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Abstract

Despite great progress over the past several decades in the development and application
of computer-aided tools for engineering enzymes for a vast array of industrial applications.
rational enzyme design remains an ongoing challenge in biotechnology. This thesis presents a set
of novel applications and methods for the computer-aided understanding and design of enzyme
activity.

In the first part. we apply biophysical modeling approaches in order to design non-native
substrate specificity in a key enzymatic step (the thiolase-catalyzed condensation of two acyl-
CoA substrates) of an industrially useful de novo metabolic pathway. We present a model-
guided. rational design study of ordered substrate binding applied to two biosynthetic thiolases.
with the goal of increasing the ratio of C6/C4 products formed by the 31HIA pathway, 3-hydroxy-
hexanoic acid and 3-hydroxybutyric acid. We identify thiolase mutants that result in nearly ten-
fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the
thiolase for chain elonglation, as well as expand our knowledge of sequence-structure-function
relationship for this important class of enzymes.

In the second part, we apply methods from machine learning to an ensemble of reactive
and non-reactive, but "almost reactive" molecular dynamics trajectories in order to elucidate
catalytic drivers in another industrially important model enzyme system, ketol-acid
reductoisomerase. Using a small number of molecular features, we show that we can identify
conformational states that are highly predictive of reactivity at specific time points relative to the
progress of the prospective catalytic event and also that provide mechanistic insight into the
reaction catalyzed by this enzyme. We then present a novel theoretical framework for evaluating
the contribution to the overall catalytic rate of the conformational states found in the previous
part to be predictive of reactivity. Leveraging a computational enhanced sampling technique
called transition interface sampling, we show that trajectories sampled in such a manner as to
selectively visit the conformations predicted to be characteristic of reactivity exhibit rate
constants many orders of magnitude greater than trajectories not required to visit these reactive
conformations. The results of this analysis illustrate the importance of incorporating dynamical
information into existing frameworks for biocatalyst design.
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Chapter 1 : Introduction
Enzymes represent an enormous class of highly efficient catalysts, which have been

optimized over billions of years of evolution. While the catalytic power of enzymes has been

harnessed extensively for industrial applications in fields ranging from therapeutics to

biomaterials to agriculture to commodity chemical production, enzymes must often be fine-tuned

and engineered in order to be suitable for a particular human use. The highly specific chemical

tasks that enzymes have been optimized over billions of years to perform often do not align

perfectly with such industrial applications, and the ability to effectively fine-tune these

biocatalysts to suit a particular human-desired task remains an ongoing challenge in

biotechnology, despite great progress in the past several decades (Jemli et al. 2016; Church et al.

2014; Baker 2010).

Synthetic metabolic pathways or microbial cell factories, used for the sustainable or

otherwise advantageous production of specialty or commodity chemicals and fuels, represent an

especially promising application of enzyme engineering (Fisher et al. 2014). Metabolic

engineering approaches are particularly attractive for chemical production when traditional

chemical synthesis is difficult, and the field of metabolic engineering has seen significant growth

due to the numerous advantages conferred by metabolic engineering strategies for chemical

production, such as high stereospecificity and mild reaction conditions (Tseng and Prather 2012).

Improved catalytic function and thermal or pH stability are typical targets for rational enzyme

engineering applications in metabolic pathways (Holland et al. 2012), and often engineered de

novo pathways for a specific chemical product take advantage of enzymes with naturally
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promiscuous substrate selectivity and rely on evolutionary or rational design approaches to

optimize and make the pathway fully functional (Fisher et al. 2014).

The decision to undertake a rational design or evolutionary approach to engineering a

particular enzyme depends on the amount of structural information available, as well as the

throughput of the method that will be used to assay the resulting sequence space (Hicks and

Prather 2014), although the two approaches are not necessarily mutually exclusive. Although

screening-based approaches such as directed evolution and bioprospecting have been the

traditional workhorses for engineering enzymes in metabolic pathways due to the lack of a

requirement for a crystal structure of the enzyme under study, ultimately these approaches are

limited in their effectiveness by the quality and availability of assays used to perform the

selection and screening (Fisher et al. 2014). Rational engineering approaches, although often

requiring greater input structural information as well as human intervention and intuition, in

theory allow greater fine-tuned control and understanding of the system under study.

Much of the progress in rationally engineering and understanding enzymes in the last

several decades has been made possible and driven by advances in computing and computer

simulation techniques (Hilvert 2013). Since the first simulations of proteins in the 1960s and the

development of hybrid quantum mechanical / molecular mechanics methods, the enormous

increases in computing power have allowed these biophysical modeling methods to be applied to

increasingly complex systems, at increasing levels of detail. A major challenge in using

computer models to design or optimize enzyme catalysts is the vast set of possible configuration

states and subtly different potentially reactive pathways. From an algorithmic computer science

perspective, due to the vast number of possible amino acid configurations, the design of protein
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sequences is an NP-Hard problem (Pierce and Winfree 2002). Accounting for substrate and

backbone flexibility, electrostatic interactions and protein conformational changes during the

course of the reaction, remain significant challenges in computational enzyme design (Baker

2010; Lippow and Tidor 2007).

The computer-aided rational design of de novo enzymes has represented an important

milestone in the field of enzyme engineering and a true test of how far understanding in the field

has progressed. Recent and exciting milestones in the field of computer-aided enzyme design

have included the successful computational design of enzyme catalysts for the Kemp elimination

(R6thlisberger et al. 2008) and Diels-Alder reactions (Siegel, et al 2010) - for which no natural

catalysts exists. However, the kinetic performance of artificial enzymes remains significantly

lower than that of natural enzymes (Kiss et al. 2013; Baker 2010). Often a combination of

computer-aided rational design and directed evolution is required to yield highly efficient de

novo enzymes, a notable example being the iterative rational design and screening approach used

to achieve a rate acceleration of 6x 108 for a de novo enzyme designed to catalyze the Kemp

elimination (R6thlisberger et al. 2008; Khersonsky et al. 2011; Privett et al. 2012). The

significant differences in the rate enhancements between natural enzymes and artificial enzymes,

suggest gaps in understanding the complete nature of catalytic events, as well as limitations of

existing computer modeling frameworks.

The major conceptual framework governing enzymatic catalysis, and consequently the

primary strategy for designing or engineering more active enzymes, has long been transition state

theory (Eyring and Stearn 1939). According to transition state theory, enzymes are able to

achieve rate enhancements by lowering the activation energy barrier of the catalyzed reaction
8



relative to the uncatalyzed reaction. This lowering of the activation energy barrier can be

accomplished by stabilizing the transition state, debstabilizing the ground state, or a combination

of the two (Pauling 1946). Transition state theory alone, however, is often not always sufficient

to design enzyme reactivity and an increasing body of literature has pointed to the importance of

other effects, such as enzyme dynamics (Kamerlin and Warshel 2010; Ruscio et al. 2009).

Further support for the need for new paradigms in biocatalyst design comes from catalytic

antibodies, which are also obtained through a transition-state stabilization rationale and have

likewise proved catalytically less efficient than their natural counterparts (Richter et al. 2012).

Generalized frameworks of transition state theory account for the effect of other factors beyond

binding of the transition state through the transmission coefficient, which is a correction term

accounting for all the approximations assumed in transition state theory, such that reactant states

are in local equilibrium along a reaction coordinate that can be treated by classical mechanics,

and the absence of recrossings of the transition state dividing hypersurface (Garcia-Viloca et al.

2004).

The importance of "preorganization" of electrostatic interactions facilitating the

formation of the transition state has been proposed to be one of the most significant factors

besides transition state stabilization and ground state destabilizing driving enzymatic catalysis

(Warshel 1998; Villd and Warshel 2001). A corollary of the electrostatic preorganization theory

is that lowering the energetic barrier to facilitate selective formation of subsets of ground state

conformations that lie on the path to the transition state, termed "near-attack conformations"

(Bruice 2002) can be just as important as lowering the energetic barrier to the transition state

itself (Shurki et al. 2002; Strajbl et al. 2003). Another similar proposed reason for why artificial
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enzymes have failed to achieve rate comparable to natural enzymes is the neglect through

modeling of transition and ground states as static structures of dynamical effects in certain

enzyme systems, such as rapid, subpicosecond "rate-promoting" motions proposed to facilitate

the reactive event (Zoi, Antoniou, and Schwartz 2017), although this hypothesis is controversial

(Glowacki, Harvey, and Mulholland 2012; Kamerlin and Warshel 2010).

Testing such hypotheses about factors driving enzymatic catalysis is a considerable

challenge. Experimentally probing enzyme structure in the transient moments leading up to

prospective catalytic event is difficult and consequently most studies of early catalytic drivers

have relied on theoretical simulation studies. Accurately modeling bond breaking and bond

forming events in silico however requires a very computationally expensive quantum mechanical

treatment. Another major challenge is the fact that catalytic transitions are rare events, and

cannot be efficiently sampled using conventional molecular dynamics simulations.

Computational tools for enhanced sampling of transitions such as umbrella sampling (Torrie and

Valleau 1974), blue moon sampling (Carter et al. 1989) and metadynamics (Laio and Parrinello

2002) alter the underlying dynamics and thus do not allow the true dynamics of the catalytic

trajectory to be studied (Swendsen and Bolhuis 2014).

Transition path sampling (TPS) and transition interface sampling (TIS) are Markov chain

Monte Carlo processes designed to sample properly-weighted ensembles of rare event transitions

without a priori knowledge of the reaction coordinate or relying on the limiting assumptions of

transition state theory (van Erp and Bolhuis 2005; Bolhuis et al. 2002). Unlike other enhanced

sampling methods, TPS and TIS sample true dynamical events, as if the rare event under study

was occurring spontaneously. To illustrate the power of path-sampling methods, consider a
10



series of molecular dynamics trajectories beginning with a substrate-bound enzyme. Most

trajectories beginning from this state would simply remain energetically trapped in the energetic

basin of attraction governing the reactant state, and given a 40 kcal/mol activation barrier, the

probability of generating a reactive trajectory in this manner at 300 K would be on the order of

10-3 .an extremely rare event.

Path-sampling of enzymatic trajectories has been described as "catching a protein in the

act" and allows an entire ensemble of rare event trajectories to be compared and analyzed

(Hummer 2010). Numerous enzymatic mechanisms have been studied in atomic detail using

transition path sampling studies (Hummer 2010; Basner and Schwartz 2005; Quaytman and

Schwartz 2007; Crehuet and Field 2007; Saen-Oon, Schramm, and Schwartz 2008, Zoi,

Antoniou, and Schwartz 2017; Harijan et al. 2017). Appropriate statistical mechanical theory can

then prescribe an analysis to be performed on the resulting trajectories to compute a reaction rate

(Dellago et al. 1998; van Erp, Moroni, and Bolhuis 2003). Transition path sampling was

designed to overcome the limitations of the traditionally-used Bennett-Chandler approach for

computing rate constants (Chandler 1978; Bennett 1977), which has been shown to be extremely

sensitive to the choice of reaction coordinate (Bolhuis and Dellago 2015). Since the development

of transition path sampling, numerous extensions of the original path sampling idea have been

developed to either improve the computational efficiency of the original procedure or to

surmount specific challenges posed by certain types of energy landscapes (e.g. diffusive energy

barriers). These extensions have included transition interface sampling, forward flux sampling,

multiple state transition interface sampling and replica exchange transition interface sampling

(Swendsen and Bolhuis 2014; Bolhuis and Dellago 2015).
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Transition interface sampling is one path-sampling technique that was designed to

overcome several computational limitations of the older transition path sampling method, and

provides a computationally efficient procedure for computing a rate constant (van Erp, Moroni,

and Bolhuis 2003). The transition interface sampling procedure involves dividing the phase

space of interest into a series of non-intersecting interfaces defined along a pre-specified order

parameter k. The only requirement for this order parameter is that it is capable of delineating the

reactant basin of attraction from the product basin of attraction, i.e. it does not need to be a true

reaction coordinate. Once stable reactant and product basins have been defined along the order

parameter, a Monte Carlo procedure can be used to generate a set of transitions according to the

statistical mechanical ensemble of interest once the sampling procedure has been bootstrapped

by generating an initial "seed" trajectory. In transition interface sampling, this Monte Carlo

procedure consists solely of shooting moves, in which candidate trajectories are generated by

selecting a time slice of the previous trajectory in the Markov chain at random, making small

perturbations to the velocity at the selected time point, and then integrating forward and

backward from this point in time. Candidate trajectories are accepted into the Markov chain if

they cross the corresponding reactant and product interfaces.

To date, most works applying path-sampling simulations to enzymatic systems have not

utilized the formal rate constant computation procedure, but rather have used transition path

ensembles as datasets to study mechanistic details such as the importance of "rate-promoting

vibrations" (Dametto, Antoniou, and Schwartz 2012). To date, only a few published studies have

leveraged insights from path-sampling simulations to propose enzyme variants with improved

activity, and none utilized a formal computational path-sampling procedure for computing a rate
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constant. Recent examples of transition path sampling studies of enzymes used in design

framework have included Zoi et al (2017), which described an aromatic amine dehydrogenase

mutant proposed to introduce a rate promoting motion in silico. Similar studies by Harijan et al.

(2017) and Zoi et al. (2016) used transition path sampling simulations combined with

computational protein design tools to identify a purine nucleoside phosphorylase (PNP) variant

which does not exhibit a slowed downed rate with heavy isotope 2 H, "C and "N substitution, as

does the wild-type PNP.

A major obstacle preventing the full leverage of rare-event ensembles generated using

path-sampling techniques is the high-dimensionality and dynamic nature of the information

produced by the simulations. Human intuition is poorly suited to the analysis of such

multivariate data, but techniques from artificial intelligence and machine learning can provide

powerful tools for analyzing such complex datasets. Machine learning approaches have been

used with great success in problems in structural biology such as prediction of protein structure,

protein folding pathways, protein-ligand binding affinities and drug design (Wallach, Dzamba,

and Heifets 2015; Radivojac et al. 2013; Wu et al. 2017; Ramsundar and Pande 2016), but to

date a limited number of studies have applied machine learning approaches to characterize

reactive enzymatic trajectories (Zhang et al. 2017; Antoniou and Schwartz 2011).

The application of the aforementioned computer simulation techniques to understand and

optimize natural enzymes for industrial uses is the focus of this thesis, which comprises two

main parts. In Chapter 2 we apply biophysical modeling approaches in order to design non-

native substrate specificity in a key enzyme that is part of an industrially useful de novo

metabolic pathway. The 3-hydroxyacid (3HA) pathway also referred to as the reverse -
13



oxidation or CoA-dependent chain elongation pathway, is a platform pathway for the synthesis

of dozens of useful compounds of various chain lengths and functionalities, including acids,

alcohols, alkanes and aldehydes, with applications in the pharmaceutical, polymer and flavor and

fragrance industries (Clomburg et al., 2015; Kim et al., 2015; Sheppard et al., 2014; Tseng and

Prather, 2012). The thiolase enzyme, the first committed step in this pathway, sets the chain

length upon which the other downstream enzymes act, and our goal was to obtain a more

selective thiolase with high catalytic activity towards the synthesis of longer chain products. We

first present a theoretical framework for inducing favorable binding of substrates favoring

production of a longer chain (C6) product relative to a shorter chain (C4) product. We apply this

framework to the biosynthetic thiolase PhbA from Z ramigera for which there is ample

crystallographic data but which exhibits low activity towards longer chain substrates, such as

butyryl-CoA, to identify mutants predicted to exhibit higher C6/C4 selectivity compared to wild

type. We then applied the same approach to the more active C. necator BktB thiolase. Mutants

that were computationally predicted to improve the C6/C4 selectivity ratio were initially

screened in vivo within the context of two heterologous pathways, free HA production and PHA

biosynthesis, employing different downstream enzymes (thioesterase vs. PHA polymerase). This

process led to the identification of thiolase mutants with up to ten-fold increases in the selectivity

ratio. In vitro characterization confirmed that one of the most selective mutants had 30-fold

lower activity towards formation of the C4 product, whereas the activity towards C6 formation

was comparable to wild type. Thiolases represent a large conserved superfamily of enzymes

central to many other biological pathways, and lessons learned from this study can help expand
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our understanding of the sequence-structure-function relationship for this important class of

enzymes.

In Chapter 3, we apply methods from machine learning to a series of molecular dynamics

simulations generated using transition interface sampling in order to elucidate catalytic drivers in

another industrially important model enzyme system, keto-acid reductoisomerase (KARI). In this

study we also explore one of the central ideas underlying the electrostatic preorganization and

near-attack conformation theories of reactivity - that successful reactive trajectories selectively

visit regions of enzymatic phase space that promote reactivity. We use techniques from artificial

intelligence, particularly LASSO (Tibshirani 1996) to systematically identify features that define

reactivity, by comparing a series of reactive and non-reactive trajectories at discrete time points

prior to the prospective catalytic event. We show that a small number of features can be used to

define subtle, but highly predictive conformational differences between the reactive and non-

reactive trajectories as early as 150 fs before the prospective catalytic event, with the predictive

features pointing to water orientation relative to the active site metal ions, side chain placement

and compression of the breaking bond as being key predictors of reactivity. We then present a

theoretical framework based on transition interface sampling for evaluating the contribution of

these features to the overall catalytic rate and demonstrate that reactive trajectories sampled in a

manner that they are forced to visit learned reactive subsets of phase space exhibit rate constants

many orders of magnitude greater than trajectories sampled without this constraint.
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Chapter 2 : Rational Design of Thiolase

Substrate Specificity for Metabolic

Engineering Applications

Note: This work performed in close collaboration with Yekaterina Tarasoval, Michael A. Hicks2 ,

and Kristala L.J. Prather1 ,2

1 Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA

2 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

Author contributions: BB performed all modeling and computations. YT performed all

experiments, except for initial PhbA screens, which were performed by MH. BB and YT both

contributed equally to data analysis and the final written manuscript.
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Abstract
Metabolic engineering efforts require enzymes that are both highly active and specific

towards the synthesis of a desired output product in order to be commercially feasible. The 3-

hydroxyacid (3HA) or coenzyme-A dependent chain elongation pathway can allow for the

synthesis of dozens of useful compounds of various chain lengths and functionalities, but suffers

from byproduct formation, which lowers yields of the desired longer chain products, as well as

increases downstream separation costs. The thiolase enzyme catalyzes the first reaction in this

pathway, and its substrate specificity at each of its two catalytic steps sets the chain length and

composition of the chemical scaffold upon which the other downstream enzymes act. However,

there have been few attempts reported in the literature to rationally engineer thiolase substrate

specificity. In this work, we present a model-guided, rational design study of ordered substrate

binding applied to two biosynthetic thiolases, with the goal of increasing the ratio of C6/C4

products formed by the 3HA pathway, 3-hydroxy-hexanoic acid (3HH) and 3-hydroxybutyric

acid (3HB). We identify thiolase mutants that result in nearly ten-fold increases in C6/C4

selectivity. Our findings can extend to other pathways that employ the thiolase for chain

elongation, as well as expand our knowledge of sequence-structure-function relationship for this

important class of enzymes.
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Introduction
Microbial fermentation affords many advantages for the synthesis of commodity and

specialty chemicals over more traditional methods. These include mild reaction conditions,

avoidance of harsh and toxic chemicals, and the ability to utilize renewable feedstocks (Keasling,

2009). Advances in metabolic engineering and synthetic biology now allow for fast construction

and manipulation of heterologous pathways in canonical production host strains (Lee et al.,

2012). Although a wide variety of useful compounds have been synthesized using biological

systems, few of these pathways have been commercialized. For a given pathway to be

commercially viable, the process must produce the desired product in high yield, at a high titer

and with high productivities.

The 3-hydroxyacid (3HA) pathway (Figure IA), also referred to as the reverse

oxidation or CoA-dependent chain elongation pathway, can allow for the synthesis of dozens of

useful compounds of various chain lengths and functionalities, including acids, alcohols, alkanes

and aldehydes, with applications in the pharmaceutical, polymer and flavor and fragrance

industries (Clomburg et al., 2015; Kim et al., 2015; Sheppard et al., 2014; Tseng and Prather,

2012). This is due to the promiscuous activities of pathway enzymes, which on the one hand

makes the biological synthesis of these compounds possible, but on the other, always results in a

mixture of products at the end of the fermentation (Cheong et al., 2016; Clomburg et al., 2012).

Thus, it is imperative to select pathway enzymes with appropriate substrate specificities to

maximize yields of the desired product in order to minimize downstream separation costs. The

lack of enzymes in the metabolic engineer's toolbox that are both highly active and highly
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specific toward the production of a particular product is a major limitation in the construction of

commercially feasible metabolic pathways.

In the case of the 3HA pathway, the thiolase enzyme sets the chain length upon which the

other downstream enzymes act. Our goal was thus to obtain a more selective thiolase with high

catalytic activity towards the synthesis of longer chain products. Previously, we have used the

3HA pathway and demonstrated synthesis of both 3-hydroxy-valeric acid (3HV) and 3-hydroxy-

hexanoic acid (3HH). While we achieved 100% conversion of the fed propionate precursor for

the synthesis of 3HV, less than 1% of the fed butyrate was converted to 3HH indicating poor

specificity and activity of the pathway enzymes towards the longer chain substrates (Martin et

at., 2013). As proof of principle, in this work we focused on achieving selective production of

the longer chain C6 product, 3-hydroxyhexanoyl-CoA (3HH-CoA), relative to the C4, 3-

hydroxybutyryl-CoA (3HB-CoA). Formation of 3HH-CoA results from the initial thiolase

catalyzed condensation of a priming butyryl-CoA and extending acetyl-CoA, and subsequent

action of a reductase on the condensation product, whereas 3HB-CoA is formed by the

condensation of two acetyl-CoA substrates followed by reduction (Figure 1 B). We thus sought to

increase the thiolase selectivity ratio, which we define here as the ratio of C6 product formed

relative to the C4 product. Ideally, this would mean the ratio of the C6 product to the C4 product

at the end of the thiolase catalyzed reaction (i.e. 3-oxo-hexanoyl-CoA to acetoacetyl-CoA), but

the thermodynamics of this reaction require coupling to a downstream enzyme to enable product

formation. Thus as a proxy, we use formation of free 3HH and 3HB, as well as PHAs containing

those monomers, which are derived from 3HH-CoA and 3HB-CoA, the condensation products

after the reductase step.
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To arrive at a more selective thiolase, two general approaches could be considered:

bioprospecting or protein engineering, the latter including both rational engineering and directed

evolution approaches. The decision to undertake a given approach hinges on the amount of

information available at the outset of the study, as well as the throughput of the method that will

be used to assay the resulting sequence space (Hicks and Prather 2014). Bioprospecting for more

selective thiolases presents several difficulties because very few have been extensively

characterized and employed in heterologous pathways despite the fact that thiolase enzymes are

ubiquitous in nature, being central to many biochemical processes such as fatty acid biosynthesis

and degradation, PHA biosynthesis, and the Clostridial ABE fermentative pathway (Haapalainen

et al., 2006). Specifically, the BktB thiolase from Cupravidus necator (formerly Ralstonia

eutropha) has been used in the biosynthesis of hydroxyacids and alcohols from C4-C10 in chain

length (Cheong et al., 2016; Martin et al., 2013; Sheppard et al., 2014). Interestingly, this

organism has 14 other genes in its genome annotated as putative thiolases, but only BktB and

one other thiolase, PhaA, have been characterized and explored for metabolic engineering

purposes (Reinecke and Steinbiichel, 2008). The catalytic activity of BktB or other thiolases

towards >C6 substrates and products has not been studied due to several inherent challenges

described later herein, and due to the commercial unavailability of required acyl-CoA substrates.

