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Abstract

Inflammation is a major risk factor for many types of cancer, and the physiological processes
involved in inflammation can contribute to many aspects of cancer development. Inflammation
entails reprogramming of cell behaviors that resemble cancer, such as increased proliferation and
signals for survival and migration, and it also entails production of reactive chemical species,
which can damage DNA to promote genetic instability, another hallmark of cancer. While much
research has been dedicated to studying the relationships between inflammation and cancer, it
has been difficult to distinguish the relative contributions of modified cell behavior and de novo
mutagenesis to the development of cancer. Furthermore, few studies have addressed the role(s)
inflammation plays in cancer initiation versus promotion. Here, we utilized a transgenic mouse
for detecting mutations in a variety of models of inflammation to parse the mechanisms by which
inflammation contributes to mutations and cancer.

The RaDR mouse, developed in the Engelward lab, contains a ubiquitously expressed transgene
that enables detection of sequence rearrangement mutations following aberrant homologous
recombination (HR). These mice also contain the Gpt-A transgene for detecting point mutations
and deletions, enabling unprecedented breadth and depth of possible mutation analyses in a
single tissue. Our studies began by querying whether elements that regulate inflammation protect
against mutagenesis in RaDR animals. We then studied RaDR mutagenesis in several models of
intestinal inflammation and cancer. Together, these experiments showed that inflammation does
not significantly induce de novo sequence rearrangement mutations, but it greatly increases the
overall burden of mutant cells in a tissue as a result of heightened proliferation and clonal
expansion.

We also used the RaDR mouse model to expand upon studies of DNA repair pathway balance.
DNA damage is addressed by a network of pathways, each designed to identify and repair
specific types of lesions. One of the most important repair pathways for DNA damage caused by
inflammation is the Base Excision Repair (BER) pathway, and we have previously found that
BER intermediates can increase the frequency of mutagenic HR. Here, we expand upon that
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information, showing that acceleration of the BER pathway by increased expression of an
initiating enzyme does not increase sequence rearrangement mutations, provided the downstream
pathway can be resolved efficiently.

Together, the studies described herein demonstrate that inflammation is unlikely to initiate
cancer via sequence rearrangement mutations, but inflammation is a strong promoter of cancer in
part through increased clonal expansion of mutant cells.

Thesis Supervisor: Bevin P. Engelward
Title: Professor of Biological Engineering
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Chapter 1

Introduction

As early as 1863, Virchow recognized the inextricable connections between the immune system

and cancer development. Virchow's prediction that cancer arises at sites of "lymphoreticular

infiltrate" has been confirmed many times over, as pancreatitis, hepatitis, colitis, and other

chronic inflammatory diseases are now known to be major risk factors for cancer in those tissues

[1-6]. In fact, chronic inflammation is often necessary for tumor development [1, 7-9]. The

inflammatory environment promotes cellular proliferation and survival, degradation and

remodeling of the extracellular matrix, and weakening of vascular barriers to facilitate immune

cell migration, all of which enable cancer growth [10, 11]. Inflammation is so pro-tumorigenic

that tumors can even generate their own inflammatory microenvironment to facilitate growth [7,

12]. Accordingly, mitigating inflammation is often an effective strategy for slowing or even

preventing neoplasia [3, 13, 14]. There are many excellent reviews on a wide range of

connections between inflammation and cancer [7, 10, 12, 15]. Here, we will focus on how

inflammation and DNA damage contribute to each other as well as to the development of cancer.

Many departures from normal behavior that cancer cells exhibit, such as unchecked

proliferation and aberrant migration, can be traced to mutations in DNA that accumulate over

time. Mutations generally arise from damaged DNA, and inflammation can cause a great deal of

DNA damage. A central component of inflammation is the production of reactive chemicals

designed to destroy pathogens, and while these chemicals are essential for protecting the body

from infection, they can damage host biomolecules as well, including DNA. Efficient repair of
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DNA damage is crucial to prevent mutations in the genetic code. As such, several DNA repair

mechanisms have evolved to address the many types of DNA damage. However, DNA repair can

be fallible or unable to handle excessive damage, allowing mutations to occur. Since cancer

develops from accumulated mutations, it logically follows that DNA damage from inflammation

contributes to cancer development by increasing mutagenesis.

It is broadly appreciated that genomic instability is a hallmark of cancer [16-19]. The

human haploid genome contains 3.2x 109 base pairs, and the spontaneous rate of mutation in

normal human cells is estimated to be on the order of 1-1Ox10-10 nucleotides/cell/division [20-

22]. Several driver mutations are required within the same cell lineage for it to become

malignant, and although the number of necessary mutations has not been defined and likely

depends on the type of cancer, the minimum number is around three [23, 24]. The there are

approximately 3x 10 cells in the human body, and the average human lifespan comprises 1016

cell divisions (BNIDs 100379, 108562)[25]. According to Loeb, the probability of any one cell

acquiring three mutations is approximated by (1x10'10 spontaneous mutations/cell/division) 3(1016

cell divisions/lifetime)= 10-4 potential cancer cells/lifetime [21]. In other words, the prevalence

of cancer in the population should be less than one in a trillion people, whereas the actual

lifetime probability of developing cancer is ~38.5% [26]. Furthermore, tumor cells contain

dozens, sometimes thousands, of mutations. Thus, it is clear that factors such as genetics,

environmental exposures, and physiology are required to increase mutation frequency beyond the

normal rate to promote cancer, a quality known as a mutator phenotype [21].

Inflammation and genomic instability have a complex relationship (a highly simplified

roadmap is shown in Figure 1-1, which will become more detailed throughout this review).

Inflammation contributes to mutagenesis through production of reactive oxygen and nitrogen
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species (RONS) that can damage DNA, but DNA damage can also exacerbate inflammation.

This positive feedback loop is carefully regulated by a network of DNA repair pathways,

transcription factors, and cellular signals. Due to the intricacies linking inflammation, DNA

damage, and DNA repair, these processes can easily become dysregulated and lead to cancer.

1.1 Inflammation Leads to DNA Damage

The majority of inflammation-induced DNA damage is caused by reactive oxygen and nitrogen

species (RONS), which are evolved by immune cells to destroy pathogens, but which can also

damage self-biomolecules. One pleiotropic RONS chemical is nitric oxide (NO), which is an

essential signaling molecule with functions in the cardiovascular, nervous and immune systems

[27, 28]. For most of these processes, the concentration of NO is below 400 nM [29]. During

inflammation, however, innate immune cells produce NO at high levels (approaching pM [30,

31]), as well as superoxide and numerous enzymes, leading to a cascade of chemical reactions

that produce a range of RONS (Fig 1-2). These reactive species include radicals (e.g., superoxide

O*2 , hydroxyl 'OH, and nitrogen dioxide N0 2 '), anions (e.g., peroxynitrite ONOO, and

nitrosoperoxycarbonate ONOOC0 2 7), anhydrides (e.g., nitrous anhydride N203), hypohalous

acids (e.g., hypochlorous acid HOCl and hypobromous acid HOBr) and hydrogen peroxide

(H2 02 ). In addition to the RONS produced by immune cells, pro-inflammatory cytokines can

stimulate intracellular RONS production [32-34]. For excellent reviews on RONS and their

chemistry, please see [35, 36].

To understand the mutagenic consequences of inflammation, one must first recognize the

chemical modifications to DNA and the mechanisms for repair of those lesions. We begin with a
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discussion of the DNA damage produced from RONS, including nucleobase oxidation,

deamination, halogenation, and alkylation, as well as strand breaks of the phosphodiester

backbone. Subsequent sections will review the major repair pathways for these types of damage;

the mechanisms that balance DNA damage, DNA repair, and inflammation; and the implications

for carcinogenesis.

1.1.1 Oxidation

Many RONS are potent oxidizing agents and can create several kinds of damage to DNA. While

there are many potential products of DNA oxidation [37], guanine is the most easily oxidized

DNA base [36] and is therefore the primary target for reaction with nucleophilic RONS and the

focus of this section. Primary oxidation of guanine by RONS produces 8-oxo-guanine (8oxoG,

which is mutagenic) and 8-nitro-guanine (which is unstable and quickly becomes an abasic site)

(Fig 1-3). 8oxoG in the normal anti conformation pairs with cytosine, but rotation of the

glycosidic bond to the syn position allows pairing with adenine (Fig 1-3) [38]; thus, 8oxoG can

lead to G4T transversions [38-40]. The potential for 8oxoG to cause this mutation depends on

the polymerase that encounters it, as will be described in later sections [40-42].

8oxoG is -1000 times more prone to oxidation than its parent guanine, leading to

production of several more stable and mutagenic secondary products. These include

spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), oxazolone (Oz), oxaluric acid (0a), and

cyanuric acid (Ca) (see Fig 1-3 for examples). Oz, Oa and Ca have been shown to produce G+T

transversions with much higher potency than the parent 8oxoG [43]. Gh primarily leads to G-C

mutations, and Sp causes both G+T and G4C mutations, both with frequencies at least an order

of magnitude higher than that of 8oxoG [44]. While Gh is relatively easily bypassed (albeit
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mutagenically), Sp blocks replication [44] and leads to strand slippage, producing broken

replication forks and single base pair deletions in addition to transversions [45, 46]. Until

recently, mutagenicity of the secondary oxidation products of 8oxoG had been demonstrated

almost exclusively in E. coli [43, 44, 47, 48], but studies with mammalian systems in the past

decade have yielded similar results [46, 48, 49], suggesting shared mechanisms between species.

In addition to secondary oxidation, 8oxoG can be reduced, opening the imidazole ring to

form a 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). FapyG produces G-T

transversions in mammalian cells [50], and some studies suggest it may be more mutagenic than

the parent 8oxoG [51].

1.1.2. Deamination

In addition to oxidation, nitrosative RONS can deaminate DNA bases. Deamination products are

particularly mutagenic because the chemistry occurs on the functional groups that determine

hydrogen bonding, altering the pattern of H-bond donors and acceptors and leading to base

mispairing. The chemical primarily responsible for base deamination is thought to be nitrous

anhydride [35], generating the products from canonical bases shown in Figure 1-4 (note that Hx

is dl in DNA). Indeed, in vitro exposure of DNA to nitrosative RONS produces high amounts of

X, Hx and U lesions [52, 53].

Deamination of cytosine or its methylated form 5meC changes the base into uracil or

thymine, respectively, causing C-T transitions. Recently it has been shown that deamination of

adenine to produce hypoxanthine (Hx) can cause either A-+G transitions or deletions, depending

on the cell type and whether the lesion is on the leading or lagging strand [54]. Finally, guanine

deamination to xanthine (X) primarily causes G-A transitions [53], possibly by tautomerization
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of X to an enol form that can pair with T. Nitrosative deamination of G or A at the N7 position

can also cause depurination to form an abasic site [55].

Interestingly, while U, Hx and X occur in at high levels in in vitro studies [52], these

deamination products are rarely observed in cells stimulated with physiological levels of RONS

[55]. One possibility for the low cellular levels of these lesions is that repair is very rapid, which

is consistent with evolutionary selection for efficient repair of highly mutagenic lesions. Overall,

while the chemistry of inflammation probably produces a great deal of deamination, these lesions

are rarely observed in vivo, possibly due to rapid repair to counterbalance their potent

mutagenicity.

1.1.3. Halogenation

Inflammatory chemicals are not limited to oxygen and nitrogen species. Neutrophils secrete the

enzyme myeloperoxidase to produce hypochlorous acid (HOCl) [56-58], and eosinophils secrete

eosinophil peroxidase to produce hypobromous acid (HOBr) [59, 60] (Fig 1-2). These

hypohalous acids readily react with DNA to form the adducts shown in Figure 1-5. Interestingly,

the most abundant halogenated nucleobase, 5-chlorocytosine (5ClC) [61, 62], accumulates to a

greater degree than oxidative, deamination or LPO (described below) DNA lesions [48, 63]. Due

to its significant and persistent accumulation, perhaps a result of inefficient repair, 5ClC has been

designated a biomarker for chronic inflammation [48, 63, 64].

The mutagenicity of halogenated DNA has only recently been demonstrated.

Halogenation had previously been shown to impact epigenetic modifications [65], but now 5ClC

has been shown to cause C->T transitions [64]. These mutations are frequently observed in
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tissues under inflammatory stress as well as in inflammation-associated cancers [63, 64, 66],

further supporting the designation of 5ClC as a pertinent biomarker for inflammation.

1.1.4. Lipid Peroxidation-Derived Adducts

Oxidative stress can directly damage DNA, as described above, but it can also cause indirect

damage by creating reactive species from other biomolecules. Specifically, when RONS

encounter polyunsaturated fatty acids, they cause lipid peroxidation (LPO) to generate

electrophilic, DNA-reactive aldehyde species. The best-studied of these aldehyde species are 4-

hydroxy-2-nonenal (HNE), malondialdehyde (MDA), acrolein, and crotonaldehyde [67], of

which HNE and MDA have been directly implicated in carcinogenesis [68]. The resulting LPO-

induced DNA adducts are exocyclic additions of two (F, etheno-) or three (P, propano-) carbons

onto a base [67, 69, 70]. Examples of etheno adducts are shown in Figure 1-6. Many studies have

demonstrated significant accumulation of etheno adducts as a result of inflammation [48, 69, 71-

73].

The most abundant etheno adduct found in DNA is N2 ,3-FG [74, 75]. N2,3-gG is a potent

inducer of G+A transitions, and its isomer 1,N2-cG causes G-)>T and G+C transversions [74,

76, 77]. 1,N6-cA causes primarily A->G and A-T mutations [78, 79], and 3,NA 4-C potently

induces C4A and C-*T mutations [70, 80]. All etheno lesions can block replication to some

extent [74, 77, 80], which can lead to larger-scale mutations (discussed below).

1.1.5. Single Strand Breaks (SSBs)

While lesions on nucleobases are an important source of mutations, breakage of the DNA

backbone is a far greater threat to genomic integrity. Strand breaks potentiate large-scale
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mutations, such as deletions, insertions, and translocations, and they can also cause stress

signaling, cell cycle arrest, and cytotoxicity if not efficiently repaired [81-85]. During

inflammation, single strand breaks (SSBs) can arise from direct reaction with RONS: for

example, radicals can hydrolyze the phosphodiester backbone, and peroxynitrite produces single

strand breaks and abasic sites [86]. SSBs also occur naturally as intermediates of some DNA

repair pathways.

1.1.6. Double Strand Breaks (DSBs)

Double strand breaks (DSBs) also arise from a variety of sources. Some enzymes, such as

endonucleases and topoisomerases, cut the backbone to produce DSBs [87, 88]. SSBs can also

potentiate DSBs: for example, two nearby opposed SSBs may reduce the structural integrity of

the DNA duplex, and the strand will break apart (Fig 1-7A). Additionally, if a polymerase

encounters a SSB during replication, the replication machinery cannot synthesize past the gap,

and the replication fork collapses, leaving a one-ended DSB (Fig 1-7B). Similarly, replication-

blocking lesions such as cA, cC, and Sp can cause DSBs, possibly because the stress of a

replication fork encountering a lesion that cannot be bypassed causes breakage of the backbone,

though the exact mechanism(s) for this breakage remains unclear [89, 90]. While both DSBs and

SSBs can be mutagenic, DSBs are one of the most deleterious types of DNA damage [91].

Strand breaks potentiate large-scale mutations, including insertions, deletions, translocations, and

sequence rearrangements [92-95].
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1.2 Repair of Inflammation-Induced DNA Lesions

In order to minimize mutations, multiple mechanisms have evolved to address different types of

DNA damage. The simplest way to prevent mutations is through accurate replication of DNA.

Polymerases read the template strand and select the correct nucleotide based on the template

base's shape and hydrogen bonding pattern to extend the strand being synthesized. When the

hydrogen bonding of a base is altered (e.g., by deamination) or blocked (e.g., by etheno adducts),

the cell first attempts to synthesize past the lesion (translesion synthesis, or TLS), often using a

low-fidelity polymerase, which is only sometimes accurate [51, 96, 97]. However, some lesions

cannot be efficiently bypassed by TLS, causing the replication fork to stall [98]. Several

mechanisms are capable of restoring stalled replication forks, some of which leave the lesion in

place [89], but inefficient fork restoration can cause strand breakage as described above.

Supplementary to polymerase selectivity and proofreading, several DNA repair pathways

have evolved to correct lesions before and during replication. The rate of incorrect base

incorporation (point mutation) for replicative polymerases is on the order of 10-6 to 10-8

nucleotides [99], and with 3.2x10 9 bases in the genome, at least ten point mutations would occur

with every cell division. DNA repair processes reduce point mutation frequency to 1010 [21] and

also protect against large-scale mutations such as insertions, deletions and rearrangements. DNA

repair is of particular importance during inflammation because of (i) the large amount of reactive

chemicals produced and (ii) the stimulation of cellular proliferation to regenerate damaged

tissue. The combination of damage and cell division synergistically increase mutagenesis [100],

and persistent DNA damage signals cell death [83, 101] which may be why deficiencies or

imbalance in DNA repair proteins can greatly sensitize animals to inflammation [72, 102-106].
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Most DNA damage from inflammation is addressed by the Direct Reversal (DR), Base

Excision Repair (BER), and Homologous Recombination (HR) pathways. Here we will briefly

describe each pathway and discuss their interactions for robust repair of inflammation-derived

damage.

1.2.1. Direct Reversal (DR)

Some DNA alkyl adducts can be directly removed from the base in a process called Direct

Reversal, leaving the original base intact. For example, the 06-methylguanine DNA

methyltransferase (MGMT) protein repairs 06-methylguanine by transferring the methyl group

to a cysteine residue in its active site [107]. The other mammalian DR enzymes belong to the

ALKBH family, which utilize oxygen, Fe2 and a-ketoglutarate as co-factors for oxidative

dealkylation, releasing the alkyl lesion as an aldehyde and restoring the original base [108, 109].

Importantly, ALKBH enzymes can repair etheno adducts, and therefore supplement BER during

inflammation [110].

1.2.2. Base Excision Repair (BER)

In general, Base Excision Repair deals with single-base lesions that do not significantly distort

the DNA helix; since this encompasses most inflammation-derived lesions, BER is the primary

pathway responsible for DNA repair during inflammation. The first step of BER is removal of

the damaged base by one of several DNA glycosylases. The second step is to nick the backbone,

which can be accomplished by some glycosylases, AP endonuclease-1 (APEl), or AP lyase. The

two ends of the single strand break must then be processed to produce a 3'OH (with APE I, Polp,

or PNKP) capable of extension and a 5'PO 4 (with Pol or PNKP) capable of ligation. The gap is
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filled in with Polp, and ligase seals the nick to complete the process. The elements of BER

downstream of the glycosylase can also contribute to repair of SSBs.

