number of photon sources, detectors, size of linear optic circuit) must be

chosen to ensure a near-unity success probability of creating the cluster in every clock

cycle (see Fig. 2-5).

The minor nodes are identical to what was described earlier. The remainder of the

protocol proceeds exactly as described at the beginning of this Section in the context

of the memory-based architecture, except for the following difference of the action at

the major nodes. When the information about which modes were successful comes

back at a major node (from the two neighboring minor nodes), instead of doing a BSM

between a pair of qubits held in a memory, the major node applies X measurements

on the two logical inner qubits corresponding to the successful modes on either side of

the clique, and makes Z measurements on the remaining 2m - 2 logical inner qubits

(see Fig. 2-2(c)). The X measurements have the effect of fusing the successful outer

qubits into an entangled chain, and the Z measurements have the effect of removing

the extraneous qubits from the cluster.

So, in any given clock cycle, if the photonic clusters at each major node are

successfully created (which includes success in performing the 4m X measurements

and one Y measurement), if all the minor nodes herald at least one BSM success, if

the logical (inner) qubits survive the local storage at the major nodes while the outer

qubits fly to the minor nodes and the classical information (about which modes were

successful) arrives back, if the two X measurements and 2m -2 Z measurements done

to prune the clusters at the major nodes using that classical information are successful,

and if Alice and Bob get at least one click each while using same measurement bases,

then Alice and Bob obtain a raw sifted shared bit. In Section 2.3.6, we will explicitly

calculate this overall success probability, and the resulting secret-key generation rate.

As we will see, larger error-protection trees will afford better rate performance (up to

a limit governed by the device loss rates), but creating larger clusters at the major

nodes will require more resources (sources and detectors).

In Section 2.3.3, we will describe in detail the construction of the clusters at the

major nodes using linear optics, and calculate the success probability. In Section 2.3.4,
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we will describe how the measurements on the major-node clusters are done, after the

BSMs at the minor nodes, to stitch together an end-to-end entangled state between

Alice and Bob.

2.3.3 Constructing the clusters at the major nodes

The cluster as described above, prepared at each major node in every clock cycle, is

pieced together by fusing single photons into progressively larger cluster fragments,

probabilistically, using linear-optic circuits and photon detectors. The optimal algo-

rithm for create photonic cluster states using linear optics-in terms of minimizing

the total number of photons consumed and maximizing the eventual probability of

success-is not known even for a general N-node line cluster. With losses from sources

detectors and waveguides during cluster construction, finding the optimal recipe be-

comes even harder. One design knob is the number of redundant cluster fragments

attempted at each step. A higher number of attempts improves the probability of

successfully creating the final cluster, but with a higher number of required photon

sources and detectors. We will refer to this trick of attempting the creation of multiple

identical cluster fragments at each step of the process as multiplexing.

We will describe now the resource counts and success-probability calculations for

two methods to create the cluster at the major node. The first one is a method

implied by previous rough estimates of the resource requirements [58, 2]. We will

then discuss an improved scheme that decreases the resource requirements during the

creation process. Fig. 2-4 provides a schematic for these two schemes, which we will

refer to in the discussion below.

Let us label the final cluster Ckm (see Fig. 2-2) where the letter m signifies that

the Y measurement required to turn the inner qubits of the star into a clique (a fully

interconnected graph) and the X measurements required to connect the error protec-

tion trees to the inner qubits have already been applied. Before these measurements,

the (tree) cluster is labelled as Ck. The daughter clusters that are fused together to

create Ck will be labelled as Ch 1 and C -1. The daughter clusters that are fused

together to create Ck- 1 are: Ch 2 and Ck2. The clusters that are fused together
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Figure 2-3: The tree cluster Ck (and the final cluster Ckm after the X and Y mea-
surements), shown in Fig. 2-2, are created by a sequence of probabilistic linear-optic
fusion-II operations, starting from 3-photon maximally-entangled (GHZ) states.

to create Ck_2 are: Cik- and Ck-, and so on (See Fig. 2-3). At the bottom of the

stack are 3-photon GHZ states, C2 with i = i1, i2 ... , ik, which are in turn created

by groups of 6 photons fed into linear-optic circuits that generate the 3-photon GHZ

states with probability SGHZ =[,d(2 - 7sqd)]3 /32 [2]. The loss rate of the heralded

GHZ states is, 1 - PGHZ where PGHZ -- ?Jqd/(2 - rls9ld) [2].

We will assume that the cluster Ck can be prepared in a series of k fusion steps,

where at each step, clusters of roughly equal sizes are fused together, thus roughly

doubling the cluster size in each step [581. This assumption becomes accurate in

the limit of large clusters. This method ties the final size of the intended cluster

(Q = 2k + 2 photons) to the number of fusion steps (k), and this relationship becomes

increasingly exact as k becomes large. In other words, we will assume that C1

and C1 are two clusters each of p photons, which when fused successfully using

a fusion-II gate (applied to one photon each of the above two clusters) creates the

2p - 2 photon cluster Cj, i = il, i 2 ... , ik-1. Starting with the 3-photon GHZ states

Cioi2..., the size of Ck is 2k + 2 photons. Hence, the minimum number of fusion steps

50



required to build a Q photon cluster is k = [log 2 (Q - 2)1. The label k, the number

of fusion-II steps used to arrive at Ck, also translates to the resource requirements,

and the loss rate of each photon in the final cluster, as we show below. Note that k

is a function of the branching vector b of the error-correction trees used. The larger

the error-correction trees, the larger will be the final cluster Ck, and the larger will

be the number of steps k required to prepare that cluster.

The naive multiplexing scheme

Let us now examine the cluster creation process (depicted for k = 2 in Fig. 2-4(a)).

At every point we need the cluster fragment C , we attempt to create nB copies

of that identical cluster (nB = 3 shown in Fig. 2-4(a)), of which hopefully one is

successfully created and heralded for further use. Therefore, creating one usable copy

of C' requires (2nrB)k GHZ states C9,-., at the bottom of the stack. Each GHZ

state is picked from nGHZ parallel-attempted GHZ states (nGHZ = 4 shown in Fig.

2-4(a)), and creating each GHZ state requires 6 single photons. Therefore, creating

one usable copy of Ck requires (2nB)k X 6 nGHZ single photons. Finally, at the top

of the chain, we create nmeas copies of Ck in parallel (nmeas = 4 shown), on each of

which the 4m X measurements and one Y measurement are performed, to prepare

copies of the final required cluster Ckm. We choose nmes such that we obtain with

high probability one successfully-created copy of Ckm. Therefore, the total number

of single photon sources (shown by black dots at the bottom of Fig. 2-4(a)) that need

to simultaneously fire on every clock cycle, N, = 6 nGHZ nmeas(2nB)k

The probability of successfully creating a GHZ state C9, 2 ., is So = 1 - (1 -

SGHZ)GHZ. The success probability of fusion at the l-th step-i.e., that of combining

Ci1 and Cj1 into C-is given by SB(I) = (PGHZPf 2 /2. The success probability

of heralding one cluster C (from the nB parallel copies attempted) is given by the

recursive formula, S1 = 1 - (1 - SiSB(l) nB, with So given as above. The 4m + 1

(X and Y) measurements required to convert Ck to the final cluster Ckm succeed

with probability SmXY (PGHZPk+1) 4 m+l. Since this step is multiplexed over nmeas

parallel attempts, the success probability of heralding one copy of the final cluster
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Figure 2-4: (a) naive multiplexing scheme. A dashed rectangle represents a cluster
that has some probability of having been been created after a probabilistic fusion
step (red circle) or at the output of creating GHZ states using linear optics starting
from six single photons (labeled 'GHZ Factory'). A solid rectangle represents a clus-
ter state that is successfully created with high probability by choosing a successful
outcome (blue square) out of several identical copies attempted (dashed boxes). (b)
the improved multiplexing scheme. A box surrounding clusters of the same type rep-
resents a bank of clusters and any operation applied to the bank is applied to all the
clusters in it.

at a major node is given by, Pi = 1 - (SB(k)Smxy)nmeas. The success probability of

all n repeater nodes creating the clusters Ckm locally during any given clock period,

is Pe, = P,. The blue (dashed) plot in Fig. 2-5 shows Pn as a function of N, for

n = 250 repeater stations (major nodes), k = 7, and for device parameters as given

in Table 2.1.

The improved multiplexing scheme

The improved multiplexing scheme we now describe addresses the following deficien-

cies of the scheme described above.

9 The protocol presented above does not make the most optimal use of the multi-
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ple copies of identical clusters that are successfully created at a given step. To

illustrate this point, let us consider the nB = 3 copies of (attempted) C2 clusters

that are shown in Fig. 2-4(a), of which one successfully created C2 is picked.

The first of those three attempted C2 clusters is shown to be created by fusing

a C' cluster and a C2 cluster. The C' is chosen out of nB = 3 copies of (at-

tempted) C1 clusters, as shown. If two of those three copies of C are actually

successfully created, the second success goes to waste. Note however that the

second and the third (of the three attempted) C2 clusters will also each need to

be created by fusing a C' and a C2. Those two C clusters will also be picked

from nB = 3 copies each of (attempted) C' clusters (not shown in the figure).

It is thus simple to see that at each time step, a total of (nB)k = 9 copies of

C' are attempted, but the selection of successes only happen within groups of

three, which is clearly inefficient. A far more efficient approach is to maintain

one single "bank" of copies of C' and similarly one single bank for copies of C),

and attempt fusions on clusters from these two banks pairwise (and throw away

the excess clusters in the bank that has more copies), to produce a single bank

of C2 clusters. This way, one does not have to choose the multiplexing numbers

nB, nGHZ and nmeas, and the total number of single photons N directly trans-

lates to an overall probability of success Pj of creating the final cluster Ckm

In general, we maintain single banks of each distinct cluster fragment consumed

in the entire stack shown in Fig. 2-3, and for each fusion step shown in Fig. 2-3,

we apply pairwise fusion to all cluster copies from the two banks corresponding

to the two daughter clusters (and throw away the excess clusters from the bank

that has more).

* The X and Y measurements that were performed at the very end (on 4m + 1

nodes of the tree cluster Ck, to convert it to the required final cluster Ckm)

can be performed at the very beginning-on the appropriate photons (which

would eventually become those 4m + 1 photons in Ck)-while they are still part

of the 3-photon GHZ states, i.e., before any of the fusion-II operations begin.
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Making these measurements at the bottom of the stack makes failures much

less costly, which in turn significantly reduces the resource requirements (i.e.,

the N, required to achieve a given final success probability Pcn). Section 2.3.5

rigorously explains why these measurements can be done on the photons while

they are still parts of the GHZ states.

9 The success probability of each of the fusion-Il operations (at all k steps in the

cluster creation process) can be improved from 1/2 to 3/4 by injecting ancilla

single photons [361. These success probability numbers diminish with source

and detection inefficiencies. But, the cost of using additional photons needed

(as ancillas) to realize these boosted fusion gates is far outweighed by the effect

of the success-probability improvement, thereby improving the effective tradeoff

between N, and Pcl1 .

We start with N, photons and send them all through GHZ factories, hence at-

tempting the creation of [N,/6J 3-photon GHZ states. The number of GHZ states x

successfully created follows a binomial distribution B(x, LN,/6i, SGHZ) where B(x, n, p)

(n)px(1 -p)n-x. Hereafter, let us follow an illustrative set of numbers for a k = 2 clus-

ter, which is depicted schematically in Fig. 2-4(b). Suppose we get x = 18 successfully-

created GHZ states. These GHZ states are now split into 4 banks corresponding to

C,, C,2 , C, and C 2 . Out of these, let us say C, and C,2 consist of photons that

would be eventually measured in C'. As discussed in section 2.3.5, these qubits can be

measured now. Since the measurement of photons has a success probability PffPGHZ,

the number of Com cluster states (x) created as a result of making measurements on y

C,1 states follows a binomial distribution B(x, y, Pffr/GHZ). The banks corresponding

to C, 1 and C, 2 are given a fraction 1/(PffPGHZ) more GHZ states. Hence, these

banks have 5 GHZ states each whereas the other two have 4 each. Suppose that

measuring the 5 copies of C'1 results in 4 copies of Com, and measuring the 5 copies

of C,2 results in 4 copies of C2,. The first fusion step is now attempted (i.e., fusing

Com with C,2, and fusing C with Co) resulting in 2 successfully created copies of

Cm and 3 copies of C21' (the maximum possible number of successes in both cases
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Figure 2-5: The probability that all n = 250 major nodes are simultaneously success-
ful in creating clusters of size k = 7 fusion steps (i.e., 2 k + 2 = 130 photon clusters),
using the naive and the improved multiplexing schemes.

was 4). In the final step, there are 2 fusion attempts from which we get one copy of

the final cluster state C2,.

In general, in a level-i fusion step in Fig. 2-3, and with yi and Y2 copies in the

respective banks of the two daughter clusters, the distribution of the number x of fused

states C is, B (x, min{yi, y2}, SBi()), where Sg1) = B(1) (=(1) r ) 2 + Ijsrd)4 ) [361

and TB(l) = PGHZP +1 is the survival rate of photons up to before the 1 th fusion step.

The success probabilities of this scheme, Pci (and Pc,) are calculated using Monte

Carlo simulations.

In Fig. 2-5, we plot the probability P,, of successfully building clusters C' (with

k = 7), simultaneously at n = 250 major nodes, for both schemes. nB, nGHZ and

nmeas are optimized for the naive scheme to maximize Pe, for any given N. The plot

clearly shows that the improved scheme leads to resource savings by a factor of ~ 10'.

We further observe that, for both schemes, Pe, undergoes a rapid percolation-like

transition from zero to one as N, is increased beyond a certain threshold value. Pc"

is only a function of k, n, and N. We fix P,, = 0.9 and calculate the corresponding

minimum N required, for every value of k and n. This sharp-transition behavior of
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Pe, allows us to conveniently split the problem of designing the repeater architecture

into two parts:

(1) choosing an error-protection level by choosing m (number of parallel qubit

channels) and b (the branching vector of the error protection trees), which gives us

k (indicative of the total cluster size), and using this to calculate the key rate vs.

distance achieved-both with n repeater stations, and also the resulting envelope

over all n; and

(2) given the design choices (m and b), calculating the number of photon sources N,

so as to achieve a close-to-unity Pe, (probability that all n nodes create the required

clusters on every clock cycle), for a given value of k (cluster size at each repeater

node), and n (the number of repeater nodes).

2.3.4 Measuring the clusters and connecting the chain

Once the clusters are created, the outer qubits are sent to minor nodes at the middle

of the elementary links, as shown by the arrows in Fig. 2-2(c). The outer qubits are

measured in the Bell basis at the minor nodes using ancilla-assisted boosted fusion

gates [36]. The loss rate seen by the outer qubits is Etrav = I-qn P+2 P where q1/2n

is the transmissivity of half of an elementary link (of range L/2n). All the physical

qubits corresponding to the inner (logical) qubits are stored locally in a fiber bundle

with the same attenuation as the communication fiber between the repeater stations.

Due to the classical-communication delay, the core qubits see more loss than the outer

qubits do, which we define as Estat =1 - -P2Pff(fib)P. However, it is important to

note that, just like in the architecture of [54, 55], this delay only leads to a latency

in the scheme and does not affect the clock rate of the system.

When the result of the BSMs on the m qubit channels at the two neighboring

minor nodes arrive back at a major node, the major node picks one successful qubit

channel on either side (if none of the m BSMs were a success on any one of the sides,

then that time period is an overall failure). The logical inner qubits corresponding to

all the outer qubits that are not deemed part of the successful BSMs are removed from

the cluster by measuring them in the Z basis [57] (note that this Z measurement is a
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logical one, which benefits from the loss-protection trees). On the two logical qubits

(one on either side) corresponding to the successful channels, X basis measurements

are performed, which has an effect of extending the entanglement. Alice and Bob,

simultaneous with the minor node BSMs, detect the m outer photons sent to them

by the first and the last major node in the repeater chain, over links of length Lo/2,

using one of two randomly-chosen mutually-unbiased bases. Assuming the clusters at

all n repeater nodes were successfully created (which happens with probability P,,),

the conditional probability of generating an end-to-end entangled pair between Alice

and Bob, in one clock cycle, is given by the probability that all n - 1 minor nodes

herald at least one successful BSM, and all the pruning logical X and Z measurements

on the clusters at all n major nodes are successful, and Alice and Bob both obtain

successful detects on at least one of the m qubit channels:

p2 (m-)np2n n-1 -2

Pmeas - P [I - (I - PB)] Pend, (2.1)

where Px and Pz are the probabilities of successful X and Z basis measurements on

the logical inner qubits, respectively. Pend is the probability that Alice (resp., Bob)

obtains at least one successful detection in one of the m qubit channels.

We quantify the performance of the repeater architecture in terms of the number of

shared secret bits generated per mode (i.e., per clock cycle per spatial channel, where

m is the number of spatial channels employed). Since, the channel noise comprises

only photon loss, the success probability divided by the number of spatial channels

per attempt is the bits per mode generated by this scheme i.e. S = PnPmeas/2m.

Note that the bits per mode is obtained by dividing by the number of spatial channels

that is twice the number of qubit channels (2m).

2.3.5 Re-ordering measurements in the cluster-creation pro-

cess

In this section, we explain why the X measurements required to attach trees for

counterfactual error correction and the Y measurement required to create the "clique"
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Figure 2-6: Explanation of why single qubit measurements can be applied before
fusion operations. (a) X and Y basis measurements can be moved before conditional
Z operators. (b) Z operators before Z basis measurements can be removed. (c)
Hadamard gates followed by measurement in the X, Y or Z basis are equivalent to
direct measurements in a different Pauli basis. (d) Single qubit measurements on the
final cluster can be moved before fusion operations.

from the "star" cluster can be applied before the fusion operations. This makes the

cluster creation process more efficient. The reordering of the operations is depicted in

Fig. 2-6. Thin lines here represent photonic qubits, thick lines represent feed-forward

operations, boxes labelled X, Y, Z, and H represent single qubit X, Y, Z rotations,

and Hadamard gates respectively, and boxes labelled Mx, My, and Mz represent

measurement in the X, Y, and Z bases, respectively.

First, we show some results regarding re-ordering of single qubit measurements

and rotations. In the left side of Fig. 2-6(a), the unitary operation U on qubit c

is conditioned on the result of an X or Y basis measurement on qubit b (that is

determined beforehand). In addition, there is a conditional operation Z' on the qubit

b which depends on a feed-forward signal from a different part of the circuit, which

in this case is the result of measurement MA on qubit a. The application of a Z
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gate before X or Y measurement simply has the effect of flipping the result of the

measurement. Hence, the measurement Mx/y can be performed before MA and the

feed-forward result of MA can simply be used to flip the result of Mx/y as shown

on the right side of Fig. 2-6(a). The system in Fig. 2-6(b) is identical to the system

in Fig. 2-6(a) except for the fact that measurement in the X/Y basis is replaced by

measurement in the Z basis. Since application of a Z rotation does not influence the

outcome of the Z measurement, the Z gate and the associated feed-forward can be

removed entirely. In Fig. 2-6(c), we depict that a Hadamard gate followed by an X

basis measurement is equivalent to a Z basis measurement, a Hadamard gate followed

by a Z basis measurement is equivalent to an X basis measurement, and a Hadamard

gate followed by a Y basis measurement is equivalent to a Y basis measurement with

the result flipped.

We now use these results to show how measurements can be pushed earlier in the

cluster creation process at the major nodes. The left side of Fig. 2-6(d) shows the

system with measurements applied after the fusion operations. Single photons that

are sent through GHZ factories to create 3-photon GHZ states, which are then fused

using Bell measurements using ancilla photons. The surviving photons require some

Hadamard and conditional Z rotations as part of the controlled-phase and parity-

projection operations [58]. Finally, some of the surviving photons require X and

Y basis measurements, the results of which are fed forward to photons in the final

"clique" cluster. As shown in Fig. 2-6(a), (b) and (c), measurements in the Pauli basis

can be pushed in front of Hadamard and conditional Z rotations by simply moving

to a different Pauli basis or flipping the result of the measurement result. Hence,

the system is equivalent to the right side of Fig. 2-6(d) in which single qubit Pauli

measurements are applied before the fusion operation.

2.3.6 Rate calculations

In this section, we will evaluate the secret key bits generated per mode using the all-

optical repeater architecture described above. We will first derive an exact analytical

expression for the rate, given the design choices (m and b), and compare it with
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the best rate achievable without the use of quantum repeaters. A given choice of

m and b determines k, which quantifies the size (2k + 2 photons) of the cluster C'

generated at each major node on every clock cycle. Next, we will choose a value of k,

and numerically optimize the choice of m and b (consistent with the chosen k) that

maximizes the rate.

The probabilities of success for fault-tolerant X and Z measurements on one of

the (logical) inner qubits at a major node cluster, Px and Pz, can be expressed in

terms of the probabilities Ri of a successful 'indirect' Z measurement (as described

in Section 2.2) on a qubit at the i-th level of the error-protection tree [51, 57]:

Px = Ro (2.2)

Pz = (1 - (stat + EstatRi)bo, (2.3)

where

Ri =1 - [1 - (1 - Ctat)(I - Estat + Estat Ri+ 2 )bi+]bi , (2.4)

and i < 1, R1+1 = 0, b1+1 = 0.

Let us assume a tree depth of d = 2, i.e., b = [bo bi], which is consistent with

our numerical findings on the optimal branching vector as described later in this

section (see Table 2.2). For a depth-2 branching vector, using Eq. 2.4, we find that

Ro 1 - - (1 - stat)bl+)l bo and R1 = 1 - Eat. Thus,

ri +1 1 bo
Px = 1n- 1 - (?i) Bbl+ ,and (2.5)

Pz = [1 - (1 - ?ln B) ] , (2.6)

and the Bell measurement success probability becomes

60



AB2
PB = ,B2  (2.7)

where A = m ((rSr/d)2 + P(?sd)/Pf(fib) , B =f Pff(fib)PO.

The probability of at least one successful detection at Alice's (or Bob's) end is

given by

Pend = 1 (1 - r/2 C), (2.8)

where C = p .+2 p

We now have the bits-per-mode rate achievable with an n-repeater-node chain,

Sn(L) = 2 p (m-l)np2n [I _ (1 _ pB)mn-1, (2.9)
2m end Z

with Px, Pz, PB and Pend as given in Eqs. 2.5, 2.6, 2.7 and 2.8, with r1 = e-, the

transmissivity of the end-of-end channel (of range L). See the magenta (dotted) lines

in Fig. 2-7 for the plots of S,(L) as a function of L for a few chosen values of n. To

obtain an achievable rate-distance envelope, we pick the transmissivity (resp., range)

value given by

r/n= e-nzIn(AB 2 ) (2.10)

on the rate-distance function Sn(L), for each n, and evaluate the rate-loss function

SLB(L) by computing a locus of the pair (r/n, Sn(- ln(rln)/a)) over n E {0, 1, 2, .. .}

which by construction is a lower bound to the true envelope of the functions Sn(L)

over all n. The parameter z in Eq. 2.10 is numerically optimized to maximize the

value of the lower-bound envelope SLB(L).

Let us evaluate Px, Pz, PB and Pnd at r/ = 7n (i.e., substitute 1/n - (AB 2)-z

in the respective expressions), and define the following quantities:

Px = 1 - 1 - (AB2)-z(b"+l Bb1+1 I] , and (2.11)

Pz = - (I - (AB2)-z B)]+1I bo , (2.12)
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PB = I (AB2)1-z, and (2.13)m

Pend = 1 - (I - (AB2)-z/ 2 C) , (2.14)

using which let us define the following: C1 = p 2 02=1 - (1 - pB)m, and

C3 = p2. We can now express S,(L) evaluated at L = L=- ln(rl,)/a as S,(La) =

(C1C2)" n C . To obtain the locus of (rh, Sn(- ln(qn)/a)) over all n, we eliminate n

from Sn(Ln), and the expression of Tjn in Eq. 2.10, and obtain the following rate-loss

envelope lower bound (expressed as a function of q = e-):

SLB(7) Dq", (2.15)

where D = "3Pen and the exponent s - n(CC2) We now numerically optimize

the choice of the parameter z such that the value of the exponent s is minimized

(note that C1 , C2 and C3 are functions of z). The repeater scheme, even when built

with lossy components, can achieve s < 1. This establishes that the rate achieved

by this repeater architecture scales better with the end-to-end channel loss than the

best possible scaling achievable without the use of quantum repeaters. The rate

corresponding to the PLOB bound, an upper bound to the best possible key rate

achievable without repeaters, scales as cx q, i.e., achieves an exponent s = 1. The

value of the exponent s achievable by the repeater scheme can be improved (lowered)

by enhancing the level of error correction (i.e., choosing a larger b). Doing so increases

the size of the photonic clusters needed at the repeater nodes, and hence increases

the number of photon sources N, required locally at each node.