Attempts at rational engineering of the thiolase have been limited due to the lack of in vitro data

and a poor understanding of the sequence-structure-function relationship of the thiolase. A

selection platform or a high-throughput screen would allow for one to assay a large number of

variants, however, such methods are not available for the thiolase - the reasons for which
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become apparent upon examination of the mechanism of the Claisen condensation reaction

catalyzed by the thiolase.

Thiolases catalyze the condensation of a priming acyl-CoA and an extending acyl-CoA

using a sequential bi bi ping-pong mechanism (Figure 1 C). We were interested in the

condensation of butyryl-CoA and acetyl-CoA to form 3-oxo-hexanoyl-CoA with high

specificity; however, it is not possible to directly assay for this reaction for several reasons. First,

for biosynthetic thiolases, such as BktB from C. necator and PhbA from Zoogloea ramigera, the

condensation direction is thermodynamically unfavorable, requiring the condensation product to

be reacted further in order to drive the reaction forward (Thompson et al., 1989). Here, the

thiolase is coupled with a kinetically competent dehydrogenase enzyme. Reacting away CoASH,

the other product of the condensation reaction, is insufficient to drive the reaction forward

because it is released in the first half-step of the overall condensation reaction mechanism. In

addition, the self-condensation of two acetyl-CoAs will always occur with some frequency,

biasing any measured reaction rate. However, the low yields and high cost of synthesis of these

acyl-CoAs precluded the development of a high-throughput activity screen.

It is for the above reasons that engineering of the thiolase has proved to be challenging,

with only two examples of such attempts. The first attempt at thiolase engineering described in

the literature used directed evolution to arrive at a variant that exhibited robust acetoacetyl-CoA

product formation but lower sensitivity to inhibition by CoASH (Mann and Lttke-Eversloh,

2012). Another effort to engineer the thiolase to accommodate a-substituted acyl-CoAs relied on

intuition guided rational mutagenesis of just one residue in close proximity of the active site but

employed coenzyme-A analogs (Fage et al., 2015).
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Limited by a low throughput in vivo assay, but armed with extensive crystallographic

data, we followed a computationally driven, structure guided rational engineering approach to

engineer the biosynthetic thiolase for improved selectivity towards the synthesis of longer chain

products. In this work we present a theoretical framework for the design of ordered binding in a

sequential bi bi ping-pong reaction. We initially apply this framework to the biosynthetic thiolase

PhbA from Z ramigera for which there is ample crystallographic data but which exhibits low

activity towards longer chain substrates, such as butyryl-CoA, to identify mutants which we

predict will exhibit higher selectivity ratios compared to wild type in order to validate the

approach. We then applied this same approach to the more active C. necator BktB thiolase.

Mutants that were computationally predicted to improve the selectivity ratio were initially

screened in vivo within the context of two heterologous pathways, free HA production and PHA

biosynthesis, which employ different downstream enzymes (thioesterase vs. PHA polymerase).

This process led to the identification of thiolase mutants with up to ten-fold increases in

the selectivity ratio. In vitro characterization confirmed that one of the most selective mutants

had 30-fold lower activity towards formation of the 3HB product, whereas the activity towards

3HH formation was comparable to wild type. Thiolases represent a large conserved superfamily

of enzymes central to many other biological pathways, and lessons learned from this study can

help expand our understanding of the sequence-structure-function relationship for this important

class of enzymes.
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Materials and Methods
Chemicals and reagents

All chemicals were obtained from Sigma Aldrich unless stated otherwise. Protein

purification reagents were purchased from BioRad Laboratories (Hercules, CA).

Strain and plasmid construction

Escherichia coli MG 1655 K12 (DE3) was used as the host for all production

experiments. pCDFDuet-pct-phaC2 was constructed by restriction enzyme cloning. First, pct

from M. elsdenii was amplified using Q5 Polymerase (New England Biolabs, Ipswish, MA) from

M. elsdenii gDNA. PhaC2 was synthesized as a codon optimized gBlock from Thermo Fisher

and digested with the respective restriction enzymes. Construction of pETDuet-bktB-phaB is

described in Martin et al. (2013a) . This plasmid served as the template for generating BktB

mutants. Primer sequences can be found in Supplementary Table II.

Culture conditions and strain propagation

E coli DH5a was used for construction and maintenance of all plasmids. For PHA

production experiments, E coli MG 1655 K12 (DE3) was transformed by electroporation with

pCDFDuet-pct-phaC2 and a pETDuet plasmid with a given thiolase variant and phaB. For every

production experiment, three individual colonies were picked and grown overnight in LB

medium containing carbenicilin (50 pg/mL) and streptomycin (50 pg/mL) at 30'C, 250 rpm. A

250-mL shake flask containing 50 mL of M9 minimal medium with 15 g/L glucose was used for

production experiments and inoculated with 1% v/v of the overnight starter culture. Expression

of heterologous genes was induced by addition of IPTG to 100 pM final concentration when
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OD600 was 0.7-1.0. Butyrate was added to 15 mM final concentrations from a neutralized

sterlstock solution at induction. Cells were harvested by centrifugation and washed twice with

water before freezing at -80'C and lyophilization for polymer extraction and derivatization. For

analysis of free acids, cell-free culture supernatants were analyzed directly by HPLC.

Site specific mutagenesis

All point mutants were made using the QuikChange Lightning XL Kit from Agilent

Technologies according to the manufacturer's protocols (Agilent Technologies, Santa Clara,

CA), except that DH5a cells were used for transformation of QuikChange products. The online

primer design tool (http://www.genomics.agilent.com/primerDesignProgram. isp) was used to

generate the mutagenesis primers to be used in the thermal cycling reaction. Primer sequences

can be found in the Supplementary Table II. Products of this reaction were used to transform

chemically competent F. coli DH5a and plated on selective medium after recovery in

SOC. Individual colonies were selected and mutations confirmed by sequencing (GeneWiz,

Cambridge, MA).

Product analysis
Acidic methanolysis to analyze PHA composition was performed as described by Brandl

et al. (1988) and is briefly described below. Cells were harvested by centrifugation and washed

twice with water. The cells were then frozen at -80'C. Lyophilized cells were weighed to

determine the CDW. Then, 5-20 mg of dried cells was used for methanolysis to determine PHA

polymer composition by GC/MS. Hexanoic acid was added as an internal standard to a final

concentration of 2.5 mM. In short, 1 mL chloroform, 0'.85 mL methanol and 0.15 mL

concentrated H2SO4 was added to each sample in a screw-capped tube with threads wrapped with
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PTFE tape. The samples were then boiled for 1.5-2 hours at 1 000 C on a heating block with

intermittent manual mixing. After boiling, the tubes were cooled and placed on ice, followed by

addition of 0.5 mL water and vortexing for 1 minute. Tubes were centrifuged to achieve phase

separation. The bottom chloroform layer was then transferred into a glass vial, dried over

MgSO 4 , and filtered through a 0.45 ptm PTFE filter into a GC vial. Derivatized 3HAs were

analyzed on an Agilent 7890B/5977A GC/MS with a VF-WAX column (30 m x 250 ptm x 0.5

VLm). The following method parameters were used: inlet temperature of 220'C, initial oven

temperature of 800 C and a linear ramp rate of 10 C/min until final oven temperature of 220'C,

with a 10:1 split ratio. An FID detector was used for quantification of methyl-3HB and methyl-

3HH. Quantification of free acids, 3-hydroxyhexanoic and 3-hydroxybutyric acids, was

performed by HPLC. One mL of culture was harvested at induction and at 72 hours post

induction and centrifuged at maximum speed for 6 minutes. A sample of the supernatant was

then run on an Aminex HP-87x (BioRad, Hercules, CA) column on an Agilent 1200 HPLC

instrument equipped with an RID detector. 5 mM sulfuric acid was used as the mobile phase at

0.6 mL/min with column temperature held at 35'C.

Protein purification
Thiolase variants were subcloned into a protein expression vector pTev5 with an N-

terminal hexa-histidine tag using CPEC cloning with primers listed in the Supplementary

Information. E. coli BL21(DE3) was used as the host for protein expression. One liter of culture

was grown in TB medium with glycerol at 300 C and induced with 100 gM IPTG when OD 60 0

was ~ 0.5. Cells were harvested 15-18 hours post-induction by centrifugation and resuspended

in 2.5x vol/wt buffer containing 50 mM Tris-HCI pH 8.0, 500 mM NaCl and 10% vol/vol
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glycerol. Lysozyme was added to I mg/mL final concentration and cells were lysed by

sonication. Protein purification was then performed as described previously (McMahon and

Prather 2014). After purification, proteins were exchanged into storage buffer (50 mM Tris pH

8.0, 50 mM NaCl and 10% vol/vol glycerol), flash frozen in small aliquots and stored at -80'C.

Protein concentration was determined by a Bradford assay using BSA as standard. PhaB

reductase from C. necator, which was used as a coupling enzyme in condensation assays, was

purified in the same manner as described above.

Enzyme assays
Thiolase variants were assayed in both condensation and thiolysis directions. The

condensation assay was performed akin to that described previously (Bond-Watts, Bellerose, and

Chang 2011), except at pH 7.0 and coupled to PhaB reductase (from C. necator). Each reaction

contained 100 mM Tris pH 7 buffer, 100 tg/mL NADPH, and varying amounts of acetyl-CoA,

and reaction progress was monitored by a decrease in A 34o nm corresponding to NADPH

consumption on a Beckman-Coulter DU800 spectrophotometer. Thiolases were also assayed in

the thermodynamically favored thiolysis direction with acetoacetyl-CoA and 3-oxo-hexanoyl-

CoA. Each assay contained 100 mM Tris pH 7.0, 10 mM MgCI 2, 200 pM CoASH, an

appropriate amount of enzyme, and varying substrate concentration. A decrease in A 303,

corresponding to consumption of the Mg-keto-acyl-CoA complex was measured

spectrophotometrically. The extinction coefficient for acetoacetyl-CoA was determined to be

4.22 tM- cm-' under the enzymatic conditions. Concentrations of all enzymes used in the assays

were such that the reaction rate was linear for at least 0.5 minutes. Enzymes were diluted in pH 7

dilution buffer (100 mM Tris pH 7, 50 mM NaCl and 10% vol/vol glycerol). Each substrate
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concentration was assayed at least in duplicate. Generated concentration vs. initial rate curves

were fit to the Michaelis-Menten equation, from which catalytic parameters (kcat and Km) were

determined using the nlnfit routine in MATLAB.

Synthesis of 3-oxo-hexanoyl-CoA
The generalized synthesis is outlined in Scheme I below and was inspired from the

synthesis of ethylmalonyl-CoA by Dunn et al. (2014) and adapted by M. Blaissey and M.C.Y.

Chang (personal communication). 3-oxo-hexanoic acid methyl ester was purchased from Alfa

Aesar. 1 mmol of the ester was allowed to react with 1.2 mmol aqueous NaOH at room

temperature overnight. The reaction was then neutralized to pH 7.0 and extracted three times

with ethyl acetate, dried over MgSO 4 and solvent evaporated. 3-oxo-hexanoic acid appeared as a

white solid. This crude solid was used in subsequent thioesterification with 1.2 mmol of

thiophenol, 1.5 mmol diisopropylcarbodiimide and 2 mg of dimethylaminopyridine in 10 mL of

ethyl acetate. The reaction was carried out on ice for 2 hours, followed by 2 hours at room

temperature, after which the white precipitate was filtered off and the filtrate extracted with

saturated sodium bicarbonate. The organic layer was then dried over MgSO 4 and solvent

evaporated. Crude thiophenol-coupled product was then re-dissolved in 200 tL acetonitrile and

added to I mL of 0.5 M NaHCO 3 on an ice bath. 25 mg of CoASH was added and the reaction

allowed to proceed for 1 hour on ice and then 1 hour at room temperature. The reaction was

quenched with 50% formic acid, and extracted with diethyl ether. Final 3-oxo-hexanoyl-CoA

product was purified by HPLC with 25 mM ammonium acetate pH 4.5 and 20% acetonitrile in

water as the mobile phases using a linear gradient from 1% v/v acetonitrile to 20% over 25

minutes on an Agilent Zorbax Eclipse XDB C18 column. Identity of the compound was verified
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by mass spectrometry. Finally, the purified product was desalted on the same column but with

only water and acetonitrile as mobile phases.

A Ka H OH Scheme I. Synthesis of 3-oxo-
Base hydrols is

SH DCC, DMM hexanoyl-CoA.
Steglich Esteriflcation

0 0 CoASH in NaHCO 3 0

Starting X-ray Structures
For PhbA calculations with butyryl-CoA and acetyl-CoA bound with C89 unacylated

("Bind 1"), 1M3Z (C89A mutant with acetyl-CoA bound) was used as the starting crystal

structure with the C89 built into the structure using the same dihedral angles as the C89 of the

unliganded wild type PhbA thiolase structure 1DLU (Kursula et al. 2002; Y Modis and Wierenga

2000). For PhbA calculations with C89 acylated ("Bind 2"), 1DM3 (wild type enzyme with

acetyl-CoA bound and C89 acetylated) was used as the starting structure (Y Modis and Wierenga

2000), and for all BktB calculations, 4NZS (wild type enzyme, unliganded) was used as the

starting crystal structure (E. J. Kim et al. 2014a). All crystal structures were prepared for

computer modeling with the CHARMM36 force field (Brooks et al. 2009b) using the

methodology outlined in Lippow et al. (2007). CHARMM parameters for acetyl-CoA were taken

from Aleksandrov and Field (2011).

Computational Methodology
Mathematically, calculations for each of the two binding events sought to optimize:
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A dEMtI-wT AAEAIut - AAE 7wBind B-Bind A Bind B Bind

where the subscript Bind B refers to the structure with a butyryl group in either the first or

second binding event and the subscript Bind A refers to the corresponding structure with an

acetyl group in either Bind 1 or Bind 2. Note that Bind B refers to the bound conformation

leading to BA production in either step and Bind A refers to the bound conformation leading to

AA production in either step. For example, the structure optimized for Bind B in the first binding

event corresponds to step 2 of Figure IC where R is a butyryl group, and the structure optimized

for Bind A in the first binding event corresponds to step 2 of Figure IC where R is an acetyl

group.

Thus the optimization sought to minimize the difference of the following two terms:

dAE Aut-wVT _ AE' -- AE WT
Bind B Bind B Bind B

APAIutWT Alut WT'EBind A AEBind A -AEBind A

where,

AEA'tt Alut EFait Lgn

AEBind B omplex B - Receptor - ELigand B

Esi B Ecmpiex B - Eeceptor - ELigand B

AF-A/utJ EMUL ENuL FiBind A Complex A - Receptor - ELigand A
AEWT _Ew W -EWT -E an

Bind A F-Complex A Receptor Ligand A

subject to

AAE/Iu~-WT < Fold Cutoff

AAEo"t- WT < Fold Cutoff

where
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A Ej'l -w T = AE Al t - AE WT

A.AE * -W T = AE Al A -Eg W

and

AE.Aut EAlut
Fold B ~Receptor B

A~EWT B- E WT
Fold B Receptor B

/AENIut -EAIUtFold A = Receptor A

AEw A - E WTFold A Receptor A

- EA/dUnf olded

- Enolded

- Unfolded

- E14f"T e

To accomplish this, for each mutant and for both binding events, four separate global

minimum energy conformations (GMEC) were computed using the Dead End Elimination / A*

based approach (Lippow, Wittrup, and Tidor 2007).

AEgf"$+Binld B - Ecg4 iple, B - EV,;jolde d -E Liga nd B

AEwtr B EivT EwV - EFold+Bind B Complex B- Unfolded Ligand BWT''~ i~ A V T E IVT d - ELiganB
A EA'"t E IAI-"i - E A'ut-

Fold+Bind A Complex A Unfolded Ligand A

A WT EN T E T EAEFold+Bind A 'Complex A Unfolded Ligand A

AAAEAlt- WT
Note that the difference of the four above terms is equivalent to Bind B-Bind A:

AAE _-A EMot+ B -AEMut+B-Wd B) - (AAE EFo+Bid A AE T d+Bind A)

A A AEAIut-WT
Mutants were then sorted on Bind B-Bid A and filtered with a fold cutoff of

15 kcal/mol in order to identify thiolase sequences with predicted differential selectivity as

compared to wild type toward accommodating the butyryl group as opposed to the acetyl group.

AAE fI"--WT
Sequences were then sorted on Bind B to allow identification of mutants for testing that

were also predicted to accommodate the butyryl group more favorably than wild type, and not

30



just resulting in improved differential specificity by accommodating both acetyl and butyryl

groups more poorly than wild type, but with the acetyl worse than butyryl.

After optimized structures of mutants were computed and sequences were sorted, the

,AAAA't- WT
dominant energetic interactions contributing to Bind B-Bind A for the top mutants were

computed and analyzed. The top sets of foUr structures for each mutant for each binding event

were manually inspected using this information. An example of the energetic breakdowns and

four GMEC structures for one experimentally tested mutant in Bind I and Bind 2 is presented in

Supplementary Figures 3-4 and Supplementary Tables III-IV.

The 17 positions allowed to mutate in the PhbA design calculations were: V57, Q87,

L88, S91, L93, D146, L148, T149, D150, M157, M288, N316, 1350, S353, L377, 1379 and Q64.

The 20 positions allowed to mutate in BktB design calculations were: V57, R88, L89, S92, L94,

A148, L 149, H 150, DI51, M158, M290, N318, A320, F321, 1352, T355, M379, 1381, 1387 and

Y66.
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Rotamer Library
For each mutant calculation, a dead-end elimination / A* based rotameric search was

performed following the methodology of (Lippow, Wittrup, and Tidor 2007), with all residues

within 4.75 A of the mutated residue allowed to relax. For the rotameric search, a modified

version of the Dunbrack rotamer library (Dunbrack and Cohen, 1997) was used in which xi and

X2 were expanded by 100 from the crystal structure rotamers. The substrates and acylated

cysteines were rotamerized in a manner to allow the acyl groups to rotate while keeping the rest

of the atoms' positions fixed to that of the crystal structure. Using the atomic nomenclature

introduced in Figure 1 D, for acetyl-CoA, acetyl-C, butyryl-CoA and butyryl-C the dihedrals Sy-

C6-Cg-06 and CP-Sy-C6-CF were allowed to rotate by 10' from the corresponding crystal

structure rotamers. For acetyl-CoA and acetyl-C, all atoms except C6, 06 and Cs were held

fixed. For butyryl-CoA and butyryl-C, the dihedrals Sy-C6-C--C and C6-Cc-C2-Cri were

allowed to rotate in 30' increments, with atoms except Sy, CP, C6, 06, Cs, and C held fixed.
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Results
Computational design of mutants predicted to exhibit increased
selectivity in Z. rarnigera PhbA thiolase

The structure of Z. ramigera PhbA thiolase has been well studied, with crystal structures

representing each step of the catalytic cycle, a total of 22 structures, including the following

mutants: C89A, N316A/H/D, H348A/N, N316H-H348N and Q64A (Merilainen et al. 2009,

2008; Y Modis and Wierenga 2000; Yorgo Modis and Wierenga 1999; Kursula et al. 2002).

Especially relevant to this study were the structures of the C89A mutant with acetyl-CoA bound

(IM3Z; 1.7 A), the wild-type thiolase with acetyl-CoA bound and C89 acetylated (IDM3; 2.0

A), and unliganded wild-type thiolase with C89 butyrylated (I M4T; 1.77 A), as these provided a

structural basis for examining acyl group specificity at each binding event (Merildinen et al.

2009, 2008; Y Modis and Wierenga 2000; Yorgo Modis and Wierenga 1999; Kursula et al.

2002). Due to this wealth of available crystallographic data, PhbA was chosen as the starting

point for structure-based design calculations. Note that no published BktB crystal structures

existed at the start of this study.

In the case of the 3HA pathway, we were interested in improving the overall pathway

selectivity ratio, i.e. the production of the longer chain C6, BA product relative to AA, using the

nomenclature in Figure 2. At the thiolase level, this ratio could be improved either by increasing

the formation of 3-oxohexanoyl-CoA (BA), by decreasing the formation of acetoacetyl-CoA

(AA), or a combination of the two approaches. There are several possible steps in the thiolase

catalytic cycle where BA production might be limited compared to AA production. For example,

steric constraints might lead the thiolase active site to preferentially accommodate acetyl-CoA

relative to butyryl-CoA during the priming CoA binding step ("Bind 1" in Figure 1 C). Similarly,

steric constraints could also prevent the thiolase active site from accommodating butyrylated-

33



C89 relative to acetylated-C89 in a conformation favorable to nucleophilic attack by the acetyl

carbon of acetyl-CoA ("Bind 2" in Figure IC). Effectively, the butyryl group must be

accommodated in at least two orientations in the active site: on the bound priming butyryl-CoA,

and on the butyrylated catalytic C89.

While it is possible that one of the catalytic steps (e.g. proton abstraction, breakdown of

acyl-enzyme intermediate) might limit BA production, crystallographic studies by Kursula et al

(2002) suggest that butyrylation of C89 inhibits catalytically productive binding of the extending

acetyl-CoA. Kursula et al (2002) report that soaking experiments with butyryl-CoA and wild-

type PhbA crystals result in butyrylation of C89 with no detectable CoA bound, indicating that

butyryl-CoA is able to act as the priming acyl-CoA, but not as the extending acyl-CoA once the

enzyme is butyrylated. We observe very low levels of 3HH formation in vivo with wildtype

PhbA, suggesting poor PhbA activity with butyryl-CoA as the priming acyl-CoA and acetyl-CoA

as the extending acyl-CoA. It should also be noted that on studies of ketosynthase domains in

polyketide synthetases, which exhibit a similar bi bi ping-pong mechanism, it has been reported

that the extending step is more often the bottleneck for acceptance of alternative substrates than

the priming/acylation step (Jenner et al., 2015).