Each glycosylase has its own repertoire of substrates, and there is some redundancy in

substrate recognition to ensure a robust response. Some of the most important DNA glycosylases

for repairing damage from inflammation are 8-oxo-guanine glycosylase (OGGI), which removes

8oxoG and FapyG [111], and alkyladenine glycosylase (AAG, also known as MPG or ANPG),

which removes cA, 1,N2 -FG, Hx, and 8oxoG, among others [72, 112]. AAG also recognizes and

binds to PC, but it cannot excise the base, instead blocking replication and contributing to its

increased genotoxicity [80]. Damaged pyrimidines may be excised by pyrimidine-specific

glycosylases such as MBD4, UNG, TDG, and SMUG1 [112]. The enzyme MYH uniquely

protects against 8oxoG mutagenesis, because it specifically recognizes and excises A

misincorporated across from 8oxoG during replication [112]. Other BER glycosylases, such as

NTHL 1, NEIL 1, and NEIL2, can recognize a broad range of substrates, including FapyG,

hydantoin lesions, 8oxoG, and oxidized pyrimidines [46, 49, 105, 112, 113], providing robust

repair of single-base lesions.

Importantly, every intermediate of the BER pathway contains a potentially toxic lesion:

either an abasic site or some kind of strand break. Normally, the cell is able to complete BER

without toxicity, but this is not always the case. If there is a large amount of damage, there may

be simply too few of the molecules necessary for repair, leading to an accumulation of cytotoxic

lesions and subsequent apoptosis. Alternatively, if a replication fork encounters a BER

intermediate, the fork may break down, creating a DSB. Thus, while BER is essential for

repairing DNA damage during inflammation, this pathway can sometimes do more harm than

good by generating toxic intermediates.
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1.2.3. Double Strand Break Repair

Although DSBs generally arise as secondary lesions during inflammation (e.g., from replication

fork breakdown or nearby opposing SSBs) they are one of the most toxic types of DNA damage

[91, 93, 95, 114]. Here, we will briefly describe the two major pathways responsible for DSB

repair: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR).

NHEJ, the dominant repair mechanism in GI phase [115], functions by joining two DSB

ends with the Ku70/80 and DNA-PK complexes, and ligating the strands together. This process

occurs quickly but is very prone to error. For example, if the two DSB ends are from different

chromosomes, translocations occur. However, since DSBs are generally rare in GI, NHEJ

sufficiently preserves genomic integrity during this cell cycle phase.

Homologous Recombination repairs DSBs much more accurately than NHEJ, but it acts

more slowly and functions mainly during the S and G2 phases of the cell cycle [116]. Since the

risk for mutations is highest during replication, and since HR can rescue replication stress, this

pathway is of greater importance for inflammation-induced DNA damage. HR comprises

multiple subpathways with distinct mechanisms, so here we will provide a basic overview of the

major steps. HR begins by recognition of the DSB by CtIP and the MRN complex (consisting of

MRE1 1, NBS1 and RAD50). The 5' end of the DNA is resected by EXOl to leave a 3' overhang

of single stranded DNA, which is stabilized by the protein RPA. BRCA2 displaces the RPA,

replacing it with RAD5 1, and this 3' nucleoprotein filament searches nearby DNA for a

homologous sequence. Usually, the cell identifies the correct homologous sequence on the

nearby sister chromatid, which it invades and utilizes as a template to resume extension. There

are several sub-pathways of HR, but the most common is synthesis-dependent strand annealing
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(SDSA) (for more detailed descriptions and digital animations of HR mechanisms, please see

[117]). In SDSA, once enough DNA has been synthesized from the template, the overhang will

re-hybridize with its original strand, any remaining gaps will be filled, and DNA ligation

completes repair of the DSB. A highly simplified diagram of this pathway is shown in Figure 1-

8.

Since HR utilizes a homologous region of DNA as a template, this process is mostly

error-free as long as the cell identifies the correct sequence in the sister chromatid. However,

identification of homology in the homologous chromosome rather than the sister chromatid can

lead to loss of heterozygosity, a significant source of tumor suppressor inactivation [118, 119].

Furthermore, a significant portion of the genome has been identified as repetitive or repeat-

derived: nearly 10% of the genome consists of Alu repeats [120, 121], and a recent analysis

estimates 2/3 of the genome consists of repetitive elements [122]. Thus, there are many

opportunities for HR to identify a homologous sequence in the wrong location. Aberrant HR can

lead to translocations, deletions, insertions, or sequence rearrangements [94, 123-127]. Some of

the mechanisms for HR-derived mutations are illustrated in Figure 1-9. In addition to these large-

scale mutations, HR can also produce point mutations, because the polymerases that participate

in HR are often error-prone [98, 128-130].

As mentioned earlier, an important source of DSBs during inflammation is broken

replication forks, which generate only one DSB end (see Fig 1-7), and thus cannot be accurately

repaired by NHEJ. Therefore, lesions that cause replication fork breakdown (including

replication blocking lesions and SSBs) necessitate HR to restore the replication fork. Notably,

many of the intermediates of the BER pathway are SSBs, so if replication forks encounter these

breaks before BER is completed, HR may be initiated as well (Fig 1-8) [101, 131].
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1.3 Coordination of DNA Repair During Inflammation

Balance within and among pathways is crucial to genomic maintenance, so we will briefly

discuss how the pathways above coordinate for efficient repair.

1.3.1. Intra-Pathway Balance

The importance of balance within a repair pathway has been illustrated with studies of modulated

expression of BER proteins. Mice that contain a transgene for increased expression of Aag are

more sensitive to alkylation damage, whereas Aag-'- mice are more resistant [132]. This varied

sensitivity stems from the fact that BER intermediates (abasic sites and SSBs) are often more

toxic than the original lesion itself [133]. If the downstream repair proteins do not keep up with

glycosylase activity, intermediates accumulate and increase mutagenesis [134, 135] or signal cell

death [101]. Accordingly, elevated AAG expression in humans has been associated with lung

cancer risk [136, 137] and poor glioma prognosis [138].

1.3.2. Inter-Pathway Redundancy and Crosstalk

To account for potential imbalances or perturbations within repair pathways, there must also be

inter-pathway crosstalk, regulation and redundancy. The coordination of multiple DNA repair

pathways allows the network to address lesions quickly and compensate with other repair

mechanisms if the pathway is not resolved efficiently.

There is often redundancy within and between pathways so that multiple mechanisms can

correct the same lesion with equivalent efficacy. For example, supplementary to BER, Direct
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Reversal enzymes ALKBH2 and ALKBH3 can repair etheno lesions [72, 139], and nucleotide

excision repair (NER) can contribute to repair of the hydantoin lesions Sp and Gh [140, 141].

Redundancy between pathways is so important that mice lacking AAG, ALKBH2 and ALKBH3

are unable to survive even one episode of colonic inflammation [72].

In other cases, potentially redundant repair pathways are coordinated by cell cycle and

crosstalk between repair machinery. For example, NHEJ is the dominant mechanism to repair

DSBs during GO and GI phases of the cell cycle, but during replication, there is a much greater

chance that quick ligation of two DSBs will produce a mutation. Thus, NHEJ and HR activities

are regulated in part by cell cycle, and many of the proteins that recognize and bind DSBs

contribute to the choice of which pathway will complete repair [142-144].

Finally, repair processes may compensate for each other if the pathway that initiated

repair is not resolved efficiently. A particularly relevant example is that BER intermediates can

cause replication forks to break down, inducing HR for repair (Fig 1-8) [101, 145]. Kiraly et al.

showed that wild type levels of the BER protein AAG caused a greater accumulation of HR-

driven mutations compared to Aag' mice [131], indicating that even normal BER glycosylase

activity may result in aberrant DSB repair. Further, HR-driven mutations increased

synergistically when alkylation damage occurred during proliferation [100, 131]. When Aag

activity exceeds the capacity of downstream enzymes, as described above, accumulated BER

intermediates can cause stress signaling and apoptosis [132], or they can elicit responses from

other pathways, providing the opportunity for different types of mutations than the initial lesion

might have created [134, 135, 146]. Of course, there are many ways in which intermediates of

some pathways may be substrates for other pathways, but for the scope of this review we confine

this example to BER and HR [146].
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1.3.3. Fate of the Lesion

To illustrate the interplay among the repair mechanisms described here, let us consider cA (Fig

1-10), a LPO lesion that accumulates during inflammation. Starting from the top, efficient repair

of EA can be accomplished with either DR, which removes the etheno lesion and leaves the

undamaged base intact, or BER, which excises the entire base and re-synthesizes the DNA

properly. However, if FA is encountered during replication, mutagenic consequences can arise.

Translesion synthesis by an error-prone polymerase allows the putative development of a point

mutation; if the cA lesion is repaired following inaccurate TLS, the mutation will become fixed.

gA may also block some polymerases, causing the replication fork to stall. Stalled replication

forks can be restarted by several mechanisms [89], some of which leave the lesion intact, but

they may also break down to produce a one-ended DSB. Accurate restoration of the replication

fork by HR prevents mutagenesis, but aberrant HR or NHEJ causes large-scale mutations, such

as translocations, insertions and deletions (some examples are shown in Fig 1-9). DSBs are also

highly cytotoxic, so persistence or abundance of DSBs in the cell can signal for it to undergo

apoptosis [81, 91, 147]. Thus, a single rA lesion creates the opportunity for many types of

mutations through multiple repair pathways.

1.3.4. Transcriptional Regulation of DNA Repair During Inflammation

To cope with the barrage of DNA damage, inflammatory signaling includes upregulation of

DNA repair. Indeed, increasing severity of inflammation and precancerous lesions correlates

positively with DNA damage response indicators [146, 148, 149]. Elements of BER and HR are

promoted in inflammatory environments [148-1 53], and they have been shown to protect against
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inflammation-driven mutations [71, 154-156]. Here we will describe a few major examples of

transcription factors that moderate inflammation and their roles in promoting DNA repair.

One of the most important responses to oxidative stress is mediated by NRF2, a

transcription factor that regulates the expression of antioxidants and other cytoprotective

elements. Briefly, NRF2 is sequestered by KEAPI in the cytoplasm until stimulation by

oxidative stress, whereupon NRF2 translocates to the nucleus to bind antioxidant response

elements (AREs) in target gene promoters [157-159]. Target genes of NRF2 include glutathione

S-transferase (GST), NADPH quinone oxidoreductase 1 (NQO1) and superoxide dismutase

(SOD), known collectively as the adaptive response to oxidative and electrophilic damage [158,

160]. Neutralizing RONS to less reactive species protects DNA from much of the deleterious

chemistry described earlier.

In addition to antioxidant and metabolic enzymes, AREs have also recently been

identified in promoters of several DNA repair genes, including components of HR [150], NHEJ

[161], and BER [162]. Indeed, disruption of NRF2 activity has been shown to result in decreased

DNA repair activity [150] and increased levels of DNA adducts [163-165]. Thus, when present,

NRF2 helps to manage the self-damage from inflammation by increasing expression of genes

that neutralize oxidative stressors and promote DNA repair.

Several other transcriptional regulators of inflammation may also play roles in promoting

DNA repair. NFKB is a key transcription factor with roles in induction, propagation, and

eventual downregulation of inflammation, and DNA damage is one of many signals that can

activate it [166-168]. There is also evidence that NFKB enhances HR by stabilizing the CtIP-

BRCA1 complex [152]. Similarly, several members of the interferon regulatory factor (IRF)

transcription factor family promote DNA repair [169, 170]. For example, recognition of DSBs
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can induce IRF 1 signaling [169], and some of its target genes include elements of HR and BER

[151].

Overall, because inflammation produces a great deal of DNA damage, and the pathogenic

insults that cause inflammation also can cause DNA damage, transcriptional regulation of

inflammation includes increased DNA repair. Indeed, the only way an organism could evolve to

have a self-damaging physiological response like inflammation is to also efficiently repair the

damage it causes.

1.4 DNA Damage Promotes Inflammation in a Positive Feedback Loop

Many pathogens can cause DNA damage [153, 171-175], which may be why DNA damage can

induce inflammation. Furthermore, proteins that detect and respond to DNA damage can trigger

cell cycle arrest, apoptosis, senescence, and necrosis, of which the latter two can promote

inflammatory signaling [176-182]. Unfortunately, DNA damage and inflammation can therefore

create a positive feedback loop, which can be difficult to regulate. Additionally, response to

DNA damage in one cell can induce damage in nearby cells through extracellular signals and

epigenetic modifications [183-186]. The propagation of genomic instability to such "bystander"

cells, along with systemic inflammatory signals, may contribute to genotoxicity in off-target

tissues during inflammation [187-190].

There are many elements of the DNA damage response that promote inflammation. For

example, PARPI (poly(ADP-ribose) polymerase 1) detects and binds SSBs to recruit BER

machinery [191-195], and it has been closely linked to inflammation promotion. PARPI builds

branched polymers of ADP-ribose moieties out of NAD+ (called PARylation) at strand breaks to
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help recruit BER proteins and initiate repair. PARP1 is also capable of post-translational

PARylation of proteins to modify their activity, notably including the key inflammatory

regulator NFKB [166-168, 196]. Indeed, several components of the NFKB complex display

increased activity following PARylation [166, 168].

Inhibition of PARP 1 has repeatedly been demonstrated to decrease the severity of

inflammation in the intestines [197], pancreas [198], heart [199], brain [200], liver [201], and

many other tissues and model systems [202-206]. In particular, studies have shown that

inhibition of PARPI results in decreased inflammatory cytokine expression [166, 196, 207] [198,

202, 207, 208] decreased adhesion molecule production [207] [198] [203], decreased

inflammation-associated enzyme activity, including iNOS, COX2 and NADPH oxidase [203,

209], and decreased immune cell infiltration [198, 208, 210]. These molecular and cellular

alterations all support a model wherein PARPI activity contributes to increased inflammatory

signaling, and its inhibition protects the organism from inflammation-associated damage.

Accordingly, PARP inhibitors are experiencing significant clinical success as adjuvants in

multiple cancer therapies [211-213].

The BER glycosylase OGGI can also augment inflammation through NFKB. OGGI

bound to 8oxoG facilitates NFKB binding [214, 215] and increases expression of its pro-

inflammatory target genes [216]. Similar to inhibition of PARP 1, downregulation or knockout of

OGGI can also reduce inflammation severity [217-219]. Interestingly, the OGG1-8oxoG

complex acts as a guanine exchange factor and activates Ras family GTPases, further promoting

inflammation through the MEK/ERK pathway [220].

Proteins involved in double strand break repair have also been implicated in pro-

inflammatory signaling. DSBs can be recognized and bound by ATM, and RPA-coated single
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stranded DNA (an early intermediate of HR) is recognized by ATR. Multiple studies have shown

that ATM [152, 177, 178, 221] and ATR [221] can both promote NFKB signaling independent of

downstream DNA damage responses. Accordingly, ATM/ATR activity results in increased

cytokine production [177-179], and knockdown of ATM or ATR inhibits the production of the

immune cell-activating ligand NKG2D [221].

Finally, inflammation can be promoted by generalized DNA damage. For instance, the

growth arrest and DNA damage-inducible protein 34 (GADD34) is upregulated in response to

multiple types of cellular stress, including DNA damage and ER-stress [181]. In two models of

DNA damage-induced cancer, mice knocked out for GADD34 display significantly decreased

levels of pro-inflammatory cytokines, immune cell infiltration and malignant lesions [222] [223].

Cytosolic DNA, which can occur from viral infection, can also trigger activation of the pro-

inflammatory cytokines IL-i I [224] and IFNy [225] [226]. Thus, it is not necessary to initiate the

BER or HR pathways in the nucleus in order for DNA damage to induce inflammation.

The positive feedback relationship between DNA repair and inflammation is somewhat

unexpected, because repair of inflammation-derived lesions can promote inflammation further.

This mechanism may have evolved to ensure that inflammation persists long enough to

thoroughly remove the perceived insult before down-regulation to baseline levels. However, the

processes by which this positive feedback loop is suppressed have yet to be determined.

1.5 Inflammation Impairs Some DNA Repair Processes

In addition to direct damage by RONS, pro-inflammatory cytokines have also been shown to

contribute to DNA damage. This signal-induced damage is due in part to the cytokine-stimulated
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increase of intracellular RONS [32-34] and in part to impairment of some DNA repair

components [227-235]. Since RONS readily react with cysteine residues on proteins, many

cellular functions are susceptible to disruption from RONS [236]. Indeed, Jaiswal et al.

demonstrated that inflammatory cytokines were capable of both inducing DNA damage (as

measured by the comet assay) and impairing DNA repair activity (as measured by radiolabel

incorporation) via a NO-dependent mechanism [227].

More targeted studies have defined particular components of DNA repair that are

disrupted by inflammation. Reaction of NO with glutathione (GSH) produces S-

nitrosoglutathione (GSNO), which acts as a NO reservoir as well as a vehicle for cysteine

nitrosylation on other proteins. S-nitrosylation can have a variety of consequences for protein

function, such as altering activity or localization [237], and notable targets include DNA repair

enzymes. One of the most thoroughly studied targets of S-nitrosylation is the Direct Reversal

protein MGMT, which removes methyl lesions from nucleotides by directly transferring the

alkyl group onto a cysteine residue [107]. Nitrosylation of MGMT's active cysteine disables the

enzyme [238], causing an accumulation of the genotoxic lesion 0 6 -methylguanine [232]. While

DNA methylation is not a major type of inflammation-derived lesion, all DNA repair pathways

are essential for genomic maintenance, so inhibition of MGMT can increase stress on other

repair pathways to compensate. It is noteworthy that inflammation can increase sensitivity to

types of DNA damage that it does not produce directly.