In Fig. 2-7, we plot Sn(L) (bits per mode) as a function of L (in km) for n =

1, 10, 24, 56, 133, and 314 (magenta dotted plots), with b = {7, 3} trees and m = 4

parallel qubit channels (which translates to k = 8 clusters at each major node), and

other device parameters as summarized in Table 2.1. We also show the analytical rate-

envelope lower bound SLB(L) (black solid line), obtained by choosing the optimal z

numerically. For the numbers chosen, we get D = 0.11 and s = 0.37. Our lower

bound SLB(L) is seen to be remarkably close to the true rate-distance envelope, and
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Figure 2-7: The key rate (in bits per mode) Sn(L) achieved by an n-node repeater
chain shown as a function of range L, for n = 1, 10, 24, 56,133, and 314 (magenta
dotted plots). Our analytical lower bound to the rate-distance envelope SLB (L) (black
solid plot) is indistinguishable for the numerically-obtained rate-distance envelope,
which are very close to one another. For all the rate-distance plots, we choose m = 4
parallel channels and b = {7, 3} error-protection trees (which translates to k = 8
clusters). The PLOB bound is shown for comparison (blue dashed plot).

the bound remains an excellent approximation to the rate-distance envelope for all

parameters we tried. For the plots in Fig. 2-7, the maximum deviation of SLB(L) from

the envelope is 0.09% (at n = 1), and the deviation is less than 0.005% for L > 32

km. This close agreement of the analytical lower bound to the true envelope suggests

that the ansatz in Eq. 2.10 is a very good approximation.

One implication of q,, = (AB2 )-n lying on the rate-distance envelope is that the

distance between each repeater (major) node,

Lo L ln(AB 2 ) (2.16)
n a

is a constant and independent of the total range L. In other words, given the device

parameters and the choice of the major-node cluster size (i.e., m and b), there is

an optimal gap with which repeaters should be placed-no more, and no less. For

the numbers used for the plots in Fig. 2-7, Lo = 1.49 km. Fig. 2-7 also shows the

PLOB bound for comparison (blue dashed plot), which the repeater scheme is seen

to outperform beyond a range of 87 km.
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Device parameter symbol value

fiber loss coefficient a 0.046 km-'
(0.2
dB/km)

on-chip loss coefficient 3 0.62 m-1
(2.7
dB/m)

feed-forward time in fiber Tf 102.85 ns
feed-forward time on-chip TS 20 ps

chip to fiber coupling efficiency PC 0.99
source detector efficiency product 'rsrd 0.99

speed of light in fiber Cf 2 x 10 8m/s
speed of light on chip Cch 7.6 x

10 7 m/s

Table 2.1: Assumed values for device performance parameters. The source detector
efficiency product r'rad is sufficient for the purposes of the calculations in this chapter,
and need not be specified separately. Recall that Pff e-0rsCch Pff(fib) -earf cf, and

PO = 77rldPc/( 2 - ?7srqd). For computational ease, we choose rf such that Pff Pff(fib).
The device parameters are aggressive but may be achievable in the near future given
rapid advances in integrated photonics.

2.3.7 Discussion

In this section, we will go back to the all-photonic repeater architecture proposed by

Azuma et al. [51], and discuss the main modifications (improvements) we considered

in the architecture we described and analyzed above. We will also show a comparative

study of the resource requirements and rate performance of the naive scheme and our

modified scheme. Following are the salient differences between the architecture we

analyzed above, and the one proposed in [511.

Retaining vs. transmitting the clusters-In the proposal of 1511, all the logical

inner qubits, along with the outer qubits (i.e., all the N photons of the cluster at a

major node) are sent to the minor node, whereas we store the inner qubit photons in a

fiber spool locally at the major nodes. The former has an advantage that no classical

communication needs to happen from minor nodes back to major nodes before the

logical X and logical Z measurements are done to the logical inner qubits, since all

those qubits are present locally at the minor nodes when the BSMs are performed

there on outer-qubit pairs from neighboring major node clusters. The advantage of
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our (latter) scheme is that the number of parallel physical channels needed (2m) is

much smaller as compared to the number needed (N) for the scheme in [51]. For the

numbers in Fig. 2-7, that is 8 as opposed to 208 parallel fiber channels connecting

successive repeater nodes.

Difference in the bits-per-mode rate-Further, the bits per mode achieved by the

architecture in [51] would be given by PcnPmeas/N, whereas the bits per mode achieved

by our modified architecture would be PcnPmea/2m. The Pmeas of the former is higher

(due to lower loss incurred by the photons of the logical inner qubits of the clusters

as they do not need to wait in a lossy fiber spool while waiting for the classical

information to fly back from the minor nodes). However, the other improvements

described below more than compensate for the better Pmeas, and the latter scheme

achieves a far better bits-per-mode performance (see Fig. 2-8).

Linear optic vs. boosted linear optic fusion gates-We propose the use of the

improved Bell-state measurement scheme of Ewert et al. [361 that inject four single

photons to boost the success probability of the fusion-II gate. Our calculations show

that the cost of using these additional ancilla photons is far outweighed by the effect

of the improved success probability, in the performance of the repeater architecture,

despite assuming lossy sources and detectors.

Improved multiplexing scheme for cluster generation-We use an improved multi-

plexing scheme to create the clusters at the major nodes, as described in Section 2.3.3

and depicted in Fig. 2-4(b). Previous studies have estimated the resource require-

ments for cluster generation based on the average number of attempts required for

each probabilistic steps [2, 58]. However, in order to generate the required cluster

at every repeater station on every clock cycle with high probability, the resources

required at each repeater station need to be greater than the number that would

allow for cluster creation "on average". To our knowledge, this is the first study

that explicitly looks at how probabilistic operations need to be multiplexed in a real

system.

Pushing the measurements ahead during cluster creation-The single qubit mea-

surements that do not depend on the outcomes of Bell measurements at the minor
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nodes, are performed before the fusion operations, directly on the photons of the GHZ

states, very early during the cluster creation process.

Let us now see what the above modifications to the architecture do to the rate

performance. The bits-per-mode rates for the naive and the improved schemes are

plotted in Fig. 2-8(a) and (b), respectively. We assume device loss parameters as

listed in Table 2.1 for both sets of plots. In each plot, we compute the rate-distance

performance (envelopes taken over n, the number of repeater nodes) for four different

error-protection levels (i.e., k = 7,8, 9, and 10). For every point on each rate-distance

envelope, m and b are optimally chosen (consistent with the given k). Each rate-

distance plot exhibits the Dr1I = De-"' behavior, and the exponent s diminishes as

a higher k is chosen. For the naive scheme, the minimum k for which the repeater can

beat the PLOB bound (pink-dashed line) is k = 8 and the optimized clusters at the

major nodes have 192 photons each. Hence, the scheme would require 208 parallel

fiber links connecting successive nodes. In comparison, in the improved scheme, k = 7

is sufficient to beat the PLOB bound, and requires 2m = 8 parallel fiber links. The

optimal tree depth, for this k = 7 rate plot is found to be d = 2, which is consistent

with the analytical development in Section 2.3.6.

Table 2.2 lists, at a range of L = 300 km, and for each of the cases (k = 7, 8, 9, 10),

the optimal values of m for the naive (mnaive) and new schemes (mne,), the optimal

branching vector for the naive (bnaive) and new schemes (bne,), and the number of

parallel fiber links needed in the naive scheme (Nnaive). In the case of the new scheme,

the number of parallel fiber links needed is simply 2mnew.

k mnaive Nnaive bnaive mnew [ new

7 5 100 {3,2} 4 {4, 2}
8 8 208 {4, 2} 5 {5,3}
9 11 462 {5,3} 6 {7,4}
10 12 864 {7, 4} 8 {10,5}

Table 2.2: For k = 7, 8,9, and 10, at L = 300 km range, mnaive and mnew are the
optimal values of m for the naive and new schemes respectively. bnaive and bnew
are the optimal values of b for the naive and new schemes respectively. Nnaive is the
corresponding number of parallel fiber links needed between successive repeater nodes
in the naive scheme. For the new scheme, the number of parallel links is 2 mnew.
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Figure 2-8: Scaling of the bits per mode as a function of distance L for different
numbers of fusion steps k for the (a) naive scheme and (b) with the improvements
of this chapter. The PLOB bound is the pink dashed line. Q = 2k + 2 is the total
number of photons in the cluster at each repeater station.

Let us now compare the resources (number of photons, N,) required to build the

major node clusters, for the respective cases that can (barely) beat the PLOB bound.

The naive scheme requires 1.9 x 10" photon sources at each major node, while the

new scheme requires 3.3 x 106 sources, an improvement of 5 orders of magnitude (see

Fig. 2-5). It is also interesting to note that if the primitive resources were 3-photon

GHZ sources rather than single photon sources, 15 thousand GHZ sources would be

required, a relatively smaller number.

Given the size of the earth, for terrestrial long distance communications, it is

useful to quantify the performance of our (improved) all-optical repeater scheme at

say 5000 km. Without quantum repeaters, the best QKD protocol realized with ideal

devices cannot exceed a key rate of 2.9 x 10- 99 bits per mode at this distance. Our

all-optical repeater scheme, with 954-photon clusters (k = 10) at each repeater node
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can attain a key rate of 8 x 10- 3 bits per mode using 2m = 18 parallel channels and

n = 12411 repeater nodes, which translates to a 144 kHz key generation rate assuming

a 1 MHz repetition rate. If we employed 518-photon clusters (k = 9) instead, the

rate achieved would only be 4 x 10-8 bits per mode using 2m = 14 parallel channels

and n = 12255 repeater nodes. The number of photon sources required at a repeater

node to create the required clusters (using linear optics) for the above two example

cluster-size constraints are 1.2 x 108 and 3.6 x 107 , respectively.

In the presence of losses in the waveguide, there is a maximum sustainable size of

the clusters at the major nodes, at least for the error protection methods described in

this chapter. A larger cluster requires a greater creation time and hence, each photon

in the cluster sees a larger effective loss rate (stemming from the Pf term in Etrav and

Estat). Since the error correction scheme has a maximum loss tolerance of 50%, there

is a maximum size of the clusters that can be created and thus a maximum level of

error protection that a qubit can have. So, given a set of device losses, increasing the

error protection level (viz., k) cannot indefinitely improve the rate performance.

The aforesaid detrimental effect of loss with an increasing cluster size has more

serious implications for linear optical cluster state quantum computing (CSQC) in

general, using only tree-based counterfactual error correction [57]. This is because

a polynomial scaling of the number of photon sources (with the size of the cluster)

is required in the asymptotic limit for the CSQC scheme to be scalable. The failure

probability of every qubit needs to decrease exponentially with the size of the compu-

tation. Hence, the level of protection of each qubit must increase with the size of the

problem, which implies a greater cluster creation time and hence a greater loss rate.

Since there is a 50% ceiling on the tolerable photon loss, it is not possible to achieve

the required level of protection for arbitrarily large computations, as discussed above

for the case of an all-photon quantum repeater. Developing a scalable method for

creation of arbitrarily large clusters in constant time would solve this problem and

will also allow for a polynomial scaling of the number of photons with computation

size. A recent paper proposes using counterfactual error correction to fault-tolerantly

create surface code data qubits [58]. However, the resource requirements for this
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scheme are found to be extremely high.

2.4 One-way repeater scheme based on logical Bell

measurements

In this section, we present a one-way repeater scheme based on the quantum par-

ity code. The scheme is called a one-way scheme because it only requires classical

communication from the repeater stations to Bob to generate shared entanglement,

unlike the previous scheme which required two way communication between adjacent

repeater nodes. However, it should be noted that a QKD scheme using this shared

entanglement would still require two-way communication between Alice and Bob.

2.4.1 One-way quantum repeaters

A one way quantum repeater uses teleportation based error correction at each repeater

station, as opposed to multiplexing which was used in the previous section. The

schematic of one way repeater scheme is shown in Fig. 2-9.

Logical Bell Classical Communication
Measurement (BM)

Loss Paull
... Loss F Correction

Logical Qubit

Logical BM
Bell State Suc essful

Repeater

Figure 2-9: Schematic of the one-way repeater scheme

The blue circles in Fig. 2-9 represent logical qubits, which in this chapter will

be qubits encoded in the quantum parity code, which is explained later. A repeater

station in a one-way scheme cleans an incoming qubit i.e., it takes an imperfect logical

input state and sends out a near perfect logical output state with a probability that
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depends on the error rate and size of code. However, if the errors are below a certain

threshold, with a large enough code, the success probability can be close to one.

The repeater station consists of logical Bell pairs (depicted in Fig. 2-9 with two blue

circles connected by a line), also in the quantum parity code. The imperfect input

state and one half of the logical Bell measurement undergo a logical Bell measurement

at the repeater and if the Bell measurement is successful, the second half of the logical

Bell pair, which is the output of the repeater, is projected onto the input state with

an additional Pauli rotation that depends on the result of the Bell measurement.

Furthermore, if the logical Bell pair at the repeater was perfect, the output state is

perfect when the Bell measurement succeeds. In the case of pure loss, the output

state's transmissivity depends on the transmissivity of the logical Bell pair, which is

generally higher that the transmissivity of the input state.

2.4.2 Quantum parity code and logical Bell measurement

The quantum parity code (QPC) [59, 60] is a generalization of Bacon-Shor code [61,

621, with encoded 0 and 1 states of the form 10 )(p,q) = (1 +)(p,q) + -)(p,q))/2 and

11)(p'q) = (1 +)(Pq) _ j_)(P 2))/d where Nf)(') =) where the subscript

L signifies the qubit representation (as opposed to Fock space representation).

In addition to providing tolerance against loss (the quantum parity code also cor-

rects for bit and phase flip, although we focus on loss in this chapter), the linear optic

Bell measurement success probability on QPC encoded qubits goes as 1 - 1/2P [521 in

the absence of loss i.e., it approaches one as the size of the code increases. For dual

rail qubits, in contrast, the Bell measurement success probability is limited to 1/2 in

the absence of ancilla inputs and even with single photon ancillas, the best known

success probability is 25/32 [361.
In this section, we outline the derivation of the QPC logical Bell measurement

success probability when the states are lossy which was first presented in 152]. The

two QPC qubits undergoing Bell measurement have different loss, which we label as

yi(for the qubit which is half of the Bell pair created at the same repeater station)

and 7Y2(for the qubit received at the repeater station that has gone through fiber loss).
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The dual rail qubits that constitute every QPC qubit undergo pairwise linear optic

Bell measurement.

The (p, q) QPC can be visualized as having p blocks of q photons each. For the

logical Bell measurement to succeed, every block must have at least one surviving pair.

If this condition is met and there are I perfect blocks (without any lost photons), the

success probability is 1 - 2-1. We calculate the Bell measurement success probability

in terms of Y = 702:

" The probability of there being atleast one intact pair in a block is 1 - (1 - Y)q.

" The probability of the whole block being intact is (7)q.

" The probability of 1 blocks being perfect and the rest having 1 - (q - 1) photons

is (1) [Yq]k[ - - (1 - 7)q]p-1.

" When 1 blocks are perfect and every block has at least 1 pair intact, Bell mea-

surement success probability is 1 - 2-1.

Hence, probability of successful Bell measurement is

p

P ) Z ( 1 - ) [Yq]l[ 1 - Y, - (1 - _Y)q]p-l
B 1I- 2)y,

[I - (1 - - [I - 7q/2- (1 - 7)q]P (2.17)

2.4.3 Key rate

With n repeater stations between Alice and Bob, the probability that every Bell

measurement in the chain succeeds is pq) Furthermore, the measurement of the

single QPC qubit at Bob's end should succeed, which requires that all blocks have

at least one photon and at least one block is perfect. Hence, the probability of the

measurement at Bob's end succeeding is Pend = [1 - (1 - 72 )q]p - [1 -2 - (1 -72)q7.
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Suppose that each photon has a loss PO due to detector, source, fiber to chip

coupling efficiency, and goes through k feed-forward steps which each have loss Pff.

The loss seen at the time of creation of the Bell pairs is y1 = PoPf. The loss seen
I

after passing this state through fiber is 72 = PoPfrn+li.

Based on our method for creating the logical Bell states (see 2.4.4) k= [log 2 (q+1-

2)1+ [log 2 (P)1 +4. The probability of successfully obtaining a Bell pair is Pend [p'

which gives us the bits per mode rate

S =Penj '] /2pq (2.18)

where the factor of 2 in the denominator comes from the fact that every dual rail qubit

requires two modes. Using the device parameters from Table 2.1, P = q, 8?qdPc/(2 -

?/srld) = 0.9607 and Pff = e-sCch = 0.9991.

In Fig. 2-10, we plot the secret key rate for our repeater scheme with the (p, q)

(12,4) QPC for different values of n.

100

E '

CL,
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200 400 600 800 1000
L (km)

Figure 2-10: The key rate (in bits per mode) S achieved by an n-node repeater chain
using the (p, q) = (12, 4) QPC shown as a function of range L, for n = 50, 100, 300, 500
and 700. The envelope (optimizing over n) is shown in black. The PLOB bound is
shown for comparison (blue dashed plot).

In Fig. 2-11, the envelope of the key rate, optimizing over n at every point, with

different size of QPC codes is plotted. As in the previous section, for a fixed code size,

the key rate drops exponentially with distance, but the exponent can be shallower than

the PLOB bound. The smallest code that beats the PLOB bound is (p, q) = (8, 3)
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which is a 24 photon code. However, the crossover with the PLOB bound for this

code happens at a key rate of ~ 10-20, which may have limited practical utility. The

(9,3) QPC beats the PLOB bound at a more reasonable point. Going to larger code

gives a better scaling of the rate with distance but this comes at the cost of a larger

entangled state required at every repeater station. In the next section, we look at the

resources required to create these entangled states at every repeater station.

100 -PLOB Bound

C,)
(1,4)

(p,q) =(8,3) '

j9.3)

0 100 200 300 400 500
L (kin)

Figure 2-11: The key rate (in bits per mode) achieved for different sizes of the QPC,
optimizing over n at every point. The PLOB bound is shown for comparison (blue
dashed plot).

2.4.4 Creation of quantum parity encoded Bell pairs

In this section, we present a loss-tolerant scheme for the preparation of Bell pairs

encoded in the quantum parity code from single photons. These logical Bell pairs

are required at every repeater station at every clock cycle. The previously known

scheme for the preparation of such a logical Bell pair required an linear optic entan-

gling operation known as fusion-I and a KLM style CNOT gate [601, which are very

expensive in terms of resource requirements and are also very sensitive to photon

loss. In this section we present a scheme that is loss-tolerant because it uses only the

fusion-II operation which is loss tolerant. Our objective is to obtain a state of the

form (10 )(pq) 10 )(q,p) + 1 )(pq) 1 )(pq) /v/2 where It)('p') = .______ 0

Groups of six single photons are sent through GHZ factories which give three
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photon GHZ states with probability [rs?7d(2 - 7787,d)] 3/32. We write a three-

photon GHZ state in the form

1+)(3 = (10)03 + 11)03) /V,2 (2.19)

* A fusion-II (f II) gate acting on two qubits of GHZ states of size qi and q2

results in a GHZ state with qi + q2 - 2 photons. Starting with three- photon

GHZstates, the fusion-II operation is used to grow the GHZ state to the size

q + 1, which can be written in the form

| +) (q+1 = (10)(9q+1 + 11)Oq+1 I2

=(0)- 4 (1+) + 1)) +v1)O (1+) - 1-)))/2

- (1+) (0)*q + 1)*q) + 1-) (10)oq - 11)®1)) /2

1+)(q+) = (+)|I+) (q) +(-)|-) /V/ (2.20)

Up to this point, the process is the same as Hayes et al. [601 From this point,

we modify the protocol. In the following steps, we repeatedly make use of the

entanglement swapping procedure

(1+)l1|+)11 + H-)l H11i) (1+)b2 1+)2 + 1-22-H12) - 1W1 +1 +1

(2.21)

which requires Bell measurement on qubits bi and b2 and logical Z and X

operations on 11 and 12.

(1+)b1 W11 + H--)1)1) (1+b2 W11 +1-)42 -H12) /2

(l1+)bl W ) 2 1)12 + -)bl -)1 -)42 )12 (2.22)
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++ )l-)bl |+)42 1)2 + -)bl 1+)1 1-)42 1)12)/2

Rearranging

=(|+)bl1 +42 1+11 1+12 + Hbl1|-462 H-11 H-)2 +

1+)411-)421+)11 H1)2 + H-)142 H12-)1 1+)2)/

=(I'F+) + R-)) (1+)11 1+)12) /2v/2 + (IP+) - RW-)) (1-)I1 H-)2) /2V/ +

(k1+) + 'D-)) (1+)1 -)12) /2v/- + (14+) - I'-)) (-)1 I+)12) /2V2- (2.23)

= 'V+) (1+)11 1+)12 + H-)1 H-)2) /2.1r + JI-) (1+)11 1+)12 - H--1 H1)2) /2,,F +

P@+) (1+)l H1-)2 + H-) 1+)12) /2V2 + I'D+) (1+)1 H1-)2 ~ H11a 1+)12)/ /2 V

where

()+) = ( I+)bl142 + I-)bl --)42) /V (2.24)

R4-) = (-+)bl I )2 - --)bl --)42) /V2 (2.25)

(-)+) = ( +-)b 42+ -)bl 1-42) /V/2 (2.26)

|(-) = (|+)bl |-)42 - |---)bl I) 2) /V/2 (2.27)

Hence, Bell measurement on bl, b2 followed by conditional X and Z operations

on 11, 12 give the required state 1+)11 1+)12 + +)1 1+)12

* While the state I+)(+1 is being created, some 3 photon GHZ states from Eq.

2.19 undergo single qubit rotations to give

Ianc) = (1+)1 3 + 1-)®9) /v'2 (2.28)

* Combining states from Eq. 2.20 and 2.28 using Eq. 2.21 with the leftmost

single qubit in each state as bl, b2, we obtain the state
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(2.29)

where the subscript a signifies that the state has 2 "extra" qubits attached to

it.

* By using Eq. 2.21 on 2 states of the form q0 )'1'q) and 0) P2,q) with bi being

one of the two "extra" qubits of the state 10)(p1') and b2 being one of the two

"extra" qubits of the state 0) p2,q), it is possible to grow the second index of

the logical code i.e

10)(p'4q 10)2,q) -_ - 0)(Pl+P2,q) (2.30)

* Once states | 0 )pq) have been obtained,

qubits in the 0, 1 basis with single qubit

a measurement on one of the extra

rotation reduces the state to

(1+) +)('') + 1-) 1-)(p,q) /V (2.31)

* Taking two of these states and using 2.21 with bl, b2 being the remaining extra

qubit, we get the required logical Bell state

|+)(p,q) +)(p,q) + 1-)(p,q) 1_)(p,q)

( 1 0 )(pq) 10 )(p,q) + 1 1 )(p,q) 1 1 )(pq)) (2.32)

Following the same improved multiplexing scheme for the probabilistic steps as 2.3.3,

we calculate the number of single photon sources required at every repeater station

to create the QPC encoded Bell pairs on every clock cycle. In Fig. 2-12, we plot

the probability of successfully creating repeater states at n = 300 repeaters simul-

taneously as a function of the number of sources at every repeater station for the
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Figure 2-12: The probability that all n = 300 major nodes are simultaneously suc-
cessful in creating encoded Bell pairs in quantum parity code of size (p, q) = (8, 3)
and (18, 5)

(p, q) = (8, 3) and (18, 5) QPC Bell pairs. Similar to Fig. 2-5, the probability of

successfully creating the repeater state undergoes a sudden transition.