Superimposing the butyrylated C89 structure (which corresponds to step 4 of the catalytic

cycle in Figure IC; PDB: IM4T) upon the acetylated structure with acetyl-CoA bound as the

extending acyl-CoA (representing step 5 in Figure IC; PDB: 1M3Z) reveals that the butyryl

group of C89 lies directly over the sulfur atom of the bound extending acetyl-CoA, with the

butyryl group pointing directly into the hydrophobic pocket formed by conserved active site

residues M157 and M288, and the thioester oxygen pointing into the oxyanion hole formed by

N(C89) and N(G380) (Kursula et al. 2002). Modis and Wierenga (1999) suggest that M157 and
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M288 in the PhbA active site prevent the accommodation of larger acyl-CoA substrates,

although they did not test these observations experimentally (Modis and Wierenga, 1999b). We

sought to develop an in silico model that would allow prediction of the ability of mutations at

these positions, as well as additional positions to allow the butyrylated C89 to take on a

conformation more favorable to catalytically productive binding of acetyl-CoA as the extending

acyl-CoA.

Rather than building models of the transition state for each step of the condensation

reaction and optimizing the active site binding of the transition state associated with each

catalytic step leading to BA production, we chose to build on the published crystal structures of

acetyl-CoA bound as the priming acyl-CoA (IM3Z) and acetyl-CoA bound as the extending

acyl-CoA with C89 acetylated (IDM3), assume these crystal structures represent catalytically

productive binding modes at each step, and identify mutations that could accommodate a butyryl

group in the appropriate place while keeping the rest of the crystal structure fixed outside of a

defined radius (4.75 A) of the residue to be mutated (see Computational Methodology).

Although poor binding affinity of the extending acetyl-CoA due to the native

conformation of butyryl-C89 was likely the primary driver for poor BA production, it was

nonetheless important to consider the effect of active site mutations on the ability to

accommodate butyryl-CoA as the priming acyl-CoA. If a thiolase mutant was able to

accommodate the butyryl group in Bind 2, but as a result of the mutation was unable to

accommodate the butyryl group in Bind 1, then this would likely lead to poor BA production.

Although they observe that butyryl-CoA is capable of acting as the priming acyl-CoA with wild

type PhbA, Kursula, et al (2002) also report poor (mM) affinity of PhbA for butyryl-CoA. It was
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critical that designed mutants did not further decrease this affinity, or butyryl-CoA may no

longer be capable of acting as the priming acyl-CoA.

We thus performed design calculations on conformations representing both Bind I and

Bind 2. We chose to focus structure-based design calculations on identifying mutations with the

potential to improve the energy of bound conformations leading to BA relative to those leading

to AA, at either the first or second Michaelis complex (steps 2 and 5 in Figure 1 C, respectively).

Design calculations were performed as described in Methods, and Table I lists the PhbA mutants

AAEArn t-WT
chosen for experimental testing along with their corresponding values of Bind B

AAE AI1't-w WT AA Ahtt-WT
Bind AA, and AAAEBind B-Bind A for both Bind 1 and Bind 2.

Note that mutants presented in Table I and chosen for experimental validation involve

paring down of a bulky hydrophobic (L88, M157, M288, L377) residue to a smaller residue,

such as serine, alanine or glycine. Also note that all mutants except M288A and M288G have

negative values of Bind B-Bind A in Bind 1, Bind 2 or both Bind I and Bind 2. All

mutants chosen for experimental testing also have negative values of EBAd B in either

AAE Afut--WT
Bind I or Bind 2. All mutants also have positive values of Bind A in both steps,

indicating decreased binding preference for accommodating for the acetyl group in both binding

events.

Of all positions, M157 was judged the most promising candidate due to its negative

v o AAEAut- WTvalues of A EBind B-Bind A in both binding events, the high magnitude of

A AAE Alut-WT
Bind B-Bind A relative to the other mutants, and the fact that the same trend of

AAAE Alut-W A
Bind B-Bind A was exhibited for the similar mutations of M I57S/A/G.
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Because according to energetic calculations and upon inspection M288S appeared to be a

promising candidate for improving selectivity in Bind 2 but not M288A and M288G, M288A

and M288G were also chosen for testing to account for the possibility that the model might not

be able to accurately distinguish the small chemical differences between serine, alanine and

glycine. This position was also included because previous crystallographic studies of PhbA

hypothesized that the bulky hydrophobic group of M288 (along with M157) prevents the

accommodation of larger acyl-CoA substrates (Y Modis and Wierenga 1999). Figures 3A-D

show the location of the residues chosen for PhbA mutagenesis relative to the active site catalytic

residues in both the Bind I and Bind 2 orientations.

Initial screening of Z. ramigera PhbA mutants identifies several
improved enzyme variants

Z. ramigera PhbA thiolase mutants were initially assayed in vivo in the context of a

previously established pathway for 3-hydroxyalkanoic acid (3HA) (Martin et al. 2013b)

production. This pathway consists of an activator enzyme (Pct, M elsdenii), a thiolase (BktB

from C. necator or PhbA from Z ramigera), an NADPH dependent reductase (PhaB from C.

necator), and a thioesterase (TesB from E. coli), which generates the final 3HA product.

Specifically, when the cultures are supplied with butyrate and grown on glucose, the cells

produce 3HB and 3HH. Examining the amount of 3HH produced relative to 3HB provides a

measure of thiolase selectivity.

Of the twelve tested thiolase variants, several resulted in increased selectivity ratios in

vivo (Figure 4A). This higher selectivity ratio is mostly due to decreased production of 3HB by

the pathway, and not increased 3HH titers (Figure 4B). Specifically, five mutants: M157A/G

and M288S/A/G resulted in an approximately 30-fold higher ratio of 3HH relative to the
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undesired 3HB by-product, with a roughly 80-fold decrease in their sum. Motivated by these

results, we wanted to further characterize the most selective mutants. Because the extent to

which the enzymes downstream of the thiolase could affect final product distribution was

unknown, we also wanted to assay the mutants within the context of another pathway.

Thioesterases exhibit varying levels of activity towards different acyl-CoA substrates, depending

on the carbon chain length and functional group of the substrate (McMahon and Prather 2014).

The PHA biosynthesis pathway was thus subsequently used to screen the thiolase mutants

because it is known that over 100 different 31-A monomers can be incorporated into PHAs.,

suggesting a broad substrate range for the PHA synthase (Agnew and Pfleger, 2013). We chose

to use the PhaC2 polymerase enzyme from R. aetherivorans 124 because it has been previously

employed to synthesize PHA polymers with large amounts of the longer chain C6 monomer, 3-

hydroxyhexanoate, 3HHx (Budde et al. 2011). Using the polymerase as the terminal enzyme

removes any possible limitation or specificity imposed by the thioesterase, providing further

evidence for thiolase imposed selectivity on the distribution of observed products.

When the most selective PhbA thiolase variants were profiled using the PHA assay,

M157 mutants resulted in an 18-fold higher 3HHx:3HB selectivity ratio (Figure 4C). The

resulting PHA polymers synthesized by M 158A/G/S thiolase mutants contained 83-85 mol% of

the 3HHx monomer, as compared to wild type, which only resulted in a 22 mol% of the 3HHx

monomer (Table III). To eliminate the possibility that native E. coli thiolases or reductases

could influence final PHA composition, we performed several control experiments; no PHA

accumulation was observed without plasmid-based overexpression of all four genes of the

pathway (data not shown). This assay was consistent with our previous observations and

supports our initial hypothesis of these thiolases exhibiting reduced activity towards the
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condensation of two acetyl-CoAs, while maintaining similar or better activity towards the

condensation of butyryl-CoA and acetyl-CoA compared to the wild type enzyme.

Validated computational approach applied to more active BktB
thiolase from C. necator

Having successfully identified mutants with increased C6/C4 (BA/AA) selectivity in the

PhbA thiolase, we applied the newly validated modeling framework to identify mutants that

might increase selectivity of the more active C. necator BktB thiolase. Although the BktB

thiolase only exhibits 5 1 % sequence identity with PhbA, the active site is highly similar, with

86% of the residues within 10 A of the PhbA acetyl-CoA carbonyl center conserved between

PhbA and BktB (Supplementary Table I). Two unliganded crystal structures were available in

the PDB for BktB (E. J. Kim et al. 2014b; Fage, Meinke, and Keatinge-Clay 2015), and due to

the active-site similarity, the Z ramigera PhbA structures,I M3Z and lDM3 were used as

templates to build structures of BktB with acetyl-CoA and butyryl-CoA bound.

The results of the computational model applied to the BktB thiolase are shown in Table

11. Given the active-site similarity, it was not surprising that two BktB residues with analogous

PhbA positions (M157/M158, M288/M290) were also predicted to improve BA/AA

selectivity. Additionally, a position unique to BktB was predicted, Y66, which is part of a loop

that comprises the major structural difference between the PhbA and BktB active sites. The

positions of the BktB residues chosen for mutagenesis relative to the Bind 1 and Bind 2

conformations are shown in Figures 5A-D.

BktB thiolases enable synthesis of PHAs enriched in 3HHx
The BktB thiolase has been previously used by us and other groups to achieve synthesis

of longer (>C4) and branched chain acids, aldehydes and alcohols by the same CoA dependent
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pathway (Dhamankar et al. 2014; Hsien-Chung Tseng et al. 2009; S. Kim, Clomburg, and

Gonzalez 2015; Cheong, Clomburg, and Gonzalez 2016a). Of the M158, M290 and Y66 mutants

assayed, the M158 mutants resulted in the highest selectivity ratios, with M158G and M158S

exhibiting selectivity ratios 10-fold greater than wild type for 3HHx in PHAs (Figure

6A). Based on previous reports of their activities, it was not surprising that wild type baseline

selectivity was higher for BktB at 3.45 compared to PhbA at 0.292 (Slater et al. 1998). The PHA

polymers isolated from . coli strains expressing these mutants varied from 77 to 97 mol%

3HHx (Table III), with BktB M I58A mutant resulting in the highest yields of 3HHx as a

percentage of the CDW (Figure 6B). Protein gels of lysates of strains expressing wild type vs.

mutant enzymes showed no significant difference in the soluble expression level of the thiolase

enzymes, pointing to differences in the activities of these enzymes (Supplementary Figure 1). It

was surprising that the M290 mutants resulted in very low yields of PHAs in vivo. Although it is

possible that BktB expression or solubility was affected as a result of this mutation, soluble

expression was detected via a protein gel.

In vitro characterization of BktB thiolase mutants with highest
selectivity ratios

Having achieved increased selectivity ratios of the 3HHx:3HB in the PHA polymers with

our computationally designed mutants, we next studied the effects of the Ml 58 mutations on

thiolase activity. Our in vivo data suggested that we were able to obtain increased selectivity

ratios due to decreased activity of these mutant thiolases for the formation of the AA

condensation product (and subsequently 3HB), and not due to increased activity towards the

condensation of butyryl-CoA with acetyl-CoA, which results in the formation of 3-oxo-

hexanoyl-CoA (and 3HH-CoA upon reduction). We thus sought to purify and assay both the

mutant and wild type BktB thiolases in vitro to remove many of the confounding variables
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present in vivo. For example, differences in stability of the enzymes as well as fluctuating pools

of substrates and coenzymes could influence thiolase activity. Further, activities of the

downstream enzymes could also influence the final product distribution. Each wild type and

mutant enzyme was purified as a His-tagged fusion protein to homogeneity and assayed in the

condensation direction with acetyl-CoA, and thiolysis directions with acetoacetyl-CoA (AA) and

3-oxo-hexanoyl-CoA (BA). In vitro characterization of the BktB WT and M158A enzymes

reveal a 10-fold lower catalytic activity of the mutant towards the condensation of two acetyl-

CoA molecules (Table IV). This result is consistent with in vivo observations of reduced 3HB

product formation which arises from the condensation of two acetyl-CoAs. From the in vitro

kinetic parameters it can be concluded that the Ml 58 mutants do indeed have lower catalytic

efficiencies towards the formation and degradation of AA, the C4 product (1.52 x 104 vs. 1.46 x

10- M'sec-1, WT vs mutant), whereas the thiolysis kcat/Km value towards the degradation of BA,

the C6 product, is 3-fold higher as compared to wild type (2.67x10 5 vs. 9.82x10 5, WT vs mutant,

Table IV). In all, there is an 80-fold improvement in the selectivity ratio of the M158A thiolase

as compared to wild type. Further, activity measurements of the BktB M290A mutant revealed a

very low kcat for the condensation of two acetyl-CoAs consistent with in vivo observations (data

not shown).

Using C. necator BktB M158A mutant allows for biosynthesis of
PHAs enriched in 3HHx from glucose as sole carbon source

Having demonstrated increased selectivity for the BktB M I58A mutant in vivo while

supplying both butyrate and glucose, we next wanted to determine if this mutant could allow for

more selective synthesis of longer chain product using glucose as the sole source of carbon. We

sought to use the same model system as before, except that now we had to overexpress additional

enzymes that would allow for conversion of 3-hydroxybutyryl-CoA to butyryl-CoA. Trans-
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enoyl-CoA reductase, Ter from Treponema denticola was cloned into the first MCS of

pCDFDuet and enoyl-CoA hydratase, PhaJ4b from C. necator was cloned into an operon with

PhaC2 generating pCDFDuet(terTd)-(phaC2-phaJ4). This vector, along with pETDuet(BktB WT

or Ml58A)-(phaB) was used to transform K coli MG1655(DE3) and the strain was grown in M9

medium with glucose as a sole carbon source. Figure 7 shows that the residual activity of BktB

M158A towards the condensation of two acetyl-CoAs was sufficient to allow for formation of

butyryl-CoA and subsequently 3-hydroxybutyryl-CoA. Using the BktB Ml 58A mutant led to an

almost 2-fold increase in selectivity for the 3HHx monomer as compared to using wild type

BktB, though the overall yield of PHAs was low. However, we used an almost wild type . coli

for all production experiments in this work, and it is likely that strain engineering to increase

precursor supply and elimination of competing pathways will lead to increased product yields.
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Discussion
In this work we present a rational design framework for increasing the thiolase selectivity

ratio, which we define as the ratio of C6 to C4 condensation products. We then apply this

framework to two related biosynthetic thiolases, PhbA from Z ramigera and BktB from C.

necator. In vivo, we observe the synthesis of PHAs that are highly enriched for 3HHx (C6) when

our rationally selected mutants are employed. In vitro characterization of one of the most

selective mutants (Ml 58A) revealed a 10-fold reduction in activity for formation and breakdown

of the C4 product with uncompromised thiolysis activity toward the C6 substrate as compared to

the wild type enzyme.

Although designed thiolase mutants exhibited nearly 10-fold improvements in the

selectivity ratio, this increase was primarily driven by the reduced ability of the thiolase to

synthesize AA (acetoacetyl-CoA, C4) and not improved ability to synthesize BA (3-oxo-

hexanoyl-CoA, C6). The decreased synthesis of C4 products by the mutants we tested is

consistent with in silico predictions, as all mutants tested exhibited positive computed values

of A1E T  for both Bind 1 and Bind 2. From the in vitro kinetic characterization of the

BktB M158A mutant, the reduced rate of condensation of two acetyl-CoA substrates is

consistent with reduced 3HB production within both pathway contexts (3HA and PHA).

The fact that all mutants tested failed to significantly increase 3HH titers was not

consistent with in silico predictions however. With the exception of M288A/G, all mutants tested

had negative computed values of AAEIBi-Bfor either Bind 1 or Bind 2, meaning that each of

the tested mutants were expected to preferentially accommodate the butyryl group in either the

first (PhbA L377S/G and BktB M290S/A/G), second (PhbA L88A/G, PhbA M288S, BktB
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Y66N/V/T/A/G) or both (PhbA L88S, PhbA M157S/A/G, PhbA L377A, BktB M158S/A/G, and

Y66Q/S) binding events.

It remains entirely possible that activities of downstream enzymes on the longer chain

substrates limited 3HH production in vivo. Activities of all downstream enzymes (3-ketoacyl-

CoA reductase and/or thioesterase and PHA polymerase) with the pathway acyl-CoA

intermediates must be examined to rule this out. This is challenging due to the commercial

unavailability of required substrates as well as lack of robust assays as is the case with PHA

polymerase, in which the observed in vitro and in vivo substrate specificities differ (Stubbe and

Tian 2003; Yuan et al. 2001).

In vitro, we were unable to directly assay the rate of condensation between acetyl-CoA

and butyryl-CoA to test whether mutants exhibited increased production of 3-oxo-hexanoyl-CoA

(and subsequently 3-HH-CoA) in the absence of any potential confounding factors in vivo. While

we can assay the thiolase in the thermodynamically favored direction, thiolysis, and observe

higher activity of the M158A mutant with the C6 substrate, we cannot conclude that a similar

rate enhancement results for the forward condensation direction. One might expect the observed

increase in the C6 thiolysis rate to lead to decreased overall titers in the biosynthetic direction;

however, one must keep in mind that the reductase which is present in both in vivo and in vitro

contexts is necessary to allow for formation and detection of condensation products. For

example, when PHB synthesis was modeled in vitro, inclusion of the reductase enzyme was

necessary to observe accumulation of the 3-ketoacyl-CoA condensation product (Burns et al.

2007). Put another way, both in vivo and in vitro, the thiolase must always be coupled to the

reductase and the substrate specificity and activity of the reductase enzyme will influence the

behavior of the overall system. Indeed, a similar approach has been used to model the kinetics of
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in vivo PHB accumulation (Leaf and Srienc, 1998; van Wegen et al, 2001). For this reason, the

system must necessarily be examined whilst considering, at a minimum, the thiolase and

reductase enzymes in combination.

Given that the butyryl group must be accommodated at two distinct locations within the

active site, it is possible that multiple active-site mutations, rather than the point mutations tested

in this study, are required to improve C6 product titers beyond that of wild type. When the

butyryl group is built onto the acetyl-CoA Cc carbon in structure 1M3Z (representing Bind 1) in

its minimum energy planar zigzag conformation, the Ci1 atom of the butyryl group clashes

directly with the backbone atoms of 1379 and C378. The four non-polar, non-charged residues

within 5 A of the CF carbon of acetyl-CoA in this structure, and the non-hydrogen atoms closest

to the Cc carbon (side chain atom followed by distance in parenthesis) include M157 (S; 5.3 A),

M288 (S; 3.1 A), A318 (CB; 4.5 A), 1379 (CB; 5.3 A). Of these, M288 is the only residue that is

directly in a position to clash with the butyryl group in a non-planar conformation, as the other

three side chains are either too far away, or point away from the substrate. Similarly, if a butyryl

group is built onto acetyl-C89 from structure I DM3 (representing Bind 1) it clashes directly with

G380. The three nonpolar, non-charged side chains within 5 A of the acetyl carbon on acetylated

C89 are L88 (CB; 3.2 A), M157 (S; 4.9 A away) and 1379 (Cy2; 4.5 A). Of these, L88 and M157

are potentially positioned to clash with the C89 butyryl group in a non-planar conformation.

M157 is thus the only PhbA active site residue that satisfied the energetic filtering criteria

and was positioned to directly relieve a steric clash imposed by a bulky butyryl group in both

binding events within the fixed-backbone context of this work. Downstream enzyme specificities

aside, from a modeling standpoint its failure to improve 3HH production may potentially be due

to a number of factors including the fixed backbone modeling approach, the fact that the catalytic
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residues were fixed to their crystal structure conformations, failure to consider the correct

transition state conformation, or a decrease in stability as a result of the mutations.

Applying the same analysis to BktB, If the butyryl group is added to the acetyl-CoA in its

planar zigzag conformation (representing Bind 1), it clashes directly with the backbone atoms of

C380 and 1381. The nonpolar, non charged residues within 5 A and their corresponding closest

atoms are M158 (S; 4.6 A), M290 (S; 3.1 A), 1381 (CB; 5.6 A), A320 (CB; 4.2 A), F321 (Cs2;

5.4 A). Of these only M158 and M290 are positioned to directly clash with a non-planar butyryl

C90. For Bktb Bind 2, the butyryl group in its planar zigzag conformation clashes with the

sidechains Y66 (the C1l of the butyryl group as lies 2.3 A from the CF2 of Y66), L89 (the C4 of

the butyryl group as lies 2.8 A from the C62 of Le89), and G382. The nonpolar, non-charged

residues within 5 A are M158 (S; 5.0 A), 1352 (C 72; 4.6 A), L89 (CB; 3.0 A), l1e381 (Cy2; 4.7

A). Of these, L89, Y66, M158 and 1352 are in orientations that could potentially clash with a

butyryl C90. Only residues M290, M 158, and Y66 met the energetic filtering criteria. Again,

analogous to the PhbA case, M158 is the only side chain positioned to directly relieve a steric

clash imposed by a butyryl group at both binding events.

The relative success of M157/M158 may be related to its location and orientation

between the acyl group of the CoA substrate and the catalytic residue C89/C90. The fact that

degradative thiolases, which are known to be able to accommodate >C6 substrates also have

methionines at positions 290 and 158 suggests that mutations at other positions play a role in

accommodating >C6 substrates (Fage et al., 2015; Modis and Wierenga, 1999b). Mutations at

multiple positions, although beyond the scope of this work, may well prove to be a fruitful

starting point for future thiolase engineering attempts.
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From a practical metabolic engineering standpoint, the thiolase mutants identified in this

study, specifically the BktB M158A thiolase, should be useful in other pathways where the

condensation of acetyl-CoA and different acyl-CoA species is required (Sheppard et al. 2014;

Cheong, Clomburg, and Gonzalez 2016b). In addition, we have shown that the thiolase can be

used to modulate PHA polymer composition, resulting in PHAs that are highly enriched for

medium-chain length monomers. Typically, PHA composition is modulated by process

engineering such as novel feeding strategies and choice of feedstock, as wells as various strain

engineering strategies to remove endogenous competing enzymes from native PHA synthesizing

microbes. Using the thiolase to control PHA monomer composition opens up a new avenue for

achieving the synthesis of PHAs with specific, desired properties for diverse applications.
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A Generalized 3HA pathway, which is also referred to as CoA-dependent chain elongation or
reverse P-oxidation. This pathway consists of four core enzymes - a coenzyme-A (CoA)
activating enzyme which converts a small acid precursor to a CoA thioester, a thiolase which
brings about the condensation of the CoA activated acid and acetyl-CoA, a reductase which
reduces the P-carbonyl of the resulting longer chain intermediate, and finally a thioesterase
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which cleaves the thioester bond of the 3-hydroxyacyl-CoA, releasing free CoASH and the free
3-hydroxyacid. A wide variety of other compounds can be produced by addition of other
enzymes that can act on the 3-hydroxyacyl-CoA intermediates, such as enoyl-CoA dehydratases
and reductases, and alcohol and aldehyde dehydrogenases. Biosynthesis of longer chain 3HAs
and carboxylic acids, as well as wo-carboxylic acids, and longer chain alcohols has been
demonstrated (Cheong, Clomburg, and Gonzalez 2016c; Sheppard et al. 2014). However, a mix
of products of variable chain lengths always results.