Ironically, while BER is responsible for repairing many of the inflammation-induced

DNA lesions, it is also especially susceptible to disruption by inflammation. For instance, S-

nitrosylation of OGGl decreases its activity [233, 234, 239], and S-nitrosylation of APEl causes

it to be exported from the nucleus [229, 234]. Thus, two key steps in repairing oxidative damage
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can be impeded by excess NO. Additionally, some people have a common genetic variant of

OGGi (Ser326Cys), associated with increased lung cancer risk [240], which is susceptible to

inactivation by intracellular RONS following pro-inflammatory stimulation [228]. Finally,

rejoining broken DNA strands via ligase is the final step of most DNA repair pathways, and

evidence suggests that S-nitrosylation reduces ligase activity [235, 239], causing accumulation of

unresolved strand breaks that can be lethal or mutagenic.

Interestingly, and underscoring the complexity of the equilibrium between inflammation

and DNA repair, S-nitrosylation of AAG slightly increases its activity [234]. However, rather

than accelerating BER, increased AAG activity can produce more BER intermediates than the

downstream enzymes can efficiently process, leading to increased tissue damage and mutations

[131, 133]. Indeed, excess AAG has been shown to contribute to microsatellite instability in the

inflamed colon [146], highlighting the importance of balance among DNA repair components in

maintaining genomic integrity.

1.6 Inflammation <- 4 DNA Damage - Mutations + Cancer

The studies described here all contribute to the paradigm that inflammation and DNA damage

contribute to each other and to the development of cancer, but few have explicitly demonstrated

their direct connections. In seminal studies, the Samson lab has definitively shown that DNA

damage from inflammation drives cancer development [71, 241]. In one such illuminating study,

mice lacking the BER glycosylase Aag were treated with a colitis model of DSS in drinking

water. The Aag'~ animals developed far more severe tissue damage and neoplasia than wild type,

which correlated with a dramatic increase in DNA damage. Multiple types of base lesions
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accumulated, especially cA, and some genetic deletions were observed, suggesting aberrant

repair of broken replication forks. Sequencing tumors revealed point mutations in oncogenes that

correspond with the mutational signatures associated with inflammation [71]. Similar results

were obtained in stomach tissue when Aag-'~ and wild type animals were treated with H pylori, a

prevalent source of gastric inflammation and cancer [71, 242]. Another Samson lab study

demonstrated the importance of BER of deamination products during inflammation, observing

more severe pathology in DSS-treated Mbd4-'- mice compared to wild type [241]. The Samson

lab further established that DNA repair is essential to tolerating inflammation, as mice lacking

multiple repair enzymes could not tolerate even a single bout of DSS-induced colitis [72]. With

these targeted studies, the Samson lab has uniquely contributed to this field by directly

demonstrating the importance of DNA damage and its repair for tolerating inflammation.

Thus, we expand upon Figure 1-1 with the examples described in this paper to arrive at

Figure 1-11. Inflammation causes DNA damage primarily via RONS, which can produce DNA

base and backbone lesions both by direct reaction or production of reactive LPO intermediates.

The detection and response to DNA damage by BER (e.g., PARP, OGGI), HR (e.g.,

ATM/ATR), or generalized damage recognition can signal for increased inflammation, creating a

positive feedback loop. Inflammatory transcription factors such as NRF2 and NFKB can mitigate

the damage to DNA by neutralizing reactive chemicals with antioxidants and upregulating DNA

repair pathways. However, nitric oxide can impair some repair enzymes, complicating the

network and increasing the potential for dysregulation. Failure to repair DNA damage can lead to

the mutations that initiate cancer, and many physiological processes involved in inflammation

(e.g., proliferation, migration) also promote cancer development. Given the number of
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mechanisms by which DNA damage and inflammation stimulate each other, it is no wonder that

autoimmune and inflammatory diseases are so prevalent, difficult to control, and carcinogenic.

1.7 Transgenic In Vivo Mutation Assays

Measuring mutagenesis in vivo is essential to understanding the conditions that promote cancer.

Scientists have identified numerous animal models for quantifying different types of mutations.

Some in vivo mutation assays utilize endogenous gene loci, which are cost-effective because no

genetic manipulation is involved, but are generally limited to one or a few tissue types. Several

transgenic animal models have been created to detect mutations with reporter genes that are non

functional in the animal, enabling measurement of mutations across many tissues.

The first transgenic animals created for detecting mutations in vivo incorporated bacterial

genes flanked by lambda phage cos sites [243-245]. Since the transgenes do not produce

mammalian proteins, and since they were incorporated at genetic loci neutral to the development

and health of the animal, the transgenes are non functional in the life of the animal [246, 247]. In

these models, the assay is accomplished by treating the animal with the mutagen(s) of interest,

extracting genomic DNA, packaging the transgene with lambda phage, and infecting E. coli to

identify functional mutations in the extracted transgene. To improve assay sensitivity, the

bacterial genes are incorporated at high copy numbers [246].

The first two transgenic animal models designed under this strategy employed the lac

operon. In 1989, Gossen et al. described creation of the LacZ mouse (later renamed

MutaTMMouse), wherein the reporter contains the complete 3.9 kilobase (kb) bacterial LacZ

gene. Following treatment, the transgene is recovered from animal tissue and packaged into
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phage particles, used to infect Lac7 . coli, and plated on X-Gal plates. Mutants are then scored

as colorless plaques, indicating absence of 8-galactosidase, and normalized to non-mutant blue

plaques [243]. Similarly, the LacI mouse (later renamed BigBlue®) was created with the

complete 1080 bp LacI repressor gene, in which mutants produce blue plaques on X-Gal plates

and are normalized to non-mutant clear plaques [244]. Sequencing DNA from mutant samples

allows determination of the precise mutation that occurred.

In 1996, Nohmi et al. reported the creation of the Gpt-A mouse, which employs a similar

detection strategy as MutaTMMouse and BigBlue®, but features selection methods for detection

of two types of mutations. The gpt delta transgene contains the 456 bp gpt gene, which enables

detection of point mutations, as well as the red and gam genes to enable detection of deletions.

Point mutations in the gpt gene enable infected E. coli to grow on 6-thioguanine selection plates,

and deletion of both the red and gam genes causes sensitivity to P2 interference, enabling

detection as plaques in P2 lysogens of E. coli. While the MutaTMMouse and BigBlue® assays are

capable of detecting many types of mutations, sequencing is necessary to determine the type of

mutation that occurred. Thus, one significant advantage of the Gpt-A model is that two different

types of mutations can be assayed separately.

The MutaTMMouse, BigBlue® and Gpt-A animal models have been useful for studying

point mutations, frameshifts, small insertions, and deletions in many studies. Since the bacterial

target genes are generally short and present at high copy numbers, these animals can only detect

small-scale mutations [246]. However, many carcinogenic mutations result from large-scale

rearrangements during mitotic recombination [119, 124]. To complement the small-scale

transgenic in vivo mutation assays described above, the Engelward laboratory created the FYDR
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Recombomouse, first reported in 2003 [248], as a method to detect large-scale genomic sequence

rearrangements.

FYDR transgenic mice contain a direct repeat of truncated copies of the EYFP gene,

where the 5' copy lacks the 5' coding region of the gene and the 3' copy likewise lacks the 3'

coding region (Fig 1-12). Expression of the truncated EYFP sequences does not produce a

fluorescent protein. However, if a DSB occurs within one of the copies, and the Rad51

nucleoprotein filament identifies the homologous sequence in the incorrect copy as the template

for repair, HDR will produce a sequence rearrangement that restores the full coding region of the

gene, and expression results in a full-length fluorescent EYFP protein [248]. Aberrant

recombination events can then be visualized as individual fluorescent foci within intact tissue, or

the total proportion of mutated cells can be measured by flow cytometry.

The FYDR transgene was randomly incorporated at a locus on Chromosome 1, and as a

result could only be detected in the pancreas and skin [249]. In order to create a more widely

usable animal model, the Engelward laboratory created targeting vectors to integrate a similar

direct repeat of truncated EGFP sequences at the ubiquitously-expressed Rosa26 locus [250].

This congenic animal model, called the Rosa26 Direct Repeat (RaDR) mouse, has enabled

fluorescent detection of sequence rearrangement mutations in every tissue studied so far [251,

252].

Other transgenic direct repeat animal models for detecting HR-driven mutations have

subsequently been created in other labs. The first of these was created in the Jasin laboratory,

utilizing a direct repeat of GFP sequences wherein the first is disrupted by an I-Scel restriction

site, and the second is truncated at both 5' and 3' ends [253]. Following induction of a DSB by I-

Scel, the cell can undergo gene conversion to produce a full length GFP. This model system has
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been useful for studying the genetic underpinnings and mechanisms of homologous

recombination [253, 254]. However, studies are limited to analysis of a single recombination

mechanism following an artificially induced DSB in primary cell cultures.

Recently, the Nakamura lab reported another direct repeat transgenic animal, this one

containing a partial duplication in the 3' region of the HPRT gene followed by a GFP sequence

[255]. The duplication causes inactivation of the HPRT gene, but loss of the duplication by

intrastrand recombination or sister chromatid exchange produces an HPRT-GFP fusion protein.

Similar to RaDR, this model permits in situ detection of spontaneous sequence rearrangements.

However, this model has not successfully detected gene conversion mutations, which is the

predominant mechanism of mitotic HR [256].

1.8 Approaches and Aims of This Thesis

The work described in this thesis was designed to interrogate the contributions of inflammation

and DNA damage to the development of mutations and cancer. We utilized RaDR fluorescence

as our primary readout of mutagenicity, because this animal model provides the simplest, least

laborious, and most cost-effective measurement of mutations in vivo. Despite the fact that

inflammation produces primarily single base lesions, which are more commonly associated with

point mutations, inflammation-induced DNA lesions can lead to strand breaks and replication

fork breakdown, initiating repair by HR as described above. Thus, our primary mutation readout

derived from large-scale sequence rearrangements can serve as a general indicator of

mutagenicity. Our RaDR mice also contain the Gpt-A transgene, enabling unprecedented
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analysis of sequence rearrangements, point mutations and deletions all within a single tissue

sample.

The causative relationship between inflammation and cancer has been thoroughly

established in the intestine [4, 7, 11], and so we designed our studies to query intestinal

inflammation's contributions to mutagenesis. Further lending itself to studies of mutations and

cancer, intestinal architecture is well defined and enables identification of somatic stem cells,

which can be difficult or impossible to identify in other tissues. The colon epithelium consists of

pore-like divots into the mucosa called crypts, and the small intestine also contains fingerlike

projections into the lumen, called villi. At the base of each crypt are one or more somatic stem

cells, which give rise to the proliferative transit cells that comprise the length of the crypt (Fig 1-

13A) and, in the small intestine, the villi surface [257]. The continual proliferation of stem and

transit cells enables continual renewal of crypt (and villus) epithelia. Transit cells are eventually

sloughed off into the lumen, and stem cells produce complete epithelial turnover within 3-5 days

[258]. In a RaDR animal, mutations in crypt stem cells are visible as large, bright, roughly

circular foci that can be distinguished from the smaller, dimmer and/or irregularly shaped foci of

mutated transit cells (Fig 1-13B). Colon epithelia can be disaggregated into a suspension of

crypts, and both partially and fully fluorescent crypts are visible in suspensions of RaDR crypts

(Fig 1-13C). The foci that we believe to be converted crypts are, on average, lOx brighter and 6x

larger than foci that appear to be single cells (Fig 1-13D). Since somatic stem cells persist for

years, if not the animal's lifetime, whereas transit cells are sloughed off within 5 days, it is of

great interest to quantify recombinant stem cell foci rather than all foci.

To distinguish crypt foci from transit cell foci with minimal bias, we collaborated with

Dr. Dushan Wadduwage to write MATLAB image analysis programs. This program uses
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gradient and intensity features of the image to distinguish RaDR foci from background

autofluorescence. The first version of this program identifies all foci within the tissue and is

useful for many tissues, such as pancreas and liver, where foci may assume different sizes and

shapes due to tissue architecture and morphology. Another version of the program specifically

identifies crypt foci based on size, shape and intensity through a training algorithm. The user

annotates 3-4 images from the data set for purported crypt foci, which the program interprets to

define crypt foci parameters, and then applies those parameters to analyze all images in the data

set. Thus, we are able to analyze tissue for all foci as well as crypt foci.

RaDR mutants can also be quantified according to the proportion of the tissue that is

fluorescent. The simplest method for quantifying proportion of fluorescent cells is by flow

cytometry, but this requires disaggregation of the tissue, so de novo mutations cannot be

distinguished from clonally expanded mutants and the context of the mutation in situ is lost. We

can also approximate the overall mutant proportion in RaDR tissue images by comparing the

fluorescent area to the total tissue area. Measuring the percent area of fluorescence in the tissue

is of particular utility in measuring RaDR mutations in intestinal tumors, where crypt

architecture is obliterated and clonal expansion produces patches of fluorescence.

We utilized these methods to quantify mutagenesis from several model systems. The

second chapter of this thesis discusses mutagenic consequences of eliminating regulatory

elements of the immune system. Next, we explored mutagenesis and clonal expansion resulting

from microbially induced inflammation. Finally, we evaluated mutations arising from

upregulated base excision repair. Overall, our results indicate that inflammation does not cause a

significant increase in de novo sequence rearrangement mutations, but it contributes to cancer in

part by increasing the total burden of mutant cells via clonal expansion.
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Chapter 2

Roles of Immune Regulation in Initiation of Sequence Rearrangement

Mutations

2.1 Abstract

Chronic inflammation is a major risk factor for cancer, but its roles in cancer initiation and

promotion have yet to be fully delineated. Cancer arises from the accumulation of genetic

alterations (i.e., mutations and epigenetics), and inflammation is known to promote mutations,

but it remains unclear whether the mutations caused by inflammation drive cancer or simply

accelerate it. Furthermore, it is unclear whether inflammation must be severe, chronic, and/or

dysregulated to be carcinogenic. In this study, we utilized the RaDR transgenic mouse, which

allows in situ detection of sequence rearrangement mutations, to query how different aspects of

inflammation regulation impact mutagenesis. First, we examined the accumulation of RaDR

mutations in unchallenged immunocompromised mice to determine whether regulation of the

innate immune system has a role in preventing or promoting mutagenesis. Second, we evaluated

RaDR mutations in ApcMin/ mice, which contain a driver mutation for intestinal cancer, and were

given an anti-inflammatory treatment. The first of these studies revealed that impairment of the

adaptive immune system may promote mutagenesis, suggesting a role for dysregulated

inflammation in cancer initiation. Attenuation of endogenous inflammation reduced tumor

multiplicity as well as overall burden of recombinant cells in the tissue, but we did not observe a

significant reduction in recombination frequency indicating that inflammation promotes cancer
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through mechanisms aside from de novo mutagenesis. Together, these studies indicate that while

adaptive immunity may protect against mutations, the promotion of cancer by inflammation does

not rely on increased mutagenesis.

2.2 Introduction

Chronic inflammatory diseases, such as Crohn's disease, ulcerative colitis, pancreatitis, and

hepatitis, are major risk factors for cancer. Inflammation contributes to cancer development in a

variety of ways, and one of the most important is that inflammation causes DNA damage, which

leads to mutations. During inflammation, innate immune cells produce large amounts of reactive

oxygen and nitrogen species (RONS) evolved to destroy pathogens, but those chemicals can also

damage the body's own DNA. Dysregulation of the innate immune system can lead to

autoinflammatory diseases, a form of autoimmunity, wherein RONS are produced excessively

and often not in response to an insult, causing a great deal of host tissue damage [1].

Chronic inflammatory diseases are difficult to characterize because they generally act in

bouts or cycles of severe inflammation with periods of relatively normal physiology in between

[2-4]. The timing and kinetics of these bouts can be unpredictable, making controlled studies of

dysregulated inflammation difficult to define [5, 6]. Since inflammatory diseases strongly

predispose patients to cancer, it is of great interest to determine what aspects of inflammation

contribute to mutagenesis during cancer initiation and promotion.

It is broadly hypothesized that cancer undergoes a multistage developmental process:

initiation, promotion, and progression. Initiation refers to the stage where a cell or cells develop

one or more oncogenic driver mutations, and promotion describes the clonal expansion of
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initiated cells and accumulation of further mutations within the lineage. Importantly, genomic

instability and progressive mutagenesis are hallmarks of cancer, enabling tumor cells to evolve

increased malignancy and drug resistance over time (Fig 2-1). Thus, mutations accumulate

through all stages of cancer development, contributing not just to initiation, but all stages of

cancer progression. Inflammation displays features of both initiation, in that it can induce

mutations, as well as promotion, because the inflammatory microenvironment facilitates growth

and cellular migration. Indeed, it is likely that inflammation can impact both stages of

carcinogenesis. In this work, we utilized animals that contain a fluorescent reporter transgene to

detect sequence rearrangement mutations [7] to query how different aspects of inflammation

impact mutagenesis.

To study mutagenesis, we utilized the RaDR mouse model, which allows detection of

sequence rearrangement mutations in situ. The RaDR mouse was created with a tandem repeat of

truncated EGFP coding sequences inserted at the Rosa26 locus for ubiquitous expression [8].

The 5' copy of the EGFP gene contains a deletion in the 5' region of the sequence, and likewise

the 3' copy has a deletion of the 3' end of the gene. Cells that contain the un-mutated transgene

express the truncated sequences, which do not produce a fluorescent product. However, if there

is a double strand break (DSB) in one of the EGFP genes during S or G2 phase, homologous

recombination (HR) may errantly produce a sequence rearrangement mutation as it repairs the

breakage. For example, if the DSB occurs in the 3' copy, then during homology searching of HR,

the cell may identify the homologous region of the 5' copy on the sister chromatid, producing a

full-length EGFP gene. The resulting mutated cell and all of its progeny then express EGFP and

can be identified by fluorescent microscopy or flow cytometry. For more detailed descriptions

and validation of the RaDR mouse, please see [7]. Importantly, although HR is widely
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considered an "error-free" DNA repair mechanism, the presence of many repetitive elements

throughout the genome [9] presents many opportunities for HR to cause insertions, deletions and

loss of heterozygosity [10-14]. Numerous studies have identified HR as a mechanism by which

cancer cells may acquire these mutations [15-20]. Therefore, the RaDR animal provides a

relevant proxy for quantifying mutagenesis within a tissue.

To study whether inflammation contributes to possible initiating mutations, we aged

animals that lack key regulatory elements of inflammation with no additional manipulation.

Therefore, any differences in mutation accumulation would be derived from the animal's

deficiencies in regulating its innate immune system. This model system allowed us to assess

aspects of innate immune regulation for mutagenicity without inducing inflammation, which

could potentially obscure results.