In Table 2.3, we summarize the number of number of photon sources Ns at each

repeater required to create QPC (p, q) states (which have size Nq) across 300 repeater

stations with 90% success probability. Furthermore, we also consider a scenario in

which we start with sources 3-photon GHZ states, and evaluate the number of such

sources, NGHZ, required at every repeater station. The loss rate of each GHZ source

is the same as obtained from linear optics using sources of the same efficiency as

Table 2.1.

(p, q) [ Nq Ns NGHZ

(8, 3) 48 2 x 105  1000
(9, 3) 54 7 x 10 5  3500
(12,4) 96 2 x 106 10000
(18,5) 180 4 x 106 22000

Table 2.3: Number of photon sources Ns required at each repeater to create QPC
(p, q) states across 300 repeaters with 90% probability. Nq is the number of qubits in
the QPC Bell pair. Alternatively NGHZ 3-photon GHZ states can be used. The loss
rate of each GHZ source is the same as obtained from linear optics using sources of
the same efficiency as table 2.1.
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We find that the resource requirements with the third generation are an order of

magnitude lower than the repeater in section 2.3. Furthermore, the requirements are

significantly reduced if repeater stations are equipped with sources of small entangled

states like 3-photon GHZ states.

However, as in section 2.3, the multiplexing based creation of entangled photonic

states incurs a major overhead. Better schemes for entangled state creation, like those

based on percolation will likely be needed, which are discussed in the next chapter.

2.5 Conclusions and open problems

In conclusion, we have performed a rigorous analysis of the resource requirements,

and the achievable secret key rates of an all-optical repeater scheme that improves

upon two recent proposal 151, 52], while taking into account all the losses in the

system. While the all-optical repeater proposals of [51] and 152] present important

conceptual advancements, we show that it may not be practically feasible given their

astronomical resource requirements, both in terms of the number of photon sources

and detectors needed at each repeater node, as well as the number of parallel optical

fiber channels that must connect successive repeater nodes.

Our work improves the practicality in both of the aforementioned metrics, as well

as the actual rate-vs.-distance performance achieved. Our improvements to the multi-

plexing based repeater reduce the number of photon sources required at each node by

5 orders of magnitude, and the number of parallel channels between repeater nodes

required to beat the performance of a direct-transmission QKD scheme is brought

down from more than two hundred, to 8. Furthermore, we find that moving to the

one-way scheme further brings down the requirements by one order of magnitude.

We also find that the resource requirements can be reduced by two more orders of

magnitude if a source of 3-photon GHZ states is available.

These results suggest that further theoretical improvements on quantum photonic

fault tolerant schemes may further improve the performance of all-optical quantum

repeaters, as well as other applications of all-optical quantum processing. One of our
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major contributions in this Chapter was to rigorously prove that the rate-loss scaling

by the aforementioned genres of all-optical quantum repeaters with a fixed state size

is given by DrIs bits per mode, where D and s are constants that are functions of

various device loss parameters, and that of design choices made (to choose the level

of error protection). The fact that it is possible to achieve a value as the exponent

s < 1 proves the fact that this scheme can outperform the key rates attainable by

any QKD protocol that does not employ quantum repeaters, the rate performance

of which are upper bounded by the PLOB bound, whose linear rate-transmittance

decay implies s = 1.

In future work, it will be interesting to incorporate more realistic effects into

the resource-performance tradeoff calculations of all-optical repeaters, in particular

mode-mismatch errors in the passive interferometric manipulations on the photons

held locally at the repeaters, and multi-photon errors arising from imperfect sources

and noisy detectors.

This work shows that relatively small entangled states are capable of working

as quantum repeaters but multiplexing based schemes for creating such states are

inefficient. Better schemes for creating entangled photonic states would help make

such schemes practical. We present one such scheme based on percolation theory in

the next chapter.
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Chapter 3

Percolation thresholds for linear optic

quantum computing

3.1 Introduction

In linear-optical quantum computing (LOQC), a single photon in one of two orthogonal

(spatial, temporal, or polarization) modes, i.e., 110) |0)L and 01) 11)L encodes

a qubit, and passive linear optical interferometers and single-photon detectors imple-

ment gates and measurements. Since each qubit is encoded by one photon, we use

photon and qubit synonymously. Gates and measurements in LOQC are inherently

probabilistic even if all single-photon sources are ideal and all linear optical elements

and detectors are lossless. Component losses further reduce success probabilities,

leading to daunting requirements on number of devices (e.g., sources and detectors)

to encode problems of practically-relevant size. Since the original Knill-Laflamme-

Milburn (KLM) proposal for LOQC [28--which was largely deemed unscalable due

to the aforesaid reason-several variants have been proposed that use separately-

prepared "ancilla" states and photon number resolving (PNR) detectors to boost the

probabilities of nondeterministic operations.

A particularly promising variant is an LOQC architecture in the cluster-state

model of quantum computing (QC) [1, 3], which was introduced by Kieling, Rudolph

and Eisert [63, 64]. This scheme leverages percolation and renormalization, to (a)
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probabilistically fuse many tiny microclusters (i.e., clusters of few entangled photons)

using linear optical circuits into a randomly-grown large cluster, and (b) reinterpret

the random instance of a large entangled cluster as a logical cluster state in the

2D square grid topology, which is a sufficient resource for universal QC 111. Rudolph

and colleagues subsequently showed constructions within the above framework, which

they termed ballistic photonic QC, wherein they demonstrated that with 3-photon

microclusters as an initial resource, one can create a percolated cluster with one-way

transmission through a linear optical circuit, i.e., with no feedback [4, 65].

Input
microclusters

Vey4 o1

Renormalized lattice

Logical qubit
A -T --

Percolated Lattice

4 Detectors

Linear optic unitary

Figure 3-1: Ballistic photonic cluster state generation for quantum computing. A
steady stream of entangled microclusters of size n-photons or less (n = 3 shown) is
incident on a linear-optical interferometer (i.e., a multimode unitary transformation
U), which produces an entangled cluster of photons at its output. If a percolation
condition is met, the output can be renormalized into a fully-connected logical cluster
in a topology universal for cluster-model quantum computing.

One can interpret the aforesaid feedback-free, or ballistic, framework of LOQC

in the form visualized in Fig. 3-1, by 'pushing out' (postponing) the detections in-
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volved in all the cluster-fusion operations to the very end. Consider an N-mode-input

N-mode-output linear optical circuit-i.e., one that can be constructed using beam-

splitters and phase-shifters [66]-and whose action on the input modes is described

by a complex-valued unitary matrix U. At each time step, the linear-optical circuit

is fed with several microclusters (of up to n entangled photons each) that occupy M

of the N input modes. As we show, if a certain percolation threshold is exceeded,

the spatio-temporal entangled sheet of photons that emerges at the output of U is a

resource that is universal for cluster model quantum computing. This is true in the

following sense. A fraction of the output modes is detected using PNR detectors at

each time step. In the final "renormalization" step, the entangled state that emerges

in the remaining output modes is broken up into logical blocks using information

from the PNR detection outcomes. Exactly one representative photon is left unmea-

sured in each logical block while the rest of the photons are measured in appropriate

bases to leave the representative photons in each logical block in a fully-connected

2D square grid cluster, into which one can encode any quantum algorithm. We em-

phasize that the detection outcomes are only used for the renormalization step, i.e.,

to figure out how to use the randomly connected output cluster for QC; they are not

used to determine whether or not the unmeasured part of the output cluster is useful

for universal QC (this is true with near certainty if the percolation condition is met).

A major open question which we address in this chapter is: if n-photon micro-

clusters are the input resource, what is the minimum probability of success A( with

which each two-photon fusion attempt must succeed, such that one is guaranteed a

percolated renormalizable cluster for universal quantum computing, assuming that

the best possible spatio-temporal sequence of two-photon fusion attempts are em-

ployed on the input microclusters. Entangled microclusters can be used to increase

the fusion success probability beyond 0.5, the highest value attainable with linear op-

tics and photon detection alone [35, 36]. Therefore, some of the input microclusters

can serve as building blocks for the percolated cluster while others can be used to

boost the fusion operations. Therefore, a second important open question is: what is

the maximum success probability Am2X attainable with n-photon microclusters used
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as an ancillary resource? Clearly we need \$"2n > A") for it to be possible to ob-

tain a renormalizable percolated cluster. As n increases, A "2X and Aln) are likely

to increase and decrease respectively, driving the percolated cluster deeper into the

supercritical-connected regime, which makes the construction more efficient by driv-

ing the dimensions of the renormalized blocks (and hence the number of photons that

map to one logical lattice node in the renormalized lattice) to be smaller. Further-

more, if one allows for simultaneous fusion of three or more photons, very little is

known about success probabilities of linear optical fusion and it is not clear if the

thresholds and the efficiency of the above construction improves.

Another important practical question is the effect of losses and other device im-

perfections on the ballistic creation of resources for universal QC. If 77 E (0,1) is the

transmissivity each photon sees through its lifetime (including losses in the source,

waveguides and detectors), as 7 decreases from one (the ideal lossless limit), Amax()

decreases while AC) (7) increases. There is a threshold on 7k"' such that if < 7n)

ax > A" is no longer true. An open question therefore is whether this loss tolerance

threshold improves with increasing size of input microclusters (i.e., qc ) decreases as

n increases), and if so at what rate. Finally, in the presence of photon loss, since

we don't know where losses occured, constructing a fully-connected universal logical

renormalized cluster is non-trivial, and has not been addressed in the literature. To

address this, one could modify the above scheme to start with the creation of logical

photonic qubits that are tolerant to losses and other errors such as mode mismatch

and detector noise, and thereafter do fusion, percolation and renormalization on these

error-protected logical qubits.

When restricted to n = 1, i.e., only single photons as the initial resource, our

setup in Fig. 3-1 resembles that of Boson Sampling (BS), a physics-based computation

model introduced and analyzed by Aaronson and Arkhipov [67, 68]. If M photons

are fed into a randomly chosen linear optical circuit U, and if all the output modes

are detected using PNR detectors, the setup naturally samples from the induced N-

mode M-photon joint probability mass function (pmf) at the output of U. It was

shown that drawing samples from this particular joint pmf is very likely not possible
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efficiently on a classical computer. However, it is also believed that BS does not

have the computational power of universal quantum computing. The computational

hardness of sampling from the output joint photon number distribution when n > 2

input clusters are employed, has not been analyzed. We emphasize however that the

problem we described above (i.e., what conditions must be satisfied for the entangled

state at the output of U to be a resource that is sufficient for universal QC) is distinct

from the problem at the heart of BS (the computational hardness of sampling from

the joint photon number distribution of the entangled state at the output of U). It

will however be interesting to explore if there is a closer connection between the two

problems, and whether a connectivity metric on the output entangled state can be

mapped in a meaningful way to computational hardness of sampling from its joint

photon number distribution.

3.2 Main results

Let us assume destructive two-photon fusion operations that succeed with probability

A. In other words, each fusion operation is assumed to act on two photons at a

time, and regardless of whether the fusion succeeds or fails, those two photons are

destroyed. With the optimal choice of sequence/pattern/algorithm to fuse the n-

photon clusters, there exists an optimal (minimal) threshold AC", such that if all

fusions succeed with probability A > A")4, the end product is a percolated cluster

renormalizable for universal QC. These thresholds Al") for n = 1,2,..., and ways to

achieve them, in particular for small values of n, are important questions that need

to be answered in order to understand the resource-optimal way to realize photonic

QC.

The results in this chapter can be summarized as follows:

1. Converse-We prove: AC") > 1/(n-1), Vn > 2, i.e., no matter how we choose to

fuse n-photon clusters, if each two-photon fusion succeeds with probability less

than 1/(n - 1), the final cluster produced is fragmented with high probability,

and not suitable for renormalization. This means that with n = 3 microclusters
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(three-photon GHZ states) as the initial resource (as in [4, 65]), the minimum

A needed for percolation is 0.5. With n = 2 microclusters (Bell states) as

the initial resource, if the fusions succeed with any probability less than one,

the output cluster is not percolated. Hence, with pairwise destructive fusions,

n = 3 microclusters are the minimum size needed for ballistic LOQC. However,

our converse does not immediately tell us whether there exists a systematic

prescription to achieve percolation at AC") - 1/(n - 1). We also show that if

m > 2 node fusion operations are employed to fuse n-qubit microclusters, the

percolation threshold must satisfy: AC"'") 1/ [(n - 1)(m - 1)]. However, very

little is known about linear-optical circuits for m > 2 qubit fusion [691 (e.g.,

projecting 3 qubits to one of the 8 three-qubit GHZ states) and their associated

success probabilities. Therefore, it remains unclear if the above bound on ACn'")

is tight.

2. New percolation framework-We develop a new percolation framework to

address the problem of assembling a large photonic cluster using cluster frag-

ments, where the threshold on fusion success probability A)n maps on to the

usual bond percolation threshold pc(G) of an appropriately defined logical graph

G each of whose nodes corresponds to an n-photon microcluster. Each node in

G is assigned a color based on how many of the n photons in the microcluster at

that node are intended to be measured in fusion attempts, which is the node's

degree, whereas each fusion attempt corresponds to a neighboring bond of a

node in the logical graph.

3. Improved achievable fusion thresholds-Using our percolation framework,

we present new constructions and associated fusion success thresholds for per-

colation. The lowest threshold we show achievable with n = 3 microclusters is

; 0.5898 which improves over a recently published threshold of 0.625 [4].

4. Ballistic percolated cluster generation with a 2D graph-We show a

logical graph construction using a modified brickwork lattice, with which it is

possible to fuse 3-photon microclusters in a 2D (planar) topology and achieve
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percolation at A, ~ 0.746. This threshold being less than 0.78125 makes it

possible to achieve using single-photon boosted linear optical fusion [361. A

planar architecture is very promising from an experimental standpoint because

a planar integrated photonic waveguide can be used to weave such a cluster.

This also shows it is possible to percolate a 2D lattice using single-photon-

boosted fusion, a question left open by Rudolph [51.

5. Conjectured achievable thresholds with two-photon fusion-Finally,

we conjecture, with compelling evidence, that if there is an infinite lattice G of

maximum node degree n with bond percolation threshold pc, it is possible to

stitch together a giant percolated cluster renormalizable for QC using n-photon

microclusters as long as the fusions succeed with probability A > pc. We show

that the truth of this conjecture would imply that for n = 3, the lowest known

achievable threshold would go down to 0.5, thereby proving A(3 = 0.5. We also

conjecture, using an extension of the argument for n = 3, that the converse

bound we prove is tight, i.e., it is possible to construct a logical graph that can

be percolated with two fusion success probability, Acn) = 1/(n - 1).

6. Loss tolerance of percolation thresholds-Using a photon loss model in-

spired by a recent proposal to produce photonic microclusters using quantum

dot emitters [70, 71], we prove an extension of our converse result, i.e., we show

a lower bound on AC") that is a function of n and T1 (a parameter that quantifies

the loss experienced by each photon). In other words, if the two-photon fu-

sion success probability is less than this lower bound, for no sequence of fusing

photons with a collection of n-photon microclusters, can one get a renormaliz-

able percolated cluster. We discuss the implications of our results to the loss

tolerance of photonic quantum computing using this scheme. We also discuss

important open problems that need addressing, primarily that of renormalizing

a cluster in the presence of photon loss and other device imperfections.
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Figure 3-2: Different strategies and logical interpretations of piecing together a 2D
square lattice by fusing microclusters: (a) 5-photon microclusters at each lattice node
with fusion attempts on each lattice bond; (b) vertical arrangements of three 3-photon
microclusters and 2 fusions create a 5-photon cluster if both fusions succeed; (c) inter-
preting fusion as coloring the measured nodes black and drawing a new bond between
them if fusion succeeds, the linear optical circuits corresponding to the blue and green
ellipses are shown in Fig. 2 and 3 of [4] respectively; (d) mapping microclusters to
nodes in a logical graph and coloring them based on how many photons in the micro-
cluster are left unmeasured; (e) pure bond percolation on the logical graph of colored
nodes.

3.3 Revisiting ballistic cluster-state LOQC with a

new approach

In this chapter, we develop a conceptually new way to construct percolated instances

of renormalizable photonic clusters, and re-interpret recent results within our frame-

work. We close the section with a conjecture. In Section 3.4 we use our percolation

framework to develop new results on better achievable percolation thresholds, as well

as general bounds on A.
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Figure 3-3: Site-bond percolation critical boundaries shown for the (a) 2D square
and (b) 3D diamond lattices. The magenta curves correspond to a modified site-
bond percolation problem described in the text where even if a site is not occupied,
neighboring bonds can still be pairwise connected if occupied.

3.3.1 Graph states and linear optical fusion

We consider clusters of entangled photons that belong to a special class called graph

states [721. A cluster described by the graph G(V, E) can be prepared by placing

one qubit in the state (I0)L + 1)L)/V/ at every node in V and applying a two-

qubit controlled phase (CZ) unitary operation across every edge in E. With single

photons as the starting point, using passive linear optical circuits, a 2-qubit cluster

can be generated with a success probability of 3/16 [53], and a 3-qubit cluster (in line

or triangle topology) can be generated with a success probability of 1/32 [2], both

assuming lossless linear optics and ideal detectors. The maximum success probability

of linear-optical two-photon fusion, A is 0.5 when no ancilla photons are used [73, 74J.

Ancilla single photons can be used to achieve A = 0.78125 [361.

3.3.2 Fusing microclusters on a regular lattice

We begin with an illustrative example of piecing together a large subgraph of the 2D

square lattice by probabilistic fusion of microclusters using two-photon destructive

fusion operations that succeed with probability A.
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A conservative approach: site-bond percolation

We begin by preparing 5-photon clusters in a star topology and placing them at each

node of the lattice, as shown in Fig. 3-2(a) [63]. Suppose we succeed in preparing

each of those clusters with probability q. We then attempt 2-photon fusions across

each edge of the lattice, each of which succeeds with probability A. The resulting

graph state that is generated is a random instance of site-bond (mixed) percolation

[75] where each bond is occupied with probability p = A and each site is occupied

with probability q. The boundary in the (q,p) space that separates the percolating

from the non percolating region is shown by the red solid plot in Fig. 3-3(a). We also

show an analytical approximation of this critical boundary (blue dash-dotted plot),

developed by Tarasevich and van der Marck 1761. If one had 3-photon clusters (GHZ

states) as a starting resource, one can assemble a 5-photon star by attempting two

fusions on three 3-photon clusters, as shown in Fig. 3-2(c). The probability of success

in creating the 5-node star is thus q = A 2 , the probability that both fusions succeed.

If either fusion fails, we call it a node failure. Therefore, per Kieling et al.'s recipe, the

threshold value of A beyond which one gets percolation is given by the intersection

of the site-bond critical boundary and the line q = p2 , thereby obtaining A, ~ 0.825

(see Fig. 3-3(a)).

Exploiting failure modes: modified site-bond percolation with two stuck-

open layers

It is too conservative to ask for both fusions to succeed at every node [4]. In other

words, even if one or both fusions in creating the 5-node star were to fail, the leftover

cluster fragments can still provide some connectivity. We illustrate this in Fig. 3-2(b),

where we lay out the three 3-photon clusters at each node of the square lattice in the

vertical arrangement shown, while the square lattice is divided into two crisscrossing

layers of parallel 1D lattices. It is as if the lattice is stuck open at each node. If

both fusions at a node-shown as light blue ovals-succeed (which happens with

probability q = A2 ), the photon at the center of the vertical arrangement gets attached
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to the two photons in the top layer as well as the two in the bottom layer, thus forming

the 5-photon star. This has the effect of connecting the two layers at that node. If

one or both fusions at a node fail (with probability 1 - q), the node remains stuck

open. But, even so, the two nodes in the top layer of the vertical arrangement remain

connected to one another, and the same is true for the two nodes in the bottom layer.

If one of the two fusions in the vertical arrangement succeeds (and the other fails),

the two nodes in the layer closer to the successful fusion are connected via the center

node, whereas the two nodes in the other layer (one closer to the failed fusion) are

connected to one another directly. In all of these cases (i.e., if one or both fusions

fail), the middle node plays no role in terms of providing long-range connectivity. The

green ovals show fusion attempts between adjacent nodes in each of the two layers,

the bonds of the square lattice.

The situation looks identical to (q, p) site-bond percolation with q = A2 and p = A,

except that even if a site is not active, the four neighboring bonds at that site can be

pairwise connected to one another in the two stuck-open layers. We numerically evalu-

ated the percolation region of this modified site-bond problem using the Newman-Ziff

algorithm [771 on a square lattice of 1 million nodes. The resulting percolation bound-

ary is shown in the magenta dashed plot in Fig. 3-3(a). This intersects with q = p 2

at p = A ~ 0.672. This threshold is already below 0.78125, the success probability

attainable by linear-optical fusion boosted with ancilla single photons [361.

Pure bond percolation on a logical graph

Let us revisit the picture in Fig. 3-2(b), and consider a new interpretation where each

3-photon cluster is thought of as a single (super) node in a logical graph shown in

Fig. 3-2(e). We assign a color to the super node based on how many of its photons

are intended to be measured (and hence destroyed) in the planned fusion attempts

(Fig. 3-2(d)). The central photons in the 3-photon clusters at the centers of the

vertical arrangements in Fig. 3-2(b) are not measured as part of a fusion. Hence,

those 3-photon clusters map to a red node in the logical graph in Fig. 3-2(e). All other

3-photon clusters in Fig. 3-2(b) will have all their three photons measured in fusion
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operations and so, all these 3-photon clusters are represented as black nodes in the

logical graph. In the logical graph, a node represents an n-photon cluster, and a node's

degree equals the number of its photons that will be measured in fusion attempts (and

hence destroyed). A bond in the logical graph represents a fusion attempt, which is

successfully activated with probability A. With this new interpretation, the modified

site-bond percolation discussed above can now be seen as simple single-parameter

bond percolation on the logical graph, where each bond is independently activated

with probability A. It is simple to verify numerically (see the plot in Fig. 3-2(e)) that

the bond percolation threshold equals A, ~ 0.672, as expected.

The black nodes disappear during the fusion attempts but help provide long-range

connections. Only the red nodes, which in the example of Fig. 3-2(e) contain a single

photon each after the fusion attempts, remain as part of the giant connected compo-

nent, which is subsequently renormalized for quantum computing. Bond percolation

guarantees that if N is the number of nodes in the logical graph G, and if A > Ac, the

bond percolation threshold of G, then there is a unique giant connected component

(GCC), i.e., a large cluster with O(N) nodes. These O(N) nodes have both red nodes

and black nodes. However, it is simple to argue that there are O(N) red nodes in the

GCC.

Finally, note that in the example shown in Fig. 3-2(e), even though the logical

graph-which describes how to lay out the microclusters prior to fusion attempts-is

a non-planar two-layer graph, the physical giant cluster (of photons) obtained from

percolation is a subgraph of the planar square lattice.

The diamond lattice and the (10,3)-b logical lattice

If one repeats the steps outlined in Sections 3.3.2, 3.3.2 and 3.3.2 for the 3D diamond

lattice, i.e., lay out three 3-photon clusters in vertical arrangements as in Fig. 3-2(b)

at each degree-4 node of the 3D diamond lattice-laid out in the layered 3D brickwork

configuration as shown in 141-and map it to a logical graph as described above, one

obtains the logical lattice shown in Fig. 3-4. This is the (10,3)-b lattice [78] with

one extra node inserted at the center of each of the vertical bonds. We refer to this
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as the 'modified" (10,3)-b lattice. The red nodes, as before, correspond to 3-photon

microclusters with one unmeasured photon, whereas the black nodes correspond to

3-photon microclusters, all of whose photons will be measured in fusion attempts. We

evaluated the bond percolation threshold of this modified (10,3)-b lattice using the

Newman-Ziff algorithm, and obtained A, ~ 0.627, which agrees with, and sharpens the

result of [4] (i.e., A, ~ 0.625); but is now interpreted as a standard bond percolation

threshold.