B In this study we employ a four-enzyme pathway for the synthesis of poly-3HB-co-3HHx as a
readout of thiolase selectivity. The cells are grown on glucose and supplied with butyrate.
Activation of butyrate by the action of Pct (M elsdenii), leads to butyryl-CoA which is then
condensed with acetyl-CoA by a thiolase, either BktB (C. necator) or PhbA (Z. ramigera), to
produce 3-oxohexanoyl-CoA. This intermediate is then reduced to 3HH-CoA by an acetoacetyl-
CoA reductase PhaB (C. necator). The thiolase is also capable of condensing two acetyl-CoA
molecules which leads to production of 3HB-CoA upon reduction by PhaB. The 3HA-CoA
intermediates are then polymerized into PHAs by PhaC2 (R. aetherivorans 124).

C Reaction mechanism of the thiolase occurs by a biological Claisen condensation reaction
though a sequential bi bi ping-pong mechanism. In addition to other thiolases, this mechanism is
also similar to those utilized by acetyltransferase and ketosynthase domains of polyketide
synthetases. Panel 2 corresponds to Bind I and Panel 5 corresponds to Bind 2 on which structure
based design calculations were performed.

D Atomic nomenclature used throughout the rest of the paper.
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Figure 2

Priming Extending Condensation
Unit Unit Product

CoA A A.A UWs Co0 Undesired byproduct acetoacetyl-CoA (reduced to 3HB)

A 0 0
Acetyl-CoA B - AB >"S CoA Not detected

Butyryl-CoA A BA 0.C Targeted for increased production 3-oxo-hexanoyl-CoA (reduced to 3HH)

0 0

0 C B BB s CoA Not detected

Four different products can result from the condensation reaction of acetyl-CoA (A) and butyryl-
CoA (B) catalyzed by the thiolase. The product formed depends on the order of addition of the
acyl-CoAs into the active site of the enzyme. The priming acyl-CoA serves as an electrophile at
the carbonyl carbon and forms an acyl-enzyme intermediate. The extending acyl-CoA in this
case acts as a nucleophile after abstraction of an a proton and formation of a carbanion. Self-
condensation of two acetyl-CoA molecules results in formation of acetoacetyl-CoA, which we
term the AA condensation product, and subsequent reduction by PhaB leads to the formation of
3HB. Condensation with butyryl-CoA as the priming acyl-CoA and acetyl-CoA as the extending
acyl-CoA forms 3-oxo-hexanoyl-CoA which we term the BA condensation product, and
subsequent reduction by PhaB leads to the formation of 3HH. In this study we sought to increase
the ratio of 3HH to 3HB by increasing the ratio of the BA condensation product relative to the
AA condensation product.
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A Structure of Z. ramigera PhbA thiolase active site during the first binding event (Bind 1,
corresponding to step 2 in Figure 1 C). The atoms colored black show the extra atoms of the
butyryl group compared to the acetyl group that must be accommodated in order to preferentially
produce 3-oxo-hexanoyl-CoA rather than acetoacetyl-CoA.

B Structure of Z. ramigera PhbA thiolase active site during first binding event with residues
selected for mutation colored purple.

C Structure of Z. ramigera PhbA thiolase active site during second binding event (Bind 2,
corresponding to step 5 in Figure 1 C). Atoms colored black show the extra atoms that must be
accommodated in order to preferentially produce 3-oxo-hexanoyl-CoA.

D Structure of Z. ramigera PhbA thiolase active site during second binding event (corresponding
to step 5 in Figure 1 C) with residues selected for mutation colored purple.
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Table I. Energetic calculations of Z ramigera PhbA mutants selected for experimental testing

Bind (a) Bind 2 (b)

Mutant

AAEN'u- VT AAEA' t WT AAA E5"' t-TAA ut-WT AA EAIut- WT AA AE Alut- WT
Bid BndA in BA in BBind A Bind B -A

L88S -0.09 0.09 -0.18 -1.05 0.09 -1.14

L88A 0.02 0.09 -0.07 -1.33 0.09 -1.42

L88G 0.53 0.15 0.38 -1.90 -0.26 -1.64

M157S -18.09 0.83 -18.92 -3.98 1.32 -5.30

M157A -17.36 1.38 -18.74 -2.76 1.88 -4.64

M157G -16.34 2.20 -18.54 -1.34 2.37 -3.71

M288S 1.60 1.18 0.43 -0.03 0.48 -0.52

M288A 1 .85 1.25 0.60 1.55 0.57 0.98

M288G 2.29 1.34 0.95 1.08 0.65 0.43

L377S -0.65 0.02 -0.68 0.50 0.02 0.47

L377A -1.01 0.07 -1.09 -0.30 0.08 -0.37

L377G -1.14 0.11 -1.26 0.35 0.12 0.22

(a) In the Bind I column AAEBi-B is the difference in binding energies between mutant and
wild type bound to butyryl-CoA with free C89, AAE1-i T is the difference in binding energies

between mutant and wild type bound to acetyl-CoA with free C89, and AAAE - is the
difeecebtwe A~ ut- WT Mut-WT

difference between AAEfdB and AAEgi-ri corresponding to the differential specificities
for mutant versus wild type for binding butyryl-CoA versus acetyl-CoA as the priming acyl-
CoA.

(b) In the Bind 2 column AAEit T is the difference in binding energies between mutant and
wild type bound to acetyl-CoA with butyrylated C89, AAE'u't- is the difference in binding

Bind A istedfeeneiAidn

energies between mutant and wild type bound to acetyl-CoA with C89 acetylated, and
AA Am it -WT istedfeec.ewe AAEAMut-WT adAAEm Aut-WT

Bind - is the difference between Bind-B and Bind A corresponding to the
differential specificities for mutant versus wild type for binding acetyl-coA as the extending CoA
with C89 either butyrylated or acetylated. Negative energies are highlighted with a green
background, while positive energies are highlighted with a red background. All energies are
reported in kcal/mol.
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A Initial screening of Z. ramigera PhbA thiolase variants as designed by our computational
method, using the previously established 3HA pathway, which results in production of free
3HAs which are detected in the supernatant. Products were analyzed from cell-free culture
supernatants 72 hours post induction by HPLC and ratios calculated on a molar basis.

B Final concentrations of 3HB and 3HH acids 72 hours post induction as analyzed by HPLC.

C Z. ramigera mutant thiolases profiled within the context of PHA biosynthesis. Ratios represent
the composition of the PHA polymer as measured by GC after methanolysis.
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A Structure of C. necator BktB thiolase active site during the first binding event (corresponding
to step 2 in figure IC). The atoms colored black show the extra atoms of the butyryl group that
must be accommodated compared to the acetyl group in order to preferentially produce 3-oxo-
hexanoyl-CoA rather than acetoacetyl-CoA.

B Structure of C. necator BktB thiolase active site during first binding event with residues
selected for mutation colored purple.

C Structure of C. necator BktB thiolase active site during the second binding event
(corresponding to step 5 in figure 1 C). Atoms colored black show the extra atoms that must be
accommodated in order to preferentially produce 3-oxo-hexanoyl-CoA.

D Structure of C. necator BktB thiolase active site during second binding event (corresponding
to step 5 in figure 1 C) with residues selected for mutation colored purple.
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Table II. Energetic calculations of C. necator BktB mutants selected for experimental testing

Bind 1 Bind 2

Mutant
AAEA1tv T A AE Aut-W11T AAAEAIutI vT AAEzlt- VT AAEAILttt'VT A AAE ut- WT

B id B B ind A Bind B-A Bind B Bind A B in d B-A

M158S -2.18 1.27 -3.45 -1.33 1.03 -2.36

M158A -1.86 1.58 -3.44 -1.54 1.49 -3.03

M158G -1.54 1.61 -3.15 -0.16 1.99 -2.15

M290S -21.81 0.45 -22.26 0.13 0.31 -0.18

M290A -22.03 0.55 -22.59 0.18 0.42 -0.23

M290G -21.52 0.64 -22.16 0.29 0.51 -0.22

Y66Q -0.36 0.12 -0.48 -2.52 0.08 -2.60

Y66N 0.10 0.09 0.01 -2.49 0.12 -2.61

Y66V 0.26 0.12 0.14 -2.49 0.11 -2.60

Y66T 0.09 0.12 -0.04 -2.46 0.12 -2.58

Y66S -0.32 0.11 -0.43 -2.48 0.13 -2.61

Y66A 0.08 0.12 -0.04 -2.44 0.14 -2.58

Y66G 0.18 0.12 0.05 -2.45 0.15 -2.60

In the Bind coumnAAEBi is the difference in binding energies between mutant and wild

type bound to butyryl-CoA with free C90, AAE - is the difference in binding energies

between mutant and wild type bound to acetyl-CoA with C90 unacylated, and AAAEut-A 15
th dffrecebewen AEut- WT Mut-WT

the difference between AAEB -B and AAE"Bnd A corresponding to the differential
specificities for mutant versus wild type for binding butyryl-CoA versus acetyl-CoA as the
priming acyl-CoA.

In the Bind 2 column MuEzt- WT. ewe
Iid t Bis the difference in binding energies between mutant and wild

type bound to acetyl-CoA with butyrylated C90, AAElut-WT is the difference in binding
energies between mutant and wild type bound to acetyl-CoA with acetylated C90, and
AAA~mIut-WT . AA mut- WT Alut-VVT

Bind-_A IS the difference between di A and AAEnd - corresponding to the
differential specificities for mutant versus wild type for binding acetyl-coA as the extending CoA
with C90 either butyrylated or acetylated. Negative energies are highlighted with a green
background, while positive energies are highlighted with a red background. All energies are
reported in kcal/mol.
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Figure 6
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C. necator BktB Thiolase Variant

A Computationally predicted mutant BktB thiolases assayed within the context of PHA
biosynthesis. Ratios represent the composition of the PHA polymer as measured by GC after
methanolysis.

B PHA content as a weight percentage of the CDW of E coli overexpressing a given BktB
thiolase variant.
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Figure 7
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C. necator Thiolase Variant Used

Overexpression of a trans-enoyl-CoA reductase (terTd) and reductase (PhaJ4bCn), in addition to a
thiolase, and acetoacetyl-CoA reductase and PHA polymerase, allows for synthesis of C6
products solely from glucose. Increased selectivity for longer chain products is achieved with
BktB M158A in place of wild-type BktB.
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Table III Composition of PHAs extracted from engineered . coli strains overexpressing

different thiolases and grown on glucose with fed butyrate.

60

Thiolase CDW (g/L) PHA Content (wt%) Mol% 3HHx

Z ramigera PhbA WT 0.52 0.022 4.3 0.41 22.6 L 1.81

Z ramigera PhbA MI 58A 1.26 0.073 0.41 0.046 83.9 2.7

Z ramigera PhbA M158G 0.72 0.34 0.083 0.08 85.6 2.15

Z ramigera PhbA M158S 0.96 0.42 0.51 + 0.17 84.2 4.02

C. necator BktB WT 1.04 0.13 27.2 1.2 77.3 + 2.3

C. necator BktB M158A 0.81 0.16 29.3 1.4 93.6 0.42

C. necator BktB M158G 0.71 0.17 18.9 3.55 97.3 0.43

C. necator BktB M I 58S 0.88 0.16 22.1 4.08 97.3 0.22

C. necator BktB M290A 0.65 0.23 1.47 0.90 81.7 1.4

C. necator BktB M290G 0.54 0.04 0.90 0.05 86.7 0.46



Table IV In vitro kinetic characterization of thiolase variants

Reaction
kcat

(sec')
Km (pM) kc.t/Km (M-1sec-1)

C6/C4

Selectivity

BktB WT C4 Condensation 14.1 919 1.52 x 104

N/A
BktB M158A C4 Condensation 1.33 913 1.46 x 10'

BktB WT C4 Thiolysis 148 17.5 8.45 x 106
0.032

BktB WT C6 Thiolysis 4.06 15.2 2.67 x 105

BktB M158A C4 Thiolysis

BktB M158A C6 Thiolysis

4.63

16.7

14.1

17

3.28 x I0W

9.82 x 10'
2.99

In vitro characterization of C. necator BktB wild type and mutant thiolases in the forward

direction (condensation) with C4, and reverse direction (thiolysis) with both C4 and C6
substrates. Catalytic parameters were computed from fits to the Michaelis-Menten equation

(Supplementary Figure 2).
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Supplementary Information

Supplementary Table I Differences between PhbA and BktB active sites

Distance from PhbA PhbA BktB BktB

Acetyl-CoA PhbA/BktB Residue Residue Residue Residue Cumulative BktB

Carbonyl Chain Residue Differences
CenterID Name ID NameCenter

3.89 A 348 H 350 H 0

3.93 A 378 C 380 C 0

3.97 A 318 A 320 A 0

4.01 A 288 M 290 N1 0

4.39 A 89 C 90 C 0

5.79 A 316 N 318 N 0

6.30 A 319 F 321 F 0

6.53 A 147 G 148 A

6.57 B 64 Q 65 M 2

6.57 A 148 L 149 L 2

6.77 A 350 1 352 I 2

6.77 A 247 S 249 S 2

7.01 A 157 NI 158 I1 2

7.31 A 380 G 382 G 2

7.42 A 322 Q 324 Q 2

7.47 A 377 L 379 M 3

8.11 A 353 S 355 T 4

8.24 A 88 L 89 L 4

8.33 A 289 G 291 G 4

8.35 A 379 I 381 I 4

8.57 A 160 T 161 T 4

8.85 A 161 A 162 A 4

8.94 A 292 P 294 P 4

8.94 A 248 G 250 G 4

9.03 A 343 A 345 G 5

9.26 A 119 M 120 M 5

9.48 A 57 V 57 V 5

9.66 A 156 H 157 H 5

9.85 A 246 A 248 A 5

10.06 A 249 L 251 L 5

10.33 A 347 G 349 G 5

10.41 A 158 G 159 G 5

10.41 A 383 M 385 Q 6
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10.44 A 91 S 92 S 6

10.56 A 349 P 351 P 6

10.61 A 164 V 165 V 6

10.65 A 381 G 383 G 6

10.66 A 90 G 91 G 6

10.66 A 283 V 285 V 6

10.75 A 235 F 236 F 6

10.90 A 382 G 384 G 6

11.00 A 326 V 328 V 6

11.01 A 323 A 325 A 6

11.08 A 357 I 359 1 6

11.29 A 351 G 353 G 6

11.34 A 291 G 293 G 6

11.49 A 384 G 386 G 6

11.56 A 321 A 323 A 6

11.58 B 65 N 66 \ 7
11.81 A 344 I 346 I 7

11.88 A 150 D 151 D 7

11.93 A 290 T 292 1 8

11.96 A 87 Q 88 R 9

12.07 A 3 15 A 317 A 9

12.10 A 356 R 358 L 10

12.14 A 376 T 378 T 10

12.25 A 58 L 58 1 11
12.28 A 86 N 87 N 1I

12.41 A 241 V 243 V 11

12.55 A 144 I 146 L 12

12.60 A 149 T 150 H 13

12.62 A 385 V 387 1 14

Differences between PhbA and BktB active sites ordered by distance from PhbA priming acetyl-
CoA acetyl carbonyl carbon. Note that overall the two thiolases share only 52% sequence
identity, however their active sites are highly conserved, with only 5 amino acid differences
within a 10 A shell from the catalytic Cys89/90 residues. This table was generated by aligning
Chains A and B of the PhbA structure (PDB: IM3Z) to Chains A and B of the BktB crystal
structure (PDB: 4NZS) using the super command in Pymol. Residues in bold indicate catalytic
residues (C89/C90, H348/H350, C378/C380). Residues in green indicate residues mutated in
both BktB and PhbA (M157/M158, M288/M290). Residues in purple indicate those mutated
only in PhbA (L377, L88). Residues in bhie indicate those mutated in BktB only (Y66).
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ptev5_BktB_F

ptev5_BktB_R

phaB_F

phab_R

Gaaaacctgtattttcagggcatgacgcgtgaagtggtag

Gctcgagaattccatggtcagatacgctcgaagatgg

aacctgtattttcagggcatgactcagcgcatt

gctcgagaattccatggctcagcccatatgcag
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Codon Optimized Sequence of PhaC2 from R. aetherivorans 124

This sequence was cloned into the second MCS of pCDF_pctI.elsdenii using the Ndel and Xhol

restriction sites which are underlined in the sequence below.

GATATACATATGGCACAGGCACGTACCGTTATTGGTGAAAGCGTTGAAGAAAGCATTGGTG
GTGGTGAAGATGTTGCACCGCCTCGTCTGGGTCCGGCAGTTGGTGCACTGGCAGATGTTTTT
GGTCATGGTCGTGCAGTTGCACGTCATGGTGTTAGCTTTGGTCGTGAACTGGCAAAAATTGC
AGTTGGTCGTAGCACCGTTGCACCGGCAAAAGGTGATCGTCGTTTTGCAGATAGCGCATGGT
CAGCAAATCCGGCATATCGTCGCCTGGGTCAGACCTATCTGGCAGCAACCGAAGCAGTTGAT
GGTGTTGTTGATGAAGTGGGTCGTGCAATTGGTCCGCGTCGTACCGCAGAAGCACGTTTTGC
CGCAGATATTCTGACCGCAGCACTGGCACCGACCAATTATCTGTGGACCAATCCGGCAGCAC
TGAAAGAAGCATTTGATACCGCAGGTCTGAGCCTGGCACGTGGCACCAAACATTTTGTTAGC
GATCTGATTGAAAATCGTGGTATGCCGAGCATGGTTCAGCGTGGTGCATTTACCGTTGGTAA
AGATCTGGCAGTTACACCGGGTGCAGTTATTAGCCGTGATGAAGTTGCCGAAGTTCTGCAGT
ATACCCCGACCACCGAAACCGTTCGTCGTCGTCCGGTTCTGGTTGTTCCGCCTCCGATTGGTC
GTTATTACTTTCTGGATCTGCGTCCGGGTCGTAGCTTTGTTGAATATAGTGTTGGTCGTGGCC
TGCAGACCTTTCTGCTGAGCTGGCGTAATCCGACCGCAGAACAGGGTGATTGGGATTTTGAT
ACCTATGCAGGTCGTGTTATTCGTGCAATCGATGAAGTTCGTGAAATCACCGGTAGTGATGA
TGTTAATCTGATTGGTTTTTGTGCCGGTGGTATTATTGCAACCACCGTTCTGAATCACCTGGC
AGCCCAGGGTGATACCCGTGTTCATAGCATGGCCTATGCAGTTACCATGCTGGATTTTGGTG
ATCCGGCACTGCTGGGTGCATTTGCCCGTCCTGGTCTGATTCGTTTTGCCAAAGGTCGTAGCC
GTCGTAAAGGTATTATTAGCGCACGTGATATGGGTAGCGCATTTACCTGGATGCGTCCGAAT
GATCTGGTTTTTAACTATGTGGTGAACAACTATCTGATGGGTCGTACCCCTCCTGCCTTTGAT
ATTCTGGCATGGAATGATGATGGTACAAATCTGCCTGGTGCCCTGCATGGCCAGTTTCTGGA
TATTTTTCGTGATAATGTTCTGGTGGAACCGGGTCGTCTGGCCGTTCTGGGTACACCGGTTGA
TCTGAAAAGCATTACCGTTCCGACCTTTGTGAGCGGTGCAATTGCCGATCATCTGACCGCGT
GGCGTAATTGTTATCGTACCACACAGCTGCTGGGAGGTGAAACCGAATTTGCACTGAGCTTT
AGCGGTCATATTGCAAGCCTGGTTAATCCTCCGGGTAATCCGAAAGCACATTATTGGACCGG
TGGCACACCGGGTCCGGATCCTGATGCATGGCTGGAAAATGCAGAACGTCAGCAGGGTAGT
TGGTGGCAGGCCTGGTCAGATTGGGTTCTGGCACGCGGTGGCGAAGAAACAGCAGCACCGG
ATGCACCGGGTAGTGCACAGCATCCTGCACTGGATGCCGCACCGGGTCGCTATGTTCGTGAT
CTGCCTGCAGGTTAACTCGAGTCTGGT

66



Supplementary Figure 1

375

Wr MISGA M15G M5= M290G

*10

Crude cell lysate of strains expressing the PHA pathway with either wild-type or mutant BktB
enzymes. Briefly, 1 ml of each culture at 48 hours post-induction was collected and supernatant
removed after centrifugation. Cells were resuspended in 0.4 mL His buffer and lysed by bead-
beating. Protein concentration was determined by a Bradford assay and 5 pg total protein/BSA
equivalent was loaded onto an AnykD Bio-Rad mini Protean gel. No significant differences in
expression are observed between wild type and mutant thiolases.

BktB = 40.9 kDa, Pct = 55.6 kDa, PhaB = 26 kDa, and PhaC2 = 60.3 kDa.

Supplementary Figure 2
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Michaelis-Menten curve fits of assayed wild type and M158 BktB thiolases, in both
condensation direction with acetyl-CoA, and thiolytic direction with acetoacetyl-CoA and 3-
oxohexanoyl-CoA substrates.
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Structural Analysis of M158A Mutation - Bind ]

Supplementary Figure 3 shows the four global minimum energy structures that comprise

the AAAE t  
A calculation for Bind I for the C. necator mutant we chose for in vitro

characterization, Ml 58A. Supplementary Table III shows the detailed pairwise energetic

breakdowns of each of the terms comprisingA Eid B-A. Note that according to Table Ill,

M158A is predicted to improve butyryl-CoA binding in the first binding event, hurt acetyl-CoA

binding in the first step, improve accommodation of butyryl-Cys90 with acetyl-CoA bound in the

second binding event, and disfavor accommodation of acetyl-Cys90 with acetyl-CoA bound in

the first binding event. According to Supplementary Table III, the bulk of the improvement in

butyryl-CoA binding comes from the van der Waals (vdW) energy, particularly from the

interaction of residue 158 with the mercapto group of acetyl/butyryl-CoA. Note that although the

butyryl group between wild type and mutant takes on the same conformation, the M158 side

chain takes on a conformation that clashes with the mercapto group. Residues shown with a ball-

and-stick model are those included in the mobile region. Panels A-D of Supplementary Figure 3

show that the majority of the mobile region does not locally rearrange in response to mutation or

substrate binding. Only residues 290, 158, and 90 change conformation across the four panels.