We also studied the potential for inflammation to promote cancer and mutations using

animals that contain a cancer driver mutation (ApcMin+) and thus spontaneously develop

intestinal tumors. By inhibiting the prominent pro-inflammatory cytokine TNF in these animals,

we reduced inflammation's contribution to cancer promotion, allowing us to determine whether

inflammation promotes mutagenesis as well as tumorigenesis in this model.

2.2.1 Rag2~'~ and Rag2-';IL10~- animals lack key factors involved in regulation of

inflammation

The immune system comprises a network of cells and signals that co-regulate to optimize

responses to pathogens. Whereas the innate immune system's macrophages and neutrophils

produce non-targeted reactive chemicals that damage any biomolecule they contact (in addition

to phagocytic and antigen-presenting functions), the adaptive immune system identifies and
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attacks specific pathogens with minimal collateral damage. The adaptive immune system helps

regulate and redirect the innate immune system to prevent self-injury when possible [21-23]. For

example, effector T cells have been shown to block macrophage activity, neutrophil recruitment

and pro-inflammatory cytokine secretion [24, 25], and regulatory T cells (Tregs) suppress the

innate immune system to reduce inflammation [22, 23, 26]. However, it is unclear if the adaptive

immune system has any impact on the development of mutations, either on its own or through

moderation of the innate immune system.

In order to query whether the adaptive immune system plays a role in preventing or

promoting mutagenesis, we crossed the RaDR transgene into Rag2-'~ mice, which lack a

functional adaptive immune system [27]. In order for B and T cells to mature and function, they

must undergo a series of genetic rearrangements to produce unique antibodies and T cell

receptors. The Rag2 gene is essential for an early step of this process, called V(D)J

recombination. When Rag2 is absent, B and T cells never reach maturity and the adaptive

immune system is unable to function. Therefore, with a non-functional adaptive immune system,

a layer of innate immune regulation is lost.

Another important regulatory element of the immune system is the anti-inflammatory

cytokine IL10. This pleiotropic cytokine downregulates macrophage stimulation [28-30] and

blocks NFKB [31, 32], and it is thus heavily involved in regulating inflammation. Indeed,

production of IL- 10 is one mode by which Tregs suppress innate immune inflammation [22].

Since IL10 plays key roles in moderating the innate immune system, we also bred RaDR mice

with Rag2~J-;IL10-'- animals in order to see whether the absence of this cytokine promotes

mutagenesis.
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2.2.2 Apc""'+ animals spontaneously develop inflammation and cancer

In an effort to focus on inflammation's contributions to the promotion stage of cancer, we

attenuated inflammation in animals that contain an oncogenic driver mutation by treating with an

antibody against the pro-inflammatory cytokine TNF.

Apcmin/+ (Min) animals have been used to study intestinal carcinogenesis for decades.

They contain an inactivating point mutation in the tumor suppressor Apc, which results in

spontaneous intestinal tumorigenesis within the first two months of life. The Min model can be

considered as all cells already having an initiating mutation, which is why tumors develop so

quickly, and also why this model lends itself to studying cancer promotion (Fig 2-1). The Min

phenotype also includes elevated metrics of systemic inflammation, splenomegaly, thymic

involution, and lymphodepletion [33, 34].

TNF is a multifunctional cytokine that is secreted primarily by macrophages to promote

inflammation [35]. The far-reaching effects of TNF are perhaps best illustrated with the range of

diseases that can be effectively treated by blocking the cytokine, including rheumatoid arthritis,

inflammatory bowel disease and psoriasis [35]. Previous studies have shown that mitigating Min

animals' endogenous inflammation with anti-TNF significantly reduced tumor burden, and

possibly even induced regression [36]. We aimed to recapitulate this treatment paradigm with

RaDR Min mice to determine whether suppression of inflammation by anti-TNF affects

mutagenesis as well as tumorigenesis.
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2.3 Materials and Methods

2.3.1 RaDR vs. Rag2~1~;RaDR vs. Rag2/~;IL10';RaDR

RaDRRR, Rag2--;RaDR R, and Rag2~1;IL10-;RaDR RRmice were housed in an AAALAC-

accredited barrier facility free of known murine Helicobacter species, viruses, Salmonella

species, Citrobacter rodentium, ecto- and endoparasites. Rag2-l-;IL10-/- mice were maintained in

SCID housing, while WT and Rag2-1- mice were housed in normal clean cages. Animals were

aged with no manipulation for 6 months, at which time they were euthanized by CO2 according

to AVMA guidelines and necropsied with standard procedures. Samples collected and analyzed

immediately included: body weight, spleen weight, thymus weight, pancreas RaDR imaging,

liver RaDR imaging, colon RaDR imaging, mammary RaDR imaging.

2.3.2 Anti-TNF treatment in RaDR;Apc Mi"+ mice

C57B1/6 RaDR/R and C57B1/6 ApcM'"I+ animals were bred to produce RaDRR/+;APcMi"n" and

RaDRRI offspring. The animals were separated by sex and housed in large cages containing up

to 10 mice per cage. Each cage contained both Min and wild type mice, and mice of each

genotype were split evenly into anti-TNF and sham treatment groups. Mice began receiving i.p.

injections of anti-TNF antibody (XT3. 11, BioXCell, West Lebanon NH) or anti-IgG sham

antibody (HRPN, BioXCell, West Lebanon NH) at 3.5-4 months of age. The initial loading dose

was 0.4 mL of 1 mg/mL antibody diluted in sterile PBS, and subsequent injections were 0.2 mL

of 1 mg/mL antibody given three times a week for a total of 6 weeks. At the end of the 6-week

treatment period, mice were euthanized by CO 2 according to AVMA guidelines and necropsied

with standard procedures. Samples collected and analyzed immediately included: body weight,
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complete blood count, spleen weight and RaDR flow, thymus weight and RaDR flow, pancreas

RaDR imaging, liver RaDR imaging, mammary RaDR imaging, and intestine segment RaDR

imaging. Samples collected and stored included: serum (-80'C), feces (RNA-later, -80'C),

spleen portions (RNA-later, -80'C and formalin, room temperature) thymus portions (RNA-later,

-80'C and formalin, room temperature), pancreas portion (formalin, room temperature), intestine

segment portions (RNA-later, -80'C), whole intestine segments (on bibulous paper in formalin,

room temperature), and lymph tissue from the mammary, mesentery, Peyer's patch and ceco-

colonic lymph nodes (RNA-later, -80'C). Animal carcasses were saved in formalin.

2.3.3 RaDR Necropsy and Tissue Imaging

Animals were euthanized with CO 2 according to AVMA guidelines. Tissues were excised and

held on ice in tubes containing PBS (mammary, spleen) or PBS with 0.0 1% trypsin inhibitor

(T9008 Sigma-Aldrich or P-1540 Westnet Inc) (pancreas, liver, intestines) until use. Intestines

were cut open on one side and the lumen was rinsed of fecal matter before placing in PBS +

trypsin inhibitor. Mammary, pancreas, liver and intestine tissues were compressed to 0.5 mm

between coverslips and imaged for EGFP under the Ix objective with the FITC filter of a Nikon

80i fluorescent microscope.

2.3.4 RaDR Image Analysis

RaDR images can be analyzed for the number of de novo recombination events by quantifying

individual fluorescent foci, or for total burden of recombinant cells by measuring the fluorescent

area of the tissue. Both metrics are normalized to tissue area, measured in ImageJ. To quantify

fluorescent foci, Dushan Wadduwage of Peter So's laboratory designed MATLAB-based
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programs that use gradient and intensity features of the image to distinguish individual foci

(manuscript under review). The program "FociCounter_3.1" was used to enumerate all foci in

pancreas, liver, and mammary tissues, and the program "17.03.27_Crypt counter with GUI" was

utilized to enumerate converted colonic crypts. The crypt counting program is trained to

recognize crypt foci based on 3-4 researcher-annotated images from the data set, then the

program is able to apply those parameters to identify crypt foci in other images. To quantify the

fluorescent area within the tissue, conservative intensity thresholds were set in ImageJ such that

background and artifactual fluorescence was excluded, and only brightly fluorescent pixels

would be measured. After marking the outline of the tissue, the area of pixels above the threshold

intensity were measured as well as the total tissue area.

2.3.5 RaDR Flow Cytometry

Tissues analyzed by flow cytometry were processed after imaging was completed. Briefly,

tissues were placed in 5 mL of 2 mg/ml collagenase type V (C9263, Sigma) in HBSS (Life

Technologies) in a GentleMACS C tube and mechanically dissociated with the GentleMACS

tissue grinder (Miltenyi Biotec). After mechanical disaggregation, the tissues were placed in a

37C incubator for 40 minutes to allow collagenase to degrade connective tissue. Cell suspensions

were then triterated 10-15 times and passed through a 70 micron cell strainer into 10 mL of cold

media (DMEM + 10% FBS + pen/strep) to halt collagenase digestion. The samples were then

centrifuged at 180 x g for 10 minutes and supernatant was discarded. The cell pellet was

resuspended in 350-500 uL of Opti-MEM reduced serum media (ThermoFisher Scientific) and

held on ice until analyzed. The samples were analyzed by a FACScan or FACS Calibur flow

cytometer for green fluorescence (530 nm) and red (585 nm) to account for autofluorescence.
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2.3.6 Tumor Quantitation

Following RaDR imaging, intestine segments were laid flat on bibulous paper and fixed in 10%

formalin. After several days, the formalin was discarded and replaced with 100% ethanol for 24

hours. The ethanol was then discarded and replaced with 70% ethanol. To count tumors, intestine

segments were carefully removed from the bibulous paper cassettes and placed on a stereoscopic

lOx microscope. The approximate sizes and locations of tumors within each segment were

recorded on paper.

2.3.7 Histopathology

Formalin-fixed tissues were embedded in paraffin, cut in 5 pm sections, and stained with

hematoxylin and eosin. Sections were scored by a pathologist blinded to sample identity. For

intestines, after tumors had been counted, intestine segments were rolled into swiss rolls and

placed in cassettes for paraffin embedding.

2.3.8 Immunofluorescence

Formalin-fixed tissue sections were embedded in paraffin and cut in 5 tm sections. Slides

stained for immunofluorescence were first deparaffinized with three five-minute washes in

xylenes, two five-minute washes in 100% ethanol, and 10-minute washes each in 95% ethanol,

90% ethanol, and 70% ethanol. Slides were washed twice in PBS, then boiled in Dako citric acid

antigen retrieval buffer (S1700, Agilent Technologies, Santa Clara, CA) for 30 min. After

cooling, slides were washed twice in diH20 and tissue sections were circled with hydrophobic

marker. Sections were blocked for one hour with 5% BSA + 0.3% Triton in PBST at room temp.
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All antibodies were diluted in 1% BSA + 0.3% Triton in PBST, and sections were stained

overnight at 4C. Slides were then washed three times for five minutes each in PBST and

incubated with the appropriate secondary antibody for one hour at room temperature. Slides were

then washed five times in PBST for five minutes each. Finally, a drop of DAPI with ProLong

AntiFade reagent was placed on the section, and a cover slip was laid overtop and sealed with

clear nail polish.

Primary antibodies used were: anti-Ki67 (Abcam ab15580, rabbit), anti-phospho-H2A.X

Ser-139 (Millipore 05-636, mouse), anti-nitrotyrosine (Millipore AB541 1, rabbit), and anti-

F4/80 (Abcam ab6640, rat). Secondary antibodies used were: Alexa Fluor 647 (goat anti-rabbit)

(used for both Ki67 and nitrotyrosine, but not simultaneously), Alexa Fluor 488 (goat anti-

mouse), Alexa Fluor 568 (goat anti-rat).

2.3.9 Statistical Analyses

RaDR foci were quantified as the number of foci per square centimeter of area (foci/cm 2), and

RaDR flow cytometry measurements were given as % fluorescent* 106 . Due to the fact that the

distribution of EGFP-positive cells in RaDR mice is non-normal across tissues and among

individuals, RaDR data sets were compared by Mann-Whitney U-test. It was not clear that tumor

multiplicity was normally distributed between individuals, and therefore tumor counts were also

compared by Mann-Whitney U-test. Body and tissue weights were compared by unpaired

Student's t-test. All statistical comparisons were calculated using GraphPad Prism 5.
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2.4 Results

2.4.1 Rag2'1 and Rag2~1~;IL1J~ develop more sequence rearrangement mutations than wild

type in the pancreas

The primary endpoint of interest in these studies is mutagenicity, which we evaluated with the

RaDR transgenic mouse for detecting sequence rearrangement mutations. When cells acquire the

RaDR mutation, fluorescent foci are visible in situ by fluorescence microscopy. As mutated cells

divide, the fluorescent progeny remain in close spatial proximity, creating larger foci. Therefore,

de novo mutations are quantified by enumeration of distinct foci. In intestine tissue, where well-

defined tissue architecture includes somatic stem cells that give rise to crypts, somatic stem cell

mutations can be identified and quantified by characteristic large, round foci.

During necropsy, the pancreas, colon, and left lobe of the liver were excised and imaged

for RaDR mutations. The number of foci and area of the tissue were initially quantified

manually, and later analyzed with MATLAB foci counting software (manuscript under review).

Colon images were analyzed for all foci as well as converted crypts. Surprisingly, there was a

significant increase in the number of mutations that occurred in Rag2-'- animals' pancreata (Fig

2-2A), indicating that either the adaptive immune system or Rag2 itself impacts the development

of pancreatic mutations. There were no significant differences between strains in the density of

mutant foci in the liver and colon tissue (Fig 2-2B and C).

In order to study why Rag2-'- pancreata develop more mutations, we examined histology

sections from 5-6 animals for each strain of mice. A trained pathologist blinded to sample

identity scored pancreas sections for pathology and noted observations (Table 2-1). Consistent

with the fact that these mice were not exposed to any inflammatory stimuli, the pancreata of each
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strain did not show signs of inflammation nor other pathology (Fig 2-3). We also stained

pancreas sections for molecular markers that could indicate causes for increased mutagenesis.

First, we stained for nitrotyrosine (3-NT) as a marker for nitrosative protein damage, a feature of

inflammation (Fig 2-4A). We also stained for the presence of F4/80-positive macrophages to

determine if the innate immune system was upregulated in mice that lacked adaptive immunity.

For both markers of inflammatory stress, there were no differences between genotypes (Fig 2-

4B).

Since RaDR mutations arise from HR, and HR generally occurs at double strand breaks

(DSBs) during S or G2, we also stained sections of pancreas tissue for proliferation with Ki67

antibody and DNA DSBs with yH2AX antibody. While HR-derived mutations should correlate

with proliferation and DSBs, we did not observe differences in Ki67 nor yH2AX staining among

mouse strains (Fig 2-4C).

These results show that, at the time of necropsy, there were no significant differences in

inflammation, proliferation, nor DSBs that could explain the increase in RaDR foci in Rag2'-

pancreata.

2.4.2 Rag2- and Rag2-1-;IL1O-/ have smaller lymphoid organs than wild type

As a surrogate measure of overall health, body weights were measured at the time of necropsy.

As hypothesized, since all animals are 129 background and unchallenged, the animals developed

normally and had similar body weights at necropsy (Fig 2-5A). Weights of the thymus and

spleen were also measured for each mouse at necropsy. Consistent with previous reports, the

spleen and thymus of Rag2-/- animals are smaller than that of WT mice [37, 38] (Fig 2-5B).

Since the spleen and thymus are the organs in which B and T lymphocytes complete maturation,
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and the Rag2 gene is essential for B and T cell maturation, it is unsurprising that both knockout

strains have smaller lymphoid organs than wild type animals.

2.4.3 Anti-TNF treatment decreases intestinal inflammation, tumor multiplicity, and

mutant burden in ApcMin/+ mice, but does not affect mutation frequency.

To complement our studies of mice lacking regulatory components of the immune system, we

utilized the ApcM"nl mouse model of intestinal cancer. Apc is a tumor suppressor gene that

regulates the Wnt signaling pathway, and over 80% of human colon cancers contain Apc

mutations [39, 40]. Min mice are heterozygous for an inactivating point mutation in Apc and

were named for their spontaneous development of multiple intestinal neoplasia [41, 42]. These

animals accumulate intestinal adenomatous polyps starting within two months of life, with the

majority arising in the distal third of the small intestine (ileum). Whether inflammation promotes

cancer in these mice or is merely a symptom of cancer development has not been determined, but

studies have shown that mitigation of inflammation reduces Min tumor development [43-46]. In

this experiment, we aimed to recapitulate findings of Rao et al. showing that anti-TNF treatment

decreases tumorigenesis [36], and to contribute information regarding whether reducing

inflammation affects mutagenicity as well.

Min and WT littermates were divided evenly between anti-TNF and sham antibody

treatments as described above. Animals were separated by sex, but both genotypes and treatment

groups were cohoused in large cages to limit the potential for confounding variables such as

microbiota. Our treatment regimen closely paralleled that of the Rao et al. study, and indeed we

also observed fewer polyps in the Min ileum (Fig 2-6) and an overall reduction in intestinal

inflammation (Fig 2-7).
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Although intestinal tumorigenesis decreased with anti-TNF treatment, the frequency of

mutant crypts did not vary significantly between genotypes nor treatments (Fig 2-8A). However,

quantifying the overall burden of mutant cells revealed that although mutation frequency did not

increase, Min ilea and colons had a greater burden of mutant cells compared to WT, and anti-

TNF treatment decreased the overall mutant burden in Min ilea (Fig 2-8B). The fact that ileal

polyps and overall mutant burden both decreased with anti-TNF treatment while de novo

recombination mutations were unchanged indicates that reducing inflammation also reduces

tumorigenesis, but it does not significantly impact the production of sequence rearrangement

mutations. Thus, the decreased overall mutant burden in anti-TNF treated animals probably

results from decreased proliferation corresponding to decreased tumorigenesis.

Although our target tissues for this experiment were intestines, we also analyzed

pancreas, liver, mammary, and spleen tissues for RaDR mutations. Pancreas, liver and mammary

mutation frequencies were quantified as foci in fluorescent images, and there was no difference

in the number of de novo sequence rearrangements in any of these tissues (Fig 2-9A). The total

proportion of fluorescent cells in the tissue was also measured by flow cytometry. By this metric,

Min mice were found to have significantly higher proportions of mutant cells than WT in anti-

TNF treated pancreata and sham-treated livers (Fig 2-9B). This increase in total recombinant

cells in the Min pancreas and liver can likely be attributed to dysregulated Wnt signaling causing

increased proliferation.
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2.4.4 ApcM""/+ mice suffer from low body weight, thymic involution, and splenomegaly, and

anti-TNF treatment minimally improves those metrics

Min mice exhibit a number of pathologies that worsen with age, including: elevated intestinal

inflammation, cachexia, splenomegaly, lymphodepletion, and premature thymic involution [33,

34, 47, 48]. We compared these pathologies between genotypes and treatment groups as

measurements of overall health.