3.3.3 General picture for ballistic LOQC

The discussion in Section 3.3.2 logically leads to a new approach to constructing

a large percolated network of photons for ballistic LOQC. The basic optimization

problem is to pick a logical graph G of maximum node degree n such that it has

the lowest possible bond percolation threshold, p, (G). But there are additional

conditions that G should satisfy in order for the GCC in the supercritical (percolated)

regime to be useful for universal quantum computing.

In order to understand these additional conditions, consider that each node of

the N-node graph G represents an n-photon microcluster-a connected graph of n

nodes-and a bond between nodes u and v of G represents a fusion attempt between a

photon in the microcluster at u and a photon in the microcluster at v. A node in G is

assigned color zero only if the degree of the node is n. A bond-percolation instance on

G, where every bond is activated independently at random with probability A, results

in O(N) nodes of G in a unique connected component if A > p, (G). This connected

component in turn induces a (random) cluster state of the individual unmeasured

photons in the original microclusters as nodes of a graph. In order for this percolated

cluster to be useful for QC,

(a) The percolated cluster must have O(N) photons. This is equivalent to the con-

dition that the GCC of the logical graph resulting from bond percolation on G

has O(N) non-zero-color nodes.

(b) The percolated cluster of photons can be renormalized into a graph that is known
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(b)

Figure 3-5: (a) 4-node microclusters laid out on nodes of a square lattice. A random
a = 0.3 fraction of microclusters are put in star configuration the central photon of
which will not be measured in any fusion operation. All other photons are measured in
fusion attempts. (b) A random instance after the fusion attempts, assuming that each
fusion succeeds with probability A = 0.6. The measured photons are colored black.
The unmeasured photons (colored white) in the giant component of the percolated
lattice form the backbone random graph that is renormalized into a fully connected
2D topology for universal cluster-state quantum computing.

to be a universal resource for quantum computing 1791 (e.g., a square lattice).

Let us assume G is a regular lattice with uniform node degree d. Let us also

assume that we have access to d-node microclusters. One strategy for selecting nodes

in G designated to have non-zero-color is to pick a random fraction, a, of the N nodes

in G as color-1 and populate them with d-photon star clusters. Clearly, these nodes

will have one less degree (d - 1). We then populate d-photon clique clusters at the re-

maining (1- a)N degree-d nodes. These nodes have color 0 and hence all the photons

in the cliques will be measured in the fusions. If a is small, then the fusion success

probability exceeding the bond percolation threshold of G, i.e., A > pc(G), should suf-

fice to guarantee percolation. This would mean that A,(l) < minG(VE):deg(V)=n pc(G).

In order to prove this formally, one needs to argue that conditions (a) and (b) in

the previous paragraph are met. We leave this for future work. If this conjecture is

correct, given that the bond percolation threshold of the degree-3 3D (10,3)-b lattice
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is 0.546694 178], it would mean that A < 0.546694 for a 3D lattice. Furthermore,

it is possible to generalize the (10,3)-b lattice to higher dimensions, following a pro-

cedure similar to the generalization of the "modified" (10,3)-b lattice in section 3.4.1.

Under this construction, Ac -+ 0.5 as the number of dimensions -4 oc. Combined

with our converse of A(3) > 0.5, this would imply that A(3) = 0.5. We conjecture

that a higher dimensional construction with size n > 3 microclusters can saturate the

converse bound which would imply that AC) - 1/(n - 1), Vn > 3. A schematic of

the setup described in the discussion above, with G chosen as the 2D square lattice

for illustration, is shown in Fig. 3-5.

3.4 Fundamental thresholds

We begin this section with new results on achievable fusion success thresholds using

3-photon microclusters in Section 3.4.1, i.e., tighter upper bounds on A3 compared to

known results. In Section 3.4.2 we provide an intuitive proof of our general converse

bound AC") 1/(n - 1), Vn > 2. Finally, in Section 3.4.4, we discuss how losses in

devices and inline losses affect the fusion thresholds, and discuss its implications for

the resource overhead (number of sources and detectors) for ballistic LOQC in the

presence of losses.

3.4.1 Achievable thresholds

Throughout this section, we take the size of our initial microcluster to be n = 3

photons. As in Fig. 3-2 (e), blue and green dashed lines correspond to the fusion

operations represented by the blue and green ellipses in Fig. 3-2(c), respectively. The

degree-3 nodes are color-0 (black) and hence have 3-photon clusters all whose photons

will be measured in fusion attempts. The degree-2 nodes are color-1 (red) and have

3-photon clusters of which only two photons will be measured in fusion attempts.

Let us pick as the logical graph the modified 2D brickwork lattice shown in Fig. 3-

6. The bond percolation threshold of this lattice is A, ~ 0.746, as shown in the

inset of Fig. 3-6. It is simple to argue that conditions (a) and (b) discussed in
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Section 3.3.3 are met, and the resulting percolated cluster is renormalizable. Hence,

we have shown that even with a 2D lattice, starting with three photon microclusters,

it is possible to assemble a resource for universal QC, since A, ~ 0.746 < 0.78125

and two photon fusion with success probability 0.78125 is achievable with a linear

optical circuit boosted with ancilla single photons 136]. Being able to percolate with

a 2D lattice makes ballistic LOQC much easier from the experimental standpoint

since a planar integrated photonic waveguide can be used to weave such a cluster.

The existence of a 2D lattice with this property was posed as an open question by

Rudolph [5].

In Section 3.3.2, we described a logical graph construction of the "modified" (10,3)-

b lattice (Fig. 3-4), using which we reinterpreted the results of [4] as a pure bond

percolation threshold, A, ~~ 0.627. We now consider a 4D extension of the modified

(10,3)-b lattice (Fig. 3-7) as the logical graph. The 3D lattice (Fig. 3-4) comprises

(x, y)-plane layers of parallel 1D line lattices of black (degree-3) nodes stacked along

the z direction. The layers alternate between their line lattices pointing in the x

and y directions, while neighboring layers are straddled by a layer of red (degree-

2) nodes. Each black node has two black-node neighbors on either side of the 1D

lattice to which it belongs, connected via green bonds, and one red-node neighbor,

connected via a blue bond. Along each line lattice of black bonds, the blue bonds

alternate between the +z and -z directions. The adjective "modified" in the name

of this lattice refers to the fact that in the standard (10,3)-b lattice, the red nodes

are not there, and adjacent (x, y) planes of parallel lattices in alternating directions

are directly connected via bonds. Our 4D generalization of the modified (10,3)-b

lattice is shown in Fig. 3-7. It consists of a doubly infinite stacking of (x, y)-plane

layers-of parallel ID line lattices of black (degree-3) nodes-stacked along the z and

w directions respectively. Of the three neighboring bonds of a black node, two (green)

bonds-connecting to neighboring black nodes in the line lattice to which it belongs-

are in the (x, y) plane, whereas one (blue) bond-connecting to a red node which in

turns connects via another blue bond to a black node in a neighboring (x, y)-plane

layer-points in either the z direction or in the w direction. Along each line lattice of
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Figure 3-8: Schematic of the oo-D extension of the (10,3)-b lattice, which when used
as logical graph with node colors as shown yields A, ~- 0.5898. Percolation threshold
was evaluated analytically.

black bonds, the blue bonds alternate between directions +z, +w, -z, -w, .. ,and

so on. The graph has a period of four in each of the x, y, z and w dimensions. One

period of the lattice is depicted in Fig. 3-7. The inner axes represent an (X, y) plane

at a given value of z and w. This construction results in longer loops compared to the

3D case while retaining the 3D graph's coordination number (average node degree),

which in turn lowers the bond percolation threshold for the 4D logical graph. We

find, using a Newman-Ziff simulation performed on a 4D modified (10,3)-b lattice of

size N ~ 10' nodes, that Ac ~-, 0.611.

By adding more dimensions to the aforesaid logical lattice construction, the size

of the loops is increased, hence progressively lowering Ac. Finally, in the case of

the oo-dimensional modified (10, 3)-b lattice, the loops are infinitely far apart and

hence the lattice is locally tree like. The local connectivity of this logical graph is

depicted in Fig. 3-8. A simple analytical argument, explained below, shows that

Ac ~-- 0.5898 for this limiting construction. This threshold, along with the converse

proven in the next section, establishes that 0.5 < A (3 0.5898, thereby improving

upon ~-.. 0.625, the lowest-known fusion probability threshold that is known to be

achievable with 3-photon microclusters [4]. This also is the minimum Ac ) attainable

from higher-dimensional logical lattices of the modified (10,3)-b lattice family. For

the entire family of constructions, we argue that conditions (a) and (b) discussed in
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Section 3.3.3 are met, and the resulting percolated cluster can be renormalized for

QC.

The locally-tree-like structure of the oc-dimensional modified (10, 3)-b lattice is

shown in Fig. 3-8. Similar to the 3D and 4D modified (10,3)-b lattices, each black

node has two green bonds and one blue bond (which leads to a black node via a red

node and another blue bond). We denote the expected number of children of a node

when approached via a green bond as El and the expected number of children of a

node when approached via a blue bond as E2 . When counting the number of children

of a node, we only count red nodes since they are the only nodes with unmeasured

qubits. Counting children from the top of the Fig 3-8, each black node is labelled as

1 or 2 depending on the bond from which it is approached. Counting children at the

points labelled E1 and E 2 yields the equations E1 = AE1 + A + A 2 E2 and E 2 = 2AE1

where A is the bond probability. For percolation, E1 -+ oc and solving the equations

with this condition, we find that A, + 2A= 1, which leads to A, = 0.5898.

A tree is known not to be a universal resource for QC [79]. However, entan-

gled trees clusters can be used for other applications, e.g., as loss tolerant logical

qubits [571, with applications to all-photonic quantum repeaters [51, 801. We now

show that with a degree-n Bethe Lattice (an infinite tree) as the logical graph, and

with n-photon microclusters as the initial resource, we can get Ac() = 1/(n - 1),

which saturates the converse bound we prove in the following section. Whether or

not A = 1/(n - 1) can be attained on a lattice whose percolated instance can be

renormalized into a logical cluster universal for QC, remains open.

The logical graph that can be used to approach the 1/(n - 1) limit is shown in

Fig. 3-9 for n = 3. We start the depiction of our tree at a degree n - 1 unmeasured

node (i.e., a node with an unmeasured qubit), after which there are g generations of

degree n black nodes, followed by a generation of unmeasured nodes, followed by g

generations of black nodes and so on. In the tree depicted in Fig. 3-9, g = 2. Starting

from an unmeasured node, given a bond probability of A, the expected number of

unmeasured nodes after g + 1 generations is A(n - 2)[A(n - 1)]-. Hence the critical

bond percolation probability must satisfy Ac(n - 2)[Ac(n - 1)]9 = 1, which gives
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Figure 3-9: Schematic of the lattice construction used to approach the A = 1/(n - 1)
limit for the case of n = 3 and g = 2.

us A, = (n - 2)- 1 /(9+1)(n - I)-g/(g+1). As g increases, we approach the limit of

A, = 1/(n - 1). In the argument above, we only count the number of unmeasured

nodes and condition (a) of Section 3.3.3 is satisfied.

In the construction of the Bethe lattice above, the input states are n photon

cliques, which are equivalent, up to local operations, to n photon GHZ states. The

fusion operation used here (yellow dashed lines), acting on two qubits A and B,

consists of a Hadamard gate on qubit A followed by Bell measurement of A and B

in the {1/v'2(|00) 111)), 1/0(101) 110))} basis (also described in [65]). Since

the order of the Bell measurements is not important, we imagine first applying the

fusion operations corresponding to successes. A successful fusion between two cliques

removes qubits A and B from the graph and places the rest of the photons in a

clique. Hence any two logical nodes that have an edge in Fig. 3-9 are part of the same

clique and hence connected. A failed fusion results in an X measurement on A and

a Z measurement on B. The Z measurement of a qubit simply removes the photon

and all its edges. The X measurement of a qubit in a clique has the effect of a Z

measurement followed by a Hadamard gate on one of the original neighbors of the

qubit. Since a Hadamard gate followed by a Z (resp., X) measurement has the effect

of an X (resp., Z) measurement, the result of the failed fusions is simply the removal of

the corresponding nodes from the cliques without disturbing the connectivity between

any other nodes. Hence the fusion operation described here can be used to create the
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Figure 3-10: (a) An example of a series of two-node fusions on n = 4 sized microclus-
ters. (b) Mapping of the microclusters to nodes in a logical graph. Logical nodes with
one, two, three, and four measured physical nodes are colored as Blue, Red, Green,
and Black, respectively.

logical graph in Fig. 3-9.

Finally, as discussed in Section 3.3.3, we conjecture that if there is an infinite lat-

tice G of maximum node degree n with bond percolation threshold pc, it is possible to

assemble a giant percolated cluster renormalizable for universal QC using n-photon

microclusters as long as the fusions succeed with probability A > pc. We also con-

jecture, using an extension of the argument for n = 3 using an infinite-dimensional

modified (10,3)-b lattice, that the converse bound AC(' > 1/(n - 1) is tight for all n,

i.e., it is possible to construct a logical graph that can be percolated with two-fusion

success probability = 1/(n - 1) + E, for any E > 0.

3.4.2 Intuitive converse

In this section we discuss the intuition behind our converse result: starting with N

microclusters each of n photons and using any sequence of two-photon destructive

fusion operations, the minimum fusion success probability Ac sufficient to obtain a

connected component of 0(N) unmeasured photons with high probability is > 1/(n -

1). A formal proof is provided in the next section. We sketch the intuition behind

the proof below.
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Fig. 3-10(a) illustrates an example with n = 4 photon microclusters and a set

of two-photon fusion attempts shown as dashed lines each of which succeeds with

probability A, using the graphical interpretation of fusion presented in Fig. 3-2(c).

Recalling our convention from Section 3.3, a black photon is one that gets measured

in a fusion attempt, hence does not exist after the fusion attempt involving it has

happened, regardless of its success. After all the fusions have been attempted, one

obtains connected components involving only the white photons.

Given a large number N of n-photon microclusters, our objective is to pick a set of

photon pairs on which to attempt fusions (each of which succeeds with probability A),

such that A > A, ensures a unique connected component of O(N) white photons with

the smallest possible A,. One can argue that the post-fusion connectivity graph that

results between the surviving (white) photons, no matter what kind of destructive

linear-optical fusion operation is used, can be no more connected than the connectivity

between white photons in the graph shown in Fig. 3-10(a). In other words, if two

white photons have a path connecting them (via black and white photons) in a random

instance of the graph in Fig. 3-10(a), those two photons would also have a connected

path in the actual post-fusion connectivity graph assuming the same success-failure

fusion instances, if any linear optical circuit for fusion is employed.

Fig. 3-10(b) shows the mapping of Fig. 3-10(a) to a logical graph where each mi-

crocluster is replaced by a logical node, similar to Fig. 3-2(d). Here, dashed lines

represent bonds in the logical graph that exist with probability A. Logical nodes

corresponding to microclusters with one, two, three, and four measured (black) pho-

tons are colored Blue, Red, Green and Black, respectively. Since the microclusters

in Fig. 3-10(a) have n = 4 photons and each photon is associated with at most one

fusion attempt, the maximum degree of each logical node in Fig. 3-10(b) is n = 4.

Hence, the post-fusion instance of the logical graph in Fig. 3-10(b) represents an in-

stance of bond percolation on some graph of degree four. In general, starting with n

photon microclusters, and any sequence of fusion attempts, the resulting instance of

the logical graph is a bond percolation instance (with bond success probability of A)

on some graph of maximum degree n. Of all infinite graphs of maximum degree n,
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the minimum bond percolation threshold is that of the degree-n Bethe Lattice, and

equals 1/(n - 1) [81, 82]. Finally, since each of the N logical nodes in Fig. 3-10(b)

maps to n photons in Fig. 3-10(a), with n finite, the absence of a connected com-

ponent with O(N) logical nodes in the post-fusion instance of the logical lattice of

Fig. 3-10(b) implies the absence of a connected component of O(N) white photons in

the post-fusion instance of the physical photonic cluster shown in Fig. 3-10(a). This

completes our proof that AC - 1/(n - 1). Since the Bethe Lattice is a tree, it can-

not be renormalized into a logical cluster state that is needed for universal quantum

computing [791. Therefore, the above proof does not establish the tightness of the

aforesaid bound. As explained however in the context of n = 3 in Section 3.3, we

believe that the bound AC) 1/(n - 1) is tight, and is achievable by going to pro-

gressively higher dimensional equivalents of the (10,3)-b lattice for the logical graph,

since the logical graph's local topology increasingly resembles that of the Bethe Lat-

tice while retaining the renormalizability of its bond-percolated instance for any finite

dimension. But a rigorous proof of the above and a fully-specified construction of the

achievability of the 1/(n - 1) threshold for universal QC is beyond the scope of this

thesis.

Using similar reasoning, it is also possible to show that starting with N micro-

clusters of size n and using any sequence of m-node (destructive) fusion operations,

the fusion success probability threshold required to obtain a component of O(N) un-

measured photons satisfies A."'") 1/ [(n - 1)(m - 1)]. Very little is known about

linear-optical fusion of more than two photons at once and their associated success

probabilities. Therefore, it is unclear whether the above lower bound on AC"'") is

tight.

3.4.3 Formal proof of Converse

A graph G = (V, E) is a collection of vertices V and edges E with each vertex having

a color property that is a whole number. Two vertices in a graph are said to be

connected if there are a path connecting them. LCC(G) is the number of vertices in

the largest connected component in G.
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We define a function G' = Fa(G, L, S) with n > 1 that has the following inputs:

G is the input graph, L = {u, w} is a set of two vertices in G and S E {0, 1}. L is a

valid input only if both u and w have nonzero color. G' is a graph that is identical to

G except for the following differences: 1) The colors of u and w are incremented by

one modulo n+1, 2) If S = 1 and u / w, then an edge is introduced between u and w.

We use F,(G, L, 5) with input lists L {L 1, L... , Lk} and S= {S1, S2, ... , Sk} as

shorthand for Fn(.. . Fn(Fn(G, L 1, Sj), L 2 , S2),.. .), Lk, Sk). Based on this definition

of Fn(G, L, 5), if all vertices in G have color 1, L is a valid list if and only if every

vertex appears no more than n times in L

We now define a class of functions that we call "destructive two node fusion". A

"destructive two node fusion" is a function of the form G' = D(G, L, S) where G is

the input graph, L = {u, w} is a set of two vertices in G and S E {0, 1}. G' is the

output graph which has the same set of vertices as G but different vertex colorings

and a different set of edges. L is a valid input only if both u and w have nonzero color

in G. U and W are the set of vertices in G connected to u and w respectively. The

function G' = D(G, L, S) is a "destructive two node fusion" if and only if it follows

the following rules: Rule 1 In G', u and w have color 0 and no edges attached to them.

Rule 2 If vertex a UUW was not connected to a vertex b in G, a and b should remain

unconnected in G'. Rule 3 For S = 0 and U 5 W, every vertex is U is disconnected

from every vertex in W. As in the case for Fn, D(G, L, 5) with L {L1, L2 ,... , Lk}

and S {S1, S 2 , .. . , Sk} is shorthand for D(.. . D(D(G, L 1, Si), L 2 , S2 ), . . .), Lk, Sk).

It should be noted that a set of valid inputs G, L, S to D(G, L, S) is always a valid

input to F (G, L, 5) as well. Also, note that F, is not in the class of "destructive two

node fusion".

Lemma 1 LCC(F(G, L, 5)) > LCC(D(G, L, 5)) for any "destructive two node

fusion" D and any set of valid inputs to D.

Proof: Consider 2 graphs Gi and G with the same vertices and vertex colorings.

Connectivity between any two vertices in Gi implies connectivity between the same

vertices in Gj. u and w are vertices in G, G and U and W are the set of vertices in

Gi connected to u and w respectively. D is a "destructive two node fusion". If u and
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w are connected in GD= D(Gi, {a, b}, S), either u and w are connected in Gi or (S =

1)&((a E U&b E W) V (a E W&b E U)). If u and w are connected in G, they must

be connected in GF= F1 (Gj, {a, b}, S) since connectivity in Gi implies connectivity

in G and F does not remove edges. If (S = 1)&((a E U&b E W) V (a E W&b E U)),

there is an edge between a vertex of U and a vertex of W in GF which implies that u

and w are connected. Therefore, connectivity of u and w in GD implies connectivity

of u and w in GF.

Consider a graph G with two vertices u, w. Using the result of the previous

paragraph with Gi = Gj = G, connectivity of u, w in GD1 = D(G, Lo, So) implies

connectivity of u, w in GF1 = F1 (G, Lo, So). Using the result from the previous

paragraph again with G = GD1 and G = GF1, connectivity of u, w in GD2 =

D(GD1, L 1, Si) implies connectivity of u, w in GF2= Fl(GF1, L1, S1 ). By repeating

this process with lists L (L 1, L 2,.... Lk) and S = (Si, S2 ,... , ) if two vertices

are connected in D(G, L, S), they are connected in F1 (G, L, S). This leads to Lemma

1.

Go is a graph composed of nN vertices which are labelled as vim with 1 E

1, 2, .. , N and m E {1, 2, ... , n}. Two vertices vim and Vlm, are unconnected if

1 5 1'. We define Ck as the set of all vertices of the form Vkm with m E {1, 2, ... n}.

Hence, Go is composed of N isolated clusters labelled as C1, C2....., CN. All vertices

of Go have color 1. Note that two vertices in the same cluster may or may not be

connected but vertices in different clusters are unconnected.

G1 is a graph that consists of N vertices labelled as v, with 1 E {1, 2, ... , N}.

Every vertex Vk of G1 maps to cluster Ck in Go. There are no edges in G 1. All

vertices of G1 have color 1.

Lo is a list that is valid as input to F1 (GO, Lo, S). This requires that every vertex

appears no more than once in Lo. L1 (Lo) maps the list Lo, which contains vertices

from Go to a list that contains vertices in G1 by removing the second subscript in

every vertex e.g. if Lo = ({v 1 , v22 }, {v 12 , v31 }, .. .), L1 (Lo) = ({v 1 , v 2 }, {v1 ,v3 },..

Lemma 2: nLCC(F (G1, Li(Lo), S)) > LCC(F(GO, Lo, S)) for any valid list Lo.

Proof: For LO to be a valid input to F (Go, Lo, S), every vertex appears at most
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once in it. n vertices from Go in Lo map to 1 vertex from G, in Li(LO). Hence, every

vertex appears at most n times in Li(LO) and therefore L1 (Lo) is a valid input to

Fn(G I1, i(LO), S).

If two vertices from different clusters Ca and COb in F (Go, Lo, S) are connected,

there must exist at least one element Lok {Val, Vbl } in LO with the corresponding

entry in S, Sk = 1. l, m E 1, 2, ... , n. Hence the corresponding entry in Li(Lo) must

have the form Lik {Va, vb} with Sk = 1. Therefore, if two vertices in two different

clusters Ca and COb are connected in F (GO, Lo, S), the corresponding vertices Va and

Vb in Fn(G1, 1 (Lo), S) are connected.

Suppose that the largest connected component of F1 (Go, Lo, S) contains ver-

tices from k different clusters. Since the size of every cluster is n, this implies

that LCC(F(Go, Lo, S)) < nk with the equality holding if any two vertices within

the same cluster are connected. From the previous paragraph, if any vertex in

F1 (Go, Lo, S) is a part of the largest connected component, the corresponding ver-

tex in Fn(G1 , L 1 (Lo), S) will be part of the largest connected component. Hence,

LCC(Fn(G1, L1 (Lo)) =k. Therefore, nLCC(Fn(G1, L1 (Lo))) = nk > LCC(F(Go,Lo, ))
and we obtain Lemma 2.

Assume that L2 , a list of node pairs from G1 is a valid input to Fn(G 1, L2 , S).

Lemma 3 For A < 1/(n - 1), LCC(Fn(G1 , L2, (A))) = o(N) for any valid list L 2

where S(A) is a probabilistic function that returns a string of bits of the same size as

the number of elements in L2 . Each entry of S(A) is independently chosen as 1 with

probability A and 0 with probability 1 - A.