Nothing except the mutated residue changes conformation between panels C and D, which

represent the wild type and mutant bound to acetyl-CoA. The loss of favorable van der Waals

contacts between the substrate and M158 as a result of paring M158 to a smaller alanine explains

the positive value of 1.58 kcal/mol for A.AEB A , which represents the difference in binding

energy between mutant and wild type bound to acetyl-coA. Note that to accommodate the

bulkier butyryl group, the side chains of M290 and M158 take on conformations different from

those in Panels C and D. In order to accommodate the butyryl group, the side chain of M 158
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takes on a less favorable conformation to butyryl binding. Mutating M158 to an alanine relieves

this unfavorable interaction, explaining the favorable -1.86 kcal/mol value of AAE""- -

Structural Analysis of M158A Mutation - Bind 2

Supplementary Figure 4 shows the four global minimum energy conformations that

comprise the AAAE " A calculation for Bind 2 for the M158A structure. Compared to Bind

1, even fewer residues included in the mobile region change conformations between the four

structures. In panels C and D, as for Bind 1, the M158A mutation causes a loss of favorable van

der Waals interactions between the M158 residue and the substrate, which explains the -1.49

kcal/mol value of AAEt-indA for this binding event. Panels A and B represent the

conformations of the mutant and wild type bound to acetyl-CoA with butyryl-C90. In Panel A,

the butyryl group of butyryl-C90 takes on a conformation that has an unfavorable interaction

with the mercapto group of acetyl-CoA. Mutating M158 to alanine allows the butyryl group to

relax to a more favorable conformation, which is worth -1.33 kcal/mol as shown in

Supplementary Table IV.
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Supplementary Figure 3

A Bind 1 A WT D151
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B Bind 1 A Mut D151
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A Minimum energy structure of C. necator BktB thiolase wild type active site with acetyl-CoA
bound as priming acyl-CoA (Bind 1). In Panels A-D all residues shown as ball and stick models
are included in the mobile region of the conformational search.

B Minimum energy structure of C. necator BktB thiolase M158A active site with acetyl-CoA
bound as priming acyl-CoA (Bind 1). Note that AAEmutWT for Bind 1 is computed as theasBindAfoBidIicoptdath
difference in binding energies between Panel A and B.

C Minimum energy structure of C. necator BktB thiolase wild type active site with butyryl-CoA
bound as priming acyl-CoA (Bind 1). Note that residues M 158 and M290 adopt conformations
different from the wild type structure with acetyl-CoA bound as priming acyl-CoA in panel A.

D Minimum energy structure of C. necator BktB thiolase M158A active site with butyryl-CoA

bound as priming acyl-CoA (Bind 1). Note that AAEBnd T for Bind 1 is computed as the

difference in binding energies between Panel C and D.
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Supplementary Table III. Dominant pairwise energetic interactions comprising

AnEBi-A Total for Bind 1 and corresponding to the four minimum energy structures shown in

Supplementary Figure 3

AA~mut-WT AAEmut-WT b AAAEmut-WT c AAA~mut-WT d
Interactione Bind B vdW Bind A vdW Bind B-A vdW "Bind B-A Total

A-158-Side chain -
C-1-Mercapto -2.65 0.73 -3.37 -3.32

Non-mobile - C-Acyl -0.19 0.00 -0.19 -0.19

A-158-Side chain -
C-I-PantoADP 0.45 0.17 0.29 0.20

A-158-Side chain -
C-l-CoACO 0.49 0.21 0.29 0.26

Total -1.73 1.49 -3.23 -3.44

~AA EMut -WT
(a) Bind B vdW

above table.
is the van der Waals (vdW) energy comprising the AAEBind-Bterm in the

AA E~ut -WT anE enrycopiinh t-WT(b) ind A vdW is the van der Waals energy comprising the Bi"d A term in the above
table.

()AA AE~ut-(C) B in b-A
the above table.

AAAEut- WTvdw is the van der Waals energy comprising the Bind B-A Total term in

AAAEMut-WT(d) sind B-A Total is the total energy of each pairwise interaction comprising the sum of
vdW, geometric and electrostatic interactions (latter two not displayed due to negligible

AAAEMut-WTcontribution). Note the the total in this column represents the Bind B-A term for M158A in
the Bind 1 column of Table 1I. Note that the four pairwise interactions listed are the only four

tAAAEut-WTinteractions with AEBind B-A vdW > 0.1 kcal/mol.

(e) In this Table, A-158-Side chain refers to the non-backbone atoms in residue 158, C-1-
Mercapto refers to the atoms in the s-mercaptoethylamine group of the acetyl-CoA, C-I-
PantoADP refers to the atoms in the pantothenic acid moiety of the acyl-CoA, C-1-CoACO
refers to the two atoms in the acyl group carbonyl moiety of the acyl-CoA. Non-mobile refers to
the atoms not included in the mobile region in the calculation (everything not shown as a ball
and stick model in Supplementary Figure 3).
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Supplementary Figure 4
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A Minimum energy structure of C. necator BktB thiolase wild type active site with acetyl-CoA
bound as the extending acyl-CoA and C90 acetylated (Bind 2). In Panels A-D all residues shown
as ball and stick models are included in the mobile region of the co3nformational search.

B Minimum energy structure of C. necator BktB thiolase M158A active site with acetyl-CoA
bound as the extending acyl-CoA and C90 acetylated (Bind 2). Note that AAEf-" for Bind 2
is computed as the difference in binding energies between Panel A and B.

C Minimum energy structure of C. necator BktB thiolase wild type active site with acetyl-CoA
bound as the extending acyl-CoA and C90 butyrylated (Bind 2).

D Minimum energy structure of C. necator BktB thiolase M158A active site with butyryl-CoA
bound as priming acyl-CoA (Bind 1). Note that AAEmu' Tfor Bind 1 is computed as the
difference in binding energies between Panel C and D.
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Supplementary Table IV: Dominant Energetic Interactions Comprising AABAEit-A in

M158A Bind 2 and corresponding to the four minimum energy structures shown in

Supplementary Figure 4

F tW ALM-WT MAE~ ut-WT AA u-WT
Interactione AAE Au-W A B B- AAAETota

inercio'dMB vdWa Bid A vdWb nd B-A vdWC c Bid B-A Ttl

A-90-Acyl - C-I-Mercapto -1.33 0.00 -1.34 -1.30

A-90-CO - C-I-Acyl -1.05 -0.02 -1.03 -1.00

A-90-CO-C-1-CoACO -0.21 0.00 -0.21 -0.27

Non-mobile - C-Acyl -0.27 0.00 -0.27 -0.26

A-90-Acyl - C-I-CoACO -0.18 0.00 -0.19 -0.21

A-90-Cys - C-I-CoACO -0.19 0.00 -0.18 -0.16

A-90-Cys - C-Acyl 0.20 0.00 0.20 0.20

Total -1.69 1.38 -3.07 -3.03

AA mut - WT vd)eegcopsn eAAEBIjutWTtemi h(a) EBindB vdW is the van der Waals (vdW) energy comprising the nd - term in the
above table.

SAA EMut-WT AA'Ut -WT
(b) Bind A vdW is the van der Waals energy comprising the BI/ind A term in the above
table.

AAAEMut-WT AAAEmut-WT
(c) Bind B-A vdW is the van der Waals energy comprising the Bind B-A Total term in
the above table.

( AAEMut-WT(d) Bind B-A Total is the total energy of each pairwise interaction comprising the sum of
vdW, geometric and electrostatic interactions (latter two not displayed due to negligible

AAAEMut-WTcontribution). Note the the total in this column represents the Bind B-A term for M158A in
the Bind 2 column of Table II. Note that the seven pairwise interactions listed are the only seven

AAAEMut-WTinteractions with I Bind B-A vdwI > 0.1 kcal/mol.

(e) In this table, A-90-Acyl refers to the aliphatic (non-carbonyl) portion of the acyl group on
C90, A-90-CO, refers to the two atoms in the carbonyl portion of the acyl group on C90, A-90-
Cys refers to the non-acyl, non-backbone portion of C90, C-i -Mercapto refers to the atoms in the

-mercaptoethylamine group of the acetyl-CoA, C-i -CoACO refers to the two atoms in the
acetyl group carbonyl moiety of the acetyl-CoA, C-1-acyl refers to the non-carbonyl atoms in the
acetyl group of acetyl-CoA. Non-mobile refers to the atoms not included in the mobile region in
the calculation (everything not shown as a ball and stick model in Supplementary Figure 4).
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Abstract
Despite tremendous progress in understanding and engineering enzymes, knowledge of

how enzyme structures and their dynamics induce observed catalytic properties is incomplete,

and capabilities to engineer enzymes fall far short of industrial needs. Here we investigate the

structural and dynamic drivers of enzyme catalysis for the rate-limiting step of the industrially

important enzyme ketol-acid reductoisomerase (KARI) and identify a portion of the

conformational space of the bound enzyme-substrate complex that, when populated, leads to

large increases in reactivity. We apply computational statistical mechanical methods that

implement transition interface sampling to simulate the kinetics of the reaction and combine this

with machine learning techniques from artificial intelligence to select features relevant to

reactivity and to build predictive models for reactive trajectories. We find that conformational

descriptors alone, without the need for dynamic ones, are sufficient to predict reactivity with

greater than 85% accuracy (90% AUC). Key descriptors distinguishing reactive from almost-

reactive trajectories quantify substrate conformation, substrate bond polarization, and metal

coordination geometry and suggest their role in promoting substrate reactivity. Moreover,

trajectories constrained to visit a portion of the reactant well separated from the rest by a simple

hyperplane defined by ten conformational parameters show increases in computed reactivity by

many orders of magnitude. This study provides evidence for the existence of reactivity hot spots

within the conformational space of the enzyme-substrate complex and develops methodology for

identifying and validating these particularly reactive regions. We suggest that identification of

reactivity hot spots and re-engineering enzymes to preferentially populate them, can lead to

significant rate enhancements.
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Introduction
Enzymes are remarkable catalysts that produce substantial rate enhancements, often

accompanied by high substrate and product selectivity as well as regio- and stereo-specificity.

They are increasingly important for industrial-scale chemical and bioengineering applications,

not only because of the chemistry they accomplish but also because they can do so sustainably in

mild, aqueous conditions. The interest and need for custom enzymes developed for specific

purposes continues to motivate computational and experimental research in catalytic

biochemistry.

Despite substantial progress made, more is still required along two principal avenues in

order to advance enzyme engineering to meet industrial needs. We need a better understanding

of the drivers of chemical reactivity promoted by enzymes, some of which have been

hypothesized to be dynamic (Basner and Schwartz 2005; Ruscio et al. 2009; Kamerlin and

Warshel 2010) rather than structural, together with a richer collection of tools to probe and

potentially manipulate the active-site catalytic environment. We also need even more powerful

and robust methods of designing and engineering enzyme function. Current approaches include

directed evolution (Porter, Rusli, and Ollis 2016; Hammer, Knight, and Arnold 2017; Molina-

Espeja et al. 2016), catalytic antibodies (Lerner, Benkovic, and Schultz 1991; Nevinsky and

Buneva 2004; Maeda et al. 2016) and computational enzyme design (Kiss et al. 2013; Baker

2010), the latter two of which focus on tight-binding of transition states. While these approaches

have produced tremendous successes in the hands of developers, they have not yet become

general-purpose tools. The need for directed evolution to improve designs obtained by other

methods and our inability to fully understand the improvements accumulated through evolution

suggest our understanding may be incomplete, perhaps in some fundamental way, and might
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require us to incorporate other factors beyond transition-state binding and transition-state

stabilization (relative to the bound ground state).

Here we investigate two fundamental questions of enzyme function motivated by the

larger goal of enzyme engineering; we focus on the enzyme-substrate complex without specific

reference to the transition state. First, can we gain insight into the nature of the drivers of

chemical reactivity, and to what extent are these drivers apparent in the behavior of the bound

enzyme-substrate complex? And second, based on previous work of ourselves and others (Silver

2011; Hur and Bruice 2003b; Sadiq and Coveney 2014; Zhang et al. 2017; van Erp et al. 2016)

can we identify regions of the conformational space of the enzyme-substrate complex that are

inherently more reactive than others? These questions are addressed using a new approach that

combines machine learning with kinetic transition sampling techniques, applied to the rate-

limiting step for the industrially important enzyme ketol-acid reductoisomerase (KARI).

There are a number of approaches for studying and analyzing enzyme reactivity that do

not focus on the transition state per se, although it may enter implicitly. These include the

literature investigating near-attack conformations, which has suggested that lowering the

energetic barrier to selectively facilitate formation of subsets of ground state conformations that

lie on the path to the transition state, can be just as important as lowering the energetic barrier to

the transition state itself (Lau and Bruice 1998; Bruice and Lightstone 1999; Bruice 2002; Sadiq

and Coveney 2014) and the computational methodology of kinetic transition sampling, embodied

in the transition path sampling (Dellago et al. 1998) and transition interface sampling (van Erp,

Moroni, and Bolhuis 2003) approaches. Here we use transition interface sampling (TIS), which

is computationally more efficient. Both sampling approaches are statistical mechanical

techniques for directly computing the rate of a chemical reaction without reliance on transition-
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state theory or knowledge of either the transition state or a valid reaction coordinate connecting

the reactant well with the product well on the free energy surface. TIS uses Monte Carlo

sampling to construct an ensemble of trajectories that all start in the reactant well and pass

through an interface on the way toward the product well. Ensembles are collected in a

prescribed order such that successive ensembles progress further towards the product well, with

trajectories from the final ensemble reaching the product well. Appropriate statistical methods

exist to compute the progressive probability that a trajectory starting in the reactant well will

reach each interface, a rapidly diminishing probability can drop tens of orders of magnitude on

its way to the product, and to convert the probability into a reaction rate, corresponding to the

specific activity, kcat, for enzymes. While a valid reaction coordinate is not a requirement, the

method uses an order parameter that cleanly distinguishes reactant from product to track progress

between the two wells (van Erp, Moroni, and Bolhuis 2003). (The placement of interfaces is

shown schematically in Figure IA and their progression in Figure 2, with X representing the

order parameter.)

KARI is a natural enzyme required for branched-chain amino-acid synthesis, found

broadly across plant and microbial species (Dumas et al. 2001). It also now has an important role

in industrial processes for the microbial production of isobutanol, and, due to its role as the rate-

limiting step, improvements in its specific activity would improve processes for large-scale

isobutanol production (Chen and Liao 2016). Natural KARIs show two principal activities,

converting (2S)-acetolactate (AL) to (2R)-2,3-dihyroxy-3-isovalerate (leading to valine or

leucine) and converting (2S)-2-aceto-2-hydroxybutyrate (AHB) to (2R,3R)-2,3-dihydroxy-3-

methylvalerate (leading to isoleucine). The enzyme carries out two enzymatic steps in sequence,

first a rate-limiting isomerization consisting of an alkyl migration (a methyl migration for AL
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and ethyl for AHB) and then a faster reduction carried out by a nucleotide cofactor. Our studies

have focused on the homodimeric enzyme from spinach (Spinacia oleracea), due largely to the

availability of appropriate crystal structures, and we have studied the industrially relevant, rate-

limiting reaction step involving isomerization of AL through methyl migration (Chen and Liao

2016; Bastian et al. 2011; Tadrowski et al. 2016) (Figure IB).

The natural spinach enzyme exhibits a strong preference for NADPH as a cofactor and

has two divalent magnesium cations bound at the active site, in intimate contact with substrate

(Figure IC; Biou et al. 1997). Models show AL coordinates both magnesium ions, with

magnesium M16 coordinated to hydroxyl 06 and a carboxylate oxygen and magnesium M17

coordinated to hydroxyl 06 and carbonyl 08 (note that here we adopt atom naming and

numbering from Figure IC). M16 is additionally coordinated by an Os of Glu 319, an 05 of

Asp 315, and two water molecules to make it hexacoordinate. M17 is also hexacoordinate, with

additional coordination to the other 06 of Asp 315 and three water molecules. Thus, both

Asp 315 and hydroxyl 06 bridge the magnesium ions. An additional polar contact to the

substrate is made by the hydrogen bond donated by the protonated form of the side chain of

Glu 496 to carbonyl 08. Note that the C5 (and its associated hydrogen atoms) is the methyl

group that migrates from C4 to C7.

The current study is based on previous work we carried out on KARI, which identified a

"pump-and-push" mechanism for the rate-limiting isomerization reaction, whereby the local

environment vibrationally excites the breaking C4-C5 bond and the side chain of Glu 319 helps

direct and potentially stabilize the migrating methyl group (C5 and its hydrogens) towards its

destination, bound to C7 (Silver 2011). Moreover, the work suggested that some portions of the

conformational and motional space of the bound enzyme-substrate complex (the reactant well)
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led to trajectories that have a greater probability of reacting than those that do not pass through

or spend as much time in those same portions of the reactant well. The term "more reactive"

portions of the reactant well is applied to represent this idea.

Here we carried out TIS simulations of wild-type spinach KARI and performed detailed

comparative analysis on two sets of ensembles of trajectories-one set that reacted and another

set that approached the barrier but did not react (termed "almost-reactive"). We tabulated data on

68 different geometric measurements in the active site that represent elements of the local

conformation in the form of distances between pairs of atoms (whether or not the atoms are

bonded to each other), planar angles across triplets of atoms (again, whether or not there is a true

bond angle involving them), and dihedral angles across quadruplets of atoms. The set was

selected based on mechanistic hypotheses of others and ourselves, and includes internal metrics

within the substrate; measures of the position and orientation of substrate relative to the

environment, particularly for groups that might stabilize the bound substrate or transition state;

and measures of conformation of the environment (Table I and Supplementary Figure 1).

Machine learning techniques were applied to identify subsets of this feature list and build

predictive models that accurately distinguished reactive from almost-reactive trajectories, based

only on data tabulated from before trajectories departed the reactant well. We reasoned that these

reduced feature sets and models describe key features sufficient to drive reactivity. We analyzed

these feature sets in the context of the reactive and almost-reactive trajectories to understand in

more detail these drivers and to gain insight into mechanism. We found key descriptors capable

of identifying reactive conformations included those that quantify substrate conformation,

substrate bond polarization, and metal coordination geometry and suggest their role in promoting

substrate reactivity. To test the notion that these drivers are sufficient and that they define
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inherently reactive portions of the reactant well, we compared the computed specific activity of

the wild-type enzyme when trajectories were constrained to visit these regions with those that

were not. We found that ten features alone were sufficient to describe a portion of the reactant

well that led to very large rate increases, demonstrating it as a highly reactive portion of the well.
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Figure P: (A) Schematic of interface placements used to generate reactive and almost-
reactive trajectories, where -A denotes the reactant interface, AR indicates the product interface
used to generate the almost-reactive trajectory ensembles and XR indicates the product interface
used to generate the reactive trajectory ensembles. (B) Reaction catalyzed by KARI with states 2
and 3 indicating initial and final states used jor the specific rate-limiting step of the
isomerization studied (C) Atoms and residues included in QM region (non-polar hydrogens not
shown) Residue AC6 refers to the deprotonated acetolactate substrate, residue NDP refers to the
NADPH cofactor and residue MG6 refers to the two magnesium ions and the five coordinating
active site waters (D) Distribution of, values for reactive (red) and almost-reactive (blue)
trajectories time-shifted such that last trough before prospective catalytic event occurs at the Ofs
time point. Vertical black lines indicate the location of time points where features were
computed.
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Figure 2: (A) Illustration of computation of the TISflux factor. The red and gray line
represents a long molecular dynamics trajectory originating in region A. Portions of the
trajectory in red indicate the time points in region A used to normalize the flux factor. Black dots
represent effective crossings of the )A interface. (B) Illustration of computation of a P(Aie+1l )
ensemble. Each red and white line indicates an attempted shooting move. Black dots indicate
shooting points. Red lines indicate accepted shooting moves, while white lines indicate rejected
shooting moves. (C) Illustration ofprocedure used to compute the constrained flux factor. The
dark red region indicates the reactive subregion A 'identified using machine learning. Portions
of the trajectory in red indicate the time point in either region A' used to compute . Black dots
represent effective crossings of the A- interface. (D) Illustration of a constrained P(Ai+1 | A,
ensemble. The dark red region indicates the reactive subregion A' identified using machine
learning.
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Methods
Structure Preparation. The crystal structure of spinach (Spinacia oleracea) KARI bound

to the transition-state analog N-hydroxy-N-isopropyloxamate was obtained from the Protein Data

Bank (Bernstein et at. 1977; Berman et al. 2000; Rose et al. 2017) with the accession code lYVE

(Biou, Dumas, Cohen-Addad, et al. 1997) and prepared as described previously by Silver (2011).

Although the enzyme crystallizes as a homodimer with two identical active sites (Biou, Dumas,

Cohen-Addad, et al. 1997), only the chain A monomer was used for all simulations in order to

improve computational efficiency. This choice was justified by the significant separation

between the active sites of the two monomers (Biou, Dumas, Cohen-Addad, et al. 1997) which is

illustrated in Supplementary Figure 2. Histidine side-chain orientation and protonation for the

following chain A residues was selected to maximize hydrogen-bonding potential, resulting in no

changes to histidine orientation, no doubly protonated histidine side chains, and neutral histidine

protonation as indicated: 103-6, 215-6, 226-6, 232-6, 280-c, 328-c, 484-6, 506-C, and 564-C.

Crystallographic water molecules that were neither in the active site nor made least three

hydrogen bonds with the protein (using a maximum heavy-atom hydrogen-bond distance of 3.33

A) were removed. The 61 water molecules remaining had residue identifiers of 72, 75, 87, 93,

106, 109, 179, 194, 379, 405, 429, 440, 474, 481, 838-841, 852, 862, 878, 883, 887, 894, 895,

941-949, 965, 967-969, 975, 998, 999, 1023-1025, 1032, 1072, 1089, 1093-1095, 1097, 1105,

1108, 1206, 1250, 1252, 1253, 1257, 1304, 1305, and 1779.

A model of the substrate-bound enzyme was then constructed by running an in vacuo QM

ground-state minimization of the substrate, two magnesium centers, five magnesium-

coordinating water molecules, as well as the side chains of three surrounding active-site residues,
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Asp 315, Glu 319, and Glu 496. The Glu 496 residue was protonated, consistent with previous

studies indicating its importance in stabilizing the transition and product state by forming a

hydrogen bond with the substrate 08 (Proust-De Martin, 2000). The GAUSSIAN03 computer

program (Frisch et al. 2003) was used to perform in vacuo QM calculations at the rhf/3-21 g*

level of theory, using ground-state energy minimization (keyword OPT) to obtain reactant and

product structures and a saddle-point search (keyword QST3) to obtain the transition-state

structure. Both types of optimization were performed using the Berny algorithm (Peng and

Bernhard Schlegel 1993; Peng et al. 1996, Li and Frisch 2006). To ensure low-energy pathways

to the reactant and product state of isomerization, the resulting transition state was validated by

following the vibrational eigenmode corresponding to the single negative eigenvalue.