Min mice were smaller than WT and had much larger spleens (Fig 2-1 OA, B), as

expected for this strain [34]. Also consistent with Min physiology, thymi of sham-treated Min

mice were smaller than WT (Fig 2- 1C) [33, 34]. Anti-TNF treatment appeared to result in

larger thymi for both Min and WT animals, but this effect was only statistically significant in

Min mice (Fig2. 1 OC). Given the trends of increased lymphoid organ size, it is possible that anti-

TNF treatment attenuates lymphodepletion in Min mice, but this has not been quantified.

Interestingly, Min animals had a significantly lower proportion of mutated spleen cells

compared to WT (Fig 2-9B). Min mice are known to suffer depletion of lymphocytes, which

compose the splenic white pulp, and a greatly increased mass and proportion of red pulp, which

contains hematopoietic cells [34]. Identification of which spleen cell types acquire the RaDR

mutation could reveal the physiological explanation for the decreased proportion of mutated cells

in the Min spleen.

2.5 Discussion

In the studies described here, we aimed to ascertain whether modulating regulatory elements of

innate immunity could contribute to or protect against mutations. We compared wild type

88



animals to those that lack a functional adaptive immune system (Rag2~'~) as well as animals

lacking both adaptive immunity and an important anti-inflammatory cytokine (Rag2'~;IL1-),

because both the adaptive immune system and ILI0 play major roles in regulating the innate

immune system and inflammation. We aged animals for six months with no manipulation so that

all animals were healthy and exposed only to their commensal microbiota; thus, mutations were

not induced but would arise from normal physiology. We hypothesized that animals lacking key

regulatory elements of inflammation may experience increased levels of RONS throughout their

lives, contributing to an increase in mutagenesis.

Previous studies using a plasmid assay analogous to the RaDR transgene have shown that

inflammatory RONS are indeed capable of inducing mutations through homologous

recombination [49, 50]. During inflammation, replication blocking lesions and single strand

breaks can arise from direct reaction with RONS or as intermediates during Base Excision

Repair, and these lesions can be recombinogenic, particularly during cell division [49-51].

Subsequent in vivo studies demonstrated that inflammation during cellular proliferation

synergistically increases mutagenesis in the pancreas [52], but the contributions of inflammation

to mutagenesis had not yet been quantified in other tissues.

Interestingly, we did observe an increase in mutations in both Rag2~'~ and Rag2--;JL10~-

pancreata as compared to wild type, though there was no significant difference between Rag2-'-

and Rag2-1~;IL10-'- pancreas mutations. This supports our hypothesis that knockout of functional

adaptive immune cells leads to increased mutagenesis, possibly through innate immune

dysregulation. We therefore sought to explore how the adaptive immune system protects the

pancreas from sequence rearrangements. To determine whether inflammation was present, we

evaluated pancreas sections for histopathology scores, nitrosative tissue damage, and
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macrophage infiltration, but observed no quantifiable differences between strains. Since HR-

derived sequence rearrangement mutations generally arise from mis-repaired DSBs during

cellular proliferation, we also assayed pancreas sections for yH2AX (DSBs) and Ki67

(proliferation). Again, we did not observe quantifiable differences between strains.

It is important to note that immunofluorescent staining only captures the physiology of

the tissue at a single point in time, whereas RaDR-mutated cells have accumulated throughout

the 6 months of the animal's life. Thus, while staining does not indicate measurable differences

in inflammation, proliferation, nor DSBs at the 6 month timepoint, there may have been

differences in any of these metrics earlier in the animal's life that contributed to the increased

formation of sequence rearrangement mutations. It is also possible that a very low degree of

inflammation is present in Rag2~'~ animals, but to such a small extent that it cannot be

distinguished in tissue sections.

Our hypothesis as to why Rag2~1 mice develop more HR-driven mutations is that RAG2

may play a role in DSB repair pathway choice. Gigi et al. demonstrated that the C-terminus of

the RAG2 protein promotes canonical non-homologous end joining (c-NHEJ), and that

truncation of the RAG2 protein at the C-terminus promotes alternative NHEJ (alt-NHEJ) in

V(D)J recombination during lymphocyte development [53]. Other studies have shown that Rag2

restricts DSB repair to c-NHEJ in embryonic stem cells [54]. We hypothesize that deletion of the

Rag2 gene diminishes the choice for c-NHEJ during DSB repair, and HR compensates. We also

hypothesize that this effect is only observable in the pancreas because the pancreas accumulates

up to an order of magnitude more mutations than the other tissue types studied, and thus the

differences in other tissues is not as pronounced. However, Rag2 is thought to be a lymphoid
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cell-specific gene [55], and data repositories report no detectable expression of Rag2 in the

pancreas [56]. Thus, more studies are necessary to test these hypotheses.

We also studied the effects of inflammation on the promotion phase of carcinogenesis.

We treated Min mice, which contain a cancer driver mutation and spontaneously develop

intestinal tumors and inflammation, with anti-TNF to mitigate systemic inflammation. Previous

studies have shown that inflammation strongly promotes cancer development [36, 43, 57, 58],

but whether that includes increased mutagenesis has not been elucidated. Our studies reproduced

previous findings that anti-TNF reduced tumorigenesis in Min mice [36] [other refs], and

contributed the endpoint of accumulated sequence rearrangement mutations. Our results indicate

that reducing inflammation in mice that already contain a cancer driver mutation helps to

decrease tumor multiplicity but has little effect on sequence rearrangement mutagenesis, at least

at the RaDR locus. This suggests that while inflammation helps promote tumor development,

this promotion does not depend on increased mutagenesis.

Together, these studies suggest that while regulation of inflammation may protect against

mutagenesis, the mechanism by which inflammation promotes cancer is not dependent on

increased mutagenesis.
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Figure 2-1. Stepwise model of cancer progression and context of experimental setups
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Figure 2-2. RaDR mutation frequency. At necropsy, pancreas, liver and colon tissues
were excised and imaged for fluorescent foci. Foci were quantified by MATLAB
automated image analysis and normalized to tissue area. (A) Pancreata of Rag2'
animals developed significantly more de novo recombination events compared to
WT. Rag2-';L10' pancreas foci were not statistically different from Rag2'. (B, C)
RaDR foci in the liver (B) and colonic crypts (C) were not statistically significant
between genotypes. Bar indicates median. Mann-Whitney U-test, 4p < 0.0001.
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Figure 2-3. Pancreas histology sections. A pathologist blinded to sample
identity scored pancreata for signs of inflammation and other pathology. No
differences were found between genotypes.
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Table 2-1 Pathologist Observations of Pancreas Histology Sections

Sample ID PANCREAS pathology Notes (random, rather Insignificant findings) Genotype pancreas (ctanm

14-2801 Without pathological findings Rg2__;IL1O'1- 253

14-2802 Without pathological findings Small-sized single area of cytological alteration (eosinophilic focus) Rog2- 324
14-2 803 Without pathological findings Small-sized areas (3) of cytological alteration (eosinophilic foci) WT 93
14-2804 Without pathological findings Small-sized areas (3) of cytological alteration (eosinophilic foci) Rog2 1 ;1L10+ 417

Small-sized single area of cytological alteration (eosinophilic focus)
14-2 805 Without pathological findings Ocassional pancreatic acinar cell vacuolation, minimal WT 194

Peripancreatic fat, focal granulomatous inflammation

14-2806 Without pathological findings Focal pancreatic acinar cell vacuolation, minimal Rog2- 357interlobular edema which is probably an artifact (very small piece)

14-2807 Without pathological findings Small-sized areas (2) of cytological alteration (eosinophilic foci) Rag2- 409

14-2808 Without pathological findings Small-sized areas (3) of cytological alteration (eosinophilic foci) Rag2*l 402Focal acinar cell degeneration (small, unremarkable)

14-2809 Without pathological findings Focal pancreatic acinar cell vacuolation, minimal WT 233
Focal acinar cell degeneration (small, unremarkable)

14-2810 Without pathological findings Several small-sized areas of cytological alteration (eosinophilic foci) WT 115

14-2122 Without pathological findings Focal pancreatic acinar cell vacuolation, minimal Rog21;Liig1 381
Peripancreatic fat, single small focal granulomatous inflammation

14-2121 Without pathological findings Small-sized single area of cytological alteration (eosinophilic focus) Rag2 1 ;LIO1 349

14-2120 Without pathological findings Small-sized areas (3) of cytological alteration (eosinophilic foci) WT 239Peripancreatic fat, single small focal granulomatous inflammation

14-2119 Without pathological findings Several small-sized areas of cytological alteration (eosinophilic foci) WT 182
14-2118 Without pathological findings Rag2+;ILUI' 363
14-2812 Without pathological findings Rag2 1 ;1L101  250

14-2 811 Without pathological findings Small-sized single area of cytological alteration (eosinophilic focus) Rog2-1- 311Focal pancreatic acinar cell vacuolation, minimal
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Figure 2-4. Immunofluorescence staining for markers of inflammation do not indicate differences between WT
and Rag2- pancreata. Sections of pancreas tissue from three WT and five Rag24 animals were used to stain
for nitrosative tissue damage (3-nitrotyrosine, A), macrophage presence (F4/80, B), DNA double strand breaks
(yH2AX), and proliferation (Ki67) (C). F4/80 and 3-Nitrotyrosine staining were scored by the researcher blinded
to sample identity according to intensity of staining. yH2AX-positive cells were defined as having five or more
foci within the nucleus. Representative images for each genotype are shown. Scoring of all markers indicated
no differences between genotypes (data not shown).
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Figure 2-5. Gross pathology metrics. Animals were aged for 6 months with no manipulation.
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are significantly decreased in Rag2' animals. Bar height indicates median, error bars
indicate interquartile range. Student's t-test, *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2-7. Histology sections demonstrate that anti-TNF treatment diminishes
degree of intestinal inflammation.
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Chapter 3

Exploring the Mutagenic Consequences of Intestinal Inflammation and

DNA Damage

3.1 Abstract

Inflammation is a major risk factor for many types of cancers, particularly colorectal. Intestinal

inflammation can arise from pathogenic infection or in the form of inflammatory diseases, such

as Crohn's disease or ulcerative colitis (UC). To expand upon our understanding of how

inflammation promotes mutations and cancer, we analyzed two model systems. First, we treated

Rag2-'~ mice with Helicobacter hepaticus, a pathogenic strain of bacteria that causes colonic

inflammation and cancer. Second, we utilized the ApcMin/ mouse model of colon cancer and

treated animals with dextran sodium sulfate (DSS) in drinking water to induce colitis and/or with

azoxymethane (AOM) to induce DNA damage. The results of these experiments suggest that

inflammation does not strongly induce de novo mutagenesis, but increases the total mutation

burden, likely due to heightened proliferation. Together, these studies indicate that inflammation

does not produce a significant amount of de novo sequence rearrangements, but it is a potent

promoter of cancer. However, inflammation does promote the overall burden of mutant cells by

increased proliferation, which increases the potential for mutant cells to acquire progressively

more mutations leading to cancer. Our experiments further suggest that DNA damage in colon

stem cells causes preferential apoptosis rather than mutation resulting in a decrease in

recombinant crypt foci, though this mechanism has not yet been verified. Thus, we conclude that
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inflammation promotes cancer, at least in part, through elevated proliferation, which enables

cells to accumulate and propagate mutations.

3.2 Introduction

Chronic intestinal inflammation is the single greatest risk factor for non-hereditary colorectal

cancer [1, 2], making the intestine a prime model tissue for studying inflammation-associated

carcinogenesis. Intestinal inflammation can arise from a variety of sources, such as pathogenic

infection, weak mucosal barrier function, or autoimmunity.

As a model of pathogen-induced inflammation, we selected Helicobacter hepaticus. H

hepaticus bacteria release cytolethal distending toxin (CDT), a holotoxin comprised of the

subunits CdtA, CdtB, and CdtC [3]. CdtA and CdtC form a heterodimer that enable translocation

of the catalytically active CdtB into the host cytoplasm [4]. CdtB is a DNase-I-family nuclease

that causes double strand breaks [5] and subsequent cell cycle arrest and apoptosis [6]. The DNA

damage response induced by CDT is similar to that of ionizing radiation, mediated by ATM and

causing cell cycle arrest at the G2/M and Gl/S checkpoints [7, 8]. Since CDT is the only known

virulence factor for H hepaticus [9], and since the host cellular responses closely mirror those of

DSB-induced cell cycle arrest and apoptosis [8], the production of DNA double strand breaks by

CDT is likely a major source of its pathogenicity.

While H hepaticus is known to induce inflammation, DNA damage and apoptosis, the

potential for H hepaticus to induce mutations has not been studied. To determine whether H

hepaticus infection can contribute to mutagenesis, we utilized RaDR;Rag2- mice, which lack a

functional adaptive immune system and sustain a stable inflammatory infection from H
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hepaticus [10]. Since many human pathogens also produce CDT [7, 8, 11], humans likely also

experience inflammation- and toxin-induced DNA damage simultaneously. Thus, this model

system allowed us to interrogate mutagenicity from two important and physiologically relevant

sources with a single agent. Surprisingly, however, while H hepaticus produced evident

inflammation for several months, we did not observe a difference in sequence rearrangement

mutations.

We also evaluated mutagenicity arising from several widely used and well-characterized

models of colon cancer. We exposed ApcMin/+ (Min) mice with two chemical treatments, dextran

sodium sulfate in drinking water and azoxymethane injection, which are used to model colitis-

associated and sporadic colon cancer, respectively.

Min mice have been used to study intestinal carcinogenesis for decades [12]. They

contain an inactivating point mutation in the tumor suppressor Apc, which results in spontaneous

intestinal tumorigenesis within the first two months of life. The Min phenotype also includes

elevated metrics of systemic inflammation, splenomegaly, thymic involution, and

lymphodepletion [13, 14]. Germline mutations in the human APC gene result in familial

adenomatous polyposis (FAP) [15], an inherited disorder resulting in spontaneous development

of adenomatous polyps in the colon. Like Min mice, FAP polyps start out benign but can

progress to malignancy. Mutations in APC are also a rate-limiting step in the progression of

sporadic cancer [16], and indeed APC has been found to be mutated in over 80% of all human

colon cancers [17]. Since inflammation is known to play an important role in the progression of

Min mouse tumors [18-20], we utilized this model as the basis of our second set of experiments.

Another widely used model of carcinogenic intestinal inflammation is dextran sodium

sulfate (DSS) dissolved in drinking water. DSS in drinking water has been used as a model of
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acute and chronic colitis for decades [21]. DSS is a detergent that produces nanovesicles with

medium chain fatty acids, which disrupt the mucosal surface of the colon epithelium and

increase permeability, causing inflammation [22]. Many DSS treatment regimens have been

designed for use in murine models to simulate varying degrees and kinetics of human colitis

[23]. Generally, 2-5% DSS w/v is dissolved in drinking water and provided to animals for 5-7

days. Multiple bouts of colitis can be simulated by providing DSS water for several days

followed by intervals of normal drinking water. Min mice treated with DSS water were found to

develop more numerous and severe intestinal polyps than those receiving normal water [24],

further supporting the supposition that inflammation contributes to progression of Min tumors.

DSS is frequently used in combination with the chemical mutagen azoxymethane

(AOM). AOM is delivered via intraperitoneal injection and gets metabolized in the liver and

colon by CYP2E1 [25] to produce the reactive methyldiazonium ion, which can then alkylate

DNA bases [26]. Typically, when AOM is used in combination with DSS, the AOM is delivered

first to induce purported initiating mutations, and then the colitis induced by DSS promotes

accelerated proliferation and progressive accumulation of further mutations to produce cancer.

Importantly, while AOM is primarily considered a mutation-initiating agent, it may also

contribute to tumor promotion [27]. Further, there is evidence that tumorigenesis from AOM can

be mitigated by blocking inflammation [28], indicating that inflammation is important to the

progression from AOM-initiation to neoplastic growth.

A key finding from the Engelward lab shows that when DNA damage occurs during

heightened proliferation, mutagenesis synergistically increases [29, 30]. We incorporated this

observation into our experimental design, electing to inject Min mice with AOM during the

regenerative proliferation following DSS treatment. Since every cell in the Min mouse is

110



heterozygous for an inactivating mutation in the Apc gene, all Min cells can be thought of as

"initiated" in the multistep model of cancer progression, so in this experiment we are

investigating how inflammation (DSS) and DNA damage (AOM) contribute to cancer

promotion.

The results of our experiments treating Min mice with DSS and AOM show several

surprising features. First, we found that DSS-induced inflammation potently increases colon

tumorigenesis as well as a corresponding increase in the overall burden of recombinant cells. We

also discovered that, counterintuitively, AOM treatment reduced the density of recombinant

colon crypt foci. AOM treatment increased tumor multiplicity in the small intestine but not the

colon. Finally, analyzing mutations in extra-intestinal tissues revealed that AOM and/or DSS

treatment may promote sequence rearrangement mutations in off-target tissues.

3.3 Materials and Methods

3.3.1 Rag2-'- animals for H. hepaticus treatment

Experimental RADR/'R ;gpt-J;Rag2-- (RGR) animals were created by crossing

Rag2-1- (129S6/SvEvTac-Rag21 Fia) [10] with RADRNR;gpt- animals also on the 129

background. Litters were split into infection and control cohorts with equal numbers of males

and females in each group. Uninfected mice were housed in a barrier facility free of known

murine Helicobacter species, viruses, Salmonella species, Citrobacter rodentuim, ecto- and

endoparasites.
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3.3.2. H. hepaticus treatment

H hepaticus (strain 3B 1, no. 51449; ATCC, Rockville, MD) was grown as described under

microaerobic conditions on blood agar plates and collected into sterile freeze media [10]. A total

of 41 experimental animals 6-8 weeks of age received 0.2 ml freezing medium (n=19) or freshly

prepared H hepaticus inoculum (total organism dose of 108 CFU, n=22) via gastric gavage every

other day for 3 doses. Two weeks later, the mice received a second round of 3 doses every other

day for a total of 6 doses. Prior to dosing, all H hepaticus samples were examined via gram stain

to ensure >85% of the bacteria were in the spirochete form (virulent form). Tissues were

harvested at 10 weeks post infection utilizing standard necropsy procedures.