Proof: The graph Fn(G1 , L 2 , S(A)) contains an edge between two vertices Va and vb

if and only if {Va, Vb} if an element of L 2 and the corresponding bit in S(A) is 1. Since

the entries of (A) are chosen independently as 1 with probability A, F&(G1 , L 2 , (A))

represents an instance of bond percolation with bond probability A over the set of

vertices in G1 with the set of attempted edges defined by the elements of L2 . For

L2 to be a valid list, a vertex can appear in L 2 no more than n times which implies

that the attempted graph of this bond percolation instance has maximum degree n.

For bond percolation on a graph with maximum degree n, if the bond probability is
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less than 1/(n - 1), with high probability, the largest connected component is of size

o(N). This proves Lemma 3.

From Lemma 1, LCC(D(GoLo,LS(A))) LCC(F(Go,Lo,S(A))) for any "de-

structive two node fusion" D. This implies, from Lemma 2 that LCC(D(Go, Lo, S(A)))

LCC(F(Go, Lo, S(A))) nLCC(F,(GI, L,(Lo), S(A))) where Go, G1, Lo and L,(Lo)

are described in the lead-up to Lemma 2. From Lemma 3, LCC(Fe(Gi, L,(Lo), S(A)))

= o(N) if A < 1/(n - 1), we obtain the following theorem.

Theorem 1 Starting with N isolated clusters of n vertices each where n is finite,

the size of the largest connected component obtained from any set of attempted

"destructive two-node fusions" that succeed with probability A is o(N) for A < 1/(n -

1).

3.4.4 Photon loss

In this section, we present a lower bound on the percolation threshold AC() in the pres-

ence of photon loss. Our results suggest that in the presence of loss, there may be an

optimum size of the input microclusters that achieves the lowest fusion success proba-

bility necessary for achieving percolation, and hence allows for the greatest tolerance

to photon loss. We use a loss model inspired by a recently proposed method to produce

photonic microclusters using quantum dot emitters [70, 71], a variant of which has also

been proposed for nitrogen vacancy (NV) centers in diamond 1831. In this method, a

quantum dot-confined electron is replaced by a confined dark exciton and this dark

exciton subsequently interacts with a series of single photons that are initially un-

entangled. Using such interactions, the creation of an n photon microcluster in the

line lattice graph state involves n entangling operations. We assume that each pho-

ton produced by the source experiences the same transmissivity r1j with no < 1, and

that detector and waveguide losses are lumped into the parameter 7o. The rationale

behind this stems from the assumption that the exciton loss acts independently on

each photon and that the entire microcluster needs to be produced at the same time:

the transmissivity experienced by the kth photon, Tl citon veguide with

T7o = max(77exciton, ?lwaveguide) and r = min(77exciton, ?7waveguide)/max(lexciton, ?7waveguide).
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Since r < 1, m 70, Vk = 1, ... , n. Therefore assuming that each photon in the

n-photon microcluster experiences identical transmissivity o is an optimistic model

which leads to a higher inferred graph connectivity in the post-fusion cluster com-

pared to the true connectivity. Since we are seeking a lower bound on Ac, this is

acceptable.

In the absence of any photon loss, starting with N entangled microclusters of n

photons each, the minimum value of two-photon fusion success probability necessary

to obtain an O(N) photon connected component satisfies the lower bound A, ;>

1/(n - 1), which if our conjecture explained above is true is also sufficient (achievable)

for percolation. In the presence of photon loss, the above lower bound on Ac remains

a valid, yet trivial, lower bound. We would like a non-trivial lower bound on Ac that

is a function of lo and n, such that the lower bound increases with decreasing 17o.

Let us say the success probability of a two-photon fusion operation is A. As

discussed above, there are two types of photons, ones that are measured in fusion

attempts and ones that are not. The latter type of photons constitute the renormal-

izable percolated giant component when A > A,. In the presence of losses, both types

of photons undergo loss. Loss of a photon that was measured in a (destructive) fusion

attempt is detected, since the number of expected detector clicks at the output of the

linear-optical circuit for fusion is lower than that is expected. On the other hand,

the loss of the unmeasured photons cannot be detected (assuming we do not have

access to a quantum non-demolition measurement). This results in the post-fusion

cluster to be in a mixed state, a probabilistic mixture of all possible combinations

of the unmeasured photons being lost or not. It is not known whether such a mixed

state cluster (i.e., without the knowledge of which of the unmeasured photons were

lost)-even if percolated-can be renormalized into a logical lattice or not, unless each

photon (qubit) in the model considered in this chapter is replaced by a loss-protected

logical qubit, e.g., a tree qubit 1571. However, since we are seeking a lower bound

on Ac, we only need to consider a pure graph state that is more connected that the

true post-fusion cluster. The simplest way to do so is to pick the post-fusion cluster

state where none of the unmeasured photons were lost. With these assumptions, each
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Figure 3-11: (a) A loss-dependent lower bound ACLB) on the critical fusion probability
A, as a function of the input microcluster size n for different values of rio; (b) a loss-

dependent lower bound (LB) on the critical loss parameter qo as a function of n for
different values of fusion success probability A.

fusion (a bond in the logical graph) succeeds with probability A, 9I". Therefore, fol-

lowing the arguments in Section 3.4.2, if A < 1/ [(n - 1)172], the post-fusion cluster

state cannot have a connected component with O(N) unmeasured photons. Hence,

we have the following loss-dependent lower bound: A, 2 1/ [(n - 1)71"] = AcL. This

lower bound is plotted in Fig. 3-11(a) for different values of o. We find that while

increasing the size of the input microclusters n in the lossless case (71o = 1) always

results in a reduction in the necessary fusion success probability for percolation, in

the presence of finite losses (rio < 1), there is an optimum value of n that gives the

minimum fusion probability. For example, for 7o = 0.9, n = 6 sized microclusters

yield the lowest necessary fusion success probability threshold for percolation.

Conversely, for a given fusion success probability A, there exists a threshold qoc,

s.t., if no < qoc, the post-fusion cluster cannot be percolated. We thus have a lower

bound qc > (LB), where B) = [/A(n - 1)]1/(2n). In Fig. 3-11(b), we plot (LB) for

different values of n, for A = 0.75 and A = 1. There is an optimum value of n which

gives the best loss tolerance, e.g., for A = 0.75, six photon microclusters gives the best

loss tolerance of (LB) - 0.8957 which corresponds to a loss of 48.36% seen by each

photon. Furthermore, we find that going from A = 0.75, which is attainable using four

single ancilla photons and (lossless) linear optics [36] to deterministic fusion (A = 1),
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%,B) only decreases slightly, i.e., the equivalent per-photon loss threshold increases

from 0.896 to 0.871. Hence, when losses are accounted for in ballistic cluster state

creation, the advantage in having a fully deterministic fusion may be relatively small.

Finally, it may be possible to get a tighter lower bound on A, by using a more

sophisticated loss model. For example, the assumption that the exciton loss acts in-

dependently on each photon is not entirely accurate, resulting in positively-correlated

bonds within the microclusters. Further, the assumption we made about all unmea-

sured photon not being lost may affect the tightness of the lower bound. However,

this last assumption may not have been that ominous, considering our conjectured

tightness of the lower bound A, A(LB) = 1/(n - 1) in the lossless case (rIo = 1) was

based on a construction where the fraction of photons a in the logical graph that are

left unmeasured goes towards zero.

What we leave unaddressed in this section, are constructive solutions for ballistic

photonic quantum computing, or achievability results (i.e., upper bounds on A, for a

given qo or upper bonds on ?loc for a given A) in the presence of photon loss. This

will require one to determine how to construct a loss-error-corrected logical lattice

fully ballistically (perhaps using tree error correction but with randomly-grown trees)

the percolated instance of which can be provably renormalized into a logical cluster

state, every node of which is an appropriately loss-protected photonic qubit. In recent

work [4, 84J, Gimeno-Segovia estimated loss tolerance of ballistic creation of certain

percolated lattices by a strategy where one measures all the neighbors of lost photons

in the Z basis. This method also accounts for losses in the photons undergoing fusion

operations but not in the photons that remain unmeasured, thereby also not proving

achievability results in the presence of photon loss. This is an important question that

must be addressed systematically not only for photon loss, but for other forms of qubit

error models specific to linear-optical qubits such as mode mismatch and detector dark

clicks, for this scheme to become a practically feasible solution to scalable quantum

computing.
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3.5 Conclusions and open problems

In this chapter, we analyzed fundamental thresholds on the success probability of

two-photon linear optical fusion operations for preparing large renormalizable pho-

tonic clusters for universal cluster-model quantum computing. We introduced a new

percolation framework to study this problem, based on which we developed new con-

structions with improved thresholds and geometric properties over known results,

and found fundamental bounds on the thresholds. We also discussed how losses-

inline losses and losses at sources and detectors-affect the bounds on the percolation

threshold, using loss models inspired from a recently-proposed method to produce

photonic microclusters using quantum dots.

Many interesting open questions remain. One major fundamental open question is

the minimum overhead required (i.e., number of physical photons in a logical qubit)

to error correct for a given amount of loss rate on each physical photon. There

has been considerable research to date on quantum error correction to tackle optical

loss. This includes the work on tree codes 57, 56, 2] and surface codes 185]. The

percolation approach discussed in this chapter is another way to code for optical loss,

but as discussed in the previous section, more work needs to be done to design fully

ballistic (feedback-free) constructions for renormalizing an error-free logical cluster for

quantum computing. One way to do this would be to replace each physical photon

in the construction discussed in this chapter by loss-protected photonic qubits, e.g.,

using tree clusters.

Furthermore, a big practical challenge in making scalable photonic quantum com-

puting feasible is to develop error correction techniques to correct other (non loss) er-

rors, the two most important being mode-mismatch errors and multi-photon events-

both in the sources as well as in the detectors (i.e., dark clicks). The whole construc-

tion described here relies on a perfect interferometer processing many pairs of identical

photons [17, 86, 87]. Mode mismatch can be caused due to the interfering photons

not being in identical modes, or small errors and deviations in the splitting ratios of

beamsplitters and phase errors. Our work reinforces the message from the recent work
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of Rudolph and colleagues, that sources that can directly generate entangled clusters

of a small number of photons would be a very valuable resource, and developing new

ideas and designs of such photonic sources would be an extremely worthwhile pursuit.
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Chapter 4

Percolation based architecture for

cluster state quantum computation

using photon-mediated entanglement

between atomic memories

4.1 Introduction

The past years have seen rapid advances in controlling small groups of qubits encoded

in atomic or atom-like quantum memories. An important question now concerns the

development of architectures to efficiently combine these memories into large-scale

systems capable of general-purpose quantum computing [88, 89, 90, 91], quantum

simulation [92, 93], and measurement near the quantum limit [94]. A promising

approach is entangling the atomic qubits with optical links to generate cluster states.

Cluster states with adaptive measurements can perform general-purpose quantum

computing [1]. A key challenge is to produce this cluster state fast enough to allow

the one-way quantum computing and error correction within the finite coherence

time of the memory. Large entangled states of this type also serve as resources for

other quantum information processing applications, including quantum simulation
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and quantum precision measurements.

Here, we show that percolation of heralded entanglement allows us to create ar-

bitrarily large cluster states. This process is fast enough for implementation with

device parameters that have been demonstrated; one does not need high cooper-

ativity cavities, ancilla single photons, or time-consuming feed-forward operations.

Furthermore, as opposed to previous schemes, we do not require error correction to

account for missing bonds, and instead use renormalization [63, 4, 65] which can

be done with constant overhead [95] if the bond probability exceeds the percolation

threshold. The percolation approach also provides tolerance for site imperfections

in several different lattice architectures. When combined with our novel transpar-

ent node architecture that allows long range connections, a further reduction in the

percolation threshold can be achieved. We also found a theoretical limit of the perco-

lation threshold across different geometries and found that our proposed geometries

are within a factor 1.6 of the limit. Our approach applies to a number of leading

physical qubit syqems, including atomic gases [96, 971, ion traps [98], semiconductor

quantum dots [99, 100, 101], or rare earth ions [102], though for clarity, we focus here

on nitrogen vacancy (NV) centers in diamond [103, 1041.

NV centers in diamond have many properties that make them favorable as a

quantum memories. The NV- charge state has a robust optical transition for heralded

entanglement between distant NV centers [105, 1061 and a long electronic spin (S=1)

coherence time [107] for high-fidelity qubit operations. Recently, single qubit gates

with fidelities up to 99% were achieved with optimal control techniques [108, 109]. NV

centers can be coupled with nearby nuclear spins [110], which have coherence times

exceeding one second even at room temperature [1111. The electronic spin state can

be transferred to the nuclear spin, and measurement of nuclear spin with high fidelity

is possible by repetitive measurement of the electron spin [1121. In addition, the

memories are solid state and can be coupled with integrated photonic devices [113]

making it a promising platform for large scale quantum computation.

Fig. 4-1 illustrates the percolation approach to cluster state generation with quan-

tum memories. We work in the framework of cluster states where nodes represent
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Figure 4-1: Cluster state generation by percolation. (a),(b) Transition in the size of
the largest connected component (LCC) with increasing bond probability. Spheres
and lines represent nodes and bonds respectively, and the red spheres represent the
LCC. When the bond probability (p) goes above the percolation threshold (pc), the
size of the LCC suddenly increases and the cluster changes from being classically
simulable to a resource for universal quantum computation. (c) Expanded view of
(a). (d) Physical implementation of nodes and bonds with NV centers in diamond. ()
Probabilistic Bell measurement (Barret-Kok protocol) is attempted on two nearest-
neighbor broker qubits (electronic spins, blue spheres). ( Conditioned on one photon
detection events, the two broker qubits are entangled onto a Bell state. @ Hyperfine
interaction between electronic spins and nuclear spins (client qubits, "N) mediates
controlled-Z gates. @ X-basis measurement of electronic spins projects nuclear spins
into an entangled state heralded by the measurement results (entanglement swapping)

qubits in the state (10) + 1))/v'2 and edges/bonds represent controlled-Z (CZ) gates

between neighboring nodes. Consider a square lattice where every edge exists with

probability p as shown in Fig. 4-1 (a)-(c). The computational power of such a system is

related to the size of the largest connected component (LCC) in the cluster (shown in

red). When p < 0.5, the clusters form small disconnected islands. In this regime, for

a lattice with N nodes, the size of the LCC is O(log(N)) [114]. Local measurements

on such a lattice can be efficiently simulated classically and hence, the resource is not

sufficient for quantum computing [64]. When the bond probability exceeds 0.5 there
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is a sudden transition in the size of the LCC: the number of nodes in the LCC is now

O(N). This is accompanied by a sudden transition in computational power; single

qubit adaptive measurements on this cluster have the power of universal quantum

computing [951. The bond probability pc at which the transition takes place is called

the percolation threshold. Square, triangular and hexagonal lattice clusters above

the percolation threshold are resources for universal quantum computation [63, 95],

although there are examples of other lattices for which this is not true e.g. Bethe

lattice clusters are not resources for universal quantum computation [791.

4.2 Creating photonic entanglement

Figure 4-1(d) shows the physical implementation of the link creation with NVs. The

nuclear spins (red spheres) function as "client qubits" that store entanglement. They

are coupled to the NV electronic spins - "broker qubits" - that are entangled re-

motely by Bell measurements mediated by photons. In each time step, we attempt to

create one edge (entanglement) at each node by heralded entanglement mediated by

photons. To be specific, we consider the Barret-Kok entanglement protocol [115] on

the broker qubits of neighboring nodes/sites. If the probabilistic Bell measurement

succeeds, the electron spins of the corresponding NVs are entangled. This entangle-

ment is then transferred to the nuclear spin with an entanglement swapping procedure,

as illustrated in Fig. 4-1(f) and described in detail in section 4.2.1 and Ref. [881. If

the Bell measurement fails, we wait for the nuclear spin and electronic spin to be

decoupled, which happens after a time period of the hyperfine interaction, to avoid

nuclear spin dephasing. The whole cycle from initialization to entanglement swapping

takes approximately to = 5 s based on recent experimental demonstrations [1061.

The Barret-Kok protocol to generate entanglement is advantageous because it does

not require ancilla single-photons or high cooperativity cavities. Furthermore, photon

loss in this scheme does not degrade fidelity, which is critical to the error correction

overhead. This increased fidelity comes at the price of low bond success probability

(detailed in Table 4.1) which is a problem for conventional architectures. This can be
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overcome in our percolation based architecture. However, the imperfect/raw cluster

produced in the percolation approach proposed here will need additional renormaliza-

tion, which can be done with a constant overhead [95]. This point will be discussed

in the conclusion in more detail.

The bond lengths could practically be very short, on the order of tens of microns,

so that the entire cluster may be integrated on a chip, as illustrated in Fig. 4-3. Each

node in the architecture requires an atomic memory and a 1 x d switch, where d is

the degree of the lattice being attempted (4 for the square lattice). Each edge in the

lattice requires waveguides between the nodes, a beam-splitter, and two detectors to

implement the Bell measurement.

At each time step in the operation of the system, each atomic memory generates a

photon entangled with the electron spin that is routed towards one of the d neighbors

for the Bell measurement, so that for natt time steps for entanglement generation,

entanglement with each of the d neighbors of a node is attempted natt/d times. It

is important to synchronize neighboring switches such that both photons required to

attempt an edge arrive at the same time. For the hexagonal (d = 3), square (d = 4)

and triangular (d = 6) lattices, synchronization is straightforward. Each switch only

needs to be flipped d -1 times during entanglement creation, and hence the switching

time is negligible, since electro-optic modulators can switch at sub-ns time-scales and

the entanglement generation time varies from - 0.1 ms to - 100 ms, depending on

the coupling scheme.

4.2.1 Probabilistic Bell Measurement for broker qubit entan-

glement

Broker qubits (electronic spin of NV centers) are entangled through Bell measurement

(Barret-Kok protocol [115]), as used in [105]. The detailed pulse sequence is described

in Fig. 4-2. First, 7r/2-pulses are applied to both broker qubits. These pulses should be

strong enough to drive both hyperfine levels by power broadening, and are represented

in light blue, in contrast to the selective pulses denoted in dark blue. An optical 7r-
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Figure 4-2: Pulse sequence for the broker qubit entanglement procedure.

Table 4.1: Performance metrics for different collection schemes

Collection Bullseye Waveguide Cavity
Bond success prob. po 5 x 10-5 2 x 10- 4  5 x 10-2
Bond trial time to 1 ps 5 ps 5 ps
Detector jitter 5 - 10ps 5 - 10ps 5 - 10ps
Spectral diffusion x x
Readout time 4ps 800 ns 400 ns
Demonstration Achieved Achievable Long-term

pulse then reads the states of both spins. Emitted single-photons from the the two

electronic spins are then detected after passing through a 50/50 beam-splitter as

shown in Fig. 1(d). The beam splitter erases the information of which emitter the

detected photon comes from. As a result, a one-photon detection event projects the

two spin states into either I)+) or 1,0-) depending on which which detector fired.

However, photon loss can cause a two-photon generation event, where the state of the

emitters is projected onto 100), to be misinterpreted as a one-photon detection event.

In order to overcome this issue, we apply microwave 7r pulses to each broker qubits.

If the emitter was originally projected onto 100), this operation changes the emitter
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state into 11). Emission from the two electronic spins is again detected after passing

a 50/50 beam splitter. In the case of the desired 10+) or IV-) state and no photon

loss, a one-photon detection event is registered. The unwanted 111) state or photon

loss leads to no photon detection which we treat as a failed entanglement attempt.

Overall, one-photon detection events in both steps makes sure that the two broker

qubits are in either IV+) or 10-).

The success probability of the the broker qubit entangling operation p is deter-

mined by the photon collection efficiency r: p = Pr 2 [1151. The entanglement prob-

ability per attempt is low, but success results in high-fidelity entangled states. This

trade-off between success probability and fidelity makes this protocol appealing for

our percolation-based architecture.

Indistinguishability of photons serves a critical role in Bell measurement. Thus,

the wavepackets of the two photons should be perfectly overlapped in the time do-

main. However, two photons from different emitters should also be overlapped in the

frequency domain. In the next paragraphs, we will investigate methods for overcom-

ing two types of frequency mismatch [116]: static mismatch and dynamic mismatch.

Static mismatch results from the inhomogenous distribution of the ZPL of NVs,

typically caused by local strain. This results in two nearby NVs being detuned upto

~ 5 GHz [1051. A common misconception is that photon-mediated entanglement

of two emitters requires that photons from the two emitters have exactly the same

frequency. However, this may not be the case if the timing resolution of the pho-

todetectors is much smaller than the inverse of the frequency difference between the

emitters [116]. After detection, the photons are projected onto a narrow temporal

wavepacket that depends on the detector jitter. This broadens the distribution in

the frequency domain increasing indistinguishability. In other words, the phase dif-

ference originating from the difference in photon energy is heralded by the detection

time [1161, and can be corrected. In this work, a timing resolution of 5 ~ 10 pi-

coseconds is assumed, which has been demonstrated with superconducting nanowire

single photon detectors (SNSPD) [1171. This detector can be both free-space coupled

and waveguide-integrated. This detector resolution can easily handle ~ 5 GHz static
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mismatching. Alternatively, DC Stark shift can be used to match the ZPL frequency

of two NVs [118, 105, 1191.

Dynamic mismatch is the frequency mismatch originates from fluctuations in the

time between different measurements. In contrast to static mismatch, one cannot

unwind the phase difference due to dynamic mismatch with good timing resolution

detectors, because the frequency difference is unknown. In the case of emitters, this

spectral diffusion usually arises from the charge environment of etched surfaces of the

nanostructures. As shown in Table 4.1, we have assumed that waveguide structures,

in which an etched surface is a few hundred nanometers away from the emitter, do

not produce spectral diffusion, while in cavity structures, etched surfaces that are

only tens of nanometers from an emitter do.

Spectral diffusion can be mitigated by the Purcell effect. As analyzed in [1161, the

Purcell effect makes the emitter decay faster, so that the effects of spectral diffusion

are minimized. A free space lifetime of ~ 10 nsec can tolerate - 100 MHz spectral

diffusion. If we assume C - 1, the lifetime is reduced by half which can tolerate

~ 200 MHz spectral diffusion.

Chemical surface treatment, such as high temperature annealing [120], for reduc-

ing spectral diffusion is an area of active research. Spectral diffusion of ~1 GHz has

been observed in NVs near the surface [121, 122]. We expect a rapid advance in this

direction to reduce spectral diffusion under 200 MHz.

Alternatively, we could time-gate the photo-detection by post selection, to fill this

gap (~ 200 MHz vs - 1 GHz) e.g. we could only count single-photon detection events

that occur within ~ 1 / 5th of the lifetime as successes and discard the rest. This will

reduce the unknown phase evolution by a factor of 5. Although this will reduce

collection efficiency by 80 %, we can still achieve percolation within the coherence

time of the nuclear spin.

4.2.2 Entanglement swapping procedure

When entanglement between electronic spins is successful, the entanglement is trans-

ferred to the nuclear spin of NV centers (1 5N), with a controlled-phase (CZ) gate

122



followed by X basis measurement [88]. In this way, one can make use of the long

coherence time of the nuclear spin with the spin-photon interface of the electronic

spin.

Physically, the CZ gate is implemented with a timed-hyperfine interaction with

Alir = ir, where T is the hyperfine interaction time. Since neighboring nodes should

be synchronized, the "N (All = 3.3 MHz) nuclear spin is used instead of 13C, because

the 13C nuclear spin is coupled to the electronic spin with a random strength. "NV

can be produced by implantation [1231, and its position can be controlled within 10

nm f1241, which is desirable for integration with photonic circuits.

If the probabilistic electronic spin entanglement fails, the next electronic spin

entanglement is attempted when Alir = 2nir, where n is an integer, to ensure that

the electronic spin is not entangled with the nuclear spin in the case of a failed

attempt.

Both electronic spin entanglement and the swapping procedure heralds the exact

state of the cluster. Since the heralded state only differs by local Cliffords, they can

be compensated in the adaptive measurement steps in the actual computation.