Each of the optimized and validated QM-derived structures was combined with the

prepared crystallographic structure for the rest of the enzyme by alignment of the carbon atoms

of the QM-optimized substrate to the crystallographic transition-state analog, followed by ten

rounds of sliding, constrained minimization. During this minimization, which consisted of 100

steps of steepest descent minimization followed by 100 steps of adopted basis Newton-Raphson

minimization, all substrate, magnesium ion, and coordinating aspartate and glutamate oxygen

atoms were held fixed, and the remaining active-site residues were harmonically constrained

using a force constant of 50 kcal/(mol -A). Harmonic constraints were reset after each round of

minimization.

Simulation Methodology. CHARMM version 41 (Bernard R. Brooks et al. 1983; B R

Brooks et al. 2009) compiled with the SQUANTUM option was used to perform all molecular

dynamics simulations. The QM portion of the energy function was calculated with the AMI

semi-empirical quantum mechanical force field (Dewar et al. 1985); the MM portion of the
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energy function was computed using the CHARMM36 all-atom force field (Huang and

MacKerell 2013). Additional AMI parameters published by Stewart (2004) were used for the

magnesiums. The following atoms made up the QM region: substrate (acetolactate), both

magnesium centers, five magnesium-coordinating active site water molecules, the side chains of

Asp 315, Glu 319, and Glu 496, and the nicotinamide group of NADPH (illustrated

schematically in Figure I C). The Generalized Hybrid Orbital method (Gao et al. 1998) was used

to treat the QM/MM boundary atoms, included the Ca atoms of residues Asp 315, Glu 319, and

Glu 496, as well as the C5' atom of the ribose ring in NADPH linking to the nicotinamide group.

The substrate 06 was deprotonated and the coordinating Glu 496 was protonated, paralleling

previous QM/MM studies of KARI (Proust-De Martin, 2000). All molecular dynamics

simulations were performed in vacuo with a distance dependent dielectric (4r) using the leapfrog

integrator at 300 K with a l-fs integration time step.

Seed Trajectory Generation. The initial reactive trajectories used to bootstrap the TIS

simulations were found by computing a potential of mean force (PMF) along the order parameter

?,, defined as the difference of the distance between the substrate breaking bond (C4-C5) and the

forming bond (C5-C7), which has units of angstroms. This PMF was computed using umbrella

sampling and the weighted histogram analysis method (Kumar et al.1992). The umbrella

sampling was performed in CHARMM41 using the RXNCOR module with windows 0.05 A in

width and harmonic constraints of 300 kcal/(mol -A). The resulting PMF provided an estimate of

the location of the transition state along the order parameter k, roughly within the -0.05 < k <

+0.05 region. Candidate seed trajectories were then generated by integrating forward and

backward for 2,000 fs starting from a randomly chosen frame from the umbrella sampling

window ensembles with centers at k values of -0.05, 0.00, and +0.05. Trajectories were selected
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as successful seed trajectories if they connected the reactant basin (k <-1) and product basin (k

> +1).

Training Data Set Generation and Time Point Selection. Three randomly-selected

connecting seed trajectories from the resulting collection described above were used as starting

trajectories for the generation of a larger ensemble of reactive and almost-reactive trajectories.

Each seed was used to generate 9 reactive ensembles and 9 almost-reactive ensembles of 20,000

trajectories each. The combined data set contained 461,422 almost-reactive and 618,578 reactive

trajectories. The greater number of reactive trajectories resulted because the sampling process for

almost-reactive trajectories also could also generate some reactive ones, but the sampling process

for reactive trajectories could not generate almost-reactive ones. When the almost-reactive

process produced a reactive trajectory, it was removed from that set and added to the reactive

data set. To ensure a balanced number of reactive and almost-reactive trajectories in each

training and testing data set, the reactive trajectories were randomly sampled without

replacement to produce a set of 461,422 reactive trajectories.

For the reactive ensembles, as shown in Figure IA the product interface was defined as

R = +1.00, and for the almost-reactive ensembles, the product interface was defined as kAR -

0.20. In both ensembles, the reactant interface was defined as k = -1.00. In order to collect time

points early in the reactant basin for analysis, integration was not stopped once a trajectory

reached the reactant and product interface (and had been accepted into the Markov chain), but

continued forward and backward for a total of 200 fs in each direction. A MATLAB wrapper

that launched individual CHARMM41 trajectory runs was used to perform all TIS computations.

To ensure that candidate features (see below) were computed at analogous time points

between reactive and almost-reactive trajectory ensembles, in a post-processing step, all almost-
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reactive and reactive trajectories from all 27 pairs of ensembles were time-shifted and aligned

such that the 0-fs time point corresponded to the bottom of the last "trough" in k (when plotted

vs. time) before the prospective alkyl migration event, a geometric feature that all the collected

trajectories shared. Aligned reactive and almost-reactive trajectory ensembles are illustrated in

Figure I D. Chemically, the last trough represents the point at which the C4-C5 bond is most

compressed, before, like a spring, launching into the prospective bond-breaking event (whether

or not that event occurred). This trough was found by first finding the point in the trajectory

closest to the transition region at k= 0, then scanning along the trajectory backward from this

point until the first change in sign of the derivative of 2 with respect to time was found with a

value of k less than 0 (i.e., was located in the reactant basin). All other time points were defined

relative to this first trough at time 0. Cartesian coordinate frames of atomic positions were

collected in 5-fs increments from the 0-fs time point, going backward to -150 fs and forward to

+35 fs from the t=0-fs point, for a total of 38 total time points. This collection of sub-sampled

time points was used for all subsequent analysis.

Feature Computation. At each of the 38 time points between -150 and +35 fs, the set of

68 structural features in Table 1 (see Introduction), were computed for each of the trajectories in

each of the 27 reactive and 27 almost-reactive ensembles. The 68 features are illustrated

structurally in Supplementary Figure ]A (distances), Supplementary Figure 1B (angles), and

Supplementary Figure IC (dihedrals). These data were pooled across ensembles to produce one

combined reactive and one combined almost-reactive data set at each of the 38 time points,

which were used in machine learning and subsequent analysis described below and stored as a

row in a data matrix. A separate data matrix was constructed for each time point by augmenting
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the 68 computed features with the trajectory outcome (1 for reactive or 0 for almost-reactive), as

well as the ensemble and trajectory indices.

Note that for the remainder of this study, the residue name AC6 will be used to refer to

the reactant state of the substrate shown in Figure IC. The residue name NDP refers to the

NADPH cofactor and the residue name MG6 refers to the five quantum mechanically-treated

waters and two magnesium ions in the active site.

Machine Learning. For feature regularization and discovery, the LASSO method

(Tibshirani 1996) was used with the lassoglm implementation in MATLAB. For an intercept #lo

and predictor coefficients &y, LASSO solves the general problem,

N p
ini I P 30,/3(Xi I Yi) + AZ

i=1 Ji

where p is the number of input predictor features, N is the number of observables (the number of

reactive and almost-reactive trajectories used in a given LASSO training set), the X are each a p-

dimensional vector of predictor features (generally interatomic distances, angles, and dihedrals),

the Y are scalar outcomes (1 for a trajectory that was reactive and 0 for one that was almost-

reactive), X is a non-negative regularization (penalty strength) parameter, and an underlying

logistic learning model was composed of an intercept /3o, a set ofp feature coefficients /p, and

the loss function P0o,0(i, Yi).

Due to the binary nature of the response variables, a logistic loss function was used,

Po,13 (X, y) =---y(A + Z/ 3x) + log I + e
j=1

where x and y denote individual observations of X, and Y,. Note that only the values of the

predictor coefficients fi were penalized using LASSO, and not the value of the intercept fo. In
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order to select a given number of features with LASSO, the regularization parameter k was

adjusted until a specific number m (1, 5, 10, 15, 20, 25 or 30) of non-zero coefficients A

remained (using a tolerance of 1.0 x 104). These m LASSO-selected predictor features with non-

zero coefficients were then fit using thefitglm function in MATLAB to a logistic classifier of the

form,

00 + T, Ojxj
e =1

1+ j =1

where pi is the probability of evaluating to I (reactive) given a specific linear combination of

predictor features x1. Trajectories were considered reactive if this probability evaluated to greater

than 0.5 ( o + Zj 1  > 0 ) and non-reactive if this probability evaluated to less than or

equal to 0.5 ( o + E_ 1 
3ixi < 0 ). The logistic classifier essentially defines a hyperplane

with the equation 00 + EjI>1 /3x= 0 that partitions the reactant well in two, with reactive

predictions on one side and non-reactive on the other.

After fitting predictor coefficients, the area under the receiver operating characteristic

(AUC) was computed for each logistic classifier using the perfcurve function in MATLAB to

vary the classifier threshold po in order to generate a receiver operating characteristic, and

subsequently compute the area under the resulting curve. Other classifier performance metrics

were computed using the classperf function in MATLAB, where accuracy was defined as the

number of correctly classified trajectories divided by the total number of trajectories, sensitivity

was defined as the number of correctly classified reactive trajectories divided by the total number

of reactive trajectories, and specificity was defined as the number of correctly classified almost-

reactive trajectories divided by the total number of almost-reactive trajectories.
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Cluster Assignment. Reactive clusters were assigned by k-means clustering, with the

kmeans function in MATLAB using k= 5 applied to the matrix of consensus feature Z-scores

weighted by their corresponding logistic coefficient /3 for all correctly classified reactive

trajectories. The number of clusters (5) was chosen based on a hierarachical clustering analysis

also performed in MATLAB (data not shown). The Euclidian distance of the consensus feature

set from each almost-reactive trajectory to each of the five k-means centers was computed, and

each almost-reactive trajectory was then assigned to the cluster with the shortest Euclidian

distance to its respective centroid.

Rate Constant Computations. The TIS rate constant was computed as the product of two

K1)A,AI)

terms-a flux term denoted (hA) and a probability term denoted P(AB AI) (van Erp, Moroni,

and Bolhuis 2003). The flux term represents the number of crossings through interface ki having

come directly from state A (also referred to as the reactant basin, defined as all points for which

k < A= -0.8), normalized by the total time spent in state A. The probability term represents the

probability a trajectory of reaching interface kB given that it has also crossed interface ? 1, and for

computational efficiency can be decomposed into a series of conditional probabilities

n-i

P (ABL\1) H f P(Ai ltAi)P(ABJAn)
=1 representing the probability of a trajectory reaching the

next successive interface ,i+ 1, given it has also reached interface ki.

For the flux factor calculations, a total of 10 independent 1-nanosecond molecular

dynamics simulations were performed starting from reactant structures derived from each of five

randomly selected seed trajectories generated as described above. The XA interface was set equal

to the 1 interface at k= -0.8. For the control flux factor computations (as illustrated in Figure

2A), the effective positive flux was computed as the number of times the trajectory crossed the
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A-0. 8 interface, having come from the region below the XA interface, divided by the total

amount of time spent below the kA interface. For the constrained test flux factor computations (as

illustrated in Figure 2C), the top 10 LASSO-selected features at the t=0 time point were written

out during the dynamics run, and the effective positive flux was computed as the number of

times the trajectory crossed the k1=-0. 8 interface, having come from the region A', where region

A' refers to all points in phase space which lie on the last trough (i.e., the first point at which

dA d2A >0
= and dt2  ) before crossing ?4=-0. 8, having first crossed ko=-l, and for which the

logistic classifier with coefficients and features listed in Table 4 evaluated to true. Derivatives of

k with respect to time were computed using finite differences.

For the probability factor calculations, a total of 29 P(ki.1+ ki) interface ensembles from

each of the five seed trajectories were computed, with the ki interfaces spaced between k =-0.8

and k= 0. The placement of these interfaces relative to the potential of mean force surface used

to generate initial seed is shown in Supplementary Figure 3. To ensure sufficient sampling,

interfaces between k = -0.8 and k = -0.15 were spaced in 0.025 A increments and the remaining

interfaces between -0.15 and 0 spaced in 0.05 A increments. For each interface ensemble, a total

of 5000 shooting moves was attempted. In each ki ensemble, candidate trajectories were

generated using full shooting moves and accepted if they both crossed the kA= -0.8 interface and

crossed the k =k1 interface having first come from crossing interface KA. For the unconstrained

control ensembles (as illustrated in Figure 2B), no further acceptance rules were applied.

For constrained ensembles (as illustrated in Figure 2D), once the trajectory connected the

kA= -0.8 and k,+ 1 interfaces, the trajectory was only included in the ensemble if the logistic

classifier evaluated with features and coefficients described in Table 4 evaluated to true at the
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which dAA >2  0
first point at which t = 0 and dt2 > 0 before crossing kA=-0. 8 , having first crossed interface

4=-l. Derivatives in k with respect to time were computed using finite differences.

Integration was stopped when the candidate trajectories crossed its respective =1

interface or the Xo interface, which was accomplished by modifying the RXNCOR module of

CHARMM41 (Brooks et al. 1983, Brooks et al. 2009) All shooting moves and acceptance

criteria were implemented using a MATLAB wrapper around CHARMM4 1, i.e. CHARMM was

only used for the actual molecular dynamics integration. The number of accepted trajectories

varied between the interface ensembles, seed trajectories and whether or not the additional

sampling constraint was applied, and ranged between 10 and 95%.
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Table 1: Feature names, feature indices and feature types computed at each time point.
Residue name AC6 refers to the substrate, residue name NDP refers to the NADPH cofactor, and
the residue name MG6 refers to the 5 active site waters and two magnesium ions. Structural
representations offeatures are shown in Supplementary Figure 1.

Feature Feature
Inde I Feature Name Feature Type Inde I Feature Name Feature Type

Dist AC6/02,NDP/N7N

Dist AC6/02,NDP/07N

Dist AC6/03,MG6/H24

Dist AC6/06,MG6/M 16

Dist AC6/08,GLU496/HE2

Dist AC6/08,MG6/M 17

Dist GLU319/OE 1,AC6/C5

Dist MG6/H25,AC6/06

Dist MG6/H26,AC6/06

Dist MG6/H27,AC6/06

Dist MG6/H28,AC6/06

Dist MG6/H3 1,AC6/06

Dist MG6/H32,AC6/06

Dist MG6/M 16.AC6/03

Dist MG6/M I 7,AC6/06

Dist NDP/H4N2,AC6/C4

Ang AC6/06,MG6/M 16,AC6/03

Ang AC6/08,MG6/M 17,AC6/06

Ana MG6/M I 7,AC6/06,MG6/M 16

Dist AC6/C 1,AC6/C4

Dist AC6/C 1,AC6/02

Dist AC6/C 1,AC6/03

Dist AC6/C4,AC6/C7

Dist AC6/C4,AC6/06

Dist AC6/C5,AC6/C4

Dist AC6/C5,AC6/C7

Dist AC6/C7,AC6/C9

Dist AC6/C7,AC6/08

Ang AC6/C 1,AC6/C4,AC6/C7

Ang AC6/C4,AC6/C7,AC6/C5

Ang AC6/C4,AC6/C7,AC6/C9

Ang AC6/C5,AC6/C4,AC6/C 1

Ang AC6/C5,AC6/C7,AC6/C9

Dihe AC6/C 1,AC6/C5,AC6/C7,AC6/C4
Dihe AC6/C5,AC6/C4.AC6/C7,AC6/C9

Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
environment
Substrate-
envirnnment

Intra-suIbstrate

Intra-substrate

Intra-substrate

I ntra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

Intra-substrate

I ntra-su bstrate

Intra-substrate

Intra-stibstrate

Intra-suibstrate

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Dist NDPIH4N2,NDP/C4N

Dist NDP/N7N,NDP/02N

Ang NDP/C4N,NDP/N I N,NDP/C 1 NQ

Ang NDP/C6N,NDP/C3N,NDP/C7N

Ang NDP/N7N,NDP/H72N,NDP/02N

Dihe NDP/C2NNDP/C3N,NDP/C7N,NDP/N7N

Dihe NDP/C2NQ,NDP/C I NQ,NDP/N I NNDP/C6N

Dihe NDP/C4N,NDP/C3N,NDP/C7N,NDP/07N

Dihe NDP/H I NQ,NDP/C INQNDP/N I N,NDP/C2N

Dist MG6/O18,MG6/M 17

Dist MG6/OI9,MG6/M17

Dist MG6/020,MG6/M17

Dist MG6/02 1,MG6/M 16

Dist MG6/022,MG6/M 16

Ang MG6/H23,MG6/022,MG6/M16

Ang MG6/H24,MG6/022,MG6/M 16

Ang MG6/H25,MG6/02 1,MG6/M 16

Ang MG6/H26,MG6/02 1,MG6/M 16

Ang MG6/H27,MG6/020,MG6/M 17

Ang MG6/H28,MG6/020,MG6/M17

Ang MG6/H29,MG6/O18,MG6/M17

Ang MG6/H30,MG6/O18,MG6/M 17

Ang MG6/H31,MG6/O19,MG6/M17

Ang MG6/H32,MG6/OI9,MG6/M 17

Dist GLU496/OE2,GLU496/Ht2

Dist GLN 136/NE2,NDP/07N

Dist MG6/H25,MG6/021

Dist MG6/H26,MG6/021

Dist MG6/H27,MG6/020

Dist MG6/H28,MG6/020

Dist MG6/H31,MG6/019

Dist MG6/H32,MG6/019

Ang GL136/NE2,GLN136/HE22,NDP/07N
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Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Intra-cofactor

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

Water-metal

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

I environment

I ,



Results
Data Collection and Preparation. Transition interface sampling simulations were carried

out using a combined QM/MM approach to collect 27 ensembles of reactive trajectories (that

each start as reactant and end as product, with the reaction progress order parameter k reaching at

least +1). A parallel method was used to collect 27 corresponding ensembles of almost-reactive

trajectories (that also start as reactant but are only required to reach a k value of -0.2 and that all

returned to reactant [k value less than -1] rather than continuing on to product). For both the

reactive and almost-reactive ensembles, nine Markov chains containing 20,000 trajectories were

initiated from each of three seed trajectories. All 54 of the resulting trajectories were then aligned

by time shifting such that at t-0.0 fs, K describing reaction progress was at the bottom of its last

trough before attempting to cross the reaction barrier. Averages of the time traces for k are

illustrated in Figure 1 D for reactive and almost-reactive trajectories.

The combined data set contained 461,422 almost-reactive and 618,578 reactive

trajectories. There were a greater number of reactive trajectories because the sampling process

for almost-reactive trajectories also could also generate some reactive ones, but the sampling

process for reactive trajectories was not used to generate almost-reactive ones. When the almost-

reactive process produced a reactive trajectory, it was moved to the reactive data set. To ensure a

balanced number of reactive and almost-reactive trajectories in each training and testing data set,

the reactive trajectories were randomly sampled without replacement to produce a set of 461,422

reactive trajectories.

At each of 38 time points between -150 and +35 fs (5-fs spacing and shown in Figure

ID), the 68 features listed in
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Table 1 and illustrated structurally in Supplementary Figure 1 were computed for each of

the trajectories in each of the 27 reactive and 27 almost-reactive ensembles. These data were

pooled across ensembles to produce one combined reactive and one combined almost-reactive

data set at each of the 38 time points, which were used in machine learning and subsequent

analysis described below.

Machine Learning. The prepared data sets were analyzed with machine learning to

identify features with the ability to distinguish reactive from almost-reactive trajectories for each

of the 38 time points. To assess individual feature performance, AUC (area under the curve of

the receiver operating characteristic) was computed for all single features at the 0-fs time point.

The results are shown in Figure 3A. The single feature with the maximum AUC performance

was the distance between Glu 319 OEl and substrate C5 (AUC of 0.73). Only two features

(distance Glu 319/OEl-AC6/C5 and distance AC6/C4-AC6/C5) produced models with

individual AUCs above 0.70, and 18 features produced models with AUCs above 0.60.

To find highly predictive groups of features, the LASSO method (Tibshirani 1996) was

applied iteratively with different penalty strengths to identify an ordered set of features for each

trajectory time point, optimized to distinguish reactive from almost-reactive conformations (see

Methods). That is, for each time point a collection of separate machine-learning classifiers was

built, trained, and tested, enabling comparisons of the useful sets of features across time points as

well as the performance benefits for increased numbers of features at each time point. For model

training, the data matrix at each time point was randomly sampled without replacement to

produce 5 equal partitions containing 73,827 trajectories each, and for model testing, the

remaining trajectories were randomly sampled to produce five equal partitions containing 18,456

trajectories each. Figure 3B shows the machine learning results for four classifier performance
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statistics computed from each model constructed from data at each time point. The four statistics

are AUC, accuracy, sensitivity, and specificity. Results for models constructed with optimized

sets of 1, 5, 10, 15, and 20 features selected by LASSO are shown. Uncertainty was computed as

the standard error over the 5 separate partitions of the data and is roughly equivalent to the

thickness of each line. The results show progressively improved performance as the number of

features was increased, with not insignificant performance with just one feature (generally 0.65-

0.75 AUC) that rose to excellent performance with 10, 15, and 20 features (generally 0.85-0.95

AUC). Note that the performance of the LASSO-selected 1-feature models, being the "best"

feature for each time point, was significantly better than the average AUC of all possible 1-

feature models shown in Figure 3A, which was 57.18%. The similarity in performance between

15- and 20-feature models suggests near convergence with this number of features. The models

developed were well balanced between false positives and false negatives as judged by similar

values for the sensitivity and specificity metrics of individual classifiers, as well as the AUC

values. Machine learning models performed similarly (for the same number of features) for time

points between -150 and +20 fs, and then became substantially better (approaching an AUC of

1.00) for time points after +20 fs, which corresponds to times when the reactive and almost-

reactive trajectories began to separate based on the order parameter k (Figure 1 D).

To assess the effect of LASSO-optimized feature selection for use in machine learning

models, a control was carried out in which a classifier was trained similarly but using feature sets

randomly chosen from the original 68 features. That is, each control classifier was optimally

trained for the best performance possible with the random (and not optimized) features it was

assigned. Analogous performance statistics for these control classifiers are shown in Figure 3C,

with error bars indicating standard errors of classifier performance statistics across 100 randomly
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selected feature groups. The results showed improved performance with additional features

randomly selected from a chemically plausible set, together with large error bars, which is

consistent with the notion that at any given time point some features or combinations of features

were much better able than others to create predictive models, and the performance of models

depended greatly on the features making up that model. Models with any given number of

features performed much better on average when those features were selected by LASSO based

on predictive ability than when selected randomly, demonstrating the value of the LASSO-

selected features in distinguishing reactive from almost-reactive trajectories; for example, many

of the one-feature models with LASSO-selected features had AUCs of about 0.70, whereas the

random models had average AUCs of 0.57. The random models showed improved average

performance after t-+20 fs, consistent with the notion that many features report on the fact that

the reaction has largely begun.