3.3.3 H. hepaticus PCR

Feces were collected from each animal during necropsy to confirm presence of H hepaticus.

DNA was extracted from feces using the QIAamp DNA Stool Mini Kit. PCR was run using

primers specific to the H hepaticus strain [31].

3.3.4 Histopathology

Formalin-fixed tissues were embedded in paraffin, cut in 5 ptm sections, and stained with

hematoxylin and eosin. Sections were scored by a pathologist blinded to sample identity.

3.3.5 Apc M"'* animals and AOM and DSS treatments

Experimental C57 RADR R;gpt-;ApM'n/+ (RMin) animals were created by crossing

RADR RR;gpt-J animals with C57B1/6J Apc Mi"+ mice donated by Dr. Susan Erdman. Animals

were bred and maintained in an AAALAC-accredited barrier facility free of known murine
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Helicobacter species, viruses, Salmonella species, Citrobacter rodentium, ecto- and

endoparasites. At six weeks of age, experimental animals were transferred to a hazardous

materials containment facility at least two days prior to the beginning of treatment.

DSS (MP Biomedicals, 35,000-50,000 kDa) was dissolved in water obtained from the

mouse colony at 1% w/v. DSS-treated animals were supplied with this water for seven days, at

which point they resumed normal drinking water.

AOM (Sigma-Aldrich) was diluted to 10 mg/mL in sterile PBS and stored in aliquots at -

20'C. On the day of treatment, AOM was diluted to 1 mg/mL in sterile PBS and sterile filtered

with a 0.2 pm filter just prior to dosing. Each animal was weighed and the appropriate volume of

AOM was calculated such that the animal would receive a single i.p. injection of 4 mg AOM per

kg body weight. Sham-treated animals were weighed and injected with an equivalent volume of

sterile PBS.

Following pilot studies to determine appropriate dosing, three treatment regimens were

performed. The first, main experiment entailed mice at 6 weeks of age to be split evenly between

control, DSS, AOM, and DSS+AOM treatment regimens. All animals were housed in a

hazardous material containment facility for the duration of the experiment regardless of

treatment. Animals received either 1% DSS or normal drinking water for seven days, then all

animals were given normal water. On day 10 (three days after return to normal water), animals

were dosed with an i.p. injection of either 4 mg/kg AOM or sterile PBS. Animals were

necropsied on days 21-23. The second experiment was set up identically, but with no control

group, and animals were necropsied on day 12 (two days after AOM). The final experimental

cohort received 4 mg/kg AOM i.p. injection on the first day, then 1% DSS water from days 5-12,

and were necropsied on day 21.
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Animals were monitored daily for signs of distress and morbidity and weighed at least

every other day. Animals that dropped below 80% of their initial body weight were humanely

euthanized. At the end of the experiment, mice were euthanized by CO 2 according to AVMA

guidelines and necropsied with standard procedures.

3.3.6 DSS Pilot Ki67 Immunofluorescence

Formalin-fixed tissue sections were embedded in paraffin and cut in 5 pim sections. Slides

stained for immunofluorescence were first deparaffinized with three five-minute washes in

xylenes, two five-minute washes in 100% ethanol, and 10-minute washes each in 95% ethanol,

90% ethanol, and 70% ethanol. Slides were washed twice in PBS, then boiled in Dako citric acid

antigen retrieval buffer (S1700, Agilent Technologies, Santa Clara, CA) for 30 min. After

cooling, slides were washed twice in diH20 and tissue sections were circled with hydrophobic

marker. Sections were blocked for one hour with 5% BSA + 0.3% Triton in PBST at room temp.

All antibodies were diluted in 1% BSA + 0.3% Triton in PBST, and sections were stained

overnight at 4'C. Slides were then washed three times for five minutes each in PBST and

incubated with the appropriate secondary antibody for one hour at room temperature. Slides were

then washed five times in PBST for five minutes each. Finally, a drop of DAPI with ProLongTM

AntiFade reagent (Invitrogen) was placed on the section, and a cover slip was laid overtop and

sealed with clear nail polish. Anti-Ki67 antibody was Abcam abi 5580, rabbit origin, and the

secondary antibody was Alexa Fluor 647 (goat anti-rabbit).

Slides from each intestine segment were stained in parallel and imaged on the same day

under identical conditions. The researcher was blinded to sample identity for scoring. Images
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were evaluated in Photoshop CS6, and the number of Ki67+ cells in complete crypt cross

sections were counted and recorded. Each crypt served as a single data point.

3.3.7 RaDR Necropsy and Tissue Imaging

Animals were euthanized with CO 2 according to AVMA guidelines. Tissues were excised and

held on ice in tubes containing PBS (mammary) or PBS with 0.01% trypsin inhibitor (T9008

Sigma-Aldrich or P-1540 Westnet Inc) (pancreas, liver, intestines) until use. The entire colon

was excised (cecum to anus), and the small intestine was divided roughly into thirds, such that

the duodenum (proximal, attached to stomach), jejunum (middle section), and ileum (distal,

attached to cecum) were approximately equal lengths. Intestines were cut open on one side and

the lumen was rinsed of fecal matter before placing in PBS + trypsin inhibitor. Mammary,

pancreas, liver and intestine tissues were compressed to 0.5 mm between coverslips and imaged

for EGFP under the Ix objective with the FITC filter of a Nikon 80i fluorescent microscope.

3.3.8 Quantifying RaDR Mutagenesis

RaDR transgenic mice develop fluorescent (EGFP+) cells following a sequence rearrangement

mutation at the transgenic construct. Mutagenesis can be quantified in a variety of ways with

varying biological significance. This data is collected either by imaging the whole tissue on a

fluorescence microscope or cell sorting by flow cytometry.

Foci counting

Imaging of a RaDR tissue allows enumeration of individual foci, which correspond to single

mutation events. Cells that have acquired the RaDR mutation may clonally expand, leading to
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various sizes of foci, and so it is often of interest how many mutation events occurred in the

tissue instead of, or in addition to, the total proportion of mutated cells. In collaboration with Dr.

Dushan Wadduwage of Peter So's laboratory, we have developed a MATLAB program that

enumerates the total number of foci in the tissue and measures the area of the tissue, providing

results as foci/cm2. This is the preferred method for quantifying de novo recombination events in

pancreas and liver tissues.

Crypt foci counting

Intestines have regular, distinct architecture that enables identification of mutations in somatic

stem cells. Intestine epithelium consists of pore-like divots into the mucosa called crypts, and the

small intestine also contains fingerlike projections into the lumen, called villi. At the base of

each crypt are one or more somatic stem cells, which give rise to the proliferative transit cells

that comprise the length of the crypt and, in the small intestine, the villi surface. The continual

proliferation of stem and transit cells enables continual renewal of crypt (and villus) epithelia.

Transit cells are eventually sloughed off into the lumen, and stem cells produce complete

epithelial turnover within 3-5 days [32]. In a RaDR animal, mutations in crypt stem cells are

visible as large, bright, roughly circular foci that can be distinguished from the smaller, dimmer

and/or irregularly shaped foci of mutated transit cells. The foci that we believe to be converted

crypts are, on average, lOx brighter and 6x larger than foci that appear to be single cells. Since

somatic stem cells persist for years, if not the animal's lifetime, whereas transit cells are

sloughed off within 5 days, it is of great interest to quantify recombinant stem cell foci rather

than all foci. To this end, we have collaborated with Dr. Wadduwage to develop a modified

version of the MATLAB foci counting program that allows the user to "train" the program which
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foci to count based on size, shape and intensity, enabling quantification of mutated stem cells in

the tissue normalized to tissue area in tumor-free tissue (see Fig 3-lB for example).

Percent area mutated

When intestinal tumors develop, the regular architecture of the intestine becomes disrupted, and

somatic stem cells are no longer distinguishable and cannot be quantified. For this reason, we

have developed a method to approximate the area of the tissue that can be classified as EGFP+.

By defining conservative thresholds for pixel intensity in ImageJ, we quantify the area of tissue

that is brightly fluorescent and thus have a rough measure for the total mutation burden in the

tissue (see Fig 3-1C for example). These results are given as the percent area of tissue that is

fluorescent.

Flow cytometry

Flow cytometric sorting allows quantification of the overall proportion of mutated cells in the

tissue. This method is most useful for tissues that are too thick for imaging (e.g., spleen) or have

very small cells with irregular internal structures that make focus counting intractable (e.g.,

thymus, lung). Since flow cytometry requires disaggregation of the tissue, it is not possible to

distinguish between mutation events and clonal expansion of mutated cells, nor is it possible to

perform additional assays, making this method appropriate only for tissues that cannot be

analyzed with the methods described below.
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3.3.9 Tumor Quantitation

Following RaDR imaging, intestine segments were laid flat on bibulous paper and cut in half

longitudinally. Half the tissue was fixed in 10% formalin for tumor counting, and half was snap-

frozen in liquid nitrogen for Gpt assay (see below). After several days, the formalin was

discarded and replaced with 100% ethanol for 24 hours. The ethanol was then discarded and

replaced with 70% ethanol. To count tumors, intestine segments were carefully removed from

the bibulous paper cassettes and placed on a stereoscopic lOx microscope. The approximate sizes

and locations of tumors within each segment were recorded on paper. Tumors counts are

represented by Tukey boxplots, wherein the boxes represent quartiles of data and whiskers

represent the data lying within 1.5*IQR (interquartile range). Data points lying outside 1.5*IQR

are represented as dots.

3.3.10 Gpt point mutation assay

The Gpt assay was performed as described previously [33, 34]. DNA was extracted from snap-

frozen colon and ileum samples using the RecoverEase DNA Isolation Kit (Agilent

Technologies, Santa Clara, CA). In order to ensure a sufficiently large volume of high molecular

weight DNA with each preparation, two samples of colon (or ileum) tissue were combined in the

mortar before grinding the tissues, so each data point represents the DNA of two animals. The

same individuals were paired for both colon and ileum sample sets.

DNA was packaged with X-EG10 phage extracts, which were prepared in-house. Empty

phage head extracts were prepared by culturing NM759 E. coli in NZY broth at 32'C, heat-

shocking the culture at 45'C for 15 min, then re-expanding at 38'C. Bacteria were then pelleted

at 1,800 x g and resuspended in a buffer containing 20 mM TrisCl, 10 mM EDTA, and 0.035%
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P-mercaptoethanol. The suspension was sonicated 12x in three-second bursts on a Misonix

Sonicator 3000 at power level 4, between which the suspension was held on ice for 25-30

seconds. The suspension was then pelleted at 6,000 x g, supernatants collected and combined

with a packaging buffer containing 6 mM TrisCl, 50 mM Spermidine-HCl, 50 mM Putrescine-

HCl, 20 mM MgCl2, 30 mM ATP, and 0.021% P-mercaptoethanol. Aliquots were then snap

frozen in liquid nitrogen.

Phage "pre-head" complexes were prepared by culturing BHB2866 E coli in NZY broth

at 32'C, heat-shocking the culture at 45'C for 15 min, then re-expanding at 38'C. Bacteria were

then pelleted at 1,800 x g, resuspended in a 10% sucrose solution containing 50mM TrisCl, snap

frozen in 0.5 mL aliquots, and stored at -80'C. Frozen bacteria were later thawed on ice and

ultracentrifuged at 163,000 x g for three hours at 4'C. The supernatant was combined with

packaging buffer containing 6 mM TrisCl, 50 mM Spermidine-HCl, 50 mM Putrescine-HCl, 20

mM MgCl2, 30 mM ATP, and 0.02 1% P-mercaptoethanol, then snap-frozen in aliquots.

Each time DNA was packaged and the Gpt assay was performed, five samples were

processed: one from each treatment group, and one internal control. DNA was packaged by

combining thawed aliquots of both phage extracts with high molecular weight intestine DNA,

incubating at 32'C for 90 minutes, adding an additional set of thawed phage extracts for 90

minutes at 32'C, and finally halting the reaction by addition of a buffer and setting on ice.

Phage packaging efficiency was evaluated by infecting lysogenic MRA E. coli with

packaged phage and quantifying plaques. The titer of packaged Gpt DNA was quantified by

infecting YG6020 E. coli with packaged phage and selecting for chloramphenicol resistant

colonies, and the mutant fraction was determined by plating infected YG6020 F. coli on

chloramphenicol and 6-thioguanine selection plates.
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3.3.11 Statistical Analyses

RaDR foci were quantified as the number of foci per square centimeter of area (foci/cm2 ), and

RaDR flow cytometry measurements were given as % fluorescent* 106. Due to the fact that the

distribution of EGFP-positive cells in RaDR mice is non-normal across tissues and among

individuals, RaDR data sets were compared by Mann-Whitney U-test. It was not clear that tumor

multiplicity was normally distributed between individuals, and therefore tumor counts were also

compared by Mann-Whitney U-test. Body and tissue weights were compared by unpaired

Student's t-test. All statistical comparisons were calculated using GraphPad Prism 5.

3.4 Results

3.4.1 H. hepaticus infection causes inflammation but does not significantly alter

mutagenesis

We confirmed that H hepaticus-infected animals had retained the bacteria through the duration

of the experiment by collecting feces at necropsy, extracting DNA, and performing PCR (data

not shown). Histopathological evaluation confirmed that infected animals were experiencing

colonic inflammation (Fig 3-2). This experiment predated the development of the MATLAB foci

counting programs, and so initial quantification of RaDR foci was accomplished by manual

counting of blinded images. Despite being blind to sample identity, this method of quantifying

foci still risks user bias, so we subsequently re-analyzed images with the unbiased MATLAB

program. While manual enumeration of RaDR foci in the colon, liver and pancreas indicated a

slight but significant decrease in mutation frequency in infected animals (Fig 3-3, left panels), re-
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analysis by the MATLAB program showed no significant differences in mutagenicity due to H.

hepaticus infection (Fig 3-3, right panels).

Unfortunately, the RaDR image data was collected in under inconsistent exposure

conditions, and a single intensity threshold for estimating percent tissue fluorescence with

ImageJ could not be applied to all images in the data set. Therefore, we were unable to compare

the overall mutant burden in H hepaticus colons.

3.4.2 DSS recovery pilot to determine dosing schedule

A key observation from other recombination studies in the pancreas is that if DNA damage

occurs during a period of increased proliferation, sequence rearrangement mutations

synergistically increase compared to DNA damage or proliferation alone. Thus, we hypothesized

that if DNA damage from AOM occurs during the regenerative proliferation following DSS-

induced inflammation, we would similarly see a large increase in recombination.

Six 6-week old males were given 1% DSS in drinking water for 7 days, and then two

mice each were sacrificed on days 8, 10 and 12 (one, three and five days after return to normal

drinking water). Intestines were saved as swiss rolls in formalin, embedded in paraffin, and

sectioned for Ki67 immunofluorescence. Slides from D8, D10 and D12 were grouped by

intestine segment, stained in parallel for Ki67, and imaged on the same day. Three images per

slide were taken and filenames were blinded. Ki67+ nuclei were counted for each full crypt

cross-section in the field and recorded. Quantification indicated that colon crypts had a peak in

the number of proliferating cells on D10 (Fig 3-4A), and so this day was selected for AOM

treatment.
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Subsequently, six 6-week old animals (three of each sex, see Table 3-1) were sacrificed

as a day zero untreated control and intestines were again saved for immunostaining. Slides from

DO, D8, D10 and D12 were grouped by intestine segment, stained in parallel for Ki67, and

imaged on the same day. Four images per slide were taken and filenames were blinded. This

second quantification indicated that peak proliferation in colon crypts was on D12, but the

median on D12 (14 Ki67+ cells) was only two more than the median on DO (12 Ki67+ cells).

Thus, while the difference between DO and D12 is statistically significant, it is by only a small

amount.

We also stained and imaged one slide from each intestine segment for H&E

(representative images shown in Fig 3-4C). Colon polyps are visible in all DSS-treated samples

(Fig 3-4C, circles), but in all samples there also appear to be regions of relatively normal

physiology. Note that since we only counted Ki67+ cells in complete crypt cross-sections, we

necessarily excluded proliferating cells in tumors (which no longer have intact crypts).

3.4.3 Experimental treatments cause some morbidity

Based on pilot experiments, we treated animals according to the timeline shown in Figure 3-5A.

As RADRR;gpt-J;ApcMIn/+ (RMin) mice reached six weeks of age, they were divided between

Control, AOM, DSS and DSS+AOM treatment groups such that all treatments would be

performed in parallel. Each of the treatments produced some morbidity (Fig 3-5B), so as the

experiment progressed, animals were divided between groups to aim for similar numbers of

males and females with necropsy data (see Table 3-1). Data is not presented for animals

sacrificed before the end of the experiment because the primary objective was to analyze

accumulation of mutant cells, which requires that all animals are analyzed at the same timepoint.
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Animals that were able to tolerate treatments had fully recovered their body weight by the end of

the experiment (Fig 3-5C). DSS treatment caused significant loss of body weight after returning

to normal water (Fig 3-5C) and exacerbated Min splenomegaly (Fig 3-5D), both of which are

consistent with DSS causing severe inflammation [23]. AOM treatment produced a significant

drop in body weight the day after dosing (DI 1), but mice quickly recovered (Fig 3-5C).

3.4.4 DSS induces distal colon tumors and AOM induces ileum and duodenum tumors

DSS treatment produced a significant increase in tumors in animals' colons (Fig 3-6A). Notably,

DSS consistently caused densely packed tumors in the distal two-thirds of the colon, but the

proximal third of the colon rarely had any polyps. In contrast, AOM-treated animals developed

more polyps in the ileum and duodenum (Fig 3-6B, D). Neither treatment altered tumorigenesis

in the middle portion of the small intestine, the jejunum (Fig 3-6C).