4.2.3 Details on the timing of entangling operation

The detailed pulse sequence for the whole procedure is described in fig. 4-2. The

charge state is prepared with yellow laser resonant excitation of the NV0 ZPL, to

minimizing spectral diffusion 11201. The electronic spin state is then initialized

to im = 0), by resonantly driving im = +1) state through the Al optical transi-

tion [116]. Alternatively, readout with a conditional 7r/2 pulse can be used. "N

nuclear spin can be initialized to Imi = +1/2), by swapping the nuclear spin with

the electronic spin with a nuclear spin conditioned-electronic spin ir pulse and elec-

tronic spin conditioned-nuclear spin 7r pulse, and electronic spin initialization. I+), =

(mi = +}) + IM = -1))/v/2 is then prepared by an electronic spin 7r pulse, nuclear

spin 7r/2 pulse and electronic spin 7r pulse. This whole initialization process is tried

only once at the very beginning of the cluster state generation. We assume that all

the resonance frequencies are pre-characterized, so that there are negligible errors in
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the driving.

As specified in the preceding sections, electronic spin entanglement is attempted by

two Bell measurements. When the electronic spin entanglement fails, the subsequent

electronic spin entanglement attempt should be delayed by r = 2nm/A11, where n is an

integer to prevent entanglement of the nuclear and electronic spin. When electronic

spin entanglement is successful, the electronic entanglement is swapped to the nuclear

spin, the electronic spin is initialized with a conditional 7 pulse to prevent further

hyperfine interaction.

Most of the time, the Bell measurement fails because of low collection efficiency.

In this case, electronic spin states are measured and initialized by a conditional optical

7r pulse. It cannot be directly initialized, as with the very first initialization, because

the hyperfine interaction is always on, when electronic spin is non-zero. Therefore,

only when the nuclear spin is disentangled with the electronic spin, i.e' = 2mr/A1 ,

where m is an integer, spins are flipped by a timed-ir-pulse.

In this work, we assumed that two-photon absorption is small enough so that

we can ignore charge state conversion, or can account for it with error correction.

However, this can be also overcome by (1) reducing resonant laser power and using a

weaker pulse, or (2) a timed pulse sequence that can initialize the charge state, while

decoupling NV0 electronic spin with nuclear spins. This can be done by resonant

yellow laser driving and 1064 nm pumping [125, 126] when r" = 2lr/A'1 , where

At = 35.7 MHz, 1 is an integer. This procedure needs repetition because unlike the

resonant excitation, pumping electrons from valence bands is probabilistic.

4.2.4 Collection efficiency and entanglement success probabil-

ity

The probability of successfully heralding the entanglement of two NV centers is po =

772 /2 [115], where q is the efficiency of emitting, transmitting, and detecting the photon

entangled with the electronic spin (zero phonon line, ZPL) from the NV excited state.

Table 4.1 summarizes po for three representative types of NV-photon interfaces: low-
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efficiency interfaces with po = 5 x 10-5 representative of today's state of the art

circular gratings or solid immersion lenses (SILs) [127, 106, 128]), medium-efficiency

interfaces with po = 2 x 10-4 for NV centers coupled to diamond waveguides [129, 1131,

and high-efficiency po = 5 x 10-2 for nanocavity-coupled NV centers [130j. For all

three coupling mechanisms, we assumed coupling efficiencies that are realistic today,

which is discussed in detail below. After nratt/d entanglement attempts with a nearest

neighbor, the probability of having generated a bond is p = 1 - (1 - po)fatt/d.

The single-photons to be used for entanglement should be spectrally located in

the zero phonon line (ZPL). The Debye-Waller factor, the ratio of ZPL emission rate

to the total decay rate of the NV center varies from 3 ~ 5% [1051. Here, we will use a

conservative number: 3%. In addition to the low fraction of emission in the ZPL, dia-

monds suffers from low photon collection efficiency because of total internal reflection

caused by the high refractive index of diamond. To overcome these issues, various

nanophotonic structures for coupling to free space or photonic integrated circuits have

been proposed. Here, we consider three collection schemes: free space collection with

bullseye grating or solid immersion lens (SIL) [127], waveguide collection [113], and

high-cooperativity cavity collection [1301.

The Bullseye grating is a circular grating that maximizes free space coupling by

interference. Record count rates (~ 2.7x 106) have been reported with such structures,

and simulations have shown 30% collection efficiency at the ZPL wavelength. For

shallow NV centers within 10 nm from the surface, ~-'-' 90% collection efficiency

has been estimated. However, we will assume a more conservative number of - 30%

collection efficiency, which results in a ZPL photon collection efficiency of 1%.

Collection of photons from solid state emitters into waveguides coupled with pho-

tonic integrated circuits has been successfully demonstrated [131, 113]. These collec-

tion schemes are more scalable because single photon detectors, filters and beam split-

ters can be implemented on-chip. In addition, the well-confined optical field makes

near unity detection efficiency possible with superconducting nanowire single-photon

detectors (SNSPDs) as demonstrated in [132]. For NV centers, a hybrid approach

with silicon nitride (SiN) waveguides successfully showed that the coupling efficiency
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can be upto 83%. In this work, a diamond waveguide is picked and placed on a SiN

waveguide [1131. Considering the errors in this process, we assumed a conservative

photon collection efficiency of - 66% including detection efficiency.

Lastly, photonic cavities can re-distribute the spectrum of emitted photons, ex-

tract them out of the emitter and direct them into the waveguide. When the cavity

is tuned to the ZPL wavelength, the Purcell effect enhances emission into the ZPL,

resulting in higher conversion efficiency from emitter excitation to ZPL photon. This

coherent interaction between the cavity and emitter has been successfully demon-

strated in many platforms, and is an area of active research [130, 131, 133, 1341. We

used a number for cooperativity already demonstrated in ref. [130]: C ~ 1. In this

paper, a 1-dimensional photonic crystal cavity, which is a natural design for coupling

light into a waveguide, was used. By removing a few holes in the Bragg reflector,

one can direct photons from the cavity into the waveguide. Including this conversion

efficiency, 32% overall collection efficiency is assumed in this chapter.

Table 4.2: ZPL Collection efficiencies of different schemes
Collection Bullseye grating (or SIL) Waveguide Cavity
ZPL Enhancement x x ~33
Fraction of Emission in the ZPL (%) 3 3 50
Photon Collection Efficiency (%) 33 66 64
ZPL Collection Efficiency (%) 1 2 32

4.3 Percolation threshold

We performed simulations using the Newman-Ziff algorithm [77] with 9 million nodes

to evaluate the growth of the clusters, based on the entanglement success probabil-

ity per attempt. Fig. 4-4(a) plots the fraction of nodes that are within the largest

cluster component (fLcc), as a function of time from the start of the protocol for

the three values of po, assuming to = 5 s. In Fig. 4-4(a), the underlying geometry

is a square lattice. The lines represent different Bell measurement success proba-

bilities corresponding to the coupling mechanisms in Table 4.1. Initially, fLCC is

O(log(N)/N) [114] where N is the total number of nodes in the lattice. As the
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Figure 4-3: Physical implementation of the proposed architecture. A unit cell consists
of an atomic memory, a 1 x 4 switch, waveguides and 4 single-photon detectors. Single-
photons emitted from the atomic memory are coupled to the waveguide and directed
to the switch. The switch chooses one of the nearest-neighbor nodes to be entangled
with, and single-photons are interfered using a 50/50 beam-splitter. Single-photon
detectors detect interfered photon projecting electronic spins onto an entangled state.

bond success probability passes the bond percolation threshold (pc), fLcC rapidly

rises and becomes E(1). For a degree d lattice, the bond probability after time t is

p = 1 - (1 - po)t/tod. From this, we can calculate that the time required to obtain a

resource for universal quantum computation is t, = tod ln(1 - pc)/ ln(1 - po), which is

depicted with the vertical dashed lines in the figure. The transition becomes sharper

as the number of nodes in the lattice (N) increases.

In all three collection schemes, the bond success probability exceeds the percola-

tion threshold within 1 second, which is the experimentally demonstrated coherence

time of a nuclear spin coupled to the electronic spin of the NV [111]. These sim-

ulations reveal, surprisingly, that even with free space coupling without any ZPL

enhancement, an arbitrarily large cluster can be generated.

It is well known from percolation theory that higher connectivity between nodes

can reduce the percolation threshold. Does the time to exceed threshold (t,) change

significantly with the lattice degree d? As shown in Figure 4-4(b), which plots fLCC
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Figure 4-4: Size of the largest connected component vs time for (a) different values
of po, the probability of successful Bell measurement in one attempt and (b) different
underlying lattice geometries. A square lattice is used in (a) and po = 0.02 % is used
for (b).

for two additional lattice types, triangular (d = 6) and hexagonal (d = 3), t, is nearly

the same for the three lattice types. The reason is that increasing d lowers the bond

percolation threshold, but it also decreases the number of entanglement attempts

between NVs, which is natt/d. This is because a single broker qubit per NV requires

entanglement attempts to proceed serially. Increasing d would in fact substantially

lower t, if each site contained d broker qubits that could be entangled simultaneously.

4.4 Lower bound on the minimum time required

Let us consider the most general scenario of fully controllable connectivity in the

graph, i.e., we can attempt Bell measurements on any pair of NVs in a time step. What

is the minimum time, tcLB) (min(tc)), required to obtain a resource for universal quan-

tum computation, optimizing over all lattice geometries, if the bonds are attempted

without feed-forward? The bond probability after time t is p = 1 - (1 - po)t/tod.

For percolation, p pc i.e. tc dtoln(1 - pc)/ln(1 - po). For a degree d lattice,

pc 1/(d - 1) [81, 821, with equality for a degree d Bethe lattice. This leads to

tc dtoln(1 - 1/(d - 1))/ln(1 - po). te is minimized as d -+ oo in which case we ob-

tain tc LB = -to/ln(1 - po) which is the minimum possible time required to generate

a resource for universal quantum computing without feed-forward. tcL) is plotted

as a black dashed line in Fig. 4-4(b). The lattice corresponding to this threshold is

128



the infinite-dimensional, infinite-degree Bethe lattice. Such infinite degree lattices are

not a resource for universal quantum computing [79], yet, we find that the simple 2D

lattices with nearest neighbor connectivity we chose in Fig. 4-4 are only a factor 3

above this limit and are resources for universal quantum computing.

500 - -

400

hexagonal
.~ 200quare

triangular

100
lower bound

0
0.5 0.6 0.7 0.8 0.9 1

site yield

Figure 4-5: The minimum time required to obtain a percolated lattice with sub-unity
site-yield. po = 0.02%. The inset shows the bonds that can be attempted in a square
lattice if the sites marked with crosses are inactive

4.5 Faulty sites

For practical implementations, it is important to consider the effect of non-functional

sites (e.g., a far-detuned NV center or a missing trapped ion). Even if all faulty nodes

and their edges are removed, as illustrated in the Fig. 4-5 inset, the lattice can retain

enough bonds to give a percolated cluster. In this case, the problem maps to site-bond

percolation. This is quantified in Fig. 4-5 where we plot the minimum time required

to obtain a percolated cluster as a function of the site-yield (q), assuming NVs coupled

to diamond waveguides without a cavity (medium po = 0.02%). In general, a reduced

site-yield can be compensated with a larger bond probability which would require a

longer time (more attempts) to reach. While the hexagonal, square, and triangular

lattices have a similar threshold time t, when the site-yield is perfect, the tolerance to

imperfect site-yield is different. Following the trend of the site percolation threshold

(q), the triangular (qc = 0.5) performs better than the square lattice(qc ~ 0.593),
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which performs better than the hexagonal lattice (q, ~ 0.697). The site percolation

threshold corresponds to the minimum possible site-yield for percolation with all

bonds having succeeded (p = 1).
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Figure 4-6: (a) A more general architecture with switches replaced by MZI arrays
can allow for long-range entanglement as shown here (b) fLCC as a function of time
for different values of c. po = 0.02% is used here.

4.6 Transparent node architecture

The architecture that we have discussed thus far allows for only nearest neighbor

connections between atomic memories. In Fig. 4-6, we present a modified architec-

ture that can be used to make long range connections which can in turn decrease the

threshold time and increase tolerance to imperfect site yield. Furthermore the archi-

tecture reduces the required number of detectors by a factor of 4. In this architecture

(Fig. 4-6(a)), the 1 x 4 switch from Fig. 4-3 is replaced by a 5 x 5 beam-splitter array

with the input and output ports depicted with arrows in the unit cell. The 5 x 5 beam-

splitter array can be used to implement any linear optic unitary between the set of

input and output modes [66], and compact on-chip versions have been demonstrated

based on cascaded Mach-Zehnder interferometers (MZIs) 117]. The MZI arrays allow

us to make long range connections by turning nodes "transparent", entangling distant

nodes while maintaining a planar physical architecture.
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One way to use this more general architecture is to randomly turn a fraction 1 - C

of the nodes transparent as shown in the inset of Fig. 4-6(b). The resulting plot of

fLcc vs time with N = 9 million nodes is shown in Fig. 4-6(b). As c decreases starting

from one, the maximum possible value of fLCC is also reduced from one to E because

only a fraction c nodes have active qubits. However, because the transparent nodes

increase dimensionality while maintaining connectivity, reducing C actually reduces

the t, at which we obtain a O(N) connected cluster for universal quantum computa-

tion. Therefore, for a given entanglement generation time, there is an optimum value

of c which gives us the largest LCC. We numerically found a minimum possible bond

percolation threshold in the transparent architecture of 0.33 which is achieved when

1/N < 6 < 1, i.e., when 6 -+ 0 but the number of non-transparent nodes in the lattice

is still 8(N). Faulty sites can be incorporated into the fraction of transparent nodes

as long as the yield far exceeds 1/N without affecting the minimum entanglement

time t,.

4.7 Conclusions and open problems

In conclusion, we proposed an architecture for quantum computing with atomic mem-

ories that uses the concept of percolation to produce a resource for universal quantum

computing within the coherence time of the NV nuclear spins, even with imperfect

site-yield. Compared to previous scheme which require repeating each bond a large

number of times to obtain a bond probability of p > 0.999, we find that the re-

quired number of attempts is reduced by an order of magnitude, which lowers the

requirement on memory coherence time by the same factor. Furthermore, the missing

bonds are resolved using renormalization rather than error correction, which can be

done with constant overhead. Our scheme does not need high cooperativity cavities

or ancilla single photons, and minimizes the amount of feed-forward. The proposed

blueprint is applicable to arbitrarily large numbers of qubits. For example, in the

planar platform outlined in Fig. 4-6(a), with a realistic lattice spacing of 100-200 pm,

a centimeter-scale chip could accommodate on the order of a million qubits.
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Although we deal with the problem of ionization and imperfections in the cy-

cling transition, accurate control of the microwave and optical transitions presents

a challenge, and is an area of active research [135, 1081. In addition, the internal

dynamics of the NV, such as transition from im, = 0) electronic excited state to the

dark state has not been fully investigated, and could potentially degrade the fidelity

of the cluster. Future work is required to make the percolation approach a truly

scalable approach for universal quantum computing should focus on determining the

most efficient algorithm and calculating the resource overhead required to renormal-

ize a percolated lattice in the form of a quantum error correction code. Because of

our architecture's natural tolerance to faulty sites and missing bonds, the size of the

required error correction code can be expected to be smaller than conventional archi-

tectures. Even without a fault-tolerant method for renormalization, the percolation

based approach could be a much easier path for demonstrations of cluster state cre-

ation for simulating many-body physics [92, 93], quantum metrology [94, 136] and

quantum repeaters [48, 54, 51, 80, 137}.
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Chapter 5

Routing entanglement in the

quantum Internet

A quantum network can generate, distribute and process quantum information in

addition to classical data [1381. The most important function of a quantum network

is to generate long distance quantum entanglement, which serves a number of tasks

including the generation of multiparty shared secrets whose security relies only on the

laws of physics [38, 39], distributed quantum computing [40], improved sensing 141,

421, blind quantum computing (quantum computing on encrypted data) [431, and

secure private-bid auctions [44].

Recent experiments have demonstrated entanglement links, viz., long-range en-

tanglement established between quantum memories separated by a few kilometers

using a point-to-point optical link [1061. As illustrated in Fig. 5-1, measurements

performed at nodes in a quantum network can be used to glue together small en-

tanglement links into longer-distance clusters. The nodes contain quantum memories

that store qubits up to their coherence time, sources that generate photons entan-

gled with the quantum memory to be sent to neighboring nodes, and local quantum

processors that can perform multi-qubit joint measurements. Entanglement attempts

between neighboring nodes are synchronized on a global clock. The quantum routing

protocol dictates the measurements to be performed locally at each node in order to

obtain the desired entanglement topology. Possible goals of a routing protocol could
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Figure 5-1: Examples of fusing small entangled clusters into larger ones using pro-
jective quantum measurements (green ovals) at nodes of a quantum network. Red
circles represent qubits and black lines represent entanglement. (a) Two-qubit mea-
surement (Bell state projection) used to connect two entangled links into a longer
entangled link; (b) a three-qubit measurement (a GHZ state projection) fuses three
clusters (two 2-qubit entangled links and one 3-qubit linear cluster) into one 4-qubit
entangled cluster; (c) two adjacent nodes in a network performing a three-qubit GHZ
measurement and a two-qubit Bell state measurement simultaneously. The measured
qubits are lost, whereas the final entangled state of the unmeasured qubits upon suc-
cessful completion of both measurements is the same regardless of the order or the
simultaneity of the measurements. A quantum measurement at a node may succeed
only with a probability, which is a function of the class of optical devices employed to
realize the measurement (e.g., linear optics, single photon sources, and single photon
detectors) and losses in devices. This figure does not show "failure outcomes", i.e.,
the resulting entangled state if one or both measurements fail.

be to enable high rate entanglement among multiple user-pairs simultaneously, or to

generate multi-partite entanglement (entanglement between three or more parties).

The development of network algorithms and protocols for routing and scheduling

information flows was critical for the creation of today's Internet. We expect a similar

development in algorithm/protocol design to be critical to design a versatile and high

performance quantum network. Some results and intuitions from the theory of clas-

sical networks carry over into quantum networking. However, many new challenges

arise due to the idiosyncrasies of quantum information. Unlike classical communi-

cations, where the rate can be increased by increasing transmit power, photon loss

fundamentally limits the entanglement rate over any single link, which must decay ex-

ponentially with the length of optical fiber, regardless of the choice of quantum source,

the transmit power or the detection strategy [46, 139]. Whereas copying of bits at a

network node is common in multipath routing in classical networks [140, 1411, copying

a qubit is impossible because of the quantum no-cloning theorem [142, 143]. Unlike
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repeater

fnk trusted node

Figure 5-2: Schematic of a general quantum repeater network. The large (green) cir-
cles represent 'trusted' nodes, which are connected via a classical network. The blue
circles denote repeater stations, and the red circles inside them represent quantum
memories. The dashed lines connecting the red circles are independent lossy optical
(fiber) channels. In principle, all nodes in the network could be equipped with quan-
tum repeaters (i.e., no trusted nodes), in which case depending upon the need, a node
can be a consumer of shared entanglement, or act a router to conduit entanglement
flows between other nodes.

classical information flow, an entanglement flow does not have directionality. Rather,

entanglement is generated across links all over the network and pieced together to

form long-range entanglement. Quantum memories are much shorter lived and ex-

pensive compared to their classical counterparts making classical routing strategies

such as disruption tolerant routing [144, 145j-where a packet is held by a node for

until the desired next-hop link is up-much harder to mimic. Finally, distilling and

shaping entanglement among a desired set of nodes from many copies of large (poten-

tially random) entangled clusters is a purely quantum problem that has no classical

analog.

In this chapter, we present protocols for repeater nodes to support multiple si-

multaneous entanglement flows when every node is limited to the same quantum

processing used in repeater chains: (probabilistic) two-qubit Bell state measurement

(BSM), also called entanglement swapping. BSMs have been experimentally demon-

strated in many physical systems [146, 105, 147, 148, 96, 149]. Entanglement attempts

between repeater nodes are probabilistic because they are connected via lossy optical

links. In every clock cycle, pairs of neighboring repeater nodes attempt entanglement

generation. The result of whether an entanglement generation was successful is trans-
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mitted back to the corresponding pair of nodes. The repeater nodes then make their

local BSM decisions based on this 'local' link-state knowledge, i.e., the successes and

failures of entanglements established across their nearest neighbor links. Measure-

ments at different nodes can all be done in parallel because BSMs commute with one

another.

One of our interesting findings is that multi-path routing, i.e. using multiple paths

for routing entanglement in a quantum network, can enable long distance entangle-

ment generation with a superior rate-vs.-distance scaling than a single linear repeater

chain along the shortest path connecting Alice and Bob '. The rate along a sin-

gle repeater chain falls off exponentially with distance [55, 801. Multi-path routing

reduces the exponent, resulting in an exponential increase in rate with increasing dis-

tance. The quantum network we propose uses the same basic elements and operations

(probabilistic BSMs) as a linear repeater chain but uses more repeaters. Note that

increasing the number of repeaters in a repeater chain would not always increase the

rate: given the total end-to-end distance, and given the losses at each node, there

is an optimal number of repeaters between the end points of a flow that maximizes

the rate, i.e., inserting more nodes along that linear path can actually diminish the

rate [55, 80].

Another interesting result is that if the repeater nodes have 'global' link-state

knowledge (knowledge of the state of all links in the network) and the entanglement

generation probability is above a (percolation) threshold, multi-path routing enables

long distance entanglement-generation at a rate that depends only linearly on the

transmissivity ? of a single link in the network, whereas the rate achieved by a linear

repeater chain connecting Alice and Bob along the shortest path would decay as 77sP

where nsp is the length of the shortest path. Pirandola recently showed that even

a linear repeater chain can attain a rate that is proportional to q, but that requires

repeater nodes equipped with error-corrected quantum processors [491. We achieve

1Pirandola recently showed [491, for an information-theoretic description of repeaters that are
ideal fully-error-corrected universal quantum processors, that the optimal rate attainable for multi-
path entanglement routing using such ideal repeaters is superior to the rate of a linear chain of ideal
repeaters.
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the same feature (rate proportionality to r1) by multipath routing with percolation,

with a much simpler repeater. We also analyze repeater protocols to support multiple

entanglement-generation flows. This analysis reveals that simple space-time-division

multiplexing strategies that use local link-state knowledge at nodes can outperform

the best rate-region (the set of rates simultaneously achievable by different flows)

attainable by repeater nodes that simply time share among assisting individual flows.

Our work also opens up a number of new questions that remain unanswered.

We abstract off the entanglement routing problem to the following parameters: G

(network topology), p (probability of successful creation of an entangled pair across

one link in a given time step), q (probability of a successful Bell measurement when

attempted) and S (number of parallel links across a network edge). The protocols we

develop here only require the quantum memory to hold a qubit for T = 1 time step.

Even in this simplified model, finding the rate-region optimizing routing protocol

remains open. The aforesaid abstraction applies when the only source of imperfection

at each component (including the quantum memories) is pure loss. Since our protocol

only requires a quantum memory to hold a qubit for one entanglement attempt be-

tween neighboring stations (T = 1), photon loss would indeed be the major source of

imperfection in many implementations of the protocol. Accounting for more general

errors would require purification of entanglement [150, 151, 481, which will require

us to introduce the fidelity of entanglement during intermediate steps of the routing

protocol as an additional parameter, as was done by Jiang et al. 1152]. Furthermore,

we restricted our analysis only to 2-qubit measurements at repeater nodes. Multi-

qubit unitary operations and multi-qubit measurements at repeater nodes (e.g., a

3-qubit GHZ projection across three locally held qubits) would require more com-

plex repeaters than those in repeater chains, but may improve the achievable rates.