Analysis of Consensus Feature Set Predictive Throughout Pre-Launch Time Window.

The union of the complete 20-feature sets predictive at all 31 time points between -150 and 0 fs

is depicted in Figure 3E. Features are listed in decreasing order of frequency of appearance, and

the colored bars indicate the time points for which each feature appears as one of the 20 LASSO-

selected features. (The time range -150 to 0 fs will be called the "pre-launch time window" for

shorthand, as the 0-fs time point represents the last compression before the ultimate expansion of

the putative breaking bond.) The results show that 17 of the features were used throughout at

least half the window, 31 features were used at 10 or more time points, nearly all of the original

features were used at least once (54 from the collection of 68), and 8 were used at five or fewer

time points. The results suggest a commonality amongst the geometric descriptors that, broadly

across the pre-launch window, were predictive. The names and feature types of the top 30
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consistently predictive, consensus features are presented in Table 2 along with the number of

occurrences in the top 20 LASSO-selected sets within the pre-launch window. Figure 3D shows

the classification performance of models trained using the top 1, 5, 10, 15, 20, 25, and 30

consensus features across the 31 time points between -150 and 0 fs. With the 30 consensus

features, classification performance was nearly equivalent to or better throughout the pre-launch

window (approximately 0.90 AUC) than the performance obtained from 20 LASSO-selected

features optimized for each of the individual time points. That is, 30 shared features performed

as well as 20 custom features across the range, which is strong evidence that the fundamental

determinants of reactivity do not change during the pre-launch window. Because the classifiers

were each trained separately at each time point to produce models with different learned

coefficients, these fundamental determinants of reactivity can (and do) play somewhat different

roles at different times.

A structural representation of the set of 30 consensus predictive features is shown in

Figure 4A (17 distances) and Figure 4B (12 planar angles and I dihedral angle). Half of the

features (15) represent interactions between the substrate and its environment (nearby water

molecules, the two magnesium ions, and the side chain of Glu 319), 7 represent intra-substrate

conformational metrics, 7 represent water-metal interactions, I represents an intra-co-factor

orientation, and 2 represent other intra-environment interactions. A full third of the features (10)

represent distances or angles describing the relationship of a single atom, the substrate hydroxyl

oxygen (06), to its environment-the coordinating magnesium ions and water molecules

interacting with the metal ions. The largest number of intermolecular features involving any

other substrate atom is 2, for both a substrate carboxylate oxygen (03) and the substrate carbonyl

oxygen (08), whose carbon receives the migrating methyl group. Only one intermolecular
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interaction involves the migrating methyl itself. We note two additional characteristics of the

feature set: (1) the substrate intramolecular features involve the geometry local to the C4-C7

covalent bond, which is parallel to the path of the migrating methyl group (it departs from C4

and arrives at C7), and (2) 8 of the 10 intermolecular angle features describe the orientation of

groups coordinating the metal ions-either their ligated water molecules or oxygen atoms of the

substrate (carboxylate, hydroxyl, or carbonyl). It must be recognized that the composition of the

initial 68 features had some effect on the composition of the selected features. Nevertheless, the

composition of this consensus feature set suggests important roles for substrate conformation,

substrate bond polarization, and metal coordination in the reaction mechanism.

Table 3 and Figure 5 describe the contribution of individual features to the classifiers

trained at representative time points (-150, -100, -50, and 0 fs) using the consensus feature set.

Table 3 presents standardized logistic regression coefficients #3 for each classifier, with a

positive (negative) coefficient/pb indicating that increasing the value of featurej (corresponding

to a bond length, bond angle, or dihedral angle), tends to increase (decrease) the likelihood of

classifying a trajectory being as reactive. A higher absolute value for coefficient fl indicates that

featurej has a greater contribution to the probability of a trajectory evaluating-as reactive relative

to the other features at the same time point (note that in this standardized representation the

features themselves are input to the classifier as Z-scores, so different scales for bond lengths and

bond angles, for instance, don't contribute to coefficient values).

Average reactive and almost-reactive time traces for the consensus feature set are

presented in Figure 5A. The four time points for which coefficients are presented in Table 3 are

shown as vertical black dashed lines for each of the 30 features in Figure 5A. Bonded intra-

substrate distances and angles, such as features 9, 14, 15, 20, and 25 tend to exhibit oscillatory
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behavior consistent with the vibrations of the breaking bond, other inter-atomic distances and

angles, such as features 2, 5, 8, and 22, tend to progress monotonically, and still others tend to

remain relatively constant in the pre-launch window (features 7, 21, 26, and 32), sometimes with

a few characteristic deviations. The results follow the general trend that features with lower

magnitude coefficients in Table 3 tend to exhibit more closely overlapping reactive and almost-

reactive distributions at corresponding time points in Figure 5A, and that greater magnitude

coefficients correspond to more distinct trajectory distributions, but there are exceptions as well.

For example, at the -150 and -1 00-fs time points, #I exhibits values of -0.361 and -0.527,

respectively, indicating that for feature I (distance Glu 319/Os1-AC6/C5) increases in the

distance tend to decrease reactivity; the observation from the simulations, shown in Figure 5A,

matches in the sense that this distance is smaller, on average, for the reactive compared to the

almost-reactive trajectories at these time points (the average reactive trace (red) is lower than the

average almost-reactive trace (blue) for these time points), but the difference is larger for the

smaller absolute-value coefficient. Interestingly, this feature has the opposite effect at the later

time point of 0 fs, where higher values of feature 1 are more predictive of reactivity, (#1

coefficient of 0.470) and the average reactive trace for feature I is greater than the average

almost-reactive trace for at the O-fs time point in Figure 5A. Thus, the same features in the

consensus set are generally predictive across all time points, but they can be used somewhat

differently at different times.

The closely overlapping distributions of most features in Figure 5A suggest the need for

multiple features in combination to make usefully accurate predictions. Histograms of reactive

and almost-reactive trajectories for feature pairs and triplets (2D and 3D histograms; data not

shown) show somewhat greater separation than that seen in Figure 5A, but still considerable
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overlap between reactive and almost-reactive distributions at individual time points, consistent

with the relatively poor classification performance of models with fewer than 10 features.

Subtle variations distinguish different reactive channels. We examined the question of

whether there were single or multiple channels through which reaction proceeded. Clustering

was used to organize the correctly predicted reactive and almost-reactive trajectories into related

sets, and the magnitude of the differences between the sets was examined. This also allowed a

more fine-grained analysis of the determinants of reactivity as identified by the machine

learning. Specifically, all correctly predicted reactive trajectories were clustered based on the 0-

fs time point using the 30 consensus features, each weighted by its /8 value (we refer to this as

the feature weight; see Methods; results for five clusters are shown in Figure 5B). The results

show at least five different modes of reacting, with each cluster distinguished by which features

contribute most and least to the classifier outcome. In Figure 5B, the thirty columns represent

the contribution from each of the 30 consensus features and the rows each represent one

trajectory. Red bars correspond to a positive (more reactive) contribution to the classifier and

blue bars correspond to a negative (less reactive) contribution to the classifier, with a darker

color corresponding to a stronger contribution. For example, cluster I is distinguished by a dark

blue band for distance MG6/H32-AC6/06 (feature 2; indicating a contribution that disfavors

reactivity), offset by the dark red bands for distance MG6/H3 1-AC6/06 and distance

MG6/M 1 6-AC6/03 (features 22 and 27, respectively; favoring reactivity). Conversely, cluster 3

exhibits partial reversal of that pattern-a strong red band for distance MG6/H32-AC6/06

(feature 2; favoring reactivity) and a strong blue band for distance MG6/M 1 6-AC6/03 (feature

27; disfavoring reactivity), which correspond to higher than average values for distance

MG6/H32-AC6/06 (feature 2 has a positive coefficient in the 0-fs model) and also higher values
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for distance MG6/H3 I-AC6/06 (feature 22 has a negative coefficient) associated with this

cluster. Figure 5B shows that at the 0-fs time point, roughly half of the 30 features contribute

very little to the decision as indicated by white bands in each cluster. Further confirmation is

seen by the observation that features that appear as white bands usually do not occur in the top

20 LASSO selected set at this time point (see Figure 3E; distance AC6/06-MG6/M16 and

distance MG6/O 19-MG6/M 17 are exceptions and rank 15 and 18, respectively, in the top 20

LASSO selected set).

A corresponding set of almost-reactive clusters was constructed such that each correctly

predicted almost-reactive trajectory was associated with a cluster shown in Figure 5B (feature

contributions at 0 fs were computed for correctly predicted almost-reactive trajectories, and each

was assigned to the nearest reactive cluster). The almost-reactive trajectory feature contributions

are shown in Figure 5C grouped into the five clusters. The almost-reactive weighted features fall

into groups that approximate the distinguishing features of each reactive cluster. For example,

cluster 1 in both Figure 5B and its corresponding almost-reactive cluster in Figure 5C is

characterized by a dark blue band for distance MG6/H32-AC6/06 (feature 2) and dark red bands

for distances MG6/H31-AC6/06 and MG6/M16-AC6/03 (features 22 and 27, respectively). If

each cluster is viewed as a somewhat distinct channel by which reactive and almost-reactive

trajectories approach the barrier, these results suggest that each channel can accommodate both

reactive and almost-reactive trajectories, and that a comparison of Figure 5B and Figure 5C

might be helpful in identifying subtle differences contributing to relative reactivity (see next

paragraph). Moreover, the differences in the numbers of trajectories in each cluster between

reactive and almost-reactive sets indicate that some of the channels (clusters 1, 2, and 5) led to a

greater fraction of reactive as compared to almost-reactive trajectories than others (clusters 3 and
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4; note that these observations remain true when one does a comparison that includes all reactive

and almost-reactive trajectories, not just those correctly predicted; results not shown).

Grouping the weighted features into reactive clusters and corresponding almost-reactive

clusters allows the subtle differences that define reactivity for each of these subgroups to be

more closely examined. To this end, the mean feature contribution for each almost-reactive

cluster in Figure 5C was subtracted from each of the weighted features from the corresponding

cluster of reactive trajectories from Figure 5B to obtain a mapping of how each feature in each

reactive trajectory differs from its mean in the corresponding almost-reactive cluster (Figure 5D);

the results show several common features that distinguish correctly predicted reactive from

correctly predicted almost-reactive clusters. For example, across all five clusters shown in Figure

5D, the darkest red bands appear for distances AC6/C5-AC6/C4 and MG6/M16-AC6/03

(features 10 and 27, respectively), indicating that these features are critical in driving the

reactive/almost-reactive decision. However, there are other differences that are cluster-specific;

for example, differences in the distance AC6/08-Glu 496/Hs2 (feature 6) are responsible for

distinguishing reactive from nearly-reactive more for cluster 3 than for any of the others, on

average.

Distributions of feature values with the strongest contributions to differences in reactivity

amongst the clusters (i.e., the darkest bands in Figure 5D), are shown, per cluster, in Figure 6.

Although there is often considerable overlap in the individual feature distributions between each

reactive and almost-reactive cluster, the set of 5 features alone, when re-trained on each cluster

alone, achieved AUCs of 1.00, 1.00, 0.94, 0.91 and 1.00, in classifying trajectories from clusters

I though 5, respectively, as reactive or almost-reactive. These very high scores suggest that the

more general classifiers presented earlier somehow carry out the dual tasks of determining which
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reaction channel the trajectory is headed toward, as well as whether the trajectory will

successfully react through that channel. The high AUCs suggest that determining which channel

is being approached may be the harder portion of the task, although this effect is convolved with

the fact that these clusters are composed of trajectories that were correctly classified previously.

When all (including incorrectly classified) data points are used, the intercluster AUCs using the

same set of features are 0.92, 0.93, 0.80, 0.88 and 1.00 respectively, supporting the interpretation

that predicting reactivity within a cluster is easier than in the absence of knowledge of the cluster

for most of the clusters.

Figure 6 shows that across all five clusters, some general trends exist for the five features

and their relative distribution between reactive and almost-reactive trajectories. The strongest

observation is that in almost every instance, each significant feature has a much narrower

distribution in the reactive than the almost-reactive set of trajectories. This is consistent with the

notion that there are many ways of not reacting, but fewer modalities for successfully traversing

the reaction barrier. Across most of the five clusters, in general, reactivity is associated with a

shorter AC6/C5-AC6/C4 bond length (column 2; feature 9; clusters 1, 2, 4, and 5), a longer

AC6/CI-AC6/C4 bond length (column 4; feature 25; clusters 2, 3, and 5), a longer

GLU319/Os-AC6/C5 distance (column 1; feature 1; clusters 1, 2, 4, and 5), and a shorter

MG6/M16-AC6/03 distance (column 5; feature 27; clusters 1, 2, and 5). The value of the

MG6/H29-MG6/O18-MG6/M17 angle (column 3; feature 20) is associated with reactivity for

small values in cluster I but large values in cluster 5. Nevertheless, the absolute values

associated with reactivity for some of the features varies greatly between clusters (column 3 for

clusters 1 and 5, and column 5 for clusters 1 and 2, for example). Taken together, these results

reinforce the notion that a common set of fundamental reaction-promoting mechanisms are
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deployed in somewhat different combinations in the different clusters. The structural

implications of these observations were explored. Here we illustrate the trends through a

comparison of the reactive and almost-reactive structures closest to the centroid of each

respective cluster (Figure 7B-F), indicated by the colored or grey open circles, respectively, in

Figure 6. Additionally, a single structure closest to the centroid of each reactive cluster is shown

in Figure 7A.

Figure 7A shows a number of interesting structural variations, particularly considering

that they represent the final bond compression of reactive trajectories. The five water molecules

that coordinate to one or the other magnesium ion each show significant variability across the

clusters. Some of these are differences in water molecule positioning are represented in the

features significant for cluster identify (e.g, features 2 and 22) and others in those significant for

reactivity within a cluster (e.g., feature 20). Additionally, there is substantial variability in the

internal substrate conformation across the different reactive clusters, with cluster 2 being an

especially unusual outlier.

Illustrated in Figure 6 (column 5; feature 27), clusters 1, 2, and 5 exhibit significantly

shorter values for the distance MG6/M 1 6-AC6/03 for the reactive than the almost-reactive

trajectories. Structurally, Figure 7B, C, and F show that this corresponds to a different

conformation of the substrate carboxylate group and a different engagement of magnesium ion

M16 between reactive and almost-reactive trajectories. This shorter distance corresponds to a

somewhat different orientation for the entire substrate relative to the two magnesium ions that

also affects substrate hydroxyl 06 and the metal coordination environment. By contrast,

clusters 3 and 4 show much less difference in the distribution of MG6/M 1 6-AC6/03 (feature 27)

108



between reactive and almost-reactive sets (Figure 6) and this can also be seen structurally in

Figure 7D and E.

Also illustrated in Figure 6 (column 2; feature 9), all five clusters show that the length of

the breaking bond, AC6/C5-AC6/C4, spans a wider range of values for the nearly-reactive

trajectories and is on the shorter side of that distribution for the reactive ones. Keeping in mind

that these conformations are for the 0-fs time point, when the bond is fully compressed before

launching toward the barrier, this represents the notion that reactive trajectories require

substantial potential energy by stored in the bond that is not always seen for almost-reactive

trajectories (that is, this extra compression is necessary but not sufficient).

Figure 6 indicates that the adjacent substrate bond, AC6/C l-AC6/C4 (column 4;

feature 25), is distributed somewhat longer in reactive than almost-reactive trajectories for

clusters 2, 3, and 5; examining the corresponding structures in Figures 7C, D, and F doesn't

show a clear effect of this on conformation. Figure 6 also indicates that a water molecule

orientation, angle MG6/H29-MG6/018-MG6/M17 (column 3; feature 20), is distributed

substantially larger for reactive than almost-reactive trajectories in cluster 5, and much more so

than in any of the other clusters. Figure 7F seems to indicate that this allows engagement of a

lone pair from 018 to interact much more favorably with magnesium, and perhaps affect the

polarization of the substrate, in a typical reactive rather than almost-reactive trajectory. Some of

the other clusters appear to show a difference in the interaction between that water molecule and

magnesium ion, although it may not show up in the angle indicated. Finally, Figure 6 indicates

that the distance from Glu 319 OF1 to the substrate's migrating methyl group C5 (column 1;

feature 1) is distributed longer in reactive than almost-reactive trajectories for clusters 1, 2, and 5

(and partially for clusters 3 and 4). Figure 7B-F indicates the interaction, but it is unclear how
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much of it is steric (the Glu side chain must be far enough away from the methyl at compression

to be adequately poised to push it toward product upon bond expansion) and how much is

stabilizing of the methyl during the transition.

In summary, a comparison of feature histograms and representative structures shows that

features distinguishing reactive from almost-reactive trajectories include internal conformational

degrees of freedom of the substrate, which may provide distortion toward the transition state and

ground-state destabilization; subtle changes to polar interactions of the two magnesium ions with

the substrate and with their ligating water molecules and side chains, which could have important

effects in polarizing the substrate toward reactivity; and interactions of the side chain of Glu 319

with the migrating methyl group, which could be important for steric, kinetic, and electronic

reasons. It is anticipated that more detailed molecular orbital analyses will contribute to an

understanding of how these structural differences are responsible for changes in relative

reactivity.

Predictive Features Direct Reactivity. Machine-learning analysis was used here to

develop predictive models capable of distinguishing reactive from nearly reactive trajectories.

Predictions of reactivity were successful, even when applied to trajectories not used in training

the models, further supporting the notion that model features represent characteristics of

reactivity. We reasoned that these characteristics could be useful not only to predict reactivity,

but also to direct it. That is, if the features identify characteristics that are largely sufficient for

reactivity, rather than just indicative of it, then trajectories constrained to possess reactive

characteristics should show markedly increased reactivity. We tested that notion, described

below, and our findings confirm the directive power of the machine learning features and their

associated models.
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The LASSO-selected, ten-feature model at the 0-fs time point was used, with testing

performance AUC of 89.03% and accuracy of 81.57%. Model features and the corresponding

logistic-regression coefficients are listed in Table 4. Eight of the ten features occur in the 30-

feature consensus set, with the exceptions being distance AC6/C4-AC6/06 and distance

AC6/08-MG6/M 17. Of the five features shown in Figure 6, four appear in the ten-feature

model, with the exception being angle MG6/H29-MG6/OI8-MG6/M 17 (feature 3). Thus, the

ten-feature model achieves very good predictive performance and is composed of many of the

consensus features found to be important at other time points.

The logistic regression machine learning models used here effectively create a dividing

surface in the reactant well (the hyperplane defined by the f/i coefficients; see Methods), and

make successful predictions of reactivity based on whether the trajectory is in the "reactive

portion" of the well at the appropriate time. We modified the statistical mechanical TIS sampling

procedure used here to compute reaction rates, so that we could require all trajectories to be on

the reactive side of the hyperplane encoded in the ten-feature model (Table 4) during a rate

calculation (see Methods). Calculations of the reaction rate were performed with ("test") and

without ("control") this constraint applied only at the 0-fs time point from five different starting

seeds (three were used previously to train the model, and two were new). The expectation was

that the test simulations would show greater reactivity (larger computed kcat) than the controls, as

the test simulations satisfied the reactivity conditions in every trajectory (by constraint), whereas

on average only 8.03% of control trajectories satisfied them through ordinary statistical

sampling.

The observed relative differences in rate constants in all five sets of simulations was

consistent with this expectation and quite large, on the order of 1016 to 1019, depending on the
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initial seed trajectory (Table 5). The computed rate is a product of a factor representing the rate

of reactant starting toward the barrier and a probability factor representing the likelihood of

progress toward and over the barrier. Here the rate enhancement was driven by both factors, but

with a significantly larger effect from the probability factor and with contributions across much

of the approach to the barrier, which suggests that greater reactivity was due to increased

productivity at multiple stages of the reaction, including those after the reactant left the reactant

well (see additional results below).

Contributions to the probability factor were examined in more detail. Figure 8A shows

the cumulative logarithm of the probability factor as a function of reaction progress for test (red)

and control (blue) simulations (essentially the probability that a trajectory that started toward the

barrier will reach this value of k, the reaction progress variable). Figure 8B shows the individual

multiplicative contribution to the probability factor at each progress window (essentially the

probability that a trajectory that made it through the previous window will continue through this

window). The test simulations show much smaller decreases in the reaction probability (Figure

8A) and much larger contributions to reactivity (Figure 8B) than the control simulations earlier

in the reaction (below k--0.4) but show similar behavior beyond that point (between k--0.4 and

0.0). These data indicate a strong reactivity advantage of the constrained simulations (which was

applied at the 0-fs time point, corresponding to a k value of approximately -0.9 and well before

the barrier) across the whole region from k--0.9 through -0.4 but not past this point, noting that

by =-0.2 the reaction has essentially already occurred. This is consistent with a picture in which

the constraint achieved its large gains in reactivity not by giving those simulations a local, near-

term boost in reaction progress, but by directing them into channels that retained a continuous

reactivity advantage.
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Figure 3: (A) A UC performance for all 68 individualfeatures. A UC is the area under the
curve for the receiver operating characteristic for the machine learning model. Values of A UC
shown represent the mean computed across 5 equal cross-validation training and testing
partitions. (B) A UC, accuracy, sensitivity, and specificity for models with LASSO-selected
features (C) A UC, accuracy, sensitivity, and specificity are plotted for models with randomly-
selectedfeatures. Models with 1, 5, 10, 15, and 20features are shownfor each of 38 time points
across the time range -150 to +35fs. Error bars in (B) correspond to standard error of the
mean across 100 randomly-selected feature sets. Accuracy is the number of correctly classified
trajectories divided by the total number of classified trajectories. Sensitivity is the number of
correctly classified reactive trajectories divided by the total number of reactive trajectories.
Specificity is the number of correctly classified almost-reactive trajectories divided by the total
number of nearly-reactive trajectories. (E) Top 20features selected by LASSO at each time
point before the last trough. Features are colored by feature type and sorted by the total number
of occurrences in the top 20 between -150 and Ofs before the last trough.
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Table 2: Top 30 consensus features for the -150 to Ofs time window. Feature rank indicates

ranking according to the number of occurrences in the 20 LASSO-selectedfeature sets.