3.4.5 DSS increases the total burden of recombinant cells

We analyzed intestinal mutations by several different methods for different perspectives of

mutagenicity. First, we quantified the total area of the tissue above a defined threshold pixel

intensity as an approximation of the total burden of recombinant cells in the tissue (see Materials

and Methods, Quantifying RaDR mutagenesis, Percent area mutated). By this metric, we

observed a significant increase in the overall burden of mutant cells in colons that had received

DSS treatment (Fig 3-7A). We also observed a larger overall mutant burden in colons and ilea of

animals that received both DSS and AOM compared to animals that received AOM alone (Fig 3-

7A, B).
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Importantly, the increase in DSS-treated colons' overall mutant burden was driven in

large part by tumors. Tumors can acquire the RaDR rearrangement mutation at any point during

development, and thus tumors may be partially or fully fluorescent. For example, the colon

shown in Figure 3-1A received DSS treatment and thus has densely packed tumors in the distal

two-thirds of the tissue (white box). Analyzing this tissue for total mutant burden indicates that

4.3% of the tissue fluoresces above the pixel intensity threshold, the vast majority of which

results from the large fluorescent tumors near the middle of the tissue (Fig 3-1 C). More

commonly, tumors have patches of fluorescence, and the total area that exceeds the threshold

intensity is less than 1% of the tissue.

Interestingly, despite the fact that AOM induced tumors in animals' ilea and jejuna,

AOM did not increase the total burden of recombinant cells in any intestine segment.

3.4.6 AOM reduces frequency of somatic stem cell recombination

Since tumors were almost exclusively present in the distal two-thirds of the colon, macroscopic

folds of tissue characterize the proximal third of the colon, and large tumors are often visible in

RaDR tissue images, we were able to identify a consistently tumor-free region in all colon

samples to analyze for recombinant crypt foci (Fig 3-1B). We analyzed the same region in every

sample by the crypt foci counting program (see Materials and Methods, Quantifying RaDR

mutagenesis, Crypt foci counting). Surprisingly, we found that animals treated with AOM alone

had a significantly lower frequency of recombinant crypt foci (Fig 3-8A).

We also quantified mutant crypts in ileum tissue by excluding any tumors that were

visible in the RaDR image in the counting program. These results suggest that AOM-treated ilea

contained a lower frequency of converted crypts compared to animals that received both AOM
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and DSS (Fig 3-8B). However, the crypt-counting program performs less reliably in

distinguishing small intestine crypts compared to colon because the small intestine villi create

more variability in the appearance of foci.

3.4.7 DSS+AOM combination treatment may increase point mutations

To provide a more comprehensive analysis of mutations from DSS and AOM treatments, we

performed the Gpt assay for point mutations. Animals treated with the combination of DSS and

AOM were found to have a larger mutant fraction in the colon compared to other groups (Fig 3-

9A), but there were no significant differences in point mutations in animals' ilea (Fig 3-9B). Due

to great variability in the data from this assay, we do not draw firm conclusions from the data

collected and will perform replicates to improve confidence.

3.4.8 Early analysis shows no AOM-induced recombination, but rapid induction of tumors

by DSS

We hypothesized that AOM may produce RaDR mutations in intestinal transit cells that are

sloughed off before necropsy. To determine whether this was the case, another cohort of animals

were given AOM, DSS and DSS+AOM treatments as described in Figure 3-4A, but all animals

were necropsied on day 12, two days after AOM dosing (see Table 3.1). This would provide

sufficient time for the AOM to be metabolized and react with DNA, and cells could undergo a

full replication cycle to develop the RaDR mutation, but transit cells would not yet be sloughed

off.

We did not observe significant induction of mutations at this early timepoint in any

intestine segment (Fig 3-10A). One noteworthy observation is that DSS treatment causes colon
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tumors within five days of returning to normal water (Fig 3-1 OB), which is consistent with other

studies of ApcMi"'/ animals treated with DSS [24].

3.4.9 AOM treatment before DSS does not significantly increase mutagenesis

The standard treatment schedule for AOM in combination with DSS is to deliver the AOM first,

followed several days later by DSS in drinking water. Therefore, we wished to compare our

treatment regimen, where AOM was timed to coincide with proliferation after DSS, to the more

traditional model of dosing AOM first. We treated animals as shown in Figure 3-1 IA (see Tables

3.1 and 3.2 for cohort composition). Animals in this experiment experienced more severe body

weight loss and morbidity (Fig 3-11 B, C), though it is important to note that a larger number of

females were allocated to this experiment than other cohorts (Table 3.1), and females are more

sensitive to toxicity from DSS.

We quantified intestinal mutagenicity in terms of total recombinant cell burden as well as

crypt foci in non-tumorous tissue. Surprisingly, animals treated with AOM prior to DSS

developed fewer recombinant colon crypts as well as a lower proportion of fluorescent tissue in

all intestine segments compared to the groups in the main experiment (Fig 3-12A, B. Data for

DO, Ctrl, AOM, DSS and DSS+AOM shown for comparison). Indeed, the frequency of

converted crypts and overall mutant burden in the AOM-then-DSS animals are much more

similar to the animals analyzed for the Day 12 early timepoint (Fig. 3-12C, D. DO and D12 data

shown for comparison). It is important to note that D21, D12 and AOM-then-DSS experiments

were not performed in parallel (see Table 3-1). Therefore, comparisons are limited to qualitative

descriptions and no firm conclusions can be drawn.
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3.4.10 Off-target mutagenesis

In addition to analyses of mutations in intestine tissue, we also collected RaDR data from liver,

pancreas, spleen, and thymus tissues to see if DSS or AOM, commonly considered colon-

specific treatments, produce mutations in other tissues. There was a small but significant increase

in the number of foci in the liver and pancreas of mice that received the combination of DSS

followed by AOM (Fig 3-13A, B). The spleen and thymus also appear to be susceptible to

increased mutagenesis from AOM treatment (Fig 3-13C, D), but these results are not statistically

different from control.

3.5 Discussion

The experiments described in this chapter yielded many unexpected but enlightening results.

Although we did not observe an increase in recombination frequency due to inflammation or

DNA damage, we uncovered circumstances that increase recombinant cell burden and decrease

recombinant cell frequency.

The first experiments described here, dosing Rag2' mice with H. hepaticus, first indicated that

infection slightly decreases recombination frequency in the liver and colon, but subsequent

image analysis by MATLAB did not show statistically significant difference in results (Fig 3-2).

The fact that colon and liver both showed the same trend in decreased recombination frequency

is noteworthy because H hepaticus is known to cause both colitis and hepatitis in mice, so both

tissues with ambiguously fewer foci were targets of the pathogen [35, 36]. Importantly, however,

H. hepaticus combines both DNA damage and inflammation into a single treatment, and tumors

had not yet begun to develop, so we designed an experiment separating the variables of DNA
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damage (AOM) and inflammation (DSS) and applied it to a model of heritable colon cancer.

Interestingly, treatment with our model DNA damaging agent AOM also resulted in fewer

recombinant crypt foci.

Cairns' immortal strand hypothesis offers one explanation for how both H. hepaticus

infection and AOM treatment could reduce recombinant crypt foci frequency. Cairns posits that

somatic stem cells protect their original DNA strands by selective segregation during mitosis,

and that irreversible damage causes the cell to undergo apoptosis as a protective mechanism

against mutations [37]. Indeed, a number of studies have evidence supporting a model of

selective chromatid segregation [38, 39]. This hypothesis is further supported by studies showing

that CDT causes cell cycle arrest and apoptosis via the ATM-dependent intrinsic pathway [7, 9].

There are two important inconsistencies between the immortal strand hypothesis and

results of our experiments. First, Cairns suggests that somatic stem cells should be deficient in

recombinatorial repair to protect the "immortal strands" from exchange, but the fact that we

observe fully fluorescent crypts suggests that not all recombination is inhibited {Cairns 2006}.

Second, Cairns posits that dead stem cells are replaced by dedifferentiated daughter cells, but

that would entail a RaDR stem cell being replaced with a daughter that also has the RaDR

mutation, leaving recombinant crypt frequency unchanged. More work is necessary to determine

what happens to colonic stem cells exposed to DNA damage and how the tissue responds. Our

data support a model wherein colonic stem cells undergo mutagenic recombination sporadically

and crypt foci accumulate with age, and separately, the induction of DNA damage causes crypt

stem cells to die without replacement by dedifferentiated daughters.

Complications with the bacteria may have confounded the results of the H. hepaticus

study. For instance, H. hepaticus virulence varies between strains [40], and CDT activity is
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necessary for cytotoxicity and DNA damage response activation [9, 36]. If, during culture or

passaging of the bacteria, the strain mutated to lose virulence potency, the mutagenic

consequences of the CDT toxin may have been diminished. Furthermore, we have seen that the

timing of DNA damage in relation to proliferation is a key modulator of recombination

frequency, but in this model we know little regarding the kinetics of proliferation and bacteria

activity during the 3 months of infection. The gut may enact protective mechanisms, such as

modified proliferation kinetics, during infection that cannot be identified at a single late

timepoint.

We designed our second set of experiments, treating ApcMi"/+ (Min) mice with dextran

sodium sulfate (DSS) and/or azoxymethane (AOM) with the objective of greater control over

experimental variables. A crucial aspect of our experimental design relied on determining when

regenerative proliferation peaks following DSS-induced inflammation, having observed synergy

when DNA damage occurs during proliferation in the pancreas [29, 30]. We quantified the

number of proliferating cells in crypts of each intestine segment one (D8), three (D10) and five

(D12) days following the return to normal water after seven days of DSS, and results indicated

that proliferation peaked around D10 or D12 (Fig 3-3), which is consistent with other studies

[41]. Notably, however, the median numbers of proliferating cells at these times were only one

or two increased from untreated animals, so while the increase in proliferation was statistically

significant, it was not a large difference. The low variability in colon proliferation activity

suggests the colon is less susceptible to perturbations in proliferation as a result of inflammation.

Our two experimental treatments both induced tumors in Min mice, but in different

locations. DSS treatment typically produces tumors in the distal colon [23], which is consistent

with our results here. Interestingly, however, AOM induced tumors in the proximal and distal
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small intestine (duodenum and ileum, respectively). Although AOM is often considered a colon-

specific treatment, several studies have shown that it produces methylation adducts in the liver

and small intestine, provided the tissue expresses CYP2El [26]. The expression of P450

enzymes has not been characterized along the Min small intestine, but P450 expression is known

to vary along the gastrointestinal tract [42], so perhaps differential CYP2E1 expression in the

duodenum and/or ileum increased the mutagenicity of AOM in those segments.

Proliferation kinetics may also factor into AOM carcinogenicity. Min mice spontaneously

develop the majority of polyps in the ileum, suggesting that Wnt dysregulation and

hyperproliferation are most pronounced in the ileum, and therefore most susceptible to DNA

damage-induced mutations. It is likely that CYP2E1 activity and proliferation kinetics both play

a role in AOM tumorigenesis.

While none of these experimental treatments increased recombination frequency in the

intestines, we did observe a significant increase in the total burden of recombinant cells in

tumorous colon tissue. The most likely mechanism for this observation is that hyperproliferation

and progressive genomic instability in tumors produced many opportunities for cells to acquire

the RaDR mutation. Indeed, we observed tumors that appear to have acquired the RaDR

mutation early on, producing fully or near-fully fluorescent polyps (Fig 3-7). There also appears

to be a trend of increasing recombinant cell burden with time post-DSS exposure (e.g. early

analysis at D12 and AOM-then-DSS; see Fig 3-12). This result is not surprising, given that we

have already shown previously that the majority of RaDR mutant cells in normal tissue derive

from clonal expansion of rare recombination events rather than de novo mutations [43, 44].

Finally, these experiments permitted several novel analyses. First, we multiplexed our

mutation analyses by performing the Gpt assay on tissue that had been analyzed for sequence

130



rearrangement mutations. By adding replicates of this assay to our data set, we will be able to

confidently comment on multiple types of mutagenicity resulting from AOM and DSS

exposures. Additionally, the RaDR mouse permits efficient, cost-effective analysis of off-target

tissues as well. Whereas typical laborious mutation assays require careful selection of samples in

the interest of time and money, little additional effort is required to analyze many tissues for

RaDR mutations. Using the RaDR mouse, we were able to incorporate mutation analyses of

many extra-intestinal tissues, including the pancreas, liver, spleen and thymus (Fig 3-13). While

we did not anticipate any significant differences in mutations in these off-target tissues, we were

intrigued to discover that DSS+AOM increased mutation frequencies in the liver and pancreas,

and surprised to discover that AOM-treated lymphoid organs are prone to extremely high

proportions of recombinant cells.

In conclusion, the experiments described in this chapter support a model whereby DNA

damage in intestinal stem cells promotes apoptosis rather than mutations, and inflammation

increases the total burden of mutated cells by clonal expansion.
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Figure 3-1. Sample quantifications of RaDR mutagenesis. (A) Original
colon RaDR image. White box indicates tumor-filled area. (B) Tissue
that does not contain tumors can be analyzed for converted crypt foci.
(C) Total mutant burden (percent area fluorescent). Note that large red
regions correspond to fully (or near-fully) fluorescent tumors.
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Figure 3-2. H-. heirpaticus infection causes colonic inflammation in Rag2t4
mice.
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Figure 3-4. Intestine regeneration following 7 days of 1% DSS drinking water. (A) Initial quantification of
proliferating cells in DSS recovery crypt cross sections. (B) Quantification of proliferating cells in DO and
DSS recovery crypt cross sections. Boxes indicate quartiles and error bars indicate minima and maxima.
(C) H&E sections of DO and DSS recovery Intestines. White ovals indicate colon polyps. Unpaired
Student's t-test, 0p < 0.05, **p < 0.01, ***p < 0.001, p< 0.0001.

139

A

B

U.

I,
S
r
*

C



140

Table 3-1 Cohort compositions

Males Females Total
Cohort Timing

treated analyzed treated analyzed treated analyzed

DSS recovery pilot 6 2/day 6 6 Separate

DO 3 3 3 3 6 6 Separate

Ctrl 10 10 6 6 16 16

AOM 11 10 7 7 18 17
Parallel

DSS 11 10 8 6 19 16

DSS+AOM 12 9 11 6 23 15

D12 AOM 4 4 1 1 5 5

D12 DSS 5 5 1 1 6 6 Parallel

D12 DSS+AOM 4 4 4 3 8 7

AOM-then-DSS 5 3 8 2 13 5 Separate
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Chapter 4

Increased Aag Expression Reduces Spontaneous Sequence

Rearrangement Mutations

4.1 Abstract

In order to repair the many types of DNA damage cells may encounter, a network of repair

pathways has evolved. One of the most important repair pathways for coping with DNA damage

from inflammation is Base Excision Repair (BER), but the intermediates of the BER pathway

include abasic sites and strand breaks, which are essentially DNA lesions as well. Importantly,

BER intermediates can cause replication forks to break down, and the only way to accurately

restore a broken replication fork is with homologous recombination (HR). While HR is mostly

error free, it can produce large-scale mutations such as insertions, deletions, translocations and

loss of heterozygosity. Thus, BER intermediates during replication can lead to large-scale

mutations. To illustrate the relationship between BER intermediates and HR-driven mutations,

we crossed animals with increased expression of a BER glycosylase with our RaDR mice and

quantified the accumulation of mutations across 10 tissue types. Interestingly, we found that

AagTg animals developed fewer RaDR mutations than AagWT, with tissue- and sex-dependent

variability. Of the tissues studied, we observed significantly lower frequencies of de novo HR

events in AagTg pancreata and colons, and lower proportions of mutated cells in the spleen and

lungs. Separating the data by animal sex further revealed that the only tissue where AagWT and

AagTg females show a significant difference is the pancreas, whereas male animals had
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significant differences in the colon, spleen, heart and kidney. Quantifying abasic sites in colon

DNA did not reveal a pattern of increased BER intermediates in AagTg animals. Finally,

Spearman correlation analyses revealed that mutation frequency (measured by foci) may be

correlated between tissues within an animal, but overall mutant proportion (measured by flow

cytometry) is not.

4.2 Introduction

In general, Base Excision Repair (BER) DNA repair pathway deals with single-base lesions that

do not significantly distort the DNA helix. The first step of BER is removal of the damaged base

by one of several DNA glycosylases. The second step is to cut the backbone, which can be

accomplished by bifunctional glycosylases or AP endonuclease-1 (APE1). The two ends of the

single strand break (SSB) must then be processed to produce a 3'OH (with APE1, Polp, or

PNKP) capable of extension and a 5'PO4 (with Polp or PNKP) capable of ligation. The gap is

filled in with Polo, and ligase seals the nick to complete the process. The elements of BER

downstream of the glycosylase can also contribute to repair of SSBs.

Importantly, every intermediate of the BER pathway contains a potentially toxic lesion:

either an abasic site or a strand break. Normally, the cell is able to complete BER without

toxicity, but this is not always the case. If there is a large amount of damage, there may be

simply too few of the molecules necessary for repair, such as Polo, leading to an accumulation of

cytotoxic lesions and subsequent apoptosis. Accumulation of BER intermediates can also result

in bioenergetic collapse and necrosis due to excessive PARylation of SSBs. Alternatively, if a

replication fork encounters a BER intermediate, the fork may break down, creating a one-ended
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double strand break (DSB). Thus, while BER is essential for repairing DNA damage during

inflammation, this pathway can sometimes do more harm than good by generating toxic

intermediates.

Broken replication forks produce toxic DSBs, which require homologous recombination

for accurate restoration. Since HR utilizes a homologous region of DNA as a template, this

process is mostly error-free as long as the cell identifies the correct sequence in the sister

chromatid. However, identification of homology in the homologous chromosome rather than the

sister chromatid can lead to loss of heterozygosity, a significant source of tumor suppressor

inactivation [1, 2]. Furthermore, a significant portion of the genome has been identified as

repetitive or repeat-derived: nearly 10% of the genome consists of Alu repeats [3, 4], and a

recent analysis estimates 2/3 of the genome consists of repetitive elements [5]. Thus, there are

many opportunities for HR to identify a homologous sequence in the wrong location. Aberrant

HR can lead to translocations, deletions, insertions, or sequence rearrangements [6-11].

In order to quantify aberrant HR in situ, the Engelward lab developed the RaDR mouse,

wherein improper HR within the ubiquitously expressed transgene generates a fluorescent

product. Briefly, these transgenic animals contain a direct repeat of truncated EGFP sequences at

the Rosa26 locus. The 5' copy of EGFP is truncated within the 5' EGFP coding region, and the

3' copy is likewise truncated at the 3' end of the gene. If a double strand break occurs in one of

these repeats, the cell may identify the incorrect EGFP copy as a template for homology-directed

repair, producing a full-length EGFP sequence. Here, we crossed RaDR mice with animals

expressing different levels of a BER glycosylase to explore the relationship between BER

intermediates and HR mutations.
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Aag is a monofunctional DNA glycosylase that recognizes and excises a variety of

substrates. This enzyme can remove 3-meA, 7-meG, 3-meG, Hx and gA, leaving an abasic site

[12]. AagTg animals, which express increased levels of Aag, were created by the Samson

laboratory, first reported in 2009 [13] and characterized in 2013 [14]. These animals were

generated by pronuclear injection of mouse Aag cDNA under a CMV promoter, and were found

to express Aag -2-9 fold higher than AagWT across tissues.