Finally, it will be interesting to consider repeater protocols for distillation of multi-

partite entanglement shared between more than two parties, and a repeater network

that supports multiple simultaneous flows of multi-partite entanglement generation.
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5.1 Background

Let us consider a quantum network with topology described by a graph G(V, E). Each

of the N = IVI nodes is equipped with a quantum repeater, and each of the M = |El

edges is a lossy optical channel of range Li (km) and power transmissivity 7/ oc e-Li,

i E E. Consider K source-destination (Alice-Bob) pairs (Aj, Bj), 1 < j < K, situ-

ated at (not necessarily distinct) nodes in V, each of which would like to generate

maximally-entangled qubits (i.e., ebits) between themselves (and thus by definition

not entangled with any other party, due to the monogamy property of entanglement),

at the maximum rates possible RI (ebits per channel use). The high-level objective

is: Given a class of quantum and classical operations at each of the repeater nodes of

the underlying network, what operations should be performed at the repeater stations

to maximize the rate region (R 1, R2 ,..., RK) simultaneously achievable by the entan-

glement flows? More importantly, one would like to address networking questions

such as: (a) what is the maximum rate-region attainable, (b) what is the tradeoff

between sum throughput and latency of the K entanglement flows, and (c) where

should repeater nodes be placed, with constraints on devices (e.g., memories, sources,

and detectors), to maximize the attainable rate region; all being subject to various

practical considerations. Ultimately one would like to develop explicit and efficient

practical quantum routing protocols that employ quantum operations implemented

via lossy and noisy devices, while only requiring local link-state knowledge and limited

knowledge of the global network topology, analogous to the classical internet.

The entanglement-generation rate across a link of transmissivity q, in the absence

of any repeater mediation, is limited to - log2 (1 - 77) ebits per mode, amounting to

~ 1.44,q ebits per mode when 7 < 1 113912. The number of modes per second is a

2The achievability of - log2 (1 - q) ebits per mode of secret communication rate over the lossy
channel (with two way authenticated public classical communication) was first proven in 2009 by
Pirandola et al. [47]. In 2014, Takeoka et al. proved an upper bound to the secret-key agreement
capacity, log 2 [(1 +)/(1 - q)] ebits per mode [46], which equals ~ 2.88,q ebits per mode when < 1,
thereby establishing that the rate attained by any protocol must decay linearly with the channel's
transmissivity and hence exponentially with distance L in optical fiber (since 77 e). In 2015,
Pirandola et al. proved an improved (weak converse) upper bound of - log 2 (1 - q) ebits per mode,
which established that as the secret key agreement capacity of the pure loss bosonic channel [139].
In 2017, Wilde et al. proved - log2 (1 - q) ebits per mode as a strong converse upper bound to the
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device-dependent constant, upper bounded by the maximum of the optical bandwidth

of the source and the electrical bandwidth of the detector. Since r1 ~ e- where L

is the length of optical fiber, the ebits-per-mode rate also falls off exponentially with

range L. Most analyses of repeater networks have been limited to linear chains, with

the objective of outperforming the repeater-less bound [48, 152, 154, 54, 55, 51, 80, 52].

Pirandola analyzed entanglement-generation capacities of repeater networks assuming

ideal repeater nodes, i.e., those equipped with fully-error-corrected quantum proces-

sors and argued that for a single flow (K = 1), the maximum entanglement-generation

rate R1 reduces to the classical max-flow min-cut problem with edge e being asso-

ciated with capacity C(e) = - log 2 (1 - r(e)) ebits per channel use [49], where r(e)

is the transmissivity of edge e. Pirandola subsequently argued that classical cut-set

bounds with the above link capacity give outer bounds to the K-flow capacity region,

but again, for ideal repeater nodes. Schoute and co-authors [155] developed routing

protocols on specific network topologies and found scaling laws as functions of N,

the number of qubits in the memories at nodes, and the time and space consumed

by the routing algorithms, under the assumption that each link generates a perfect,

lossless EPR pair in every time slot, and that the nodes' actions are limited to (per-

fect) Bell-state measurements (BSMs). Acfn and co-authors 1156] have considered

the problem of entanglement percolation where neighboring nodes share a perfect,

lossless pure state. Further, van Meter and co-authors developed explicit networking

protocols also restricted to pair-wise EPR pair generation and BSMs, but accounting

for imperfect fidelities of the EPR pairs (and thus requiring purification over multiple

imperfect pairs), and finite coherence times of the qubit memories [1571.
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(a) Bob (b) Bob

Alice Alice

Figure 5-3: Schematic of a square-grid topology. The blue circles represent repeater
stations and the red circles represent quantum memories. Every cycle (time slot) of
the protocol consists of two phases. (a) In the first (external) phase, entanglement
is attempted between neighboring repeaters along all edges, each of which succeed
with probability p (dashed lines). (b) In the second (internal) phase, entanglement
swaps are attempted within each repeater node based on the successes and failures of
the neighboring links in the first phase-with the objective of creating an unbroken
end-to-end connection between Alice and Bob. Each of these internal connections
succeed with probability q. Memories can hold qubits for one time slot.

5.2 Entanglement routing protocols

5.2.1 Problem statement and notation

Consider a graph G(V, E) that denotes the topology of the repeater network. See

Fig. 5-2 for an illustration. Each node v E V is a repeater (blue circles), and each

edge e E E is a physical link connecting two repeater nodes. S(e) E Z+ is an integer

edge weight, which corresponds to the number of parallel (single spatial, spectral or

polarization mode) channels across the edge e (shown using blue lines). The number

of memories at node v is Eeeg(v) S(e) (see Fig. 5-2), where the sum is over A(v),

the set of nearest neighbor edges of v, with d(v) = I(v)I the degree of node v.

Time is slotted. We assume that each memory can hold a qubit perfectly for T > 1

time slots (T should be much smaller than the memory's coherence time). Each time

slot t, t = 1, 2, .. ., is divided into two phases: the "external" phase and the "internal"

phase, which occur in that order. During the external phase, each of the S(e) pairs of

memories across an edge e attempts to establish a shared entangled (EPR) pair. An
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entanglement attempt across any one of the S(e) parallel links across edge e succeeds

with probability po(e) - r(e) [46, 1391, where ri(e) ~ e-aL(e) is the transmissivity of

a lossy optical channel of length L(e). Using two-way classical communication over

edge e(u, v), neighboring repeater nodes u, v learn which of the S(e) parallel links (if

any) succeeded in the external phase.

Let us assume that neighboring repeaters pick upto one successfully-created ebit

(i.e., ignore multiple successes if any) as in Ref. [55, 801, in which case the probability

that one ebit is established successfully across the edge e during the external phase

is given by: p(e) = 1 (1 - po)S(e). Let us also assume S(e) = S,Ve E E, which

in turn gives us p(e) = p, Ve E E. While the results in this chapter can be adapted

to any network topology, we will henceforth use the 2D regular square grid topology

(Fig. 5-3) to illustrate the performance of our routing algorithms.

One instance of the resulting external links created between repeater nodes after

the external phase is shown in Fig. 5-3(b) using solid lines. In the internal phase,

entanglement swap (BSM) operations are attempted locally at each repeater node

between pairs of qubit memories. We associate these BSM attempts as internal links,

i.e. links between memories internal to a repeater node, shown using dotted lines

inside repeaters in Fig. 5-3(b). If T > 1, a repeater node can attempt a BSM between

qubits held in two memories that were entangled with their respective neighboring

node's qubits in two different time slots. For minimizing the demands on memory

coherence time [55, 801, we will assume T = 1. So, BSMs will always be attempted

between two qubits in distinct memories that were entangled with their respective

counterparts at their respective neighboring nodes in the same time slot. Each of these

internal-link attempts succeed with probability q. Therefore, after the conclusion of

one time slot, along a path comprising k edges (and thus k - 1 repeater nodes,

excluding Alice and Bob), one ebit is successfully shared between the end points

of the path with probability pkqk-1. The maximum number of ebits that can be

shared between Alice (say, node a) and Bob (say, node b) after one time slot is

min {d(a), d(b)}, assuming S is the same over all edges. For the square-grid topology

shown, the maximum number of ebits that can be generated between Alice and Bob
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in each time slot is 4.

The remainder of the chapter is dedicated to finding the optimal strategy for each

repeater node in order to decide which locally-held qubits to attempt BSM(s) on dur-

ing the internal phase of a time slot, based ideally only on knowledge of the outcomes

(success or failure) of the nearest neighbor links, i.e., local link-state knowledge, dur-

ing the respective preceding external phases. We will assume that each repeater node

is aware of the overall network topology as well as the locations of the K Alice-Bob

pairs. The goal of the optimal repeater strategy will be to attain the maximum

entanglement-generation rate (if there is a single Alice and Bob, i.e., K = 1) or the

maximum rate-region for multiple flows (i.e., K > 1).

5.2.2 Multipath routing of a single entanglement flow

Entanglement routing with global link-state information

We begin with the assumption that global link-state knowledge is available at each

repeater node, i.e., the state of every external link in the network after the external

phase is known to every repeater in the network and can be used to determine the

choice of which internal links to attempt within the nodes. Each memory can only

be part of one entanglement swap, i.e., each red node can only be part of one internal

edge. Consider the following greedy algorithm to choose the internal links: consider

the subgraph induced by the successful external links and the repeater nodes (at the

end of the external phase), and find in it the shortest path connecting Alice and Bob.

If no connected path between Alice and Bob exists, no shared ebits are generated in

that time slot. If a shortest path of length ki is found, all internal links along the

nodes of that path are attempted, and the probability a shared ebit is generated by

this path is the probability that all k, - 1 internal link attempts were successful, i.e.,

q . We then remove all the (external and internal) links of the above path from the

subgraph, and find a shortest path connecting Alice and Bob in the pruned subgraph.

Note that instead of removing the links of the first path from the subgraph, we could

simply search for a shortest path in the original subgraph but one that is edge disjoint
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from the previous path. If such a path exists, we again attempt all internal links at

the nodes of this path, so the probability the path contributes to the generation of

an ebit between Alice and Bob is qk2-1 where k2 is the length of the second path; and

so on.

The entanglement generation rate achieved using this greedy algorithm R9 is the

sum of expected rates (in ebits per time slot) from these paths. Given the degree-4

nodes in a square grid topology, there can be a maximum of four edge disjoint paths

between Alice and Bob. Fig. 5-3(b) illustrates our greedy algorithm. Given the set of

external links created, the shortest path has length ki = 4, the next path has length

k2 = 6, and no further paths can be found. The two edge-disjoint paths are highlighted

in green. Hence, the internal links depicted with the dashed lines in Fig. 5-3(b) are

attempted and the expected number of shared ebits generated in this time cycle is:

qki-1 + qk2-1. The net entanglement generation rate is the expectation of sums like

the above (with up to four terms) over many random instantiations of the (p, 1 - p)

external-link creations during the external phase of many time slots. Evaluating

this expected rate Rg(p, q) achieved by the above routing strategy analytically as a

function of the Alice-Bob separation (X, Y) is difficult, even for a square-grid topology.

The intuition behind this simple greedy algorithm is that the entanglement gen-

eration rate along a path of length k decays exponentially as qk-1, suggesting that

attempting internal links to facilitate connections along the shortest path first would

optimize the expected rate. However, it is possible to draw random instances of suc-

cesses of external links, where either one of the two possible options-(1) picking the

shortest path (which disrupts all other paths) and (2) picking two edge disjoint (but

longer) paths-could yield either a larger or a smaller expected rate than the other,

depending upon the value of q. If q is larger than a threshold, option (2) would have a

larger expected rate and vice versa. Finding the global optimal rule remains an open

problem. It is easy however to prove that the greedy algorithm achieves a rate within

a factor of four of the optimum algorithm employing global link-state knowledge,

Ropt(p, q). Let us denote the length of the shortest path between Alice and Bob in

the induced subgraph after the external phase, as nsp(p). This quantity is of interest
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in percolation theory, and is not completely understood analytically. It undergoes a

sharp transition (i.e., starts out large and suddenly jumps to a much smaller value)

as p crosses pc from below to above. Clearly, Rg(p, q) > E[qnSp(P-1] since using the

shortest path is the first step of the greedy algorithm. Furthermore, since the optimal

rule can create entanglement over a maximum of four edge-disjoint paths in each time

step, each of which must have a length no less than the length of the shortest path,

Ropt(p, q) 5 E[4qSP(P-] = R (p,q). Therefore, Rpt > Rg > R0pt/4, i.e., the

greedy rule will achieve the same rate-vs.-distance scaling as the optimal algorithm

that employs global link-state knowledge, and can be worse only by a small constant

factor.

In Fig. 5-4(a) we plot Rg(p, q) as a function of the Alice-Bob Manhattan distance

(X, Y) on the square grid (measured in number of hops) with q = 1. When p > pc,

the bond percolation threshold of the underlying network (pc = 0.5 for the square

lattice), a giant connected component is formed by the external links alone at the

end of the first (external) phase of a time slot. Recall that the rate along a length k

path is pk qk-1, where p ~ 7 is the transmissivity of each link. In the network case,

when p > pc and q = 1, the pk portion of the rate expression becomes immaterial

for scaling with Alice-Bob distance, since percolation guarantees a connected path to

exist between Alice and Bob along successful external links in each time slot. So, if

q = 1, Rg(p, q) remains essentially distance invariant. When p < pc, the rate falls off

exponentially with distance (even when q = 1). It is instructive to note here that the

optimal rate (entanglement-generation capacity) achievable on a single length k path

does not depend on k, and only on the transmissivity of the lossiest link in the path,

i.e., C ~ 1 [49J, but achieving this requires infinite-coherence-time quantum memories

and ideal quantum operations at nodes. The multi-path gain in the p > pc regime lets

us achieve a distance-independent rate, but with memories whose coherence times are

no more than one time slot. The rates are calculated using monte-carlo simulations

which results in some numerical noise that is insignificant compared to the difference

between the plots, but is visible in Rg(0. 4 5, 1).

A general upper bound on the entanglement generation rate is given by the min-
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Figure 5-4: Entanglement generation rate as a function of the Alice-Bob separation
along X and Y (on a square grid) as a function of (p, q); (a) Rg(p, q) is the rate
attained by a global-knowledge-based protocol we propose where each node, in each
time step, knows whether any link in the entire network succeeded or failed to establish
entanglement. For the case of q = 1, R9 is distance independent when p is greater than
the bond percolation threshold (0.5 for the square lattice) and decays exponentially
if it is below the threshold. (b) R(UB) (0.6) is the distance-independent Pirandola rate
upper bound for p = 0.6, achieving which requires perfect quantum processing at
repeater nodes. Rg(0.6, 1) is also distance independent, and within a factor 3.6 of
R(UB)(0. 6 ). With q < 1, e.g., Rg(O. 6 , 0.9), the rate decays exponentially with distance.

R(UB) is an upper bound on the rate attainable with global-knowledge by any protocol.

(c) RI., is attained by a protocol we propose where each node, in each time step, only
needs to know the link state of neighboring edges. The rate-distance scaling exponent
of RI., is clearly worse than Rg, but is significantly superior to that of a linear repeater
chain along the shortest path, R 1,, demonstrating multi-path routing advantage even
with local link-state knowledge. (d) Contour plot of the entanglement generation rate
with the local rule when p = 0.6 and q = 0.9. Although the Alice to Bob distance
along the network links is X + Y, there is a noticeable enhancement in the rate along
the X = Y direction because of more Alice-Bob paths of similar length.
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cut of the graph [49], and for a square lattice, is given by R(UB) (p) - 19 2[(1

R(UB)(0. 6 ) is plotted in Fig. 5-4(b). The known methods for achieving R(UB) require

infinite coherence time memories and error-corrected quantum processors at each

node. For our implementation (assuming global link state knowledge), Rg(O. 6 , 1) is

also plotted in Fig. 5-4(b). Although our protocol only requires memories to hold

entanglement for one time step, the multi path advantage gives us the same constant

rate-distance scaling and within a factor of ~ 3.6 of R(UB)(0.6). The assumption of

perfect BSMs is unrealistic and q < 1, in which case Rg(p, q) falls off exponentially

with distance; even when p > pc, as seen in the plot for Rg(O. 6 , 0.9). Finally, we plot

the above discussed upper bound on Rg, ROP(0.6,0.9), which as expected has the

rate-distance scaling of Rg, but larger by a factor less than 4.

Entanglement routing with local link-state information

Rg(p, q), the rate attained by the protocol described in the previous subsection that

employs global link-state knowledge, is re-plotted in Fig. 5-4(c). We also plot Rii.(p, q)

pfslp(1)qnsp(l1)~, the rate attained by a single linear repeater chain, where nsp(1) is the

shortest-path length between Alice and Bob along the edges of the underlying square

grid. The assumption of global link-state knowledge in large networks is unrealistic,

as it requires memories whose coherence time increases with the network size due to

the time required for the traversal of link-state information across the entire network.

In this section, we describe a more realistic protocol in which knowledge of success

and failure of an external link at each time slot is communicated only to the two

repeater nodes connected by the link, as is the case in the analysis of many 'second-

generation' linear repeater chains [154, 55, 1521. Repeater nodes need to decide on

which pair(s) of memories BSMs should be attempted (i.e., which internal links to

attempt), based only on information about the states of external links adjacent to

them. We assume that network topology and positions of Alice and Bob are known

to each repeater station, and communicated classically beforehand.

Let us consider a local repeater rule illustrated in Fig. 5-5. The repeater u inside

the dotted square box has to make a decision regarding which internal edges to
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Figure 5-5: The entanglement swap rule used at the repeater u in the dotted box
in the case of local link-state knowledge. v and w are the repeaters closest to Alice
and Bob, respectively, with a direct edge to u. (a) If two or three links are up, the
memories linked to v and w undergo an entanglement swap. (b) If four links are up,
the remaining two memories also undergo an entanglement swap.

attempt based on the information of which of the four neighboring external edges

have been successfully created in the external phase. We associate dA and dB as

the distance to Alice and Bob, respectively, at every repeater node. We use the L2

norm distance to Alice (resp. Bob) as dA (resp. dB), which appears to be close to the

optimal distance metric (discussed later). Of all the nearest neighbor nodes of u whose

links to u were successful in that time slot, we label the one that has the minimum dA

as v. Similarly, the neighbor with a successful external link with u and the minimum

dB is labelled w. An internal link is attempted between the memories connected to

v and w respectively, as shown in Fig. 5-5(a). If v and w are the same node, v (or

w) is replaced by node u's nearest-neighbor node with the next smallest value of dA

(or dB). The choice of whether to replace v or w is made in a manner that minimizes

the sum of dA and dB from the eventually chosen two neighbors to connect. If all
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four external links are successful, an additional internal link is attempted between

the remaining two memories as shown in Fig. 5-5(b). If only one of the neighboring

external links is successful, no internal links are attempted, since this repeater node

cannot be part of a path from Alice to Bob in that time slot. If two neighbors have

the same values of dA and dB, an unbiased coin is tossed to determine the choice of

v and w, to preserve symmetry in the protocol.

The entanglement generation rate Rioc(p, q) achieved by the above described local

rule is plotted in Fig. 5-4(c) and compared to Rg(p, q) and Rin(p, q). We use p = 0.6

and q = 0.9, the same values used for the global-information rate plots in Fig. 5-

4(b). As one expects, the rate-distance scaling of RI., is worse than that of Rg.

However, the rate-distance scaling exponent achieved by the local rule is superior

to that of a linear chain, even though the physical elements employed to build the

repeaters are identical. This is proven analytically in section 5.2.3. Note that each

of the three rates Rg, R1,c, Rj, fall exponentially with distance, but the exponents

are different. The scaling advantage of Ri.c over Rj1, arises because the local rule

allows the entanglement-generation flow between Alice and Bob to find different (and

potentially simultaneously multiple) paths in different time slots, and does not have

to rely on all links along a linear chain to be successful. This is analogous to multi-

path routing in a classical computer network. The contour plot in Fig. 5-4(d) further

illustrates this point: there is a noticeable enhancement of RI., along the X = Y line

because the diagonal direction contains the largest spatial density of possible paths

between Alice and Bob. The scaling advantage over Rin persists in any direction,

i.e., along Y = 0 as well.

Sweeping over different values of p and q, we find that the multi-path advantage

relative to a linear repeater chain increases as p decreases from unity, but there is

little relative improvement as q is varied (see section 5.2.3).

Clearly, other distance metrics (e.g., L norm for p > 1) can be used in lieu of the

L2 norm in the algorithm described above. In section 5.2.4, we present a recursive

numerical evaluation technique to find the rate-optimal distance metric, which can be

applied to any network topology. For planar network topologies, the L 2 norm appears
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Figure 5-6: f(p, q)/pq quantifies the improvement in the scaling of Ri.,(p, q) with
respect to Rfin(p, q) with respect to the Alice-Bob Manhattan distance, n. f(p, q)/pq
increases as p is reduced in [1, p,] but changing q has a negligible effect.

near-optimal for our local routing algorithm.

An analytical enumeration of the expected number of edge-disjoint paths as a

function of p between Alice and Bob separated by a given distance (X, Y) in a bond-

percolation instance (i.e., with p > pc) of a network is an open question, the solution

of which will enable a firmer quantitative understanding of the multi-path advantage

in entanglement generation in a repeater network.

5.2.3 Multipath rate advantage

Numerical Evaluation

The goal this subsection is to quantify the improvement in the rate-vs.-distance ex-

ponent achieved by our local rule over that of a linear chain along the shortest

path, for all possible pairs of values of p and q. Fig. 5-4(c) shows this improve-

ment, i.e., that of RIOc(p, q) compared to Riin(p, q), for p = 0.6 and q = 0.9. Clearly,

Rfin(p, q) = (pq)fn(p)/q ~ (1/q)[pq]n, where n is the Manhattan distance between

Alice and Bob. We have numerically verified that RI.c(p, q) g(p, q)[f(p, q)]f for 

large. We hence quantify the rate improvement by numerically evaluating the ratio
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Figure 5-7: Network used to prove the lower bound on entanglement generation
rate with our local routing rule which shows that scaling of the rate with Alice-Bob
Manhattan (L') distance for our rule is better than the scaling of the rate along a
linear repeater chain along the shortest path between Alice-Bob.

f(p, q)/(pq) exhaustively for all (p, q) E [0, 1] x [0, 1], using Monte Carlo simulations.

The results are shown in Fig. 5-6, for configurations of Alice and Bob located along

450 with respect to the grid axes. We see that f(p, q)/pq increases as p decreases in

[PC, 1], but changing q has a negligible effect on this ratio.

Analytical lower bound on the rate achieved by the local routing rule

In this subsection, we derive an analytical lower bound on the entanglement gen-

eration rate attained by our local routing rule (using the L' norm as the distance

metric), with the objective of demonstrating multi-path routing advantage, i.e., the

rate-vs.-distance scaling attained by our local rule is strictly better than that attained

by a linear repeater chain along the shortest path between Alice and Bob.

Consider routing entanglement between Alice and Bob located at (X, Y) and

(X + n, Y) respectively, i.e., n hops apart along the X dimension of the square lattice.

We will evaluate a lower bound on Ric by only evaluating the rate contributions from

paths in which all the (external) links belong to the set of black dashed links shown

in Fig. 5-7. The choice of internal links made at repeater nodes proceed as usual

per our local rule. As a result, there are instances in which our local rule routes

entanglement through paths comprising not just the black links, resulting in flows

that do not contribute to our rate lower bound.

We will refer to Fig. 5-7 for the ensuing discussion. Recall that external links
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succeed (are 'up') with probability p and fail (are 'down') with probability 1 - p,

whereas internal links succeed with probability q. Consider P(A -+ v), the probability

that there is a path between Alice A and repeater v that uses only black links.

P(A ++ v) includes the probability of making the required internal links to create a

path between A and v, but not the probability of any internal links at the end points

A or v. It is easy to see that in any given time step, there can be no more than one

edge-disjoint path between A and v along the black dashed links, since link 8 must

be part of the path. Let 1 0 be the event that the external link 1 is up (down).

Further, note that at any given time step, of all the possible (0, 1 or 2) internal links

attempted by our local rule at a repeater node, only one internal link, if successful,

contributes to A ++ v. Let 1 - m be the event that the internal link attempted at a

repeater node to connect external links 1 and m is successful. If links 1 and 8 are both

up, node u attempts to connect those two links based on our local rule, regardless of

the other links. If links 2, 3, 4 and 8 are up, but 1, 5, 6, 7 and 9 are down, u attempts

to connect 4 and 8, z attempts to connect 3 and 4 and y attempts to connect 2 and

3. Considering these two possibilities, we have

P(A + v) > Pr(1, 8, 1-8)

+ Pr(2, 3,4,8, 1,5, 6,7,9,2-3,3-4,4-8)

- P + pp3 (1 - p) 5 q2] pq

= p'pq, (5.1)

where p' =p + p3 (1 - p)5 q2 >p.