Occurrences in Top
20 Between

Feature Rank Feature Name Feature Type -150 and 0 fs
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Dist GLU319/Os 1,AC6/C5

Dist MG6/H32,AC6/06
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Ang MG6/H3 1,MG6/OI9,MG6/M 17

Dist MG6/H28,AC6/06

Dist AC6/08,GLU496/He2
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Figure 4: Structural representations of top 30 most consistently predictive (A) distances
and (B) angles and dihedrals during the -150 to Ofs time window. Labeling offeatures
corresponds to ranking in Table 2. Coloring offeatures corresponds to the feature type with red
indicating substrate-environment interactions, oranige indicating intra-substrate conformations,
blue indicating intra-cofactor conformations, green indicating water-metal interactions and
indicating other environment interactions.
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Table 3: Mean standardized logistic regression coefficients fit to classifier trained using
the top 30 most consistently predictive features between -150 and Ofs (listed in Table 2 and
illustrated structurally in Figure 4) at the -150, -100, -50 and Ofs time points relative to the last
trough in the order parameter prior to the prospective catalytic event. Coefficients shown
represent the mean values across 5 cross-validation partitions.

Standardized Time Before Last Trough
Regression -150 fs -100 fs -50 fs 0 fs
Coefficient

PO -0.059 -0.195 -0.269 -0.094
PI -0.361 -0.527 0.354 0.470
P2 -0.198 -0.569 -0.374 0.874

P3 -0.303 -0.957 -0.497 -0.035
P4 0.615 0.706 0.117 0.453
P3 0.094 0.069 0.401 -0.477
6 -0.365 -0.265 -0.147 -0.613

P7 0.273 -0.251 -0.423 -0.397
8 0.293 -0.428 -1.134 -0.356
9 0.068 0.446 0.533 -1.030
10 0.318 -1.060 -0.666 -0.025

PH -0.307 0.058 -1.379 -0.289
112 -0.723 0.414 0.179 -0.510

13 0.236 -0.129 0.610 0.050
P14 -0.256 0.214 -0.348 -0.107
p15 -0.132 -0.460 -0.227 0.269

16 -0.330 -0.237 1.049 0.106
17 0.065 0.302 0.137 0.039
18 0.193 -0.704 0.665 0.026

pig -0.426 0.252 -0.425 0.007

20 0.033 0.141 0.477 0.704

p21 0.319 -0.327 -0.471 -0.013
p22 -0.135 -0.630 -0.162 -1.100

23 0.790 0.281 -0.089 0.200
p24 -0.048 -0.179 -0.127 -0.014
p25 0.083 -0.047 -0.182 0.504
126 0.592 0.592 0.434 -0.244
p27 0.142 0.093 0.241 -0.944

28 -0.208 0.477 0.437 -0.083
P29 -0.148 -0.370 -0.327 -0.061
p30 0.183 0.151 0.338 -0.174
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Figure 5: (A) Average time traces of consensus features across -150 to +100fs time
points with red indicating average reactive traces and blue indicating average almost-reactive
traces. Error bars indicate 2 standard errors of the mean at each time point. Vertical black lines
indicate time points at -150,-100,-50 and Ofs where coefficients listed in Table 3 were fit. (B) Z-
scores for consensus features (listed in Table 2 and illustrated structurally in Figure 4)
evaluated at the Ofs time point and weighted by their corresponding standardized logistic
regression coefficient for all correctly classified reactive trajectories in data set. Dark lines
indicate cluster boundaries assigned using k-means clustering with k=5. Within each cluster,
features are sorted by distance from the centroid of the respective cluster (closest to centroid at
top). (C) Z-scores for the consensus features evaluated at the Ofs time point and multiplied by
their corresponding standardized logistic regression coefficient for all correctly classified
almost-reactive trajectories in data set. Dark lines indicate cluster assignments, based on the
closest centroid to the five centroids learned on the reactive features shown in (B). (D) Z-scores
differences between reactive features in each cluster and the mean almost-reactive feature set of
the corresponding almost-reactive cluster. In (B), (C) and (D), blue lines indicate negative
values, red lines indicate positive values, and white lines indicate zero values.
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Figure 6: Histograms of weighted feature weight differences across each of thefive
reactive clusters and corresponding almost-reactive clusters. The set offive features shown was
determined by computing the top three weighted feature differences by absolute value for each
cluster shown in Figure 5D, then taking the union of the resulting set, which led to the five -
unique features listed. Magenta corresponds to cluster 1, cyan corresponds to cluster 2, green
corresponds to cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster 5 and
gray corresponds to the corresponding almost-reactive cluster for the reactive cluster shown in
each histogram. Dots in Figure 6B indicate representative structures (the reactive or almost-
reactive structures closest to
shown in Figure 7B-F.

the mean of the centroid for each respective cluster) which are
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Figure 7: Representative structures for the reactive cluster and corresponding almost-
reactive clusters described in Figure 5B, C and D and Figure 6. Feature numbering corresponds
to that of Table 2. (A) Representative structures from allfive reactive clusters. (B)
Representative structures from cluster ] and its corresponding almost-reactive cluster. (C)
Representative structures from cluster 2 and its corresponding almost-reactive cluster. (D)
Representative structures from cluster 3 and its corresponding almost-reactive cluster. (E)
Representative structures from cluster 4 and its corresponding almost-reactive cluster. (F)
Representative structures from cluster 5 and its corresponding almost-reactive cluster. In all
panels, magenta corresponds to cluster 1, cyan corresponds to cluster 2, green corresponds to
cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster 5 and gray corresponds
to the corresponding almost-reactive cluster for the reactive cluster shown in each histogram. In
all panels, structures were aligned to minimize the root mean square difference between the two
magnesium centers.

121



ID

LC6 v 06

Glu4
6

20,

H H2

H31

G

Cluster 3 H2

AC6 *
Glu4

S6

2 01

is e 2Z 20

Oel H2

F

Gi

Cluster 5 HE

AC6, Glu4

7

03 H29
H32 H3 1

A K

2 I
OUl

E Qluster 4
HE

AC~ mGlu4

J7 06
IL

O8

E 2

H29

V

Reactive C11

"'AC 03
27

M6

06G

Glu496 C51

20 42

29 3

H31

Cluster 1
Hs.

AC6, ;a
AC 0 8 Glu4

7 06

2 2

Glu OF- H13 29

0u3

Glu319
H3 H31



Table 4: Top 10 LASSO selectedfeatures at Ofs time point and coefficients /3 used to
define reactive region A' in constrained TIS simulations. Note that classification was performed
on the fly through the TIS Markov chain and thus features were not normalized by Z-scores, so
non-standardized coefficients fij are reported. The bias flo used was -18.603.

j Feature pj
1 Distance GLU'319/01,AC6/C5 2.1944
2 Distance MG6/M16,AC6/03 -12.093
3 Distance AC6/CIAC6/C4 13.447
4 Distance AC6/C4,AC6/06 20.561
5 Angle NDP/C4N,NDP/N IN,NDP/C1NQ -2.8234
6 Distance AC6/08,GLU'496/Hg2 -3.4298
7 Distance AC6/C5,AC6/C4 -8.8403
8 Distance AC6/08,MG6/M17 8.8193
9 Dihedral AC6/C5,AC6/C4,AC6/C7,AC6/C9 -3.7307
10 Distance MG6/H28,AC6/06 -0.5615

Table 5: Computed rate constants, probability factors and flux factors for each seed
studied. Values of upper and lower bounds represent 95% confidence intervals computed using
three independent sets of simulations.

Mean Rate Constant

Seed Experiment Mean P Mean Flux (1/fs) (1/s) Mean Test/Control Fold Increase

I Control 6.7x10 23  1.0 x10
0 3  6.7 x10-"

I Test 1.4 x10 0 ' 4.2 x10
02  5.8 x10 0" 8.7 x10+"

2 Control 1.2 x10 2 2  9.0 x100 4  1.1 x10-1 0

2 Test 1.1 x10- 0  1.2 x100 2  1.4 x1 0 +17  1.3 x10-17

3 Control 2.7 x10-
2 2  1.0 x10-03  2.7 x10'0

3 Test 3.5x10-09  9.6 x10+0 1 3.4 x10+0" 1.2 x1O*'

4 Control 1.6 x10
2 2  7.0 x10-

0 4  1.1 x10-10

4 Test 1.0 x10-09  8.7 x10 01  8.7 x10+0 7  7.8 x10+1 7

5 Control 3.2 x102 1.3 x10-03 4.2 x10-09

5 Test 3.0 x10- 0 2.7 x10+
0 2 8.2 x101

0 7 2.0 x10+16
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Figure 8: (A) Cumulative log(P) for increasing interface placement for each of the 5
seeds trajectories tested. Red lines indicate trajectories sampled with the reactant basin
constrained to only include the region where the 10 feature classifier evaluated to true. Blue
lines indicate unconstrained control simulations. (B) Individual values of P( i%| X,) for each i
ensemble computed. Error bars correspond to two standard errors of the mean across three
independent Markov chains at each i ensemble. Red bars indicate test simulations, while blue
bars indicate unconstrained control simulations.
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Discussion
In this work, we find that features evident in the enzyme-substrate complex before it

departs the reactant well are highly predictive of reactivity through the identification of relatively

subtle conformational effects. These structural characteristics include internal substrate

conformation, interactions of substrate with its environment, and details of the electronic

environment of the two magnesium ions that coordinate the substrate. A consensus set of 30

features serve as determinants of reactivity that operate across the pre-launch window, although

the detailed roles of some descriptors change across the window.

Interestingly, velocities are not needed to reliably distinguish reactive from non-reactive

trajectories. This does not mean that velocities cannot also be useful or important, but only that

conformations alone are sufficient. In fact, in preliminary work leading up to this study, we saw

that velocities alone, without direct conformational measures, were also sufficient to distinguish

reactive from almost-reactive trajectories. This points to the redundancy of the information, and

that different descriptions can be equally useful in understanding and predicting reactivity.

Interestingly, a more thorough description might be necessary to truly understand reactivity than

to predict it. Moreover, although the analysis in the current work appears static, relying on

conformations evident at fixed points in time, this may implicitly contain dynamic information.

For example, the 0-fs time point corresponds to the maximum compression of the breaking bond

before the trajectory launches toward the activation barrier, and so a shorter bond distance,

indicating greater potential energy stored in the bond, may signify greater kinetic energy

available to surmount the barrier.

This study presents evidence that there are multiple channels of reactivity, some of which

are more productive than others. The existence of multiple reactive channels suggests that there
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are identifiably different sub-pathways of reaction. Results further suggest that within each

channel there could be more ways of not reacting than reacting, consistent with the notion that

there are many conditions that must be met in order to produce a reactive trajectory, and failing

to achieve any of multiple combinations of those features can be detrimental to reactivity.

This transition interface sampling study highlights the important role that early active-site

conformational effects play in driving chemical catalysis, an idea that underlies existing theories

of the importance of early conformational effects such electrostatic preorganization (Warshel

1998; Kamerlin et al. 2010) and enzyme-stabilized "near-attack conformations" in certain

catalytic systems (Lau and Bruice 1998; Hur and Bruice 2003). That we are able to use machine-

learning methods to identify early conformations predictive of reactivity lends additional support

to the preorganization and near-attack conformation hypotheses of enzymatic activity, although

further research would be necessary to determine whether electrostatic preorganization or

stabilization of near-attack conformations is a primary driver of catalysis in the KARI

isomerization reaction studied.

A key distinguishing feature between this work and prior studies of near-attack

conformations is that we have defined reactivity at time points relative to the temporal progress

of the prospective catalytic event rather than purely configurational states (Sadiq and Coveney

2014; Hur and Bruice 2003; Lau and Bruice 1998). Although the sampling constraints during the

TIS simulations were enforced at specific time points relative to the progress of the prospective

catalytic event, e.g. the "last trough" that we have defined as the 0 time point in the reaction,

future work is need to test how critical the time point is on the effectiveness of the constraint in

leading to more reactive trajectories. Initial results (unpublished) for set of constrained TIS

simulations in which a classifier was learned that was predictive of reactivity across the entire
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pre-launch window, suggests that reactive trajectories spend significantly more time in the

reactive sub-region of the reactant well than almost-reactive trajectories. This result implies that

constraints broadly applied across multiple early time points may be just as effective, if not more

effective at enhancing reactivity than constraints applied at one specific time point.

In this work we also show that that path-sampling simulation techniques such as TIS

combined with QM/MM simulations, although computationally expensive, can be used to

generate large valuable data sets that allow the question of reactivity to be phrased as a binary

classification problem well suited for machine learning techniques. We believe this represents

both an exciting and promising application of machine learning, but also a productive strategy

for elucidating subtle yet meaningful drivers of catalysis in enzymatic systems. While this work

utilized features selected through human intuition and a linear classification model (LASSO), the

application of unsupervised learning techniques such as auto-encoders to identify perhaps better

features combined with non-linear classification models represents an opportunity to understand

further the early events that lead to enzymatic catalysis. Finally, although this work utilized TIS

to generate only two types of data sets, reactive and almost-reactive, TIS can also be used to

generate many more types of data (for example, to generate sets of trajectories that reach

progressively higher points along the barrier). Applying the machine learning to trajectory

outcomes representing more than two states of reactivity can potentially yield new insights as to

precisely when and how reactive and non-reactive trajectories diverge. The TIS probability

factor calculation is well suited to this type of analysis.

Although this study identified features indicative of reactivity, an understanding of how

those structural and potentially electronic effects cooperate to facilitate the reaction is not
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obvious from structures alone. It is possible that more detailed quantum chemical analysis,

perhaps with a focus on orbital behaviors, will lend more insight.

The features identified are more than indicators that reaction will likely occur; they are

also control levers that alone can guide and enhance reactivity. Our studies demonstrate that

enforcing the indicators of reactivity leads to dramatic rate enhancements, largely through

increasing the probability of trajectories reaching the product state. This increased probability is

exerted across a broad region of the reaction path, past where the constraint is applied, rather

than speeding passage through one particularly slow region. That is, by analogy, the constraints

act to have an effect more like entering the highway commuter lane to avoid miles of stop-and-

go traffic, rather than like taking a shortcut in traffic to avoid one slow intersection.

Given the enormous enhancement in reactivity that can be attributed to the selective

visitation of early conformations predicted to be reactive, it becomes interesting to contemplate

whether mutations can be identified whose predominant effect is to reshape the reactant well so

that the more reactive portions (such as those identified by feature constraints here) are more

highly populated. If mutations can be found that have this effect with minimal effects elsewhere

on the reactive energy surface, they may similarly show useful, measurable rate enhancements.

Indeed, in other ways, several recent studies have attempted to leverage insights from path-

sampling simulations in order to design enzyme variants (Zoi et al. 2016; Harijan et al. 2017),

which represents a promising and novel framework for biocatalyst design.
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Supplementary Figures

Supplementary Figure 1: Structural representation of (A) distances computed, (B) angles
computed, and (C) dihedrals computed at each time point. Numbering offeatures corresponds
to that of Table 1. Coloring offeatures corresponds to the feature type with red indicating
substrate-environment interactions, orange indicating intra-substrate conformations, blue
indicating intra-cofactor conformations, green indicating water-metal interactions and
indicating other environment interactions.
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Supplementary Figure 2: Illustration of both KARI homodimer subunits (PDB ID: 1 YVE),
with active site residues Asp 315, Glu 319, Glu 496, bound transition state analog N-hydroxy-N-
isopropyloxamate and NADPH cofactor shown as sticks to indicate active-site separation and to
support the choice of using a single subunit in simulations.
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Supplementary Figure 3: Placement of interfaces used in TIS probability factor
calculations superimposed onto the potential of mean force surface used to generate initial seed
trajectories. Key interfaces Ao=-], A = -0.8 and AB = 1 are labeled.
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Chapter 4 : General Conclusions

This thesis has presented a set of novel methods and applications for the computer-aided

design and understanding of enzymatic catalysis. This work has applied rigorous theoretical and

simulation methods to a set of challenging problems in biocatalyst modeling and design. The two

enzymes studied in this thesis both represent industrially useful systems with potential

commercial applications in sustainable chemical and biofuel production.

Chapter 2 presented a combined biophysical modeling and experimental study of

substrate selectivity in a key enzymatic step (the thiolase-catalyzed condensation of two different

acyl-CoA substrates) of an industrially useful de novo metabolic platform pathway, the 3-

hydroxyacid pathway (Martin et al. 2013). The objective of the study presented in Chapter 2 was

to identify thiolase mutations capable of enhancing C6 product production in vivo relative to C4

product formation. Although numerous previous studies have characterized thiolase enzymes

(Slater et al. 1998; Fage, Meinke, and Keatinge-Clay 2015; Kim, Clomburg, and Gonzalez 2015)

for metabolic engineering and other applications, this work is one of few attempts to rationally

design thiolase specificity. The two-step bi-bi ping pong mechanism of the thiolases (Modis and

Wierenga 1999) studied presented a number of modeling challenges in our effort to identify

mutations capable of enhancing the relative C6 / C4 output of the 3-hydroxyacid pathway, and

we found that we were able to increase this ratio primarily engineering a decrease in the C4

product output.

Future work is needed to experimentally validate whether the mutations discussed that

decreased C4 product production also increased C6 production as predicted by the biophysical

calculations. A significant challenge in the thiolase engineering study presented in Chapter 2 was
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the fact that the immediate C6 product resulting from the thiolase catalyzed condensation of

butyryl-CoA and acetyl-CoA could not be assayed directly in vivo or in vitro. Because the

thermodynamics of thiolase binding heavily favor the thiolysis reaction (the reverse of the

condensation reaction under study), in both the in vivo and in vitro studies, the thiolase enzyme

had to be coupled with a downstream reductase to force the reaction equilibrium in the

condensation direction. Accordingly, all experimental measurements of thiolase activity in the

forward condensation direction were potentially biased by the specificity of downstream

enzymes. By providing the cofactor required by this reductase in excess concentrations, in vitro

studies could ensure that the overall forward rate of the reductase was not rate-limiting in the

assays, but relative rate of production of the product produced the condensation of two acetyl-

CoA substrates compared to the product of butyryl-CoA serving as the priming acyl-CoA

substrate followed by the acetyl-CoA serving as the extending acyl-CoA substrate was

impossible to measure directly. Experimentally, the assay readout for the thiolase forward

condensation rate was the rate of cofactor oxidation by the reductase, which meant that only

limited information could be inferred about the relative rate of production of C6 and C4 products

in vitro. The in vivo picture was even more complicated, as the final experimental readout was

the affected by a significantly greater number of downstream enzymes such as the thioesterases

and polymerases, for which none of the C6 / C4 specificities were known at the beginning of the

study. Although the results of the thiolase study were promising in that the relative C6 / C4 in

vivo was increased, the results show that significantly more work is required to eliminate

confounding factors presented by downstream enzymes and accurately measure the level of

increase that can actually be attributed to the thiolase mutations. A combination of further

experimental work and kinetic modeling studies may prove fruitful for such future endeavors.
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The effect of multiple active site thiolase mutations beyond the point mutations tested in Chapter

2 may also lead to thiolase variants with even greater C6 / C4 activity. Ultimately however,

metabolic engineering approaches for chemical and fuel production represent an attractive

synthesis route less reliant on non-renewable feedstocks and studies like that presented in

Chapter 2 represent a step toward making such approaches, particularly using the versatile 3-

hydroxyacid pathway and other pathways which utilize thiolase enzymes to facilitate carbon-

carbon bond formation, more feasible commercially.

In contrast to Chapter 2, Chapter 3 presented a purely theoretical and simulation study,

and applied methods from machine learning, in particular LASSO, to a large ensemble of

reactive and non-reactive molecular dynamics trajectories generated using transition interface

sampling in order to elucidate catalytic drivers in another industrially important model enzyme

system, ketol-acid reductoisomerase (KAR). Although machine learning has been applied with

with great success to a number of problems in structural biology such as prediction of protein

structure, protein folding pathways, protein-ligand binding affinities and drug design (Wallach,

Dzamba, and Heifets 2015; Radivojac et al. 2013; Wu et al. 2017; Ramsundar and Pande 2016),

few previous studies have applied machine learning approaches to ensembles of reactive

trajectories harvested using path sampling methods such as transition path sampling (Zhang et al.

2017; Antoniou and Schwartz 2011), an application we and others believe represents a promising

approach to elucidate the subtle mechanisms by which enzymes can achieve such enormous rate

enhancements over uncatalyzed reactions as well as improve existing frameworks for biocatalyst

design. Chapter 3 explored the central idea that underlies electrostatic preorganization (Kamerlin

et al. 2010; Warshel 1998) and near attack conformation theories of reactivity (Hur and Bruice

2003; Sadiq and Coveney 2014) - that certain subsets of phase space are inherently more
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reactive than others, and that successful reactive trajectories selectively visit these inherently

reactive regions of phase space.

In the first part of Chapter 3, using a small number of molecular features, we used a

logistic classifier to identify conformational states that are highly predictive of reactivity, which

represent examples of such inherently reactive regions, at specific time points relative to the

progress of the prospective catalytic event. The specific features learned, although not intended

to be a complete and exhaustive set, provided mechanistic insight into the rate-limiting

isomerization catalyzed by KARL. The specific features learned by LASSO and described by the

logistic classifier in particular highlight the importance of the compression of the substrate

breaking bond, the orientation of active site water molecules relative to the substrate and active

site metal ions and the subtle positioning of key side chain residues. Our results lend evidence to

the near-attack conformation theory of enzyme catalysis in the KARI system, and underscore the

importance of the dynamics and timing at which these reactive states are visited.

In the second part of Chapter 3, we then presented a novel theoretical framework based

on transition interface sapling for evaluating the contribution to the overall catalytic rate of the

conformational states found to be highly predictive of reactivity. We showed that ensembles of

trajectories sampled in such a manner as to selectively visit the conformations predicted to be

characteristic of reactivity exhibit rate constants many orders of magnitude greater than

trajectories not required to visit these reactive conformations. The results show the enormous

extent to which early conformational effects can define reactivity in the model system studied.

Future studies in the same vein as Chapter 3, utilizing different model systems, better

quantum mechanical and solvation models and more sophisticated machine learning, can likely

provide greater insight into the mechanisms governing enzyme catalysis. Although the results of
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Chapter 3 are promising, their generality is somewhat limited by relatively short sampling times

and limiting assumptions of the specific semi-empirical quantum mechanics / molecular

mechanics simulation approach utilized. As computing power continues to grow, data storage

becomes cheaper, and force fields continue to improve, combined machine learning and

transition path sampling studies such as that presented in Chapter 3 will likely continue to yield

greater insights into mechanism of reactive catalysis. We and others (van Erp et al. 2016;

Moqadam et al. 2017; Zoi et al. 2016) believe that path sampling studies have great continued

potential to test specific hypotheses about reactivity, analyze subtly different reaction channels,

and be used as part of design programs to identify catalytic variants which bias reactions in a

favorable manner.
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