Previously, the Engelward laboratory has observed that knockout of Aag reduces the

frequency of sequence rearrangement mutations, likely due to fewer BER intermediates being

present at any given time [15]. Further supporting a model whereby BER intermediates promotc

HR, treating wild type animals with MNU (which creates Aag substrates) caused an increase in

sequence rearrangements, but MNU in Aag null animals did not significantly increase these

mutations. Thus, we hypothesized that animals expressing an elevated level of Aag (AagTg)

would accumulate more RaDR mutations over time than wild type.

4.3 Materials and Methods

4.3.1 RaDR;AagTg animals

RaDR'I and RaDR/+ ;AagTg mice were bred by crossing female 129 RaDRR/R mice with male

129 AagTg mice (a generous gift from L.D. Samson). These mice were housed in a barrier

facility free of known murine Helicobacter species, viruses, Salmonella species, Citrobacter

rodentium, ecto- and endoparasites. Animals were aged with no manipulation for 6 months, at

which time they were euthanized by CO 2 according to AVMA guidelines and necropsied with

standard procedures. Samples collected and analyzed immediately included: RaDR imaging of
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pancreas, liver, colon, and mammary tissues, and RaDR flow cytometry of brain, heart, lung,

kidney, thymus, and spleen tissues.

4.3.2 RaDR Necropsy and Tissue Imaging

Animals were euthanized with CO 2 according to AVMA guidelines. Tissues were excised and

held on ice in tubes containing PBS (mammary, brain, heart, lung, kidney, thymus, spleen) or

PBS with 0.0 1% trypsin inhibitor (T9008 Sigma-Aldrich or P-1540 Westnet Inc) (pancreas,

liver, colon) until use. Intestines were cut open on one side and the lumen was rinsed of fecal

matter before placing in PBS + trypsin inhibitor. Mammary, pancreas, liver and colon tissues

were compressed to 0.5 mm between coverslips and imaged for EGFP under the Ix objective

with the FITC filter of a Nikon 80i fluorescent microscope.

4.3.3 RaDR Image Analysis

RaDR images can be analyzed for the number of de novo recombination events by quantifying

individual fluorescent foci, or for total burden of recombinant cells by measuring the fluorescent

area of the tissue. Both metrics are normalized to tissue area, measured in ImageJ. To quantify

fluorescent foci, Dushan Wadduwage of Peter So's laboratory designed MATLAB-based

programs that use gradient and intensity features of the image to distinguish individual foci

(manuscript under review). The program "FociCounter_3.1" was used to enumerate all foci in

pancreas, liver, and mammary tissues, and the program "17.03.27_Crypt counter with GUI" was

utilized to enumerate converted colonic crypts. The crypt counting program is trained to

recognize crypt foci based on 3-4 researcher-annotated images from the data set, then the

program is able to apply those parameters to identify crypt foci in other images. To quantify the
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fluorescent area within the tissue, conservative intensity thresholds were set in ImageJ such that

background and artifactual fluorescence was excluded, and only brightly fluorescent pixels

would be measured. After marking the outline of the tissue, the area of pixels above the threshold

intensity were measured as well as the total tissue area.

4.3.4 RaDR Flow Cytometry

Tissues analyzed by flow cytometry were processed after imaging was completed. Briefly,

tissues were placed in 5 mL of 2 mg/ml collagenase type V (C9263, Sigma) in HBSS (Life

Technologies) in a GentleMACS C tube and mechanically dissociated with the GentleMACS

tissue grinder (Miltenyi Biotec). After mechanical disaggregation, the tissues were placed in a

37C incubator for 40 minutes to allow collagenase to degrade connective tissue. Cell suspensions

were then triterated 10-15 times and passed through a 70 micron cell strainer into 10 mL of cold

media (DMEM + 10% FBS + pen/strep) to halt collagenase digestion. The samples were then

centrifuged at 180 x g for 10 minutes and supernatant was discarded. The cell pellet was

resuspended in 350-500 uL of Opti-MEM reduced serum media (ThermoFisher Scientific) and

held on ice until analyzed. The samples were analyzed by a FACScan or FACS Calibur flow

cytometer for green fluorescence (530 nm) and red (585 nm) to account for autofluorescence.

4.3.5 Abasic Site Quantification

Abasic sites were quantified from colon DNA with the Dojindo AP-site counting kit (Dojindo

Molecular Technologies, Inc, Rockville, MD). Briefly, DNA was extracted from snap-frozen

colon tissue by homogenization and extraction with the Roche DNA Isolation kit for cells and

tissues (Roche Diagnostics Corporation, Indianapolis, IN). A portion of the extracted DNA was
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diluted to 100 ptg/mL and abasic sites labeled with a biotin-tagged aldehyde reactive probe.

Labeled DNA was bound to a clear 96-well plate, incubated with HRP-conjugated streptavidin,

and treated with peroxidase to permit colorimetric detection by optical density at 650 nm.

4.3.6 Statistical Analyses

RaDR foci were quantified as the number of foci per square centimeter of area (foci/cm 2), and

RaDR flow cytometry measurements were given as % fluorescent* 106. Due to the fact that the

distribution of EGFP-positive cells in RaDR mice is non-normal across tissues and among

individuals, RaDR data sets were compared by Mann-Whitney U-test using GraphPad Prism 5.

Due to the wide spread of data, some tissues were analyzed a second time after removing outliers

(outliers defined as x < QI - (1.5*[Q3-Q 1]) or x > Q3 + (1.5*[Q3-Ql]), where QI and Q3

represent the first and third quartiles of data in the set, respectively).

4.4 Results

4.4.1 AagTg animals accumulate fewer mutations compared to AagWT in the pancreas,

colon, spleen, and lung

We measured recombinant EGFP+ cells in ten tissue types by imaging (colon, pancreas, liver,

mammary) or flow cytometry (brain, heart, lung, kidney, thymus, spleen). De novo mutations

were quantified by automated image analysis in pancreas, liver and mammary tissue. Colon

images were similarly analyzed, both for all foci as well as for converted crypts.

There were statistically fewer mutation foci in the pancreata and colon crypts of AagTg

animals (Fig 4-1A), and a lower overall proportion of mutated cells in AagTg spleens (Fig 4-1B).
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Following removal of statistical outliers (see Materials and Methods), AagTg animals were also

found to have a lower proportion of mutated cells in the lung (Fig 4-1 B).

4.4.2 AagTg animals have sex-dependent differences in tissue-specific accumulation of

mutations

Several studies using AagTg animals have revealed sex-dependent differences in susceptibility to

toxicity from DNA methylating agents in the kidney [16], cerebellum [17] and retina

(unpublished data). Therefore, we were interested to know whether the accumulation of sequence

rearrangement mutations varied by sex of the animal. RaDR foci and flow cytometry data were

separated by sex and re-analyzed for significance.

Interestingly, female AagTg animals only showed a significant decrease in mutation

accumulation compared to AagWT in the pancreas (Fig 4-2A). In all other tissues, female

AagWT and AagTg animals showed similar frequencies or proportions of mutations. In fact, the

significant difference in colon crypt and spleen mutations between AagWT and AagTg in sex-

pooled data is derived almost entirely from male animals, as the data spread between females

was nearly identical in these tissues (Fig 4-2B, C).

By separating data by animal sex, we also discovered that AagTg males develop

significantly lower proportions of mutant cells in the heart (Fig 4-2D) as well as the kidney (after

removing outliers - see Materials and Methods) (Fig 4-2E), a distinction that was not visible in

the sex-pooled data. In both these tissues, AagWT males accumulate a larger proportion of

mutant cells compared to both AagTg males as well as AagWT females.

Data for tissue types that did not display statistical differences are presented in Figure 4-

3.
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4.4.3 Frequency of mutations does not necessarily correlate with frequency of abasic sites

The observed decrease in RaDR mutations in AagTg animals was unexpected, as we had

previously shown that BER intermediates promote HR and anticipated that AagTg animals

would have more BER intermediates than AagWT. Since our hypothesis was dependent on the

assumption that AagTg animals would have more BER intermediates, we first aimed to

determine whether this assumption was correct. The Aag glycosylase produces abasic sites, and

other BER intermediates are downstream of glycosylase activity, so we utilized a kit to quantify

abasic sites in AagWT and AagTg colon tissue, three animals of each sex. We did not observe

significant differences in abasic sites between AagWT and AagTg nor between male and female

(Fig 4-4). However, this data is from a small sample size, and so we do not posit firm

conclusions relating abasic sites to mutations.

4.4.4 Correlation analysis suggests tissue mutation frequency may correlate within an

animal, but mutant accumulation does not

Given the wide spread of mutation data between individual animals, we aimed to clarify whether

animals that have a large number of recombinant cells in one tissue are also likely to have high

levels of mutants cells across other tissues. In collaboration with Duanduan Ma of MIT's

BioMicro Center, we calculated Spearmann correlation coefficients for all tissues. Correlation

coefficients are listed in Figure 4-5A, and p-values for each coefficient are listed in Figure 4-5B.

Interestingly, most tissues analyzed for mutation frequency (i.e., foci) correlated significantly,

whereas most tissues analyzed for overall mutant proportion (i.e., flow cytometry) did not

correlate. Two tissues were exceptions, however: mammary foci did not correlate with other

158



mutation frequencies, and the mutant proportion of the spleen correlated weakly with pancreas

and colon crypt foci.

4.5 Discussion

In this study, we aimed to determine whether increased expression of the Aag glycosylase affects

the production of sequence rearrangement mutations. Previous studies have shown that Aago-

animals develop fewer HR-driven mutations, likely due to the presence of fewer BER

intermediates. Therefore, we hypothesized that animals expressing elevated levels of Aag would

accumulate more sequence rearrangement (RaDR) mutations from the increase in BER

intermediates. Surprisingly, counter to our initial hypothesis, AagTg animals accumulated fewer

sequence rearrangement mutations overall. The decrease in RaDR mutations in AagTg animals

was statistically significant in the pancreas, colon crypts, spleen, and lung after removal of

outliers. Separating data by sex of the animal further revealed that AagTg males accumulate

fewer mutations than AagWT males in the colon, heart, kidney and spleen, whereas females only

appear to have an Aag-dependent decrease in mutations in the pancreas.

Since our initial hypothesis predicted that AagTg animals would have more mutations

due to more BER intermediates, we sought to determine whether there was a difference in BER

intermediates. We measured abasic sites in the colons of AagWT and AagTg animals, three

animals of each sex. We did not observe a significant difference in abasic sites for either

genotype or sex, suggesting that AagTg animals do not necessarily have an imbalance in the

BER pathway. Previous studies reported that AagTg animals have higher ParpI activity

compared to AagWT [16], suggesting that increased expression of Aag causes upregulation of
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downstream factors as well. We hypothesize that since our animals were not treated with a DNA

damaging agent, downstream steps of the BER pathway were able to keep up with Aag activity,

resulting in improved efficiency and an overall decrease in mutations. Thus, since the BER

pathway was not stressed, efficient repair in both AagTg and AagWT animals resulted in

similarly low levels of abasic sites.

Importantly, other studies of sequence rearrangement mutations in AagWT and Aag null

animals analyzed mutations following alkylation DNA damage [ 15]. Furthermore, AagTg

animals are more sensitive than AagWT to toxicity by alkylating agents [14, 16, 17]. Thus, we

predict that treatment with an alkylating agent could reverse the trend observed here, and

RaDR;AagTg animals would accumulate more recombinant cells than RaDR;AagWT. This work

enables many exciting studies on the Aag-dependent accumulation of recombinant cells

following exposures.

The difference in recombinant cell accumulation between male and female kidneys

particularly interesting because previous studies with AagTg animals have shown that estrogen is

protective against alkylation-induced nephrotoxicity [16]. Our finding that AagWT females

accumulate fewer mutated kidney cells than AagWT males is consistent with males being more

susceptible to renal damage in a variety of model systems [16, 18-20].

The sex-dependent differences in mutation accumulation indicate that there may be sex-

related differences in AagTg expression. The initial characterization of Aag activity across

tissues in the AagTg animal did not separate based on sex of the animal. Based on the sex-linked

differences in mutation accumulation, it will be of great interest to characterize Aag activity

across tissues of both male and female animals. This is especially important for further studies
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using these animals, as sex-dependent variations in Aag activity may drive other sex-dependent

phenotypes in AagTg mice.

4.6 Conclusions

In this study, we assessed the baseline accumulation of RaDR mutations in AagTg and AagWT

mice after six months of age in 10 tissues. Overall, in all cases where there was a difference

between AagTg and AagWT, the AagTg animals had developed fewer mutations. Separating

data by sex revealed that the differences between AagTg and AagWT mutations is most

pronounced in male animals' tissues, whereas AagTg females only had fewer mutations than

AagWT in the pancreas. Further studies on these animals will illustrate the source of these Aag-

dependent and sex-dependent differences in mutation accumulation. In particular, the activity of

Aag should be measured across tissues of male and female AagWT and AagTg animals to clarify

results of this and other studies [14, 17]. We also anticipate that measuring RaDR mutations in

AagTg, AagWT and Aag null animals following treatment with a DNA-damaging agent will

provide a clearer, more complete paradigm linking BER intermediates to HR-derived mutations.
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Chapter 5

Conclusions and Future Work

The experiments comprising this thesis have revealed a number of notable insights

regarding when and how mutations develop. We focused on intestinal inflammation since the

relationship between colonic inflammation and cancer is well established and many models exist

for studying different aspects of colon carcinogenesis. In addition to uncovering mutation

patterns arising from inflammation and DNA damage in the intestine, we also demonstrated the

utility of the RaDR mouse for detecting mutations in unexpected "off-target" tissues, providing a

more comprehensive view of mutagenicity in whole organisms.

First, we studied the impact of inflammation on the promotion stage of cancer using the

ApCMi" + mouse, which contain a cancer-initiating mutation in Apc and spontaneously develop

intestinal tumors. By blocking inflammation with anti-TNF, we decreased tumor multiplicity as

well as overall mutant burden. By exacerbating inflammation with DSS, we increased both

tumors and overall mutant burden. In both cases, converted crypt foci were unchanged relative to

control. Together, these studies show that inflammation does not contribute significantly to de

novo sequence rearrangement mutations in colonic crypt stem cells, but it does increase the

overall burden of mutant cells through elevated proliferation. The inflammation-associated

increase in proliferation correlates with tumor incidence because every division provides cells

another opportunity to acquire more potentially oncogenic mutations.

We also incorporated the variable of DNA damage into our studies of inflammation. Our

first experiment combined both inflammation and DNA damage in one treatment by infecting

Rag2-'- mice with Helicobacter hepaticus, a murine pathogen that causes DNA double strand
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breaks (DSBs) with its cytolethal distending toxin (CDT) [1]. Initially, we were surprised to

discover that this pathogenic infection did not increase mutations, and may have even decreased

mutation frequency. Subsequent experiments treating Apcmi/+ mice with AOM also showed a

decrease in recombinant colon crypts. These similar patterns of decreased crypt foci under

conditions of DNA damage, either DSBs from a bacterial toxin or methylation from a chemical

carcinogen, lend support to Cairns' immortal strand hypothesis, which suggests that DNA

damage induced in a somatic stem cell will cause the cell to preferentially undergo apoptosis

rather than risk mutating [2]. Importantly, the immortal strand hypothesis also suggests that

when a stem cell dies it is replaced by a dedifferentiated daughter cell [3], but our observations

do not support that theory because if a RaDR mutant crypt stem cell were to die, all of its

daughter cells necessarily also have the RaDR mutation and the frequency of recombinant crypts

would be unchanged. More work is necessary to determine the mechanism of replacing crypt

stem cells after apoptosis.

An unexpected and intriguing finding in the work described here is that of increased

recombinant foci in Rag2~ pancreata. Rag2 is thought to be a lymphoid-specific gene [4, 5] and

has not been detected in the mouse pancreas [6], so the relationship between Rag2 and

recombination in the pancreas is as yet inscrutable. We are preparing to collaborate with Dr. Bert

van de Kooij of the Yaffe laboratory to query DSB repair in Rag2J- cells. Given that Rag2 is

considered lymphoid-specific, any relationship between Rag2 and pancreatic DSB repair will be

a novel finding.

Finally, the pattern of fewer recombinant cells in AagTg animals will provide the basis

for many interesting studies regarding balance between Base Excision Repair (BER) and

homologous recombination (HR). We had previously observed that Aag'- animals accumulate
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fewer recombinant foci compared to WT following treatment with the DNA alkylating agent

methylnitrosourea (MNU) [7], and from this we formed our hypothesis that AagTg animals

would have more BER intermediates and therefore more recombination events. Here, we show

that unchallenged AagTg animals accumulate fewer sequence rearrangement mutations than WT,

possibly by more efficient resolution of BER intermediates. This, along with the observation of

sex-dependence in mutant cell accumulation, will provide important foundations for upcoming

experiments treating RaDR;Aag-, RaDR;AagWT and RaDR;AagTg with the environmental

toxicant N-nitrosodimethylamine, a DNA methylating agent.

The work comprising this thesis has provided numerous novel insights to mutagenic

recombination and will form the basis for many exciting further studies. Inflammation appears to

increase the overall burden of mutant cells by increased proliferation, but we have not separated

the variables of inflammation and proliferation to verify whether proliferation is the key to

increasing mutant burden. DNA damage decreases the frequency of recombinant crypts, but

more work is required to determine what exactly happens to colon stem cells following DNA

damage. Studies into the relationship between Rag2 and pancreas DSB repair will provide novel

insights to Rag2 activity and lineage specificity. Finally, the tissue- and sex-dependent patterns

of decreased RaDR mutant cells in AagTg animals highlights the importance of further

characterizing Aag activity across tissues and between sexes in preparation for treatment studies

in Aag-l-, AagWT and AagTg animals. This thesis presents numerous exciting findings about how

organisms develop and accumulate mutations, and provides many opportunities for further

discovery.
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