P(v e x) is the probability that there is a path between v and x that uses only

black links (the probability of internal link successes at the end points v and x are

not included). P(v +-* x) and P(A ++ v) are not independent events because they

both involve link 9. P(v <-+ xIA + v) is the probability that there exists a path along

black dashed lines between v and X given that a path along black dashed lines exists

between A and v. We now show that P(v -+ xJA -+ v) > P(v +-* x).
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P(v ++ x|A ++v) P(v ++ x|A ++v,9)Pr(91A ++v)+

P (v e+ xjA + vl) Pr (Z|A ++ v)

= P(v ++ x|9)Pr(91A + v) +

P (v+ x|9 Pr (9|A ++ v)

= P(v ++x9) (1 - Pr (|A v)) +

P (v x1) Pr (91A ++ v)

= Pr (5IA v) x

P(v ++ x9) - P(V 4 X|9)

+P(V ++x|9 ) (5.2)

where P(v ++ x|A ++ v, 9) = P(v ++ x19) and P (v ++xIA ++ v, ) = P ( ++ x,)
because link 9 being up or down is the only probabilistic event that influences both

P(A ++ v) and P(v +-* x). Further,

P(v +-* x) = P(v+ x|9)Pr(9) + P (v ++ x1) Pr (5)

= P(v+ x9) (1 - Pr (9)) +

P (v ++ x15 Pr()

= Pr(9) (P (v + x) - P( ++ x19))

+P(v ++ x|9). (5.3)

Comparing 5.2 and 5.3, Pr (9iA ++ v) = Pr ( Pr (A ++ vI1) /Pr (A ++ v) >

Pr (9) because Pr (A ++vj1) > Pr (A ++ v) following equation 5.1. Similarly, (P (v ++ x|) - P(v ++

0. Hence, P(v +-+ xA ++ v) > P(v ++ x).

From Fig. 5-7, we can see that in order to get a path along black dashed lines

from A to x, there must be a path along black dashed lines from A to v and from v

to x, and the internal link at v must succeed. Therefore,
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P(A + x) = P(A e v)qP(v * x|A - v)

> P(A ÷ v)P(v *+ x)q

= (P(A + v)) 2 q

= (p'pq)2 q, (5.4)

where we use symmetry between A ++ v and v +-+ x in the third line. Repeating this

for all repeaters between Alice and Bob, it is easy to see that

R 0c > P(A +-* B) > pIFn/ 2 lp ln/2Jqn-1 (5.5)

[( pp) q] nq-1

= (pq)In q-1,

where [n/21 is the smallest integer greater than or equal to n/2 and [n/2J is the

largest integer smaller than or equal to n/2. The second inequality uses the fact that

p' > p and n > 0. 0 = log [(V/p7p) q] / log [pq] < 1 because p < p' < 1 and q < 1.

Therefore, since Rjoc > (pq) & q- 1 with 0 < 1 and Rlin = (pq)f q- 1, the exponent

in the scaling with n is smaller in RI., compared to Rjj, i.e. the rate-vs.-distance

scaling is better with multi-path routing. Using a similar reasoning, it is easy to

see that the same is true even when Alice and Bob are at located at different Y

coordinates. It should be noted that the lower bound we derive here is not meant to

be tight (see Section 5.2.3 for a full numerical evaluation of the exponents for Rioc

and Rfin). The only purpose of this subsection was to prove that the rate-vs.-distance

scaling for entanglement routing strictly benefits from multi-path routing.
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Figure 5-8: Entanglement generation rates with different distance metrics. RL1 and
RL2 are evaluated using the Ll and L 2 norms respectively. The distance metric for
Ril (iteration 1) is calculated using R1 , and Ri2 (iteration 2) is calculated using Rij.
Ri2 and RLi are nearly indistinguishable as they almost coincide.

5.2.4 Distance metric for the local routing rule using L1 norm

and recursion

Our entanglement routing protocol with local link-state information uses the 'dis-

tance' of neighboring repeater stations from Alice and Bob to decide which memories

at a repeater should undergo entanglement swap attempts. The results presented

in the chapter use the L 2 norm as the distance metric. While the L2 norm can be

easily calculated for the square grid, it may not be easily generalizable for other (e.g.,

non-planar) topologies. Further, even though we do not prove the rate optimality of

our local link-state routing protocol, given a network topology, it is not clear whether

or not the L 2 norm is the optimal distance metric to be used in our protocol.

In order to adapt our algorithm for arbitrary network topologies, and also to find

a near-optimal distance metric for our algorithm, we employ the following numerical

recursive method. Our evaluation begins with calculating RLi (ni, n2 ), the entan-

glement generation rate achieved when our local rule is used to route entanglement

between nodes ni and n2 , using the L norm as the distance metric. In Fig. 5-8, we

plot RL'(nl, n2 ) as a function of (X, Y), where X and Y are the distance (in hops)

between ni and n2 along the horizontal and vertical dimensions of the square grid,

respectively. The rate-distance scaling exponent for RV is worse than that of RL2,
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the rate attained by our protocol, using the L2 norm as the distance metric. Next,

for every repeater node n, we define distances dA and dB to Alice A and Bob B re-

spectively, with respect to the following new distance metric (let us name this metric

il): dA := 1/RLi(n,A) and dB := 1/RL1(n,B). We then calculate Rii(ni,n2 ), the

entanglement generation rate achieved when our local rule is used with the il distance

metric to route entanglement between every pair of nodes n, and n2 . In Fig. 5-8, we

plot Ril (ni, n2 ) as a function of (X, Y). We see that the rate-distance scaling achieved

by Ril is even lower than that of RL1. However, when we go through the second iter-

ation of the algorithm-i.e., define distance metric i2, under which dA = 1/Ri(n, A)

and dB 1/Rii(n, B), and use our local rule to evaluate Ri 2 (ni, n2 ) as a function

of (X, Y)-we find that the resulting rate Ri 2 is almost the same (visually indistin-

guishable in the plot) as R2, the rate we obtained directly when using the L2 norm

as the distance metric. This suggests that: (a) for the square grid (and presumably

for any planar network topology) the L2 norm metric might be near-optimal for use

within our local rule, and that (b) for any given network topology, one could poten-

tially pre-compute the optimal distance metric by a recursive strategy on the given

topology using the L' norm as the starting point. However, there are instances where

our local rule does not give the rate-optimal local routing rule. As an example, when

p = 1 and q = 1, it is possible to find four disjoint paths without any link-state

knowledge (the links are all deterministic) and the optimal rate is four ebits/cycle

for any location of Alice and Bob. However, the fact that we are trying to route

every flow through the best possible path without any coordination between different

flows leads to collisions, which results in a rate that is below the optimal rate of four

ebits/cycle. Finding the rate-optimal local routing rule across different parameter

values is left for future research.

5.2.5 Simultaneous entanglement flows

In this section, we consider simultaneous entanglement-generation flows between two

Alice-Bob pairs, using local link state knowledge at all repeater nodes. Consider two

pairs Alice 1 - Bob 1 (red nodes) and Alice 2 - Bob 2 (green nodes) as shown in
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Figure 5-9: (a) Multi-flow routing for two Alice-Bob pairs that lie along the sides of
a 6 x 6 square, embedded in a 100 x 100 grid; (b) rate region (R 1, R2) with different
rules at repeater nodes, each employing local link-state knowledge, for p = q = 0.9.
(c) Multi flow routing when the Alice-Bob paths cross (d) multiflow rate region for
two local-knowledge rules.
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Figure 5-10: A heat map plotting Pusage, the probability that a given repeater node
is involved in a successful creation of a shared ebit generated between Alice and Bob,
separated by 6 hops in an underlying square grid topology, when our local rule is
employed. We assume p = 0.9 and q = 0.9.

the two scenarios in Fig. 5-9. In Fig. 5-9(a), the shortest paths connecting the two

Alice-Bob pairs do not cross, but they do in Fig. 5-9(b). In both cases, they are

placed at the four corners of a 6 x 6 square grid, embedded within a large square grid

network. Denote by R1 and R2 the entanglement generation rates achieved by the

two Alice-Bob pairs respectively. We first consider the case of non-intersecting flows

shown in Fig. 5-9(a). A simple strategy is for every single repeater node (including

the nodes labeled as the two Alices and Bobs) to use the local rule described in the

previous section tailored to support the Alice 1-Bob 1 flow for a fraction, A, of the

time slots and to support the Alice 2-Bob 2 flow for the remaining 1 - A fraction.

For p = q = 0.9, the rate region attained by varying A E [0, 1] is depicted with the

blue line in Fig. 5-9(b), which we refer to as single-flow time-share. However, if every

repeater with the exception of the Alices and Bobs carry out the above time-sharing

strategy, even when all repeater nodes support flow 1, there is still some 'left-over'

non-zero R2 that is attained. This multi-flow time-share rate region is shown using

the red line in Fig. 5-9(a).

In Fig. 5-10, for the case that Alice and Bob are separated by 6 hops on the square

grid, we plot a color map of Pusage, the probability a given repeater node is involved

in a successful creation of a shared ebit generated between Alice and Bob when our
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local rule is employed. We observe that only the repeaters lying in a small spatial

region surrounding the straight line joining Alice and Bob are used significantly.

This observation motivates a multi-flow spatial-division rule, in which we divide the

network between the two flows, as shown in Fig. 5-9(a). Any repeater in the red

shaded region follows the local rule tied to the Alice 1 - Bob 1 flow while repeaters

in the green region operate with the local rule tied to the Alice 2 - Bob 2 flow. The

placement of the boundary determines the rates R1 and R2 . The rate region attained

is plotted with the yellow line in Fig. 5-9(b). This significantly outperforms time

sharing. The two flows can co-exist and operate with a very small reduction from

their individual best rates, because the repeaters they respectively benefit from the

most form almost disjoint sets.

In the other extreme, we consider two Alice-Bob pairs, still separated by six hops,

but with their shortest paths crossing as shown in Fig. 5-9(c). The rate region at-

tained by multi-flow time sharing, shown by the line segment BC, still provides an

improvement over single-flow time-sharing, shown by the line segment AD, as shown

in Fig. 5-9(d). It is interesting to note that the maximum R1 under multi-flow time

sharing (point B) is slightly lower than maximum R1 with the single-flow time-share

rule (point A). This happens because unlike in single flow time-share, the nodes at

Alice 2 and Bob 2 do not contribute to R1 under multi-flow time-share. A point along

AB represents time sharing between the strategies at points A and B. To further in-

crease the rate, we adopt a multi-flow spatial division strategy in which nodes in the

red region are configured to assist flow 1 and nodes in the green region are configured

to assist flow 2. Varying the angle 6 demarcating those regions results in the rate

region shown by the yellow line in Fig. 5-9(d). This time, the improvement due to

the spatial-division rule is not as pronounced, since the spatial regions corresponding

to 'useful' repeater nodes for the two flows are not disjoint.
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5.3 Conclusions and open problems

We proposed and analyzed quantum repeater protocols for entanglement generation

in a quantum network in an architecture that uses the same elements as in linear

repeater chains. We accounted for channel losses between repeater nodes and the

probabilistic nature of entanglement swaps at each repeater stemming from device

inefficiencies as well as the probabilistic nature of Bell-state measurements (e.g., due

to inherent limitations of using linear optics and lossy detectors). The rate attained

for a single entanglement-generation flow can far outperform that attainable over a

linear repeater chain, even when the nodes only have local link-state knowledge, due

to the multi-path routing advantage. We also proposed a modified version of our

routing protocol for supporting simultaneous entanglement generation flows between

multiple Alice-Bob pairs. We found multi-flow entanglement routing strategies that

outperform the rate region attained when each repeater simply time shares among

each flow. Our results suggest that building and connecting quantum repeaters in

non-trivial network topologies could provide a substantial benefit over linear repeater

chains alone. Seen another way, given constraints on the number and quality of

quantum memories, link losses between nodes, and limited and imperfect processing

capabilities at repeater nodes, a 2D network topology can outperform the repeater-

less rate-vs.-distance upper limits [46, 139] more easily than a linear repeater chain

connecting the communicating parties.

Our work has also opened a number of new questions. Even in our simplified

model-an abstraction that applies when the only source of imperfection at each

component (including the quantum memories) is pure loss-the rate-optimal protocol

remains open. Since our protocol only requires a quantum memory to hold a qubit for

one entanglement attempt between neighboring stations, photon loss would indeed be

the major source of imperfection in many implementations of the protocol. Account-

ing for more general errors would require purification of entanglement [150, 151, 481,

i.e., converting several poorer-quality EPR pairs into a few good ones using local

quantum operations and classical communication, accounting which will require us
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to introduce the fidelity of shared entanglement at intermediate steps of the protocol.

Furthermore, we restricted our analysis to the same operation used in the nodes of

a linear repeater chain: 2-qubit measurements. Being able to perform multi-qubit

unitary operations and multi-qubit measurements at repeater nodes (e.g., a 3-qubit

GHZ projection across three locally held qubits) may improve the achievable rate re-

gions. The idea of using a distance metric to choose the measurements at the repeater

station could be used in protocols that use measurements of more than two qubits as

well. Finally, it will be interesting to consider repeater protocols for the distillation

of multi-partite entanglement shared between more than two parties, and a repeater

network that can support multiple simultaneous flows of generation of multi-partite

entanglement.
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Chapter 6

Devices

6.1 Introduction

In this section I briefly present an overview of experimental and theoretical work

on devices for the architectures discussed in this thesis that I have been involved

in. While I have been the lead author in the work presented in the chapters of

this thesis up to this point, the work presented here has been led by my colleagues

and their names have been stated at the beginning relevant sections. Section 6.2

presents a theoretical proposal for an on-demand single photon source [158] and an

experimental demonstration of a spontaneous four wave mixing based heralded photon

source [159]. Section 6.3 presents a theoretical proposal for a cavity mediated optical

photodetection scheme that may be useful for implementing feed-forward.

6.2 Single photon sources
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6.2.1 Temporally and frequency multiplexed single photon source

using quantum feedback control for scalable photonic

quantum technologies

Lead Author: Mikkel Heuck

In this work [1581, we investigate the feasibility of single photon sources that meet

the requirements of scalable photonic quantum technologies: near-unity purity single

photons produced in a reproducable chip-integrated photonic circuit. Our proposal

uses temporal multiplexing of parametrically produced signal-idler photon pairs and

we explain how additional multiplexing of the frequency degree of freedom may lead

to significantly improved performance.

As illustrated in Fig. 6-1, our proposed device consists of an ultrahigh-Q microring

resonator (Q of 10-100M) consisting of a material, such as silicon, with a X(3 ) nonlin-

earity for photon pair generation by sFWM. This storage ring is coupled to photon

number resolving detectors (PNRDs) through Mach-Zehnder interferometer (MZI)

filters 11601. The filters enable decoupling of certain frequencies from the waveguide

by controlling the path-imbalance of the MZI relative to the length of the ring (see

inset in Fig. 6-1). Idler photons and the pump field couple out of the storage ring

within a single time bin, whereas the signal can be stored for up to M bins. If M is

large, the state of the cavity can be pushed close to a single photon state by proba-

bilistic addition of photons into the cavity (by pumping the ring) and the probabilistic

subtraction of photons (by coupling the signal photons out), based on the detection

of the idler photons in previous time bins. We consider a control protocol based on

Bayesian inference with both idler and signal photon detection to optimize the signal-

photon state. This approach shows the trade-off between heralding the generation of

a single photon state and its purity. Our study reveals that, for near-term realistic

device parameters, highly efficient (~ 99%) sources of single photons could be possible

in scalable nanophotonic platforms.
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Figure 6-1: Storage-and release design. Solid lines are optical waveguides, while
dashed lines represent electrical control signals. PNRD: photon number resolving
detector. The inset illustrates the power spectrum coupled out of the signal filter in
its closed configuration and the spectrum arriving at the idler detector.

6.2.2 Integrated source of spectrally filtered correlated pho-

tons for large-scale quantum photonic systems

Lead Authors: Nicholas Harris and Davide Grassani

Stimulated four wave mixing (sFWM) is a popular method for generating photon

pairs on a photonic chip, which can be used as a heralded single photon source. How-

ever, generation of heralded photon pairs on chip using sFWM uses a pump field that

is ~ 101 times larger than the desired pairs. Achieving such large isolation on-chip

is a challenging, but important step, because any unwanted pump field would lead to

extraneous counts, and could also lead to the creation of additional unwanted pho-

ton pairs. In this work [159], we demonstrate the generation of quantum-correlated

photon pairs combined with the spectral filtering of the pump field by more than

95 dB on a single silicon chip using electrically tunable ring resonators and passive

Bragg reflectors. Moreover, we perform the demultiplexing and routing of signal and

idler photons after transferring them via an optical fiber to a second identical chip.

Nonclassical two-photon temporal correlations wi th a coincidence-to-accidental ratio
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of 50 are measured without further off-chip filtering. Fig. 6-2 shows the schematic

of the source and the experimental setups used to characterize the source. Fig. 6-3

shows an optical micrograph of the chip.

6.3 A cavity-enabled technique for optical, quantum

limited photodetection

Lead Authors: Christopher Panuski

Traditional photodetectors, which rely upon the electronic amplification of pho-

togenerated charge carriers, are often the performance-limiting component of both

classical and quantum optical systems. To circumvent the fundamental limitations

associated with these devices, we introduce an alternative, semiconductor-based pho-

todetection architecture, a schematic for which is shown in Fig. 6-4, in which signal

amplification is achieved in the optical domain through the incorporation of a high

quality photonic cavity. We demonstrate the feasibility of realizing single photon am-

plification at room temperature with all-optical readout, which inherently affords a

significantly enhanced detection bandwidth, orders of magnitude lower thermal noise,

and minimal channel attenuation as compared to classical electronic detectors. Such a

system may be especially promising for implementing optical feed-forward with opti-

cal modulation of phase shifters, without ever requiring conversion into the electronic

domain.
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Figure 6-2: (a) Schematic layout of the photonic integrated circuit composed of a
high-Q thermally tunable ring for efficient pair generation by spontaneous four-wave
mixing, followed by a DBR for pump rejection and the add-drop ring-resonator fil-
ters for the demultiplexing of signal and idler photons. Convenient optical coupling
to a single-mode polarization-maintaining fiber array is achieved via focusing grat-
ing couplers separated by a 127pm pitch. (b) Schematic transmission spectrum of
the first ring around the pump wavelength wp. When one of the ring resonances is
tuned to the laser at wp, signal and idler photons are produced in correlated pairs at
neighboring resonance wavelengths w, and wi, respectively. (Pairs are also generated
at wavelengths spaced by multiple free spectral ranges.) (c) Schematic transmission
spectrum of the DBR with the stop band overlapping with the pump wavelength wp.
(d) Add-drop filter spectrum tuned to route idler photons to the drop port. (e) First
experimental setup: single-chip pump rejection. The add-drop rings are both tuned
on resonance with the pump. Light is collected from the common throughport. (f)
Second experimental setup: Correlated photon pairs generated in chip A are sent via
a fiber to chip B where further pump rejection and signal or idler demultiplexing are
performed before spectral characterization or coincidence measurements with off-chip
SNSPDs.
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Figure 6-3: Optical micrograph of the source (one of four on the chip in an area of 2.4
by 1.36mm 2 ). Two grating couplers are not shown. (1) Grating couplers used to cou-
ple (collect) light to (from) the system are shown on the right. The input light is split
by (2) a 2:1 multimode interferometer for optical alignment. Pump light is then routed
via (3) a 500-by-220-nm ridge waveguide to (4) the pair-generation ring. The pump
is removed with (5) the DBR, which is divided into two sections [(6) Fabry-Perot res-
onances due to the division can be controlled with the theFmo-optic phase shifter [6]].
The multiplexed signal and idler photon combs are then split off for spectral mon-
itoring at (7) the directional coupler before demultiplexing and/or further filtering
with the (8) signal and (9) idler add-drop rings. (10) The p-doped/ intrinsic/n-doped
germanium photodiodes were not used during the experiment; however, they could
be used to monitor the add-drop ring alignment.
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Figure 6-4: a) Schematic of the coupled cavity detector. Similar to a Q-switched
laser, cavity A1 is in a high-Q state due to destructive interference between its output
decay channel and light returning from cavity A 2. Injecting a signal photon into
A 2 disrupts this interference condition, creating a low-Q configuration which quickly
flushes out (b) the energy stored in the composite system. c) A possible experimental
implementation of the coupled cavity configuration using a photonic crystal. Here A 1
is the tunnel cavity, and A 2 is the signal cavity.
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Chapter 7

Conclusion

There have been many small scale demonstrations of experimental quantum informa-

tion processing in different physical systems. There have also been impressive theoret-

ical breakthroughs in quantum algorithms and quantum error correction. Given the

inherently better scaling of some quantum algorithms, it has been known for some

time that a large enough quantum computer will surpass any classical computer.

However, moving from proof of concept demonstrations to useful quantum proces-

sors that are large enough to outperform classical computers presents a number of

challenges. Actually building a useful quantum information processor will require ex-

perimental progress towards scalable platforms capable of housing large numbers of

qubits with a low error rate. Furthermore, realistic theory will be required which goes

beyond just scaling and thresholds, and quantitatively lays out device requirements

for experimentalists, while using the simplest possible resources.

The focus of this thesis was on photonic quantum information processing which

has several advantages including scalability and negligible decoherence rate, but must

contend with the probabilistic nature of linear optic gates. In Chapter 2, we studied

the resource requirements for building an all-optical repeater that is "useful" i.e.

capable of beating the repeaterless bound, even when the sources, waveguides and

detectors used to create the required entangled states are lossy. Device parameters

that are aggressive but achievable in the near future were assumed. A 48 photon

entangled state is capable of working as a useful quantum repeater. However, making
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this resource state with probabilistic linear optic gates requires 10 5 photon sources.

While this number is still extremely large, the improvements presented in this thesis

reduced the resource requirements by six orders of magnitude in this thesis, which

suggests that there is a lot of room for improvement in cluster state creation and

error correction. Furthermore, we found that if sources of three-photon Greenberger-

Horne-Zeilinger(GHZ) states were available, the resource requirements would go down

to 1000 such sources.

To make the cluster state creation process more efficient and reduce the amount of

feed-forward required, we studied a more efficient way of generating photonic cluster

states using percolation theory in Chapter 3. We presented a mapping from a set

of fusion operations to a logical graph: the bond percolation threshold of the log-

ical graph gives us the required success probability of each entangling operation in

order to obtain a resource for universal quantum computation. This allowed us to

find configurations in which low success probability entangling gates can still allow

for universal quantum computation. Furthermore, we were settled a hitherto un-

solved problem settle by showing that a renormalizable cluster can be created with

3-photon microclusters over a 2D graph without feedforward, which is attractive for

an integrated photonic realization. We proved a lower bound on the required success

probability of each fusion operation for scalable, feed-forward free creation of large

cluster states, starting with n photon microclusters: 1/(n - 1).

Chapter 4 presented an architecture for cluster state quantum information pro-

cessing with nitrogen vacancy centers in diamond which also uses percolation theory.

The architecture reduces the required coherence time for the qubit and has a natural

tolerance to faulty sites.

We then presented protocols for a quantum network architecture in Chapter 5

which only require entanglement swaps at repeater stations and knowledge of neigh-

boring links. Even with such limitations, the network provides an improved scaling

of the entanglement generation rate and is capable of connecting multiple parties

simultaneously.

Finally, Chapter 6, presented experimental and theoretical work on devices for
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photonic quantum information processing that I was involved in.

Recent work has shown how percolated lattice can be renormalized to a fault

tolerant Raussendorf lattice [161, 162]. Future work should focus on calculating the

resource requirements for fault tolerant quantum computing with the percolation

based approach which should have lower resource requirements. The error models

used in this thesis have been mostly limited to photon loss. The codes used here do

provide tolerance against bit flip and phase flip errors, but the exact mapping of the

error channel induced by photon distinguishability and impurity should be studied in

future work to determined to determine the corresponding experimental requirements.
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